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Abstract

Very Large Scale Integration (VLSI) design has advanced in recent years to the point that

a deep knowledge of semiconductor physics and a penchant for black magic is no longer

necessary to design functional integrated circuits. David Harris and Professor William

Dally taught a class on VLSI design to freshmen and sophomores who had an elementary

background in digital electronics. Over three and a half weeks during 1994 Independent

Activities Period, ten students learned to design and layout Complementary Metal Oxide
Semiconductor (CMOS) circuits and implemented an eight bit microprocessor on a
MOSIS TinyChip. Major results of this project are: (1) the design of the simple eight bit
microprocessor, dubbed the Unintel Sexium, (2) development of CAD tools and
resources to facilitate VLSI design at MIT, (3) proof that undergraduates are capable of
mastering VLSI design, and (4) that a class on VLSI design would be a tremendously
educational and rewarding new undergraduate laboratory subject.
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8 Chapter 1. Introduction

1. Introduction

This thesis describes an educational experiment, bringing VLSI design to freshmen and
sophomores at MIT during the 1994 Independent Activities Period. The experiment
involved preparing an IAP class, developing lectures, problem sets, and notes, creating
and documenting CAD tools, and designing and implementing an 8 bit microprocessor
for the class project. David Harris co-taught with Professor William Dally; Professor
Dally was responsible for four of the lectures, the overall processor architecture, and for
guidance and a VLSI education philosophy throughout the project. David Harris and the

ten students carried out the remainder of the work, detailed in this document.

The educational experiment produced overwhelmingly positive results. Hence, we

contend in this thesis that VLSI ought to be integrated into the MIT undergraduate
curriculum. Chapter 2 presents background about events motivating and leading to the

VLSI Chip Design class. Chapter 3 describes the course in more detail, beginning with

the objectives and teaching philosophy and showing how they manifest in the lectures,

problem sets, and class project. Chapter 4 discusses the class project, the design and

implementation of the Unintel Sexium 8 bit accumulator-based microprocessor. This

project was a significant engineering project in itself, and the process flow, from Verilog

to schematics through layout and verification, is examined. Chapter 5 documents several

of the CAD tools developed to support the project; much of the work should be reusable

in other VLSI classes at MIT. Chapter 6 reports the results of the educational experiment

and concludes with the case for bringing VLSI into the undergraduate Electrical

Engineering and Computer Science curriculum.

7WE WORK OUR WTTS OFF
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2. Background

Very Large Scale Integration (VLSI) Application-Specific Integrated Circuits (ASICs),
including gate arrays and custom chips, have nearly replaced traditional TTL logic for

implementing today's ever more complex digital systems. Moreover, the design of VLSI

systems has become much simpler in the last decade; most of the black magic is gone.
Nevertheless, digital electronics education continues to revolve around TTL based

systems. While TTL chips do offer the advantage of being very concrete and easy for
novices to use, it would seem that VLSI should be taught as well because a good

understanding of the capabilities and limitations of the VLSI medium is critical to being a

real-world digital designer.

MIT has pioneered VLSI education in the past, especially via Mead and Conway's
revolutionary class in 1978, and presently offers a variety of courses on VLSI design at
the graduate level. 6.371 is a very popular introductory graduate course; in recent

semesters, due to the influx of Masters' students under the new Master of Engineering
program, it has been severely oversubscribed and undergraduates have little hope of

enrolling. A modest variety of more advanced coursework in VLSI is also offered, but
nothing is available for the bulk of undergraduate students.

This author became interested in teaching VLSI after spending three semesters teaching
digital electronics to freshmen at MIT. The freshman course, unofficially titled "6.007:
License to Hack," seeks to give freshmen a taste of electrical engineering and enough

practical electronics background to make the student comfortable designing real-world
digital circuits and working with soldering irons, breadboards, and various discrete
components. It is taught with a sequence of design projects and hands-on labs,
culminating with a digital tape recorder and a student-designed robot.

In the fall of 1993, David Harris and Professor Dally, the faculty advisor to 6.007,
decided to experiment with teaching VLSI to freshmen and sophomores with only basic
digital electronics background. They developed a 9-unit course, "6.008," and taught it to
a class of ten students during Independent Activities Period, January 1994. Seven of the
students were 6.007 graduates: two freshmen and five sophomores. One of the
remaining students was a sophomore who had other digital background; the last two were
juniors with extensive background including 6.004 and 6.313.
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3. Course Description

Teaching is the half of learning.
- Confucius, in Record on the Subject of Education

This chapter describes the VLSI Chip Design course. A detailed description of the
Unintel Sexium microprocessor is deferred to Chapter 4. Copies of the handouts
prepared for the class appear in Appendix A.

WroF. P.
FEE.I. I

AMOUNT
SrB;EC

3.1 Course Overview

3.1.1 The Experiment

This class can be viewed as an experiment in undergraduate education. The hypothesis is

that freshmen and sophomores with a basic knowledge of digital electronics are capable

of learning VLSI design, especially circuit design and layout. A three-part metric is used

to measure success:

* Student performance on problem sets

* Student performance implementing complete chip

* Student enjoyment of the material
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The method of instruction was a sequence of lectures, problem sets, and the final chip

design. Teaching took place over three and a half weeks during MIT's Independent

Activities Period. Students attended class every Monday, Wednesday, and Friday1 from

2-4 PM in the Athena Electronic Classroom, for a total of 11 lectures. Between classes,

students were expected to complete 6-12 hours of outside work.

3.1.2 Teaching Objectives

The objective of the class was to teach the students the following:

* Static CMOS circuit design

* CMOS layout technique

* Higher-level design: floorplanning, standard cells, datapaths, and regular arrays

* Managing complexity through hierarchy, modularity, and regularity

* Team design

Note that issues such as speed and power dissipation were intentionally omitted; although

these are necessary for real-world design, they require a background in E&M and device

physics not available to most freshmen and sophomores. Moreover, these issues can be

learned from a textbook or job after the basic concepts have been mastered. The first

three topics are typical of any VLSI class; the latter two are especially important because

this class may be the first exposure of freshmen and sophomores to complex engineering

design. Hands-on experience doing an actual complex design is the best way to teach

appreciation of engineering methodology.

To meet these objectives, the class followed the syllabus below:

M3 Introduction. Administrivia. Switch-based circuits. MOSFETs. Examples.
W5 Chip Fabrication. Design Rules. Layout. Low-level examples.
F7 High-level layout. Floorplanning.
M10 Flip-flops in VLSI. Counter example.
W12 Regular arrays: RAMs, ROMs, PLAs. PLA examples.
F14 Class project. Overview of microprocessors. Programming Unintel Sexium.
T18 Microarchitecture of Sexium. Trace of program execution.
W19 Class project issues. Project lab.
F21 Project lab continued.
M24 Pads, electromigration, and other Deep Dark Secrets.
W26 Fabricating chips. Future directions. End-of-class party.

SMonday, January 17 was a holiday, so that class was rescheduled for Tuesday, January 18.
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3.1.3 Teaching Responsibility

Responsibility for teaching the class was divided between Professor Dally and David
Harris. The two jointly brainstormed and wrote the syllabus. Professor Dally was
responsible for the overall Sexium architecture, especially making it an accumulator
machine built from a single bus, allowing an area-efficient implementation, and for
specifying the datapaths and writing the RTL description of the microcode. Professor
Dally also delivered formal lectures introducing major concepts on Monday the 3rd,
Wednesday the 5th, Monday the 10th, and Wednesday the 12th. He reviewed the
problem sets and the Sexium implementation. Unfortunately, he was on travel during the
second portion of the month, but he was able to continue with design reviews over
electronic mail.

David Harris was responsible for the remaining work. He wrote the class proposal and
obtained funding and a listing in the IAP guide. He brought up the CAD tools and
technology files required for the class. He developed the Sexium processor, from an

assembler and Instruction Set Architecture (ISA) simulator written in C, to a Verilog

model, to gate and transistor level schematics and a floorplan. He wrote and graded the

problem sets, and delivered the remaining lectures. He also produced extensive

documentation of the tools and project.

The class proved to require more preparation than anyone had anticipated, but was

tremendously educational and enjoyable for all involved.

3.1.4 Administrative issues

"6.008" was officially listed as 6.090, Special Subjects in Electrical Engineering and
Computer Science, and named VLSI Chip Design in the IAP guide. Anne Hunter in
EECS department provided the number; the IAP office provided the listing. It was first
listed for 6 units of credit, but was upgraded to 9 units midway through the month
because the students were investing significantly more than 6 units of work. To receive
pass/fail credit, students were expected to do the following:

* Attend at least 9 of the 11 classes
* Complete 5 of the 6 problem sets
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* Contribute to final project
* Act as scribe, recording one lecture

There were more students enrolled than lectures to scribe because some of the later
sessions proved just to be design labs, so some students did not scribe.

Class was scheduled in room 1-115, an Athena Electronic classroom. The classroom has
approximately 30 color workstations, one at each seat, as well as an instructor's
workstation connected to a projection display. The display was very useful for
illustrating the CAD tools and layout technique. The classroom was reserved by sending
email to eclass@mit.edu; more information is available by adding the "info" locker on
Athena.

The estimated budget for the course is listed below:

Fabricating MOSIS TinyChip
13 copies of chip plot

Design Project Ice Cream prizes

Final party food & utensils
Total

$420

$130
$23
$10
$583

The course received funding from three sources. Course 6 refused to provide funding for
IAP activities, so the Edgerton Center sponsored the seminar and provided $250. The
IAP office provided an additional $250. Professor Dally offered to cover the remainder
through his discretionary funds.
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3.1.5 Further Objectives

In addition to experimenting with VLSI education and teaching the students, David had
two other objectives. One was to build an infrastructure for using the Cadence tools in
other classes at MIT. The second was to design and build a microprocessor.

MIT has used the Mentor Graphics GDT tools in the past. Unfortunately, Mentor has
been doing a poor job maintaining the tools and keeping them up to date with recent
technology; thus many of the laboratories, including the Artificial Intelligence Laboratory
and Microsystems Technology Lab, have shifted to the Cadence toolset that was donated

to MIT in 1993. The 6.371 teaching staff ultimately intends to shift to the Cadence tools,
but was unable to get them ready for use in the fall of 1993. The tools have a very steep
learning curve and require an extensive set of technology files to work properly.

David attempted to develop enough infrastructure around the Cadence tools so that they

could be used by other classes without requiring as much knowledge and effort on the

part of the teaching staff. This involved developing a technology file to support the

mosis2n 2 gm N-well process, properly importing a good pad frame (pad frame problems

have chronically plagued 6.371), and writing a PLA generator general enough to be used

by other classes. It also involved documenting the tools at a level accessible to novices.

The remaining objective was more personal: ever since taking 6.004, David had been

fascinated by designing microprocessors. Teaching this class was a fabulous opportunity

to do a complete design, from architecture down to layout and verification. It was also a

chance to learn from the mistakes he had made on the Reliable Router project and to

apply his experience with the Cadence toolset.

3.2 Teaching Philosophy

Both David and Professor Dally had strong opinions about how a class of this nature

should be taught. Major points include:

* Conveying excitement about VLSI design and engineering in general

* Learning through hands-on work and original design

* Intuitive, rather than mathematical, approach to fundamental issues

* Provide practical background for UROPs / summer jobs
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Never teach false models that must be unlearned later

To keep the class accessible to freshmen who may not have even studied electricity and
magnetism, we carefully restricted the topics covered. In particular, we avoided issues
requiring a quantitative understanding of timing or device characteristics. We selected an
edge-triggered clocking discipline with a locally generated clkbar signal to avoid issues
of skew. We used minimum-sized devices in all places. We limited circuit design to
fully restoring static circuits so that students could not get themselves in serious trouble
with analog effects; however, as the students developed a better understanding of the

design rules, we pointed out circumstances under which the rules could be violated to
reduce critical area, especially by using NMOS-only transmission gates and pseudo-
NMOS PLA circuitry.

Another challenge that arose was the varied experience levels of the students. Many of
the students had taken little or no electronics beyond the basic 6.007 class; however,
several had mastered 6.004 and even 6.313. Properly targeting the lectures such that the
advanced students learned new material and remained interested while the less
experienced students could still understand was very challenging, especially for many of
the early lectures that addressed fundamental principles of digital electronics. The most
effective answer to this experience differential was providing extra credit problems on the
homework that allowed students to do original design and optimization. The best
solution on each extra credit problem was rewarded with a Toscinini's ice cream gift
certificate.

3.3 Lectures

The first seven lectures were typical of formal MIT lectures. They tended to be paced
rapidly, occasionally faster than the less-experienced students could follow. The
remaining four class periods focused on project-related issues and had little or no formal
lecture time. The syllabus in section 3.1.2 summarizes the material that was covered.

For each of the first six lectures, a student volunteer acted as the scribe, recording the
lecture, typing it, and distributing copies to class members. This had three purposes: to
provide a reference on the lecture to the other students, to provide a written record of the
lecture in the event that the class might be taught again in the future, and to help the
scribe learn the material in more depth than usual. The scribe's notes were reviewed and
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edited on the evening before the succeeding class to catch conceptual and linguistic errors
and to answer any questions the scribe may have developed while writing; the corrected
notes were then photocopied and distributed. Copies of these notes appear in Appendix
A.

3.4 Problem Sets

At each class, a problem set related to the lecture material was assigned, due two days

later at the next class. The problem sets were design and layout-oriented; while the first

problem set primarily involved design of logic circuits using MOS transistors on paper,

the remaining problem sets all required students to log into computers at the Artificial

Intelligence laboratory and run the Cadence layout software or the msim simulator

developed for the class. After Problem Set 6, the students switched to laying out the

Sexium processor and began working as teams instead of doing individual assignments.

Problem sets were graded loosely on a 4- / 4 / 4+ system; the primary goal was to help

students master the material by actually doing it. A copy of all of the problem sets

appears in Appendix A.

Problem Set 4 involved the design of standard cells by the students. Seventeen of the

most frequently used cells were selected for the standard cell library; they were assigned

such that two students designed each of the cells. Given transistor-level schematics and

guidelines on standard cell design rules, the students produced layout. The most compact



Chapter 3. Course Description 17

versions of each cell were chosen for the library; in cases where neither cell was correctly

laid out, the student with the most nearly correct design was asked to revise the cell. The

flip-flop was a special case; it was offered as an extra-credit design project to create the

most compact flip-flop. A great competition ensued and a very compact flip-flop was

produced by Matt Sakai. Individual design reviews were held afterward with each

student to clear up confusion about well contacts, DRC rules, standard cell design, and so

forth.

3.5 Sexium Project

The most exciting part of the class for many students was the final project, in which the

class implemented the Unintel Sexium microprocessor. A technical description of the
processor appears below in Chapter 4; this section describes the work the students carried
out.

The students were presented with a description of the Sexium architecture and a draft of

the floorplan and schematics; it was emphasized that these documents were tentative and
that any optimizations students found were highly encouraged. On Wednesday, January

19th, students were divided into four teams, responsible for the control, alubox, regbox,
and pcmabox. Each team was led by a captain who had learned the Layout vs. Schematic
(LVS) verification tools and who had shown mastery of the course. The teams were each
assigned a set of datapath cells and expected to layout a single bitslice of each cell.

On Friday the 21st, the completed bitslices were examined and it was found that the
datapath was 2500 lambda wide, much wider than the 1800 lambda available; moreover,
it was found that the control logic would occupy most of the upper half of the chip,
precluding a large second row of datapath cells. The class analyzed the factors leading to
the excessive area and brainstormed solutions. Several students found ways to eliminate
a few lambda on many cells; the greatest area savings was achieved by incorporating
multiplexor cells directly into the modules they were driving, eliminating the two
inverters used to restore the logic levels. Since multiplexors were so common in the logic
design, this provided a significant area savings. Students continued with the design by
assembling the bitslices into full 8 bit datapaths and placing a row of standard cells atop
the datapath to provide factored control signals (e.g. clkbar, or enables on the latches).
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By Monday the 24th, nearly all of the datapath cells passed LVS and DRC checks and the
control team had written the equations for the PLA, adapting them from the microcode
David had written in Verilog. The datapath proved to be about 40 lambda wider than the
chip after extensive optimization, so the relatively small regbox was moved to the upper
half of the chip, still leaving enough room for the control PLA and standard cells. While
the control team finished its design, the datapath was placed in the pad frame and wired
together; power and ground busses were also run across the center of the chip. Dan

Hartman learned to run the Verilog simulator and assisted with the Verilog simulation of

the schematics; he and other students also drew schematics for the control box and test

multiplexors.

On Wednesday the 26th, the last day of class, the datapath was complete and wired up.

The control was also nearly complete; a last minute bug had been located and corrected in

the microcode and the PLA was regenerated. A nifty Sexium logo was designed and the

global wiring was nearly finished.

Verification and final modifications took longer than expected: many modules had

incorrectly placed pins that were difficult to locate; the Cadence extractor also had

difficulty with the different scale on the pad frame, which had been read in from CIF

(Caltech Interchange Format). Dan Hartman and David Harris spent each Saturday in the

lab hunting down bugs and produced final CIF output on February 24, 1994.

3.6 Reflections on Teaching

3.6.1 Teaching Challenges

There were several challenges involved in teaching VLSI to freshmen and sophomores.

The greatest challenge was balancing the level of presentation to keep the more

experienced students interested while retaining clarity of explanation for the students with

little background in electronics. Teaching enough VLSI for students to do layout and use

the tools required a rapid pace; however, it was more important that the students

understand the material than that every facet of VLSI design be covered. From the

student performance and overwhelmingly favorable evaluations received, one freshman

felt he did not master the material; the other students felt reasonably comfortable and Dan

Hartman learned enough to proceed to the advanced 6.372 class in the spring.
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Another challenge was simply developing the course. Designing an entire

microprocessor in a month was a reasonable effort; writing and grading problem sets,

maintaining notes, and so forth was a mammoth effort. Mmuch of this work will not

have to be repeated, should this course be offered next year.

3.6.2 Effective Teaching Techniques

Several teaching techniques proved valuable in this class and are summarized below.

They include the hands-on focus, the highly motivational project, extra credit problems

on each assignment, design reviews, scribe assignments, and the electronic classroom.

The key to successfully teaching VLSI in such a short time to novices was the hands-on

emphasis. Some students learn well from lecture; others learn from textbooks; however,

everybody seems to learn well by doing. There is no substitute for actual design work

when teaching design. The first problem set involved paper designs; on every subsequent

assignment, students did most of their work on the computer actually doing layout,

programming, or simulation and verification. Problem sets were graded informally, but

allowed David to catch students who were having conceptual difficulties and fix

misunderstandings before they became serious.

The second key was the highly motivational project of designing and building the Unintel

Sexium. Many of the students, especially team leaders, acquired a personal sense of

responsibility for the project and worked into the wee hours of the nights searching for

optimizations and bugs and producing extremely tight layout. For the students, having

completed a chip and hanging a plot of it on the wall builds confidence as engineers and

excitement about design. As a teacher, the project kept the class exciting throughout,

despite the tremendous amount of effort required.

A mid-month design review of each of the students was critical to prepare everybody for

the project.. By Problem Set 4, students had learned everything they needed to know

about layout and developed cells for the standard cell library. Many of the students had

minor misconceptions about layout: some didn't include substrate contacts, pins, or

labels, others did not push design rules aggressively enough and ended up with enormous

layouts. An individual conference with each student in which the standard cells were

evaluated and corrected where necessary cleared up these problems and prepared the
students to produce correct layout for the final project.
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As noted earlier, the disparity among experience levels presented a challenge for

teaching. The most effective approach to the problem was offering extra-credit problems

on the problem sets. This allowed the problem set to focus on the basic issues for the

students with little experience, while giving the advanced students a chance to do

interesting original design and optimization. Ice cream certificates as prizes added a bit

of motivation to the assignments for less than 5% of the total class budget.

Scribe assignments were another experimental technique that worked well. Traditionally,

only a few graduate classes have employed student scribes. In 6.008, a volunteer was

chosen at each meeting to record the lecture and type it for distribution at the next class.

Many students found that they better understood the lecture after trying to type it up and

asking questions where they found that something from lecture was unclear. The notes

served as reference material for the other students. As a first time class, the notes will

also give a record of the material covered in each lecture to make future classes easier.

One issue of scribing was difficult: as there were only six formal lectures in which the

scribes took notes, and ten students, it was to the advantage of students not to volunteer,

in the hopes that they would never have to scribe. A solution to this problem was giving

the scribe responsibility to any student who arrived late when nobody else would

volunteer!

The electronic classroom was an interesting and useful teaching resource. As such a

hands-on class, there were many opportunities where the students could try layout in

class with help and supervision; even more importantly, the tools and layout styles could

be illustrated on the projector during class. The disadvantages of the electronic classroom

are that students tend to be logged in, sending zephyrs or playing computer games during

lecture, and that when the lights are dimmed to use the projection screen, it is easy to fall

asleep.

MIT has been seeking to improve the quality of teaching in recent years. These results

should remind teachers of some of the proven techniques they have at their disposal.

3.6.3 Student Evaluations

On the last day of class, students were requested to evaluate the class in excruciating

detail. The evaluation forms appear in Appendix B; they are summarized below:
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Students reported between 20 and 30 hours of work per week for the class, increasing

toward the end of the month as the project kicked in. Problem sets were considered long

but generally worthwhile and necessary to master the material. The lectures got a mix of

comments; many complained that they were too fast, while some felt lectures were too

slow. This can be attributed to the wide range of student backgrounds. The

microprocessor project was a universal favorite part of the class and was very

motivational to many students. Design problems with a chance for optimization and

extra help sessions outside of class to review layout were also considered valuable. In the

future, students would like to see the chip actually functioning (perhaps through

simulation) and would like to spread the class over a longer period of time to reduce the

workload. Although one freshman felt overwhelmed by the pace and uncomfortable with

his mastery of the material by the end of the term, the others reported fair to thorough

mastery and interest in follow-on activities.
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4. Microprocessor Design
rlIU: V~

This section describes the design of the Unintel Sexium microprocessor. Much of the
material is taken from the design document developed for the class that appears in

Appendix A; however, the design document tends to take more of a tutorial approach.

4.1 Overview

The project selected for the class had to meet several design constraints:

* Exciting and motivational for students
* Capable of being partitioned into work for ten individuals

* Small enough to fit on 4 MX2 MOSIS TinyChip

* To be designed in one month by David Harris

* To be implemented in one and a half weeks by freshmen and sophomores

The most exciting project brainstormed that satisfied the remaining design criteria was an

eight bit microprocessor, dubbed the Unintel Sexium. The Sexium was an accumulator

machine with a single bus. The registers and ALU fit belong in a single datapath; the

microcoded control, implemented with a PLA and state counter, sat above the ALU. The
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instruction set was very simple. The program counter and memory address registers were

16 bits each, giving the machine a 64K address space.

The Unintel Sexium is described in detail in the remaining sections of this chapter.

4.2 Instruction Set Architecture

The Sexium instruction set was chosen to provide a minimal Turing-universal set of

operations, plus a small number of additional instructions required for efficiently
implementing certain constructs (e.g. walking through an array or calling a subroutine).

Visible to the programmer were the accumulator, four general purpose registers (RO-R3),
and a 16 bit program counter (PCH : PCL) and memory address register (MAH : MAL).

A table with the complete instruction set appears below:

Instruction Effect Comments
Arithmetic / Logical

ADD reg A 4- A + reg Add A to register
AND reg A - A & reg Bitwise AND of A and reg
NOT A -, A Bitwise complement (NOT)
SHR A A >> 1, A7 = 0 Shift right
ROR A -A >> 1, A7 = AO-old Roll right
PUT reg reg - A Put A into register
GET reg A +- reg Get A from register
TST reg Ao +- carry (A+reg) Test A + register and

A Al < zero (A+reg) set bits of A accordingly
Memory

LDA A - Mem[MA] Load A from memory
LDI A - Mem[MA] Load A from memory

MA +- MA+1 and increment MA
LDM const A +- const Load A immediately
STA Mem[MA] - A Store A to memory
STI Mem[MA] 4- A Store A to memory

MA < MA+I and increment MA
Control

JMP high low PC - high:low Jump to absolute address
BRA const PC - PC + signed const Branch to relative address
CAL high low Rl:RO - PCH:PCL+3 Call subroutine and save

PC +- PC + const return address
RTN PCH:PCL 4- R1:RO Return from subroutine
SKZ If (A = 0) PC <- PC + 2 Skip ahead 2 if A is zero
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Note that SKZ is the only conditional instruction. Instructions are either 1, 2, or 3 bytes
long. The lower 5 bits of the first byte specify the operation; the upper 3 bits may name
one of the eight registers. Some instructions take an additional one or two bytes from the
instruction stream. A table of instruction codings appears below.

ADD

AND

NOT

SHR

ROR

PUT

GET

TST

LDA

LDI

LDM

STA

STI

JMP

BRA

CAL

RTN

SKZ

r eg T0 1 1 1 0
rleg lO 1 0 0 1o

F77 00 0 10 E]
0 0 0 1 1 il 0 l

IoloIoIoIi iIoIoi
rlelgI 0l 1 1 1 11

rOeOg 0 1 0 1 0

10 00 100 101 10 0
0 0 0 0 0 0 1 1
100 0 0 1 0 0 0

10 0101, 10 101
10001001 01-1010 1011100 10 11

lob lou ou lo lo

I I high h

I IoloIln lst I I
I I hlii gih I

I lolInIlslt I I

II1 lo I Iw

1 ow

Register Codes

Code Register
000: RO
001: R1
010: R2
011: R3
100: PCL
101: PCH
110: MAL
111: MAH

I cloinlsit
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4.3 External Interface

The Sexium is packaged in a 40 pin ceramic DIP from MOSTS. In the standard MOSIS

pad frame, four pins are dedicated to power and ground for the pad frame; an additional

two are used for power and ground to the internal logic, leaving 34 pins for general

purpose I/O. The Sexium pinout is shown below:

16 8 2-

ADR DATA CS RWbar
VDD ©®TM

Unintel Sexium -
3 -

GND Better watch out:
Our lawyers are watching you.
RESET CLK TEST

5

Symbolic View Pinout

RESET and CLK are fed into the chip; CLK goes directly in without passing through any

buffering stages, allowing better shaping of the clock from off-chip. TEST has four

select signals and one output; it allows the user to probe internal signals by muxing one

of sixteen signals, according to the table below: The ring oscillator is a seven-inverter

oscillator. Unfortunately, based on the tau-model developed in section 4.9.2, the

oscillator is predicted to have a period of 3.5 ns, well beyond the bandwidth of the output

pads. The T flip-flop is toggled on the rising edge of the clock.

0000: resetbar 0001: ring osc. 0010: T flop 0011: F bit

0100: s<0> 0101: bus<0> 0110: bus<l> 0111: bus<2>

1000: bus<3> 1001: bus<4> 1010: bus<5> 1011: bus<6>

1100: bus<7> 1101: ysel 1110: ir<0> 1111: neg

RWbar is high for read operations and is pulsed low for writes to control external
memory. The DATA pins are an 8 bit bidirectional data bus; the ADR pins are a 16 bit
address bus. The CS pins decode the top bits of the address, dividing memory into banks

cs<2> test<0>
cs<3> test<1>
adr<15> test<3>
adr<14> CD test<2>
adr<13> " padgnd
padvdd .- test_out
adr<12> (C) reset
adr<11> , rwbar
adr<10> clk
adr<9> vdd!
gnd! d<7>
adr<8> 0) d<6>
adr<7> "• d<5>
adr<6> C d<4>
adr<5> *- padgnd
padvdd C d<3>
adr<4> d<2>
a<4> d<1>
a<2> d<O>
a<1> a<O>

I

I

I

I
I
I

I
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and allowing a computer to be built with no external glue logic between the CPU and
memory. The two CS pins and the most significant address pin, A15, decode the address
space as follows:

SPP Bank Select

Bank 3

$BFFF

Bank 2

$7FFF

Bank 0

$0000oooo

CS3

CS2

A15

4.4 Microarchitecture

In order to pack the entire microprocessor onto a TinyChip, close interplay between the

microarchitecture and floorplan was unavoidable. The chip was partitioned into a

datapath and a control unit. The 8-bit datapath was built around a single bus; it was in

turn partitioned into the alubox, the regbox, and the pcmabox (program counter and

memory address). In addition, the 8 bit instruction register (ir) and the bidirectional data

bus drivers were located in the datapath. The control module sat on top of the datapath.

It produced control signals that enabled the various modules of the path. A diagram of

the datapath, drawn by Ruben Agin when he was scribe, appears below:

One important piece of state in the microarchitecture not visible to the programmer is the

TMP registers. Located in the alubox, it is used to store temporary results while

performing BRA, CAL, and JMP instructions.
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The control unit interprets instructions using simple microcoded sequences. It is
implemented as a Finite State Machine with several flip-flops, a state counter, and a large
PLA containing random logic. The FSM has fourteen bits of state:

ir<7 :0> instruction register, holds current opcode
s<2 : 0> state counter, indicates current step in multi-step instructions
f fetch, indicates fetching next instruction into ir
carry carry bit from ALU, used in BRA command to add 16 bit numbers
neg negative bit from ALU, used in BRA command for sign extension

In addition to the state, the control FSM takes five other inputs:

reset
zero
cout
negative
regopin

reset processor, clear PC to 0 and fetch first instruction
zero out from ALU (used for SKZ)
carry out from ALU (used for BRA)
MSB of Z output is set, indicating negative 2's complement value
intermediate signal fed back through PLA indicating register op

Note that feeding regopin back through the PLA significantly reduces the area of the PLA

at the expense of doubling the delay through the PLA for outputs triggered by regopin.

The FSM produces 43 outputs, summarized below:

ALU Control
xsel<3: 0>

ysel

zsel<4:0>

alubusen
rollf lag

Idacc
Idtmp
cin

REG Control
reg_wr<3:0>
reg_rd<3:0>

controls the xmux selecting the input to the ALU
0001 = A 0010 = TMP 0100 = $00 1000 = $FF
controls the ymux selecting the input to the ALU
0 = bus 1 = $00
controls the zmux selecting the output of the ALU
00001 = adder 00010 = ander 00100 = neger
01000 = shifter 10000 = flags
enables tristate of Z output to bus
controls bit 7 of shifter output
0 = shift (load 0 into bit 7)
1 = roll (load old bit 0 into bit 7)
loads the A register from the Z output
loads the TMP register from the Z output
sets cin on adder

write general purpose register from bus
read general purpose register onto bus
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PCMA Control
pcma_rd<3 :0>
pcma_in<7:0>

pcma_select

I/O Control
bus_out
rwbar

FSM Control
clrs
newf
latchcarry
latchneg
regop

read PC / MA onto bus
write PC / MA from bus or incrementor (four 2-bit codes)
00 = keep old value 01 = bus 10 = incrementor
choose PC or MA to drive address pins
0 = PC 1 = MA

drive bus onto data pins
read or write external memory
1 = read 0 = write (pulsed low during second half of cycle)

clear S counter
set f bit
latch CARRY bit
latch NEG bit
fed back straight to regopin

The following microcode is used to implement each of the instructions. All operations

listed on one line occur in parallel during one clock and results are not visible until the

next rising clock edge.

Reset (RESET = 1)
S000: PC 4- 0; S <- 0; F <- 1;

Fetch (F = 1)
S000: IR 4- M[PC]; S <- 0; F <- 0; PC <-- PC + 1

LDA / LDI
S000: A <- M[MA]; (if inc MA <- MA + 1); S <- 0; F -- 1;

STA / STI
S000: M[MA] <- A; (if inc MA <- MA + 1); S <- 0; F - 1;

LDM
S000: A 4- M[PC]; PC -- PC + 1; S 4- 0; F <- 1;

2-Op (e.g. ADD, AND, TST, GET) or 1-Op (e.g. NOT, SHR, ROR)

S000: A <- A op REG; S <- 0; F <- 1;

PUT
S000: REG <- A; S <- 0; F 4- 1;

JMP
S000: TMP 4- M[PC]; PC - PC + 1;

S001: PCL 4- M[PC];

S010: PCH 4- TMP; S *- 0; F <- 1;
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BRA
S000: TMP <- M[PC];
S001: TMP 4- PCL + TMP;
SO10: PCL 4- TMP;
SO11: TMP +- PCH + CARRY - NEG
S100: PCH - TMP;

CAL
S000: TMP <- M[PC]; PC +-- PC + 1;
S001: R1 <--M[PC]; PC --PC + 1;
SO10: RO +- PCL;

S011: PCL *- R1;
S100: R1 4-- PCH;
S101: PCH <-- TMP; S - 0; F 4- 1;

RET
S000: PCL <-- RO

S001: PCH -- R1; S <- 0; F -- 1;

SKZ
S000: (if A = 0 PC +- PC +1)
S001: PC - PC+ 1; st-O; (ifA=O) then F4- 1;

else PC +- PC + 1; F <- 1;

The logic equations for the PLA are listed in the Appendix B.

4.5 Verilog Model

Once an assembler and interpreter had been developed to test the ISA (see section 5.1),

David wrote a Verilog model of the Sexium to flush out the microarchitecture. This

model identified all of the datapath cells required. Care was taken to exploit regularity

and modularity to minimize the number of unique cells that students had to design,

layout, and especially test. It also contained equations implementing the sequencer and

microcode of the control logic.

The Verilog model was capable of loading memory with a program assembled by msim

and executing it, showing the contents of the registers and busses over time. Running the

regression suite allowed David to debug the microcode and prove the microarchitecture

was complete.
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The complete Verilog model appears in Appendix C.

