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Abstract

The broadening of spectral emission lines by the Stark effect has been used to de-
termine electron densities in deuterium plasma discharges on the Alcator C-Mod
tokamak. Measurements have been made particularly in the divertor region where
electron densities can reach values of the order 1021 m- 3 . The optical system em-
ployed is a fast, multiple-channel spectrometer system for the visible spectrum, and
the spectral lines used are high-n transitions in the Balmer series of deuterium.

The hardware configuration of the experiment is described, and both wavelength
and intensity calibration are discussed in the appendix. Based on an outline of the
underlying theory, the properties of the routine used for the numerical analysis of the
spectra are specified. The different causes of measurement inaccuracies are discussed,
leading to an estimate of the overall uncertainty.

The final chapter explores the correlations between the results obtained from the
Stark broadening method and measurements made by other diagnostic techniques
such as Ha tomography and interferometry. An emphasis is put on the combined
use of Stark broadening analysis and H, tomography, leading to the presentation of
spatial electron density profiles for a MARFE phenomenon.
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Chapter 1

Introduction

1.1 The Geometry of Alcator C-Mod

This introductory section is aimed at describing the geometric features and the overall

parameters of the facility at which the spectroscopic measurements are performed.

In addition, the topological terminology used in the later chapters of this thesis will

be defined. This section relies substantially on Ref. [12].

A poloidal cross section of Alcator C-Mod is shown in Fig. 1-1; this figure is

used to describe the spatial features of the tokamak vessel. The 'inner wall' (1) is the

vertical section of the inner vessel boundary that is exposed to the plasma. The region

near the bottom of the vessel with the numbered items from (2) to (7) is referred to as

the 'lower divertor'. The region near (8), the 'upper divertor', has not been examined

with the spectrometer system that will be described in chapter 2. For that reason,

the term 'divertor' will always refer to the lower divertor within the context of this

thesis. The solid line in Fig. 1-1 is called 'separatrix'. It describes the shape of

the plasma boundary in a diverted plasma discharge. The point (7) at which the

poloidal magnetic field vanishes will be referred to as 'X-point'. The intersections of

the separatrix with the divertor surface are called 'strike points'. There is an 'inner

strike point' near (2) and an 'outer strike point' near (6). The points (2) and (3)

at the inner and outer divertor plate are the inner and outer 'divertor noses'. The

divertor plate sections above the divertor noses will be referred to as the inner and
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Figure 1-1: Poloidal cross section of Alcator C-Mod. 1: inner wall, 2: inner nose, 3: outer
nose, 4: inner ledge, 5: outer ledge, 6: slot, 7: X-point, 8: upper divertor.



outer 'divertor ledges', i.e. (4) and (5). The region at the very bottom of the tokamak

vessel, formed by the vertical target plates around (6), is called the 'divertor slot'.

Using the above definition of points within the tokamak and knowledge of the

shape of the separatrix, we can distinguish between different plasma regions: the

'private flux region' is formed by the divertor surface and the separatrix connecting

the two strike points with the X-point. The term 'common flux region' denotes the

whole space not enclosed by the separatrix which does not belong to the private flux

region.

The overall parameters of the tokamak are given in Table 1.1 from Ref. [12]. One

sees that Alcator C-Mod is a high density tokamak with the capability of producing

strongly shaped plasmas.

Parameter achieved (design)

major radius 0.67 m
minor radius 0.21 m
elongation 1.8 (1.8)
toroidal B-field 8.0 T (9 T)
plasma current 1.1 MA (3 MA)
core electron density 1021m- 3

core electron temp. 4 keV
RF power 3.5 MW (4 MW

Table 1.1: Machine parameters of Alcator C-Mod.

1.2 The Divertor Concept

The term 'separatrix' introduced above denotes the last closed flux surface of the

magnetic field. The operation of Alcator C-Mod as a divertor tokamak changes the

magnetic geometry in such a way that this last closed field line is defined by a null

in the poloidal field.

By using a divertor, the interaction between the hot core plasma and the limiter

at the inner wall is reduced. The use of a divertor has two main advantages: tile

erosion is minimized and the influx of impurities from the material surfaces into the

core plasma is kept at a low level. A functioning divertor leads to a reduction of the



heat load on the limiter, while still allowing for a sensible density control over the

plasma system.

In contrast, a 'limiter' configuration is based on a different arrangement of the

magnetic field where the last closed flux surface is defined by the physical contact

with a limiter attached to the vessel wall. Its main disadvantage with respect to the

divertor is that impurities are more likely to enter the hot plasma core where they

may lead to high radiation losses, thereby cooling the core plasma.

The 'connection length' is defined to be the length of an open magnetic field line

between its two contact points with the material surfaces. By construction, a divertor

increases the connection length. This allows for high temperature gradients parallel

to the magnetic field, thus allowing one to have a low temperature in the divertor

while maintaining a hot plasma upstream.

1.3 Thesis Goal

In order to derive other plasma parameters, detailed knowledge of Ne and Te, the

plasma electron density and temperature, is required. In this thesis, an attempt will

be made to examine whether a fast multi-channel spectrometer system, here called

the 'Chromex spectrometer system', is an appropriate tool for measuring the electron

density Ne of the plasma.

It will be questioned whether the electron density can be calculated solely on

the basis of spectroscopic measurements. Such an investigation will have to rely on

the existence of a correlation with results from other diagnostic instruments. The

spectroscopic system is set up to take measurements within the divertor region of the

tokamak vessel.

Typical spectra used for the calculation of electron densities are presented in

Figures 1-2 and 1-3. Figure 1-2 shows a spectrum observed with a chord viewing the

inner divertor, whereas Fig. 1-3 presents data from the outer divertor. Both spectra

exhibit the same deuterium transitions in the Balmer series, starting with transition

2-7 at 396.90 nm. The series members beyond the transition 2-11 cannot be clearly
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Figure 1-2: A typical spectrum of the high-n Balmer transitions of deuterium, observed with
the chord Kbottom 12 in the time frame [1.087 s, 1.132s] of discharge 950426025.

identified anymore, an effect which is due to two physical phenomena: the merging

of lines close to the Inglis-Teller limit and the low intensity of high-n transitions.

The deuterium lines shown have a width which is much larger than the width of

the instrumental profile, the Doppler width, or the Zeeman splitting. This strong

broadening is caused by the Stark effect whose underlying theory allows one to cal-

culate the electron density Ne at the point of the emission, based on the corrected

Lorentzian width of the spectral profile describing the deuterium transition. Correc-

tions will be included for all the physical effects mentioned.
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Figure 1-3: A typical spectrum of the high-n Balmer transitions of deuterium, observed with
the chord Abottom 18 in the time frame [1.087 s, 1.132s] of discharge 950426025.

The method to calculate the electron density is based on the analysis of only

a single transition. In principle, each of the four transitions 2-7, ..., 2-10 could

be used separately to calculate an electron density. The results for the electron

densities obtained from analyzing different transitions will be compared with each

other. Since there are impurity lines present in the spectrum, not all transitions are

equally well suited for the electron density calculation. The effect of impurity lines

on the measurement will be discussed.

The two spectra presented show the signal on different chords for the same time

frame of a specific discharge. Comparing them shows that the Balmer line intensities

observed on the outer divertor chords are smaller than those on the inner divertor

chords by more than a factor of five. It is also apparent that the presence of impurities

is reduced in the outer divertor spectrum.

The fact that the lines in the outer divertor spectrum 1-3 have a smaller width
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than the lines seen on the inner divertor spectrum 1-2 indicates that the electron

density at the spatial location which mainly contributes to the radiation observed

with the outer divertor fiber is smaller than the electron density at the corresponding

location for the inner divertor fiber. In general, it is a non-trivial task to find the

poloidal location whose radiation dominates the input of a specific fiber. For this

purpose, the use of H, tomography will be discussed.



Chapter 2

Experimental Apparatus

2.1 The Apparatus

The Chromex spectrometer system was designed to provide visible spectra of the

divertor region with high light throughput and high time resolution. The apparatus of

the Chromex spectrometer system will be described below. The theory of the detector

operation will be explained. The fundamental optical features of the spectrograph

itself will be outlined as well as the construction of the periscope fiber bundle together

with the views of the different periscopes. The hardware characteristics mentioned in

this chapter are extracted from Refs. [4, 5, 19].

2.2 The Detector

The device used for the conversion of the incoming photon flux into a count rate is

a CCD detector. The acronym 'CCD' stands for 'Charge Coupled Device'. Within

one CCD pixel, photons are transduced to electrons, the current is integrated over an

effective exposure time, and the result is stored. From there, the data are read and

converted into a digital signal.

One observes a thermally induced buildup of charge in CCD pixels. This statistical

phenomenon is termed the 'dark charge'. In order to reduce it, the CCD detector is

cooled to -250 Celsius. At the operating range of a CCD detector, the dark charge



is reduced by a factor of - 2 for every temperature reduction by 70 K. Due to the

existence of the dark charge, the 'background count rate' due to the dark charge must

be subtracted from every count rate measurement in an experiment.

The detector used for the system to be discussed has 1242x1152 CCD pixels.

The 1242 pixels per row are parallel to the spectrally resolving dimension of the

instrument, whereas the 1152 pixels per column allow spatial resolution of the signal.

2.2.1 Frame Transfer

The detector is optically and electronically divided into a lower and an upper frame

of 576 rows with 1242 pixels each. The lower half of the detector plane is covered

so that the count rate of those pixels cannot be increased by radiation influx. The

upper half lies in the exit plane of the spectrograph.

The two detector sections are connected via a vertical shift mechanism which

allows the system to shift the upper half image into the lower one within 576 shifting

steps. Each step is a parallel motion which shifts all pixels in the full image one row

downwards. The pixels in the uppermost row of the moving image are set to zero as

the charge is shifted downwards. Because the two half frames have separate shifting

clocks, the upper half can be exposed to radiation influx without being shifted while

the lower half can be read and digitized.

The readout is a combination of parallel row shifts and sequential pixel shifts. The

rows of the lower half can be shifted in parallel into a register row. From there, the

individual pixels of that register row can be shifted sequentially into a single register.

The value of that register can either be discarded or digitized. So after 576 parallel

row shifts and 1242 sequential pixel shifts for each row, the whole frame is read out.

The overall data acquisition cycle is given by the following chronological steps:



I The upper half of the detector frame is exposed while the lower part is

read.

II The upper half is transferred into the lower half. This process results in

a 'clear' upper half.

III The cycle starts again.

The advantage of this 'frame transfer mode' of the detector lies in its time economy:

the exposure of the next frame and the readout of the previous one are done simul-

taneously, at the only cost of the time needed for the frame transfer. Since the row

shift time is much smaller than the time needed for the digitization of one pixel row,

the frame transfer technique is successful.

2.2.2 Hardware Binning

The detector is capable of binning pixels in both dimensions. A 'bin' is defined to be

an area of pixels which are not digitized separately. Instead, the data corresponding to

a group of pixels constituting the bin are first summed within the detector hardware,

and the sum is then digitized. For our purposes, hardware binning in the wavelength

direction is not used since that would lead to a loss of wavelength resolution.

On the contrary, binning in the spatial direction is desired since we have 14 inde-

pendent optical fibers mapped onto the detector plane. The first 574 pixel rows of the

image are divided into 14 spatial bin rows with a spatial width of 41 pixels each. The

remaining two pixel rows of the detector are discarded. The considerations leading

to the choice of this spatial bin width will be described later.

Electronically, the spatial binning is implemented by adding up the appropriate

pixel rows to the register row during the parallel shifting process. Once all rows

constituting a bin have been added, the register row, now containing the result of a

sum over multiple pixel rows, is sequentially shifted and digitized. The discarding

of a row is achieved by simply discarding all pixels of that row once they have been

shifted into the single register.



The most significant slowing down effect for the entire acquisition process is the

digitization. Since hardware binning reduces the number of digitizations needed con-

siderably, it is a detector feature which improves the time resolution of the overall

system.

2.2.3 Timing

Two analog to digital converters are implemented in the detector: a 12 Bit/1 MHz

ADC and a 16 Bit/430 kHz ADC. Since a high dynamic range is desired, this entire

thesis will only be dealing with the 16 Bit converter.

As described in the two sections above, there are a number of different time

variables which contribute to the overall time scale of the detector performance:

* ti: the row shift time.

* tsr: the time needed to shift one pixel from the register row into the single

register for discarding or digitization.

* t,: the time needed by the ADC to convert the single register.

* ts: the time needed to discard the single register.

Since we are discarding two pixel rows and binning solely in the spatial direction, the

readout time Treadout is given by:

Treadout = N t + N - Ny,discard Nx [tsr + tv] + Ny,discard Nx [tsr + ts] . (2.1)
Ygroup

Here Nx = 1242 and Ny = 576 are the number of detector pixel columns and rows

respectively. Ny,discard = 2 is the number of pixel rows to be discarded. Ygroup = 41 is

the width of the binned group along the spatial direction. The time Ttransfer for the

whole frame transfer can be calculated from:

Ttransfer = Ny ti . (2.2)

In addition, the nominal exposure time Texp,nom can be set by the software. It is

defined as the length of the time window during which a shutter would be open and



allow the detector to be exposed to light. (Since we are using a system that is capable

of operating in frame transfer mode, we do not need a shutter.)

The upper half of the detector will be exposed to radiation influx for a time

Texp,eff = Ttransfer + min [Treadout, Texp,nom] . (2.3)

Texp,eff is the effective exposure time relevant for the calculation of count rates. Since

the upper detector half is also exposed to the radiation influx during the frame transfer

process, the condition

Ttransfer~C Texp,egff (2.4)

must always be met. When this condition ceases to be true, the spatial information

contained in the detector count rates will be smeared out.

Another parameter of the system is the vertical shift time which can also be set

by the software. During discharge measurements, the minimum of 3 Ps is always used

in order to achieve the highest possible time resolution.

The time variables used in this chapter have been measured, using a high fre-

quency memory oscilloscope, by analyzing TTL reference signals provided by the

detector hardware. The frame transfer time Ttrans• fer can be read directly from a

signal normally used for the shutter control. From transffer, the value of ti can be

calculated easily.

Time Variable Value Description of Process

ti 3.04 1 s Vertical row shift.
tsr + t1  2.31 ps Sequential shift and conversion.
tsr + ts 0.14 ps Sequential shift and discarding.

Ttransfer 1.75 ms Frame transfer.
Treadout 42.26 ms Readout.
Texp,eff 44.01 ms Effective exposure.

Table 2.1: Time variables measured for the 16 Bit ADC with 430 kHz. Hardware binning is
set to 14 spatial bins with a width of 41 pixels each. 2 pixel rows are discarded. No binning in
the wavelength direction. The vertical shift time is set to 3pis.

From another TTL signal, the readout time Treadout is measured for a number

of different binning situations. This allows to set up a system of linear equations

which can be solved. From the algebraic structure of equation 2.1 it is clear that the



independent variables tsr , tv, tr, always appear in pairs. Therefore, one can only solve

for these combined variables. The results of the calculations are summarized in Table

2.1.

During the standard discharge measurements, the detector is set to the 'store

enable mode': the detector is continuously taking frames. These frames are fully

discarded unless the detector receives a trigger during the nominal exposure time. If

such a trigger is received, the data are binned and digitized as explained above and

sent to the acquisition computer. The trigger signal is provided starting from about

100 ms before the plasma discharge until the end of the discharge. The trigger is a

5 kHz TTL signal, thereby ensuring that during the discharge all subsequent frames

are digitized and that the highest possible acquisition frequency is achieved.

Furthermore, the detector signal normally used for shutter control is digitized

during the entire time window in which the trigger is provided. From this data, the

start time of the first frame taken and the average effective exposure time are derived

for each plasma discharge. This information is then used to calculate the count rates

for the intensity calibration that will be described later.

2.3 The Chromex Spectrograph

The Chromex spectrograph has a focal length of F = 250 mm and an aperture ratio

f/4. In general, the f number of an optical instrument with axial symmetry is defined

as
Ff = , (2.5)
d

where d is the diameter of the entrance aperture as seen from focus. The Chromex

spectrograph does not have axial symmetry, a fact which requires a generalization of

equation 2.5. Usingw (4) = A, one obtains from substitution:

f - F2 (2.6)V4FA

with A denoting the area of the entrance aperture as seen from focus. In the specific

case of the Chromex instrument, F denotes the distance between entrance slit and



mirror, and A denotes the area of the mirror covered by the light cone (see Fig. 2-1).

The light gathered by an optical instrument is dependent on the 6tendue A Q.

Keeping the area A fixed, the light throughput is proportional to the solid angle

A 1
Q = c -. (2.7)F2 f2

The f/4 aperture ratio was chosen as a specification of the Chromex spectrograph

since a high light throughput is desired.

B

Figure 2-1: The asymmetrical Czerny-Turner configuration of the spectrograph.

The entrance slit is straight and bilaterally adjustable from 10 Pm to 2 mm. It is

computer controlled with a stepper-motor drive. The slit height is 9.8 mm. Three

blazed gratings are selectable, each with a different number of grooves per unit length:

600 mm-', 1200 mm- 1, and 1800 mm- 1. The blazing leads to a further improvement

of the light throughput. The dispersion and wavelength resolution for these gratings

will be discussed in the chapter regarding wavelength calibration.

The three [68 mm x 68 mm] gratings are mounted onto a turret within the spec-

trograph. Due to the fact that the turret carries three gratings, their motion is a

combination of a rotation and a translation. The system has a manufacturer precali-

bration that reads the appropriate stepper-motor positions from an internal database

for each setting of the spectrograph center wavelength A diromex This precalibration

is specifically done for each individual instrument. The precalibration would be lost



if a grating were exchanged manually. Therefore, the gratings can only be exchanged

automatically.
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Figure 2-2: The spatial line shape of a continuum light source on different positions of the
detector plane. This detector exposure was taken with the 600 mm- 1 grating and a spectrograph
center wavelength set to A chromex = 800 nm. The three detector bins y E {1, 7, 14} are exposed
to the same light input from a halogen calibration source.

The spectrograph center wavelength will be referred to as A chromex throughout

this entire thesis. Although A lromex carries a physical meaning by means of the

manufacturer precalibration, it will only be regarded as a hardware parameter. A new

wavelength calibration will be performed relative to the manufacturer precalibration,

treating A cromex as a variable.

A digital stepper-motor drive is used for the wavelength scanning. For the

1200 mm - 1 grating, the wavelength accuracy is +0.15nm, precalibrated by the man-

ufacturer. The wavelength repeatability precision can be improved to +0.05 nm by

scanning to the selected wavelength from the same wavelength direction. The wave-

length range lies between 180 nm and 10 pm, but is dependent on the grating used.
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The wavelength scanning as well as all other functions of the spectrograph are con-

trolled via a serial connection RS232. This connection between the data acquisition

computer and the tokamak cell is optically buffered.

The system is optically set up in an asymmetrical Czerny-Turner configuration

shown in Fig. 2-1. The configuration consists of two mirrors and a grating. In

the specific instrument used for this thesis, the exit slit is substituted by a detector

plane. For the given instrument with a specific grating chosen, the Czerny-Turner

configuration is uniquely defined by specifying the angle formed between the line

normal to the grating and the line OB drawn in Fig. 2-1. The optical configuration

is corrected for aberration effects. This feature is crucial for using a two-dimensional

CCD detector as the exit plane. The correction is implemented by the use of toroidal

mirrors.

Such an optical system transforms the image of a point source into an elongated

vertical spot. The straight slit will then be transformed into the portion of a circle on

the detector screen. This effect does not affect the wavelength resolution of the sys-

tem, but it changes the absolute wavelength calibration as a function of the detector

row, and it limits the spatial resolution of the system. The effect of the aberration on

the absolute wavelength calibration of the instrument is discussed in the calibration

appendix.

The instrument has a useful focal field area of [13 mm x 28 mm]. 14 optical

fibers are focused onto the entrance slit and then mapped onto that focal field area

through the optical system. The detector count rate as a function of pixel position

is measured, using the 600mm - 1 grating, with the spectrograph center wavelength

set to A chromex = 800 nm. The center input fiber and the two outermost input fibers

are illuminated by a continuum calibration light source, and all other inputs are kept

dark. This configuration leads to three horizontal stripes on the detector plane.

Fig. 2-2 shows the spatial cross section of this continuum spectrum for nine

different positions on the detector plane. The total count rate, the spatial width,

and the spatial shape of these nine peaks are functions of detector position. None of

these features can affect the wavelength calibration of the instrument. The fact that
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Figure 2-3: The spatial width and the percentage of the total area covered within that width.

the total count rate can be a function of the detector bin position will be taken into

account within the intensity calibration by introducing a bin dependent sensitivity.

The shape of a spatial line profile will not affect the intensity calibration if a spatial

bin covers the whole spatial region which is affected by its corresponding input fiber.

In order to make sure that this condition is met, the width of the spatial profile has

to be calculated.