4.6 Schematics

Once the Verilog model was complete, it was a simple matter to create schematics. At

first, only the top level schematics were drawn in Cadence; the mid-level modules such as

the alubox were left as functional views containing the Verilog modules. Once the chip
simulated correctly at that level, the functional views were replaced by schematics going
all the way down to the transistor level. The general hierarchy of the chip is shown
below:

Level Example Cell Name
Chip with external memory computer
Chip sexium
Major module alubox
8 bit datapath cell adder
1 bit datapath slice adderbit

As the design progressed and some modularity had to be sacrificed for area efficiency,

several of the schematic cells were changed from the original Verilog model. For

example, the model contained a 3 input multiplexor connected to a D flop-flop; the

schematics eventually contained a single cell, flop3, with the multiplexor and flip-flop

integrated tightly together.

All of the schematics appear in section 4.8 along with the cell descriptions.

4.7 Floorplan & Layout

This section describes the physical implementation of the Sexium microprocessor.
Appendix C contains plots of the layout of the chip and each of the major modules.

4.7.1 Layout Design Rules

In order for the large group of students to rapidly produce a chip that would fit together

correctly, carefully defined layout design rules were essential. The physical design rules

were simple: layout had to obey the MOSIS design rules. In addition, there were special

rules specific to the project:
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Standard Cell Design Rules
* Power and ground run horizontally in metal 1

* Inputs, outputs, and control run vertically in poly or metal 2

* All cells are 60 7 tall, measured from center of ground to center of power busses

* Every cell has substrate contact, every well has well plug

* Top half of cell reserved for PMOS devices, bottom for NMOS
* Pins and labels on all inputs and outputs

Datapath Design Rules
* Bitlines run horizontally in metal 2, constrained to lie in ten horizontal tracks

* Power, ground, and control run vertically in metal 1

* All cells are 80 X tall

* Every cell has substrate contact, every well has well plug

* Pins and labels on all inputs and outputs

Circuit Design Rules
* Use fully restoring logic except in specially approved cases

(e.g. single-transistor muxes, pseudo-NMOS PLAs)

* Generate clkbar locally to avoid skew problems

* Use static logic

4.7.2 Floorplan

A rough floorplan of the chip appears on the next page:
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+ A5 A6 I A7 A8 - A9 A10 All A12 +

A4 A13
regbox

A3 A14

pcmabox
A2 Al5

Al CS3

AO CS2

S alubox testDO test
control

D1 test1
control

032 test2

D3 busdrivers test3

- D4 D5 D6 D7 + clkrwba rest

Floorplan: 1 inch = 600 X

The datapath cells, except the regbox that did not fit, were lined up on one side of the

chip, while control occupied the other side. A row of standard cells above the datapath

generated some control signals (e.g. clkbar); the power and ground busses of the cells

were widened to 20 X each to supply power to the entire chip. The PLA, state counter,

test multiplexors, and logo were jammed into the control section as they fit best.

4.7.3 Datapath Connectivity Diagrams

One of the challenges of the datapath design was to position bitlines of datapath cells in

such a way that routing channels between cells to connect inputs and outputs were

minimized. The problem was further complicated by the fact that several cells were used

in multiple modules, so any metal 2 interconnect running over a cell at any of the higher

level modules had to be placed such that it did not interfere with the wiring in the cell.

This was most serious when the design was modular and one multiplexor was used in

many places; as modularity was sacrificed to reduce area, planning the wiring also
became simpler.
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To manage this complexity, David drafted "datapath connectivity diagrams" illustrating
the placement of the datapath cells and the usage of the metal tracks. The diagrams were
updated on a regular basis as students found tricks that would eliminate more and more
unnecessary routing channels. The connectivity diagrams for the various datapath
modules appear with the cells in section 4.8.

4.8 Cell Descriptions

For each cell in the design, this section offers a brief description, area and transistor count
information, and a datapath connectivity diagram where appropriate. Schematic and

layout views of each cell are located in Appendix C. Also, Appendix C contains a

higher-level Verilog model of the entire microprocessor.

4.8.1 Top Level

computer

Instantiates instances of Sexium processor and memory, used to simulate complete

system.

sexium

Contains the entire chip: datapath, control, and pads.

Area:
Transistors:
Area / Transistor:

2220 X x 2250 X = 5.0 e 106 X2
5319
940 .2

The transistor count is broken up as follows:

Transistors,
844
1074
1176
1233
922

Area (m2) AreaWTransistor (•.2
3.0 * 105 356
5.2 * 105 484
6.3 * 105 536
distributed
distributed

4.8.2 alubox

Most Sexium operations move data through the alubox. Two multiplexors select the X

and Y inputs to the ALU; a third chooses the output of one of the functional units to be

the Z output. The module contains ten cells: two flip-flops with the A and TMP

registers, three multiplexors to chose X, Y, and Z, an adder, ander, neger, and shifter, and

Module
alubox
regbox
pcmabox
control
pads
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a tristate buffer for driving Z onto the bus. The adder, ander, and neger functions could

have been combined into a single cell at the expense of a potentially less efficient adder
design.

Area:
Transistors:
Area / Transistor:

524 x 757 X = 3.0 * 105 %2
844
356 X2

F-

O 0 0 N
'0 R - 3N

alubox

Notes
mux2 integrated into flip-flop to save area
8-bit tri-state bus driver
unrestoring, single NFET mux
unrestoring, single NFET mux
restoring mux
8-bit adder
8-bit and function
8-bit not function
8-bit shift or roll
including wiring tracks

I I
I
I

I
I
I
I

bu
I
I

(0
0, 0

-Y-Y

C~ll
=P I IidlVth

Widlth Cnniac
flop2
tribuf
mux2gnd
mux4
mux5
adder
ander
neger
shifter
Total:

80
37
25
55
68
100
29
16
wire only
524

Ur. F_

. . . ;I
-

oun

in2
- - - - - -

- -I I 1
- - - - -

-1 r -
I
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4.8.3 regbox

The regbox is the simplest of the datapath modules. It contains four tristate latches, RO-
R3, which can latch the bus or drive their contents onto the bus. While instruction
register and busdrivers are technically not part of the regbox, they are described in this
section. The busdriver cell drives input from the pads onto the data bus; a separate tri-
state driver built into the pads drives the bus out to the data pins.

Area:
Transistors:
Area / Transistor:

-687 X x 757 X = 5.2 * 105 ?2

1074
484 X2

--- I- Ii

I-

IB
S. S.

r =r =o 0 0

regbox

Cell
trilatch
oplatch
tribuf
Total:

Width.
69
119
69
687

Copies
4
1
1

I

I
I

I

I

II
--" ::

•ontrol busddvers

Notes
transparent latch with tri-state output
like trilatch, but always outputs to control
8-bit tri-state bus driver
includes wide busses

I

.
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4.8.4 pcmabox

The pcmabox contains the four pcma registers (PCH, PCL, MAH, MAL), along with a 16
bit incrementor and a multiplexor to drive either PC or MA onto the address bus. In
addition, each register has a tristate buffer to drive its contents onto the bus. The 16 bit

registers are partitioned into 8-bit low and high halves. Each half shares an 8 bit

incrementor between the PC and MA registers and total area is minimized by exploiting
locality.

Area:
Transistors:
Area / Transistor:

832 X x 757 X = 6.3 * 105 )2

1176
536 12

S 0 L . 6 MC or a aD=LM OD CL ·CL,
I. F - 33

b a~er

pcmabox

Cell
flop3
tribuf
halfadder
Total:

Width
94
37
76
832

Copiesa
4
4
2

Notes
flip-flop with 3-input mux
8-bit tri-state bus driver
half-adder with 2-input mux
includes wide busses

Cr =
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4.8.5 control

The control unit contains the microcode sequencer, a bit of random logic used to factor
the microcode, and the test multiplexors that bring test signals out to the pads. The
microcode sequencer is implemented with a large PLA, flip-flops, and a 3 bit state
counter to maintain the current state. Due to its irregular shape, area is not tabulated.

Transistors: 1233

controlpla

The control PLA was created with the PLA generator. It is a pseudo-NMOS NOR/NOR

design. The logic equations used to generate controlpla are located in appendix C.

Area:
Transistors:
Area / Transistor:

801 X x 775 = 6.2 * 105 X2
829
747 X2

testc

This testc block is a

and a bit of test logic

Area:
Transistors:
Area / Transistor:

set of standard cells that implements the 16 input test multiplexor

to help debug the chip.

422 X x 259 hX= 1.1 * 105 %2

138
792 X2

counter

The counter is a 3 bit counter built from standard cells that sequences through the

microcode when interpreting multiple-step instructions

Area:
Transistors:
Area / Transistor:

403 X x 111 X= 4.5 * 104 X2
90
497 X2

4.8.6 Pads

The pads from MOSIS were studied and a schematic model was created so that the pads

could be included in the chip-level simulation and checked with LVS. This should help

eliminate the common silly mistakes of incorrectly connecting signals to the pads.
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frame_v4

The MOSIS pad frame contains 40 pads. The four corner pads are dedicated to VDD or
GND to power the output drivers on the frame itself. An additional pair of pads provide
VDD and GND to the chip interior. The remaining 34 pads are I/O pads, described
below.

v4io

The I/O pads supplied by MOSIS feature a tri-state output driver and unbuffered,
inverted, and buffered versions of the input. The enable pin, when high, turns on the tri-
state driver and makes the pad function as an output pad. ESD protection is done with
600/3 field oxide transistors, a 150 ohm ndiff resistor / diode, and tri-state output drivers
acting as a pair of diode clamps. Two power and two ground pins provide isolated power
to the pad frame; an nwell isolates substrate currents of the NMOS output drivers from
the substrate of the chip interior. According to MOSIS, each pad can sink or source
1 imA of current and can drive a 50 pF load.

Section 4.9.4 includes data from HSPICE simulations of pad rise and fall times.

4.9 Timing

4.9.1 Signal Timing

The Sexium uses a simple timing methodology for ease of design, interfacing, and
testing. Signals are divided into two classes: edge-triggered and level-sensitive.

The vast majority of signals are edge-triggered. On the rising edge of the clock, new
values are loaded into the control state and PC / MA registers. The PLA evaluates and
datapath performs its operations in a purely combinational fashion henceforth with two
exceptions.

The two level-sensitive exceptions are RO-R3 and memory writes. When the clock falls
low, the level-sensitive registers open. The registers were implemented in this way
because it saves area while remaining race-free. Memory writes also occur when the
clock is low. The data to write is driven onto the data bus and the rwbar output falls low.
At the rising edge of the clock, rwbar returns high. Since the two gates driving rwbar are
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much faster than the evaluation time for the PLA, the write shuts off before the data bus
could change and corrupt memory.

4.9.2 Tau Model

The Tau Model is a simple method of estimating delays through CMOS circuits. It
models the RC delay of transistors driving a gate load capacitance, source-drain
parasitics, and any additional wiring parasitics. In this section, the Tau Model is
described; in the subsequent section, the model is used to predict critical paths through
the microprocessor.

In the Tau Model, cc is defined as the RC product of a unit-sized (4 X / 2 X) NMOS

transistor loaded with a unit-sized gate capacitance. PMOS transistors are normally
assumed to have twice the effective resistance of NMOS devices. Source or drain

capacitance and capacitance of local interconnect is assumed to be approximately equal to

one gate capacitance. Consider an inverter with a unit-size NMOS device and a double-

sized PMOS device driving an identical inverter. The effective resistance is 1; the

effective capacitance is 6:

NMOS load gate 1
PMOS load gate 2
NMOS driver drain 1
PMOS driver drain 2

8/2

4/2

Thus the product is 6tc. This is approximately the propagation delay through the first

inverter. Similarly, an inverter driving a 4x inverter has a delay of 151c: the resistance is

one and the capacitance is 15.

NMOS load gate 4
PMOS load gate 8
NMOS driver drain 1
PMOS driver drain 2
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In the mosis2n 2 gpm N-well process that we are using, we can compute T, and the gate

capacitance Cg as follows 2:

Sox W o L 3.45 * 10-13 F/cm o 4 * 10-4 cm 2 10-4 cm =6.9
Cg tox 400 * 10-8 cm

2 VDD2  L2 ox 25 (2 * 10-4 cm)2 o 3.45 * 10-13 F/cm 41 ps
(VDD - VT)2  2 Kp tox VDS -16 26.3 10-6 RA/V 2 * 400 * 10-8 cm * 5

HPSICE simulation of a unit sized inverter driving a 4x inverter gives a propagation
delay of 560 ps falling and 620 ps rising, indicating an actual average r, of 39 ps, in very

close agreement with the model!

According to MOSIS process parameters, approximately a minimum width strip of metal
approximately 80 X long or a strip of poly approximately 100 X long adds Cg of
capacitance. Similarly, a 200 X strip of poly adds one unit of resistance (about 8 Ku).

PMOS devices have roughly 1/3 the drive strength of NMOS devices.

4.9.3 Critical Paths

Although speed was not a primary objective for the Sexium design, the probable critical
paths were briefly considered. Three paths are described below.

2 Derivation in 9/27/93 lecture notes of 6.845, Concurrent VLSI Architecture, Professor Daily, MIT.
3 Transistor parameters taken from 1992 mosis2n run.

32/2

16/2
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The add instruction is the longest strictly combinational critical path. A signal must
propagate through the PLA twice to decode the register read. The register must be driven
onto the bus and trickle through an 8-stage ripple-carry adder before finally being latched
into the accumulator. Simply propagating through the PLA twice requires over 1000 tc

(the most significant part of this delay is driving the input lines, which requires twice as
long as optimal because of the significant delay charging up the input line before the
input inverter switches and begins discharging the complement of the input line; the IR
input lines are especially slow due to the distributed RC delay of an 800 X line driving 51

loads). This corresponds to more than 40 ns merely decoding the instruction and suggests

maximum operating speed would be around 10 MHz if a similar amount of time is
required for instruction execution.

Cell
ir
control_pla
control_pla
control_pla
control_pla
10
ymux
adder
zmux
amux
areg

Path
clk ->Q
IR -- add product
add product -> regop out
regop -- r0rd product
r0rd -> reg_rd[0]
reg_rd[0] -- bus
bus -> y
y -+ sum
sumt -> q
in2 -+ out
d setup time

The STA instruction is a second critical path. During the first half of the cycle, the

instruction is decoded and read onto the bus. During the second half of the cycle, the bus

is driven out onto the data pads and written to memory. Hence, the decode and bus drive

time must be less than half of the clock period.

Module
control
control
control
alubox
alubox
alubox
alubox

control
control
padframe
external ram

Cell
ir
control_pla
control_pla
xmux
adder
zmux
alubuf

nand
inv
v4io

Path
clk - Q
IR -* sta product
sta product --> xsel
xsel -+ x
x -- sum
sum --> z
z -ý bus

clk -+ rwbar
rwbar - wrbar
enable - out
write time

(wait for clk low)

Module
control
control
control
control
control
regbox
alubox
alubox
alubox
alubox
alubox
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Memory read instructions, including FETCH cycles, trigger the third critical path. In this

path, the instruction must be decoded. The appropriate address is then driven out through

the pad frame; MOSIS reports approximately 13 n- delay through the output pad driving

a modest load. The memory must respond by driving its value back onto the data bus and

into the Sexium. In most cases, this path is expected to limit the system clock because a

typical EPROM containing boot code will require about 120 ns to access. When

decoding and pad propagation delays are considered, this sets a practical system speed of

about 5 MHz. This critical path can be eliminated with faster memory, at a considerably

higher total system cost.

Module
control
control
control
pcma
padframe
external memory
padframe
busdrivers
alubox
alubox
alubox
alubox
alubox
alubox
alubox
alubox
alubox

4.A Verification

Cell
ir
control_pla
controlpla
muxl
v4io

v4io
inbuf
ymux
adder
zmux
alubuf
ymux
adder
zmux
amux
areg

Path
clk Q
IR -- Ida product
Ida product -- pcmasel
pcmasel -4 a
a -+ adr
adr -- data
data -+ d
d -+ bus
bus -+ y
y -+ sum
sum -+ z
z -- bus
bus -+ y
y -+ sum
sumt -+ q
in2 - out
d setup time
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4.A.1 Schematic Simulation

The first part of verification was simulation at the schematic level to ensure a correct
design. The design was netlisted to Verilog form, then simulated with Verilog XL-grx.
The first simulation used functional descriptions of each of the major blocks; later
simulations eliminated functional views and simulated all of the circuitry except the PLA
at the switch level. The PLA layout is generated directly; hence, no schematic view is
available and a behavioral view output by the PLA generator must be used instead.

4.A.2 Layout vs. Schematics

The Layout vs. Schematic (LVS) tool was immensely valuable for verification. Students
learned the tool and checked their work against the schematic to catch most layout errors.
Cadence's LVS tool produces very cryptic error messages and is difficult to use, but with
practice students mastered it and the more advanced students were able to run LVS on
modules higher in the hierarchy, verifying the complete chip. Dan Hartman was
responsible for most of the final verification and debugging.

4.A.3 Layout Simulation

Critical circuits had to be verified from layout using the analog capabilities of HSPICE.
In particular, the PLA and I/O pads were simulated.

On the PLA, it was found that a single on NFET in the NOR / NOR array was sufficient
to pull an output down to 0.5 volts, below the threshold of any subsequent N devices.
Simulation showed that each pullup, when on, drew approximately 300 pA. With a total
of 43 outputs and 56 product terms, the PLA will draw a maximum of 30 mA.
Fortunately, most of the outputs are off most of the time; during a typical instruction,
such as ADD RO, simulation shows that the PLA draws 16 mA of current. Power rails
were drawn 20 1 wide to accommodate such current levels.

A crude simulation neglecting the significant wire capacitances and polysilicon
resistances suggested a rise-time for worst-case signals that must propagate through the
PLA twice to be about 5 ns and a fall time of 7 ns. With actual parasitics, the propagation
delays are predicted to increase to as long as 40 ns (primarily due to distributed
polysilicon resistance). See the plots of the PLA timing, voltage swings, and current
drain in Appendix C.
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The I/O pads simulated correctly in HSPICE. Switching waveforms are also available in

Appendix C.

4.A.4 Final Verification

The final verification proceeded as follows:

* Flat-file DRC of entire chip

Automatic joining of VDD! and GND! nets was turned off to check

connectivity

* Hierarchical extraction of entire chip

* LVS of entire chip

* Verilog simulation of chip at schematic level

* Output of chip to CIF format

* Run fixcif on CIF output

The Cadence CIF output is buggy; fixcif adds some missing statements

* Read CIF into Magic

The Magic layout editor has a known good DRC function

* Run DRC on CIF using Magic

The flat-file DRC reports one error: a short between gnd! and padgnd. This is because

the padframe and internal logic both have substrate contacts. While an N-well actually

isolates the internal logic from the noisy substrate beneath the pads, DRC believes the

entire substrate is one net.

Hierarchical extraction and LVS report no errors. The Verilog simulation shows that

multiple signals drive the external data bus for a short period during write cycles; this is

acceptable and is ignored. Magic no DRC errors using a set of design rules that have

been used on working chips.

When verification was complete (February 24, 1994), the chip was submitted to MOSIS.
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5. Tool Development

Developing the proper set of tools was critical for the success of this class and design of

the microprocessor. This chapter describes the various tools, both for simulating and

validating the instruction set and for building the chip in Cadence.

5.1 Sexium Architecture Tools

5.1.1 msim

msim is an assembler and interpreter for the Sexium ISA. It accepts a file of Sexium

assembly language instructions and assembles them, producing a binary file and

outputting versions that can be read into the Verilog simulator and into an EPROM

burner. It then enters simulation mode. In this mode, msim allows the user to run, trace,

and single-step programs, disassemble, read, and modify memory, print the state of the

sexium registers, and set or change breakpoints.

msim is documented in Appendix A in the simulator reference manual. It was written in

portable C code and runs on the AI lab Sparcstations, on Athena, and on the Macintosh

environment. It is approximately 900 lines long; complete source code is listed in

appendix D.

5.1.2 Regression Suite

It was also important to verify that all of the Sexium instructions work correctly. To do

this, a regression suite that exercises each of the instructions was developed. The

program uses each of the instructions, triggering a break if any instruction performs

incorrectly.

The regression suite tests both the msim simulator, the Verilog model, and the Verilog

netlist extracted from the chip schematics. Source code appears in appendix D.
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5.2 Cadence Tools

5.2.1 mosis2n Library and Technology File

Cadence requires information specific to the fabrication process in order to properly

extract HPSICE netlists and display the proper set of layers. This information resides in

the transistor library and in the process technology file.

For this class, a library with mosis2n (a 2 micron n-well process fabricated by MOSIS)

transistor parameters and a technology file with the proper layers for mosis2n were
developed. They were adapted from the HP26 files developed by Larry Dennison and
Mike Bolotski.

These libraries should provide especially useful because 6.371 usually works in the
mosis2n process and requires tested technology files to migrate to the Cadence tools.

In addition to the standard nmos and pmos transistors, weaknmos and weakpmos devices
were defined. These are identical from the layout perspective, but are modeled as
resistive devices by the Verilog netlister. These allow flip-flops and other cells such as
SRAM with weak feedback to simulate properly.

5.2.2 Standard Cell Library

A second resource developed in this class was a library of seventeen standard cells. The
cells are built on a 60 lambda pitch and designed such that any two cells can be abutted
without interference. Power and ground are run horizontally in metal 1; inputs and
outputs come vertically in poly or metal 2. The cells are hand-tuned for area and use
minimum size (4/2) devices, trading away performance for minimal area.

The table below lists the cells, the student(s) responsible for the layout, and the width and
area / transistor of each cell. All cells pass LVS and DRC. Note that the mx multiplexors
produce inverted outputs, that flop is a static positive edge-triggered D flip-flop, latch is a
static positive level-sensitive latch, and aoi3 is a three-input and-or-invert gate.
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Cell Creator Width Area / transistor
and2 Dan 30 300
aoi3 Jeff / Dan 29 290
flop Matt 69 230
inv Ethan / Dan 11 330
invtri Dan 19 285
latch Matt 36 216
mx2 Nehal 40 400
mx3 Bayard 88 660
mx4 Bayard 112 672
nand2 Nehal 18 270
nand3 Ruben 32 320
nand4 Matt 30 225
nor2 Nehal 18 270
nor3 Aarati 24 240
nor4 Matt 30 225
o02 Dan 30 300
xor2 Jeff 36 216

5.2.3 PLA Generator

MIT has had a chronic problem with reliable PLA generation in recent years. For this
class, David wrote a simple PLA generator that accepts logic equations in sum of
products form and produces compact layout, with a width of 16 X / input + 12 X / output
and a height of 12 X / product term (all dimensions neglect the modest sized input and
output inverters and the weak pullup devices). The PLA is a NOR / NOR architecture
built with psuedo-NMOS pullups for simplicity and area efficiency. Modification to
support clocked precharge circuitry would be simple.

The PLA generator is written in SKILL, Cadence's LISP-like scripting language. The
first portion is somewhat kludgey, reading the file of Boolean equations and producing an
internal representation. The second part processes the internal representation, producing
layout. The generator produces both layout and a Verilog behavioral description.

The PLA generator is documented fully in Part 3 of the Cadence Tool Reference

(appendix A) and source code appears in Appendix D.

5.2.4 Pad Frame

6.371 also has had difficulty in recent years with pad frames. MOSIS supplies a CIF file
with a pad frame for the 2.25 mm square TinyChip; unfortunately, the conversion from



Chapter 5. Tool Development 49

CIF to Mentor Graphics' L language or Cadence's layout database is trickier than it

should be.

David imported the TinyChip pad frame, fixed the problems introduced by the

conversion, and added pins and schematic views to use for verification. The pad frame is

being fabricated with the Sexium project; if it works correctly, it will be a resource

available for future classes. The pads are documented in section 4.8.6.

5.2.5 Setting up Cadence for another class

In order to set up files to run Cadence for another class, follow the steps below:

1) Create a class directory
In the case of this class, the directory was /home/cva2/6090user

2) Place a copy of the technology files in the class directory.
Files may be copied from /home/cva2/6090user/techfiles. It is also possible to
continue using the files in the 6090user directory without making a copy; in such
a case, be very careful that any modifications do not disturb other techfile users.

3) Create a library directory
The library directory will hold the libraries for the students and class project. In
the case of this class, the library directory was /home/cva2/6090userllibs

4) Create a project directory
A special project directory must be located in the Cadence filesystem to define
information unique to the project. When Cadence is invoked with the command

startCds -p sexium

it looks in the directory /cds/local/skill/projects/SEXIUM for the
project-startup.il file, which has information unique to each project, including the
library search paths, default technology file path, etc. It should be edited to
contain proper information for the particular project. When creating the project
directory, be sure to copy all files, including the invisible .simrc.

5) Create user accounts
The last step is to create accounts for each user. The .paths be set correctly to run
Cadence from the Concurrent VLSI Architecture Sparcstations.
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6. Conclusions

6.1 Educational Results

The Institute's Better Teaching at MIT colloquium raised awareness of the need for
continually improving undergraduate education. The VLSI Chip Design class was an
educational experiment motivated by such a goal. It proved that VLSI design is no
longer the sole province of silicon wizards who have endured years of semiconductor
physics; now, the exciting and very important field is accessible to freshmen and
sophomores with a bare minimum of experience.

Students entered with a variety of backgrounds, but the least common denominator was
elementary digital electronics that many students had taken as a freshman seminar.
Students left knowing how to do the following:

* Implement Boolean functions using MOSFETs or switches
* Take advantage of compact multiplexor structures to implement functions
* Layout leaf cells in standard cell and datapath design styles
* Rapidly examine layout tradeoffs using stick diagrams
* Combine leaf cells into higher level modules
* Implement flip-flops, counters, and sequential logic in CMOS
* Understand design and use of RAM, ROM, and PLAs
* Understand the architecture of a micro-coded accumulator machine

* Write assembly language code for the Sexium

* Work in a team to rapidly layout a complex chip

* Verify cells using Design Rule Checker and Layout vs. Schematic comparison

Student evaluations, included in Appendix B, were overwhelmingly positive. Nine of the

ten students felt that they had a good command of the material. One exceptionally strong
student skipped over 6.371 and is now doing well in 6.372; another freshman is doing
VLSI design as a UROP in the Concurrent VLSI Architecture group.
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6.2 Project Results

6.2.1 Unintel Sexium Summary

The Unintel Sexium was nearly complete by the final day of class. Verification required
four subsequent Saturday sessions; the final layout has been submitted to MOSIS and is
queued for the next fabrication run.

Statistics about the chip are listed below:

Area: 2220 X x 2250 . = 5.0 * MX2

Transistor count: 5319
Average area / transistor: 940 .2
Static power dissipation: -100 mW

Speed was intentionally neglected in order to complete the design in a small amount of
time and area. Nevertheless, the longest critical path is expected to be dominated by
EPROM access time when 120 ns EPROMs are employed, limiting system speed to
approximately 5 MHz.

6.2.2 Tool Summary

The tools developed for the project are summarized in this section. They include the
msim assembler / interpreter, the regression suite, the mosis2n libraries, the PLA
generator, and the pad frame.

The msim assembler / interpreter and the regression suite are very useful tools for the
Sexium project. They will be used again this spring as students continue the project with
a software effort (see section 6.4). They are also excellent examples of where a day's
effort building tools can greatly enhance confidence in the validity of an architecture.

The Cadence-based tools, including the mosis2n technology information, the PLA
generator, and the pad frame, were designed to not only be used in this class, but also to
support other classes, such as 6.371, when they shift to the Cadence CAD software. The
PLA generator is a remarkably efficient way to implement a large set of arbitrary logic
equations, saving both time and area in comparison to standard cells. The pad frame is
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necessary on any MOSIS TinyChip produced at MIT; when it is proven reliable, it will

eliminate one worry every designer in a class or research group presently faces.

6.3 Summary

In summary, this thesis project had three primary benefits: proof-of-concept of teaching
VLSI at an earlier level, education of ten students, and development of the Cadence
infrastructure.

The class proved that freshmen and sophomores were capable of mastering elementary

VLSI circuit design and layout. It was shown that teaching VLSI was an excellent

medium for introducing ideas of managing complex systems as a team, of applying

digital electronics to a real system, and of teaching computer design and assembly

language programming.

The ten students who took the course learned a variety of subjects at many levels. They

learned about transistors, methods of building digital circuits, and layout and verification

techniques. They also learned to program in simple assembly language and to understand

how computers work from the transistor level all the way up to the software level. They

had the experience of building a complicated VLSI system, an experience that should

motivate and build confidence in the young students. There have already been requests

from the Concurrent VLSI Architecture group for 6.008 students to work as UROPs

doing VLSI design; the students' experience should provide many opportunities for

exciting UROPs at MIT and summer jobs in industry.

Finally, the technology files, pads, and PLA generator developed in this class should help

other MIT classes begin using the Cadence tools. Cadence is significantly more powerful

than the old Mentor Graphics tools; MIT will benefit when a significant number of VLSI

designers are competent with the new CAD tools.

6.4 Recommendations

Based on the completion of the Sexium microprocessor and the response of the students,

"6.008: VLSI Chip Design" was a fabulously exciting and successful educational

experiment. This author hopes to see the course impact MIT education over several

different time scales.
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This spring, David is teaching a successor course, in which 6.008 students are building a

complete computer around the Sexium microprocessor. The class, already dubbed 6.009,
is being taught through the Edgerton Center as an informal seminar. Students have

breadboarded the computer, built an emulator card using a Xilinx Field-Programmable

Gate Array (FPGA) that fits in the socket intended for the Sexium, and debugged the
system so that it successfully passes the regression suite. They are presently developing a
serial interface and beginning the software project.

There are several ways that 6.008 can shape future education at MIT. It is possible that

the class could be repeated next IAP; these notes should make the teaching job
substantially easier. More significantly, 6.008 has proven that MIT undergraduates can
learn VLSI design and that it is an exciting and motivational enhancement of the

curriculum, as well as a skill much in demand by today's employers. Hence, there are at
least two ways that VLSI can move into the undergraduate experience.

The most straightforward is teaching VLSI as an undergraduate laboratory subject, in
much the same way that 6.111 is presently taught. VLSI is an ideal medium for
illustrating the issues of complex engineering systems. Background in VLSI design is
becoming ever more important and would be a valuable skill for undergraduates seeking
summer and permanent employment. As we have demonstrated, only a elementary
knowledge of digital circuits is required; indeed, having no background at all may be
helpful because there will be few lessons from TTL design that have to be unlearned as
the implementation medium changes.

This new undergraduate laboratory should and easily can be designed to satisfy the
Institute Lab requirement. Licenses to run Cadence on Athena should be obtained. TAs
well-versed with the Cadence tools are vital; this would be difficult at first, but would
become easier as the critical mass of VLSI experts at MIT increases. The class is clearly
a major undertaking and would require a professor extremely dedicated to undergraduate
education, but would give MIT the lead in innovative teaching of VLSI at the university
setting.

A second place where VLSI should enter the curriculum is through better-integrated core
subjects. The bulk of real-world digital design is no longer based on 74-series TTL
chips; MIT should update its courses to reflect this by introducing VLSI in the context of
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digital electronics (6.004 and 6.111). PALs, FPGAs, gate arrays, standard cell designs,
and full custom chips offer a wide spectrum of tradeoffs between design time and circuit
efficiency that a good engineer should understand. Similarly, since the major application

of semiconductors is in fine-line CMOS processes, 6.012 should better emphasize

MOSFETs and device tradeoffs and limitations that affect performance of digital circuits.

With so many faculty members versed in so many different applications of VLSI, MIT

should be able to build a consensus for change and modernize the core curriculum to
reflect the CMOS revolution that we are experiencing.
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Appendix A: Course Handouts

This appendix includes all of the handouts produced as part of the 6.008 course, including
administrative material, documentation for the CAD tools, problem sets, the Sexium
design reference, and the notes taken by student scribes. It also includes the evaluations
of the class provided by the students.
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General: Chip design was once a black art requiring years of obscure study, but now is

possible for anyone with a basic knowledge of digital electronics. In this hands-
on Edgerton Seminar, we will learn to design chips from the ground up. The first
two weeks introduce the fundamental ideas of circuit design in CMOS and of chip
layout. In the second half, we study microprocessors, then build an Unintel
Sexium processor. At the end of the month, we will send the class design out for
fabrication.

Syllabus:

M3 Introduction. Administrivia. Switch-based circuits. MOSFETs. Examples.
W5 Chip Fabrication. Design Rules. Layout. Low-level examples.
F7 High-level layout. Floorplanning. Simulation.
M10 Flip-flops in VLSI. Counter example.
W12 Special-purpose circuits: RAMs, ROMs, PLAs. PLA examples.
F14 Class project. Overview of microprocessors. Programming Unintel Sexium.
T18 Microarchitecture of Sexium. Trace of program execution.
W19 Class project issues. Project lab.
F21 Project slack time. Tour or guest lecture.
M24 Pads, electromigration, and other Deep Dark Secrets.
W26 Fabricating chips. End-of-class party.

Lectures are held 2-4 PM in 1-115. Attendance is mandatory; if you miss two
classes without making advance arrangements, you will be asked to drop. Extra
meeting time for the project may be scheduled if there is demand later this month.

Teaching Staff:
Professor Bill Dally NE43-620A x3-6043 billd@ai.mit.edu
David Harris East Campus x5-6373 harrisd@mit.edu

Office hours for Professor Dally are after class 4-5 and by appointment. David
Harris will be on call between 11 AM and 11 PM to help with questions,
homework, etc. If he is not at home, finger him on Athena and at ai.mit.edu.
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Homework Policy: Most of the learning in this class will occur while working on the
problem sets. We anticipate an average of five hours of homework between each
lecture, tending to be less near the beginning and more near the end of the month.
Cooperation is encouraged, but you must write up your solutions by yourself and
list the names of the students with whom you worked. To pass the class, you
must turn in at least 8 of the 10 problem sets and show a reasonable amount of
effort on each. Feel free to contact David Harris if you have any questions on the
problem sets or want hints getting started.