The calculation of the width of a spatial profile is illustrated in Fig. 2-3. For this

calculation, the spatial profile shown in the right bottom corner of Fig. 2-2 is used

since it has the largest width among all the nine profiles presented in that figure. This

chosen profile is plotted again in Fig. 2-3, but there normalized to have unit area.

The median yo of the normalized profile is calculated. As a function of distance Ymed

from this median, the area included within the interval M = [yo - Ymed, YO + Ymed]

is calculated as a function of Ymed. This function r(ymed) is equal to the ratio of the



count rate contained in the interval M and the total count rate. The width y1/100oo of

the spatial profile is then defined as

y1/100 - 2 min{ymedjr(ymed) > 0.99} . (2.8)

The calculation for the chosen profile leads to a spatial width of y/100oo = 32 pixels.

The configuration of the instrument is intended to allow for absolute intensity

measurements with inaccuracies smaller than 1%, thereby also necessitating that

the interchannel crosstalk be less than 1%. Since the detector plane might be slightly

rotated with respect to the slit image, a spatial width of 32 pixels will not be sufficient

to reduce the interchannel crosstalk below 1%. The spatial bin width has been chosen

to be 41 pixels, a choice which allows for 14 independent spatial bins on the detector

plane.

2.4 The Periscope Fiber Bundle

This section will describe the mechanical construction of the optical fiber bundle which

transmits the signals from the tokamak into the spectrometer system. In addition,

the locations of the different optical inputs within the vessel will be specified for later

reference in this thesis.

2.4.1 Construction of the Bundle

The optical fiber bundle is designed to provide the input for several optical instru-

ments. For that reason, its input plane is a combination of three sets of optical fibers.

The whole system is illustrated in Fig. 2-4.

The rectangular input plane of the bundle includes one set of fibers which is

arranged as a two-dimensional array with the dimensions [10 mm x 8 mm]. Its fibers

- made of glass and having a diameter of 10 pm each - are used to extract an

optical image from inside the vessel. This array is split into two halves. Between the

two, 40 optical quartz fibers with a diameter of 400 um are arranged in two columns

of 20 fibers each. One of these columns consists of fibers optimized for use in the
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Figure 2-4: Construction drawing for the fiber bundle system of the periscope. In the lower
half of the figure, the overall bundle system including the 2 fiber bifurcations is shown. In the
upper half, the structure of the periscope input is presented. This bundle input sits directly
under the vessel window.

visible and ultraviolet regions, the other one is optimized for use in the visible and

the infrared regions of the spectrum.

The input fiber arrangement has to be split in order to provide separate input

signals for the different diagnostic instruments. In a first bifurcation, the fibers of

the two-dimensional glass fiber array are separated from the 40 single optical quartz

fibers. The glass fiber array then forms an output plane for a two-dimensional image.

In a second fiber bifurcation, the one-dimensional bundle of optical fibers is broken up

into 40 separate fibers. The two bifurcations are illustrated in Fig. 2-4. The Chromex

spectrometer system only uses the 20 fibers optimized for visible and ultraviolet light.

These quartz fibers will be denoted by UV 1, UV 2, ..., UV 20.

--

/-7



Figure 2-5:
parameters by
probes FMP 1

Outer divertor view Abottom. Fibers UV 3 - UV 19 allow the analysis of plasma
looking at the outer divertor. Their spatial correspondence with the Langmuir
- FMP 7 is shown.



Since there are two such periscope bundles available for the Chromex system,

there are altogether 40 different fibers which provide a set of possible inputs from

different spatial positions for the Chromex system. A variable subset of them is

connected to the 14 Chromex spectrometer input fibers, which have a diameter of

200 pm each. These 14 fibers are focused onto the entrance slit of the spectrometer.

2.4.2 Divertor Views

The entire fiber optical system consists of two identically manufactured bundles of

the kind described above. These bundles are inserted into two different periscopes at

the tokamak, thus providing two different images of the tokamak divertor.

The geometry of the outer divertor view Abottom can be seen in Fig. 2-5; the

figure shows the light paths of the radiation observed from the corresponding fibers.

Only the 17 fibers UV 3 - UV 19 view the outer divertor surface. The light paths

of these fibers end at divertor plate positions where the probes FMP 1 - FMP 7 are

situated. These probes are so-called 'domed probes' since they project above the

divertor surface (see Ref. [16]). Using data from these Langmuir probes, the electron

density Ne and the electron temperature Te at the probe positions are calculated for

every plasma discharge as a function of time.

For the outer divertor views, the light paths through the plasma, ending at the

probe positions, are relatively short due to both the geometry of the tokamak divertor

and the geometry of the magnetic flux surfaces. The light path through the plasma is

constrained by the narrowness of the divertor slot and by the fact that it lies partly

within the private flux zone. For the outer divertor views, a correlation between the

Langmuir probe data and the density measurements using a spectroscopic method

will be examined.

The light paths for the inner divertor view Kbottom are presented in Fig. 2-6.

All 20 fibers UV 1 - UV 20 observe light radiated by the plasma. The view angle

spanned by the Kbottom fibers is 34.680, almost twice the angle of 17.30 spanned by

the Abottom fibers. In addition, the path length of the Kbottom fibers within the plasma

is much longer than the corresponding length for the Abottom fibers, and some of the



inner divertor light paths cross the region near the X-point. Because of the long

path-length integration of these views, it cannot be expected that there will be a

substantial correlation between Langmuir probe data from the inner divertor surfaces

and density measurements using a spectroscopic method.

Figure 2-6: Inner divertor view 'Kbottom. Fibers UV 1 - UV 20 allow viewing the plasma by
looking at the inner divertor through an opening in the outer divertor.



Chapter 3

Theory of Spectral Line

Broadening

This thesis is concerned with the radiation emitted during transitions between discrete

atomic energy levels. As the spectral resolution

R =-- A (3.1)
AA zAv

of an optical instrument is increased, spectral lines acquire a characteristic functional

dependence within frequency or wavelength space, respectively. It is the aim of this

chapter to summarize which physical phenomena affect the shape of a spectral line,

and to present spectral line profile functions for the phenomena relevant to the plasma

diagnostic to be introduced in this thesis. These functions will not be derived from

first principles in this work since this chapter shall merely provide the theoretical

background for the numerical analysis of experimental data; most of the theory for

this chapter can be found in Refs. [17, 24].

It turns out that two functions suffice to describe the spectral line profiles due to

many fundamental physical processes, the Gaussian and the Lorentzian:

1 AvL
Lorentzian (v - vo, AvUL) = -AVL (3.2)7 2(v- Vo)2 + IAVL2

1 2 n2 A[- , (vO n 2l (33)
Gaussian (v - vo, AvG) = exp -4 In 2] (3.3)



These functions are normalized such that

S Lorentzian (v - vo, AVL) dv = + Gaussian (v - vo, AUG) dv = 1. (3.4)

In the following sections and chapters, the term width will always refer to the full

width at half maximum of a profile in both wavelength and frequency space. Similarly,

Av and AA always denote full widths at half maximum for all the profiles appearing

in this thesis. The only half width at half maximum to appear will be the Stark

broadening parameter &1/2.

If one observes a spectral line of a motionless atom that is isolated from its neigh-

bors and is shielded from all external electromagnetic fields, one will find that the line

has a spectral width, the natural line width. This natural line broadening is due to the

Heisenberg uncertainty principle. The shape of the spectral profile is a Lorentzian.

Its width in frequency space is approximately given by 1/27rr, where T denotes the

natural life time of the initial state. In this thesis, the natural line broadening will

be ignored since it is negligible compared to other line broadening effects.

The width of spectral lines emitted by a gaseous discharge is also observed to

increase with gas pressure and current density. This effect is due to the increased

density of neutrals, atoms, and ions in the source, leading to more frequent collisions

with and among the radiating atoms. As a result, the decay rates and spectral energy

widths of their transitions are increased. This pressure broadening can be due to many

different types of interactions which can be categorized as Stark broadening, resonance

broadening, van der Waals' broadening et cetera. These subdivisions themselves

can be classified as either impact broadening or quasi-static broadening mechanisms,

depending on the theory used to analyze them. Within this thesis, Stark broadening

will be crucial for calculating the electron densities in the tokamak divertor from the

experimental data.

Spectral line shapes are affected by external electromagnetic fields perturbing the

energy levels of the radiating atoms. In a plasma discharge, spatial variations in

the overall background densities of electrons and ions produce variations of electric

fields within the plasma. These fields can be viewed as external for the individual



atom, thereby producing a statistical line broadening. If this broadening is caused by

electric fields via the Stark effect, the overall mechanism is called Stark broadening.

Quantitatively, Stark broadening will dominate all the other broadening mechanisms

for high electron densities - Ne > 3 -1020 m- 3 for the 2-7-transition of deuterium

which can be concluded from the error analysis in chapter 5.

Spectral line broadening can also result from magnetic fields by way of the Zeeman

effect. The magnetic field leads to an energy splitting of levels which were degenerate

in the field-free case. Each of the resulting multiple transition lines exhibits all the

broadening phenomena a single transition would exhibit. Since the Chromex system

cannot resolve the level splitting, the only measurable effect is an overall line broad-

ening due to the overlap of the multiple line profiles which lie too close together to

be resolved. The Zeeman splitting of lines is taken into account within the analytical

form of the function that is fitted to the measured line shape in order to calculate

the electron density.

The random motion of the radiating atoms induces a line broadening due to the

Doppler effect. Doppler broadening is dependent on the temperature of the radiating

species. An attempt will be made to include a correction for Doppler broadening in

the electron density measurements based on Stark broadening.

Finally, the optical instrument itself causes a broadening of the spectrum appear-

ing on the exit plane. A theoretical spectral line profile with the shape of a delta

function, emitted into the entrance slit of the instrument, would have a finite width

on the exit plane. All measurements will also be corrected for this instrumental

broadening.

3.1 Convolution of Line Profiles

The data acquired will show spectral line profiles that are affected by several different

physical processes. Neglecting natural broadening, the profile will still be influenced

by the mechanisms of Zeeman splitting, as well as Stark, Doppler, and instrumental

broadening. In this section, it will be shown how the separate profiles of the distinct



physical processes combine and lead to a final profile.

I will assume that there are two independent line-broadening mechanisms which

are described by the separate profiles I (61A) and I2(6A). The measured line shape

I(&A) will then be given by (see Ref. [24, page 302])

I(6A) J 11I(SA') I 2 (6A - 6A') d(6A').
-_O

(3.5)

Let us assume that we have two functions f(x) and g(x)

f, g : R -- R+ U {0} , (3.6)

where both f and g are Lebesgue integrable. We can then define a shorthand for the

convolution integral:

f+0((f * g) (Y) f- 0
"-OO

f (x) g(y - x) dx . (3.7)

As derived in Ref. [6, page 75], the convolution * is commutative:

Vy E R\N: (f *g)(y) =(g* f)(Y); fNdx = 0 .

One can also derive that the convolution • is associative:

((f * g) * h) (y) = (f * (g *h))(y).

(3.8)

(3.9)

The two properties of the convolution which are expressed in equations 3.8 and 3.9

are sufficient to unfold the spectral profiles of the experimental data.

We will also need to know how a Lorentzian and a Gaussian behave with respect

to the convolution *. The following theorems will be stated without proof:

Lorentzian (v - uo, A/l) * Lorentzian (v - vo, Av 2 )

- Lorentzian (v - vo, Avi + Av 2 )

Gaussian (v - vo, Auvi) * Gaussian (v - vo, Au2 )

-+ Gaussian (v - vo, AuV1 2 + AV22 )

(3.10)

(3.11)



The profile resulting from the convolution of a Gaussian profile with a Lorentzian

profile remains to be determined. It is derived in Ref. [17, page 250], and is given by:

a o a +f+ exp[-y 2]a(a, w) =- 2
2] dy . (3.12)

7r oo a 2 - - y)2

From the width AvG of the Gaussian profile and the width AVL of the Lorentzian

profile, one can calculate the parameters:

S2(v - vo) v1n2 (3.13)
AVG

a - 1n2. (3.14)
AUG

The constant ao only affects the overall scale of the profile. For our purposes, we

will require that a0 is appropriately chosen such that the overall profile is normalized

to a unit area. The coefficient of the function a(a, w) is then automatically equal to

the integral of the line profile over the entire frequency space, a fact which will make

it much easier to calculate the intensities of transitions. The profile a(u) is called a

Voigt profile [ibidem, page 248]. Defining

Voigt (a, w) - a(a, w), (3.15)

we can write:

Lorentzian (v - vo, AVL) * Gaussian (v - vo, AVc) (3.16)

Voigt (a ,AL W(V - VO, AVG)*
AVG

3.2 Instrumental Broadening

Ideally, a spectrometer would analyze the incoming radiation into pure monochro-

matic beams without any frequency overlap. In practice, spectral lines have a profile

on the exit plane of the spectrometer, even if the instrumental resolution is not suffi-

cient to observe the spectral width of the incoming radiation. The reason lies in the

fact that the instrument itself causes a broadening of the lines.



3.2.1 Theoretical Assumptions about the Instrumental Pro-

file

To correct the measurements for the inherent instrumental broadening, I will as-

sume that the instrumental line profile is itself a convolution of a Gaussian with a

Lorentzian profile, thus a Voigt profile. I will characterize the instrument by the

variables AAInstr,G,grating and AAInstr,L,grating where the indices 'G' and 'L' refer to

the Gaussian and Lorentzian widths respectively. Assuming that radiation with a

spectral width much narrower than the instrumental resolution is emitted into the

instrument, a Voigt profile described by the parameter

aInstr,grating -- n 2X AInstr,L,grating (3.17)
AAInstr,G,grating

and with a total measured width of AA•nstr,voigt will appear on the exit plane. As

indicated, these parameters will be dependent on the grating used for a fixed slit

width.

3.2.2 Determination of the Instrumental Broadening Pa-

rameters

In order to determine the characteristic instrumental widths for each grating, a low-

pressure mercury lamp is used as a light source. Spectra are measured for the tran-

sitions which minimize the coma of the grating. A least squares fit to the spectral

detector profiles is performed, giving both NAAInstr,Voigt,grating and aInstr,grating as re-

sults.

Grating [mm -1 ] AAInstr,voigt[A ] AAInstr,L[A] AAInstr,G[ ] Transition [nm]
600 2.68 1.37 ± 1.10 1.89 404.66
1200 1.29 0.44 ± 0.21 0.98 546.07
1800 0.79 0.25 ± 0.14 0.61 253.65

Table 3.1: Instrumental broadening parameters: total, Lorentzian, and Gaussian widths of
the profile, as obtained for the different gratings and for a slit width of 20 Pm, using the given
spectral lines emitted from a low pressure mercury lamp.
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Figure 3-1: A\L/AAVoigt and AAG/iAAInstr,Voigt are numerically calculated as functions of
AA\L/ AAG.

The ratios AAL/AAvoigt and A\G/AAVoigt have been calculated numerically as

functions of AAL/AAG. These two curves, given in Fig. 3-1, are in agreement with

Ref. [24, page 303, Table V]. Using these functions, the widths AInstr,G and AAInstr,L

can be calculated from AAInstr,Voigt and aInstr for the three different gratings. The

results are summarized in Table 3.1.

The coma of the grating introduces asymmetries in the appearance of the detected

transition lines, thereby introducing errors in the fitted instrumental widths. The

uncertainties in the Lorentzian widths of the instrumental profiles are also listed in

Table 3.1. These uncertainties were determined by fitting the asymmetric halves of the

profiles separately and comparing the results. For the 1800 mm-' grating, which will

be most frequently used in our application, the inaccuracy of the instrumental width

will be - 0.14 A. For electron densities larger than 3 - 1020 m- 3 , the 2-7-transition

of deuterium exhibits Stark broadening widths larger than 2.06 A. The uncertainty



of the electron density due to the inaccuracy of the instrumental width will then be

smaller than 10%.

3.3 The Doppler Effect in a Maxwellian Gas

In order to calculate the spectral profile of the light emitted from a gas of atoms or

molecules, one has to apply the Doppler effect to a statistical sample. The objects

emitting the radiation - their mass is denoted by Ma - will be assumed to have a

Maxwellian distribution given by

2 M a V21
P(v) = ( a exp [ (3.18)27rkT 2kT

Here, k denotes the Boltzmann constant and T[o K] the absolute temperature of the

emitting species.

In addition, we will neglect the natural width of the spectral line and assume

that its spectral profile is properly described by a delta function, an entirely feasible

assumption, given the resolution of our instrument. Based on these assumptions, it

can be derived (see Ref. [17, page 248]) that the resulting spectral profile due to

Doppler broadening is a Gaussian whose width is given by

2 vo /2 kT In 2
AVDoppler = 2v 2kT 1n2 (3.19)

C Ma

In our experimental setup, the emitting objects will be neutral deuterium atoms.

The corresponding neutral temperature T describes their underlying distribution

function. Measurements performed by another diagnostic instrument, a Fabry-Perot

interferometer, indicate that this distribution function is peaked around T = 2 eV

in the tokamak divertor. For these measurements, the 2-3-transition of deuterium

was used. Accordingly, T = 2 eV will be used to calculate the width of the Doppler

broadening profile throughout this thesis. As an example, the width of the Gaussian

Doppler profile for the deuterium 2-9-transition can be calculated to be

AADoppler = 0.295 A. (3.20)



3.4 Stark Broadening

The fundamental physics leading to Stark broadening has been described earlier in

this chapter. We will be concerned here only with Stark profiles derived for the

hydrogen Balmer series.

3.4.1 Determination of Electron Densities from Stark Widths

The theoretical Stark profiles numerically calculated for the hydrogen Balmer series

are usually presented as one half of the symmetrical profile S(a) where

FA[A] (3.21)Fo
Fo = 1.25 -1013 (Ne m-3]) , (3.22)

and 6A denotes the distance from the line center (see Ref. [24, page 274]). Fo is called

Holtzmark field strength. The profiles S(a) are again normalized via

SS(a) da = 1. (3.23)

For the Balmer transitions between H, and H8 , tabulated profiles and the underlying

theory of their calculation can be found in Ref. [8].

For our purposes, it will be sufficient to use the fact that, to a first approximation,

the width of the Stark broadening in wavelength space scales algebraically with the

electron density at the point of emission (see Ref. [24, page 274]):

AAStark [A] = 2.50" 10- 13 e1/ 2 (Ne [m-3]) 2/3. (3.24)

Here, al/ 2 is the half width at half the maximum of the corresponding profile S(a)

for a particular transition.

It should be noted that, in principle, the theoretical Stark width al/ 2 is itself

dependent on both the electron density Ne and the electron temperature Te. These

higher order effects are not taken into account, an approach which is not entirely

unjustified. As stated in Ref. [8, page 1], the temperature tends to be of minor

influence on the observed line widths. As can be seen in Ref. [11, page 323, Table I],



the theoretical Stark widths a 11 2 for the H6-transition vary only between 0.171 and

0.174 within an electron temperature range of

5- 103 o K < Te < 4 .104 oK (3.25)

for a fixed electron density of Ne = 1021 m-3. The typical electron temperatures in the

tokamak divertor lie in the order of 104 o K, but can reach values up to 5 - 10s o K. It

turns out that MARFE phenomena, which will prove to be the objects most suitable

for our application, do exhibit electron temperatures satisfying relation 3.25.

It must also be remarked that the theoretical Stark profile will be approximated by

a Lorentzian, as is suggested in Ref. [24, page 270]. This assumption is necessary since

other analytical approximations are not available in the literature. Lorentzians are

particularly useful here since their shape resembles the large wings of the theoretical

Stark profiles. More generally, the Lorentzian shape fits the Stark broadening profiles

of heavier elements more closely, as is mentioned in [ibidem, page 302].

3.4.2 Transitions Used for Stark Broadening Analysis

For the calculation of electron densities from spectroscopic data, the transitions in the

Balmer series of deuterium will be used. Since the Alcator C-Mod tokamak is fueled

with deuterium, these emission lines have a relatively high brightness. The Balmer

series is particularly suitable for observation with the Chromex spectrometer system

since all transitions of the series lie within the range of the wavelength calibration of

the instrument.

The calculation of electron densities, as outlined above, relies heavily on a precise

measurement of the spectral profiles. For that reason, electron densities will only be

derived from spectroscopic data acquired by use of the 1200 mm- 1 or the 1800 mm -1

grating. In addition, it is desirable to have as many transitions as possible within a

spectrum available for analysis. A high resolution is equivalent to a small spectral

band width. In order to achieve both high resolution and an observation of several

transitions within one spectrum, one has to observe the high-n transitions of the series

near the ionization limit. Therefore, the analysis will focus on the four Balmer series



transitions 2-7, 2-8, 2-9, and 2-10.

An optimal setup of the instrument for density measurements would employ the

1800mm - 1 grating with A cromex = 385.0 nm. The resulting spectral band between

S362nm and f 407 nm would include the four transitions mentioned as well as

the effective ionization limit, which is defined by the Inglis-Teller limit (Ref. [9]).