Textbook: The recommended text is Principles of CMOS VLSI Design, by Weste and
Eshraghian. It is available at Quantum books, or at the Coop for more money.
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Teaching Staff:
Bill Dally
David Harris

Students:
Ruben Agin
Jeff Bowers

Dan Hartman
Karen Ho
Ethan Mirsky
Peter Orondo
Aarati Parmar
Nehal Patel
Robert Ristroph
David Robinson
Matt Sakai
Bayard Wenzel

billd@ai.mit.edu

harrisd@mit

'96
'97

'95

'94

'95

'95

'96

'96

'96

'97

'96

ragin@mit
jbowers@mit
omv@mit

kho@mit

eamirsky@mit

podo@mit
aaratip@mit
nehal@mit

rgr@mit
davidr@mit
msakai@mit

'96 biomorph@mit 262-5090

x3-6043

x5-6373

x5-7693

x5-9303

x5-7563

x5-8815

x5-7574

492-5722

x5-8588

x5-8771

247-0506

x5-9202

x5-6487
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Student

Ruben Agin
Jeff Bowers

Dan Hartman

Karen Ho

Ethan Mirsky
Peter Orondo

Aarati Parmar

Nehal Patel

Robert Ristroph
David Robinson

Matt Sakai

Bayard Wenzel

Username
ragin
jbowers

omv

kho

eamirsky

podo

aaratip

nehal

rgr
david r

msakai

biomorph

Password Machine
alf

bc

caffeine

cold-milk

flapjack

fruity-pebbles

grits

jelly

toast

tropicana

wom

wsb
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to
learn if the experiment was successful and to make improvements in the future, should
we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?

2) What did you learn?

3) What were the best and worst parts of the class? What would you do differently in the
future?

4) Which problem set was your favorite? Which was least valuable / interesting? Why?
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5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differently?

6) What could improve in the lectures? What was effective? Did you find the lectures
too fast? Too slow? Please be as specific as possible.

7) How much time did you spend outside of class between each lecture?

8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?

9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing?
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The Cadence Design System is a powerful Computer-Aided Design (CAD) tool set that
we will be using for VLSI layout. It has zillions of fancy features that we won't be using
in this class. We will start as simple as possible and work our way through the tools over
the next few assignments. If you can't hold in your curiosity about a tool, feel free to ask
after class.

You will be running the tools on Sparcstation computers at the Artificial Intelligence lab
via a remote login from Athena. You will be assigned a machine at the AI lab, a
username, and a password. The Cadence tools burn lots of computer cycles on the
machines that you will be using, so please be polite. You are a guest on a machine that is
probably being used by a graduate student, and you may be asked to log out if the
machine is overly loaded. If so, contact David Harris for another machine that you can
use. Also, disk space is limited, so don't keep more than one backup copy of your work
and throw out old files when you no longer need them.

To run the Cadence tools, use the following steps.

1) Log into a color Athena workstation using your normal account.
Color workstations are available in W20-575, 1-142, 2-225, 4-167,
10-500, 10-600, 11-113, 11-116, 16-034, 37-312, 37-318, 37-322, and E51-007.

2) Type xhost+
3) Type telnet machine.ai

machine is the name of your assigned machine
Enter your AI lab username and password at the prompt

4) If this is your first time logging in, please change your password by typing passwd
You will be prompted to enter your old password, then a new one.
Please choose a password that is not in the dictionary or otherwise obvious.

4) Type setenv DISPLAY hostname: 0.0
hostname is the name of your Athena workstation (e.g. ml 1-666-13)
The hostname should be printed on a sticker attached to the workstation

5) Type startCds -p sexium
This starts the Cadence tools running on the sexium project

6) Place the Command Interpreter Window (CIW), bogus window, and Library Browser
Ghostly images of windows will appear three times. Click the
middle button to place them on the screen. The first window is the
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Command Interpreter Window. Cadence prints information, warnings,
and errors in this window. The second window is bogus; nothing really
happens. The third window is the Library Browser.

There are three basic concepts to working with Cadence designs: libraries, cells, and
cellviews. A library is a collection of cells. There are several libraries already created.
mosis2n contains the transistors being used for the project. sexium contains the
schematics of the Unintel Sexium processor. We will discuss these libraries at a later
point; until then, please refrain from playing with them (it is easy to check out a cell
unintentionally). In addition, there is a library with your username. This is the library
you will use for your assignments. To open your library, click on it with the left mouse
button.

A library can have zero or more cells. To create a cell, click on the library with your
middle mouse button and hold the button down. Select "Create Cell." Enter the name of
the cell you wish to create (e.g. "inv" or "adder") and click OK. The name of the cell
should appear next to the library name.

Each cell may have several cellviews, containing various representations of the cell. The
most important view in this class is the "layout" cellview. In the layout cellview, you
draw rectangles representing the masks for metal, poly, diffusion, etc. Other cellviews
include "schematic" used for a schematic-level representation of a circuit, and "extracted"
used for running simulations and verification of your layout. We will use these cellviews
in later assignments.

To create a "layout" cellview, click on the cell with the middle mouse button and select
"Create Cellview" from the menu. Type "layout" as the view and click OK.

To edit your layout, click on the cell with the right button to select it if it is not already
selected. Then click on the cellview with the middle button and choose "Edit" from the
menu. Two windows should appear. One is a palette with the various layers from which
to choose. The other is the layout window.

The menus in the layout window offer lots of commands to help create your layout. The
most commonly used ones have handy keyboard shortcuts. Some of the important
commands are described below (shortcut listed in parentheses):

Rectangle (r)
Draws a rectangle in the currently selected layer.
Change layers by clicking on the palette

Move (m)
Moves the currently selected rectangle(s)

Copy (c)
Copies the currently selected rectangle(s)

Delete (delete key)
Deletes the currently selected rectangle(s)

Undo (u)
Undo the last action, if you didn't want to delete that rectangle...
Undo can be repeated up to five times.

Stretch (s)
Stretches the selected edge of a rectangle

Save
Saves your work. Do this often

Ruler (r)
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Measures the length in lambda
Use Shift - r to remove rulers

Zoom (z)
Zooms in on a portion of the design

Full (f)
Zooms out to show your full design

DRC
The Design Rule Checker, under the Verify menu
This scans your design, looking for design rule violations
Use the Verify: Markers: Explain command to explain any violations

To select a rectangle, move the mouse until the rectangle is highlighted, then click on it.
To select an edge of a rectangle (for the stretch command), move the mouse until just that
edge is highlighted, then click. To select multiple rectangles, drag the mouse to form a
box around the rectangles you like. Another way to select multiple rectangles is to hold
the shift key down, then click on the rectangles one at a time. To deselect one selected
rectangle without deselecting the rest, hold down the Control key and click on that
rectangle. To get out of an editing mode (like drawing rectangles, or moving), type
Control-C.

Save your work often. Cadence has the annoying habit of crashing from time to time.
This usually involves slowing your machine to a crawl, then having all of the windows
disappear and losing your work. If Cadence crashes, start it up again with startCds
command. If the problem persists, contact David.

To quit Cadence, choose Quit from the Open menu in the Command Interpreter window.
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This manual documents more handy Cadence commands

Managing your Cadence files

Deleting a cellview: click on the cellview with the middle button and choose delete
Deleting a cell: click on the cell with the middle button and choose delete
Examining an example cell:

Suppose you want to look at the full adder example in the examples library.
Open the library by clicking on it with the right button.
Select the cell by clicking on the category LECTURE3, then the cell fulladder
Open it by clicking with the middle button and choosing READ

Please do not open other people's files for EDIT. When you do, you check out
access to the file. If you do not check the cell back in by closing it, then closing
the library, they will not be able to edit their cell and they will send you nasty
email.

Closing a library: click on the library with the middle button and choose close
This is polite to do after looking at somebody else's library. It guarantees that
anything you might have accidentally checked out gets checked back in.

Copying a cell or cellview:
Click on the cell or cellview with the middle button and choose copy
Enter the name of the library and cell where you want the copy to go

Layout Editor Commands

To merge several rectangles into one polygon, select the rectangles and choose Merge
from the Tools submenu of the Edit menu.

To add a label to a wire, select the labels layer from the palette. Use the Labels command
(keyboard shortcut = 1) to bring up a labels box. Enter the name of the label,
then click where you want the label to go. Labels must be attached to a piece of
layout (i.e. on top of the layout). If a label is on several layers, it names metal 2 if
that is present, then metal 1 if that is present, or else poly if no metal is present.

To place pins on a layout, use the Pins command (p). Enter the name of the pin and
indicate if it is an input or output. Make sure you have selected the palette layer
to be the same as the wire to which you are attaching the pin. Then draw the pin;
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it should be 4 X x 4 X, overlapping the wire by 2 X. (Exception: Poly pins can be
4 Xx2X.)

To place an instance of a cell, choose the Instance (i) command. Enter the name of the
cell. Click to place the instance.

To create a rotated or flipped copy of a piece of layout, select the rectangles or instances.
Choose copy. Click the right button to rotate, or hold the shift key and click the
right button to flip. Click the left button to place the copy.

You may wish to poke around the Design, Window, Create, Edit, and Misc menus. Don't
explore too much in the Tools or Verify menus; some tools may not be correctly installed
and may crash Cadence.



68 Appendix A: Course Handouts

Creating Cell Categories

You may be sick of having a zillion little cells littering your library. I'm certainly sick of
looking at them. You can solve this problem by grouping your cells into a "Cell
Category." To create a cell category, click on the library with the middle button and
choose "Create Cell Category." Enter the name of the category (e.g. PS3) and the name
of one of the cells that you want to put into the category (e.g. fulladder).

To add the rest of the cells to the category, click on the cell category with the middle
button. Choose Add Cell to Category. Enter the name of the cell that you want to add.

Using the PLA Generator

We have a nifty new PLA generator. It takes equations in sum of product form as inputs
and produces a PLA layout as output, saving you the hassle of drawing zillions of little
rectangles.

To use the PLA generator, first create a PLA file by typing emacs from your xterm,
typing in the logic equations, and then saving your file under a name like jolt.pla.

A PLA file can have logic equations, product definitions, input order definitions, and
comments. Comments are lines that begin with #; they are ignored. It is a good idea to
put a comment at the beginning of your PLA file saying what the file is, who created it,
when it was created, and what your inputs and outputs mean, so other people (like me)
can understand your code. An example is listed below. Logic equations must be in sum
of products form with the single quote indicating inversion.

Product definitions name a product of various inputs. If a particular product is to be used
more than once, it should be defined, so that the same product line is used in all of the
outputs. Product definitions also tend to make code more readable. A product definition
is a line with the name of the product, followed by the < sign, followed by a product of
inputs.

Finally, input order definitions are used to indicate what order the inputs appear in from
left to right. Input order definitions are a line beginning with the word "inputorder"
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followed by one or more names of inputs. If inputs are not ordered using the inputorder
command, they appear in the order that they are defined. Product terms and outputs also
appear in the order they are defined.

# Adder.pla
# Written 1/8/94 by David Harris
# This PLA adds a, b, and cin to produce sum and cout.

cout = cin*a + cin*b + a*b
sum = cin*a'*b' + cin'*a*b' + cin'*a'*b + cin*a*b

Once you have created your PLA file, go to the Command Interpreter Window. Type

(plagen "name.pla" "library" "cellname")

where name.pla is the name of the PLA file, library is the library where the PLA should
be created, and cellname is the name of the cell that you want to create. For example, if
Jeff wants to create an adventure game PLA in his library, he might type

(plagen "adventure.pla" "jbowers" "adventure")

A more complicated PLA example using the product definitions and inputorder
commands is shown below. It is a model of a Jolt machine that accepts nickels (N) and
dimes (D) and will give you a dose of sugar and caffeine (J) when you insert 15 cents,
along with change (C) if you insert 20 cents. The state transition diagram appears first.
Three flip-flops, S[0], S[1], and S[2], encode the present state; the PLA generates the next
state and outputs as a function of the present state and inputs.

Current State Inputs Next State Outputs
S [2] S[1] S101] N D Snew[2] Snew[1] Snew[o] J C
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 1 0 0 1 0 0 0
0 0 1 0 1 0 1 1 0 0
0 1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 1 0 0
0 1 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 1
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# Jolt Machine FSM
# David Harris January 1994
# Note: no checking is done that the user
# doesn't put in coins at the wrong time

# Define input order
inputorder N D S[O] S[1] S[2]

# Product terms
Sldime = S[2]' + S[1]' + S[0] * D
S2nickel= S[2]' + S[l] + S[0] * N
S4 = S[2] + S[l]' + S[0]'

# Outputs
# (Note: output definitions must each appear on one line,
# not spread over several the way they are printed here)
Snew[2] = S[2]' * S[1] * S[0]' * D
Snew[1] = S[2]' * S[1]' * S[O]' * D +

S[2]' * S[1]' * S[0] * N +
S[2]' * S[l] * S[O]' * N' * D' +
Sldime + S2nickel + S4

Snew[0] = S[2]' * S[1]' * S[O]' * N +
S[2]' * S[l]' * S[0] * N' * D' +
Sldime + S2nickel + S4

J = S[2]' * S[1] * S[0]
C = S4

# Note: Snew[2] can't be written as S2 * D
# because nothing can multiply a product term.

If you have any problems using the PLA tools, please contact David Harris right away.
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Physical Design Rules

Level Minimum Width Minimum Spacing
poly 2 2
diffusion 4 4
metall 44 3
metal2 4 4
contact 2 x 2 exactly 2
via 2 x 2 exactly 3

Figure 1 a more detailed summary of lambda-based design rules. They allow width 3
metall and diffusion. In most cases, this is not very important, while our rules tend to
keep lines on a 4 lambda grid, especially when a minimum spacing of 4 is used for
diffusion and metall.

Datapath Design Rules

Datapaths are designed in a funny way. The individual cells are first drawn with a fixed
width of 80. Metal 1 lines for control and power are run with a preferred horizontal
direction; metal 2 lines for the bit lines run vertically, along with poly for gates and local
interconnect. Figure 2 is a plot of a full adder done in the datapath style.

When datapath cells get assembled into a full-fledged data path, they are rotated to have a
fixed height of 80 / bit and a variable width. Then they are stacked as shown in Figure 3,
to produce an 8 bit tall data path.

Standard Cell Design Rules

Standard cells are designed more straighforwardly. Metal 1 lines are again used for
control and power with a preferred horizontal direction. GND is placed at the bottom of
the cell and VDD at the top; a spacing of exactly 60 from middle of GND to middle of

4 Technically, metal 1 and diffusion may be 3 lamda wide. However, they must be 4 lambda wide
whereever a contact is present, so the 3 lambda width seldom is helpful.
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VDD is required. Poly for gates and inputs is run vertically; metal 2 should be used as
little as possible and is also run vertically. The top half of the cell is reserved for PMOS
devices and the bottom half for NMOS devices so that wells of adjacent cells do not
conflict; thus, nwell may not extend below 30 lambda, nor ndiff above 25 lambda.
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Figure 2: Datapath full adder
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The standard cell library is complete and all of the cells have passed the layout versus
schematic check. The following table summarizes the cells available in the library, the
width of the cells and the average area per transistor of each cell.

Cell Creator Width Area / transistor
and2 Dan 30 300
aoi3 Jeff / Dan 29 290
flop Matt 69 230
inv Ethan / Dan 11 330
invtri Dan 19 285
latch Matt 36 216
mx2 Nehal 40 400
mx3 Bayard 88 660
mx4 Bayard 112 672
nand2 Nehal 18 270
nand3 Ruben 32 320
nand4 Matt 30 225
nor2 Nehal 18 270
nor3 Aarati 24 240
nor4 Matt 30 225
or2 Dan 30 300
xor2 Jeff 36 216
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1 Introduction

The Unintel Sexium is an 8 bit microprocessor designed for the "6.008:" VLSI Chip
Design class. It is intended to be very simple, both so that is easy to understand and so
that it can be built in the space available on a MOSIS TinyChip.

The Unintel Sexium features a minimal set of instructions that are sufficient to write any
program (as long as enough memory is available). Section 2 describes the Sexium
registers and instructions.

Section 3 delves into the microarchitecture, showing the interconnections between the
various modules of the processor. Section 4 discusses the pinout of the Sexium chip,
including how to hook it up to external circuitry to build a functional computer.

Section 5 is a reference manual for the Sexium simulator program (MSIM), that allows
the programmer to write, assemble, and test code on workstations. It also contains
example programs illustrating Sexium assembly language.
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2 Instruction Set Architecture

The Unintel Sexium is a type of microprocessor called an accumulator machine. To
understand the principle of an accumulator machine, imagine adding a list of forty-two
numbers as follows:

1) Let A be the first number
2) Add the second number to A
3) Add the third number to A

42) Add the forty-second number to A

In this example, we use the variable A to hold (or to accumulate) the sums throughout the
computation. In an accumulator machine, there is a register called the accumulator, or A
for short, that keeps partial results. Arithmetic operations act on A and one other piece of
data and store their result in A.

2.1 Registers

In addition to the accumulator, there are eight other registers that the Sexium programmer
can use. Four of the registers are general purpose, while two are dedicated to the current
memory address and two hold the program counter.

The four general purpose registers are named RO-R3. They are useful for holding

temporary results; arithmetic operations are generally of the form A <- A op Rx where op
is the operation and 0 < x • 3. For example, consider the following set of instructions:

LDM $96 # load the number $96 into A
PUT RO # put a copy of A into register RO
LDM $04 # load the number $01 into A
ADD RO # Add RO to A (A should get $9A)

These instructions are written in a form called assembly language. In Sexium assembly
language, the $ sign indicates that a constant is written in hexadecimal (base 16). The
program adds the numbers $96 + $04 and stores the result ($9A) in the accumulator.

LDM stands for LoaD iMmediate. It loads the hexadecimal number specified into the A
register. PUT puts a copy of the accumulator into the register specified. ADD adds the

accumulator to the register specified and stores the results in the accumulator.
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The memory address registers, called MAH and MAL (Memory Address High and

Memory Address Low), are special. The Sexium can access 65536 = 216 different

memory locations. Thus, it needs 16 bits to store an address in memory. MAL holds the

8 least significant bits, while MAH holds the 8 most significant bits. The following

program reads a byte of data from memory address $0666.

LDM $06 # load the high part of the address
PUT MAH # and set the memory address high
LDM $66 # load the low part of the address
PUT MAL # and set the memory address low
LDA # load the accumulator from memory

In this example, the LDA reads the memory location specified by MAH and MAL and

stores the value in the accumulator.

Finally, there are two registers used to store the program counter, called PCH and PCL

(Program Counter High and Program Counter Low). They are very similar to the

memory address registers, holding a 16 bit number specifying which instruction the

Sexium is currently executing. The programmer seldom directly manipulates the

program counter registers (because suddenly the instruction being executed would

change), but other jump and branch instructions do change the program counter. After

each instruction is executed, the program counter is automatically advanced to point to

the next instruction.

2.2 Memory

As mentioned before, the Unintel Sexium has 16 bit addresses, supporting 64K

(kilobytes) of memory. This memory is partitioned into 3 banks, one of 32K and two of

16K. Bank 0 is normally reserved for ROM and Bank 2 is, by convention RAM. Bank 3
is presently undefined, but could be used for input / output devices (like keyboards,
screens, printers, disk drives, and so forth) or for more RAM or ROM. The memory map

below illustrates this partitioning of memory:
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$FFFF _

Bank 3

$BFFF

Bank 2

$7FFF_

Bank 0

$0000oooo

Bank Select

CS3

When the Sexium is first powered up or reset, the program counter is set to $0000.
Therefore, it is important that a program be stored starting at location $0000; otherwise

the Sexium would wander off into never-never land executing random garbage. This

occurrence is called a "feature."

2.3 Operations

The Unintel Sexium has a minimal instruction set. This makes the construction simpler,

but can cause programming to be tedious. The Sexium instructions are summarized in

the table below.

Instruction Effect Comments
Arithmetic/Logical

ADD reg A - A + reg Add A to register
AND reg A A & reg Bitwise AND of A and reg
NOT A -n A Bitwise complement (NOT)
SHR A A >> 1, A7 = 0 Shift right
ROR A A >> 1, A7 = AO-old Roll right
PUT reg reg +- A Put A into register
GET reg A <- reg Get A from register
TST reg A0 < carry (A+reg) Test A + register and

Al zero (A+reg) set bits of A accordingly
Memory

LDA A Mem[MA] Load A from memory
LDI A - Mem[MA] Load A from memory

MA + MA+1 and increment MA
LDM const A +- const Load A immediately
STA Mem[MA] - A Store A to memory
STI Mem[MA] - A Store A to memory

MA < MA+1 and increment MA
Control
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JMP high low PC 4- high:low Jump to absolute address
BRA const PC +- PC + signed const Branch to relative address
CAL high low R1:RO <- PCH:PCL+3 Call subroutine and save

PC <- PC + const return address
RTN PCH:PCL <- R1:RO Return from subroutine
SKZ If (A = 0) PC - PC + 2 Skip ahead 2 if A is zero

In this table, MA is the 16 bit memory address and PC is the 16 bit program counter.

Mem[MA] indicates the data in memory at the address specified by MA. reg indicates a
register name; it may be RO, R1, R2, R3, MAH, MAL, PCH, or PCL. high, low, and
cons t indicate byte-sized constants.

Some of the instructions are worthy of extra attention. The TST instruction tests the sum
of the accumulator and another register. This sum of two eight bits may produce a 9 bit

number. If the 9th bit is a 1, we say that there is a carry. If the eight low bits are all 0, we

say that the result is zero. TST sets bit 0 of the accumulator if there is a carry and bit 1 if

there is a zero. It makes all other bits of the accumulator 0.

JMP jumps to any address in the program. CAL is like JMP, but stores the return address
in R1 and R2; the RTN command fetches this address and returns. BRA is a relative

branch; it adds an eight bit two's complement number to the current program counter.

This number may be either positive or negative, resulting in a branch of -128 to 127 from
the present location. SKZ is the only conditional instruction on the Sexium. It tests if the
accumulator contains a zero, and if so, skips the next two bytes in the instruction stream.
Normally, a BRA instruction should follow the SKZ; since the BRA instruction requires
two bytes, everything works out cleanly. If a one-byte instruction follows SKZ, an extra
one-byte instruction must be added to pad out the instruction stream or SKZ will execute
at the wrong place. Three byte instructions (i.e. JMP or CAL) may not follow a SKZ
because the skip might end up in the middle of the instruction and crash a horrible death.

2.4 Operation Coding

Instructions are stored as byte-sized codes. Five bits specify the operation; the three
remaining bits specify one of eight registers on instructions that require a register. Some
instructions must be followed by one or more additional bytes; for example, LDM must
be followed by one byte to load into the A register.
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The following table shows the coding of each instruction:
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3 Microarchitecture & Floorplan

The microarchitecture of a digital system is the arrangement of modules and busses to

implement the functionality. We will examine the Unintel Sexium microarchitecture,

starting with a floorplan of the entire chip, then delving into each of the four major

blocks: control, regbox, alubox, and pcmabox.

3.1 Top Level Architecture

The Unintel Sexium will be fabricated on a Mosis TinyChip, 2200 X on a side. It will be

packaged in a 40 pin ceramic DIP; pinouts are described in chapter 4. Each pad is 200 X

square, leaving 1800 X per side for the actual logic, as shown in the floorplan below:

+ A5 A6 A7 A8 I  - A A10 All A12 +
A4 A13
Sregbox
A3 A14

pcmabox A15

Al CS3

AO CS2

alubox
DO test0

control
D1 test1

control
D2 test2

D3 busdrivers test3

testD4 D5 D6 D7 + Ilk wbaresetet-
Floorplan: 1 inch = 600 X

The bottom portion of the chip is the 8 bit datapath. It is based on a single bus that
connects the ALU and the eight registers. Each datapath cell is 80 lambda tall, for a total
datapath height of 640; above the datapath are power and ground busses and a row of
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standard cells to generate control signals. The regbox extends into the top half. A block

diagram of the datapath modules at a finer level of detail is located in the appendix.

The top portion of the chip is devoted to the control logic. This control is implemented as

a finite state machine, built from a large PLA and some standard cell flip-flops.

Multiplexors to send out internal signals to the test pins are also in the control box. The

control extends into the datapath for the eight bit instruction register (IR).

3.2 alubox

The alubox contains the A and TMP registers, multiplexors to select the X and Y inputs

to the function units, a multiplexor to select the appropriate function and place it on the Z

output, and a tristate buffer to drive Z onto the bus. The TMP register is accessed in the

same way as the accumulator and is used by various branching instructions to store

intermediate sums. The schematics of the alubox are shown in the appendix.
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The figure above illustrates the arrangement of cells in one bitslice of the datapath. Metal

2 bitlines run horizontally; there are ten metal tracks available. Vertical power, gnd, and
control inputs to the various cells are not shown.

3.3 regbox

The regbox contains the four general purpose registers. They are implemented as
transparent latches, open while the clock is high. Schematics of this module are located
in the appendix.

The figure below shows the arrangement of cells in one bitslice of the regbox, along with
the adjacent opcode register and data bus tristate drivers / receivers.

5~55
a* -~4*

a
.4

0

Lbus

busdrivers

-

9 bus bus bus Im-P-3 I

controlregbox
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3.4 pcmabox

The pcmabox contains some slightly messier logic used for the program counter and
memory address registers. In addition to being read and written from the bus, the PC and
MA registers must be able to be driven to the address pins and to be incremented. A
multiplexor is used to choose either PC or MA to drive the 16 address pins. This address
is also fed into a 16 bit incrementor, which may be selected to be loaded back into the
registers. The appendix contains schematics of the pcmabox.

The figure below shows the usage of metal 2 tracks and the connections between cells for

the PCH and MAH registers. An identical copy is required for the PCL and MAL

registers.
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3.5 control

The Unintel Sexium is controlled by a large FSM that drives the various select and enable
lines in the datapath to sequence the proper set of operations to execute instructions. The
FSM has fourteen bits of state.

ir<7: 0>
s<2: 0>
f
carry
neg

instruction register, holds current opcode
state counter, indicates current step in multi-step instructions
fetch, indicates fetching next instruction into ir
carry bit from ALU, used in BRA command to add 16 bit numbers
negative bit from ALU, used in BRA command for sign extension

In addition to the state, the control FSM takes four other inputs:

reset
zero
cout
negative

reset processor, clear PC to 0 and fetch first instruction
zero out from ALU (used for SKZ)
carry out from ALU (used for BRA)
MSB of Z output is set, indicating negative 2's complement value

Note: cout and negative are just conditionally latched into the carry and neg flip-flops;

they do not feed into the FSM directly.

The FSM produces many outputs, summarized below:

ALU Control
xsel<3:0>

ysel

zsel<4:0>

alubusen
rollflag

Idacc
Idtmp
cin

REG Control
reg_wr<3: 0>
reg_rd<3: 0>

PCMA Control

controls the xmux selecting the input to the ALU
0001 = A 0010 = TMP 0100 = $00 1000 = $FF
controls the ymux selecting the input to the ALU
0 = bus 1 = $00
controls the zmux selecting the output of the ALU
00001 = adder 00010 = ander 00100 = neger
01000 = shifter 10000 = flags
enables tristate of Z output to bus
controls bit 7 of shifter output
0 = shift (load 0 into bit 7)
1 = roll (load old bit 0 into bit 7)
loads the A register from the Z output
loads the TMP register from the Z output
sets cin on adder

write general purpose register from bus
read general purpose register onto bus
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pcma_rd<3:
pcma_in<7 :

pcma_select

I/O Control
bus_out
rwbar

FSM Control
clrs
newf
latchcarry
latchneg

read PC / MA onto bus
write PC / MA from bus or incrementor
00 = keep old value 01 = bus 10 = incrementor
choose PC or MA to drive address pins
0= PC 1 =MA

drive bus onto data pins
read or write external memory
1 = read 0 = write (pulsed low during second half of cycle)

clear S counter
set f bit
latch CARRY bit
latch NEG bit

The following microcode is used to implement each of the instructions. All operations

listed on one line occur in parallel during one clock and results are not visible until the

next rising clock edge.

Reset (RESET = 1)
S000: PC < 0; S +- 0; F- 1;

Fetch (F = 1)
S000: IR - M[PC]; S -- 0; F -- 0; PC - PC + 1

LDA / LDI
S000: A - M[MA]; (if inc MA - MA + 1); S 0; F -- 1;

STA / STI
S000: M[MA] +- A; (if inc MA - MA + 1); S - 0; F - 1;

LDM
S000: A <- M[PC]; PC -- PC + 1; S -- 0; F - 1;

2-Op (e.g. ADD, AND, TST, GET) or 1-Op (e.g. NOT, SHR, ROR)

S000: A - A op REG; S +- 0; F - 1;

PUT
S000: REG - A; S +- 0; F -- 1;

JMP
S000:
S001:
S010:

BRA
S000:

TMP - M[PC]; PC +- PC + 1;
PCL - M[PC];
PCH - TMP; S -- 0; F +- 1;

TMP -- M[PC];
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S001:
S010:
S011:

S 100:

CAL
S000:

S001:
S010:
S011:

S 100:

S101:

RET
S000:
S001:

SKZ
S000:
S001:

PCL - RO

PCH - R1;

(if A = 0 PC
PC - PC +

S -- 0; F -- 1;

+- PC +1)

1; s - 0; (if A = 0) then

else
F +- 1;
PC +- PC + 1; F <- 1;

The logic equations for the FSM are listed in the appendix.

In addition, the control unit includes a 16 input multiplexor to test the internal signals on

the external test pins. Test<3:0> selects one of the following signals to be muxed out to

the testout pin.

0001: ring osc.

0101: bus<0>

1001: bus<4>

1101: ysel

0010: T flop

0110: bus<l>

1010: bus<5>

1110: ir<0>

0011: F bit

0111: bus<2>

1011: bus<6>

1111: neg

TMP <- PCL + TMP;

PCL *- TMP;
TMP- PCH + CARRY - NEG

PCH <- TMP;

TMP -- M[PC]; PC +- PC + 1;
R1 +-M[PC]; PC +-PC + 1;

RO -- PCL;

PCL - R1;
R1 +- PCH;

PCH -- TMP; S - 0; F -- 1;

0000:

0100:

1000:

1100:

resetbar

s<0>

bus<3>

bus<7>

I
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4 Sexium External Interface

The Unintel Sexium is not a very good computer by itself. It needs to be able to

communicate with the outside world and read and write memory to do anything

interesting. This section describes the pinout of the Sexium processor and shows a

schematic of the processor hooked up to memory.

4.1 Pinout

Like the 6502 (in the Apple II and Commodore computers) and the Z80 microprocessor

(in the hideous old CP/M microcomputers 5), the Sexium is packaged in a 40 pin DIP

(Dual Inline Package). This is less expensive than larger packages and should be

sufficient for our needs. The pinout diagram is shown below.

16t 8 2

ADR DATA CS RWbar
VDD TM

Unintel Sexium
3

GND Better watch out:
Our lawyers are watching you.

RESET CLK TEST

Getting a good, stable VDD and GND is always difficult, so three pins are devoted to

each. RESET initializes the Sexium, clearing the PC to zero and making it start

execution of instruction 0 in memory. CLK is the clock input. ADR is a 16 bit address

bus, indicating which memory location to read or write. DATA is an 8 bit bidirectional

data bus; on reads, data flows from external chips into the Sexium; on writes, data flows

out of the Sexium to memory. The CS lines are the decoded version of the two most

significant address bits; they are used to select one of the three banks of the address

5 CP/M was an early user-unfriendly operating system that ran on Z80 microprocessors. According to
popular legend, CP/M stood for Conspiracy to Protect the Ministry.
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space. RWbar is high for a read, but is pulsed low during the second half of the clock

cycle for a write.

4.2 Complete System Schematic

The following schematic shows an Unintel Sexium connected to an EPROM, and an

SRAM. The other CS line could drive a multiplexor to decode I/O devices, such as A/D

or D/A converters, joysticks, keyboards, serial printers, etc.

I I 1 1
32K UF

EPROM
DATA ADR

-E

ia
t r

-
Y

A
0 -

1I

16%
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i-i:E

VI 16K,E. SRAM

k

8 DATA bus

16 ADR bus- /

LL.
ADR DATA CS RWbar3 VDD

Unintel Sexlum
3

S GND Better watch out:
Our lawyers are watching you.
RESET CLK TEST

5

I r

SRbVVa•
DATA ADR
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5 Simulator Reference

The MSIM program is an assembler and simulator for the Unintel Sexium

microprocessor. It allows the user to assemble a program (convert it from instruction

names into l's and O's) and to simulate the program for easy debugging. It also produces

a file with the program in binary form that can be burnt into an EPROM.

5.1 Assembly Language Syntax

Sexium assembly language supports five kinds of information: comments, instructions,

label definitions, labels, and constants. The assembler is case-insensitive; it does not care

if one uses upper or lower case.

Comments are just for the human reader; they are ignored by the assembler. Any text

following a # sign is treated as a comment and ignored. It is a good idea to carefully

comment your code, including your name, the date of creation, what registers and

memory locations are used for what data, and what sneaky hacks you use in your

program. This will help other people (and maybe eve you!) understand your code.

In addition to the standard Sexium instructions (ADD, AND, NOT, SHR, ROR, PUT,

TST, LDA, LDI, LDM, STA, STI, JMP, BRA, CAL, RTN, and SKZ), the MSIM

program supports the BRK (break) instruction. The BRK instruction tells the simulator

to stop and print out the current state of all of the registers. This is useful to end your

program and to help debug.

Label definitions are lines that just have a label (any piece of text up to 24 characters)

followed by a colon (:). They are used to mark points in your code where branches or

jumps should go. It is illegal to put an instruction on the 3ame line as a label definition.

Each label can be defined only once in the program.

Labels refer to label definitions elsewhere in the code. They are used with the JMP,

CAL, or BRA instructions. Constants are hexadecimal numbers preceded by a $ sign;

they are primarily for LDM instructions, but can be used instead of a label on JMP, CAL,

or BRA instructions.
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5.2 Programming Example

The following program is an example of code written in Sexium assembly language,

using labels, comments, and a variety of instructions.

# Fib.asm

# Written 1/14/93 by David Harris

# This program computes the Nth
# fibbonacci numbers, where N is the
# value stored in RO (1 <= N <= 13)

# Fib. numbers 0-6 are 0, 1, 1, 2, 3, 5, 8

# Some C code to do this would be:
## int fib(int N)
## {
## int cur, prev, next;

## prev = 0; /* Zeroth fib number */
## cur = 1; /* First fib number */
## N=N-1;
## while (N != 0) {
## next = prev+cur;
## prevy = cur;
## cur = next;
## N = N-l;
## }
## return cur;
##

# Register Use
# RO: Number of numbers remaining to compute
# Rl: Temporary storage
# R2: Current fib number
# R3: Previous fib number

LDM $06 # Compute 6th fib number
PUT RO

Start:
LDM $00 # 0, the Oth fib number
PUT R3 # store Oth fib number in R3
LDM $01 # 1, the ist fib number
PUT R2 # store first fib number in R2
BRA Check # Check to see if we are done

Loop:
GET R2 # Compute next = R2 + R3
ADD R3
PUT R1
GET R2 # Make previous number = current
PUT R3
GET R1 # And current number = next
PUT R2

Check:
LDM $FF # = -1



94 Appendix A: Course Handouts

ADD RO # Computer RO <= RO-1
PUT RO
SKZ # Have we counted down to 0?
BRA Loop # No: Continue computing
BRK # Yes: All done!

Two longer examples are available on-line. Mult.asm, by Matthew Sakai,
multiplies the numbers stored in R2 and R3 and produces a 16 bit result. It demonstrates
loops and 16 bit addition. Regress.asm tests all of the instructions in the Sexium
instruction set. It is useful for verifying that the simulator works correctly; it is also a
useful test vector for a schematic-level model of the microprocessor. Both of these files
are in the /home/cva2/6090user/tools/msim directory.

5.3 Using MSIM

To use MSIM, create your program and save it with a name like prog.asm. The .asm
suffix is required. Then run MSIM using the command:

msim prog

MSIM will first assemble your program. If it catches any mistakes, correct them. When

it assembles correctly, you will be presented with a menu of choices:

[G]o [T]race [S]tep [M]emory [B]reakpoint [R]eset [Q]uit:

Press the first letter of the command you want. Go runs the program until it encounters

either a BRK instruction or the end of the code. Trace is similar, but prints out the

registers and instruction being executed at each instruction. Step executes a single

instruction, then prints out the registers and waits for your next command. This is useful

for debugging your code. Memory allows you to view memory. It brings up a new menu

with the choices:

[D]isassemble [R]ead [W]rite:

You can use the disassemble option to view part of your code, the read option to print out

part of memory in hexadecimal, and the write option to modify a byte in memory.

Breakpoint allows you to set a breakpoint in your program. It replaces the instruction of

your choice with a BRK, so that you can run or trace to that point, then stop. To get the
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original instruction back, set a breakpoint at instruction -1. Finally, Reset clears all of the

registers to 0 to restart the simulation.

5.4 Creating EPROMs

To burn an EPROM with the Sexium program you have written, follow this sequence of

steps:

1) Assemble your program (e.g. prog.asm)
2) Copy the prog.dat file to Athena using ftp
3) Convert the file format by attaching the 6.111 locker and running

dat2ntl prog.dat > prog.ntl

4) Burn the EPROM in the 6.111 lab using the promdio command at a programmer
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Appendix A: Sexium Schematics

This appendix contains schematics for the Unintel Sexium.

Al: Datapath Block Diagram
A2: sexium
A3: alubox

A4: pcmabox

A5: regbox
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Al:datapath

Sexium
Microarchitecture

6.008 1/18/94
Scribe: Ruben Agin

v
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A2: sexium

teit<3:g0

0
test<3:g>
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A3: alubox

z<7:0>
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A4: pcmabox

pcmard<3>

bus<7:0>
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Try to do these questions in order. They tend to build concepts. You may do a design in
a later section that is more efficient than your earlier design.

1) Warm-up: Draw NOT, NAND, NOR, AND, and OR gates using switch logic. Do
the thing using MOSFETs.

2) Design an XOR gate using switches. How many switches do you need? Repeat with
MOSFETs. How many transistors do you need? Also, design an XOR gate using
logic gates. How many total switches would the logic gate implementation
require?

3) Consider the two-input multiplexor shown below.
MUX) has two data inputs, A and B, a control
F = A; otherwise F = B.

The multiplexor (also called a
input S, and an output F. If S = 1,

A- S
F

S

Multiplexor
switch

implementation

S

F

tiplexor
transistor

implementation

Multiplexor
circuit
symbol

(a) Design a two-input multiplexor using logic gates. How many total switches
would the logic gate implementation require? How many transistors? How do
these numbers compare?

(b) Design a four-input multiplexor using switches. It should have four data
inputs, A through D, and two control inputs, S and S2.

S
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(c) Design 2-input NAND, NOR, AND, OR, and XOR gates using only the four-
input multiplexor from part (b).

(d) Design 3-input NAND, NOR, AND, and OR gates using only a four-input
multiplexor from part (b).

These problems should demonstrate that multiplexors are an extremely powerful
and efficient way to design switch logic and are also frequently good for transistor
logic. When possible, think in terms of multiplexors, not gates.

4) Consider the following three input function:

F= A (B + C)

This could be built from a two-input OR gate (6 transistors) followed by a two-
input NAND gate (4 transistors) for a total of 10 transistors. Implement this
function with 6 transistors.

This gate, called OR-AND-INVERT, is one of many interesting gates efficiently
implemented in CMOS. Extra credit: What other three and four input gates can
be implemented with 6 and 8 transistors, respectively?

5) Secret Agent 6.007 has a terrible memory for dates and can never remember if a
month has 31 days. Help him design a switch circuit that produces a 1 if and only
if the month has 31 days. The circuit has four inputs, representing the month in
binary (January = 0001, February = 0010, ..., December = 1100). Design contest:
how few switches do you really need? How few transistors?
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Most of these problems involve doing layout with the Cadence tools. Do the layout in the
library of your name and hand in the names of the cells. On all layouts assume that the
inputs are available in poly running vertically and that the outputs should emerge in
vertical poly or metal2. The VDD and GND lines run horizontally in metal 1.

There will be an optional help session on Thursday at 2pm at the Edgerton Center. Bring
any questions or problems that you have had using the Cadence tools.

1) Elementary Logic Gates

(a) Draw stick diagrams for each of the following gates:
NOR, 3-input NAND, AND
(you may wish to draw the schematics first)

(b) Using Cadence, layout each of the cells from part (a). Run DRC and verify that
the gates pass the design rule check. If they do not, fix the errors and try again.

2) Complex Gates

On the last problem set, you designed schematics for the following OR-AND-INVERT
gate:
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F = A* (B + C)

Er]

(a) Draw a stick diagram of this gate.
(b) Using Cadence, layout this gate and check it with DRC.

3) Multiplexor

(a) Draw a stick diagram of a 2-input multiplexor. You may
S and Sbar available.

(b) Layout the multiplexor in Cadence. Check with DRC.

assume that you have both

4) Half Adder (Design Project)

The Bursar's office is having difficulty issuing tuition bills because the fees are getting
larger than the largest number their computer system can handle. They have called in
Secret Agent 6.007 to build a new system that can handle the larger numbers.

One of the key features of the system is the ability to add 1 to the current tuition amount.
A monkey sits in the back of the office, repeatedly pressing the add 1 button. At the
beginning of each year, the office checks how high the monkey has reached and charges
that fee.

Secret Agent 6.007's first task is to design a half adder. The half adder takes two input,
X and Cin (the carry in). It adds Cin to X and produces two bits of output, a sum S (the
l's digit) and a carry out Cout (the 2's digit).

Ch.

(a)
(b)
(c)

Write a truth table for the half adder. Draw a transistor-level schematic.
Draw a stick diagram for the half adder.
Layout the half adder in Cadence. Check with DRC.

Design Contest: How small can you make your layout?

5) Feedback
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How long did you spend on this problem set? What did you like? What would you
change?
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Save your solutions in your Cadence library and hand in the names of the cells.

1) Standard Cell Design

Standard cells are a relatively fast way to design a large, messy set of gates. However,
they are seldom as efficient as carefully drawn custom logic. In this problem, we will
compare the sizes of a full adder implemented as a datapath element and as standard cells.

In class, we looked at a datapath implementation of a full adder. It was 80 X x 102 ), for a
total of 8160 X2. Below are schematics for an alternative full adder design, better for
implementation with standard cells.

Cout

Uenerate

Note that the full adder is built from one inverter, two NAND gates, and three OR-AND-
INVERT gates.
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a) Layout a NOT gate, a NAND gate, and an OR-AND-INVERT gate using standard cell
design rules, as described on the Sexium Design Rules handout. You may be able to just
modify cells from Problem Set 2. Check your cells with DRC.

b) Create a layout for the full adder by placing instances of the three gates you just
designed. Connect them together with routing channels above or below the row of cells;
use metal 1 for horizontal lines and metal 2 for vertical runs. Check your cells with DRC
to make sure that the cell placement doesn't conflict.

c) How large is your standard cell full adder? How does it compare to a datapath design?

2) Datapath design

Multiplexors are a commonly-used datapath element. We will design a 4-input MUX in
datapath style.

a) Draw the transistor-level schematics for a 4-input MUX.

b) Draw a stick diagram of the MUX.

c) Using the datapath design style, lay out your MUX. It should have 5 metal 2 lines
running vertically: inputs A-D and the output. It should have VDD, GND, and two
select lines (to choose one of the four inputs) running horizontally in metal 1. Check
your design with DRC.

d) Build an 8-bit datapath by placing 8 rotated instances of your multipelxor. The VDD,
GND, and control lines should run vertically through all 8 instances; the 40 bit lines (5
from each of the 8 instances) should run horizontally.

3) Feedback

How long did you spend on this problem set? What did you like? What would you
change?
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1) Standard Cell Library

We will be needing a good standard cell library for future problem sets and for the
Unintel Sexium project. Each person is assigned several cells to layout. Make your best
effort to minimize area; we will be very tight on chip space. Refer to the Standard Cell
Design Rules handout for dimensions. The best version of each cell will be selected for
the 6.008 Standard Cell library.

Cell Name
inv
invtri
nand2
nand3
nand4
nor2
nor3
nor4
and2
or2
xor2
aoi3
mx2
mx3
mx4
latch
flop

Designers
Ethan, David
Dan, David
Ruben, Nehal
Ruben, Robert
Ruben, Matt
Aarati, Nehal
Aarati, Robert
Aarati, Matt
Dan, David
Dan, Ethan
Jeff, Ethan
Jeff, Robert
Bayard, Nehal
Bayard, Jeff
Bayard, Jeff
Matt, Ethan
*** Extra Credit ***

2) 4-bit counter

In this problem, you will design and layout a 4 bit counter.

a) Sketch schematics for a 4 bit counter using 4 D flip-flops and whatever other
combinational gates you need.
b) Using the flip-flop from the stdcells library and your standard cells from Problem Sets
3 and/or 4, layout a 4 bit counter. What is the area / bit for your counter?
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inv schematic
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invtri schematic
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nand2 schematic
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nand3 schematic
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nand4 schematic
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nor2 schematic
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nor3 schematic
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nor4 schematic
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and2 schematic
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or2 schematic
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xor2 schematic
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aoi3 schematic
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mx2 schematic
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mx3 schematic
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mx4 schematic
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latch schematic
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flop schematic
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1) Finite State Machine Design

Secret Agent 6.007 has been hired as a consultant for the Assassins' Guild to build an
adventure game on a chip. The adventure game should be implemented as a finite state
machine.

For the first version, this game will be very simple. It will have five rooms: the Cave
Door, the Great Cavern, the Twisty Tunnel, the Underground River, and the Cave Exit.
The rooms are connected as shown below. The goal of the game is to get from the Cave
Door to the Cave Exit. The Assassins' Guild plans to sell the game to Hahvahd students,
who are predicted to get weeks of enjoyment from the game.

The game has five controls (North, South, East, West, and Reset) and a Go button. The
player holds down the desired control and presses Go to clock the circuit. There are nine
outputs: four indicating if there are exits to the North, South, East, or West, and five
indicating if the player is in the Door, Cavern, Tunnel, Underground river, or eXit.
When the Reset control is high and Go is pressed, the player is teleported to the Cave
Door to begin the game.
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a) Draw a state transition diagram.

b) Choose a mapping of states to binary numbers. You may either use a packed
encoding (3 bits to represent one of 5 states) or a one-hot encoding, according to what
seems easiest.

c) You will be implementing the game as shown on the block diagram below. Fill in the
tables below indicating the next state as a function of the current state and inputs, and the
current room and available exits as a function of the current state.

I.n

Inputs

Current
State

.Outputs

E W S New State

Cur
State

N out E out W out S out D C T U X

d) Write logic equations in sum-of-products form for the new state as a function of the
current state and inputs and for the room and exits as a function of the current state.

2) Standard Cell Implementation

Implement your FSM design from part 1 using standard cells from the stdcells library.
You will probably want to arrange your standard cells in two or more rows instead of one
really horribly long row.
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3) PLA Implementation

Implement your FSM design using a PLA and standard-cell flip-flops. Note that you
only should need one PLA; it will take the current state and N, S, E, W, R as inputs and
will produce the next state, the directions available, and the room as outputs.

4) Comparison

Compare your implementations of the finite state machine in parts 2 and 3. What was the
area of each? How long did each take to do? When would it be most appropriate to use
each method?

5) Enhancing the Adventure Game

This problem is optional. The creator of the most nifty enhancement will receive a
Toscii's gift certificate.

Thing of a feature to add to your adventure game. Examples would be adding an Three
Headed Troll (or a grumpy graduate student) who you could not pass until pressing a kill
button or a bottomless pit that puts you in the dead state with no exit save reset. Be
creative!

Describe the new feature and draw your new state diagram. Write your new set of state
equations. Then implement the FSM in the method of your choice.
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This problem set is intended to give you practice programming the Unintel Sexium. If

you have never programmed in assembly language before, you may find this problem set

rather challenging; if you get stuck, please ask David or a fellow student for help getting

started. Write your code in an emacs window in your directory at the AI lab and test and

debug using the MSIM simulator. When your code works, turn in a sheet of paper with

the names of your two programs.

1) The Electronic Accountant

Secret Agent 6.007 is posing as an accountant to infiltrate the enemy headquarters. His

exciting and rewarding job as an accountant is to add up lists of 64 numbers. Secret

Agent 6.007 wants to program his Sexium microprocessor to add the numbers, then let it

do his work while he sneaks around the headquarters.

The numbers are stored in memory addresses $1000-$103F. Each is a single byte. The

sum should be a two byte quantity and should be left in R2 and R3 (R2 containing the

most significant byte) at the end. The code below solves this problem. It is available in

/home/cva2/6090user/tools/msim/sum.asm.

# Sum.asm

# Written 1/14/93 by David Harris

# This program sums 64 numbers, and

# leaves the results in R2 and R3.

# (R2 holds most significant byte of sum)

# The numbers are located in memory

# addresses $1000-$103F.

Start:
LDM $10 # Set MA to $1000
PUT MAH
LDM $00
PUT MAL
PUT R2 # Clear R2 and R3 to 0
PUT R3

Loop:
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LDI # Load next number X to add
PUT R1 # Save a copy in R1
TST R3 # Check if X + R3 > 255
PUT RO # Temporarily store result of test

GET R1 # Recall number to add
ADD R3 # Add X to R3
PUT R3 # and put it back in R3

GET RO # Recall result of test
LDM $01 # mask off carry but of test
AND RO
SKZ # Skip if carry is false
BRA Increment # if carry, increment most significant byte
BRA Check # Else check if done

Increment:
LDM $01 # Otherwise
ADD R2 # Add 1 to R2
PUT R2

Check:
LDM $CO # = -40
TST MAL # Check if we've gotten to $1040
PUT RO # Mask off Z bit
LDM $02
AND RO
SKZ # Skip if zero
BRA Done # Otherwise quit
BRA Loop # If not done, continue looping

Done:
BRK

Unfortunately, while Secret Agent 6.007 is still out, a new list of 4 numbers comes in.
They are stored in addresses $1108-$110b. Help Secret Agent 6.007 modify his program
to handle the new list before his boss comes looking. To get some practice with Sexium
assembly language, make a copy of the code in your own directory. Change it so that it
properly adds these numbers; this time, store the results in RO and R1 instead. Test your
code by using the Memory Write command to store four different numbers in $1108-
$110b, then running the code.

2) Insertion sort

The insertion sort is a method of sorting a list of N numbers. It is not an efficient sorting
algorithm, but works well for short lists and is the easiest sorting algorithm to program.
The code below is an implementation of insertion sort in C.

void sort(int N, int data[])
{

int i, j, swap;

for (i = 0; i < N; i = i + 1)
for (j = i; j < N; j = j + 1)

if (data[i] > data[j]) {
swap = data[i];
data[i] = data[j];
data[j] = swap;

I



132 Appendix A: Course Handouts

Assume that N is initially stored in register RO and that the N numbers are located in
memory addresses starting at $1000. Test your code by setting N=6 and putting 6
different numbers in memory addresses $1000-$1005.

A Toscii's certificate will be given to the hacker who produces the shortest insertion sort
code. If there is a tie, the programmer with the better documentation (e.g. most clear
without being overly verbose) wins.
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We have now begun the Sexium layout. In this problem set, you will be working as
teams to layout each of the leaf cells in the Sexium. In the next problem set, you will be
assembling the leaves into complete modules. In the final problem set, we will be
assembling the modules into a full chip.

The following teams have been established:

alubox pcmabox regbox control
Ruben Dan Jeff Ethan
Matt Bayard Aarati Nehal
Robert David

Each team has several leaf cells to layout by Friday. The cells should be designed in the
unintel library. The teams should divide up the labor and design the cells according to
the datapath design rules (except the control team, which should use PLAs and standard
cells). Run DRC and LVS to make sure that the cells are correct. Pay close attention to
where the metal 2 tracks are supposed to be placed. Several of the leaf cells are used in
many modules; they have been divided among the various groups.

alubox pcmabox
mux4bit halfadderbit
mux5bit flopbit
adderbit mux2bit
anderbit mux3bit
negerbit
shifterbit

regbox control
triregbit enter equations for PLA and generate it
tribufbit construct following cells from standard cells:

decoder2to4
counter
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In this problem set, we will be optimizing the cells that we have designed in Problem Set
7 and assembling them into complete modules. We have time reserved in 1-115 on
Saturday from 12-6 and all day Sunday; it should be an intense but exciting weekend
getting the modules assembled, optimized to fit, and verified!

1) Based on the discussion in lecture, identify the critical cells that need to be shrunk and
redesign them to minimize area.

2) Assemble the 8 bit datapath elements from the 1 bit slices you designed. Some
elements require a row of standard cells above the datapath. Leave 25 X from the top
of the clatapath to the standard cells to allow room for the routing channels.

3) Place the 8 bit datapath elements next to one another as shown in the
Microarchitecture Reference and connect the appropriate wires. Run lines extra
metal2 lines over the cells where needed to connect bitlines.

We are at a key point in the design. If you have questions or are uncertain about
something, ask right away; don't delay or risk doing it wrong.
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Scribe Notes

The following sets of notes were taken by students and handed out at subsequent lectures.



6.008 Notes
-Monday, January 3d 1994
Lecturer - Bill Dally
Scribe - Robert Ristroph

General.

Two recommended texts -- _Principles of CMOS VLSI Design_
by Weste and Eshraghian, and "The Art of Electronics" by Horowitz and
Hill. _The Art of Electronics_ is recommended by Dave as a good general
reference; _Principles of CMOS VLSI Design_ covers a lot of the basics
in Chapter 1, which you should read if you get the book.

Note: Contest for a good 6.008 logo, due Friday; use either
Mac format or PostScript on Athena.

Introduction.

We will be designing an 8-bit microprocessor on a Tiny Chip. One of
the opened chips that was passed around was a Tiny Chip; 8-bit means
the processor handles numbers 8 bits in length.

A "one-micron process" means that the transistors produced have a
gate with the width of one micron. We will be using a two-micron
process.

Bill Dally showed us an eight-inch wafer, which contained many
individual chips on it; about 35% of the chips on it were bad, which is
about average. Each chip costs about $15 to make exclusive of packaging
and testing; after breaking up the wafer and putting the chips in
ceramic or plastic packages, the chips cost around $20.

The rate of progress in VLSI ( Very Large Scale Integration ) is
very fast. A measure of area on a chip is , where lambda is the
length of the gate. We have a nice graph from showing the rise in
useful area on a chip against time:

Area
(lambda) ^2

16

fl(

'73 45 Years

Useful area is about quadrupled every three years, because the gates
get smaller and the chips get bigger.

1000 = 1 bit static RAM (SRAM, or Static Random Access Memory)
10,000 = 1 bit full adder
100 to 200 = 1 bit DRAM cell (Dynamic Random Access Memory)
Some historical tidbits ---

-- Bob Noyce and Jack Kilby were people who built
amplifiers cheaply on a single chip, instead of making transistors

- --



separately and then hooking them up
*-- 1st microprocessor built by Ted Hoff at Intel in 1970

called the 8008

A "Data Book Engineer" picks out components with nice characteristics
out of data books. In contrast a VLSI engineer has more freedom, and is
less constrained -- but this means the engineer has to know more about
various areas, and bring them all together.

- Architecture
- Logic design (higher level than just AND and OR gates)
- Floor Plan
- Cell Design
- Circuit
- Layout

When building a circuit out of components, it is often appropriate to
approximate the circuit size by the number of components, while wire is
mostly ignored. In VLSI, a more appropriate approximation of circuit
size comes from the amount of wire.

Here is an example of a barrel shifter.
A 4-bit barrel shifter takes in a four bit number and an instruction

telling it how many places to shift it. The binary number 1100 would
look like the following if shifted:

Shifted by 0 : 1100
Shifted by 1 : 1001
Shifted by 2 : 0011
Shifted by 3 : 0110
Shifted by 4 : 1100

We could make a shifter with each input bit connected to every output
bit and a four-way (or N-way, to be general) switch to decide where it
would go. But this would leave with on the order of n squared wires,
which would take up too much room if we made a 16-bit or 32-bit shifter.

A,

)e Z q ! h4 i. r

Instead we can build the shifter in stages, with each stage either
shifting the bit down or sending it straight accross. The first set of
stage eeither sends the bit straight across or shifts it down by N/2 (N
is the number of bits the shifter handles), the second stage either
shifts it down by N/4 or sends it straight across, etc. Here is the
four-bit shifter:

Xo

XI
X1

X,
Note that there are log base 2 of N stages. Since there are N bits at

each stage, we only need N log2 (N) switches. With 32 bits this is 160,
not a large number; but notice how the band of wires running down again
takes up a lot of room.
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32 :1

VLSI engineers try to be relatively knowlsdgeable about all of the areas
listed above, so that they are a "tall thin man" who knows a little
about each each rather than a "short fat man" who only knows one area
well, but maybe very well.

-Architecture
-Logic Design
-Floor Plan
-Cell Design
-Circuit
-Layout

Signals.

every 44c.
Our processor will manipulate digital signals. A Signal can be

represented by a wire or line on the page. Because are using digital
signals, we want out signal to hold either the value of "0" or "1". In
reality, the voltage (our signal level will be indicated by a voltage)
should hopefully be in the indicated region:

~"II-44

Too high or too low a voltage will destroy the transistor or other
device. The ideal region is narrower than what will be interpreted as a
"1" or "0" because we want to allow for some swing due to noise. 5
volts was once common as "1", but now 3.3 volts is becoming more common,
and it will drop further as gate distance shrinks.

In order to do logic we need a switch, which we will represent as

where the switch is closed (conducts) when a is true.

(Nice Historical Note: At Aiken Labs they have an old computer made
of electro-mechanical relays for computing Bessel functions in relation
to ballistics work.)

We now start to develop a system of logic with switches.

The following circuit will choose between two inputs (a' is the
compliment of a, or NOT a: "0" when a is "1", "1" when a is "0"):



Abstracted to a simpler picture, we call this the two-input
multiplexor. It allows us to choose between two values. Also, here is
a truth table for the multiplexor.

I.-
ok-pp-Tv

Here is a four-input multiplexor, drawn with two-input multiplexors and
with just switches.

I rq
We can represent "a and b" or a^b with multiplexors by setting the

input so the multiplexor chooses an input of "1" only when both a and b
are true.

This diagram is partly redundant, and can be made more efficient:

I

0

Since we are going to be using switches to do Boolean Algebra, a quick
review is helpful.

Boolean Algebra.

Basic Axioms:

X ^X=X

XvX=X

"^" is "and" and "v" is "or"

X ^ 0 =

Xv =

The last
equation,
and' s.

0

1

to above are duals of each other. To obtain the dual of an
change all Os to is, is to Os, and's to or's and or's to

X ^ Y = Y ^ X

X ^ ( Y ^ Z ) = ( X ^ Y ) ^ Z

with iust switches.

-D- --

-~3---~-
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This is a standard'way of drawing these logic equations -- with "1" at
the top and "0" at the bottom. Note that the expressions in the top and
bottom branches should be compliments of each other. We would like to
avoid ever having a short from top to bottom, because too much current
can cause the migration of metals in the device, which can ruin it.

There is a simpler structure yet:

x~ dnzA

%61
However, this does not have have the property that it restores the

signal. Since b itself is passed through a gate, the voltage may drop
or become contaminated with noise. Doing this more than once can bring
you out of the region that will be read as a "1". We will try to use
only restoring circuits.

Example: suppose we wish to make a function that will return a "1" if
2 or 3 of its 3 inputs are "1", and a "0" otherwise. We might start by
drawing a truth table of our function:

S c X
o0 0

O1

II t 9

We could then reduce this to a non-restoring circuit using a
multiplexor:

C:

f2

x
Or we could make a restoring circuit with our method of paths to "1"

and "0":

Xv (Y^ Z) = (Xv ) (Xv Z)

Using these laws, we can make our a ^ b diagram better yet.
k I

P 11* 0,

b -
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Now that we have a bas'' way of making things happen with switches,
let's shift our focus down to a different level and look at how to make
the switches themselves.

Switches.

Imagine a wide, thin piece of metal oxide laying on a silicon
substrate. This is crossed by a narrower strip of polycrystalline
silicon conductor, and two separated regions of n-type substrate are
created underneath the oxide:

T6P ve a( II?

\ hl Dx I

hT& ýle"

S-T

F
4

-

This is a transistor. (N-type material moves charge by moving
electrons, p-type material moves charge by moving electron holes.) A
positive charge on the gate will repel the positive holes underneath,
creating a thin n-type region connecting the two sides (which are called
the source and drain, interchangeably)

,\ .'~

'I ,> o* -

V

So if the gate is more positive than the more negative of the source
and drain, then the source and drain will conduct. In the following
diagram, different I-V plots are shown for different voltages of
drain-to-source voltage:

6 vr,veK

V -1

V// 4
This only makes part of a switch because it can't reliably pass a "1".

It has a tendency to turn itself off because if the drain and n-channel
underneath the gate have too high a voltage, they stop repeling the
electron holes so the n-channel stops conducting.
However, a p-type transistor will pass a "1" but not a "0". A PFET

is the opposite of an NFET:

j L1 )

,ýt-A
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NFET stands for N-channe Field Effect Transistor, and PFET stands
for P-channel Field Effect Transistor. MOSFET means Metal Oxide
Semi-conductor Field Effect Transistor.

We represent the two switches by the following symbols:

Here is diagraf of a good switch, that will pass both "0" and "1":

Note that it uses an inverter. We have not yet built an inverter,
but we will. Here is a circuit of a multiplexor. Note the truth table
off to the side in which we check that in each state there is a path to
the appropriate value through the transistor type that can reliably
carry that value.

I,
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Now we want to make an inverter, to complete our system. Start by
making a multiplexor (which recursively has an inverter in it, drawn
dotted) and then notice that the parts connected to the inverter can be
removed: '1'

1

0
1C :-

r0'

Now that we have seen how to build switches and use them to produce
logic, here is a brief summary:

A logic gate can be made into two paths, each of which is connected
to "0" or "1" and which are composed of PFETs or NFETs, as is
appropriate for the signal they carry.

I
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Now here are some examples:

Nor gate:

6-of

f = ( av ( b ^c ) ) =a', ( b v c')

f' =a v ( b^ c) I

Exclusive Or:
Exclusive Or:

X = ( a ^b' ) v ( b ^ a')

I;
O

PC

v
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iV 6.008 Lecture Notes #2 by Nehal Patel
Lecturer: Bill Dally
1/6/94

Fabrication:

The fabrication of CMOS devices involves steps that add various layers
of material onto a initial substrate. To illustrate this fabrication
process, the fabrication of a CMOS inverter will be described.

1) Start with an initial silicon wafer. This wafer is called the
SUBSTRATE. The substrate can be doped type p or type n. For this
example we will use a p-type substrate.

2)The n-well process. Our inverter will need both a p-type MOSFET and
a n-type MOSFET. P-type mosfets require two p-doped regions submerged
in an ambient n-doped region. To provide this ambient n-doped region, we
make an N-WELL in our p-substrate (for a n-substrate, use a P-WELL for
the NMOS.) To make this well, first we cover the substratewith a
PHOTORESIST. This photoresist can be etched away by acid after
development under UV light.

P-
Then we design a mask that specifies the desired shape of the n-well
(Essentially when we design a layout on Cadence, we are designing the
various masks used in the fabrication process.) Through this mask we shine
UV light to develop the photoresist where the n-well will be. Then we
shoot ions thru the mask to n-dope the region. Now we have an n-well.

NJ-L..AJk

3) To insulate various materials on the wafer from each other, silicon
dixoide is used. A layer of Si02 can be grown on the wafer by placing it
into a special high temperature oven. First, a nice thick layer of SiO2
is grown on the wafer.

K'
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4)Next the Si02 above the sites where the transistors will be located is
etched away (a). Then a thin layer of Si02 is grown on the whole wafer(b).
This THIN OX will insulate the gate of the transistors from the source
and the drain.

15102.

( C')
( b)

5) Now we make the gates to the transistors. Gates are made from
POLYSILICON. Polysilicon is polycrystaline Si which can conduct reasonably
well. The polysilicon is grown onto the wafer by using a special oven
and then the desired shape of the gates is etched out.

/~ yl' ~
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6)Now we add the source and drain for the NMOS transistor. Using
a mask, we beam ions into the wafer to dope it n-type. Notice that
although the mask is rectangular, two disjoint n-doped regions(i.e the
source and the drain) are formed. This is because the polysilicon gate
blocks part of the hole in the mask.

~T~~se aeJciZ.B

7) A similar process is carried for the PMOS transistor to form its
source and drain.
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8)Now we are done with the ACTIVE LAYER (polysilicon,n-diffusion,
p-diffusion). Now we will add a layer of metal on the wafer. First, to
insulate this metal from the rest of the chip, we grow layer of SiO2 on
the wafer. The CONTACTS are places where the metal will touch the
active layer. Contacts are formed by etching away holes in the SiO2
currently covering the wafer.

Now, using a mask, metal is placed onto the wafer.

-M 40.'-
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9) The final step is for the wafer to be PASSIVATED to protect the surface
from contaminants.
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Sincb an inverter is a relatively simple device, only one layer of metal
was needed. For more complex circuits, an additional layer of metal is
convenient. This is formed by placing a layer of SiO2 on the first
metal layer, cutting holes into the SiO2 for contacts, and then adding
the second layer of metal thru a mask. We will refer to the first layer
of metal as metall and the second layer as metal2. Notice that metal2
can only be directly connected to metall (the contacts between metall
and metal2 are referred to as VIAs). In order to connect metal2 to the
active layer, a via is used to connect it to a stub of metall and then a normal
contact connects the stub to the active layer. If 2 layers of metal are
not sufficient, polysilicon can be used as an INTERCONNECT(wire),
although this is less desirable due to the higher resistivity of
polysilicon.

Circuit Design:

Topology conventions: When designing a LEAF CELL try to observe to
following layout conventions:

1)Try to orient p-diffusion and n-diffusion regions horizontally, with
the p-regions above the n-regions.

2)Orient the polysilicon vertically.

3)Run metall horizontally (doesn't have to be followed too strictly).

4)Run metal2 vertically . I

5)Run the power bus(VDD) horizontally at the top of the cell in metall.

6)Run the GND bus horizontally at the bottom of the cell in metall.

Stick Figures: To get an indication of the topology of a layout, stick
figures may be used. A stick figure uses colored lines to indicate
various regions on the wafer. X's indicate connections. We have adopted
the following color convention:

n-diffusion: green
p-diffusion: pink/orange
polysilicon: red
metall : blue
metal2 : brown/purple

For example, the following is an example of a stick figure of an
inverter which adheres to the adopted topology conventions (Note: this
is NOT the stick figure for the inverter shown in the fabrication
process example above. That inverter does not even adhere to the
topology conventions we have adopted.)

' CVo
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Design Strategies:

i "' P-Diffusion Segregation: As we will see later n-well regions take up a
large portion of the leaf cell. Since p-diffusion regions must be
placed in n-well, they should try to be kept together so that they may
be placed in the same well.