The theoretical Stark widths al/2 have been calculated in Ref. [1] using the impact

approximation for electrons and the quasi-static approximation for ions. The calcu-

lations are performed for an electron density of Ne = 1.2 - 1019 m -3 and an electron

temperature of Te = 18500 K. In the same reference, the theoretical results were com-

pared with experimental measurements, leading to experimental widths which were

between 10% and 15% lower than the theoretical widths.

The quasi-static approximation and the impact approximation are the two ex-

treme approximations in the general theory of pressure broadening. The quasi-static

approximation is valid when the perturbing charges move relatively slowly so that

the perturbing field during the interaction time- which is of the order of the life-

time of the excited state - can be described as 'quasi-static': the emitting system is

considered to be! continuously under the influence of the perturbers during the entire

emission process. The quantitative results will then be independent of the tempera-

ture of the perturbing species. In contrast, in the impact approximation the emitting

system is assumed to be unperturbed most of the time, only perturbed by fast im-

pacts. This approximation therefore requires that the duration of a collision be short

compared to the time between collisions, and compared to the unperturbed lifetime

n A [nm] al/2

6 410.06 0.150
7 396.90 0.184
8 388.80 0.283
9 383.43 0.345

10 379.69 0.458
cc 364.50

Table 3.2: Theoretical Stark widths al/2 for transitions in the Balmer series of deuterium
from Ref. [1]. n gives the principal quantum number of the initial state. The wavelength data
are taken from Ref. [21, page 75].



of the state.

Both electron temperature and electron density for which the widths a1/ 2 were

calculated lie below the range for which they will be used in our application. This

is only justified under the condition that both the quasi-static approximation for

the ions and the impact approximation for the electrons - which were used in the

calculation - are still valid for our parameter ranges. The equation for the validity

of the quasi-static approximation is given in Ref. [8, page 9, equation (17)]. The

same equation can be used to describe the validity of the impact approximation of

the electrons, since the impact approximation is the complement of the quasi-static

approximation. Taking into account the remarks in [ibidem, page 33], the results

for protons and electrons are summarized in [ibidem, page 11, Fig. 1] for the Balmer

series of hydrogen. For the 2-7-transition, the electron impact approximation and

the quasistatic approximation for ions are valid over the entire electron density range

5 .10 1 8 m - 3 < Ne < 4 - 102 2 M- 3 , (3.26)

"at least for portions of the profiles near or within the half-intensity points"

[ibidem, page 33]. Our application lies well within these bounds.

It has already been argued above that the temperature dependence of the calcu-

lated Stark widths tends to be minor. It remains to be seen whether the results for

the theoretical Stark widths presented in Table 3.2 can be used for our parameter

ranges. This question will be discussed by comparing the results presented here for

the H6-transition with the corresponding results presented in Ref. [11].

For an electron density of Ne = 1019 m- 3 and an electron temperature of

T• = 5 0000 K, Ref. [11] lists a theoretical Stark width of al/ 2 ,2-6 = 0.149 for the

Hs-transition. This is in perfect agreement with the result presented in Table 3.2,

especially because the Stark widths in Ref. [11] increase with decreasing temperature.

For the intended use of our application, an electron density of Ne,typical = 1021 m - 3

and an electron temperature of Te,typical = 30 0000 K are to be considered typical. For

these parameters, Ref. [11] gives a theoretical Stark width of al/2,2-6,typical - 0.173.

So the error in the theoretical Stark width presented in Table 3.2 is about 15%



for the H118-transition, given the typical plasma parameters for our application. Since

the theoretical Stark widths 1al/2 increase with electron density, the values given in

Table 3.2 will generally be too small. An underestimate of the theoretical Stark

widths by 15% translates into an overestimate of the measured electron density by

approximately 19%.

3.5 Zeeman Splitting

The form of the energy level splitting due to an external magnetic field is dependent

on the strength of the magnetic field. In general, one distinguishes between the

anomalous Zeeman effect for the case of a weak magnetic field and the Zeeman

effect in the Paschen-Back regime for strong magnetic fields, also referred to as the

Paschen-Back ef~ect.

3.5.1 The Regime of Zeeman splitting

The parameter indicating the relevant regime is defined as ( in Ref. [2, page 211].

(= ; AE - E+ - E_ (3.27)AE
For ( <K 1 the regime of the anomalous Zeeman effect is given, for > 1 the Paschen-

Back regime. po denotes the Bohr magneton:

eh
o = e (3.28)!°=2 rne c

Let M denote the quantum mechanical operator for the total angular momentum

of an electronic bound state of the deuterium atom. Let the eigenvalues of M 2 be

denoted by j(j + 1)h2 . Similarly, 0 1 < n - 1 shall denote the quantum number

describing the orbital angular momentum of the state.

The quantities E+ and E_ then denote the "field-free energies of the Pauli ap-

proximation" for the eigenstates of M 2 with the quantum number j+ = 1 + and2

j l- 2. The energy levels in the Pauli approximation are given by [ibidem,



page 61]:

W - 1 + 3 l Ry, (3.29)n2 n j+ - 4n
where Ry = 13.6 eV is the Rydberg energy unit, a is the fine structure constant,

Z = 1 is the number of electrons per atom for deuterium, and n is the principal

quantum number of the level.

Let W0 denote the non-relativistic field-free energy of the level described by n.

The fine structure splitting between states characterized by j+ and j_ is given by

(a Z) 2 1 1AE=Wo(Z) 1 1) (3.30)
n j++ +2 2

Since j = j_ 1 = 0, the fine structure splitting vanishes only in the case of 1 = 0.

Assuming 1 7 0 and inserting the expressions for j+ and j_, we obtain:

AE~W(a Z) 1AE = Wo (a Z) 2  1(3.31)
n 1(1+ 1) (3.31)

For the n = 2 hydrogen level with I = 1, the quantum number j = corresponds

to both the 2S1/ 2- and the 2P 1/ 2-state, whereas j 3 = refers to the 2P 3/2-state. So1 2

using equation 3.31 with 1 = 1, one can calculate

AEn=2,1=1 = 0.365 cm - 1 = 7.26 - 10- 24 J, (3.32)

corresponding to ( = 1 for a field strength of [ibidem, page 212]

Hn=2,1=1 7 800 Gauss = 0.78 Tesla . (3.33)

Since
1

AE 3 ,  (3.34)

the corresponding field strength for the energy level n = 7 with 1 = 1 will be of the

order R- = 18.2 mT.

As a result, for low magnetic fields in the tokamak divertor (B < 2 T), the deu-

terium levels n = 7,..., 10 can be described by the Paschen-Back effect whereas

the level n = 2 is in an intermediate regime between Paschen-Back and anomalous

Zeeman effect. Transitions between these levels undergo the partial Paschen-Back

effect. For intermediate and high magnetic fields (B > 4 T), both levels will be in



the Paschen-Back regime. Since the energy splittings for low magnetic fields will be

relatively small compared to the other broadening effects, I will assume that we are

solely dealing with this complete Paschen-Back effect.

3.5.2 The Energy Splitting

Let ml denote the quantum number for the component of the orbital angular momen-

tum which is parallel to the magnetic field vector B. m. shall denote the correspond-

ing quantum number for the electron spin. Please note that the notation has changed

from the last section. The energy shift AEs due to the magnetic field is calculated

for the Paschen-Back regime in Ref. [20, page 310]:

eh
AEs = B I (mi + 2m) . (3.35)

2 me c

Assuming that both levels undergo a complete Paschen-Back effect, the transitions

have to satisfy the selection rules (Ref. [2, page 210])

Ams = 0; (3.36)

Amj = 0, +±1; depending on the polarization of the light. (3.37)

The transitions appearing in the spectrum are then derived from

eh
Espectrum = Einit- Einal - AmI R•B I . (3.38)

2me c

Neglecting a further splitting of these 3 levels due to spin-orbit coupling, the spectral

lines have the appearance of a Lorentz triplet. The center line will have twice the

intensity of the shifted lines. The splitting due to the Zeeman effect in the Paschen-

Back regime, together with the relative intensities of the lines, is illustrated in Ref.

[2, page 211, Fig. 22].

For the purposes of this thesis, the splitting introduced due to the magnetic field

will therefore be calculated using

AAzeeman Wce e B Ao0
- m(3.39)Ao o mW c 27r c'

where wc•e denotes the electron cyclotron frequency. For a magnetic field of B = 5 T,

the deuterium transition 2-9 would exhibit a Zeeman splitting of 0.694 A.



3.5.3 The Effect of Zeeman Splitting on the Spectral Pro-

files

Even for the maximal magnetic fields of Bmax =- 8 T occurring in the divertor, the

Chromex spectrometer system will not be able to resolve the corresponding split-

ting into separate peaks. Therefore, the magnetic field will effectively broaden the

measured line widths in addition to the other broadening mechanisms.

In the absence of a magnetic field, the spectral profile could be described by the

following functional form:

FB=(V, w) = V1 Voigt (Vo, w) + V2 + V3 w. (3.40)

The parameter Vo takes the place of the form parameter a of the Voigt profile. The

variable w is again the distance from the line center scaled by the Gaussian width

as defined in equation 3.13. FB=(V , w) is essentially a Voigt profile with an overall

scale, a constant offset V2 , and a linear correction V3 to the background.

In the presence of a magnetic field, the single line described by equation 3.40 will

split into three lines. Each of these three separate lines will be broadened by the

same physical processes which affect the single line shape. Calculations of spectral

line profiles due to combined Stark and Zeeman effects have been carried out in Ref.

[18], but only for the transitions L, LO, and H,. In this thesis, I will assume that each

of the three existing lines in the presence of a magnetic field is quantitatively affected

in the same way as the single line in the absence of a magnetic field. The Lorentzian

and the Gaussian widths of each of the three lines described by Am, = 0, ±1 will

be assumed to be equal to the corresponding widths of the single line in the zero

magnetic field case. This is indeed an approximation: although it is certainly correct

for the Doppler profile and the instrumental profile, it is not true a priori for the

Stark profile.

With this approach, one can approximate the measured profile of the spectral lines

by a superposition of three Voigt profiles. They have the same shape parameter a,

amplitudes corresponding to the relative intensities of the transitions Aml = 0, ±1,

and centers in w-space shifted by Wcenter,Am =- Am1 AWZeeman -



The quantity Awzeeman denotes the full splitting of the transition in w-space,

that is, the splitting between the transitions Ami = +1. Noting that this splitting in

frequency space is given by

AVZeeman - 2yo B| (3.41)
h

it follows that

Awzeeman = 4 /n2  o JBI (3.42)
h AVG
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Figure 3-2: The form of the spectral line shape in the presence of a magnetic field, plotted in w-
space. The solid curve shows Fzeeman (V, w, Awzeeman) with the parameters V = (5, 1, 0, 0).
AWZeeman =-- 2.87 # AA/Zeeman = 1.18 A was calculated for the deuterium 2-7 transition,
assuming a magnetic field of B = 8 T and a temperature of T = 2 eV. The three dashed curves
show the three transitions Aml = 0, ±1 separately.
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The overall functional form approximating the measured profile in the presence

of a magnetic profile can then be written as

=~1
Fzeeman , W, AWZeeman) 2V1 Voigt (V0, w) (3.43)

1 1
+- V, Voigt (V0, w - - Awzeeman)

4 2
1 1

+- Voigt (Vo, w + -Awzeeman) + V2 + V3 w,

where Awzeeman is given by equation 3.42.

Except for the magnitude of the magnetic field B, which is required for the calcu-

lation of Awzeeman, equations 3.43 and 3.40 are dependent on the same parameters.

As expected, the function Fzeeman (V, w, AWZeeman) reduces to FB=O(V, w) in the

absence of a magnetic field.

The superposition of the three Voigt profiles leading to the spectral shape function

Fzeeman (V, w, Awzeeman) is illustrated in Fig. 3-2. From this plot, it is apparent that

one cannot expect the experimental data to exhibit three separate peaks, not even at

the highest magnetic fields.



Chapter 4

Numerical Procedure for the

Analysis of Broadened Deuterium

Lines

This chapter will describe in detail the method by which a raw spectrum is analyzed

in order to obtain the underlying electron density. I assume that the optimal sys-

tem setup was chosen for the data acquisition, such that the four deuterium Balmer

transitions 2-7, 2-8, 2-9, 2-10 are analyzed with the highest possible instrumental

resolution. The analysis is based on a single-transition fit: the electron density is

extracted from an individual spectral line independent of its series neighbors. Thus,

strictly speaking, it is not necessary to have more than one line present in a spectrum.

However, multiple lines allow for a comparison of the different results.

It is entirely sufficient to use count spectra - as opposed to brightness spectra -

for the density analysis since the spectral sensitivity of the instrument is constant

over the fit interval surrounding a spectral line to a very good approximation. The

experimental data will be represented by two vectors of the same length:

Z(y,t) = ( 1 ,i 2 , ... , 1242) ,

Xcal(y) (Acal,1 •cal,2 , '" cal,1242)

The element ix(y, t) represents the number of counts on the bin (x, y) of the detector



plane, measured at time t of a specific discharge. The calibration map provides the

wavelength A•ai,x(y) corresponding to that bin for that specific discharge.

4.1 Fundamental Fitting Process

In the following, the analysis procedure will be described for a data set which is

'appropriate' for calculating the electron density. A data set is 'appropriate' if it does

not fulfill any of the rejection criteria listed in a later section of this chapter.

Let the spectral wavelength of the analyzed transition be denoted by A0 . The

analyzing software selects all the data points whose calibrated wavelengths lie in an

interval surrounding this central wavelength:

Acal,x E Imax = [Ao0 - AAleft, 0Ao + AAright] . (4.1)

The bin (x, y) with the maximal number of counts among those data points is deter-

mined to correspond to Acal,max. In general, AA/ieft ' AAright. The interval edges are

chosen such that an impurity close to the deuterium transition cannot be mistaken

for the line maximum.

The analysis interval is then recentered around the wavelength Acai,max:

Icenter = [Acali,max - AAleft , Acali,max + A.Aright] . (4.2)

The data points in the interval Icenter are used for a fit to the Gaussian

f(G,x) = Goexp(- + G3 +G 4 x+G 5 x2, (4.3)((4.22
(_ 2

z = -G (4.4)
G2

For this preliminary least squares fit, it is not relevant that the functional form is

specifically a Gaussian since this fit is only used to determine the initial estimates for

the later fitting procedures.

The vector G = (Go, ..., G5) is returned as the result of the least squares fit. The

Gaussian is centered on the data and its peak in wavelength space does not necessarily

coincide with the point where that data set has its absolute maximum. The variable



G1 will then be equal to the wavelength which is assigned to the transition by the

wavelength calibration. The wavelength data are now shifted onto its final spectral

value:

Aspec(y, t) = Aca(yt) + A0 - G . (4.5)

This procedure allows one to exclude all errors which could result from the absolute

wavelength calibration. The analysis is solely dependent on the dispersion measure-

ments.

Let us assume that p is the number of data points lying in the interval

[ 1 1 1
bfit 0 - r2 sym, A + 2 AZAsym , (4.6)

where AAsym denotes the width of the fitting interval in wavelength space. The points

for the final data fitting procedure are selected as follows:

Af it = (Aspec,xI ., AsPeC,xk ASpeC,Xp), (4.7)

Vk e {1, ... ,p} : ASPeC,Xk E Ifit7

Wfit = (W1, ... , wk , ... , p) , (4.8)

Vk E {1,...,p} : wk - 2 An2 (-••
AvG Aspec,xk Ao]

fit = ifit, , .. , 'fit,Xk ... , ) fit,XP , (4.9)

where

AUG = /AVDoppler + Av/nstr,G (4.10)

is the width of the profile resulting from the convolution of the Doppler profile with

the Gaussian part of the instrumental profile. Using an estimated neutral temperature

of T = 2 eV, AvG is treated as a known quantity.

The final fit will be performed in frequency space, with an abscissa scaled by the

Gaussian width units. By construction, the line center has the coordinate w = 0.

The analysis interval can be chosen to be symmetric since the effect of neighboring

impurity lines will be suppressed by the algorithm of the fitting method, as will be

shown in chapter 5. In addition, an analysis interval symmetrically centered around

the line peak will allow an improved fit to the wings of the line shape.



The numerical fitting routine used is discussed in Ref. [3, chapter 11]. It performs

a non-linear least squares fit to a function of an arbitrary number of parameters.

The function may be any non-linear function. The routine has to be provided with

three vectors: two vectors for abscissa and corresponding ordinate values, as well

as a vector W specifying a relative weight for each data point within the fit. The

functional form to be fitted is given by equation 3.43:

1
Fzeeman(V, w, Awzeeman) = 2 Vi Voigt (V0, w)

1 1
+- Vi Voigt (Vo, w - - Awzeeman)

4 2
1 1+- Vi Voigt (Vo, w + - AWZeeman) + V2 + V3 w .
4 2

For each discharge, the magnetic field measured as a function of time is retrieved from

the database. Knowing the magnetic field at a specific point within the divertor for

all times, the Zeeman splitting in w-space can be calculated by using equation 3.42.

The fitting routine returns the vector V. The value needed for the calculation of

densities is the form parameter Vo. In order to perform the fit, initial guesses for the

elements of V have to be provided. These are taken to be

pinit = (1.4, Go, Ga 3 G4 - G, + G5 - G , 
2O . (4.11)

In the initial fit, all data points are taken to have an equal relative weight by choosing

W = (1, ... , 1). As a result of the initial fit, the parameters V =1 are returned.

Based on the results of an iteration j, the weighting of the data points is changed

in a way to be described below. Using the parameters returned by the fit j as a guess,

the fit is iterated on the basis of the same set of data points, returning the parameters

Vj+l as a result. This procedure is iterated up to 20 times, unless the parameter Vo

converges before that number of iterations is reached. The iteration is considered to

have converged when V3 = V0j +I is true to within an accuracy of 1.



Based on the curve Fzeeman(V , W, AWZeeman), the weighting for the iteration j + 1

is calculated as follows:

Vk E {1, ..., p}: (4.12)

Wk = exp -9( F Z eeman (V:: 'W k; AWZeeman) - )xk
FZeeman (g I-•k AZeema)-an)- (G 3 + G4 - Gi + G 5 G2)

FZ (J, WkAWZeeman) > "xi, : Wk 1

The influence of a particular data point (wk, ixk) increases with its weight Wk. The

above weight distribution is a result of several numerical tests comparing the desired

fit with its actual form.

In the above attribution of weights to data points, the relative influence of all

data points which lie below or exactly on the numerically fitted curve - given by

Fzeeman( , Wk AZ•eeman) - will be equal to its maximum for the next iteration of

the fit. The influence of all data points which lie above the numerically fitted curve

is decreased exponentially with their distance from the numerical fit relative to the

distance of the numerical fit from the background as obtained from the Gaussian fit.

By construction, the weight attributed to a data point is a continuous function of

its distance from the numerical fit at that position in w-space. In addition, no data

point is ever disregarded completely.

The physical reason for manipulating the relative weights of the data points in

order to obtain a final numerical fit is found as follows: we need to find a numerical

fit which represents the width of the deuterium transition best. The impurity transi-

tions surrounding the deuterium line will always distort the line shape by adding to

the count rates in certain regions of w-space. These impurities are only sometimes

observable whereas the deuterium lines can always be found in the spectrum. By

attributing the highest influence to data points which lie below or exactly on the

numerical fit, one can ensure that those data points have the highest influence on the

result of the fit which are solely due to the deuterium transition.

Although these arguments are generally valid, the presented method is only func-



tional when the center of the deuterium transition is precisely determined for the data;

this requirement is only met if there are no dominant impurity transitions present in

the interval Imax defined in equation 4.1.

4.2 Rejection Criteria

This section summarizes all the criteria used in the analysis software to reject mea-

sured spectral line shapes which are not appropriate for the determination of electron

densities. The completeness of the corresponding rejection criteria for data sets en-

sures that an automation of the analysis is possible.

The following text lists a number of criteria. If any of these criteria is fulfilled for

a particular transition at a particular time in a specific discharge, no density data for

this particular transition will be recorded in the database. This set of conditions is

the outcome of empirical tests.

If the standard deviation of the raw data is too small, no transition is observed:

the data are too flat.
Rejection Criterion 4.2.1 (Standard Deviation)

1 l k Xk) < 0.04-1 Ek=l ZiXk P

The analysis program calculates how far the wavelength determined for a par-

ticular transition is shifted from its actual value. Data sets for which this shift lies

substantially beyond the error limits of the wavelength calibration are rejected.
Rejection Criterion 4.2.2 (Absolute Wavelength Calibration)

G1 - A0ol > 3nm

One discards data with low ratios of the signal to the underlying noise. This

sorting process already starts after the preliminary Gaussian fit. Three restrictions

are imposed on the data sets, regarding their absolute peak height, their peak height

relative to the background, and their maximum number of counts. For the current

operating temperature of the detector, the dark charge count rate is about 120 counts

per data acquisition cycle (- 45 ms).