When then source/drain of a transistor is to be connected to the
source/drain of another transistor (both transistors must be of the same
type), then one long diffusion region might be used instead of two short
diffusion regions:

'SA,'cAL D0cA1cewlS
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Euler Paths:

There is a systematic approach to determining the fewest number of
diffusion regions needed for your circuit. First, on the schematic of
your circuit identify the NODES. Nodes are the sources/drain conections.
Divide the nodes into two categories, those that are associated with
p-type transistors and those that are associated with n-type
transistors. For each set of nodes try to find a EULER PATH. An Euler
path visits each transistor exactly once by jumping from node to node.
If a Euler path cannot be found, find the longest path which jumps from node to
node while visiting each transistor at most once. All the transistors on
this path may be constructed with one diffusion region. Continue this
process for the remaining transistors.

xVample: I = SW)C Ncth
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Geometric Design Rules:

Stick figures give an indication of the topology of a layout. Of course
in reality, the regions depicted in the diagrams must have non zero
width. The following are guidelines indicating the minimum width of
each type of material, and the minimum distance between two regions of
the same type:

(All values have units of lambda)

Material Width Separation

Polysilicon
Diffusion
Metall
Metal2

Contacts and vias are 2x2. Contacts must be kept 2 apart, vias 3 apart.
When applying a contact to polysilicon, the polysilicon must be extended
to width 4:

Polysilicon must overextend diffusion by at least 2, diffusion must
overextend by 3:

Wells must be 5 lambda away from any diffusion not contained in the
well. Also wells must overextend its diffusions by 5 lambda:

S5I
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Higher Level Architecture:

A chip can be decomposed into various units such as memory, the control
unit, register files, etc. These various units are made up of the leaf
cells that we have been discussing up to now. There are certain
patterns that are used when connecting up leaf cells to make these
larger units. Three common patterns are REGULAR ARRAYS, DATA PATHS, and
STANDARD CELLS. Which pattern is used depends on the unit that is being
designed :

4;rýAawck CLo .1~f'cyP L~OnA

Ck1

Regular Array:

Regular Arrays are the simplest of the three patterns. It consists of
laying down many identical leaf cells in a 2D array, and connecting the
leaf cells in a regular way. Regular arrays are found in structures
that have highly repetitive nature such as RAM, ROM, PLA (Programmable
Logic Unit).

Data Paths:
An example of a data path might be a simple floating point unit. An
n-bit chip will have data paths that are n BIT STREAMS high. A
bit stream is a row of leaf cells that is responsible for producing the
output for a particular bit. For example, a bit stream might consist of
an adder, then a register, followed by a comparison operator, etc. Data
wires run parallel to the data path (horizontal). Data that is needed
in a different bitstream is passed through vertical CONTROL wires.
CLK, GND, VDD also run vertical through the bit streams:

cUCA
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Standard Cells:
Standard cells are often used to code messy logic functions. These
functions could be coded compactly as data paths, but in order to speed
up the design process, the less efficient standard cell approach is
used. The standard cell approach consists of laying out the needed logic
gates in a grid pattern and then connecting the various gates together:
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6.008 Lecture Notes 3
Friday, January 7, 1994
Lecturer: David Harris
Scribe: Aarati Parmar

Reading:
6.1
6.2
8.1
8.2.1.1-8.2.1.2

Well and substrate contacts:

for these transistors to work, you need to keep the p-substrate (for the
n-fets) at ground (0 volts) and the n-well (the p-fets) at vdd (5 volts)

ex : invert2 r

To recap:

p-sub at 0 volts
n-wells at 5 volts

an example of this is under examples, std_ nand2

note how the n-well is tied to 5v by the n-sub, and the p-substrate is
grounded by the psub: the n-well overlaps the vdd! metal, and then a
4x4 square of nsub is laid down over the intersection, and a normal
2x2 contact of active area (cont_aa) is used to connect the whole thing
together. in the case of

th.su.a. .sureopu is plc on f.e til grud connF
the psub, a 4x4 square of psub is place on the the ground connf
and a 2x2 square of contact is put over that. GX:

you put at least one n/p contact for each well.

latchup: is something that results in power being shorted to ground, 5uL ,n/p
wich causes a huge current to flow through, frying the chip.
this is a higher order effect-~that has to do with "parasitic
transistors" (don't worry we students are immune to them). these
parasitic transistors are bipolar transistors (npn or pnp) that
result from the sandwiching of a layer b~eieU"v it a "oppositeS. anyway,
what happens is that at a high enough voltage, these little transistors
can turn on and pass lar e amounts of current, which will fry the chip.

SJv•. -- =r- -



Page 2

to keep this from happening, make sure that no transistor is more than
50 lambda from a contact. also tie the substrate to ground to ensure
that these little parasitic transistors can't be incarnated.

some basic rules about psub and nsub:
- they must be 4 away from n or p diffusion, and 5 away from gates
(polysilicon) which cross diffusion. C in

$ bit adder case study:

logic design for * bit adder

A
6

Cvv

truth table for adder:

a b cin s cout
0 0 0 0 0
00 1 1 0
0 1 0 i 0
0 1 1 0 1
1 00 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

cout = ab + bc + ac
s = abc + (a+b+c)cout'

11

some explanations: . 1

generate (a carry): true when cout will be forced high independent of
cin

proLpaate (a carry): true when cout is true if and only if cin is true

maybe a truth table will clarify things a bit:

a b ) q p
0o 0 00
0 1 0 1
1 0 0 1
1 1 1 0

t cGU+

S 4 -=
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g (generate) = a & b
p (propagate) = a xor b

looking at secret agent 6.007 full adder datapath - example of
implementation of adder as
to make a four bit adder.

rules for datapath :

1) databits flow through me
L

2) power, ground, control (e.g. cin, select, on a mux) through metal 1 =
wordline

3) each cell has to pass on its values to next cell, etc.

4) must be 80 wide

to see a fine example of datapaths, check at your neighborhood cadence
library for the fulladder cell under examples, lecture3
and it's only 8160 lambda squared! what a bargain!

some new ideas:

1. hierarchy : to build up large structure out of small pieces
- example - out little 4 bit adder eX-p

- or, say you wanted to build a to build a subtractor - one
way to do it would be to build a subtractor cell, and then put them
together, to make an n bit subtractor, etc. an easier and better way
would be to realize that in bit arithmetic, negative numbers are made by
inverting a bit and then adding 1. CavI tn rvn III.
so, a - b , n:\

= a + -b
a + (b' + 1) A

wow! it's that simple! O

lor
L,as

10.7
bq

2. regularity: make cells reusable - like make one multiplexer that
everyone can use

3. modularity: make modules that can plug together -
interchangeable parts, like legos. you could plug any two and they would
fit together.
in this case, you would make all cells the same height, but this
standardization has its down side, because you could end up with
inefficient cells - those that don't use all the space that is availiable
to them.

4.locality~ keep information that works together physically close together

using the tools :

pins: /
J.

r3L1

times L Di--- -LArt(Worcdlt
ýLt (43L

DoD,
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Page 4

pins help incorporate the ideas of hierarchy and regularity.
hey show where levels should be connected.
there should be one pin for each input and output. (pins on both ends)

how to make a pin:
1.- under create of cadence - create pin , or just push p.
2. pick a terminal name - use lowercase to be consistent because cadence is
case sensitive
3. draw 4x4 rectangle - make sure it's in the same layer as the terminal
for which you are making a pin

properties: can find out also about connectivity
to use this, click on a pin, hit q (but not too hard), and pick
connectivity.
cadence will tell you what it's connected to.

labels:

to make a label:
1. select labels layer in pallette
2. hit 1 for label
3. pick a name - for vdd and gnd the standards are vdd! and gnd! - make
sure the name agree with the one assigned to the pin
4. height - choose a good one for readability - usually 2

something of interest to note:
the way cadence assIgns labels is that if a label covers several different
layers, the drc checker would first check to see if a metal2 exists for
the label to be linked with, and then metal 1 and then the poly.

you can also make instances of cells:
instances:

see under examples, lecture3, adder4, layout

an instance of a cell is just like a copy of it. you can rotate it, flip
it, paste it, etc.
when using them, if you even get confused, just look at the bottom of
the window, and the cadence will show you some things you can do with
the mouse buttons.

to use instances:
choose copy and select cell.
the right mouse button rotates the cell.
shift plus the right mouse button flips it.

- when sticking instances together, overlap the pins so that they
look like one pin.

standard cells

neat fact: nand is a universal function - from this, you can make
anything!!
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wow!

xor from nand;

A OPR

a standard cell has a height 60

to stick cells together:
1. create instance - std_nand2
2. stick pins together

4.097 I
crtl c gets out of mode
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6.008 Lecture 4: Memory
Monday, January 10, 1994

Lecturer: Bill Dally
Scribe: Ethan Mirsky

The Latch

All electric circuits have a parasitic capacitance associated with them. A transmission
gate (Figure 1), can be modeled with a parasitic capacitor (Figure 2).

DI 0-.~-~-

e

Figure 1

When the capacitor is charged up (when D and e are driven high) and then disconnected
(e is driven low), the capacitor will retain its charge for anywhere between 1 ms and 1
minute, depending on the size and composition of the materials used in the circuit as well
as the temperature of the circuit. For the time that the capacitor is holding its charge, it
can be said to be remembering the value of D. However, in order to prevent the
decaying charge from losing its value, the charge must be reinforced. Figure 3 shows a
circuit which will perform this function.

Figure 3

The top device in Figure 3 is a tristate inverter. A diagram for it is shown in Figure 4:

I

Figure 2

x Y

, 
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When a is high (a' low), Y becomes X'. When a is low, Y is disconnected from X.

When the feedback loon of Figure 3 is attached to the transmission gate the circuit

becomr

Figure 5

When e is high, the value at D is driven to Q. The tristate inverter is turned off, so that
there is no conflict between the new value and the old value. When e is low, the D is
disconnected from Q, but the value on the capacitor is maintained through the feedback
loop, and thus the circuit "remembers" the value of D. The output inverter is used to
isolate the circuit from the devices it is driving so that the capacitor does not get drained
by a large load. Figure 6 shows a timing diagram for this process.

ifI

Figure 6

The actual storage is done with energy and it is necessary for the circuit to have energy
storage (e.g. capacitance), even if it is only parasitic (there is no explicit capacitor built
in).

In order to reset a latch (to set its value to low without forcing the input to zero), the
following circuit can be used. Note: the symbol refers to a transmission gate.

ntcsmbl -rfer oatasiso ae

I eset
Figure 7
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The Flip-Flop

In order to make a sequential circuit (one that works in response to a clock) a memory
element needs to have two latches built in, as shown in Figure 8. Normally such a circuit
is represented as shown in Figure 9.

Figure 8

Figure 9

When the clock is low, the master latch is open, but the slave is still outputting the old
value it is holding. When the clock goes high, the master closes, continuing to output the
old value of D. The slave opens, and the old D is being saved and can be read on the
output. This circuit is static on both clock high and clock low which means that the clock
may be stopped either high or low without the output changing. If the tristate feedback
loops are removed, the circuit will still work as long as the clock is maintained at a high
enough frequency. This saves 10 transistors (four each from the tristate inverters and 2
from the output inverter.

In order to reset a flip-flop, add a nor gate before the final latch, as shown in Figure 10.
This reset is synchronous (e.g. it happens only at the next clock edge).

0I.

Figure 10



Timing Constraints for Sequential Circuits

Flip-flops have setup and hold times which constrain the timing of their operations. If a
input signal is changed after the setup time before the clock edge or before the hold time
(see Figure 11), the output of the flip-flop may becotra meta-stable. The meta-stable
state occurs when the output is stuck on the threshold between logic high and low. When
an output is meta-stable it will be corrected on the next clock cycle but, since its output
could be read by other circuits as either a high or a low circuits following the meta-stable
one will often do the wrong things. This situation must be avoided.

Figure 1"1

A common cause for this problem is clock skew. Clock skew occurs when the clock
signal arrives at one device significantly before or after another. If these devices are
supposed to work simultaneously, this could result in signals changing inside the setup
time of the second device. The following constrain equation must be obeyed.

tskew + thold < tc+ td

where:
tkew is the difference between the arrival times of the two clock signals.
tiold is the hold time of the flip-flops involves.
to is the contamination delay of the flip-flops. This is the delay after

the clock edge before the out put of the flip-flop starts changing.
tt  is the propagation delay of the flip-flops. This is the delay after the

clock edge before the output of the flip-flop stops changing.

For a more detailed explanation of this constraint, refer to Computatioal Structures, by
Ward and Halstead, section 4.4.

The Counter

A simple device made out of flip-flop is a counter. A counter will count, in binary, using
one flip-flop per bit. Each bit changes if all of the bits so far (starting at the least
significant bit) have been ones. A synchronous counter is designed with each bit having
the following circuit:

0hyt- o S42

OsC
Figure 12
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The first osf (one so far) bit is always high. The timing on such a circuit looks like:

6k.

90

rigure ii

The Coke Machine (A Finite State Machine)

A state machine is device which can perform almost any function. It works by saving a
"state" in flip-flops. The values in these flip-flops and the inputs can be used to compute
outputs and the next values in the flip-flops (the next state). As an example we will make
a coke machine. It will take as inputs lines representing coin inputs: "nickel" and
"dime", and a clock. Its outputs will be "dispense coke" and "nickel out". A coke costs
$0.15. The state diagram looks like this:

Figure 14

Sk0



A direct implementation of this can use one flip-flop to represent each state. This is
called "One-hot". It looks like:

hrick4 o.-

L~wnlg4~c )

Figure 15

However, there is a better way. Each state can be encoded, so that only three flip-flops
are needed. For example, we can encode the states as follows:
$0.00 = 000 $0.05 = 001 $0.10 = 010 $0.15 = 100 $0.20 = 101

All the information in the state diagram can be encoded in this table:

current
000
001
010
100
101

NEXT (based on input)
none nickel
000 001
001 010
010 100
000 --
100

dime
010
100
101

This information can also be encoded into Karnough Maps:

I

OUT
coke
0
0
0
1
0

nickel out
0
0
0
0
1

C. Figure 16

For an explanation of Karnough Maps refer to Computational Structures, by Ward and
Halstead, section 3.3.



Taking each bit of state (one at a time), the terms can then be grouped into adjacent
block. Each group must be a power of two. From this it is possible to write the logic
equations for the states:

SO (new) = SO*S2'*x + SO'*S1'*n + S1*d
S1 (new) = SO'*S1'*d + S1*x + SO*n
S2 (new) = SO*d + S1*d + Sl*n + SO*S2

These are in the "Sum of Products" form. This form is easy to implement in PLA's
(Programmable Logic Devices). However, to implement this logic in CMOS gates
directly, the terms of S2 could be combined:

S2 (new) = SO*(d + S2) + S1*(d + n)

Next time: PLA's!
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Its not just a class, its an ad

ARRAYS!
So far, we've learned everything there is to know about standard cells and datapaths.l To review, standard cells
are laid out with horizontal power strips separated by 60 . with inputs and outputs running vertically; this makes
it straightforward to hook cells together to form arbitrary logic circuits. Datapaths, on the other hand, are 80 7
high, have vertical power strips and inputs coming from one side and outputs out the other; this is useful for
designing dense circuitry which gets reused on multiple bits of information in which only local communication is
necessary2.

Data Path

-0J1

Standard Cell
Ii 80

1 Okay, so that's a slight exaggeration!

2 Like the datapaths of a arithmetic unit

i,



There are, of course, other systematic ways of designing circuitry. One common type of logic circuit is the so-
called Read Only Memory. ROM sizes are usually indicated by something like 10 words by 7 bits, where the 10
represents the number of separate addressable locations (requiring rlog2(words)l, or in this case 4 address lines)
and 7 represents the number of output signals coming out of the array. Because of this structure, arrays are an
excellent candidate for laying out in a grid fashion.

ROM Array for 7 segment decoding.

The row represents the number to display (the word), and the
column contains the information for each segment (a bit line)

Word

Bit

Row selection is done by a decoder matrix which runs vertically next to the array of bits. At each row, a
horizontal row select signal is generated by a inverted-input AND gate (in this case, a 4 input inverted AND, or
NOR4). The AND's inputs are connected to vertically running lines of the address and inverted address bits.

+

1

R8 A

A
3

A-] T] I1 f]
AAAAAAAA

33221100

Then at the intersection of the bit lines (running vertically) and the

row select lines (running horizontally) is a transmission gate that
allows a value to be driven to the bit line. Actually, a full
transmission gate isn't necessary - only a nfet for driving a 0, or a
pfet (with an invertor on the row select line) for driving a 1.

V Unfortunately, this arrangement is pretty sparse - a pfet can only be
D so close to an nfet (there has to be a nwell overlapping the pfet by 5

X in each direction, and a 5 . spacing between ndiff and nwells).
D So. in order to more densely Dack this array, pseudo-nmos logic is

used. This is equivalent to using open collector devices and making
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a wire or. Essentially, only the nfet is used (the absence of a nfet means a 1), and a weak pfet is placed at the top
)f each bitline, 'pulling' it high when no nfets are pulling it low. The astute observer will notice that when an nfet
is on, a voltage divider circuit is formed. However, Dave has assured us that a voltage no higher than .6v will
occur, well under the CMOS threshold voltage 3.

Pseudo-NMOS +

positive-logic inputs I

Of course, if it works once, why not use the same trick
again? So, the decoder NORs will be implemented using
pseudo-nmos, thus allowing the decoders to be compacted as
well.

output It may not seem too important to make the decoders small
(after all, you just need a decoder for every address, while
you need a bit for the number of addresses times the number
of bits), but suppose you have a 64 word by 8 bit ROM.
Using the above technique, the decoder logic would take a
significant portion of the total space. Another solution is

necessary. The trick is to break the ROM into pieces, and select the bit line from the the pairs.

For example, using 2 of the address bits in the 64x8 example to do bitline selection will reduce the decode width
to 8 lines wide (rather than 12), divide the height of the circuit by 4 4, and multiply the width of the bit array by 4.

64x8
FRM

64x8 ROM
multiplexed 4 times

L-A 16x32

decoder

The optimal solution is generally a square array of bits. The example ROM shown in class demonstrated two
other techniques. One was that the pullup pfet does not need to be on the same end of the row line was the
decoding pull-down logic (the gate can be physically distributed). Another was that you can get away without a
pullup pfet on the bit lines by putting it after the multiplexor. I'll leave this as an exercise to the reader if its not
intuitively obvious why this is so.

There are a few problems with pseudo-nmos, though. Because a voltage-divider circuit is formed, there is static
power dissipation (this is why people use CMOS instead, which only has dynamic power dissipation). In fact, it
was claimed each pfet will draw .25 milliamps - if there were a 1000 bitlines, and there's a even chance of a bit
being on or off, that's over 1/2 watt of power dissipation.

3 Of course, if he's wrong, we'll start by pulling out his fingernails...

4 Actually, some room at the bottom needs to be reserved for the multiplexors, but this is
relatively small compared to the savings in decoder logic for this example.

I
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Another problem is that every row line except the selected one will be at a 0 level, thus drawing power. This can
be easily fixed by using NAND gates instead of NOR gates at the decoder level, and then inverting the output
using a CMOS invertor (with no static dissipation) to generate the O's. One has to remember that now the inputs
to the decoder gates must be the uncomplemented versions rather than the complemented ones5.

Now that we have Read Only Memories, it would be nice to have memories that can be written, the poorly named
Random Access Memories6. The basic bit cell consists of a latch with a tristate invertor on the output; a tristate
inverter must be used rather than the multiplexor, or the current drain from all the attached gates will probably
screw up the value stored in the feedback loop.

RAMs are described in more detail in
Section 8.3.1 of Principles of CMOS
VLSI Design by Weste and Eshraghian

One notices that now four row lines are needed for every row - Read, /Read, Write, and /Write. These can be
generated fairly easy with a n-input NAND gate (where n is flog2ROWS1 - the number of address bits) feeding
two inverted-input AND2 gates, which then feed two inverters.

One problem with RAM i 

e

one can form any type of
low when any of the row

array to save decoder space isn't quite as simple as it is in a ROM.
The problem is you end up writing a whole row, which will
consist of more than one word. One strategy is to require a read
cycle before a write cycle, storing the whole word in a buffer row
then only changing the bits necessary.

The final array type discussed is that of a Programmable Logic
Array7 . Basically, one takes the idea of a ROM array, and makes
a few observations. First, the decoder unit is actually acting like

an AND gate - by hooking it up to some set of the address lines,

product term (like A*/B*C). Second, the array is acting like a NOR gate, pulling the bit

lines that are hooked up are asserted.

5 ROMs are described in more detail in Section 8.3.3 of Principles of CMOS VLSI Design by Weste and
Eshraghian

6 Technically speaking, ROMs are random access - what they meant by the name is beyond me.

7 This sounds like a misnomer to me - maybe automatic logic generation? You certainly can't
reprogram the chip once its programmed!



Using these two observations, one can make any sum of products terms that one wants (NOTE: they will be in the
form of an inverted sum of products). The number of inputs required determines the number of decoder lines.
The number of outputs required determines the number of columns of the array. Finally, the number of separate
implicants used determines the number of rows of the NOR array.

One useful application of PLAs is in the making of Finite State Machines. To make a quick and dirty FSM, one
determines the sum of produces necessary to implement the state bits and output signals, puts them into a file, and
runs Dave's nifty program to spit out a layout. Then, you simply hook the PLA generated to a set of Flip-Flops,
add a clock, and you're done!

PLAs are described in more detail in
Section 8.4.2 of Principles of CMOS
VLSI Design by Weste and Eshraghian
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6.008
Lecture #6:

THE UNINTEL SEXIUM
or...

FUN THINGS TO DO WITH REGISTERS

Lecturer: David Harris
Dutiful Scribe: Jeff Bowers

1 The accumulator

The Unintel Sexium is an accumulator machine, i.e. it uses a device called an
accumulator to perform all of its basic operations. Most basic operations
input the value stored in the accumulator, perform some operation, then
output a new value to the accumulator. This can be illustrated graphically as
follows:

OPE•RA- OrJ ;

For example, when you want to add two numbers, you add one number to
another which is already located in the accumulator, and the sum is then
placed in the accumulator.

2 Registers

A register is a device used by the Sexium to store information which is being
processed. The accumulator is one example of such a register. The Sexium
will include eight other registers: four general purpose registers labelled RO
through R3, two memory address registers MAH and MAL, and two program
counter registers PCH and PCL. These are illustrated graphically as follows:



MAH
MAL
PCH
PCL

A
RO
R1
R2
R3

The two memory address registers are used to specify some location in
memory. The Sexium can then read from or write to that location in
memory. MAL is an eight-bit register containing the eight least significant
bits, and MAH contains the six most significant bits. Because 14 bits therefore
specify the memory address, there can be 214 (= 16,384) different memory
locations.

The program counter registers specify which instruction the Sexium is
currently executing. After an instruction is executed, the program counter
automatically advances to the next instruction (unless the programmer uses a
BRA or JMP command, as will be explained later). PCL contains the 8 least
significant bits of the program counter, and PCH contains the 6 most
significant bits.

The accumulator and the four general purpose registers are also eight-bit
registers. The general purpose registers are commonly used by the
programmer to store temporary information and perform arithmetic
operations.

3 Memory

The Sexium will have 214, or 16,384, bytes of memory. This memory will be
partitioned into four "banks" each containing about 4K of memory. The first
bank is reserved for ROM and must contain instructions for the processor;
otherwise the processor will have nothing to process when it is reset (the
program counter is set to $0000 when the Sexium is reset, and therefore the
processor will look for instructions in memory location $0000). The second
bank of memory will be RAM, and the third and fourth banks can be chosen
to fit the user's purposes (they are presently undefined).

4 Programming the Sexium

In order to specify a set of instructions for the Sexium to perform, the
programmer must write a program in assembly language. The instructions
available to the programmer are minimal, but adequate for most needs.
When programming in assembly language, constants are represented by

\170
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hexadecimal numbers (base 16). In base 16, the digits are from 0-F (0-9 and A-
F). For example, the number 31 in base 10 would be written as $1F in base 16
(the number is preceded by a dollar sign ($) in order to signify that the
number is in base-16). Also, negative numbers are expressed by taking the so-
called "two's complement" of the equivalent positive number. This involves
inverting each bit of the number and then adding 1. For example, the
number $2F can be written as

00101111.

The number -$2F is found by inverting each bit and then adding 1, with the
result that

-$2F = 11010000 + 1 = 11010001 = $D1

We call this number -$2F because $2F + $D1 = 256, which is zero on an eight-
bit adder.

We can separate the instructions into three different types of operations:
arithmetic operations, memory operations, and control operations.

Arithmetic Operations

ADD reg
This instruction adds the number in "reg" to the current value in the
accumulator A, and stores the sum in A.

AND reg
This instruction performs a bitwise AND of A and "reg".

NOT
This instruction performs a bitwise NOT of A.

SHR
"Shift right": Divides A by 2 and drops the remainder. Can also be
thought of as shifting each digit in the binary number over by one, and
discarding the least significant digit, e.g.,

SHR
00100101 ==> 00010010

($25) ($12)

ROR
"Roll right": Same as SHR, except that the least significant digit
replaces the most significant digit:
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ROR
00100101 ==> 10010010

($25)

PUT

GET

reg
Stores

reg
Stores

($92)

the current value of A in "reg".

the current value of "reg" in A.

TST reg
Adds "reg" to accumulator, checks if there is a carry out, and checks if
the sum is zero. AO becomes true if there is a carry, and Al becomes
true of the sum is zero (modulo 256).

Memory Operations

LDA
Loads A with the value stored in memory location pointed to by MA

LDI
Loads A with the value stored in memory location pointed to by MA
and advances MA by 1.

LDM const
Loads A with "const"

Puts the current value of A in the memory location pointed to by MA

Puts the current value of A in the memory location pointed to by MA
and advances MA by 1.

Control Operations

JMP high low
Sets PC (program counter) to value specified in "high" "low".

BRA const
Advances or reduces value of PC by "const".
used to move program counter backwards.

Two's complement is

SKZ

STA

STI
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Advances PC by 2 if A = 0.

BRK
Ends the program.

Instruction Sizes

Most of the instructions have a length of 1 byte. The exceptions are: LDM
and BRA, which each have a length of 2 bytes, and JMP, which has a length of
3 bytes. The SKZ command will skip over an instruction of length 2 (or two
instructions of length 1). If the SKZ command is followed immediately by a
JMP command, then the program will crash because the program counter will
encounter the argument of the JMP instruction rather than another
instruction.

Some Examples

Suppose that you want to add the numbers $96 and $04. Here is a instruction
sequence which would do this:

LDM $96 #Load the accumulator with the number $96
PUT RO #Place this value in register RO
LDM $04 #Load the accumulator with $04
ADD RO #Add the value in RO to the value in the accumulator

Suppose that you want to load the value in memory address $0666 into R2.
Here is an instruction sequence:

LDM $06 #Load the accumulator with $06
PUT MAH #Set Memory Address High to $06
LDM $66
PUT MAL #Set Memory Address Low to $66
LDA #Load accumulator with value in memory address $0666
PUT R2 #Place this value in register R2
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Appendix B: Student Evaluations

This appendix contains evaluations completed by the students on the last day of class.
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a

traditionally graduate subject to the early MIT experience. We need lots of feedback to

learn if the experiment was successful and to make improvements in the future, should

we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?
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3) What were the best and worst parts of the class? What would you do differently in the
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5) What did you like about the Unintel Sexium microprocessor design project? Whatwould you do differently?
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6) What could improve in the lectures? What was effective? Did you find the lecturestoo fast? Too slow? Please be as specific as possible.
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7) How much time did you spend outside of class between each lecture?

ý -It A rs. jwd-
8) Do you feel like you mastered the material? Would you feel comfortable with a

UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happe ing.
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11) If this class were to be offered again next year, would you be interested in TAing?
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to
learn if the experiment was successful and to make improvements in the future, should
we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?
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5) What did you like about the Unintel Sexium microprocessor design project? Whatwould you do differently? ~ ( •t
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6) What could improve in the lectures? What was effective
too fast? Too slow? Please be as specific as possibl
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7) How much time did you spend outside of class between each lecture?

8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject? ,
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?
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10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a

traditionally graduate subject to the early MIT experience. We need lots of feedback to

learn if the experiment was successful and to make improvements in the future, should

we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did yvou take this class? C .. ~ cj .
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4) Which problem set was your favorite? Which was least valuable / interesting? Why?
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5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differently?
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6) What could improve in the lectures? What was effective? Did you find the lectures
too fast? Too slow? Please be as specific as possible.
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7) How much time did you spend outside of class between each lecture?
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8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing?
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a

traditionally graduate subject to the early MIT experience. We need lots of feedback to

learn if the experiment was successful and to make improvements in the future, should

we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?
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2) What did you learn?
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'~2
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3) What were the best and worst parts of the class? What would you do differently in the
future?
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4) Which problem set was your favorite? Which was least valuable / interesting? Why?
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5) What did you like about the Unintel Sexium microprocessor design project? Whatwould you do differently?

414kt it F1Sc tf, tt#

6) What could improve in the lectures? What was effective?
too fast? Too slow? Please be as specific as possible.

P 101t41

Did you find the lectures

+00 fn43

7) How much time did you spend outside of class between each lecture?

O re c, /ed
8) Do you feel like you mastered the material? Would you feel comfortable with a

UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgertbn Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing?
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to
learn if the experiment was successful and to make improvements in the future, should
we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class? __-L•,

2) What did you learn? 7- , s

3) What were the best and worst parts of the class? What would you do differently in the
future? - or, a

4) Which problem set was your favorite? Which was least valuable / interesting? Why?

/,w , .'/ .,.- -- , /< .,"- -& / '4 "-t '( ve

r
i .I

~y-~k~zt~-~c/
I

/tttb~ a

~cic~3/f,

.'Aý'Z.ZýJ

d~~~-E~S~~

.~,;C ,X~ ~ZL~R~4 V'c Ct ý



5) What did you like about the Unintel Sexium microprocessor design project? Whatwould you do differently? ium c• o , de,,rc 7 Cpj••c h)
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6) What could improve in the lectures? What was effective? Did you find the lecturestoo fast? Too slow? Please be as s ecific as possible.

7) How much time did you spend outside of 9lass between each lecture?

8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?

9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing? ,,,



We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to

learn if the experiment was successful and to make improvements in the future, should

we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?

2) What did you learn?
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3) What were the best and worst parts of the class? What would you do differently in the
future?
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4) Which problem set was your favorite? Which was least valuable / interesting? Why?
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5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differently?

~zkb 4kl~
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6) What could improve in the lectures? What was effective? Did you find
too fast? Too slow? Please be as specific as possible.

the lectures
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7) How much time did you spend outside of class between each lecture?

8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

)Ib , )Q4 v
4

.(flVx Lipe &

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing?
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to
learn if the experiment was successful and to make improvements in the future, should
we be offering it again. Please fill out the following evaulation in excrucating detail.

1) Why did you take this class?

2) What did you learn?

3) What were the best and worst parts of the class? What would you do differently in the
future?

4) Which problem set was our favorite? Which was least valuable / interesting? Why?

4) Which problem set was your favorite? Which was least valuable / interesting? Why?
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5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differently?

6) What could improve in the lectures? What was effective? Did you find the lectures
too fast? Too slow? Please be as specific as possible.

i, r .- Pj4 ýj -.. I t l e4 --/ -4 j4 l -J

7) How much time did you spend outside of class between each lecture?
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Lxj/ 14a , jLg~j
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8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
wand to what extent do you feel like you took a graduate subject?
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9) Would you be interested in a 6-unit follow-on subject this spring developing hardware
and/or software for a computer built from the Sexium?

10) The Edgerton Center sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.

11) If this class were to be offered again next year, would you be interested in TAing?



We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a

traditionally graduate subject to the early MIT experience. We need lots of feedback to
learn if the experiment was successful and to make improvements in the future, should
we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?

2) What did you learn?
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3) What we he best and worst parts of the class? What would do diferently in the
future?

oe I ~ dQ~I~~



NO0

5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differently?

e? Did you find the e-"c
too fast? Too slow? Please be as specific as possible.
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7) Howmuch time did you spend outside of class between each lecture?

8) Do you feel like you mastered the material? Would you feel comfortable with a
UROP or summer job doing VLSI design? What would you want to know that
wasn't covered? To what extent did we teach VLSI as an undergraduate subject,
and to what extent do you feel like you took a graduate subject?

9) Would you be a 6-unit subjct this spping tdvelop g hardware
and/or software for a computer built from the Sexium?

10) The Edgerton nter sponsors hands-on seminars like this one, as well as hands-on
UROP work. Do you have any ideas for other seminars the Edgerton Center
should offer or UROP projects you would like to do? You may be interested in
stopping by the Edgerton Center, room 4-409, and seeing what is happening.
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We have taught this class (6.090, VLSI Chip Design) as an experiment in bringing a
traditionally graduate subject to the early MIT experience. We need lots of feedback to

learn if the experiment was successful and to make improvements in the future, should

we be offering it again. Please fill out the following evaulation in excrutiating detail.