Rejection Criterion 4.2.3 (Peak Height of Preliminary Fit) Go < 20

Rejection Criterion 4.2.4 (Relative Peak Height)

Go < 0.04
G3 G4 - G, + G5 -Gi

Rejection Criterion 4.2.5 (Maximum Count Number in a Single Bin)

max({i , i , ix.}) <160

Whenever the fit to the Voigt profile diverges, the data set can obviously not be

used for a density calculation.

Rejection Criterion 4.2.6 (Divergence of Voigt Fit) The fit to the Voigt pro-

file diverges: the form parameter Vo is infinite or zero, the scale V1 becomes infinite

or negative, the constant background term V2 diverges, or the linear term V3 diverges.

Some fits to the Voigt profile resemble the data points near the peak very well,

but the wings of the fit do not match the data. If the constant term drops well below

the number of counts due to the dark charge, the data set is rejected.

Rejection Criterion 4.2.7 (Dark Background) V2 < 100

In the chapter dealing with the error analysis of this fitting procedure, a routine

calculating the maximal inaccuracy due to the data scatter in the wavelength direction

will be introduced. Its result rs) indicates what the maximal error of the density

calculation would be. It is calculated on the basis of the fitted profile and the data

set.

Rejection Criterion 4.2.8 (6A Scatter) rsA, > 1.5

In some cases of very low electron densities, the result for the total measured

Lorentzian width AAL turns out to be very close to the expected instrumental contri-

bution to the Lorentzian width. These cases cannot be used to calculate an electron

density since the uncertainty of the measurement would be too large.

Rejection Criterion 4.2.9 (Dominating Instrumental Contribution)

AAL < 1.1 AAInstr,L,grating



4.3 Calculating the Electron Density from the

Spectral Line Fits

The fit of the theoretically predicted profile Fzeeman(, w, AWZeeman) to the measured

spectra requires a knowledge of both the underlying magnetic field strength and the

temperature of the emitting deuterium atoms. Both parameters are fixed and are not

allowed to vary during the least squares fit.

The temperature estimate together with the knowledge of the instrumental line

shape leads to a knowledge of the expected total Gaussian width AvG. The toroidal

magnetic field Btoroidal is known for all discharges as a function of time. In order to

calculate the magnitude B of the magnetic field, the approximation

B = B | Btoroidall (4.13)

is used, which leads to errors of less than 3%.

The fitting routine returns the vector V. For the calculation of electron densities,

one only needs the shape parameter a = V0 . The Lorentzian width due to Stark

broadening can then be calculated as

a A)AG
AAStark aAAG AInstr,L,grating. (4.14)

From this width AAStark in wavelength space, the underlying electron density is de-

rived using equation 3.24.



Chapter 5

Error Analysis

This chapter will try to quantify some of the uncertainties of the electron density mea-

surement performed. The uncertainties dealt with here have three different origins:

approximations made in the theory underlying the analysis, the statistical nature of

the count spectra, and a non-homogeneous plasma.

The effects discussed will include the neutral temperature dependence of the line

shape, as well as line shape distortions due to nearby lines from impurities. In addi-

tion, it is examined whether it is appropriate to calculate the electron density from

only a single line, without taking its series neighbors into account. The results ob-

tained from different line transitions are compared. Furthermore, the parameter r, is

presented as a measure for the maximal inaccuracy of the result due to the deviations

of the fits from the data in wavelength space. Also, the consequences of electron and

neutral density gradients within the view of observation are discussed. An estimate

of the measurement uncertainties is provided, based on the statistical characteristics

of the line fits.

This chapter concludes with an attempt to estimate the overall uncertainty of the

electron density measurements performed with the presented method. This estimate

includes - in addition to the effects mentioned in the preceding paragraph - the un-

certainty in the theoretical Stark widths, the uncertainty in the Lorentzian widths of

the instrumental line shape, as well as the inaccuracy of the dispersion measurements.
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Figure 5-1: Case of a low electron density: neutral temperature dependence of the electron
density calculation using the D8-transition. The upper graph shows the raw spectrum in wave-
length space. The center graph shows the data and the curve fitted to it in w-space, assuming a
neutral temperature of T = 2 eV. The lower graph shows the density calculated for this specific
transition as a function of the neutral temperature used for the analysis.

5.1 Neutral Temperature Dependence

The calculation of electron densities from spectral line profiles must be corrected for

the Doppler broadening which depends on the temperature of the emitting deuterium

atoms. As argued in a previous chapter, a neutral temperature of T = 2 eV will be

used to calculate the electron densities. This section will exhibit the influence of

neutral temperature on the result for the electron density.

Figures 5-1, 5-2, and 5-3 show spectral line profiles together with the theoretical

profile Fzeeman(V, W, Awzeeman), fitted to the data in w-space assuming T = 2eV.

The electron density is then recalculated for the same overall configuration, except

that the underlying neutral temperature is changed within a broad range. The re-
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suiting electron densities are then plotted as a function of neutral temperature.
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Figure 5-2: Case of an intermediate electron density: neutral temperature dependence of the
electron density calculation using the D 2-7-transition. The upper graph shows the raw spectrum
in wavelength space. The center graph shows the data and the curve fitted to it in w-space,
assuming a neutral temperature of T = 2 eV. The lower graph shows the density calculated for
this specific transition as a function of the neutral temperature used for the analysis.

The three figures mentioned cover the whole possible range of densities in the

tokamak divertor. Fig. 5-1 shows an extreme low density case. As can be seen, the

temperature dependence is almost linear with some scatter due to numerical inaccura-

cies combined with noise in the data. In the examined range of neutral temperatures

0.5 eV < T < 13 eV, the calculational result for the electron density varies between

5.3. 1019 m- 3 and 1.8. 1019 m- 3 . This strong variation with temperature shows that

the Doppler broadening has become an effect comparable to Stark broadening. There

are two causes for this situation: the low electron density which is equivalent to a

small Stark width, and the fact that Fig. 5-1 shows a deuterium 2-6 transition for

which the Stark widths are generally smaller than those for the Balmer transitions

394 396 398 400
Wavelength [nm]



with higher principal quantum numbers n.
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Figure 5-3: Case of a high electron density: neutral temperature dependence of the electron
density calculation using the D 2-9-transition. The upper graph shows the raw spectrum in
wavelength space. The center graph shows the data and the curve fitted to it in w-space,
assuming a neutral temperature of T = 2 eV. The lower graph shows the density calculated for
this specific transition as a function of the neutral temperature used for the analysis.

Figures 5-2 and 5-3 show the temperature dependence of the analysis for the cases

of intermediate and high electron density. The intermediate density case is the one we

will encounter during most discharges. The calculated electron density varies between

4.25 .1020 m-3 and 3.9 .1020 m- 3 over the entire range of neutral temperatures that

can be expected to occur. For the case of high electron densities shown in Fig. 5-3,

the effect of temperature dependence is entirely negligible.

Result of Error Analysis 5.1.1 (Neutral Temperature Dependence) For elec-

tron densities of order Ne a 1020 m- 3 and higher, the influence of the neutral temper-

ature uncertainty on the electron density calculation becomes negligible.

· · · · · · ·
.



One conclusion to be drawn from this result is concerned with the numerical

fitting procedure itself: the neutral temperature is not allowed to vary within the fit,

it is a priori chosen and stays fixed. Figures 5-2 and 5-3 show that this approach is

entirely justified and even necessary for the procedure to work properly: allowing the

temperature to vary within the fitting routine could - in the case of an intermediate

or high electron density - lead to a diverging temperature since there would be almost

no dependence on this parameter. Fixing the neutral temperature thus prevents the

routine from returning unphysical results.

In addition, a weak temperature dependence implies in almost all the cases of

interest that even a substantial error in the estimate T = 2 eV could not affect the

calculated electron density substantially.

5.2 Impurity Lines

This section will demonstrate the properties of the fitting routine presented in chapter

4 regarding the influence of impurity lines surrounding the deuterium transition of

interest. To be precise, it will be attempted to show that equation 4.12 is successful in

reducing the influences of impurity effects in such a way that the fit of the theoretical

line profile resembles only the deuterium transition, but not the impurity lines.

An example is shown in Fig. 5-4. The deuterium 2-9-transition is surrounded by

several impurity lines, some of them surrounding the peak and some situated close

to the center of the peak. The graph shows that the fit clearly follows the deuterium

transition, not taking the impurities into account at all.

Another example of a deuterium line surrounded by impurity lines is given in

Fig. 5-5. It shows the deuterium 2-8-transition, extracted from the same measured

spectrum as Fig. 5-4. It is obvious that the fit to the 2-8-transition is distorted by

the impurity effects. The fit is centered at the strong impurity transition close to

the center of the 2-8-transition. For that reason, the width of the fit is far smaller

than the actual width of the 2-8-transition. The reason for this deviation is found in

the fact that a high count rate due to an impurity line is located within the interval
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Figure 5-4: The upper graph shows the raw spectrum of the D 2-9-transition in wavelength
space. The lower graph shows the same spectrum in w-space, together with the theoretical
profile fitted to it. The numerical fit resembles the deuterium transition only, a distortion due to
the impurities cannot be seen. The presented data are taken from time frame [0.906 s, 0.951 s]
and view Kbottom, 14 in discharge 950609011.

Imax defined in equation 4.1. As a result, the electron density calculated from the

2-8-transition is Ne = 6.10 1020 m - 3 , about half the value calculated from the 2-9-

transition.

Result of Error Analysis 5.2.1 (Impurity Line Effects) As long as the inter-

val [Ao - AAieft, AO + AAright] surrounding a deuterium Balmer series transition at

Ao is not strongly affected by impurity lines, the fit of the theoretical shape function

Fzeeman (V, W, AWZeeman) to the data will not be affected by the impurity lines either.

(See equation 4. 1 for a more detailed specification of the interval.)

In order to separate acceptable fits from the ones to be rejected, one therefore

has to rely on another rejection criterion for the numerical fits. This criterion, pre-

sented later in this chapter, will be provided by the calculation of the quantity rAx,

- Electron density: No = 12.35 1020 m3

Transition: D 2-9
-< Grating: 1800 mm

- Temperature: T = 2.00 eV
Magnetic field: B = 9.60 T

-><- > -
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Figure 5-5: The upper graph shows the raw spectrum of the D 2-8-transition in wavelength
space. The lower graph shows the same spectrum in w-space, together with the theoretical
profile fitted to it. The numerical fit is clearly distorted by the impurity effects. The presented
data are taken from time frame [0.906 s, 0.951 s] and view Kbottom 14 in discharge 950609011.

which indicates the maximal inaccuracy of the electron density due to data scatter in

wavelength space.

5.3 Neighboring Balmer Series Lines

The analysis routine is constructed to use a single deuterium transition in the Balmer

series to calculate the underlying electron density. The series neighbors of the transi-

tion of interest are not taken into account, implying that they cannot affect the result

of the analysis. It is the aim of this section to examine this hypothesis.
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Figure 5-6: A strongly Stark broadened deuterium spectrum without impurity effects, shown
in wavelength space. The different transitions from the Balmer series of deuterium are indicated.
The data were observed with fiber Abottom 16 during time frame [0.994 s, 1.039 s] in discharge
950509022.

5.3.1 Fitting Single Transitions Separately

In order to test whether the existence of neighboring lines in the Balmer series can

affect the results of the analysis routine outlined in chapter 4, one needs to look at a

set of data satisfying certain conditions:

* If there is any interaction between multiple transitions affecting the calculational

result for the electron density, this effect would be most apparent in the case of

a high electron density. Therefore, a spectrum exhibiting high electron densities

should be chosen for the analysis.

* The data set to be examined should be as free from impurities as possible in

order to separate different effects.

* As many series transitions as possible should be present within the spectrum.



A spectrum which satisfies all these criteria is presented in Fig. 5-6. The standard

analysis applied to this data set returns the numerical results given in Table 5.1.

Transition Form Scale [ Offset I Linear Term AAStark [A] [ Ne [1021 m - 3

2 - 6 4.96 65119 132.4 -0.0079 3.778 1.01
2- 7 6.69 29329 139.9 0.0202 5.166 1.19
2- 8 9.92 16662 139.8 0.0260 7.788 1.16
2-9 12.05 8941 159.5 0.0296 9.501 1.16
2- 10 13.45 4205 180.0 0.0930 10.619 0.89

Table 5.1: The results returned by the analysis routine for the spectrum shown in Fig. 5-6. The
form parameter denotes Vo. The scale refers to V1 [counts]. The offset represents the constant
background given by V2 [counts]. The linear term refers to V3 [counts / unit in w-space]. Note
that the external magnetic field was given by B = 5.88 T. The temperature was assumed to be
T = 2eV.

The energy levels of the series converge at the series limit D 2-o00. The number of

states per unit frequency interval increases monotonically as the distance to the series

limit decreases. For that reason, the constant term Vo should increase monotonically

with the principal quantum number n of the transition. The data for the transitions D

2-6, ... , 2-10 presented in Table 5.1 do indeed exhibit this behavior. Due to the same

phenomenon, the linear variation of the transition background around the center of

each single line in frequency space has to be non-negative: V1 > 0. This condition is

satisfied by all transitions present in the spectrum, except for D 2-6.

It is also expected that the separate analysis of all transitions leads to comparable

results for the electron density. In the data set discussed, the density derived from

the transition D 2-10 lies far off the value derived from the other transitions. The

results for the other transitions center around a value of Ne = 1.13 - 1021 m - 3 with a

maximal deviation of 10%.

Another effect to be considered here is the depression of series limits, as discussed

in Ref. [9]. The separation between levels decreases with increasing principal quan-

tum number n. Given the Stark broadening of the series members, the states will

eventually merge into a continuum for energies below the series limit. The lowest en-

ergy of this continuum is referred to as the Inglis- Teller limit. The principal quantum



number nmax of the last term observed in the series will be given by

N 15/2= 0.027 a0o- 3 , (5.1)

where a0 is the Bohr radius and Ni the ion density. For Ni r Ne = 1.1 .1021 M-3 , one

finds nmax = 12.47.

From the part of the spectrum measured, it cannot be decided where the onset of

the continuum lies. Among the transitions observed, the 2-10-transition will in any

case be the transition which is most affected by the depression of the series limit, an

effect which might lead to a distortion of its line shape and which could expain the

low result for the electron density derived from the line shape of this transition.

5.3.2 Fitting Multiple Transitions Simultaneously

It has to be examined whether neighboring series transitions affect the density cal-

culation from a single transition. The deciding criterion will be based on the result

returned by a routine that performs a numerical fit of multiple lines in the spectrum.

The routine will be applied to the spectrum presented in Fig. 5-6.

The routine fits the theoretical function Fspec (V spec, Acenter,cai , A) to the entire

spectrum in wavelength space. The function is given by

Fspec (Vspec Acenter,cal , A) (5.2)
10

= Fzeeman ( (a2-n V 1,2 -n , 0, 0), w2-n, iwZeeman,2- n)
n=6

[1+ V2,spec + V3,spec [A - (Acenter,cal,2-6 Acenter,cal,2-10)]

where

Vspec = (V 1,2 -6, ... , V1, 2 -1 0 , V 2 ,spec, V3,spec, Ne,spec) (5.3)

is the vector which contains the free parameters of the fit. V1,2-n denotes the multi-

plicative scale for the 2-n-transition. The result returned from the fit to the single

transition 2-n is used as an initial estimate for this parameter. V2,spec is an overall

constant. Its initial estimate is given by

1
V 2 ,spec = - (V 2 ,2-6 + V2 , 2 - 1 0 ) , (5.4)

2
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Figure 5-7: The diamonds show the spectrum already presented in Fig. 5-6. The solid line
shows the result of a consistent theoretical fit to the data points. The parameters returned by
the fitting routine are given in Table 5.2.

again using the results from the single fits. Similarly, the initial estimate for the linear

term is taken to be

V2,2-6 - V2,2-10 (5.5)
V3,spec = -(5.5)

Acenter,cal,2-6 - Acenter,cal,2-10

The electron density Ne,spc will be used to calculate the Stark widths of all deuterium

transitions in the spectrum consistently. Its initial estimate is the average of the

densities obtained from the fits to the transitions 2-6, ..., 2-9.

The variable (2 2-n denotes the form parameter of the spectral Voigt profile for the

transition 2-n, calculated for a given electron density of Ne,spec, including Doppler,

Stark, and instrumental effects in the way described in chapter 3 and section 4.3.

The quantity Awzeeman,2-n is the energy splitting in w-space for the 2-n transition,

as calculated for the single fits in equation 3.42. The vector

Acenter,cal = (Acenter,cal,2-6 , ... , Acenter,cal,2-10) (5.6)



Table 5.2: The results obtained by performing a consistent overall fit to the entire spectrum
shown in Fig. 5-6. Acenter,cal denotes the wavelength of the center of the transition, according
to the wavelength calibration. The scale refers to V1,2 -n [counts]. The offset represents the
constant background given by V2,spec [counts]. The linear term refers to V3,spec [counts / nm].
Ne,spec is the electron density that is consistently used to resemble the Stark widths for all the
transitions in the spectrum. Note that the external magnetic field was given by B = 5.88T.
The neutral temperature was assumed to be T =2 eV.

contains the centers of the deuterium transitions present in the spectrum, determined

during the single fit processes and based on the wavelength calibration. These values

are kept fixed during the fit of multiple transitions.

The weighting for the different data points will be determined similar to equation

4.12 used for the single fits. Let m be the number of data points that describe the

spectrum. It is then assumed that the experimental spectral data points are given by

the vectors

A = (Al,...,k,..., Aim), (5.8)

and that the values calculated from the theoretical fit function based on the initial

estimate parameters are given by the vector

F- (Fl,..., Fk,..., Fm). (5.9)

The weight vector W used by the least squares fit routine is calculated as follows:

Vk E { 1, ... , m}: (5.10)

Fk <ik:
F k -kk 

2

Wk = exp [_9( Fk - ik 2
Fk - b k

with b Ak = V2,spec + V3,spec Ak - (Acenter,cal,2-6 + Acenter,cal,2-10)

Fk > ik : Wk= 1

Transition Acenter,ca

2-6 410.
2-7 396.
2 -8 388.
2-9 383.
2- 10 379.

-1.437 1.105



This weighting ensures a suppression of impurity effects on the multiple line fit. Since

the initial estimates of the multiple fit parameters are based on the final results for

the single fits, the fitting routine converges after only one iteration.

The result of the multiple transition fit is graphed in Fig. 5-7. The numerical

values are presented in Table 5.2. The overall result of Ne,spec = 1.11 - 1021 m -3 lies

remarkably close to the average of the electron densities calculated separately from

the transitions 2-6, ..., 2-9.

Result of Error Analysis 5.3.1 (Neighboring Series Transitions) The

electron densities calculated from the separate deuterium transitions 2-6, ..., 2-9 lie

close to the electron density calculated from consistently fitting the whole spectrum

containing the transitions 2-6, ..., 2-10. This implies that the effects due to series

neighbors only affect the electron density calculations negligibly. From comparisons of

the separate electron density calculations, it becomes apparent that the results for the

2-10-transition are less reliable.

5.4 Data Scatter in Wavelength Space

This section introduces a rejection criterion for the theoretical fit, based on an es-

timate for the maximal uncertainty due to data scatter in wavelength space around

the numerical fit.

For this section, it is assumed that the three vectors containing the data

fit (fit,x , ***, fitx , ... , fitxp

Wrfit (W1 , ...= Wk i ... Wp

Afit (Aspec,xl ... , A spec,xk , ... , 1spec,xp ),

are given. The precise definition of these vectors is provided by equations 4.7-4.9.

In addition, it is assumed that the numerical fit has been performed successfully

and that the theoretical profile Fzeeman (V, W, Awzeeman) has been obtained, as well

as the final vector of weights calculated from 4.12:

-W = (W1,...,Wk,..., Wp) . (5.11)



Figure 5-8: The calculation of the variable r6, used as a rejection criterion. The graph to
the left shows the raw data within the interval Ifit (see equation 4.6) in wavelength space. The
center graph shows the numerical fit (solid line) to the raw data points (diamonds) close to the
center of the line in w-space. The two horizontal lines indicate the restriction imposed by 5.12.
The solid rectangle encloses the region which is shown in the graph to the right. The graph to
the right shows the numerical fit (solid line) to the raw data (diamonds) in a small portion of
w-space. The lengths of the thick horizontal lines between the numerical fit and the raw data
points are elements of the vector ' in equation 5.22.