1) Why did you take this class?
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2) What did you learn?
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3) What were the best and worst parts of the class? What would you do differently in the
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4) Which problem set was your favorite? Which was least valuable / interesting? Why?• 2 = O oWjC
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5) What did you like about the Unintel Sexium microprocessor design project? What
would you do differentlu?
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6) What could improve in the lectures? What was effective? Did you find the lectures
too fast? Too slow? Please be as specific as possible.
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7) How muchtie diyou spen outse class between each lecture?
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Appendix C: Sexium Design Files

This appendix contains the various design files created for the Sexium project, including

the Verilog model, the equations describing the microcode PLA, HSPICE simulations,

the schematics, and the layout.
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Sexium Schematics

Complete schematics for the Sexium microprocessor appear on the following pages:

computer 197
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flopen 231
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Sexium Layout

This section contains color layout plots of selected cells from the Sexium, including the

major modules and other particularly interesting cells.

sexium 234
alubox 235
flop2bit 236
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regbox 238
pcmabox 239
control_pla 240
v4io 241
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control_pla
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v4io
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Verilog Model

// Sexium.v

// This file contains a Verilog model of the
// Unintel Sexium 8 bit microprocessor.

// Version History
/-
// 2/20/94: Model updated to reflect new control and bus widths
// 1/16/94: Model passes regression test
// 1/7/94: Original version developed by David Harris

// Notes:
// Reset is asynchronus. This can be fixed if necessary.

// computer

module computer();

// Internal control
reg clk;
reg reset;

// Memory interface
wire [15:01 adr;
wire [7:0] data;
wire [3:2] cs;
wire rwbar;
wire [3:0] test;
wire test_out;

// Instances of Sexium & Memory

sexium cpu(clk, reset, adr, data, cs, rwbar, test, test_out);
memory mem (adr, data, rwbar);

// Simulation routines
// Generate clock
initial
begin

clk = 1;
reset = 1;
reset <= #25 0;
forever
begin

clk = 1;
#10;
clk = 0;
#10;

end
end

// Show waveforms
initial
begin
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$gr_waves("clk",clk,
"reset", reset,
"adr'",adr,
"data",data,
"cs %b",cs,
"rwbar",rwbar,
"x", cpu. alu.x,
"y", cpu. alu. y,
"z",cpu. alu. z,
"xsel",cpu.alu.xsel,
"ysel",cpu.alu.ysel,
"zsel",cpu.alu.zsel,
"pcma_in %b",cpu.pcma.pcma_in,
"mald", cpu.pcma.mald,
"pcld",cpu.pcma.pcld,
"pcma_select",cpu.pcma.pcma_select,
"ida",cpu.cont.pla.lda,
"bus",cpu.bus);

$gr_regs(
"IR %h S %h F %h OP %s",
cpu.cont.ir,cpu.cont.s,cpu.cont.f,
opname(reset,cpu.cont.f,cpu.cont.pla.add,

cpu.cont.pla.andw,cpu.cont.pla.notw,
cpu.cont.pla.shr,cpu.cont.pla.ror,
cpu.cont.pla.put,cpu.cont.pla.get,
cpu.cont.pla.tst,cpu.cont.pla.lda,
cpu.cont.pla.ldi,cpu.cont.pla.ldm,
cpu.cont.pla.sta,cpu.cont.pla.sti,
cpu.cont.ir[4:0] 5'bl0000,
cpu.cont.ir[4:0] == 5'bl0010,
cpu.cont.ir[4:0] == 5'bl0011,
cpu.cont.ir[4:0] == 5'bl0001,
cpu.cont.ir[4:0] == 5'b10100,
cpu.cont.ir[4:0] == 5'b11110),

"A %h TMP %h", cpu.alu.a,cpu.alu.tmp,
"RO %h R1 %h R2 %h R3 %h",
cpu.regs.r0.state,cpu.regs.rl.state,
cpu. regs. r2.state, cpu. regs. r3. state,
"PCH %h PCL %h MAH %h MAL %h",
cpu.pcma.pchq, cpu.pcma.pclq,
cpu.pcma.mahq,cpu.pcma.malq);

end

function [63:01 opname;
input reset,f,add,andw,notw,shr,ror,put,get,tst,

Ida, di, dm,sta,sti,jrmp,bra,skz,cal,ret,brk;
begin
if (reset) opname = "RESET";
else if (f) opname = "FETCH";
else if (add) opname = "ADD";
else if (andw) opname = "AND";
else if (notw) opname = "NOT";
else if (shr) opname = "SHR";
else if (ror) opname = "ROR";
else if (put) opname = "PUT";
else if (get) opname = "GET";
else if (tst) opname = "TST";
else if (ida) opname = "LDA";

I I
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else if (idi) opname = "LDI";
else if (idm) opname = "LDM";
else if (sta) opname = "STA";
else if (sti) opname = "STI";
else if (jmp) opname = "JMP";
else if (bra) opname = "BRA";
else if (skz) opname = "SKZ";
else if (cal) opname = "CAL";
else if (ret) opname = "RET";
else if (brk) opname = "BRK";
else opname = "UNKNOWN";
end

endfunction
endmodule

/ memory

module memory(adr, data, rwbar);
input [15:0] adr;
inout [7:0] data;
input rwbar;

// The memory space
reg [7:0] mem[65535:0];

initial
begin

$display("memory: loading initial contents of memory from prog.obj");
$readmemh("prog.obj",mem);

end

// Memory read
wire [7:0] #3 data = rwbar ?mem[adr] : 8'bz;

// Memory write
always

begin
if (rwbar == 0) mem[adr] <= #1 data;
#2; // Delay, a kludge for simulation

end
endmodule

// sexium

module sexium(clk,reset, adr, data, cs,rwbar, test, testout);

// External pins
input clk;
input reset;
input [3:0] test;
output [15:0] adr;
inout [7:0] data;
output [3:2] cs;
output rwbar;
output test_out;
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// Internal busses
wire [7:0] bus;

// Control
wire
wire [3:0]
wire
wire [4:0]
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

[3:0]
[3:0]
[7:0]
[3:0]

signals
alu bus en;
xsel;
ysel;
zsel;
rollflag;
ldacc;
ldtmp;
cin;
cout;
zero;
negative;
reg_wr;
reg_rd;
pcma_in;
pcma_rd;
pcma_select;
bus_in,bus_out;

// Top level modules
tribuf inbuf(bus_in,data,bus);
tribuf outbuf(bus_out,bus,data);
alubox alu(clk, bus,alubus en,xsel,ysel, zsel,rollflag, ldacc, ldtmp,

cin,cout,zero,negative);
regbox regs(clk,bus,reg_wr,reg_rd);
pcmabox pcma(clk,bus,pcma_in,pcma_rd,pcma_select,adr,cs);
control cont(clk,bus,reset, // inputs

xsel,ysel,zsel,alu bus en, // alu control
rollflag,ldacc,ldtmp,cin,cout,zero,negative,
regwr,reg_rd, // reg control
pcma_rd,pcmain,pcma_select, // pcma control
test_out,test, // test muxes
bus_in,bus_out, // bus control
rwbar); // read/write enable

endmodule

// alubox

module alubox(clk,bus,alu_ bus en,xsel,ysel,zsel,rollflag, ldacc,ldtrmp,
cin,cout,zero,negative);

input clk;
inout [7:0] bus;
input alubus en;
input [3:0] xsel;
input ysel;
input [4:0] zsel;
input rollflag; // Control input for shifter
input idacc; // Load enable for accumulator register
input Idtmp; // Load enable for tnp register
input cin;
output cout; // When the sum produces a carry
output zero; // When the sum equals zero
output negative; // When the x input is a negative 2's comp integer
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wire [7:0] x; // Input x of ALU
wire [7:0] y; // Input y of ALU
wire [7:0] z; // Output of ALU
wire [7:0] sumout;
wire [7:0] andout;
wire (7:0] negout;
wire [7:0] shiftout;
wire [7:0] a; // Output of a register
wire [7:0] trp; // Output of tap register
wire [7:0] ad; // Input to a register
wire [7:0] tmpd; // Input to trp register

flop areg(clk,ad,a);
flop tmpreg(clk,tmpd,trp);
mux2 amux(a,z,ldacc,ad);
mux2 tmpmux(tmp,z,ldtmp, tmpd);
mux4 xmux(a,tmp,8'b0,8'bllllllll,xsel,x);
mux2 ymux(bus,8'b0,ysel,y);
mux5 zmux(sumout,andout,negout,shiftout, {6'b000000,zero,cout},zsel,z);
tribuf alubuf(alu_busen,x,bus);
adder opl(x,y,cin,sumout,cout,zero);
ander op2(x,y,andout);
neger op3(x,negout);
shifter op4(x,rollflag,shiftout);

// Tap off negative bit
assign #1 negative = x[7];

endmodule

S/ regbox

module regbox(clk,bus, reg_wr, reg_rd);
input clk;
inout [7:0] bus;
input [3:0] reg_wr;
input [3:0] reg_rd;

trilatch rO(clk,reg_rd[0],reg_wr[0],bus);
trilatch rl(clk,reg_rd[l1],regwr[l],bus);
trilatch r2(clk,reg_rd[2],reg_wr[2],bus);
trilatch r3(clk,reg_rd[3],regwr[3],bus);

endmodule

// / pcmbox

module pcmabox(clk,bus,pcma_in,pcma_rd,pcma_select, adr, cs);
input clk;
inout [7:0] bus;
input [7:0] pcma_in;
input [3:0] pcma_rd;
input pcma_select;
output [15:0] adr;
output [3:2] cs;

wire [7:0] pcld;
wire [7:0] pchd;
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wire
wire
wire
wire
wire
wire
wire
wire
wire
wire

[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]
[7:0]

mald;
mahd;
pclq;
pchq;
malq;
mahq;
sumh;
suml;
cout;
overflow;

// 8th bit carry in 16 bit incrementer
// 16th bit carry in incrementer; unused

flop pcl(clk,pcld,pclq);
flop pch(clk,pchd,pchq);
flop mal(clk,mald,malq);
flop mah(clk,mahd,mahq);
tribuf pclb(pcmard[O],pclq,bus);
tribuf pchb(pcma_rd [],pchq,bus);
tribuf malb(pcmard[2],malq,bus);
tribuf mahb(pcmard[3] ,mahq,bus);
mux2 muxl(pclq, malq,pcmna_select,adr[7:0]);
mux2 muxh(pchq,mahq,pcma_select,adr[15:8]);

mux3 pclmux(pclq,bus,suml, {pcma_in[1],pcma_in[0],
-pcma_in[0] && -pcma_in[1]},pcld);

mux3 pchmux(pchq,bus,sumh, ({pcma_in[3] ,pcma_in[2],
-pcma_in [2] && -pcma_in[3]},pchd);

mux3 malmux(malq,bus, suml, {pcma_in[5] ,pcma_in[4],
-pcma_in[4] && -pcma_in[5]},mald);

mux3 mahmux(mahq,bus,sumh, ({pcma_in[7],pcma_in[6],
-pcma_in[6] && -pcma_in[7]},mahd);

halfadder incl(adr[7:0],suml,1'bl,cout);
halfadder inch(adr[15:8],sumh, cout,overflow);
decoder2to4 csdecode(adr[15:141,cs);

endmodule

// control

module control(clk,bus,reset, // inputs
xsel,ysel,zsel,alu_busen, // alu control
rollflag,ldacc,ldtmp,cin,cout,zero,negative,
regwr,reg_rd, // reg control
pcma_rd,pcma_in,pcma_select, // pcma control
test_out,test[3:0], // test signals
bus_in,bus_out, // bus control
rwbar); // read/write enable

input
input [7:0]
input
output [3:0]
output
output [4:0]
output
output
output
output
output,

clk;
bus;
reset; // reset is presently asynchronus
xsel;
ysel;
zsel;
alu_bus en;
rollflag;
Idacc;
ldtmp;
cin;
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input cout;
input zero;
input negative;
input [3:0] test;
output [3:0] reg_wr;
output [3:0] reg_rd;
output (3:0] pcma_rd;
output [7:0] pcma_in;
output pcma_select;
output bus_in;
output bus_out;
output rwbar;
output test_out;

// internal state
reg [7:0] ir;
reg [2:0] s;
reg f;
reg carry;
reg neg;

// internal signals
wire clrs;
wire newf;
wire latchcarry;
wire latchneg;
wire regop;

wire idop;
wire store;

control_pla pla(alubus en, bus_in, cin, Idacc, Idtmp, pcma_in, pcma_rd,
pcma_select, regrd, reg_wr, rollflag, xsel[3:1], ysel, zsel[4:1],
carry, neg, reset, zero, Idop, newf, clrs, latchneg, latchcarry,
s, ir, f, store, regop, regop);

muxl6 tester(test,test_out, reset,reset,clk,f,s [0],bus[7:0],ysel,ir[0],negl);
// not quite accurate--doesn't model ring oscillator or t flip-flop

// update state
always @(posedge clk)

begin
if (ldop) ir <= #1 bus;
if (clrs) s <= #1 0;
else s <= #1 s+1;
f <= #1 newf;
if (latchcarry) carry <= cout;
if (latchneg) neg <= negative;

end

// random logic
assign #1 xsel[0] = -xsel[1] && -xsel[2] && -xsel[3];
assign #1 zsel[O] = -zsel[1] && -zsel[2] && -zsel(3] && -zsel[4];
assign #1 rwbar = clk 1I -store;
assign #1 bus_out = -rwbar;

endmodule
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// control_pla

module control_pla (alu_busen, bus_in, cin, Idacc, idtmp, pcma_in, pcma_rd,
pcma_select, reg_rd, reg_wr, rollflag, xsel, ysel, zsel, carry,
neg, reset, zero, idop, newf, clrs, latchneg, latchcarry,
s, ir, f, store, regop, regopin);

output regop;
input regopin;

output alu_bus en;
output bus_in;
output cin;
output ldacc;
output idtmp;
output [7:0] pcma_in;
output [3:0] pcma_rd;
output pcma_select;
output [3:0] reg_rd;
output [3:0] reg_wr;
output rollflag;
output [3:1] xsel;
output ysel;
output [4:1] zsel;
input carry;
input neg;
input reset;
input zero;
output ldop;
output newf;
output clrs;
output latchneg;
output latchcarry;
input [2:0] s;
input [7:0] ir;
input f;
output store;

// internal signals
wire add, andw, notw,
wire Ida, Idi, Idm,
wire bra0, bral, bra2,
wire calO, call, cal2,
wire [7:0] r;

shr, ror, put, get, tst;
sta, sti, jmp0, jmpl, jmp2;
bra3, bra4, skzO, skzl;
cal3, cal4, cal5, retO, retl;

// product terms

wire bra32wn, skzOwz, skzlwz, skzlwnz, regopinp;
wire rOrd,rlrd,r2rd,r3rd,r4rd,r5rd,r6rd,r7rd;
wire bra3wnn,r0wr,rlwr,r2wr,r3wr,r4wr,r5wr,r6wr,r7wr;
wire resetp,fp,frst,prod55,prod56;

// Product terms
assign #1 add = -ir[4] && ir[3] && -ir[2] && -ir[l] && -ir[O] && -reset &&

-f;
assign #1 andw = -ir[4] && ir[3] && -ir[2] && -ir[l] && ir[O] && -reset &&

~f;
assign #1 notw = ~ir[4] && ir[3] && ir[2] && iir[] && -ir[O] && -reset &&

-f;
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assign #1 shr = -ir[4]
assign #1 ror = -ir[4]
assign #1 put = -ir[4]
assign #1 get = -ir[4]
assign #1 tst = -ir[4]

-f;
assign #1 ida = -ir[4]

-f;
assign #1 idi = -ir[4]

-f;
assign #1 Idm = -ir[4]

-f;
assign #1 sta = -ir[4]

-f;
assign #1 sti = -ir[4]

-f;
assign #1 jmp0 = ir[4]

&& ir[3] && ir[2] && -ir[l] && irlO] && -reset && -f;
&& ir[3] && ir[2] && ir[l] && -ir[O] && -reset && -f;
&& ir[3] && -ir[2] && ir[l] && ir[O] && -reset && -f;
&& ir[3] && ir[2] && ir[l] && ir[O] && -reset && -f;
&& ir[3] && -ir[2] && ir[l] && -ir[O] && -reset &&

&& -ir[3] && -ir[2] && -ir[l] && -ir[O] && -reset &&

&& -ir[3] && -ir[2] && -ir[l] && ir[O] && -reset &&

&& -ir[3] && ir[2] && -ir[l] && -ir[O] && -reset &&

&& -ir[3] && -ir[2] && ir[l] && -ir[O] && -reset &&

&& -ir[3] && -ir[2] && ir[l] && ir[O] && -reset &&

&& -ir[3] && -ir[2] && -ir[l] && -ir[O] && -s[2] &&
-s[l] && -s[O] && -reset && -f;

assign #1 jmpl = ir[4] && -ir[3] && -ir[2]
-s[l] && s[O] && -reset && -f;

assign #1 jmp2 = ir[4] && -ir[3] && -ir[2]
s[l] && -s[O] && -reset && -f;

assign #1 braO = ir[4] && -ir[3] && -ir[2]
-s[l] && -s[O] && -reset && -f;

assign #1 bral = ir[4] && -ir[3] && -ir[2]
-s[l] && s[O] && -reset && -f;

assign #1 bra2 = ir[4] && -ir[3] && -ir[2]
s[l] && -s[O] && -reset && -f;

assign #1 bra3 = ir[4] && -ir[3] && -ir[2]
s[l] && s[O] && -reset && -f;

assign #1 bra4 = ir[4] && -ir[3] && -ir[2]
-s[l] && -s[O] && -reset && -f;

assign #1
s[i] &

assign #1
-s[l]

assign #1
-s[]

assign #1
s[I] &

assign #1
s[1] &

assign #1
-s[l]

assign #1
-s[1]

&& -ir[1] && -ir[O] && -s[2] &&

&& -ir[l] && -ir[O] && -s[2] &&

&& ir[l] && -ir[O] && -s[2] &&

&& ir[l] && -ir[O] && -s[2] &&

&& ir[l] && -ir[O] && -s[2] &&

&& irfl] && -ir[O] && -s[2] &&

&& ir[l] && -ir[O] && s[2] &&

bra3wnn = ir[4] && -ir[3] && -ir[2] && ir[l] && -ir[O] && -s[2] &&
c& s[O] && -reset && -f && -neg;
calO = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && -s[21 &&
&& -s[O] && -reset && -f;
call = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && -s[2] &&
&& s[O] && -reset && -f;
cal2 = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && -s[2] &&
:& -s[O] && -reset && -f;
cal3 = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && -s[2] &&
:& s[O] && -reset && -f;
cal4 = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && s[2] &&
&& -s[O] && -reset && -f;
cal5 = ir[4] && -ir[3] && -ir[2] && -ir[l] && ir[O] && s[2] &&
&& s[O] && -reset && -f;

assign #1 retO = ir[4] && -ir[3] && ir[2] && -ir[l] && -ir[O] && -s[2] &&
-s[l] && -s[O] && -reset && -f;

assign #1 retl = ir[4] && -ir[3] && ir[2] && -ir[l] && -ir[O] && -s[2] &&
-s[l] && s[O] && -reset && -f;

assign #1 skzO = ir[4] && -ir[3] && -ir[2] && ir[l] && ir[O] && -s[2] &&
-s[l] && -s[0] && -reset && -f;

assign #1 skzl = ir[4] && -ir[3] && -ir[2] && ir[l] && ir[O] && -s[2] &&
-s[l] && s[O] && -reset && -f;

assign #1 skzOwz = ir[4] && -ir[3] && -ir[2] && ir[l] && ir[O] && -s[2] &&
-s[l] && -s[O] && -reset && -f && zero;

assign #1 skzlwz = ir[4] && -ir[3] && -ir[2] && ir[l] && ir[O] && -s[2] &&
-s[l] && s[O] && -reset && -f && zero;
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assign #1 skzlwnz = ir[4] && -ir[3] && -ir[2] && ir[l] && ir[O] && -s[2] &&
-s[l] && s[O] && -reset && -f && -zero;

assign #1 regopinp = regopin;
assign #1 rOrd = -ir[7] && -ir[6] && -ir[5] && regopin;
assign #1 r1rd = -ir[7] && -ir[6] && ir[5] && regopin;
assign #1 r2rd = -ir[7] && ir[6] && -ii-[5] && regopin;
assign #1 r3rd = -ir[7] && ir[6] && ir[5] && regopin;
assign #1 r4rd = ir[7] && -ir[6] && -ir[5] && regopin;
assign #1 r5rd = ir[7] && -ir[6] && ir[5] && regopin;
assign #1 r6rd = ir[7] && ir[6] && -ir[5] && regopin;
assign #1 r7rd = ir[7] && ir[6] && ir[5] && regopin;
assign #1 rOwr = -ir[7] && -ir[6] && -ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 rlwr = -ir[7] && -ir[6] && ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 r2wr = -ir[7] && ir[6] && -ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 r3wr = -ir[7] && ir[6] && ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 r4wr = ir[7] && -ir[6] && -ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 r5wr = ir[7] && -ir[6] && ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 r6wr = ir[7] && ir[6] && -ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir(O] && -reset && -f;
assign #1 r7wr = ir[7] && ir[6] && ir[5] && -ir[4] && ir[3] && -ir[2] &&

ir[l] && ir[O] && -reset && -f;
assign #1 resetp = reset;
assign #1 fp = f;
assign #1 frst = f && -reset;
assign #1 prod55 = ir[4] && -ir[3] && -ir[2] && ir[l] && -ir[O] && -s[2] &&

s[l] && s(O] && -reset && -f && neg;
assign #1 prod56 = ir[4] && -ir[3] && -ir[2] && ir[l] && -ir[O] && -s[2] &&

s[l] && s[O] && -reset && -f && carry;

// Outputs
assign #1 regop = add I andw 1 get Itst;
assign #1 newf = add I andw notw shr j ror I putj T get 1j tst I

Idal I idi IIdm I sta sti jmp2 bra4 cal5 I retl
skzlI I resetp;

assign #1 clrs = add II andw II notw 1 shr 1 ror 1I put 1 get 1 tst 1
ida I idi I idm I sta sti jmp2 bra4 cal5 retll
skzlI resetp 1 fp;

assign #1 latchcarry = add I bral;
assign #1 latchneg = bral;
assign #1 reg_rd[3] = r3rd;
assign #1 reg_wr[3] = r3wr;
assign #1 reg_wr[2] = r2wr;
assign #1 reg_rd[2] = r2rd;
assign #1 reg_rd[l] = cal3 retl I rlrd;
assign #1 reg_wr[l] = call cal4 rlwr;
assign #1 reg_wr[O] = cal2 rOwr;
assign #1 reg_rd[0] = retO rOrd;
assign #1 pcma_rd[O] = bral cal2 | r4rd;
assign #1 pcmard[l] = bra3 cal4 r5rd;
assign #1 pcmard[2] = r6rd;
assign #1 pcma_rd[3] = r7rd;
assign #1 pcmain[O] = jmpl II bra2 I cal3 I retO I r4wr I resetp;
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assign #1 pcma_in[l] = ldm I jmp0 ( calO II call II skzOwz
frst;

assign #1 pcma_in[2] = jmp2 )I bra4 I cal5 I| retl I r5wr
assign #1 pcma_in[3] = pcma_in[l];
assign #1 pcma_in[4] = r6wr;
assign #1 pcma_in[5] = Idi |I sti;
assign #1 pcma_in[6] = r7wr;
assign #1 pcma_in[7] = pcma_in[5];
assign #1 pcma_select = Ida I Idi sta sti;
assign #1 alu bus en = put sta sti jmp2 bra2

resetp;
assign #1 Idtmp = jmpO bra0 j bral I1 bra3 Ij calO;
assign #1 ldacc = notw shr | ror 1I get 1I tst II Ida I

regopinp;
assign #1 xsel[l] = jnp2 l bral II bra2 JI bra4 II cal5;
assign #1 xsel[2] = get I Ida I Idi I dm II jmp0 II jmpl

bra3wnn j( calO 1I resetp;
assign #1 xsel[3] = prod55;
assign #1 ysel = put 11 sta II sti 1 jmp2 II bra2 II bra4

skzO jI skzl 1i resetp;
assign #1 cin = prod56;
assign #1 rollflag = ror;
assign #1 zsel[l] = andw;
assign #1 zsel[2] = notw;
assign #1 zsel[3] = shr I1 ror;
assign #1 zsel[4] = tst;
assign #1 Idop = fp;
assign #1 bus_in = Ida 1I Idi 11 Idm jI jmpO0 jmpl I braO

call I1 skzlwnz II frst;
assign #1 store = sta 1I sti;

II skzlwz I I
SI resetp;

bra4 I ca15 II

ldi IIdm Idm

I bra0 II

cal5 II

I I calO 1 I

endmodule

// mux2

module mux2(inl,in2,sel,out);
input [7:0] inl;
input [7:0] in2;
input sel;
output [7:0] out;

assign #1 out = (sel == 0) ? inl : in2;
endmodule

// mux3

module mux3 (inl,in2,in3,sel, out);
input [7:0] inl;
input [7:0] in2;
input [7:0] in3;
input [2:0] sel;
output [7:0] out;

assign #1 out = (sel[O] == 1) ? inl :
(sel[l] == 1) ? in2

(sel[2] == 1) ? in3 :
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8'bz;
endmodule

module mux4 (inl,in2,in3, in4,sel,out);
input [7:0] inl;
input [7:0] in2;
input [7:0] in3;
input [7:0] in4;
input [3:0] sel;
output [7:0] out;

assign #1 out = (sel[O] == 1) ? inl :
(sel[l] == 1) ? in2 :

(sel[2] == 1) ? in3 :
(sel[3] == 1) ? in4 :
8'bz;

endmodule

/I mux5

module mux5(inl,in2,in3, in4, in5,sel,out) ;
input [7:0] inl;
input [7:0] in2;
input [7:0] in3;
input [7:0] in4;
input [7:0] in5;
input [4:0] sel;
output [7:0] out;

assign #1 out = (sel[O] == 1) ? inl :
(sel[l] == 1) ? in2 :

(sel[2] == 1) ? in3 :
(sel[3] == 1) ? in4 :

(sel[4] == 1) ? in5 :
8'bz;

endmodule

// adder

module adder(inl,in2,cin, out, cout, zero);
input [7:0] inl;
input [7:0] in2;
input cin;
output [7:0] out;
output cout;
output zero;

assign #1 out = inl+in2+cin;
assign #1 cout = (inl+in2+cin > 255);
assign #1 zero = ((inl+in2+cin)%256 == 0);

endmodule
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/ / ander

module ander(inl,in2,out);
input [7:0] inl;
input [7:0] in2;
output [7:0] out;

assign #1 out = inl & in2;
endmodule

/ neger

module neger(in,out);
input [7:0] in;
output [7:0] out;

assign #1 out = -in;
endmodule

// shifter

module shifter(in,rollflag,out);
input [7:0] in;
input rollflag;
output [7:0] out;

assign #1 out[6:0] = in[7:1];
assign #1 out[7] = (rollflag == 1) ? in[O] : 0;

endmodule

// trilatch

module trilatch(clk, rden,wren,bus) ;
input clk;
input rden;
input wren;
inout [7:0] bus;

reg [7:0] state;

always
begin

if (wren == 1 && -clk) state = bus;
#2;

end

assign #1 bus = (rden == 1) ? state : 8'bz;
endmodule

// flop

module flop(clk,d,q);
input clk;
input [7:0] d;



Appendix C: Sexium Design Files 255

output [7:0] q;

reg [7:0] state;

always @(posedge clk)
state <= #1 d;

assign #1 q = state;
endmodule

// halfadder

module halfadder(in,out, cin, cout) ;
input [7:0] in;
output [7:0] out;
input cin;
output cout;

assign #1 out = in+cin;
assign #1 cout = (in == 8'b11111111) && cin;

endmodule

// decoder2to4

module decoder2to4(sel,out);
input [1:0] sel;
output [3:2] out;

assign #1 out[2] = sel[O] -sel[l];
assign #1 out[3] = -sel[O] I -sel[l];

endmodule

// tribuff

module tribuf( en, a, y);

input en;
input [7:0] a;
output [7:0] y;

wire [7:0] #1 y = en ? a : 8'bz;
endmodule

// muxl6

module mux16(sel,out,in [15:0] );
input [3:0] sel;
output out;
input [15:0] in;

assign #1 out = in[sel];
endmodule
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Microcode PLA Equations

# Control.pla
# Created by Ethan Mirsky for 6.008

# Last edited 2/2/94 by David Harris
# Changed [n] to <n>

# Inputs in order
Inputorder reset s<2> s<l> s<0> carry zero neg f ir<7> ir<6> ir<5>

ir<4> ir<3> ir<2> ir<l> ir<0> regopin

# Product Terms:

add : ir<4>' * ir<3> * ir<2>' * ir<l>' * ir<0>' * reset' * f'
andw : ir<4>' * ir<3> * ir<2>' * ir<l>' * ir<0> * reset' * f'
notw : ir<4>' * ir<3> * ir<2> * ir<l>' * ir<0>' * reset' * f'

ir<4>' * ir<3> * ir<2> * ir<l>' *
: ir<4>' * ir<3> *
: ir<4>' * ir<3> *
: ir<4>' * ir<3> *
: ir<4>' * ir<3> *

: ir<4>' * ir<3>' *
: ir<4>' * ir<3>' *
: ir<4>' * ir<3>' *

: ir<4>' * ir<3>' *
: ir<4>' * ir<3>' *

: ir<4> * ir<3>' *
s<0>' * reset' * f'
: ir<4> * ir<3>' *
s<0> * reset' * f'
: ir<4> * ir<3>' *
s<0>' * reset' * f'

: ir<4> * ir<3>' *
s<0>' * reset' * f'
: ir<4> * ir<3>' *
s<0> * reset' * f'
: ir<4> * ir<3>' *
s<0>' * reset' * f'
: ir<4> * ir<3>' *
s<0> * reset' * f'
: ir<4> * ir<3>' *

ir<0> * reset' * f'
ir<2> * ir<l> * ir<0>' * reset' * f'
ir<2>' * ir<l> * ir<0> * reset' * f'
ir<2> * ir<l> * ir<0> * reset' * f'
ir<2>' * ir<l> * ir<0>' * reset' * f'

ir<2>' * ir<l>' * ir<0>' * reset' * f'
ir<2>' * ir<l>' * ir<0> * reset' * f'
ir<2> * ir<l>' * ir<0>' * reset' * f'

ir<2>'
ir<2>'

ir<2>'

ir<2>'

ir<2>'

ir<2>'

ir<2>'

ir<2>'

ir<2>'

ir<2>'

* ir<l> * ir<0>' * reset' * f'
ir<l> * ir<0> *

ir<l>' * ir<0>'

ir<l>' * ir<0>'

ir<l1' * 4i<n0,
* ir<> * ir<0>

* ir<l> * ir<0>'

* ir<l> * ir<0>'

* ir<l> * ir<0>'

* ir<l> * ir<0>'

reset' * f'

* s<2>' * s<l>' *

* s<2>' * s<l>' *

* s<2>' * s<1> *

* s<2>' * s<1>' *

* s<2>' * s<1>' *

* s<2>' * s<l> *

* s<2>' * s<1> *

" s<2> * s<1>' *
s<0>' * reset' * f'

# bra3 with neg':
bra3wnn : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<0>' * s<2>' * s<l> *

s<0> * reset' * f' * neg'

calO : ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<0> * s<2>' * s<l>' *
s<0>' * reset' * f'

call : ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<0> * s<2>' * s<l>' *
s<0> * reset' * f'

cal2 : ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<0> * s<2>' * s<l> *
s<0>' * reset' * f'

shr
ror
put
get
tst

Ida
Idi
Idm

sta
sti

jmp0

jmpl

jmp2

bra0

bral

bra2

bra3

bra4
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cal3 ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<O> * s<2>' * s<l> *
s<O> * reset' * f'

cal4 : ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<O> * s<2> * s<l>' *
s<0>' * reset' * f'

cal5 : ir<4> * ir<3>' * ir<2>' * ir<l>' * ir<O> * s<2> * s<l>' *
s<O> * reset' * f'

ret0 : ir<4> * ir<3>' * ir<2> * ir<l>' * ir<O>' * s<2>' * s<l>' *
s<0>' * reset' * f'

retl : ir<4> * ir<3>' * ir<2> * ir<l>' * ir<O>' * s<2>' * s<1>' *
s<O> * reset' * f'

skzO : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O> * s<2>' * s<l>' *
s<0>' * reset' * f'

skzl : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O> * s<2>' * s<1>' *
s<O> * reset' * f'

# These are skz's and zero:
skz0wz : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O> * s<2>' * s<1>' *

s<0>' * reset' * f' * zero
skzlwz : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O> * s<2>' * s<l>' *

s<O> * reset' * f' * zero
# This is skzl and zero':
skzlwnz : ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O> * s<2>' * s<l>' *

s<O> * reset' * f' * zero'

# A product term for the regop term
regopinp : regopin

# regopin is the fed-back regop:
r0rd : ir<7>' * ir<6>' * ir<5>' * regopin
rlrd : ir<7>' * ir<6>' * ir<5> * regopin
r2rd ir<7>' * ir<6> * ir<5>' * regopin
r3rd ir<7>' * ir<6> * ir<5> * regopin
r4rd : ir<7> * ir<6>' * ir<5>' * regopin
r5rd : ir<7> * ir<6>' * ir<5> * regopin
r6rd ir<7> * ir<6> * ir<5>' * regopin
r7rd : ir<7> * ir<6> * ir<5> * regopin

# These are put anded with the particular register select:
r0wr : ir<7>' * ir<6>' * ir<5>' * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
rlwr : ir<7>' * ir<6>' * ir<5> * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r2wr : ir<7>' * ir<6> * ir<5>' * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r3wr : ir<7>' * ir<6> * ir<5> * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r4wr : ir<7> * ir<6>' * ir<5>' * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r5wr : ir<7> * ir<6>' * ir<5> * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r6wr : ir<7> * ir<6> * ir<5>' * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'
r7wr : ir<7> * ir<6> * ir<5> * ir<4>' * ir<3> * ir<2>' * ir<l> *

ir<O> * reset' * f'

# These are reset terms, so they will not be repeated.
resetp : reset
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# Product term for f
fp f

frst f * reset'

# Outputs in order:
regop = add + andw + get + tst
newf = resetp + add + andw + notw + shr + ror + put + get + tst +

Ida + Idi + idm + sta + sti + jmp2 + bra4 + skzl + cal5 + retl
clrs = resetp + add + andw + notw + shr + ror + put + get + tst +

Ida + Idi + Idm + sta + sti + jmp2 + bra4 + skzl + cal5 + retl + fp
latchcarry = add + bral
latchneg = bral

reg_rd<3> = r3rd
regwr<3> = r3wr
reg_wr<2> = r2wr
reg_rd<2> = r2rd
reg_rd<l> = r1rd + retl + cal3
regwr<l> = rlwr + call + cal4
regwr<O> = rOwr + cal2
regrd<O> = rOrd + retO

pcma_rd<l> = r5rd + bra3 + cal4
pcma_inl<2> = resetp + r5wr + jmp2 + bra4 + cal5 + retl
pcma_rd<3> = r7rd
pcma_in2<6> = r7wr
pcma_rd<O> = r4rd + bral + cal2
pcma_inl<O> = resetp + r4wr + jmpl +bra2 + cal3 + retO
pcma_inl<l> = frst + Idm + skzOwz + skzlwz + jmpO + calO + call
pcma_select = Ida + Idi + sta + sti
pcma_rd<2> = r6rd
pcma_in2<4> = r6wr
pcma_in2<5> = Idi + sti

alu_bus_en = resetp + put + sta + sti + jmp2 + bra2 + bra4 + cal5
Idtmp = jmp0 + braO + bral + bra3 + calO
Idacc = Idm + regopinp + notw + shr + ror + get + Ida + Idi + tst
xsel<l> = jmp2 + bral + bra2 + bra4 + cal5
xsel<2> = resetp + Idm + get + Ida + Idi + jmpO + jmpl + braO +

bra3wnn + calO
xsel<3> = ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O>' * s<2>' * s<l> *

s<O> * reset' * f' * neg
ysel = put + sta + sti + jmp2 + skzO + skzl + cal5 + resetp + bra2 +

bra4
cin = ir<4> * ir<3>' * ir<2>' * ir<l> * ir<O>' * s<2>' * s<l> * s<O> *

reset' * f' * carry
rollflag = ror
zsel<l> = andw
zsel<2> = notw
zsel<3> = shr + ror
zsel<4> = tst

Idop = fp
bus_in = frst + Idm + Ida + Idi + skzlwnz + jmpO + jmpl + braO +

calO + call
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store = sta + sti



260 Appendix C: Sexium Design Files

HSPICE Simulations

This section contains several HSPICE runs verifying the PLA and I/O pad cells. All rise

and fall times are approximate because they neglect parasitic capacitances and resistances

which were not available in the HSPICE model.
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PLA Simulation

The critical limitations on the PLA are that it draw low enough current to avoid
electromigration in the power rails and that internal voltages drop below the threshold of
a subsequent NMOS transistor. Also, no schematic of the PLA was available, so the
HSPICE simulation was used to verify proper PLA operation. The following simulation

shows that the control PLA functions correctly.

Hold most inputs at 0
Toggle bit 3 of IR high
This should simulate ADD RO

First add product line goes high
Then regop outputs goes high
This causes reg0rd product line to go high
This causes reg_rd0 to go high

When IR3 goes back low, process should reverse

* add doesn't get labeled in PLA
* thus if the control_pla is renetlisted, add must
* be searched for and replaced

VDD vdd gnd 5

* Inputs

ViO irO gnd 0
Vil irl gnd 0
Vi2 ir2 gnd 0
Vi3 ir3 gnd PULSE(0 5 10ns Ins ins 20ns 40ns)
Vi4 ir4 gnd 0
Vi5 ir5 gnd 0
Vi6 ir6 gnd 0
Vi7 ir7 gnd 0
Vs0 sO gnd 0
Vsl sl gnd 0
Vs2 s2 gnd 0
Vf f gnd 0
Vcarry carry gnd 0
Vneg neg gnd 0
Vreset reset gnd 0
Vzero zero gnd 0

Rloop regop regopin 10
Runused unused gnd 1M

* Feedback from regop to regopin
* Don't let unused node float

* Simulation

.options post

.tran .In 48n

.plot v(ir3)

.plot v(add)

.plot v(regop)

.plot v(r0rd)

.plot v(regrd0)
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I/O Pad Simulation

The I/O pads were provided by MOSIS in CIF format and had to be read into Cadence
and manually patched. Therefore, a simulation of the pads was run to verify proper
behavior and to estimate switching current.

* These lines are always used
VDD padvdd padgnd 5
VGND padgnd gnd 0
Cload inunbuffered padgnd 10pF
Cchip in padgnd ipF
.options post

* These lines simulate data coming in an input pad
*Rbogus out padgnd 1G
*Vpad inunbuffered padgnd PULSE(0 5 10ns ins ins 10ns 25ns)
*Venable enable padgnd 0
*.tran .lns 25ns
* .plot v(inunbuffered)
*.plot v(in)

* These lines simulate data being driven out an output pad
Vin out padgnd PULSE (0 5 25ns ins ins 25ns 50ns)
Venable enable padgnd 5
.tran .ins 75ns
.plot v(out)
.plot v(inunbuffered)
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Appendix D: Tools

This appendix contains code for the various tools developed on the Sexium project,
including msim, the regression suite, and the PLA generator. It also describes the
organization of the 6090user directory containing these and other useful files.
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Locating tools on-line

The files related to the Sexium project are all located in the /home/cva2/6090user
directory. This directory is located on impulse.ai.mit.edu; it was moved there after kiwi's

large disk crashed. The contents of the 6090user directory are as follows:

cif:
sexium.cif
frame.cif
template
ciftocadence
cadencetocif
howtoreadcif

control
control.pla

doc
setup_procedure
scribe
roster
project
plotting*

dotfiles
hspice

libs
examples
frame
stdcells
unintel
omv

model
sexium.v
prog.obj
runv

mosis
fabschedule
pads.doc
price
submission

newproject
submit
fabricate

techfiles
mosis2n.tf

tools
msim

msim.c
opcodes.h
regress.asm
fib.asm

CIF files and utilities
the final chip, as sent to MOSIS
the MOSIS pad frame
a template with parameters for producing CIF output
a layer mapping file for reading CIF files
a layer mapping file for writing CIF
documentation on reading CIF
Control PLA
control logic equations fed to PLA generator
Miscellaneous documentation
steps to create Sexium project and technology files
notes on being a scribe
the class roster
Professor Dally's original project description
notes on using the Building 39 and 7AI plotters
Cadence dotfiles for Sexium project
HSPICE simulations

Sexium project libraries
various examples from class
MOSIS pad frame (10x too small, use unintel pads instead)
student-generated standard cell library
sexium microprocessor
class assignments of Dan Hartman (as an example)
Verilog model of Sexium
the model
inital memory contents to run regression; created by msim
type runv sexium.v to run simulation
MOSIS-related files
schedule of 1993-1994 fabrication dates
MOSIS' padframe documentation
price list

request to create new project
request to submit CIF file
request to fabricate chip
Sexium technology files
compile this techfile; it sources all others
Tools created for project

source code for MSIM simulator
include file for MSIM simulator
regression suite for Sexium architecture
compute fib. numbers
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skill

pla

sum.asm

makelvsview
fmd.il
grow.il

plagen.il
adder.pla
coke.pla

verilog
sexium

runver
omv
ragin

example of 16 bit addition

create LVS view of cell from extracted view
find off-grid rectangles and fix them
expand cells by factor of 2 (change to 10 to fix CIF)

the PLA generator program
full-adder equations
coke machine equations
Verilog simulations
Run directory for verilog simulation of Sexium
run this to execute simulation
Dan Hartman's user account
Ruben Agin's user account

The session configuration information for the project is located in:

/cds/local/skill/projects/SEXIUM

The mosis2n library with rudimentary HSPICE models is located in:

/cds/local/lib/libs
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msim

/* sim.c */

/* Written by David Harris

This is the Sexium simulator, created for
the 6.008 Intro to VLSI class during IAP 1994.

Version 1.0: 1/2/94

Conventions:
Case insensitive
labels sensitive to 24 characters
numbers in hex, start with $
LOADIMM must use constant, not label

In addition to the MAYBE NOT instructions, the
simulator supports the BRK (break) instruction
for debugging, etc.

*/

/* #includes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <time.h>

#include "opcodes.h"

/* Constants */

#define MAXOPS 65536
#define MAXLABELS 256
#define MAXLABELLEN 25

#define UNDEFINED -1

#define TRUE 1
#define FALSE 0

/* Types */

typedef unsigned char BOOL;
typedef unsigned char BYTE;
typedef struct label {

char name[MAXLABELLEN];
int value;

} label;

typedef struct patch
int
int
BYTE

labelNum;
progAddr;
bytes;
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struct patch *next;
} patch;

/* Assembler Globals */

char inputFName[80];
int numLines;
int numLabels;
int numOps;
clock_t startTime;
BYTE prog[MAXOPS];
label labelLib[MAXLABELS];
patch *patchList,*patchCur;

/* Simulator Globals */

BYTE registers[10] ;
long count;
BOOL breakFlag;
int breakPoint;
BYTE oldBreakValue;

/* Prototypes */

void assembleFile(void);
void processLine(char*);
BOOL isLabelDef(char*);
int addLabel(char*,BOOL);
BYTE isOp(char*);
void addOp(BYTE,char*);
void addSimpleOp(BYTE,char*);
void addRegOp(BYTE,char*);
void addByteOp(BYTE,char*,int);
void insertNum(char*, int);
void makeLabelPatch(char*,int);
void patchLabels(void);
void displayStats (void);

void simulateCode(void);
void resetSimulation(void);
void dumpRegisters(void);
int disassemble(int);
int labelFromAddr(int);
void makeSimpleOp(BYTE);
void makeRegOp(BYTE);
void makeByteOp(BYTE,int);
void makeNumber(BYTE);
void runSimulation(BOOL);
void doStep(void);
BYTE getMem(BYTE, int);
void putMem(BYTE);
void increment(BYTE,int);
BYTE testConditions(BYTE,BYTE);
void doMemory(void);
void disassenbleMemory(void);
void readMemory(void);
void writeMemory(void);
void doBreakpoint(void);
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/* Main */

void main(int argc, char *argv[])
{

/* On Mac, prompt for file to compile. Otherwise use command line */

#ifdef THINK_C
printf ("Assembly file: ");
scanf ("%s",inputFName);

#else
if (argc != 2) {

fprintf (stderr,"Usage: %s assembly_file.\n",argv[O]);
exit (1) ;

}
else strcpy(inputFName,argv[1]);

#endif

assembleFile();
simulateCode();

/* Functions */

void assembleFile()
{

FILE *fptr;
char line[255];
int i;

/* Open assemlby file */
strcpy(line,inputFName);
strcat(line,".asm");
if ((fptr = fopen(line,"r")) == NULL) {

fprintf (stderr,"Can't open assembly file %s.\n",line);
exit () ;

/* Read and assemble */
startTime = clock();
numLines = 0; numLabels = 0; numOps = 0; patchList = NULL;
patchCur = NULL;
for (i=0; i<MAXOPS; i++) prog[i] = 0;
while (fgets(line,255,fptr) != NULL) {

numLines++;
processLine(line);

fclose(fptr);

patchLabels();
displayStats();

void processLine(char *line)
{

int i;
char token[80];
BYTE code;
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/* Ignore from # sign (comment) to end of line */
for (i=0; line[i] != 0;) {

if (line[i] == '#') line[i] = 0;
else i++;

/* Make line uppercase */
for (i=0; line[i] != 0; i++) {

line[i] = toupper(line[i]);

/* Get token and process */
if (sscanf (line,"%s",token) == EOF) token[0] = 0;
if (token[0]) {

if (isLabelDef(token)) addLabel(token,TRUE);
else if ((code = isOp(token)) != BADOP) addop(code,line);
else {

fprintf (stderr,"Error: undefined token.\n '%s' in line %d.\n",
token,numLines);

exit(l);

BOOL isLabelDef(char *token)
{

return (token[strlen(token)-l] == ':');

int addLabel(char *token, BOOL isDefinition)
{

int i;
int found = -1;
char tmp[80];

/* Check that nothing follows the label definition */
if (sscanf(token,"%*s %s",tmp) != EOF) {

fprintf (stderr,
"Error: label definition not on line by itself: line %d.\n",
numLines);

exit(l);

/* Strip : off of label definition */
if (isDefinition)

token[strlen(token)-1] = 0;

/* See if label is already in library */
for (i=0; i<numLabels; i++)

if (strcmp(token,labelLib[i].name) == 0) {
if (isDefinition && labelLib[i].value != UNDEFINED) {

fprintf (stderr,
"Error: label %s defined in both lines %d and %d.\n",
token,numLines,labelLib[i].value);

exit (1);

else found = i;
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/* If label was already used but not defined, define its value */
if (found != -1) {

if (isDefinition) labelLib[found].value = numOps;
return found;

/* Otherwise add new label to library */
else {

if (numLabels >= MAXLABELS) {
fprintf (stderr,"Error: more than %d labels defined (line %d).\n",

MAXLABELS, numLines) ;
exit(l) ;

strcpy(labelLib[numLabels].name,token);
if (isDefinition) labelLib[numLabels].value = numOps;
else labelLib[numLabels].value = UNDEFINED;
return numLabels++;

BYTE isOp(char *token)

if (strcmp(token,"LDA") == 0) return _LDA;
else if (strcmp(token,"LDI") == 0) return _LDI;
else if (strcmp(token,"LDM") == 0) return _LDM;
else if (strcmp(token,"STA") == 0) return _STA;
else if (strcmp(token,"STI") == 0) return _STI;
else if (strcmp(token,"ADD") == 0) return _ADD;
else if (strcmp(token,"AND") == 0) return _AND;
else if (strcmp(token,"NOT") == 0) return _NOT;
else if (strcmp(token,"TST") == 0) return _TST;
else if (strcmp(token,"SHR") == 0) return _SHR;
else if (strcmp(token,"ROR") == 0) return _ROR;
else if (strcmp(token,"PUT") == 0) return _PUT;
else if (strcmp(token,"GET") == 0) return _GET;
else if (strcmp(token,"JMP") == 0) return _JMP;
else if (strcmp(token,"BRA") == 0) return _BRA;
else if (strcmp(token,"SKZ") == 0) return _SKZ;
else if (strcmp(token,"CAL") == 0) return _CAL;
else if (strcmp(token,"RET") == 0) return _RET;
else if (strcmp(token,"BRK") == 0) return _BRK;
else return BADOP;

void addOp(BYTE code, char *line)
{

switch (code) {
/* opcodes that require no extra info */
case _LDA:
case _LDI:
case _STA:
case _STI:
case _NOT:
case _SHR:
case _ROR:
case _SKZ:
case _RET:

BYTE 

isOp(char 

*token)
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case _BRK: addSimpleOp(code,line); break;

/* opcodes requiring a register name */
case _ADD:
case _AND:
case _TST:
case _GET:
case _PUT: addRegOp(code,line); break;

/* opcodes that require one subsequent byte */
case _LDM:
case _BRA: addByteOp(code,line,1); break;

/* opcodes that require two subsequent bytes */
case _JMP:
case _CAL: addByteOp(code, line, 2); break;
default: fprintf (stderr,

"Error: Bad Operation Code %d in line %d.\n",
code,numLines);

exit () ;
}

}

void addSimpleOp(BYTE code,char *line)
{

char tmp[80];

if (numOps >= MAXOPS) {
fprintf (stderr, "Error: Program too long: line %d.\n",numLines);
exit(l) ;

if (sscanf(line,"%*s %s",tmp) != EOF) {
fprintf (stderr,"Error: garbage follows operand: line %d.\n",

numLines) ;
exit() ;

}
prog(numOps++] = code;

void addRegOp(BYTE code,char *line)
{

char reg[80],tmp[80];
BYTE regCode;

if (numops >= MAXOPS) {
fprintf (stderr, "Error: Program too long: line %d.\n",numLines);
exit () ;

if (sscanf(line,"%*s %s %s",reg,tmp) != 1) {
fprintf (stderr, "Error: Register name required: line %d.\n",numLines);
exit () ;

I
if (strcmp(reg,"RO") == 0) regCode = _R0;
else if (strcmp(reg,"Rl") == 0) regCode = _R1;
else if (strcmp(reg,"R2") == 0) regCode = _R2;
else if (strcmp(reg,"R3") == 0) regCode = _R3;
else if (strcmp(reg,"MAL") == 0) regCode = _MAL;
else if (strcmp(reg,"MAH") == 0) regCode = _MAH;
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else if (strcmp(reg,"PCL") == 0) regCode = _PCL;
else if (strcmp(reg,"PCH") == 0) regCode = _PCH;
else {

fprintf (stderr,"Error: Register name required: line %d.\n",numLines);
exit(l);

prog[numOps++] = code I regCode<<5;

void addByteOp(BYTE code,char *line,int bytes)

char next[80],tmp[80];

if (numOps >= MAXOPS-bytes) {
fprintf (stderr,"Error: Program too long: line %d.\n",numLines);
exit(l) ;

}
prog[numOps++] = code;
if (sscanf(line,"%*s %s %s",next,tmp) != 1) {

fprintf (stderr,"Error: Byte or label required: line %d.\n",numLines);
exit() ;

if (next[O] == '$') insertNum(next,bytes);
else {

if (code == _LEM) {
fprintf (stderr,"Error: LDM requires byte: line %d.\n",numLines);
exit () ;

makeLabelPatch(next, bytes);
numOps+= bytes;

void insertNum(char *next,int bytes)
{

unsigned long num;

if (sscanf(next+l,"%lx",&num) != 1) {
fprintf (stderr,"Error: hexadecimal number expected: line %d.\n",

numLines) ;
exit(l) ;

}
if (bytes == 1) (

if (num > 255) {
fprintf (stderr,"Error: number out of range ($00-$FF): line %d.\n"

,numLines);
exit(1);

prog[numOps++] = num;

else if (bytes == 2) {
if (num > 65535) {

fprintf (stderr,
"Error: number out of range ($00-$FFFF): line %d.\n",
numLines);

exit () ;

prog[numOps++] = num / 256;



276 Appendix D: Tools

prog[numOps++] = num % 256;

void makeLabelPatch(char *next, int bytes)
{

int labelNum;
patch *cur;

labelNum = addLabel(next,FALSE);

/* Maintain linked list of labels that must be patched */

cur = (patch*)malloc(sizeof(patch));
cur->labelNum = labelNum;
cur->progAddr = numOps;
cur->bytes = bytes;
cur->next = NULL;

if (patchList == NULL) {
patchList = cur;
patchCur = patchList;

else {
patchCur->next = cur;
patchCur = cur;

void patchLabels(void)
{

int value;
patch *tmp;

patchCur = patchList;
while (patchCur != NULL) {

value = labelLib[patchCur->labelNum] .value;
if (value == UNDEFINED) {

fprintf (stderr,"Error: label %s referenced but never defined.\n",
labelLib[patchCur->labelNum] .name);

exit(l);

if (patchCur->bytes == 1) { /* Compute offset */
value = value-patchCur->progAddr;
if (value < -128 11 value > 127) {

fprintf (stderr,
"Error: offset to %s out of range (-128 to 127).\n",
labelLib[patchCur->labelNum] .name);

exit() ;

prog[patchCur->progAddr] = value;

else { /* two byte patch */
prog[patchCur->progAddr] = value / 256;
prog[patchCur->progAddr+l] = value % 256;

tmp = patchCur;
patchCur = patchCur->next;
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free(tmp);

void displayStats(void)
{

int i;
FILE *fptr;
char fName[80 ];

printf ("Assembly successful!\n");
printf (" Source: %d lines, %d labels\n",numLines,numLabels);
printf (" Object: $%X bytes\n",numOps);

/* printf (" Time elapsed: %2.2f\n", (float)(clock()-startTime)/
CLOCKS_PERSEC); */

/* CLOCKS_PER_SEC not defined on SPARC gcc at AI lab */

strcpy(fName,inputFName);
strcat(fName,".obj");
if ((fptr = fopen(fName,"w")) == NULL) {

fprintf (stderr,"Error: Unable to open output file %s.\n",fName);
exit(l) ;

)
for (i=0; i<numOps; i++) {

fprintf (fptr,"/* $%.4X */ %.2X\n",i,prog[i]);
I
fclose(fptr);

strcpy(fName,inputFName);
strcat(fName,".lib");
if ((fptr = fopen(fName,"w")) == NULL) {

fprintf (stderr,"Error: Unable to open output file %s.\n",fName);
exit () ;

for (i=0; i<numLabels; i++) {
fprintf (fptr,"%.4d: %20s $%.4X\n",i,labelLib[i].name,

labelLib[i].value);

fclose(fptr);

void simulateCode(void)
{

char cmd;

breakPoint = UNDEFINED;
resetSimulation();
do {

printf (
"\n[G]o [T]race [S]tep [M]emory [B]reakpoint [R]eset [Q]uit: ");
do {

cmd = getchar();
I while (cmd == '\r' I1 cmd == '\n');
cmd = toupper(cmd);
switch (cmd) {

case 'G': runSimulation(FALSE); break;
case 'T': runSimulation(TRUE); break;
case 'S': doStep(); dumpRegisters(); break;
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case 'M': doMemory(); break;
case 'B': doBreakpoint(); break;
case 'R': resetSimulation(); break;

}
} while (cmd != 'Q');

void resetSimulation (void)
{

int i;

for (i=O; i<10; i++)
registers[i] = 0;

count = 0;
printf ("Simulator reset. \n");

void dumpRegisters (void)
{

printf ("A : %.2X RO : %.2X R1 : %.2X R2 : %.2X R3 : %.2X\n",
registers[_ACC],registers[_RO],registers[_R1],registers[ _R2],

registers[_R3]);
printf ("PCH: %.2X PCL: %.2X MAH: %.2X MAL: %.2X Count: %ld\n",

registers[_PCH],registers[_ PCL],registers[ MAH],registers[_MAL],count);
printf ("Current instruction: ");
disassemble(registers[_PCH]*256+registers [_PCL]);

int disassemble(int addr)
{

BYTE op;
int labelNum;

printf ("$%.4X: ",addr);
if ((labelNum = labelFromAddr(addr)) != UNDEFINED)

printf ("%10s ",labelLib[labelNum].name);
else printf (" ");

if (addr >= numOps) {
printf ("*** End of Program\n");
return 1;

}

op = prog[addr];

switch (op & Ox1F) {
case _LDA:
case _LDI:
case _STA:
case _STI:
case _NOT:
case _SHR:
case _ROR:
case _SKZ:
case _RET:
case _BRK: if (op == (op & OxlF)) makeSimpleOp(op);

else makeNumber(op);
return 1;



Appendix D: Tools 279

case _ADD:
case AND:
case _TST:
case _GET:
case _PUT:

case _LDM:
case _BRA:

case _JMP:
case _CAL:

makeRegOp (op);
return 1;

if (op == (op & OxlF)) {
makeByteOp (op, addr);
return 2;

else {
makeNumber (op) ;
return 1;

if (op == (op & OxlF)) {
makeByteOp( op,addr);
return 3;

else (
makeNumber (op) ;
return 1;

)
default: makeNumber(op); return 1;

int labelFromAddr(int addr)
{

int' i;

for (i=O; i<numLabels; i++)
if (labelLib[i].value == addr) return i;

return UNDEFINED;

void makeSimpleOp(BYTE code)

switch(code) {
case _LDA:
case _LDI:
case _STA:
case _STI:
case _NOT:
case SHR:
case _ROR:
case _SKZ:
case _RET:
case _BRK:

I

printf
printf
printf
printf
printf
printf
printf
printf
printf
printf

("LDA\n");
("LDI\n");
("STA\n");
("STI\n");
("NOT\n");
("SHR\n");
("ROR\n");
("SKZ\n");
("RET\n");
("BRK\n");

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;

void makeRegOp(BYTE code)

switch(code & OxlF) {
case _ADD: printf
case _AND: printf

("ADD "); break;
("AND "); break;
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case _TST: printf ("TST "); break;
case _PUT: printf ("PUT "); break;
case _GET: printf ("GET "); break;

}
switch(code>>5) {

case _RO: printf ("RO\n"); breek;
case _R1: printf ("Rl\n"); break;
case _R2: printf ("R2\n"); break;
case _R3: printf ("R3\n"); break;
case _PCH: printf ("PCH\n" ); break;
case _PCL: printf ("PCL\n"); break;
case _MAH: printf ("MAH\n"); break;
case _MAL: printf ("MAL\n"); break;

void makeByteOp(BYTE code,int addr)
{

int labelNum;

switch (code) {
case _LDM: printf ("LDM $%.2X\n",prog[addr+1]); break;
case _BRA: printf ("BRA $%.2X = $%.4X",prog[addr+1],

addr+l+prog[addr+1] -256* (prog[addr+l] > 127));
if ((labelNum = labelFromAddr
(addr+l+prog[addr+l]-256*(prog[addr+l] > 127))) !=
UNDEFINED)

printf (" = %s\n",labelLib[labelNum] .name);
else printf ("\n");

break;
case _JMP: printf ("JMP $%.4X",prog[addr+l]*256+prog[addr+2]);

if ((labelNum = labelFromAddr(prog[addr+l]*256+
prog[addr+21)) != UNDEFINED)

printf (" = %s\n",labelLib(labelNum].name);
else printf ("\n");

break;
case _CAL: printf ("CAL $%.4X",prog[addr+1] *256+prog[addr+2]);

if ((labelNum = labelFromAddr(prog[addr+1]*256+
prog[addr+2])) != UNDEFINED)

printf (" = %s\n",labelLib[labelNum] .name);
else printf ("\n");

break;

void makeNumber(BYTE code)
{

printf ("$%.2X\n",code);

void runSimulation(BOOL traceFlag)
{

breakFlag = FALSE;

do {
if (traceFlag) dumpRegisters();
doStep() ;

I while (breakFlag == FALSE);
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dumpRegisters ();

void doStep(void)
{

BOOL bumpPC;
BYTE tmp,op;
int offset;
long addr;

count++;
bumpPC = TRUE;
op = getMem(_PCH,0);
switch (op & Ox1F) {

case _LDA: registers[_ACC] = getMem(_MAH,O); break;
case _LDI: registers[_ACC] = getMem(_MAH,O); increment(_MAH,l)
case _LDM: registers[_ACC] = getMem(_PCH,1); increment(_PCH,1)
case _STA: putMem(registers[_ACC]); break;
case _STI: putMem(registers[_ACC]); increment(_MAH,1); break;
case _ADD: registers[_ACC] += registers[op >> 5]; break;
case _AND: registers[_ACC] = registers[_ACC] & registers[op >>
break;

; break;
; break;

5];

case _NOT: registers[_ACC] = -registers[_ACC]; break;
case _TST: registers[_ACC] = testConditions(registers[_ACC],

registers[op >> 5]); break;
case _SHR: registers[_ACC] = registers[_ACC]>>1; break;
case _ROR: registers[_ACC] = (registers[_ACC]>>1) +
128 * (registers[_ACC] % 2); break;
case _PUT: registers[op >> 5] = registers[_ACC]; break;
case _GET: registers[_ACC] = registers[op >> 5]; break;
case _CAL: registers[_RO] = registers[_PCH] +
((int)registers[_PCL] +2) / 256;

registers[_R1] = ((int)registers[_PCL] + 2) % 256;
case _JMP: tmp = getMem(_PCH,1); registers[_PCL] = getMem(_PCH,2);

registers[_PCH] = tmp; bumpPC = FALSE; break;
case _BRA: addr = registers[_PCL] + 256 * registers[_PCH];

offset = getMem(_PCH,1);
if (offset > 127) offset -= 256;
addr += offset+l; bumpPC = FALSE;
registers[_PCL] = addr % 256; registers[_PCH] =

addr / 256; break;
case _SKZ: if (registers[_ACC] == 0) increment(_PCH,2); break;
case _RET: registers[_PCH] = registers[_RO];

registers[_PCL] = registers[_Rl]; break;
case _BRK: breakFlag = TRUE;

if (registers[_PCL] + 256 * registers[_PCH] == breakPoint) {
bumpPC = FALSE;
printf ("*** Hit User Breakpoint\n");

default:
breakFlag

break;
printf ("*** Bad opcode $.2X encountered.\n",op);
= TRUE; break;

if (bumpPC) increment(_PCH,1);

BYTE getMem(BYTE reg,int offset){
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int addr;

if (reg == _MAH) {
addr = registers[_MAL] + 256 * registers[_MAH] + offset;
if (addr > MAXOPS) {

printf ("*** Tried to access illegal memory address %.4X\n",addr);
breakFlag = TRUE;
return 0;

}
return prog[addr];

}
else if (reg == PCH) (

addr = registers[_PCL] + 256 * registers[_PCH] +offset;
if (addr >= numOps) {

printf ("*** Tried to access past end of program address %.4X\n",
addr);

breakFlag = TRUE;
return 0;

}
return prog[addr];

}
else {

printf ("*** Illegal call to getMem in simulator.\n");
breakFlag = TRUE;

}

void putMem (BYTE what)
{

int addr;

addr = registers[_MAL] + 256 * registers[_MAH];
if (addr > MAXOPS) {

printf ("*** Tried to access illegal memory address %.4X\n",addr);
breakFlag = TRUE;

}
prog[addr] = what;

void increment(BYTE reg,int amount)
{

int addr;

if (reg == _MAH) addr = registers[_MAL] + 256 * registers[_MAH];
else if (reg == _PCH) addr = registers[_PCL] + 256*registers[_PCH];
addr += amount;
if (reg == _MAH) {

registers[_MAL] = addr % 256;
registers[_MAH] = addr / 256;

}
else if (reg == PCH) {

registers[_PCL] = addr % 256;
registers[_PCH] = addr / 256;

}
else {

printf ("*** Tried to increment an illegal register\n");
breakFlag = TRUE;
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BYTE testConditions(BYTE acc,BYTE reg)
{

BYTE tmp;
int sum;
int carry, zero;

sum = acc + reg;
carry = (int)acc + (int)reg > 255;
zero = sum%256 == 0;
/* Don't compute overflow */
tmp = carry + (zero << 1);
return tmp;

void doMemory(void)
{

char cmd;

do {
printf ("\n[D]isassemble [R]ead [W]rite: ");
do {

cmd = getchar();
} while (cmd == '\r' I cmd == '\n');
cmd = toupper(cmd);
switch (cmd) {

case 'D': disassembleMemory(); break;
case 'R': readMemory(); break;
case 'W': writeMemory(); break;

} while (acmd != 'D' && cmd != 'R' && cmd != 'W');

void disassembleMemory(void)
{

int start, bytes, count;

printf ("Enter starting address and number of bytes in hex: ");
scanf ("%x %x",&start,&bytes);
if (start < 0 II start >= numOps)
printf ("*** Starting address out of range.\n");

else if (bytes < 0 II bytes > numOps-start)
printf ("*** Too many bytes specified.\n");

else {
count = 0;
while (count < bytes)

count += disassemble(start+count);
}

void readMemory(void)
{

int start, bytes, count;

printf ("Enter starting address and number of bytes in hex: ");
scanf ("%x %x", &start, &bytes);
if (start < 0 11 start >= MAXOPS)
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printf (."*** Starting address out of range.\n");
else if (bytes < 0 II bytes > MAXOPS-start)

printf ("*** Too many bytes specified.\n");
else {

printf ("$%.4X: ",start);
count = 0;
while (count < bytes) {

if ((start+count) % 8 == 0 && count > 0)
printf ("\n$%.4X: ",start+count);

printf ("%.2X ",prog[start+count++]);
}
printf ("\n");

void writeMemory (void)
{

int addr, data;

printf ("Enter address in hex you wish to write: ");
scanf ("%x",&addr);
if (addr < 0 II addr >= MAXOPS)
printf ("*** Address out of range (0-%X).\n",MAXOPS);

else (
printf ("Address $%.4X used to have $%.2X. New value: ",

addr,prog[addr]);
scanf ("%x",&data);
if (data < 0 11 data >= MAXOPS)
printf ("*** Data out of range (0-255).\n");
else prog[addr] = data;

}

void doBreakpoint(void)
{

int addr;

printf ("Enter address in hex to set breakpoint (-1 to remove): ");
scanf ("%x",&addr);
if (addr < -1 I1 addr > numOps)
printf ("*** Address out of range (-1 to %X).\n",numOps);

else {
if (breakPoint != UNDEFINED) {

prog[breakPoint] = oldBreakValue;
printf ("Removed old breakpoint from $%4X.\n",breakPoint);

}
if (addr != UNDEFINED) {

breakPoint = addr;
oldBreakValue = prog[breakPoint];
prog[breakPoint] = _BRK;

}
}
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regress.asm

# MAYBE NOT regression test
# Written 1/2/94 by David Harris

LDMO:
LDM $01
SKZ
BRA LDM1
BRK

LDM1:
LDM $00
SKZ
BRK
BRK

LDAO:
LDM $81
PUT MAH
LDM $FE
PUT MAL
LDM $42
STA
LDM $FF
PUT MAL
LDM $43
STA
LDM $00
PUT MAL
LDM $82
PUT MAH
LDM $44
STA
LDM $C3
PUT MAH
STA
LDM $81
PUT MAH
LDM $FE
PUT MAL
LDA
PUT RO
LDM $BE
TST RO
PUT RO
LDM $02
AND RO
SKZ
BRA LDIO
BRK