For the given purposes, the set of data points is restricted to those points which lie

between the - and the -intensity points. This is done by requiring4 4

S 1 3ifit,xk 4•min + 4 (imax - imin) , imin + 4 (max - iZmin) , (5.12)

where

Zmin = min ifit,'x, ...,i fit,xl, ... ,ifit,XP , (5.13)

imax = max ifitXI ,.ifit,xk ,. ifit,X} . (5.14)

This requirement is graphically illustrated in Fig. 5-8. The resulting subset of data

points will be denoted by the vectors

Wpeak (Wpeak,1 ,... * peak,l * ... , *peak,q) , (5.16)

--4 = (5.16)Wpeak (peak,l W ** peak,l 1 * * peak,q) , 5.6
Apeak (Apeak,1 , ... Apeak,l ,... *Apeak,q) , (5.17)

Wpeak (Wpeak, 1 ... , WVpeak,l , . .. , Wpeak,q) , (5.18)

with q < p, p and q positive non-zero integers. It is intended to calculate the deviation

of the data points from the fit in wavelength space. First, one calculates this deviation

vw



in w-space, as illustrated in the right graph in Fig. 5-8. For each data point at Wpeak,l

on the w-axis, one can find a coordinate w' such that the following conditions are

both met:
Zeemanm~n (5.19)

ipeak,l = Fzeeman(V, w I , AWzeeman) , (5.19)

wW - wpeak,1I is minimal. (5.20)

These conditions ensure that w' is the point closest to wpeak,l at which the value of

the numerical fit is equal to the value of the raw data count rate at wpeak,1. One can

then calculate the vector

= (X IX...,X..Xq) , (5.21)

X = Wpeak,l - W1. (5.22)

The variable

S= 1 X 2  (5.23)
m

will then quantify the scatter of the data around the fit in w space. From the over-

all Gaussian width AGauss underlying the fit, the scatter in wavelength space is

calculated to be
02

0= - AUGauss . (5.24)
C V1n- 2

From a,, the maximal uncertainty of the electron density calculation can be calcu-

lated.

The variable ao, quantifies how far the data points deviate in the wavelength

dimension from the numerical fit. In the case of maximal error, the full Stark width

AAStark was misfitted by an amount of ±2 a. Based on the parameters of the fit, the

Stark width AAStark is calculated as described in section 4.3. Using equation 3.24,

the electron density Ne(AAStark) can be derived. The maximal relative uncertainty

in electron density due to scatter in wavelength space can thus be quantified by

- Ne(AAStark + 2au)
r, = N s(5.25)

Ne (AAStark)

The quantity rsx is used to decide whether a specific fit is acceptable. r.\ does

not provide a good indication how large the physical uncertainty actually is since



the calculation of r6, itself is aimed at finding the maximal uncertainty in electron

density due to data scatter in wavelength space. As a consequence, calculating the

actual physical uncertainty from rs, would invariably lead to an overestimate of that

uncertainty.

5.5 Path Integral

In all preceding parts of this thesis, the plasma emitting the radiation to be analyzed

was assumed to be homogeneous. In reality, the signal entering the optical system is

the result of a path integral along the line of sight. For this discussion, it will be as-

sumed that the emitting plasma volume is homogeneous with respect to temperature

and magnetic field variations. Electron and neutral density are allowed to vary along

the line of sight.

The light path will be parametrized with the length 1, where 1 denotes the distance

from the divertor plate onto which the view is directed. In addition, 1 = d shall denote

a point on the light path, such that all contributions to the signal come from points

satisfying 1 < d. The intensity I of the radiation entering the optical system can then

be calculated using
dl(A) AQ d dc(A) 1)- _ AQ (A,) dl. (5.26)

dA 47r =o dA

Here, A Q is the &tendue of the instrument, and E(A, 1) denotes the local emissivity

of the plasma for the wavelength A at the position 1 on the light path. I has units

of [photons / s], and E has units of [photons / s m3]. The local emissivity can be

calculated from

c(A, 1) = No(l) Ne(1) (V)1,T(1),A . (5.27)

The temperature is taken to be constant along the path integral. The cross section

(ov)j,To,A must be dependent on 1 since the spectral line shape is dependent on the

electron density which can vary with 1. With fixed temperature, the path integral

reduces to
dl(A) A2 d N

dA - a No() N' (1)-- (f),To,, dl. (5.28)dA 47 1=0 dA



As can be seen from this equation, the spectral profile from a deuterium transition is

weighted by the product of the two densities. It is the aim of this section to model

the signal entering the optical system, which is analyzed by the fitting routine (see

chapter 4). For the numerical modeling which is performed for several functional

dependences of Ne(1) and No(l) on 1, the interval [0, d] is divided into intervals

Xpath,i = [(i- 1)Al, i Al] ;i E 1, ... , } (5.29)

with Al -+ 0.

The final signal entering the optical system is modeled to be emitted by d/Al sepa-

rate volumes of length Al along the path and of a cross section AI - which is taken

to be equal for all the volumes - perpendicular to the path. Each separate volume

Vi is located at the position li along the path and is indexed by i E {1,... , d/Al}.

It is assumed that the area A 1 covers the entire cross section of the light cone per-

pendicular to the path at all path positions 1. Given the functional dependences of

the electron and neutral density on the path parametrization 1, one can calculate

the spectral line profile of a particular deuterium transition emitted from the set of

volumes {flVi E {1,...,d/Al} }.

The magnetic field is assumed to be constant along the path, so the Zeeman

splitting Awzeeman is taken to be constant. The calculations presented are based

on the 2-7-transition and on a magnetic field strength of B = 5 T. Using equation

3.24, the width AAStark,i can be calculated from Ne(li). The form parameter ai of

the Voigt profile describing the spectral line shape of the radiation emitted from the

volume Vi is then derived from equation 4.14, thereby introducing instrumental and

Doppler broadening artificially. The use of the 1800 mm 1 grating and a temperature

of T = 2 eV are assumed.

The spectral line shape of the deuterium 2-7-transition emitted from the volume

Vi can then be described by the function

Fiath(w) =Ne() No(l) Fzeeman = (a, 1, 0, 0), w, Awzeeman) . (5.30)



The contributions from the different volumes are summed, leading to

d/Al
FPath(w) = Fypath(w) . (5.31)

i--1

This is the modeled input of the optical system, given the two density variations along

the light path and the physical assumptions mentioned above.

In the following, four different configurations of density variations are used to

calculate Fpath(w). These profiles are then analyzed using the standard routine for

calculating the electron density; this routine is based on the spectral line shape of a

single deuterium transition in the Balmer series.

Neutral and Electron Density Constant

If both neutral and electron density are kept constant along the path, the measured

electron density will always be equal to the electron density on the divertor plate.

Neutral Density Exponentially Increasing and Electron Density Constant

Ne (l) = Ne,plate , (5.32)
No (l) = No,plate exp p ;p > 0 .

If the electron density is kept constant along the path, but the neutral density in-

creases with the distance from the divertor plate, the measured electron density is

still calculated to be equal to the density on the plate. This result is expected since

the change in intensity cannot change the width of a line.

Neutral Density Constant and Electron Density Exponentially Decreasing

Assuming a flush mount probe measures the electron density on the divertor surface

right at the location of the separatrix, the light path will lie within the private flux

zone for all points with 1 > 0. The electron density will therefore decrease with

increasing 1. One can assume that this decrease is exponential and that the neutral
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Figure 5-9: Case of a constant neutral density, with an electron density that is exponentially
decreasing with the distance from the divertor plate (Equation 5.33). Ne,piate denotes the
electron density on the divertor plate. Ne,measured refers to the electron density calculated from
the path integral model.

density is constant:

Ne(1) = Ne,piate exp -p ;p > 0; (5.33)

N0(1) = No,plate

The modeled results are plotted in Fig. 5-9. The spectroscopically measured electron

densities will always be lower than the electron density on the divertor surface, their

ratio being almost constant as a function of the electron density on the plate.

Sharply Peaked Neutral and Electron Density Profiles

The case of electron and neutral density profiles which are sharply peaked at the

same point along the path will be important for chapter 6 of this thesis since the

MARFE phenomena discussed there lead to similar profiles. For the calculations, we
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Figure 5-10: Case of neutral and electron density profiles which are sharply peaked at the
same point along the path (equation 5.34). Ne,MARFE denotes the peak electron density of
the profile. Ne,measured refers to the electron density calculated from the path integral model.
The 'Relative Spatial Width' denotes the ratio Al/d.

will assume the following spatial profiles:

Ne(1) = Ne,background (Ne,MARFE - Ne,background) exp - 2 (5.34)

( 1- 2 2

No(l) = No,background + (NO,MARFE - No,background) exp - 2( 1- 2

The two Gaussians describing the neutral and the electron density along the path

have the same width Al and are both peaked in the center of the path. The quantity

Al/d will be referred to as the 'Relative Spatial Width' in Fig. 5-10 since it expresses

the modeled spatial width of the MARFE as a fraction of the total effective path

length. For the calculations, we choose

NO,MARFE 10 , (5.35)
NO,background

Ne,background = 5 -1019 m - 3 . (5.36)



The calculations have been performed for three different peak electron densities

Ne,MARFE as a function of Al/d.

The results are presented in Fig. 5-10. As expected, the electron density mea-

sured via Stark broadening is predicted to approach the peak electron density with

increasing spatial width of the MARFE. Above relative spatial widths of - 0.3, the

ratio between measured electron density and peak electron density increases roughly

linearly with the spatial width.

Result of Error Analysis 5.5.1 (Path Integral) If both electron and neutral den-

sity vary along the light path of the view, the spectroscopically measured electron den-

sity will lie between the minimal and the maximal electron density on the path. In

addition, the measured value will lie close to N,(l') if Ne(l') No(l') is the global maxi-

mum of the curve Ne(1) No(l).

5.6 Quantification of the Statistical Uncertainty

in the Measurement

This section aims to quantify the uncertainty due to statistical fluctuations in the

count rates and due to theoretical misrepresentations of the experimental spectral

line shape. This section does not take into account the quantitative error in the

theoretical Stark broadening parameters a1/2.

5.6.1 Electronic Noise

As described in chapter 2, the CCD detector exhibits the phenomenon of a thermally

induced accumulation of dark charge. The error associated with this thermal effect

can be quantified by analyzing the detector count rates measured without incoming

signal.

Before each discharge, two frames of data are taken in order to subtract the back-

ground from the detected signal. These frames are used to calculate the statistical
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Figure 5-11: The discontinuous solid curve shows the distribution of the statistical count
rate fluctuations due to electronic noise. The continuous solid curve is a Gaussian fit to this
empirically determined distribution. Its standard deviation is calculated to be 2.48 counts.
The sample has a size of 992264 data points. The diamonds show the distribution due to an
artificially generated noise sample of the same size.

fluctuation due to electronic noise. A frame consists of 14 bin rows, each of them in-

cluding 1242 bins for the spectral dimension. A least squares fit to the 14 background

spectra of a frame is performed using a second order polynomial. The deviations Ac

from this fit are stored in a database. A histogram is generated which shows the dis-

tribution of these deviations. The distribution is plotted in Fig. 5-11. Its functional

dependence is given by
1 A zc2'

P(Ac) = exp C2  . (5.37)

The function P(Ac) is normalized to unity and the standard deviation 0 satisfies

(x2 ) = 2 . The calculation leads to 7nois, = 2.48 counts.

In order to estimate the error of the measurements, it will be necessary to generate

artifical noise with the same statistical characteristics as the measured noise. This

1.5.10 4



will allow to quantify the numerical response of the analysis routine to noise. As an

example, artificial noise has been generated with a standard deviation of 2.48 counts

and an average of zero counts. Using the same sample size as for the experimental

data, the two distribution functions coincide, as can be seen in Fig. 5-11.

5.6.2 Characterization of the Error in the Spectral Line Fits

It is assumed that the vectors containing the abscissa and ordinate values of the raw

data used for the fit in w-space,

fit = (iA1 , ... , iAk ', ... , and (5.38)
f - (w, ... , wk , ... , Wp) , (5.39)

are given, together with the corresponding ordinate values of the fitted theoretical

profile:

F = (Fi, ... ,Fk, ... ,F). (5.40)

These vectors are available after each separate fit to a single line. The error in the

spectral line fits can be analyzed statistically by exploiting these vectors.

Knowing the fit parameters, one can subtract the linear correction and the con-

stant background and obtain the vector

C= (cli , ... ,ck, ... ,cp) , (5.41)

ck = Fk- V2,2-n - V3,2-n Wk

The vector ' denotes the count rate solely due to incoming photon flux, based on the

theoretical fit. The constants V2,2-n and V2,2-n for the deuterium transition 2-n are

returned by the analysis routine as results of the fit. In addition, the deviation of the

data from the fit can be calculated and stored in the vector

AC = (AC1 , ..., -Ack , A•Cp), (5.42)

Ack = iAk - Fk. -

The paired data points {[cl, Aci],..., [cp, Acp]} will be used for the statistical char-

acterization of the numerical fits.
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Figure 5-12: The statistical deviation of the measured spectra from the numerically fitted
theoretical line shapes. Left: The solid curve shows the average of the deviation as a function of
the signal c due to photon influx. The dashed curve provides a smooth polynomial approximation
Ai(c) used for further analysis. Right: The solid curve shows the standard deviation as a
function of the signal c due to photon influx. The dashed curve provides a smooth polynomial
approximation ori(c) used for further analysis.

Data points were accumulated over several discharges, leading to a size sample of

483534 points. For this sample, only numerical fits to the deuterium 2-7-transition

were collected. From these data points, the average deviation of the numerical fits

from the measured spectra is calculated as a function of the signal due to the incoming

photon flux. Similarly, the standard deviation is calculated as a function of the same

parameter. For both curves, each data point is calculated from a subset of 2000

points. The two curves are presented in Fig. 5-12.

As to be expected, the absolute standard deviation increases with the signal. The

discontinuous peaks in the curve are due to impurity effects which always occur at

typical locations within the fit. For further error analysis, the average deviation and
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the standard deviation will be approximated by the smooth polynomial functions

Ai(c) and ai(c), which are also shown in Fig. 5-12. These two functions completely

characterize the statistical error of the theoretical fits to transition 2-7.

5.6.3 Statistical Uncertainty in Electron Density Measure-

ments

The method used to estimate the statistical uncertainty of the electron density cal-

culation will be presented here. To find the error at a given density Ne,gen, the

theoretically predicted profile Fzeeman(V, w, Aw) is used to generate the vector

Ftheory = (Ftheory,1i , . . , Ftheory,k , . . , Ftheory,p) , (5.43)
Zeeman( -4Az•a ),(.4

Ftheory,k Zeeman theory, Wk, AWZeeman) , (5.44)

Vtheory = (a (Ne,g3en) , Vtheory,1, 120, 0 ) . (5.45)

All parameters are defined in chapter 3 and are chosen according to the transition 2-7

for an electron density Ne,g,n, no linear correction, and a background of 120 counts per

45 ms. In addition, a magnetic field strength of B = 6 T and a neutral temperature

of T = 2 eV are assumed. The multiplicative scale Vtheory,1 is chosen such that the

peak height is 1000 counts.

Let Rnd(a, k) be a function that returns a random value for any value of k, based

on a Gaussian distribution with a standard deviation of a and an average value of

zero. One can then generate the vector

Ferror = (Ferror,i , ... , Ferror,k, . . . , Ferror,p) , (5.46)

Ferror,k = Ai (Ftheory,k - 120) + Rnd ( ai (Ftheory,k - 120), k) . (5.47)

This vector contains the artificially generated fluctuations, adjusted to the form of

the fit.

Adding the theoretical profile due to the incoming photon flux to the artificially

generated fluctuations, we obtain

F'en = Ftheory + Ferror . (5.48)
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Figure 5-13: The effective error of the calculated electron density. Left: Scatterplot of the
calculated electron density for theoretical profiles with artificially induced data scattering, as a
function of the electron density that generates the theoretical profile. Right: The average error
and the statistical error bars of the electron density calculation, derived from the scatterplot on
the left.

This vector is constructed to statistically resemble the data one is expected to mea-

sure over a large sample. For a given generating density Ne,gen, a sample of 1000

vectors Fgen is generated. The analysis routine is applied to all these 'virtual spec-

tra', calculating an electron density for each one of them. For the resulting set of

electron densities, the average and the standard deviation are calculated. These re-

sults are presented in Fig. 5-13, both in form of a scatterplot and expressed relative

to Ne,gen.

These results are rigorously correct only for the 2-7 transition, but they can be

used as an upper limit for the transitions 2-8 and 2-9 as well since those generally

have a broader profile whose width is less sensitive to fluctuations. These results

do not apply to the 2-10-transition which, as shown earlier in this chapter, is not a
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reliable source for the electron density calculation.

Result of Error Analysis 5.6.1 (Statistical Uncertainty) The maximal statis-

tical uncertainty of the presented procedure for the measurement of electron densities,

using the transitions 2-7, 2-8, 2-9 of deuterium, is presented in Fig. 5-13. For

electron densities larger than Ne = 3 - 1020 m - 3 , the maximal statistical uncertainty

is smaller than ±15%. This excludes the error in the theoretical Stark broadening

parameters denoted by a1 /2 .

5.7 Summary of Measurement Uncertainties

An attempt will be made to provide an estimate of the overall uncertainty in the elec-

tron density for the method discussed above. We will assume that the measurement is

performed using the deuterium 2-7-transition observed with the 1800 mm-' grating.

We will also restrict the estimate to electron densities higher than Ne = 3 - 1020 m - 3.

For those densities, the statistical uncertainty is smaller than ±15%, as has been

shown in the previous section. The inaccuracy of the electron density due to the

uncertainty of the instrumental profile measurements is smaller than ±-10%, as has

been argued in 3.2.2.

All the measurements of spectral widths are dependent on the dispersion mea-

surements whose uncertainties are discussed in section B.1.3 of the appendix. For

the 1800mm - 1 grating, the uncertainty in the dispersion is estimated to be +3.2%,

leading to an uncertainty of ±4.6% in electron density.

Under the condition of exactly known theoretical Stark widths a1/ 2 and assuming

a homogeneously emitting volume, the method described in this thesis could therefore

perform electron density measurements with an uncertainty of less than ±19% for the

2-7-transition with electron densities higher than 3 - 1020 m- 3 .

However, it has been argued in section 3.4.2 that the theoretical Stark widths

used in this thesis are generally too small for our application. The theoretical al/2

parameter for the transition 2-6 of deuterium is 15% too small, resulting in calculated

electron densities that are 19% too high. In addition, the radiation observed is not



emitted by a homogeneous volume. On the contrary, neutral and electron density

profiles will vary strongly along the path of the spectrometer chords, thereby effecting

the measured electron densities significantly. The effects of these variations were

discussed in section 5.5.



Chapter 6

Electron Density Measurements

This chapter presents the results of the electron density measurements performed

with the method defined in the previous parts of this thesis. An emphasis is put on

the correlation with measurements from other diagnostics such as H, tomography

and interferometry. The results from the outer divertor views Abottom and the inner

divertor views Kbottom are discussed separately.

The brightnesses of the Balmer transitions observed on the inner divertor fibers

exhibit a strong spatial correlation with the tomography of the H, emissivity. In the

case of strongly peaked emissivities, this correlation allows us to use H, tomography

as a tool for determining the poloidal region where the dominant contribution to the

signal on the Chromex fibers originates. Based on this reasoning, this chapter will

present the spatial electron density profile of a MARFE at the inner divertor, as well

as show the consistency of the electron density calculated from Stark broadening with

the interferometer measurements for a MARFE at the outer divertor.

The same reasoning which proves the usefulness of the Stark broadening method

for measuring the inner divertor electron densities also explains why there is no cor-

relation between the outer divertor probe electron densities and the results obtained

from the Stark broadening observed on the outer divertor fibers. A quantitative

analysis of reflection measurements will show that the radiation entering the outer

divertor fibers is largely dominated by contributions from the inner divertor. This

explains why one cannot expect a correlation between the outer divertor probe results



and the electron densities resulting from the Stark broadening analysis of the outer

divertor views.

6.1 Correlations with the Outer Divertor Lang-

muir Probes

The intended design for the mapping between the Langmuir probe positions and

the outer divertor chords of the Chromex system is presented in Fig. 2-5. Using

this correspondence, the correlation between the results from the Stark broadening

method and the Langmuir probes can be analyzed statistically.
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Figure 6-1: Statistical correlation between the Langmuir probe measurements and Stark
broadening: a scatterplot of the ratio between the two measurements versus the electron density
obtained from the Langmuir probes. The correlation shown refers to the Langmuir probe FMP 5
in Fig. 2-5 and the signal from the view Abottom 12 of the Chromex system. For the Stark
broadening analysis, the Balmer transition 2-7 is used. The data are taken from discharges
between April and June 1995 without any preselection.
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Figure 6-2: Reflective properties of the divertor surface for a white visible light source, using
the fiber Abottom 12 as a reference. The power of the photon influx is maximal if the source is
moved to the point marked with a cross. The relative power for other source positions is given
at the dots.

It is evident from Fig. 6-1 that there is no statistical correlation between the two

measurements for electron densities at the Langmuir probes which are lower than

7 -1020 m- 3 . Above that value, the ratio of the two measurements seems to approach

a constant.