LDIO:
LDI
LDI
PUT R1
LDM $BE
TST R1
PUT R1
LDM $FA

test the LDM instruction
load a 1

# load a 0

# test the LDA instruction
# Set up $81FE-$8100 with data $42 - $44

# Try storing something in bank 3

# Read back contents of $81FE

# And check if it is $42
# $BE = -$42

# Mask off Z bit

# Read successfully

# Test LDI instruction
# Read $42 from $81FE
# Read $43 from $81FF
# And check that we didn't get 42 again

# Mask off all bits except C and V
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AND
SKZ
BRK
BRK
LDI
PUT R2
LDM $BC
TST R2
PUT R3
LDM $02
AND R3
SKZ

# Read $44 from $8200

# And check that we got it

# Mask off Z bisk

BRA STAO # Read the $44 successfully
BRK

STAO: # Check that STA works
LDM $0 # Put a 0 in $8201
STA
LDM
LDA
SKZ
BRK
BRK

STIO:
LDM $01
STI
STI
LDM $02
STI
LDM $01
PUT MAL
LDI
PUT RO
LDI
PUT R1
AND RO
SKZ
BRA STI1
BRK

STI1:
LDI
AND R1
SKZ
BRK
BRK

ADDO :
LDM
PUT

$AA # Then try reading it back

# Check that STI works

# Store 1 in $8101
# And in $8102

# Store 2 in $8103
# Now try reading back

# 1 from $8101 should be in RO

# 1 from $8102 should be in R1

# Load 2 from $8103

# Load a 1

ADD R2 # 1 + 1 = 2
SKZ
BRA ADD1

ADD1 :
PUT R2
ADD R2
PUT R3
ADD R3
PUT R1
ADD R1
PUT RO

#2+2=4

#4+4=8

#8+8=10
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RO
RO
RO
R1
$CO
R1
R2

# 10 + 10 = 20

# 20 + 20 = 40

# CO = -40

LDM $02
AND R2
SKZ
BRA ADD2
BRK

ADD2 :

$FF
R1
R1
R2

LDM
ADD
PUT
ADD
PUT
ADD
SKZ
BRK.
BRK

ANDO:
LDM
PUT
AND
PUT
LDM
ADD
SKZ
BRK
BRK
LDM
PUT
LDM
AND
SKZ
BRK
BRK

NOTO:
LDM $FF
NOT
SKZ
BRK
BRK
LDM $3:
NOT
SKZ
BRA SH
BRK

SHRO:
LDM $2
SHR
PUTR2
ADD R2
PUT R3
LDM $EO
TST R3

# 0 + 40 = 40

# 40 + 40 = 80

# 80 + 80 = 0

# Test AND instruction
# Calculate $FF & $FF

# Calculate $AA & $55

# Test NOT instruction
# Calculate -$FF

2 # Calculate -$32

RO0

0
# Test SHR instruction

# Calculate 20 >> 1

# EO = -20
# Should give test code $03

ADD
PUT
ADD
PUT
LDMI
TST
PUT

$AA
R3
$55
R3
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PUT RO
LDM $FD
ADD RO
SKZ
BRK
BRK
LDM $3
SHR
SKZ
BRA SHRI
BRK

SHR1 :
SHR
SKZ
BRK
BRK

RORO: # Test ROR instruction
LDM $1 # $1 ROR = $80
ROR
SKZ # Make sure we don't get 0 instead
BRA ROR1
BRK

ROR1 :
PUT R1
ADD R1
SKZ
BRK
BRK

PUTO: # Test PUT instruction
LDM $42 # Add 42 to two's complement of 42
PUT RO
NOT
PUT R1
LDM $1
ADD R1
ADD RO
SKZ
BRK
BRK

GETO:
LDM $73 # Test GET instruction
PUT R2
LDM $42
PUT RO
GET R2 # Reload the $73
NOT # Compute -$73
PUT R3
LDM $01
ADD R3
ADD R2 # Check -$73 + $73 = 0
SKZ
BRK
BRK

JMPO: # Test JMP instruction
JMP JMP2 # Forward jump
BRK

JMP1 :
JMP BRAO
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JMP1

BRA2

SKZO

BRAl

# Backward jump

# Test BRA instruction
# Forward branch

BRK
JMP2:

JMP
BRK

BRAO:
BRA
BRK

BRA1:
BRA
BRK

BRA2 :
BRA
BRK

SKZO:
LDM
SKZ
BRK
BRK
LIEM
SKZ
BRA
BRK

TSTO:
LDM
PUT
TST
PUT
LDM
ADD
SKZ
BRK
BRK
LDM
PUT
TST
PUT
LDM
ADD
SKZ
BRK
BRK
LDM
TST
PUT
LDM
ADD
SKZ
BRK
BRK
GET
TST
SKZ
BRK
BRK

CALLO :
CAL
PUT
LDM

# Test SKZ instruction
$0 # Skip

$1

TSTO

$0 # Test Z flag
R3
R3
R2
$FE
R2

$80 # Test Z and C flags together
R3
R3
R2
$FD
R2

$90 # Test C flag alone
R3
R1
$FF
R1

R1 # Test no flags
R1i

CALL1 # Test CAL instruction
R1
$D9 # Check return from right place

# Backward branch
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ADD R1
SKZ
BRK
BRK
BRA DONE

CALL2:
GET R3
PUT R1
GET R2
PUT RO
LDM $27
RET

CALL1:
GET
PUT
GET
PUT
CAL

DONE:
LDM
PUT
PUT
PUT
PUT
BRK

RO
R2
R1
R3
CALL2

# Return to CALLO, not CALL1

# Note that this happened

# Save return address in R2:R3

# Call another place

$FF
RO
R1
R2
R3
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plagen.il

/* plagen2.il */

/k Written 1/8/94 by David Harris

This program automatically generates PLAs from
sum of products form.

Test with command
(procedure (run) (load "/home/cva2/6090user/tools/pla/plagen.il")

(plagen "/home/cva2/6090user/tools/pla/test.pla" "unintel" "pla"))

Sorry this code is so messy; it's been a while since I've hacked LISP
and I know my string parsing is suboptimal.

*/

MAXINPUTS = 100
MAXPRODUCTS = 100
MAXOUTPUTS = 100

(defstruct intype name uninverted inverted)

/* Key data structures

This program creates three main data structures, each arrays.
outputs[i]: name of ith output
products[i]: list of product name, (list of outputs), (list of inputs & inv)
inputs[i]: name of ith input and need for inverted/uninverted

structure of type intype
*/

(procedure (initeqns)
/* Initialize data structures */
(declare inputs[MAXINPUTS])
(declare products[MAXPRODUCTS])
(declare outputs[MAXOUTPUTS])
numinputs = 0
numoutputs = 0
numproducts = 0
numlines = 0

(procedure (goodoutput name)
(for i 0 numoutputs-1

(if (strcmp name outputs[i]) == 0
(error "Output %s redefined: line %d"

name numlines)

(procedure (addoutput out)
(let ((str (instring out)))

(fscanf str "%s" name)
(if (goodoutput name) then
outputs[numoutputs] = name
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numoutputs = numoutputs + 1

(procedure (goodproduct name)
(for i 0 numproducts-1

(if (strcmp name (car products[il)) == 0
(error "Product %s redefined: line %d"

name numlines)

(procedure (addproductname out terms)
(let ((str (instring out))

(literals (parseString (car terms) " *\n")))
(fscanf str "%s" name)
(if (goodproduct name) then
products[numproducts] = (list name nil

(mapcar 'markinversion
literals))

(foreach inp (caddr products[numproducts])
(addinput inp))

numproducts = numproducts + 1

(procedure (markinversion name)
(let ((len (strlen name)))

(if (getchar name len) == (getchar "'" 1) then /* gross hack */
(list (substring name 1 len-1) 'inverted)
else
(list name 'uninverted)

(procedure (addinput inp)
found = nil
(for i 0 numinputs-1

(if (strcmp (car inp) inputs[i]->name) == 0 then
found = 't
(if (cadr inp) == 'uninverted
inputs[i]->inverted = 't
inputs[i]->uninverted = 't

(if (found == nil) then
(if (eq (cadr inp) 'uninverted)
inputs[numinputs] = (make_intype

?name (car inp) ?uninverted 't)
inputs[numinputs] = (make_intype

?name (car inp) ?inverted 't)

numinputs = numinputs + 1
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(procedure (findproductbyname term)
found = -1
(for i 0 numproducts-1

(if (equal term (car products[i]))
found = i)

(procedure (addterm term)
; strip spaces to get name
name = (buildString (parseString term " \n") "")
(findproductbyname name)
(if (found != -1) then
products[found] = (list (car products[found])

(cons numoutputs-1 (cadr products[found]))
(caddr products[found]))

else (reallyaddterm term))

(procedure (reallyaddterm term)
(let ((literals (parseString term " *\n")))
products[numproducts] = (list

(sprintf tmpstr "prod%d" numproducts)
(list numoutputs-l)
(mapcar 'markinversion literals))

(foreach inp (caddr products[numproducts])
(addinput inp))

numproducts = numproducts+l

(procedure (defineinputs inp)
found = nil
(for i 0 numinputs-1

(if (strcmp inp inputs[i]->name) == 0 then
found = 't

(if (found == nil) then
inputs[numinputs] = (make intype ?name inp)
numinputs = numinputs + 1

(procedure (addeqn line)
(let ((out (car (parseString line "=")))

(productdef (car (parseString line ":")))
(firstword (car (parseString line " ")))
(terms (cdr (parseString line "=+:"))))

(if (firstword == "inputorder") then
(foreach inp (cdr (parseString line " \n"))

(defineinputs inp))
else
(if (null (index line ":")) then
(addoutput out)
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(foreach term terms
(addterm term))

else
(addproductname productdef terms)

(procedure (rounduptoeven)
(if (mod numproducts 2) == 1 then

products[numproducts] = (list "unused" nil nil)
numproducts = numproducts + 1

(if (mod numoutputs 2) == 1 then
outputs[numoutputs] = "null"
numoutputs = numoutputs+1

(procedure (addbar name)
(let ((where (nindex name "<")))

(if where then
(strcat (substring name 1 where-1) "bar" (index name "<"))
else (strcat name "bar")))

(procedure (drawinputlines inp)
(dbCreateRect pla "poly" (list (list i*colwidthl+5 0)

(list i*colwidthl+7 height-6)))
(dbCreateLabel pla "labels" (list i*colwidthl+6 -11)

inputs[i]->name "centerCenter" "R90" "stick" 2)
(dbCreateRect pla "poly" (list (list i*colwidthl+13 0)

(list i*colwidthl+15 height-6)))
(dbCreateLabel pla "labels" (list i*colwidthl+14 -11)

(addbar inputs[i]->name) "centerCenter"
"R90" "stick" 2)

(dbCreateRect pla "ndiff" (list (list i*colwidthl+8 2)
(list i*colwidthl+12 height-8)))

(dbCreateRect pla "nselect" (list (list i*colwidthl+5 -1)
(list i*colwidthl+15 height-5)))

(procedure (drawandlines prod)
(dbCreateRect pla "metall"

(list (list 0 prod*rowheight*3+2)
(list widthl prod*rowheight*3+6)))

(if prod > 0
(dbCreateLabel pla "labels" (list -6 prod*rowheight*3+4)

(car products[prod*2])
"centerCenter" "RO" "stick" 2)

(dbCreateRect pla "metall"
(list (list 0 prod*rowheight*3+2+rowheight)

(list widthl prod*rowheight*3+6+rowheight)))
(dbCreateRect pla "nselect"

(list (list -2 prod*rowheight*3-1)
(list widthl prod*rowheight*3+9)))
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(dbCreateRect pla "metall"
(list (list 0 prod*rowheight*3+2+rowheight*2)

(list widthl prod*rowheight*3+6+rowheight*2)))
(dbCreateRect pla "nselect"

(list (list -2 prod*rowheight*3-1+rowheight*2)
(list widthl prod*rowheight*3+9+rowheight*2)))

(dbCreateLabel pla "labels" (list -6
prod*rowheight*3+4+rowheight*2)

(car products[prod*2+1])
"centerCenter" "RO" "stick" 2)

(for i 0 numinputs-1
(dbCreateRect pla "psub"

(list (list i*colwidthl+16
prod*rowheight*3+rowheight+2)

(list i*colwidthl+20
prod*rowheight*3+rowheight+6)))

(dbCreateRect pla "pselect"
(list (list i*colwidthl+15

prod*rowheight*3+rowheight+l)
(list i*colwidthl+21

prod*rowheight*3+rowheight+7)))
(dbCreateRect pla "cont_aa"

(list (list i*colwidthl+17
prod*rowheight*3+rowheight+3)

(list i*colwidthl+19
prod*rowheight*3+rowheight+5)))

(dbCreateRect pla "cont_aa"
(list (list i*colwidthl+9

prod*rowheight*3+rowheight+3)
(list i*colwidthl+ll

prod*rowheight*3+rowheight+5)))

(procedure (draworlines prod)
(dbCreateRect pla "poly"

(list (list widthl-4 prod*rowheight*3+2)
(list widthl prod*rowheight*3+6)))

(dbCreateRect pla "cont"
(list (list widthl-3 prod*rowheight*3+3)

(list widthl-1 prod*rowheight*3+5)))
(dbCreateRect pla "poly"

(list (list widthl prod*rowheight*3+3)
(list width2 prod*rowheight*3+5)))

(dbCreateRect pla "nselect"
(list (list widthl prod*rowheight*3+4)

(list width2 prod*rowheight*3-4)))
(dbCreateRect pla "poly"

(list (list widthl-4 prod*rowheight*3+2+rowheight*2)
(list widthl prod*rowheight*3+6+rowheight*2)))

(dbCreateRect pla "cont"
(list (list widthl-3 prod*rowheight*3+3+rowheight*2)

(list widthl-1 prod*rowheight*3+5+rowheight*2)))
(dbCreateRect pla "poly"

(list (list widthl prod*rowheight*3+3+rowheight*2)
(list width2 prod*rowheight*3+5+rowheight*2)))

(dbCreateRect pla "nselect"
(list (list widthl prod*rowheight*3+4+rowheight*2)
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(list width2 prod*rowheight*3+12+rowheight*2)))

(procedure (drawpullupsl prod)
vddpos = -23
(dbCreateRect pla "metall"

(list (list vddpos+6 prod*rowheight*3+10)
(list vddpos+12 prod*rowheight*3+14)))

(dbCreateRect pla "pselect"
(list (list vddpos+6 prod*rowheight*3)

(list vddpos+15 (prod+1)*rowheight*3)))
(dbCreateRect pla "pdiff"

(list (list vddpos+9 prod*rowheight*3+2)
(list vddpos+12 (prod+1)*rowheight*3-2)))

(dbCreateRect pla "pdiff"
(list (list vddpos+12 prod*rowheight*3+2)

(list vddpos+13 prod*rowheight*3+6)))
(dbCreateRect pla "pdiff"

(list (list vddpos+8 prod*rowheight*3+2+rowheight)
(list vddpos+9 prod*rowheight*3+6+rowheight)))

(dbCreateRect pla "pdiff"
(list (list vddpos+12

prod*rowheight*3+2+2*rowheight)
(list vddpos+13

prod*rowheight*3+6+2*rowheight)))
(dbCreateRect pla "cont_aa"

(list (list vddpos+10 prod*rowheight*3+3)
(list vddpos+12 prod*rowheight*3+5)))

(dbCreateRect pla "cont_aa"
(list (list vddpos+9

prod*rowheight*3+3+rowheight)
(list vddpos+ll1

prod*rowheight*3+5+rowheight)))
(dbCreateRect pla "cont_aa"

(list (list vddpos+10
prod*rowheight*3+3+2*rowheight)

(list vddpos+12
prod*rowheight*3+5+2*rowheight)))

(dbCreateRect pla "poly"
(list (list vddpos+15 prod*rowheight*3+7)

(list vddpos+19 prod*rowheight*3+17)))
(dbCreateRect pla "poly"

(list (list vddpos+7 prod*rowheight*3+7)
(list vddpos+16 prod*rowheight*3+9)))

(dbCreateRect pla "poly"
(list (list vddpos+7 prod*rowheight*3+15)

(list vddpos+16 prod*rowheight*3+17)))
(dbCreateRect pla "metall"

(list (list vddpos+9 prod*rowheight*3+2 )
(list 0 prod*rowheight*3+6)))

(dbCreateRect pla "metall"
(list (list vddpos+9 prod*rowheight*3+2+2*rowheight)

(list 0 prod*rowheight*3+6+2*rowheight)))
(dbCreateRect pla "metall"

(list (list vddpos+15 prod*rowheight*3+2+rowheight)
(list 0 prod*rowheight*3+6+rowheight)))

(dbCreateRect pla "cont"
(list (list vddpos+16 prod*rowheight*3+3+rowheight)
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(list vddpos+18 prod*rowheight*3+5+rowheight)))
(dbCreateRect pla "nsub"

(list (list vddpos prod*rowheight*3+2+rowheight)
(list vddpos+4 prod*rowheight*3+6+rowheight)))

(dbCreateRect pla "nselect"
(list (list vddpos-2 prod*rowh-ight*3+rowheight)

(list vddpos+6 prod*rowheight*3+8+rowheight)))
(dbCreateRect pla "cont_aa"

(list (list vddpos+l prod*rowheight*3+3+rowheight)
(list vddpos+3 prod*rowheight*3+5+rowheight)))

(procedure (inputinprod inp prod)
(exists p (caddr prod) (inp == (car p)))

(procedure (isinverted inp prod)
(exists p (caddr prod)

(and (inp == (car p)) ((cadr p) == 'inverted)))

(procedure (drawtransistorl inp prod)
(if (inputinprod inputs[inp]->name products[prod]) then
xpos = colwidthl*inp
inv = nil
(if !(isinverted inputs[inp]->name products[prod]) then
xpos = xpos+8
inv = 't

bot = (prod/2)*3*rowheight + (mod prod 2)*2*rowheight + 2
(dbCreateRect pla "ndiff"

(list (list xpos bot) (list xpos+12 bot+4)))
(if (inv == 't) then
(dbCreateRect pla "cont_aa"

(list (list xpos+9 bot+l) (list xpos+ll1 bot+3)))
else
(dbCreateRect pla "cont_aa"

(list (list xpos+l bot+1) (list xpos+3 bot+3)))

(procedure (drawinvertersl in)
left = in*colwidthl
(dbCreateRect pla "poly"

(list (list left+5 0) (list left+7 -38)))
(dbCreateRect pla "poly"

(list (list left+7 -34) (list left+12 -38)))
(dbCreateRect pla "poly"

(list (list left+13 0) (list left+15 -19)))
(dbCreateRect pla "poly"

(list (list left+10 -19) (list left+13 -15)))
(dbCreateRect pla "ndiff"

(list (list left -12) (list left+12 -8)))
(dbCreateRect pla "nselect"

(list (list left-2 -15) (list left+14 -5)))
(dbCreateRect pla "pdiff"

(list (list left -31) (list left+12 -27)))
(dbCreateRect pla "pselect"
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(list (list left-2 -34) (list left+14 -24)))
(dbCreateRect pla "metall"

(list (list left -12) (list left+4 -3)))
(dbCreateRect pla "metall"

(list (list left -40) (list left+4 -22)))
(dbCreateRect pla "metall"

(list (list left+8 -34) (list left+12 -40)))
(dbCreateRect pla "metall"

(list (list left+8 -8) (list left+12 -31)))
(dbCreateRect pla "metall"

(list (list left+12 -15) (list left+14 -19)))
(dbCreateRect pla "nsub"

(list (list left -36) (list left+4 -40)))
(dbCreateRect pla "nselect"

(list (list left-2 -34) (list left+6 -41)))
(dbCreateRect pla "via"

(list (list left+1 -4) (list left+3 -6)))
(dbCreateRect pla "via"

(list (list left+1 -23) (list left+3 -25)))
(dbCreateRect pla "cont_aa"

(list (list left+l -9) (list left+3 -11)))
(dbCreateRect pla "cont_aa"

(list (list left+9 -9) (list left+11 -11)))
(dbCreateRect pla "cont_aa"

(list (list left+l -28) (list left+3 -30)))
(dbCreateRect pla "cont_aa"

(list (list left+9 -28) (list left+ll1 -30)))
(dbCreateRect pla "cont_aa"

(list (list left+l -37) (list left+3 -39)))
(dbCreateRect pla "cont"

(list (list left+11 -18) (list left+13 -16)))
(dbCreateRect pla "cont"

(list (list left+9 -37) (list left+11 -35)))
(dbCreateLabel pla "labels" (list left+10 -39)

inputs[i]->name "centerCenter" "R90" "stick" 2)
(leCreatePin pla (list "metall" "drawing") "rectangle"

(list (list left+8 -38) (list left+12 -42))
inputs[i]->name "input" (list "bottom"))

(procedure (drawoutputlines out)
xpos = widthl+out*pairwidth2+4
(dbCreateRect pla "metall"

(list (list xpos -2) (list xpos+4 height)))
(dbCreateRect pla "nselect"

(list (list xpos-3 -2) (list xpos+7 height)))
xpos = xpos + 8
(dbCreateRect pla "metall"

(list (list xpos -2 ) (list xpos+4 height)))
xpos = xpos + 8
(dbCreateRect pla "metall"

(list (list xpos -2) (list xpos+4 height)))
(dbCreateRect pla "nselect"

(list (list xpos-3 -2) (list xpos+7 height)))

(procedure (drawpullups2 out)
top = height+19
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left = out*pairwidth2 + widthl + 2
(dbCreateRect pla "metall"

(list (list left+10 top-12) (list left+14 top-6)))
(dbCreateRect pla "pselect"

(list (list left top-6) (list left+24 top-15)))
(dbCreateRect pla "pdiff"

(list (list left+2
(dbCreateRect pla "pdiff"

(list (list left+2
(dbCreateRect pla "pdiff"

(list (list left+18
(dbCreateRect pla "pdiff"

(list (list left+10
(dbCreateRect pla "cont_aa"

(list (list left+3
(dbCreateRect pla "cont_aa"

(list (list left+19
(dbCreateRect pla "cont_aa"

(list (list left+ll1
(dbCreateRect pla "poly"

(list (list left+7
(dbCreateRect pla "poly"

(list (list left+7
(dbCreateRect pla "poly"

(list (list left+15
(dbCreateRect pla "metall"

(list (list left+2
(dbCreateRect pla "metall"

(list (list left+18
(dbCreateRect pla "metall"

(list (list left+10
(dbCreateRect pla "cont"

(list (list left+ll
(dbCreateRect pla "nsub"

top-9)

top-12)

top-12

top-8)

top-10)

top-10

top-9)

top-15)

top-7)

top-7)

top-9)

top-9)

top-15

top-16

(list (list left+10 top) (list left+14 top-4)))
(dbCreateRect pla "nselect"

(list (list left+8 top+2) (list left+16 top-6))
(dbCreateRect pla "cont_aa"

(list (list left+11 top-1) (list left+13 top-3)

(procedure (drawsubcontact out prod)
left = out*pairwidth2+12+widthl
bot = prod*rowheight*3+10
(dbCreateRect pla "psub"

(list (list left bot) (list left+4 bot+4)))
(dbCreateRect pla "pselect"

(list (list left-i bot-1) (list left+5 bot+5)))
(dbCreateRect pla "cont_aa"

(list (list left+1 bot+l) (list left+3 bot+3)))

(procedure (drawinverters2 out)
left = widthl+out*pairwidth2+4
/* Make left inverter */
(dbCreateRect pla "metall"

(list (list left -2) (list left+4 -8)))
(dbCreateRect pla "poly"

(list left+22 top-12)))

(list left+6 top-13)))

) (list left+22 top-13)))

(list left+14 top-9)))

(list left+5 top-12)))

) (list left+21 top-12)))

(list left+13 top-11)))

(list left+17 top-19)))

(list left+9 top-15)))

(list left+17 top-15)))

(list left+6 height)))

(list left+22 height)))

) (list left+14 height)))

) (list left+13 top-18)))
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(list (list left -4) (list left+7 -8)))
(dbCreateRect pla "poly"

(list (list left+5 -8) (list left+7 -31)))
(dbCreateRect pla "cont"

(list (list left+l -5) (list left+3 -7)))
(dbCreateRect pla "metall"

(list (list left -1i) (list left+4 -40)))
(dbCreateRect pla "cont_aa"

(list (list left+l -12) (list left+3 -14)))
(dbCreateRect pla "cont_aa"

(list (list left+l -26) (list left+3 -28)))
(dbCreateLabel pla "labels" (list left+2 -38)

outputs[out*2] "centerCenter" "R90" "stick" 2)
(leCreatePin pla (list "metall" "drawing") "rectangle"

(list (list left -38) (list left+4 -42))
outputs[out*21 "output" (list "bottom"))

/* Make middle stuff */
(dbCreateRect pla "ndiff"

(list (list left -11) (list left+20 -15)))
(dbCreateRect pla "nselect"

(list (list left-2 -8)
(dbCreateRect pla "pdiff"

(list (list left -25) (]
(dbCreateRect pla "pselect"

(list (list left-2 -22)
(dbCreateRect pla "metall"

(list (list left+8 -2)
(dbCreateRect pla "metall"

(list (list left+8 -19)
(dbCreateRect pla "cont_aa"

(list (list left+9 -12)
(dbCreateRect pla "cont_aa"

(list (list left+9 -26)
(dbCreateRect pla "via"

(list (list left+9 -6)
(dbCreateRect pla "via"

(list (list left+9 -20)
(dbCreateRect pla "nsub"

(list (list left+8 -34)
(dbCreateRect pla "nselect"

(list (list left+6 -32)
(dbCreateRect pla "cont_aa"

(list (list left+9 -35)
/* Make left inverter */
(dbCreateRect pla "metall"

(list (list left+20 -2)
(dbCreateRect pla "poly"

(list (list left+20 -4)
(dbCreateRect pla "poly"

(list (list left+15 -8)
(dbCreateRect pla "cont"

(list (list left+19 -5)
(dbCreateRect pla "metall"

(list (list left+20 -11)
(dbCreateRect pla "cont_aa"

(list (list left+19 -12)
(dbCreateRect pla "cont_aa"

(list (list left+19 -26)

(list left+22 -18)))

list left+20 -29)))

(list left+22 -32)))

(list left+12 -15)))

(list

(list

(list

'list

(list

(list

(list

(list

(list

(list

(list

(list

(lis

(lis

(lis

left+12

left+ll

left+11

left+ll -

left+ll

left+12

left+14

left+ll1

* left+16

left+13

left+13

* left+17

t left+16

t left+17

t left+17

-40)

-14)

-28)

8)))

-22)

-38)

-39)

-37)

-8))

-8))

-31)

-7))

-40)

-14)

-28)
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(dbCreateLabel pla "labels" (list left+18 -38)
outputs[out*2+1] "centerCenter" "R90" "stick" 2)

(leCreatePin pla (list "metall" "drawing") "rectangle"
(list (list left+16 -38) (list left+20 -42))
outputs[out*2+1] "output" (list "bottom"))

(procedure (outputinprod out prod)
(exists x (cadr prod) (x == out))

(procedure (drawtransistor2 out prod)
(if (outputinprod out products[prod]) then
left = (out/2)*pairwidth2 + (mod out 2)*8 + 4 + widthl
right = left+12
bot = (prod/2)*3*rowheight + (mod prod 2)*(rowheight+4) - 2
top = bot + 16
(if (mod prod 2) == 1 then
(dbCreateRect pla "ndiff"

(list (list left top) (list right top-4)))
(if (mod out 2) == 0 then

(dbCreateRect pla "cont_aa"
(list (list right-3 top-i)

(list right-i top-3)))
(dbCreateRect pla "ndiff"

(list (list left bot+4) (list left+4 top-4)))
(dbCreateRect pla "cont_aa"

(list (list left+1 bot+5)
(list left+3 bot+7)))

else
(dbCreateRect pla "cont_aa"

(list (list left+1 top-i)
(list left+3 top-3)))

(dbCreateRect pla "ndiff"
(list (list right-4 bot+4)

(list right top-4)))
(dbCreateRect pla "cont_aa"

(list (list right-3 bot+5)
(list right-i bot+7)))

else
(dbCreateRect pla "ndiff"

(list (list left bot) (list right bot+4)))
(if (mod out 2) == 0 then

(dbCreateRect pla "cont_aa"
(list (list right-3 bot+l)

(list right-i bot+3)))
(dbCreateRect pla "ndiff"

(list (list left bot) (list left+4 top-4)))
(dbCreateRect pla "cont_aa"

(list (list left+1 top-5)
(list left+3 top-7)))

else
(dbCreateRect pla "cont_aa"

(list (list left+1 bot+1)
(list left+3 bot+3)))

(dbCreateRect pla "ndiff"
(list (list right-4 bot+4)
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(list right top-4)))
(dbCreateRect pla "cont_aa"

(list (list right-3 top-5)
(list right-i top-7)))

(procedure (makenwells)
(dbCreateRect pla "nwell" (list (list vddpos-3 -3)

(list -5 height+3)))
(dbCreateRect pla "nwell" (list (list widthl-1 height+22)

(list width2+3 height+1)))
(dbCreateRect pla "nwell" (list (list vddpos-3 -43)

(list width2+3 -20)))
; leHiLayerGen()

(procedure (linkvddgnd)
/* Place vdd! */
(dbCreateRect pla "metall"

(list (list vddpos-14 height+13)
(list width2 height+33)))

(dbCreateRect pla "metall"
(list (list vddpos-14 -37)

(list vddpos+6 height+13)))
(dbCreateRect pla "metall"

(list (list vddpos+6 -37)
(list vddpos+16 -13)))

(dbCreateRect pla "metal2" (list (list vddpos-3 -13)
(list width2 -37)))

(for i 0 3
(for j 0 4

(dbCreateRect pla "via"
(list (list vddpos-2+5*i -36+5*j)

(list vddpos+5*i -34+5*j)))

(leCreatePin pla (list "metal2" "drawing") "rectangle"
(list (list vddpos-5 -13) (list vddpos-1 -37))
"vdd!". "input" (list "left"))

(leCreatePin pla (list "metal2" "drawing") "rectangle"
(list (list width2-2 -13) (list width2+2 -37))
"vdd!" "input" (list "right"))

(dbCreateLabel pla "labels" (list -11 -26)
"vdd!" "centerCenter" "RO" "stick" 4)

/* Place gnd! */
(dbCreateRect pla "metal2" (list (list vddpos-3 15)

(list width2 -9)))
(dbCreateRect pla "metal2" (list (list widthl-14 15)

(list widthl+10 height-16)))
(for i 0 (numproducts-1)/2

bot = i*3*rowheight + rowheight + 3
(dbCreateRect pla "via" (list (list widthl-3 bot)

(list widthl-1 bot+2)))

(leCreatePin pla (list "metal2" "drawing") "rectangle"
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(list (list vddpos-5 15) (list vddpos-1 -9))
"gnd!" "input" (list "left"))

(leCreatePin pla (list "metal2" "drawing") "rectangle"
(list (list width2-2 15) (list width2+2 -9))
"gnd!" "input" (list "right"))

(dbCreateLabel pla "labels" (list -11 -4)
"gnd!" "centerCenter" "RO" "stick" 4)

(procedure (drawpla pla)
productlines = numproducts/2 * 3
outpairs = numoutputs/2
colwidthl = 8*2
pairwidth2 = 24
rowheight = 8
height = productlines * rowheight+6
widthl = numinputs * colwidthl + 10
width2 = widthl + outpairs * pairwidth2 +2
/* Create vertical lines for each input */
(for i 0 numinputs-1

(drawinputlines i)
(drawinvertersl i)

/* Create horizontal lines for each product term */
(for i 0 (numproducts-1)/2

(drawandlines i)
(draworlines i)
(drawpullupsl i)

/* Create vertical lines for each output */
(for i 0 (numoutputs-1)/2

(drawoutputlines i)
(drawpullups2 i)
(drawinverters2 i)
(for j 0 (numproducts-1)/2

(drawsubcontact i j))

/* Place diffusion and transistors for AND plane */
(for i 0 numproducts-1

(for j 0 numinputs-1
(drawtransistorl j i)

/* Place diffusion and transistors for OR plane */
(for i 0 numproducts-1

(for j 0 numoutputs-1
(drawtransistor2 j i)

/* Place nwells where needed */
(makenwells)
/* Link power and gnd */
(linkvddgnd)

(procedure (dumpstructs)
(let ((verilog (outfile "verilog.out")))
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(for i 0 numinputs-1
(printf "input[%d] = %L\n" i inputs[i]->name)

(fprintf verilog "\n// Product terms\n")
(for i 0 numproducts-1

(printf "products[%d] = %L\n" i products[i])
(fprintf verilog " assign #1 %s ="

(car products [i))
(foreach inp (caddr products[i])

(fprintf verilog " %s%s &&"
(if (equal (cadr inp) 'inverted)

(car inp)))
(fprintf verilog " 1;\n")

(fprintf verilog "\n// Outputs\n")
(for i 0 numoutputs-1

(printf "output[%d] = %L\n" i outputs[i])
(fprintf verilog " assign #1 %s ="

outputs[i])
(for j 0 numproducts-1

(if (outputinprod i products[j]) then
(fprintf verilog " %s I "

(car (products[j])))

(fprintf verilog " 0;\n")

(close verilog)

(procedure (plagen eqns lib cell)
(let ((file (infile eqns))

(pla (dbOpenCellView lib cell "layout" nil "w")))
(initeqns)
(while ((gets line file) != nil)
numlines = numlines + 1
(if (and (line != nil)

(line != "\n")
(strncmp(line "#" 1) != 0))

(addeqn (lowerCase line))

(close file)
(dumpstructs)
(rounduptoeven)
(drawpla pla)
(dbSave pla)

; (dbClose pla)