It has to be mentioned that the data used for the generation of Fig. 6-1 are not pre-

selected, implying that both detached and undetached discharges (see Refs. [13, 16])

contribute to the total set of presented data. The effect of detachment could in

principle explain why the Langmuir probe results can be much lower than the Stark

broadening results: when the plasma is detached, the electron density on the divertor

surface - which is measured by the probes - will essentially vanish. Nonetheless,

a light path ending at the probe position could still intersect spatial regions with
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Figure 6-3: Stark Broadening analysis for chords viewing the outer divertor, using the Balmer
transition 2-7 in discharge 950601012. The left column shows the Stark broadening results
(crosses) and the Langmuir probe results (solid line) for the electron density as a function of
time for the different views of the inner and outer divertor. The right column shows the intensity
of the incoming photon flux for the 2-7 transition.
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finite plasma density pulled back from the surface. The ratio between the two re-

sults would then not be an appropriate measure of the correlation between them. A

closer examination on the basis of single detached discharges did not confirm this

hypothesis, though. The lack of correlation, for low probe densities, between these

two measurements is a phenomenon independent of detachment.

It will be argued that the reason for the lack of correlation in the case of low

electron densities measured by the Langmuir probes is due to a principal difference

between the two measurements: the Langmuir probes measure a density at a single

point in space, whereas the spectrum observed by the spectrometer system is emitted

by a volume. The sufficient and necessary condition for both measurements to lead

to the same result requires that the light analyzed with the Stark broadening method

is emitted solely in the vicinity of the point where the Langmuir probe measurement

is performed.

This condition is not necessarily met, as can be seen from Fig. 6-2, which charac-

terizes the reflective properties of the divertor surface for a white visible light source.

This figure uses the same reference fiber as Fig. 6-1. The radiative power entering

the fiber Abottom 12 is maximal if the source is placed within the divertor slot, but up

to 4.7% of that maximal input power is detected if the same source is placed at the

inner divertor slightly below the nose. These reflective contributions to the signal on

fiber Abottom 12 have to be integrated over the whole divertor area in order to obtain

the total reflective contribution to the Abottom 12 input.

This integration has been carried out as described in Appendix C. As shown there,

the inner divertor regions contribute about an order of magnitude more radiative

power to the outer divertor fiber Abottom 12 than the regions in the divertor slot. This

calculation is based on the assumption that the plasma emissivity is homogeneous

throughout the poloidal region where more than 90% of the total H, emission in

the divertor originates. In reality, the emissivity in the divertor slot is lower than

the emissivity near the inner divertor, thereby increasing the relative contribution of

the inner divertor region to the power input on fiber Abottom 12. This implies that in

almost all cases the signal observable through the outer divertor fibers will be entirely



dominated by light originating far from the outer divertor surface where the probes

are situated.

Such a situation is shown in Fig. 6-3, presenting the Stark broadening analysis

of an attached discharge. The intensity of the lines used for the Stark broadening

analysis is very low for the Abottom fibers viewing the outer divertor, compared to the

intensity for the inner divertor views: the intensity on the Abottom 12 fiber is about 8%

of the intensity on the inner divertor view Kbottom 10 for the 2-7 transition at 0.8 s.

It is then consistent with the reflection measurements presented in Fig. 6-2 and with

their analysis in Appendix C to argue that a dominant contribution to the signal at

Abottom 12 originates above the divertor slot and reaches the outer divertor chords via

reflection on the divertor surface.

This argument is also supported by the time dependence of the measured electron

density which allows us to infer roughly where the analyzed radiation originates.

Fig. 6-3 shows that the time dependence of the electron density measured on the chord

Abottom 18 resembles the one on the chords Kbottom 10-11-12. This can be explained by

the fact that the upper Abottom chords view regions of the plasma which are intersected

by those Kbottom chords as well. The region covered by the lower Abottom chords, on

the contrary, should - in the absence of reflection - not have any overlap with

the region viewed by the Kbottom array. Between 0.6 s and 1.0 s, the lower Abottom

chords observe a constant electron density which could result from a combination of

radiation emitted in spatial regions covered by the fibers Kbottom 8-10, that is, spatial

regions located close to the inner and outer noses.

In addition, the time dependence of the electron density on the Abottom chords

shows no correlation at all with the probe measurements. The probes show peaks

whenever the separatrix strike point coincides with the probe position, as can be

shown from other standard measurements not presented here. Once the strike point

lies above a probe, the electron density measured by that specific probe drops essen-

tially to zero, whereas the result obtained by the Stark broadening method remains

at its constant value. The fact that the Stark broadening result for the electron den-

sity in this attached discharge is not affected by the separatrix sweeping through the
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Figure 6-4: Correlation with the diode detector arrays used for the H, tomography in discharge
950519007. The solid lines show the relative brightnesses of the 2-7-transition observed on
the Kbottom fibers. These relative brightnesses were obtained by integrating over the spectral
interval [396.5 nm, 397.7 nm] and by subtracting the background; they are presented relative
to their maximum value in a specific time frame. The dashed lines show the brightness of
the Kbottom,RA diode detector array, which is rescaled separately in each time frame. Both
brightnesses are plotted versus the z-coordinate at which the corresponding chord crosses the
radial position R == 0.44 m. The numbers indicate the positions of the Kbottom fibers.
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divertor slot indicates that the signal analyzed is dominated by contributions from

above the slot.

950519007 t = 0.51 s 29779 W/m
3
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Figure 6-5:

950519007 t = 0.73 s
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H, tomography for the discharge 950519007 at two different times.

The reasoning presented here can provide a possible explanation for Fig. 6-1: the

intensity of the emitted radiation is proportional to the product of neutral and electron

density. So lower electron densities measured by the probes tend to correspond to

cases of lower emissivities in the divertor slot. In those cases, the signal observed by

the Chromrnex system would be more likely to be dominated by contributions from

above the slot. From the error analysis performed in chapter 5, it is apparent that

the Stark broadening analysis cannot lead to errors of more then 30%, even for very

low electron densities. The statistical behavior of the ratio plotted in Fig. 6-1 is thus

due to the fact that the radiation used for the electron density calculation via Stark

broadening does simply not originate in the divertor slot. The data on the lower

Abottom fibers shown in Fig. 6-3 illustrate how vanishing probe results can combine

with finite Stark broadening results for the electron density.
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6.2 Correlation between Chromex Chord Bright-

nesses and H, Tomography

This section aims to demonstrate that there is a strong correlation between the H, to-

mography and the brightness profiles observed with the Kbottom array of the Chromex

system.

The plasma is viewed by several diode detector arrays filtered with an optical

bandpass which is centered at the Ha-transition, each of the arrays consisting of 64

separate chords. One of these diode detector arrays - to be referred to as Kbottom,RA

- observes the plasma from the same direction as the Kbottom array of the Chromex

system. A routine presented in Ref. [12] is used to invert the absolute brightnesses

measured on the diode detector chords into a tomography of the H, emissivity in the

poloidal plane.

It is important to note that the Ha emissivity is generally not proportional to the

emissivity of the high-n Balmer transitions used for the Stark broadening analysis.

According to the calculations presented in Ref. [7], the line intensity ratio HE/Ha

varies between 6.5. 10- and 10- 3 within a parameter range given by

102 0 m- 3 < N 4 - 1021 m- 3 , 10eV < Te < 100eV.

Even though the line intensity ratios do depend on electron density and electron tem-

perature, the poloidal regions of peaked H, emission will still be regions of peaked 2-n

emission as well. It will still be possible to determine localized high emissivity regions

for a high-n Balmer transition by analyzing the Ha emissivity, although a quantitative

evaluation of the 2-n emissivity from the Ha tomography would require a detailed

a priori knowledge of electron density and temperature. For our purposes, only a

qualitative knowledge about localized high emissivity regions of the high-n Balmer

transitions is needed. This information can be extracted from the Ha tomography.

Fig. 6-4 shows the correlation between the brightnesses of the Kbottom and the

Kbottom,RA arrays in a typical discharge. It is apparent that both curves correlate

strongly, except for a shift along the z-axis with respect to each other. This effect is



best seen in the time frames [0.532 s, 0.577 s] and [0.757 s, 0.802 s]. The tomography

for this discharge is presented in Fig. 6-5, exhibiting a single emissivity peak at 0.51 s

and two spatially separated emissivity peaks at 0.73 s, thereby demonstrating that

the tomography plots can be used to determine the spatial origin of the brightness

observed by the Kbottom chords of the Chromex system.

The relative vertical shift between the two arrays amounts to about 1.5 cm, corre-

sponding to approximately 1 fiber in the Kbottom array. The graphs in the subsequent

sections of this thesis will be corrected for this shift. It is important to note that the

poloidal pixels underlying the tomographic inversion are squares with a side length of

2.5 cm. The emissivities are calculated for these pixels, which are assumed to cover

areas of uniform emissivity and which are distributed uniformly across the poloidal

plane. The calculated emissivities are then smoothed on a much finer grid leading to a

least curvature contour that appears to be continuously varying on the poloidal plane.

Since the smoothing does not eliminate the underlying spatial resolution given by the

pixel size, the correspondence between the tomography and the Kbottom brightnesses

cannot be expected to have an accuracy of better than ±1 fiber.

Since the line intensity ratios between Balmer series members depend - as dis-

cussed above - on electron density and electron temperature, the chord brightnesses

of each time frame presented in Fig. 6-4 are scaled separately, in case the plasma

parameters are changing over time. The spatial variation of the plasma parameters

could still affect the correlation within a given time frame of that figure.

6.3 Electron Density Measurement of a MARFE

The expression 'MARFE' is an acronym for 'Multifaceted Asymmetric Radiation

From the Edge'. The physical phenomenon referred to by this expression is discussed

in Refs. [14] and [15].

A MARFE is characterized by an increase in the local electron density Ne, the

rms fluctuation amplitude N 2 , the scale length A, of the plasma edge density in the

scrape-off-layer, and - most important for the analysis here - low-Z, low-ionization-
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Figure 6-6: H, tomography of a MARFE at the inner divertor at different times in the same
discharge. The approximate chords of the Kbottom fibers are drawn into the divertor geometry.



state radiation. The MARFE phenomenon is local, with no measurable effects noted

at farther poloidal distances (i.e. larger than - 10 cm). MARFEs exhibit toroidal

symmetry and are most commonly confined to the high-field edge of the plasma, with

a poloidal extent of typically 300 if viewed from the magnetic axis.

The study of MARFEs is most suited to the Stark broadening method presented

in this thesis since a MARFE is a poloidally localized phenomenon which can be

identified on an H, tomography as an emissivity peak. Radiation observed by a

chord which intersects a MARFE will in many cases be dominated by the MARFE

emission. The electron density obtained from the Stark broadening of this radiation

will then describe the electron density of the MARFE. So tomography allows us to

determine the poloidal region where the main contribution of the analyzed radiation

originates, thereby making it possible to assign the Stark broadening electron density

to that poloidal region.

6.3.1 MARFE at the Inner Divertor

The tomography of a MARFE at the inner divertor is shown in Fig. 6-6, together with

the Kbottom chords viewing the inner divertor. Especially the first three tomography

frames presented {0.62 s, 0.84 s, 1.15 s} exhibit clearly peaked emissivities. It is

essential to note the fact that the tomography graphs are scaled individually.

These peaks can be found in the spatial electron density profiles in Fig. 6-7, which

were calculated using the 2-7-transition. The first three frames exhibit an electron

density peak near the fibers 10-11 of the Kbottom array. The central electron density

of the MARFE observed is Ne,MARFE , 1.7 - 1021 m- 3 for the first three frames.

The half width of the electron density peaks corresponds to about 5.6 fibers or

8 cm of vertical poloidal extent for the first three time frames presented. As can be

seen in the tomography, the effect of the MARFE should be restricted to the fibers

Kbottom 9-16. In the third frame shown, the radial width of the MARFE has increased

significantly, an effect which cannot be observable in the Stark broadening data since

the relevant Kbottom fibers have only a small angle with the horizontal axis.

Between 1.15 s and 1.24 s, the MARFE phenomenon disappears, as can be seen
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Figure 6-7: Spatial distribution of the electron density for a MARFE at the inner divertor in
discharge 950503002. The left column shows the electron density as a function of the Kbottom

fiber number for different time frames. The electron density was calculated using the 2-7-
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is the result of interpolating between neighboring time frames.
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in Fig. 6-6. This change is also reflected in the spatial electron density profile of Fig.

6-7. The profile develops a peak value of only 0.7. - 1021 m- 3 and becomes broader

with a spatial half width of 13.8 cm vertical poloidal extent.

6.3.2 MARFE at the Outer Divertor

The occurrence of a MARFE at the outer divertor allows us to compare the results

from the Stark broadening analysis with the interferometer measurements since the

vertical interferometer chords cover a region radially outward from the outer nose.

The interferometer system is described in Ref. [10].
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Figure 6-8: Observation of a MARFE at the outer divertor in discharge 950503012 using
the interferometer: the path integral of the electron density as a function of time for the three
innermost interferometer chords which are specified by their radial position.

Since MARFEs are localized objects of increased electron density, the occur-

rence of strong electron density gradients is necessarily implied by the existence of a

MARFE. The angle of refraction a of an interferometer probing beam is calculated
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from (see Ref. [22]) the path integral

a = 2 VN+edz. (6.1)fz I Ne
As a consequence, the interferometer probing beam can be refracted out of the field

of its detector at the onset of a MARFE, as described in Refs. [14] and [15]. This

effect can be observed in Fig. 6-8, where the signal of the innermost interferometer

chord at R = 0.62 m is lost at approximately 0.83 s.

The tomography for the same discharge is presented in Fig. 6-9. It shows a clearly

localized high emissivity object intersected by the innermost interferometer chord.

The interferometer data indicate the onset of the phenomenon at about 0.75 s. At that

time, the tomography exhibits a broad peak at the position where the MARFE will be

found later. After the onset of the phenomenon, the nearest neighbor chord is affected

by the spatial tails of the localized object, as can be observed on both the emissivity

and the interferometer data. From the interferometer data, one can conclude that

the MARFE has completely disappeared at 0.95 s when the path integrals for several

chords merge into one line. At that time, the tomography of the divertor region is

almost identical to the one before MARFE onset.

Fig. 6-10 presents the spatial distribution of the electron densities calculated from

Stark broadening and the line intensities on the Kbottom array for the same discharge.

The data are provided for six time frames, four of which correspond to the tomography

plots presented. Only the third and the fourth of the six frames present a physical

situation where the MARFE is existent. Those two frames are different from all the

others since both the electron density and the brightness profile exhibit two separate

peaks. After the MARFE disappears, the profiles resemble closely the situation before

its onset.

The spatial brightness profile extends to higher chords in the third and fourth

frame, due to the development of a vertically elongated emissivity feature close to

the inner divertor surface. The brightness originating from the MARFE at the outer

divertor is centered around fiber Kbottom 10 within the error limits of the spatial ac-

curacy.
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Figure 6-9: H, tomography of a MARFE at the outer divertor. The approximate chords
of the Kbottom fibers are drawn into the divertor geometry. The vertical lines indicate the
interferometer chords.
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Immediately before the loss of the innermost interferometer signal, the difference

between the path integral of this chord and the one of its second nearest neighbor

is about 0.38 - 1020 m- 2. This second nearest neighbor chord is not affected by the

MARFE, so the path integral difference can be attributed to the MARFE at the

outer divertor. The spatial extent of the high emissivity region along the innermost

interferometer path is about 2.5 cm. The average electron density of the MARFE is

then approximately

Ne,MARFE,Ifm . 1.5.- 102 1 m - 3

according to the combined information from the interferometer and the Ha tomogra-

phy.

The electron density measurement based on Stark broadening leads to the result

Ne,MARFE,Stark _ 1.5 - 10 21 m - 3

for the fiber Kbottom 10 in the time frame [0.803 s, 0.848 s]. For this measurement, the

uncertainties calculated in chapter 5 apply. Interpreting Ne,MARFE,Stark as the bulk

electron densityof the outer divertor MARFE assumes that the dominant contribution

to the signal on that fiber is due to the MARFE at the outer divertor.

This assumption is justified since the other radiating regions crossed by that chord

- regions close to the inner divertor - are of intermediate emissivity only. In ad-

dition, the less peaked MARFE phenomenon occurring simultaneously at the in-

ner divertor exhibits electron densities which differ from Ne,MARFE,Stark by less than

15%, as can be seen on the fibers Kbottom 10-11 in the time frame [0.713 s, 0.758 s],

Fig. 6-10.

6.4 Summary of the Physical Results

This thesis has presented a method for obtaining the electron density from the spectral

line shape of high-n Balmer transitions emitted by a hydrogenic plasma. An error

analysis has determined the overall uncertainty of the electron density measurement

to be smaller than ±19% for electron densities higher than 3 - 1020 m- 3 , assuming
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homogeneous electron and neutral densities along the light path and excluding errors

in the theoretical Stark broadening parameter ael/ 2.

A quantitative analysis provided in Appendix C leads to the conclusion that in

almost all the cases, the signal on the outer divertor fibers will be dominated by

radiative contributions which originate close to the inner divertor and which are

reflected into the outer divertor. For this reason, one cannot expect a correlation

between the outer divertor probe densities and the electron densities obtained from the

Stark broadening analysis of the signal on the outer divertor fibers. The quantitative

analysis is based on a measurement of the reflective properties of the divertor surfaces.

It has been demonstrated on the basis of a numerical model that the result ob-

tained by the Stark broadening method is very sensitive to variations of the neutral

and the electron density along the light path. In many cases, Ha tomography can be

used to determine the dominating emissivity region, thereby allowing the assignment

of the electron density obtained from the Stark broadening analysis to a restricted

area on the poloidal plane. The diagnostic presented in this thesis can thus be used in

combination with Ha tomography for the measurement of the electron density in cases

where regions of sharply peaked emissivity, intersected by the spectrometer chords,

are present.

Using the Stark broadening analysis together with Ha tomography, spatial electron

density profiles of a MARFE at the inner divertor have been presented. A peak

electron density of approximately 1.7 - 1021 m- 3 and a spatial profile width of about

8 cm were measured. After the MARFE disappears from the tomography, the electron

density profile broadens significantly while the maximum density of the profile drops

to about 0.7. 10121 m - 3

The occurence of a MARFE at the outer divertor has made it possible to demon-

strate the consistency between the interferometer measurements and the results ob-

tained from the Stark broadening analysis. The peak electron density of a MARFE

at the outer divertor was measured to be approximately 1.5 - 1021 m- 3 , according to

both diagnostic techniques.
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Appendix A

Notation for Physical Quantities

and Mathematical Expressions

This appendix explains the notation which is used in more than one chapter of this

thesis. The symbols defined and used in only restricted parts of this thesis are not

listed.

A.1 Physical Quantities

ri~rm na~ratmeter Ot Vo~t, nrohi~

Magnetic field strene~tb ------

S~t, of det~c~to~r hin~

FB=o( , w) Profile describing a Stark broadened Balmer transition

in w-space in the absence of a magnetic field

Fz••eeman (V, W, AWZeeman) Profile describing a Stark broadened transition in w-

space including Zeeman splitting due to a magnetic field

Vector with free parameters for a preliminary numerical

fit to a Gaussian

Vector of count rates on detector bins for data points

used by the numerical fitting procedure
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Ifit Interval in wavelength space centered around a partic-

ular transition and enclosing the data used for the nu-

merical fitting

Imax Interval in wavelength space used to determine the ac-

tual center of the transition

j Index counting the number of iterations performed by

the numerical fitting procedure; total angular momen-

tum quantum number

1 Path integral parametrization; angular momentum quan-

tum number

n Principal quantum number of the initial state in a Balmer

series transition of deuterium or hydrogen

Ne Electron density

No Neutral density

rA Indicator of the maximal electron density uncertainty

due to data scatter in wavelength space around the nu-

merically fitted profile

T Neutral temperature

Te Electron temperature

V Free parameters of the function Fzeeman: the form pa-

rameter Vo = a, an overall multiplicative scale V1, a

constant term V2, and the coefficient V3 of a linear term

w Frequency scaled by the Doppler width

w Vector of w-coordinates for the data used by the nu-

merical fitting procedure

W Vector specifying the relative weights of data points

during the functional fits
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Positive non-zero integer referring to the detector bin

position along the spectrally resolving dimension of the

CCD

Positive non-zero integer referring to the detector bin

position along the spatially resolving dimension of the

CCD

Theoretical Stark width

Zeeman splitting in w-space

Vector containing wavelengths corresponding to the fit-

ted data points

Calibration map predicting the spectral wavelength

mapped onto detector bin (x, y)

Spectrograph center wavelength, treated as a hardware

setup parameter

Total Gaussian width in wavelength space

Spectral wavelength

Gaussian width in frequency space due to Doppler broad-

ening

Total Gaussian width in frequency space

Gaussian width of the instrumental profile in frequency

space

A.2 Mathematical Symbols

N Set of all positive non-zero integers

Set of all real numbers

7z+ Set of all positive non-zero real numbers
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AAG

A•spec
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Z Set of all integers

\ Set algebra: difference

{ } Set of elements

{xI ... } Set consisting of all x such that...

E Symbol: 'element of'

U Symbol: 'union'

V Universal quantifier: 'for all'

[a, b] {x E Ra < x < b}
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Appendix B

Calibration of the Spectrometer

System

The Chromex spectrometer system consists of optical fiber connections between the

tokamak diagnostic port and the spectrograph entrance slit, the spectrograph itself,

and the detector attached to the exit plane of the spectrograph. The calibration pro-

cess for this system is separable into two parts: wavelength and intensity calibration.

B.1 Wavelength Calibration

During the standard measurement procedure, the entire wavelength configuration

is defined by only two hardware parameters: the spectrograph center wavelength

A chromex and the grating that is chosen. On the basis of these two parameters and

the calibration data, the analysis software must be able to determine the spectral

wavelength corresponding to each bin on the detector plane. In order to fulfill this

task, the wavelength calibration must contain information about the absolute wave-

length calibration of a reference bin on the detector, the dispersion as a function of the

wavelength, and an effect which will be denoted as aberration. All these phenomena

have to be quantified for each of the three gratings implemented in the spectrograph.

A quantitative description of the aforementioned effects is found below.
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B.1.1 Terminology for the Wavelength Calibration

The output of the Chromex spectrometer system is a digitized signal in the form of

a 2-dimensional array of the size (1242,14). A bin on the detector plane is denoted

by a vector

(xy) E D {(a,b) Ia, b C AF; 1 < a <1242, 1 < b < 14}. (B.1)

A wavelength configuration A consists of a chosen grating and a given spectrograph

center setting A diromex

A {A=_ cromex, grating}. (B.2)

The detector center bin is denoted by the vector (xC, yI) = (621, 7). The detector

center bin row, given by (x, 7) G D, will be denoted by the shorthand 'y = 7'.

Similarly, 'x = xo' shall refer to the detector column (x0 , y) E D.

The spectrograph center wavelength A cbromex will be treated here solely as a

hardware parameter with the units of [nm]. It does not correspond to a physi-

cal wavelength. In contrast, the spectral wavelength A spec will denote the actual

physical wavelength of a spectral line under observation: A spec is the wavelength

which is mapped onto the detector bin (xspec, yspec) by the optical system for a fixed

{ Acbomex grating }.

Finally, A ca A chromex , (x, y)) is the mapping which constitutes the wavelength

calibration of the detector. Ideally, we would have

A spec = A ( cI\hromex, (Xspec, yspec)). (B.3)

B.1.2 Absolute Wavelength Calibration

The center bin of the detector is chosen to be the reference bin for the absolute wave-

length calibration. The first step of the calibration is the determination of the actual

spectral wavelength A spec which is mapped onto the detector center bin for a given

setting A chromex of the spectrograph center wavelength and for a fixed grating. This is

accomplished by observing a number of spectral lines and choosing the spectrograph

center wavelengths A chomex so that the peaks of these spectral lines appear on the
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center bin of the CCD detector. During this procedure, the final spectrograph center

wavelength is always approached from an initial spectrograph center wavelength that

lies at least 200 nm lower. This constraint ensures that the backlash of the spec-

trograph mechanics, which leads to a hysteresis of about 3 nm, does not have any

effect on the absolute calibration. For the same reason, the destination in wavelength

space has to be reached in the same manner during the standard operation of the

instrument.

Element Wavelength [nm] Order
Hg 253.652 1
Hg 365.015 1
Hg 404.656 1
Hg 435.833 1
H 486.133 1
Hg 507.304 2
Hg 546.074 1
Hce 656.279 1
Hg 730.030 2
Hg 809.312 2
Hg 871.666 2
H 972.266 2
Hg 1092.148 2
Hg 1213.971 3
H C 1312.559 2

Table B.1: Spectral lines used for the wavelength calibration.

For the wavelength calibration, low-pressure mercury and hydrogen lamps were

used. Table B.1 contains a list of the specific spectral lines of these lamps, including

the diffraction order for which the above procedure was performed. For the spectral

line information, Refs. [21] and [23] were used.

The absolute wavelength calibration of the detector center bin showed that, for

a given grating, the actual spectral wavelength A spec mapped onto the center bin

could approximately be described by a constant offset from the spectrograph center

wavelength A chromex This can be seen in Fig. B-1. The offset for the different

gratings scales approximately as the inverse of the number of grooves per unit length:

4.2nm for the 600mm - 1 grating, 2.1 nm for the 1200mm - 1 grating, and 1.3nm for
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the 1800 mm- 1 grating. The absolute wavelength calibration was performed down to

253.65 nm for all the gratings, while its limits in the long wavelength region were

given by the sensitivity of the different gratings. It proved to be possible to calibrate

the 600 mm - 1 grating up to 1312 nm, the 1200 mm - 1 grating up to 1092 nm, and the

1800mm - 1 grating up to the H, line at 656nm. The inversion of Fig. B-1 leads to

the function A spec (A chromex ) x=621,y=7,grating, which will be needed for the calculation

of the calibration map.

3

0
200 400 600 800 1000

Spectral Wavelength [nm]
1200 1400

Figure B-1: Absolute wavelength calibration of the detector center bin: The difference
A spec - A chromex as a function of Aspec for all the three gratings.

B.1.3 Dispersion

As the second step of the absolute wavelength calibration, the dispersion of the differ-

ent gratings has to be measured on the central y = 7 bin row of the detector. In order

to predict the spectral wavelength corresponding to each bin on the detector for a

given configuration, the dispersion of the instrument must be measured. In principle,
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this dispersion can be a function of the spectral wavelength and also of the position

on the detector plane. The wavelength calibration performed here assumes that the

dispersion of the instrument is constant across the entire CCD detector for a given

spectral wavelength and grating. A consistency check of this assumption will be done

later in this chapter as part of the aberration analysis.

The dispersion of the instrument is measured as a function of spectral wavelength

for all three gratings at the center bin of the detector. In order to measure the

dispersion at a specific spectral wavelength A spec , the spectrograph center wavelength

A chromex is first chosen such that the line peak lies on the bin (631,7). Let this initial

spectrograph center wavelength be denoted by A chromex, initial Then the spectrograph

center wavelength will be continuously increased, using the manual step function of

the spectrograph, up to the point where the line peak lies on the bin (611,7). Denoting

this final spectrograph center wavelength A chomex, fmia, the dispersion A at the center

bin for the spectral wavelength A spec will be given by

A(A spec) = x-A621,y7 r, final - A chr, initial (B.4)
sp =621,y=7 20

Here we use that
dAdAspec 1, (B.5)

dA chromex

which can be extracted from Fig. B-1.

The result of the dispersion measurement is shown in Fig. B-2. The dispersions

of the different gratings are seen to be constant versus wavelength to a first approxi-

mation. The values of these constants scale as the inverse of the number of grooves

per unit length, as expected. The dispersion measurement for the different gratings

was only done in the same wavelength ranges as the absolute wavelength calibration

described above.

Uncertainty of the Dispersion Measurements

For an error analysis of the application presented in this thesis, it will be useful to

know the uncertainty in the dispersion measurements.
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Figure B-2: Dispersion at the detector center bin.

For each grating, the dispersion is roughly constant as a function of wavelength.

The uncertainty in the dispersion measurement will thus be of the order of the stan-

dard deviation of the measurements over wavelength. The relative uncertainty of the

measurement is then taken to be the ratio between this standard deviation and the

average dispersion.

The average dispersion A, the standard deviation o• of the dispersion, and the

relative uncertainty are listed in table B.2 for all the three gratings.

Grating [mm- 1 ] I A [nm / pixel] oI aA [nm / pixel] Relative Uncertainty [%]

600 0.114 0.00163 1.4
1200 0.056 0.00224 4.0
1800 0.037 0.00117 3.2

Table B.2: The estimated uncertainty in the dispersion measurements presented in Fig. B-2.
Listed are the average dispersion A, the standard deviation ao, and the relative uncertainty of
the dispersion for all the three gratings.
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B.1.4 Mapping of Spectral Wavelengths onto Detector Pixels

Using the two wavelength calibration measurements and the information contained

in the wavelength configuration, it is possible to calculate the spectral wavelength

corresponding to every bin on the y = 7 bin row of the CCD detector. I will assume

that the dispersion for a specific grating is only dependent on the observed spectral

wavelength A spec and independent of the detector bin (x, y) onto which this spectral

wavelength is mapped:

VA spec E {fA200nm < A < 1400nm} (B.6)

VX E {1,...,1242} Vy E {1,...,14}

A(Aspec) xy (- (spec x-=621,y=7

We want to calculate the function A cal (A chomex , (x, y = 7)) for a fixed A cromex

and for a chosen grating. To first order in x, one can write a linear approximation:

A linear (Achomex, (XY = 7)) = A spec(A cromex(x = 621, y = 7)) (B.7)
+(x - 621) A(A spec ) lx=621,y=7'

where A near (A chromex , (x, y = 7)) denotes a first approximation of the desired cali-

bration map A calj (A chromex , (x, y = 7)) for a specific grating.

All quantities on the right hand side of equation B.7 have been measured in

the wavelength calibration process: A spec (A chromex , (x = 621, y = 7)) is the result of

the absolute wavelength calibration of the center bin, given for all three gratings in

Fig. B-1; A(A spec ) x=621,y=7 is the wavelength dependent dispersion at the center bin

of the detector, given in Fig. B-2 for all three gratings.

Using the linear approximation and the assumption B.6, the wavelength calibra-

tion map can be calculated with yet higher precision:

cal (A chromex ,(Xy7)) spec (A chromex , (X 621,y = 7)) + (B.8)

I 
x

21A (A linear ((Achromex, (X',y 7)))x=6 21,y=7 dx'.

Thus, the calibration data taken are sufficient to predict the correspondence between

the spectral wavelength and the bin (x, 7) of the detector.
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B.1.5 Aberration

The CCD detector of the Chromex system is planar. In addition, the entrance slit of

the spectrograph is a line, not the section of a circle, so that the spectrograph optics

maps a linear entrance slit onto an exit plane. Using an optical system such as the

one described in chapter 2, the image of the slit will generally appear as a section

of a circle on the exit plane, not as a straight line. The smaller the instrument, the

stronger this effect will be. Therefore, a quarter-meter instrument such as the one

used here will be particularly affected by this phenomenon.

Due to this effect, the wavelength calibration of the y = 7 center bin row does not,

in principle, apply to the other rows. The deviation of the wavelength calibration for

the y = 7 row from the calibrations for the y $ 7 rows will be referred to as aberration

below. It should be understood that the aberration of the instrument optics affects

both the absolute wavelength calibration of the y 5 7 rows and the dispersion of

those rows. So in principle, all the above measurements which were carried out for

the y = 7 detector row would have to be done for the other rows as well.

In the following, it is to be understood that we keep the grating unchanged. Let

us define A spec to be the spectral wavelength that is mapped onto the detector bin

(x, y = 7) for the spectrograph center wavelength A cliromex . We can only have two

independent variables among the three parameters: detector position (x, y = 7),

spectrograph center wavelength A chromex , and spectral wavelength A spec. For the

purposes of the aberration analysis, A spec and (x, y = 7) will be treated as the

independent variables. We then write

A chromex Achromex (A spec , (x, y = 7), grating). (B.9)

The constraint that A spec is mapped onto bin (x, y = 7) implicitly defines the spec-

trograph center wavelength A chromex uniquely.

Let us consider two different wavelength configurations:

Acenter = {A chromex (A spec (x, Ycenter = 7)), grating}

Aaberration = {A chromex (A spec (X, Yaberration) ), grating
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Here we are stipulating that, for the same grating, the spectral wavelength Aspec

is mapped onto the (x,ycenter = 7) bin in the configuration Acenter and onto the

(X, Yaberration) bin in the configuration Aaberration.

These two configurations will in general not have the same A chromex , even though

one does observe identical spectral wavelengths on the same bin column x with the

same grating. This is the case because the angular geometry of the system {slit -

grating - bin} can vary considerably between Acenter and Aaberration if Yaberration 7.

The aberration will then be defined as

t9(A spec (x, Yaberration),grating) - (B.10)

A aberration (A spec (X, Yaberration), grating) -

Acal (Achromex (Aspec , (x,y 7),grating), (x,y = 7),grating) ,

where A aberration(A spec, (X, Yaberration),grating) is the spectral wavelength that is
mapped onto detector bin (x, Yaberration) by the same wavelength configuration which

maps the spectral wavelength Aspec onto detector bin (x, ycenter = 7). From this

definition, it is evident that a complete knowledge of the aberration's functional and

quantitative behavior within its parameter space allows one to calculate, for any

row y, which spectral wavelength Aaberration is mapped onto which x-coordinate of

that bin row.

The aberration V is thus a variable in a 3-dimensional parameter space for each

grating. P has been measured for the 600mm 1 grating on a rectangular grid of

180 points in parameter space: for the 15 values of A spec given in table B.1, for

x E {10, 621, 1230}, and for Yaberration E {1,4, 11, 14}.

The measurement of d is done by choosing the value for the spectrograph center

wavelength A bchromex, center so that the peak of the spectral line at A spec lies on the

detector center bin P1 = (x, Ycenter = 7). In a second procedure, using the manual

step function of the spectrograph, the spectrograph center wavelength is changed to

A chromex, aberration so that the peak of the line at A spec lies on the center of the detector

bin P2 = (x, Yaberration). Then the aberration will be given by

•9 •(Aspec (X, yaberration), grating) = A chromex, aberration - A chromex, center (B.11)
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The aberration measurements performed on the 600 mm - 1 grating lead to two results:

* The absolute value of the aberration is always less than 0.25 nm. It therefore

lies within the inaccuracy of the absolute wavelength calibration.

* It does not seem to be possible to find a theoretically predictable pattern for

the aberration.

Since the aberration ranges within the uncertainties of the absolute wavelength cal-

ibration, it is legitimate to assume that it is zero without affecting the absolute

wavelength calibration significantly. With this choice, the relative wavelength cali-

bration is not affected. The small absolute value of the aberration across the detector

also confirms the correctness of the previous assumption that the dispersion is solely

a function of the spectral wavelength and not of the detector position.

In addition, a recalibration procedure is implemented by the data viewing and

analysis software, which allows one to assign exact absolute spectral wavelengths

to spectral line peaks. From the wavelength calibration of the center row, given

by Aca (A chomex , (x, y = 7), grating), and from the newly provided calibration data

point, the software is able to extract a value for the aberration for each detector bin

row. These 14 new calibration points are inserted into a data structure that is called

each time data are viewed. Thereby, the entire wavelength calibration improves since

the aberration data grid becomes less coarse.

B.1.6 Nominal Resolution

As the final part of the wavelength calibration, the nominal relative wavelength res-

olution of each grating is calculated. The results are given in Table B.3.

Grating [mm- 1] I W, [nm] Nominal Resolution [A]
600 141.C
1200 72.8
1800 45.5

2.68
1.29
0.79

Table B.3: Spectral band width and nominal resolution at 546 nm for the three gratings. The
slit width was chosen to be 20 pm.
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In order to calculate the nominal resolution, the very bright visible mercury line

at 546.074 nm was chosen. The light was provided by a mercury lamp. Accordingly,

the spectrograph center wavelength was chosen to be A ciromex = 546 nm. Using the

center bin row of the detector for this measurement, one can calculate the spectral

band width Wspec from the wavelength calibration by taking the difference between the

spectral wavelength mapped onto pixel (x = 1242, y = 7) and the spectral wavelength

mapped onto pixel (x = 1, y = 7). The slit width was chosen to be 20 um, the choice

also used during the plasma operation of the instrument.

In order to determine the instrumental width, a raw count spectrum is taken using

the y = 7 detector bin row. From that spectrum, the full width at half maximum &x

of the spectral line in bin space is determined. The nominal resolution of the system

is then calculated using
Wspec 5

Pnominal = 1 (B.12)
1242

This procedure is carried out for all three gratings.

Pressure and Doppler broadening of the mercury line were negligible effects in

comparison to the instrumental broadening since a low-pressure and low-temperature

lamp was used. The natural width of the line is negligible even compared to its

Doppler broadening. Using a fixed slit width of 20 ym, the nominal width calculated

is a grating specific characteristic of the Chromex instrument.

B.2 Intensity Calibration

The intensity calibration provides the means to convert a raw detector count rate for

a detector bin (x, y) to a physical brightness, given a wavelength configuration and a

measurement of the background count rate.

Just as for the wavelength calibration, the first part of the intensity calibration

involves the absolute calibration of the detector center bin. For this measurement, we

will first be constrained to work with a fixed fiber optical reference connection between

the tokamak diagnostic port and the spectrograph entrance slit. Initially, we will only

consider a system consisting of this reference connection, the spectrograph itself, and
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the detector center bin. A spec will again denote the spectral wavelength which is

mapped onto the center bin by the optical system, consistent with the calibration

map derived on the previous pages. This part of the calibration will be wavelength

dependent, and it will result in the first order sensitivity curves of the system.

In addition, second and third order diffractions will be accounted for by measur-

ing the wavelength dependent sensitivity of the system with respect to higher order

diffractions. This will lead to an improvement of the sensitivity calculation for the

three gratings.

This analysis must be repeated if any wavelength dependent optical device - such

as a lens in the present case- is inserted into the optical path. Furthermore, a set of

relative fiber attenuations must be measured for the fibers which are part of the bundle

connecting the port window to the spectrograph input fiber bundle. These relative

attenuation measurements were performed at one spectral wavelength only. Their

spectral dependence is assumed to be identical since the fibers have the same length

and are manufactured identically. Finally, a measurement of the relative sensitivity

of detector bin (x, y) with respect to the center bin will allow one to generalize the

intensity calibration to the whole detector plane.

B.2.1 Terminology for the Intensity Calibration

The background count rate Ibackground(X, y) is measured before the beginning of the

plasma discharge. For the detector temperature adjustment to -25' Celsius, one

finds an approximately constant background count rate of about 120 counts per bin

per 45 ms. The noise on this signal is characterized in chapter 5 of this thesis.

The array of background count rates is subtracted from all the raw data frames

Iraw,frame (X, y) taken at later times during the measurement. The remaining differ-

ence Icounts,frame(X, y) constitutes an array that contains only count rates due to the

incoming radiation.

The intensity calibration software generates a conversion array R(x, y) whose el-

ements are in units of [mW s/ cm 2 sterad counts ]. R(x, y) is the inverse sensitivity

that applies to the detector bin (x, y), and it is strongly dependent on the wavelength

121



configuration. The brightness B,•ame(x, y) of the signal is then calculated using

Bframe(X, y) = R(x, y) [Iraw, frame(x, y) - Ibackground(X, y)] . (B.13)

The brightness has units of [mW/ cm 2 sterad ]. The intensity calibration is thus

reduced to the measurement and calculation of R(x, y).

B.2.2 Calibration Source

The light source for the intensity calibration is provided by a six inch uniform source,

model US-060-SF produced by Labsphere, Inc. It is a 45 Watt halogen lamp located

in a sphere with a circular opening and with a spatially uniform output radiance.

The phototopic uniformity mapping of the circular sphere output area is provided

by the manufacturer of the calibration source. The output is spatially uniform over

the aperture within the range between 99.5% up to 100.1% of the center luminance.

Therefore, the source output can be regarded as uniform for the given purposes,

although an angular dependence of the radiance within the sphere is not specified.

The light source is driven by a halogen lamp power supply produced by the same

company, model LPS-045-H. It is a precision regulated DC current source of 2.780 A

with an error of 0.1% + 0.5 mA.

The spectral radiance of the continuum light source is calibrated between 300 nm

and 2400nm. This calibration is given in Fig. B-3 for the wavelengths in the range

of interest. This function will be denoted by

dBsource (A spec

dA

in the following paragraphs. Its values are given in units of [mW/ cm 2 sterad Pm ].

The spectral radiance of the light source decreases strongly below 400 nm. The

detector count rates due to the incoming radiation in this region will become com-

parable to the background count rates. Due to the low radiance of the light source

for spectral wavelengths below 400 nm, the intensity calibration for these short wave-

lengths is expected to be less reliable.
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Figure B-3: Spectral radiance of the halogen lamp used for the absolute intensity calibration
of the detector center bin: dBour as a function of A spec

B.2.3 Sensitivity

As the first step. in the absolute intensity calibration for the detector center bin, the

inverse spectral sensitivity of the system has to be measured for each of the three

gratings. Only taking the first order diffraction into account, the inverse spectral

sensitivity is given by:

dfft( pc ) __ dBsour.c(. lec  l 'x  
]l

dR s(Aspec ) dBsource (A spec c[Iounts(A spec -(B.14)dA dA pe

In order to get a quantitative result for this curve, one has to measure the quantity

Icounts(A spec ), which is the count rate on the detector center bin solely due to the ex-

ternal radiation influx. We assume a wavelength configuration such that the spectral

wavelength A spec is mapped onto the detector center bin. The quantity dBsrce is

given in Fig. B-3 as a function of spectral wavelength.

The measurement of Icounts(Aspec) is performed by positioning the fiber bundle
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input in the center of the calibration source output area. A reference connection

between the periscope bundle and the spectrograph input bundle is chosen, and all

other optical inputs are kept dark. The reference bin is chosen to be the detector

center bin. The entire setup of the calibration source with the fiber bundle input is

covered with black cloth so as to prevent room light from affecting the measurement.

To achieve a precision as high as possible, the effective integration time of the

detector is increased to its sensitive maximum. The sensitive maximum is defined by

the constraint that none of the detector pixels is allowed to be saturated.

At this point, it is essential that a distinction between a detector pixel and a

detector bin be made. The optically sensitive area of the detector has 1242x576

pixels, but only 1242x14 bins in the measurement configuration currently used. A

detector bin is a hardware average over 41 detector pixels along the spatially resolving

dimension of the detector. The bin width of 41 pixels was chosen such that the

mapping of fiber signals onto nearest neighbor positions on the detector does not lead

to more than 1% of intensity overlap. The ranges of both the detector pixels and

detector bins lie between zero counts and (216 - 1) counts. Since the single detector

pixels are averaged into bins, it is not immediately apparent from looking at the bin

count rates when the pixel saturation level is reached. One can check whether the

saturation is reached by switching off the hardware binning option and digitizing the

whole detector screen of 1242x576 pixels.

The count rate on the center pixel is then measured for different spectrograph

center wavelengths A chromex, first with the calibration lamp switched off in order to

measure the background count rate, and then with the source turned on. The effective

detector exposure time was set to the wavelength dependent sensitive maximum.

These three data points then allow an immediate calculation of

Icounts(A spec (Achromex )Ix=621,y=7

Armed with this result, the function

dRfirst(Aspec )-1[ dA
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Figure B-4: Effect of 2nd and 3rd order diffractions on the sensitivity of the system { Reference

Connection - Slit - Optics - Detector} for the 600mm - 1 grating:
dRfrtd(A specE dA J and

as a function of spectral wavelength.

can be calculated. The result for the 600 mm - 1 grating within a particular wavelength

region is graphed as the dashed curve in Fig. B-4.

The range of the intensity calibration is determined by three considerations:

* The output of the calibration source has to be finite. This effect leads to limits

in the short wavelength region.

* The optical sensitivity of the system has to be finite. This effect results in long

wavelength limits.

* The range of the intensity calibration has to be a subspace of the range of the

wavelength calibration.

As a result, an intensity calibration can be provided within the wavelength range
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of [300 nm, 1400 nm] for the 600 mm-1 grating, within [400 nm, 1100 nm] for the

1200 mm-1 grating, and within [400 nm, 700 nm] for the 1800mm-' grating.

B.2.4 Higher Diffraction Orders

Assuming the spectral wavelength A spec is mapped onto the detector bin (x,y) by

the spectrograph, the spectral wavelengths A spec /n, with n an integer, will also be

mapped onto the same detector bin (x, y). This is a direct effect of the grating

equation leading to the dispersion of the instrument.

These higher diffraction orders have to be taken into account for the intensity

calibration. The count rate measured on bin (x, y) will in principle be due to con-

tributions from all diffraction orders. Practically, the first order dominates. For the

given calibration, contributions up to the third order will be taken into account. The

corrections will again be measured using the detector center bin and the calibration

source. Then, up to third order, the inverse spectral sensitivity of the system can be

calculated as follows:

dR(A spec) dBsource (A spec ) + 821 ( spec )dBsource (A spec /2) +

dA dA +S 2 1(spec dA

8 3 1 (A spec )dBsource •A spec/3) [Icounts (A spec )]-1 . (B.15)

Here, S•n (Aspec ) is the relative sensitivity of the nth diffraction order with respect to

the first diffraction order, evaluated at the spectral wavelength A spec which is mapped

onto the detector center bin. Sn (A spec) is the ratio between the count rate on the

center bin due to A spec / observed in nth order and the count rate due to A spec

observed in first order.

For all measurements leading to S (A spec ) only the detector center bin was of

interest, and the reference connection was used. In a first measurement, the spec-

trograph center wavelength A chromex was chosen such that the first order peak of a

spectral line at A ine was mapped onto the center of the detector. After setting the

detector exposure time to the sensitive maximum for Aline , the center bin count rates

were measured with and without radiation influx. Their difference yields Icount,1. In
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Figure B-5: Sensitivity of the system {Reference Connection - Slit - Optics - Detector} for

the three gratings: [dRgratin spec ) -1 as a function of spectral wavelength.

a second measurement, A chromex was chosen such that the nth order peak of the same

spectral line at A ~ie was mapped onto the detector center. Again, after setting the

detector exposure time to the sensitive maximum for nA ,e I the center bin count

rates were measured with and without radiation influx, leading to Icount,n. These

measurements then give:

sIipec =- ine count,n (B.16)Enl(/spec : )line ) -- - (B.16)
'count, 1

For example, s21(871.67 nm) = 0.0224 for the 600 mm- 1 grating.

By definition, sL (A spec ) is a non-negative quantity. Therefore:

dR(A spec ) dRfirst(Aspec) ,dR(A spec )]-1 dRfirst(\ spec -1

dA - dA dA j [ dA J
So the sensitivity curve of the system decreases after including the higher diffraction

contributions to the detector count rate.
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The effects of the higher order diffractions on the sensitivity can be seen in Fig.

B-4 for the 600 mm 1 grating. The dashed curve is the first order sensitivity, the

full curve includes higher order contributions. Both curves merge for A spec < 600 nm

since the calibration source radiance approaches zero below that wavelength, so that

the first order approximation is almost exact. For long wavelengths, the relative

sensitivities sni (A spec) are negligible, so that the two curves practically merge for

A spec > 900 nm.

The corrected sensitivities have been measured and calculated for the three grat-

ings implemented in the spectrograph. The results can be found in Fig. B-5. The

sensitivity curves share the feature of a global peak at approximately 675 nm.

B.2.5 Modifications in the Light Path

The absolute intensity calibration for the detector center pixel can be provided for the

system {Reference Connection - Slit - Optics - Detector} as a function of wavelength.

Any change in the light path will unavoidably lead to a correction factor in the

intensity calibration.

Lenses

When a lens is inserted into the light path, the correction factor will become wave-

length dependent. Since the lens is opaque for certain wavelength regions, the entire

intensity calibration has to be repeated. Also, a lens introduces a specific wavelength

dependent absorption coefficient into the system, so the sensitivity of the system will

decrease. This can be seen in Fig. B-6, which allows a comparison between the

spectral sensitivity of a particular grating with and without a lens in the light path.

Fiber Connections

When changing to a fiber connection differing from the reference connection used so

far, the correction factor will be merely a constant overall factor. The assumption of

wavelength independence is justified by the fact that the corresponding fibers have

128



the same length and are manufactured identically, implying the same wavelength

dependent material properties. The correction factor is the relative attenuation of

the new fiber connection with respect to the old one.

1.1010
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Figure B-6: Effect of inserting a lens on the sensitivity of the system {Reference Connection

- Slit - Optics - Detector} for the 600 mm - 1 grating: dL (spec as a function of spectral

wavelength with and without the 16 mm lens.

The entire light path ending at a certain detector bin row b E {1, 2, ..., 14} is

uniquely defined by specifying four parameters:

* The periscope view: Vb E {Abottom, Kbottom}

* The fiber i within the periscope bundle: ib E {1, 2, ..., 20}. It corresponds to an

overall fiber specific attenuation factor Aib.

* The neutral density factor associated with the connection: nb

* The spectrograph slit width wait.
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Except for the slit width, which affects the signal on all bins equally, these parameters

have to be specified for all 14 bins. The choice of the periscope view cannot affect the

calibration since both periscopes are manufactured identically, so that the differences

regarding their optical properties can be neglected for the given purposes. The choice

of the periscope fiber can influence the calibration since the different fibers have

different positions on the bundle input area. The positions of the detector bins have

a strong influence on the calibration since the spectrograph optics tends to suppress

the signal near the detector edges.

Different bins can have different neutral density filters, which reduce the signal

and help avoid detector saturation. The factor nb is the factor by which the signal

on bin b is reduced due to this filter. It may be slightly wavelength dependent, but

is usually constant versus wavelength to a very good approximation. nb(Aspec) is

usually provided by the manufacturer of the filter.

Let us denote the reference connection for the intensity calibration by

Fref - {bref = 7, Vre = AbottomIbref ,nbre = 1} (B.17)

In addition, let the 3x14 array 4 describe the totality of all connection parameters

{V, i, n} for the 14 separate spatial bin rows. For the relative intensity calibration

to be introduced later, one also needs to define a standard for these 3x14 connection

parameters:

V1 ,standard

Ostandard i l,standard

~ ,standard

Vref
... ref

... nref

... V14,standard

... Z14,standard

... n14,standard

In general, an array describing the total set of connection parameters, structured like

the one given here, will be denoted by 4 and will be referred to as the intensity

configuration.

The attenuation factor Ai is defined to give the relative attenuation of fiber i in

the periscope Vi with respect to the fiber ibz in the periscopeVb. Ai is measured

with the same experimental setup as the one used for the sensitivity measurements.

The 20 count rates for all the connections Fi = {bref = 7, = Abottomi,ni = 1}
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must be measured. The measurements were performed on the detector center bin

using the 600 mm' grating, a slit width of 20 pm, and A chromex = 800 nm. The

exposure time is set to its sensitive maximum. From the count rates Iref and Ii, Ai

is calculated via:
Ii

As = -; is {1,...,20}. (B.19)
Iref

These measurements yield the result that

Vi { 1,2, ... , 20} : 0.9805 < Ai < 1.0118,

implying that the assumption of identical fibers is completely justified. These relative

attenuations have to be measured again for the case that a lens is inserted into the

light path since the lens changes the spatial imaging of the light onto the different

fibers.

After defining the intensity configuration, the analysis software is able to provide

an intensity calibration for all wavelength configurations within the spectral ranges

specified earlier. In fact, the intensity configuration is read by the analysis software

from three nodes which are part of a database structured in the form of a hierarchical

tree. These three nodes resemble the ordered structure of 4.

B.2.6 Relative Sensitivity

The intensity calibration performed so far allows us to determine the inverse spectral

sensitivity
dR(A Spec (A spec) (B.20)

at the detector center bin as a function of the spectral wavelength A spec for all three

gratings. For a given wavelength configuration, we know the spectral band width

Wspec defined in section B.1.6. Dividing Wspec by the number of detector bins along the

spectrally resolving detector dimension, we obtain the width of one bin in wavelength

space for the given wavelength configuration. We can then calculate the inverse

sensitivity at the detector center:

R(Aspec)= dR(A spec) Wspec (B.21)
R p dA 1242
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For the discussion in this chapter, the spectral wavelength A spec and the detector

bin (x, y) onto which it is mapped will be treated as independent parameters. The

spectrograph center wavelength A hromex is then an implicitly dependent variable with

a fixed value.

It is the aim of this section to generalize the applicability of the intensity calibra-

tion to the whole detector plane. This will be done by introducing the array s(x, y)

with (x, y) C D. s(x, y) is the relative sensitivity of detector bin (x, y) with respect

to the center bin (621,7). This approach rests on the underlying assumption that

there is a relative sensitivity function which is only dependent on the position on the

detector plane, but independent of the wavelength configuration A.

The sensitivity array should ideally be determined by illuminating all fibers with

the same optical input, by measuring the detector count rates on all the bins, and

by normalizing. But the sensitivity of a detector bin is certainly dependent on the

quantum efficiency of the detector pixels, which is inherently wavelength dependent.

Hence, for this measurement, the spectral band width of the wavelength configuration

has to be as small as possible so that the quantum efficiency shows only a small

variation over the spectral band. Therefore, the 1800mm - 1 grating is used for this

measurement.

In addition, the center of the spectral band has to be chosen such that the con-

tinuum light source has an almost constant output over the spectral band. Based on

Fig. B-3, the spectrograph center wavelength is then taken to be A comex = 910nm.

With this wavelength configuration, the quantum efficiency is assumed to be con-

stant for all detector bins (x, y). Furthermore, it is assumed that the spectral wave-

lengths mapped onto these bins are emitted with equal spectral radiance. Therefore,

the count rate Iscount(x, y) will be a function characteristic for the properties of the

optical system and the detector pixels averaged to the bin (x, y).

For this measurement, the same experimental setup as for the sensitivity measure-

ments is chosen, except that the intensity configuration Ostandard (see equation B.18)

is applied, leading to a defined light input on all detector bin rows. Increasing the

exposure time to its sensitive maximum and subtracting the background count rate,
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Figure B-7: The shape of the sensitivity factor: s(x, y) as a function of the detector bin
position (x, y).

one then obtains Is,count(x, y). The relative sensitivity results from normalization:

Is,count (X,y) 1 (B.22)s(x, y) - I-•17 A(B.22)•o

Is'count (621, 7) Aj, YDstandard

Thereby, s(x, y) is normalized to unity for the reference bin (621, 7). Since corrections

due to the relative fiber attenuations are also taken into account, s(x, y) is solely a

function characteristic for the system {Optics - Detector}.

A surface plot of the sensitivity factor can be seen in Fig. B-7. It is apparent that

the sensitivity drops by factors up to three at the edges of the detector plane.

B.2.7 Overall Intensity Calibration

The entire intensity calibration is summarized by showing how the array R(x,y),

used for the conversion of raw data into calibrated data, can be calculated for a

given specific wavelength configuration A (definition B.2) and for a specific intensity
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configuration D (generalization of definition B.18). The raw count rates are converted

to brightness values by equation B.13. The conversion array is given by

RA,o(x, y) = Riens,grating (A cal (A chromex, (x, y), grating)) ny 20 pm , (B.23)
AiY s(x, y) w.jit

where A cal (A chromex , (x, y), grating) is provided by the wavelength calibration, ny is

a neutral density coefficient, and AjY is given in equation B.19. The inverse sensitivity

Riens,grating(A spec) can be calculated from equation B.21. The correction factor

20 ym

wslit

represents the fact that all calibration measurements were taken with 20 Pm slit width.

During the standard data acquisition procedure, the slit width is usually set to the

same value.
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Appendix C

Calculation of the Inner Divertor

Contribution to the Signal on the

Outer Divertor Fibers

In this appendix, the inner divertor contribution to the outer divertor fiber inputs will

be calculated, based on the measurement presented in Fig. 6-2. For this calculation,

only the reference point in the divertor slot and the data points from the inner divertor

surface will be relevant. The following calculations are strictly valid only for the outer

divertor fiber Abottom 12 since the measurements on which they are based used that

fiber exclusively.

C.1 Quantifying the Reflective Properties of the

Divertor Surface

The position of the reference point on the poloidal plane will be denoted by (rref, Zref),

whereas the positions on the inner divertor surface will be referred to by the vectors

(r , zi), (2, ), . .., (rio, z10o).

Given a point (r, z) on the inner divertor surface, the path P will be defined as the lin-

ear connection between this inner divertor point and the reference point (rref, zref) on
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the poloidal plane. We will define f to be the clockwise angle between the horizontal

radial axis and the linear path P in the same poloidal plane:

f = arctan Z - Zref (C.1)
r - rref

Using this definition, the path P is uniquely specified by choosing 3.

Positioning the light source at the point (rref, zref), the power Pdirect entering the

optical system can be expressed as

1 V1 source Ajens
Pdirect I-source dre2 , (C.2)47 Idirect 2

where Vsource is the volume of the light source, Csource is the emissivity of the light

source in units of [J / s m3 ], Alens is the acceptance area of the lens in front of the fiber

bundle, and Idirect is the length of the light path between the lens and the reference

point denoted by (rref, zref ).

Positioning the light source at the point (ri, zi); i {1,..., 10} on the inner diver-

tor surface, the power Preflected,i entering the optical system can be expressed as

1 Vsource Azens
Pref lected,i = P source re flectedi2 (C.3)4x^p6suc Iref lected 2

where Ire flected,i is the length of the light path between the lens and the point at the

inner divertor; and where 7p contains the reflective properties of the divertor surface

for the specific path P between the reference point and the inner divertor surface

point.

The ratio between equations C.2 and C.3 is given by

Pre flected,i Idirect (C.4)Pdt= TP 2 • (C.4)
Pdirect ire flected,i

The measured numerical values for these ten ratios are given in Fig. 6-2. From the

divertor geometry, we know that

Idirect = 0.335 m.

The distance between the lens and an inner divertor point used for the reflection

measurement is then given by

Ireflected,i e 1direct + Lp , (C.5)
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where Lp denotes the path length between the reference point and the point (ri,zi)

on the inner divertor surface. It is calculated from

Lp = (r - rref) 2  (z- zr) 2 . (C.6)

Both -,p and Lp are only dependent on the path P.

The angle dependent reflection coefficients can then be calculated from

Pre/lected,i (ldirect + Lp 2

P= -Pdirect 1direct ' (C.7)

where P is the linear path connecting the reference point with the point (ri, zi) on

the inner divertor surface.

Using the unique correspondence between the path P and the angle /3, one obtains

the two continuous functions

(-y3) 7p and (C.8)

L(/3) Lp (C.9)

from interpolation in /3. The only purpose of performing the reflection measurements

was the calculation of the function y7(/3).

C.2 Relative Contributions to the Outer Diver-

tor Fiber Signal

Based on the two functions 7(/3) and L(/3), it will be possible to make a statement

about the origin of the signal on the outer divertor fibers, assuming a homogeneous

emissivity throughout the poloidal region where more than 90% of the total Ha emis-

sion in the divertor originates.

The power entering the outer divertor fiber due to radiation from the outer divertor

can be expressed as
AVo Atens

Pouter = AO ret (C.10)
ldirect

2

where c0 is the emissivity in the divertor slot, and AVo is the divertor slot volume

emitting the radiation.
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The radiative power entering the outer divertor fiber due to reflected contributions

from the inner divertor region can be expressed by the sum

Pinner = E 7Vpj An (C.11)
• ,• (ldirect + P,j)2

We sum the contributions over 3-dimensional pixels which are identified by the path

P on which they lie. The different pixels on the same path P can be distinguished

from each other via the index j. All pixels are understood not to exhibit any overlap

with any other pixel, and the totality of all pixels is assumed to cover the entire

divertor volume which emits radiation into the outer divertor fiber. The variable lp,

denotes the distance between the reference point and the pixel position, AVpj, refers

to the pixel volume, and cp,j denotes the emissivity of the plasma contained in the

pixel volume.

The ratio between the equations C.10 and C.11 is given by

Pinner cp, J AVp,j Idirect2po o, = " . (C.12)
Pouter p o CO AVo (ldirect + lp,j) 2

Since the plasma regions where more than 90% of the total Ha emission in the divertor

originates are assumed to be of homogeneous emissivity, the emissivity ratio in this

expression is equal to unity. We will split the volume elements into a product of a

poloidal area and a toroidal extent:

AVp, = AApoloidal,P,j Altoroidal,P,j , (C.13)

AVo = AApoloidal,OAltoroidal,O . (C.14)

The toroidal extent of the plasma cone emitting radiation into the outer divertor fiber

increases linearly with the distance from the lens:
1direct +t 1p,j (.5

Altoroidal,Pj - Altoroidal,O direct P (C.15)
1
direct

The ratio which we want to calculate can then be expressed by

Pinner - l direct 2  AApoloidal,P,j (C.16)
Pouter AApoloidal,O pj d (C.16)p)

Poer A~ooialop,j Idirect (direct P, j)
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The sum over discrete pixels on the poloidal plane will now be transformed into an

integral over the polar coordinates 3 and 1. 3 denotes the angle specifying the path

as defined above, and 1 is the parametrization along the path, in units of [m]. Instead

of summing over the paths P, we will integrate over the continuous angle 3. The

poloidal area elements transform as follows:

AApoloidal,P,j ý-4 1 dl d3 . (C.17)

This leads to a new expression for the ratio to be calculated:

Pinner Idirect2  famax L(O) I dl
d/ c13y( 3)I .(C.18)Pouter - AApoloida,O Jm Oin JL 0  ldirect(ldirect + ) (C18)

The poloidal area of the inner divertor region appropriate for this calculation is de-

scribed by the integration limits

/mrin = 25 ° , f3max = 550, and L0 = 0.05m.

The integral over path length can be carried out analytically.

The final expression for the relative contributions of the inner and outer divertor

regions to the signal on an outer divertor fiber is then found to be:

Pinner ldirect2  ox idirect + Lo L(O) - Lo
J/mxd/-y (/3) In + r(C19

Pouter AApoloidal,O f3m, lO -direct + L(O) +  ldirect / (C.19)

The remaining integral over the angle was performed numerically, leading to the value

0.0432. The length 1direct is defined above, and the poloidal divertor slot area emitting

radiation into the outer divertor fiber is estimated to be AApoloidal,o a 4 10- 4 m 2 .

These values result in
Pinner 12.1 (C.20)
Pouter

Assuming a constant plasma emissivity in the poloidal region where more than 90% of

the total Ha emission in the divertor originates, the signal on the outer divertor fibers

will be dominated by the reflected radiation originating in inner divertor regions.
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