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Abstract

A polarized 3He internal gas target which delivered 50% polarized atoms at

a flow rate of 1 x 1017 atoms/sec was developed. This target was used in the ex-

periment CE-25 to measure the analyzing powers and spin correlations parameters

for the 3iHe(',2p) and 3Hie( p,pn) quasielastic scatterings using the Cooler ring at

IUCF at beam energies 197, 300, and 414 MeV. The target was demonstrated to

have little or no depolarization in the storage cell in the elastic asymmetries mea-

surement at 45 MeV. Analysis of the 197 MeV data is presented in this doctoral

thesis. At sufficiently high momentum transfer we find 3je('p,pn) spin observ-

ables are in good agreement with free p-n scattering observables, and therefore

that polarized 3He can serve as a good polarized neutron target. We extract in

PWIA the spin-dependent momentum distribution of the neutron and proton out

to 300 MeV/c. The measured neutron (proton) distribution is in good (fair) agree-

ment with a Faddeev caculation.
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Chapter 1
Introduction

1.1 Physics with Polarized 3 He

The 3He nucleus has several properties which make the study of its spin partic-

ularly interesting. The three body system is unique, in that although it is relatively

tightly bound, essentially exact solutions in nonrelativistic approximation of the

ground state have been obtained using a variety of two-nucleon potentials. In ad-
dition, unlike a heavy nucleus where the total spin is usually determined by only
a few valence nucleons, the spin of 3He involves all the nucleons in the nucleus.
Further, Faddeev calculations predict that the ground state spin of the 3 He nucleus
is dominated by the neutron. This property has motivated great interest in the use
of polarized 3He as an effective neutron target. Finally, because the 3He atom has

a closed electron structure, the polarized atom does not depolarize with high prob-
ability when colliding with container walls. Thus, a number of different 3 He targets
have been constructed for scattering experiments. In addition, the spin-dependent
spectral function, calculated from a Faddeev solution to the 3He ground state, has

become available.

At present there is great interest in the use of the polarized 3 He nucleus as
an effective polarized neutron target in deep inelastic scattering to measure the
neutron spin structure function gn(x). This has been motivated in large part by
data on the proton spin structure function gp(x) obtained by the European Muon
Collaboration (1989) [1.1]. The integral of gf(x) over x has been observed to be
smaller than the prediction of the Ellis-Jaffe sum rule [1.2]. This discrepancy has
been interpreted to imply that the fraction of the proton spin carried by the quarks
is only - !. Because there exists an essentially model-independent relation between
gP and gn measurements on the neutron are of high priority. Unlike the proton, the
neutron exists freely with a mean life time of 888.9±3.5 sec (14.8 min) [1.3]. Neutron
sources using high flux neutron beams from nuclear reactors or secondary neutrons
knocked out by intense proton beams from neutron rich nuclear targets yield rela-
tively low intensities. Thus, two stable light nuclei with a weakly bound neutron.
i.e. the deuteron and 3 He, have come to be employed as effective neutron targets to
measure the neutron spin structure function g' [1.2, 1.4, 1.5] and also the neutron
form factors, Gn(Q 2 ) and G (Q 2) [1.6- 1.12]. The deuteron is a weakly bound
system of a proton and a neutron with the nucleon spins predominantly parallel



to each other and from which neutron information is extracted by subtracting the

proton contribution. As a result, measurements are limited by the systematic error

associated with the proton subtraction. On the other hand, the 'He nucleus is a

relatively tightly bound system whose spin is dominated by the spin of the neutron,

and therefore, spin dependent information on the neutron can be determined with

a smaller correction due to the protons, provided the small correction is precisely

known. It is now widely accepted that the polarized 3He nucleus is a competitive

target with the deuteron target to measure the spin and charge properties of the

neutron. Motivated by these considerations, measurements of spin-dependent scat-

tering from polarized 3 He are either underway or planned at Bates [1.13], SLAC

[1.14], Mainz, DESY, CEBAF [1.15], NIKHEF, and Saskatchewan.

Accurate interpretation of the 3 He measurements to extract information on the

neutron will depend on a precise knowledge of the 3 He nuclear wavefunction and

of the nuclear interaction with probe particles. To relate the nuclear wavefunction

to the electron scattering reaction mechanism, a complete spin dependent spectral

function has been obtained from Faddeev solutions [1.16,1.17]. For quasielastic

and deep inelastic scattering, the respective electron-nucleon interaction tensor is

convoluted with the spin-dependent spectral function to obtain the scattering cross

sections.

As a test of our understanding of the ground state spin structure of 3 He, a

series of spin dependent quasielastic scattering measurements were conducted at

TRIUMF using polarized proton beams at energies 220 MeV and 290 MeV. The

results showed a large discrepancy with the Plane Wave Impulse Approximation

(PWIA). The TRIUMF results are described at the end of this chapter. These

results cast doubt on the validity of using a polarized 3He target to extract neu-

tron spin properties. In the experiment that is described here, a more expansive

kinematic range was examined using large acceptance nonmagnetic detector arms

at beam energies 197, 300, and 414 MeV. Further, the experiment was carried out

using the novel technique of a polarized 3He internal gas target in a storage ring.

The 197 MeV data for the 3He(p,pn) and 3He(p,2p) reactions provide the central

results of this thesis. The primary goal was to experimentally constrain the spin

dependent spectral function of the 3He ground state.

The 3He(p,2p) and 3He(p,pd) data at 197 MeV beam kinetic energy have been

presented as a doctorate thesis at the University of Wisconsin-Madison [1.18].

The remaining data at 300 and 414 MeV beam kinetic energies for the 3He(p,2p)

and 3 He(p,pn) reactions along with the elastic data at the three energies have been



presented as a doctorate thesis at the IUCF [1.19]. Moreover, the early experimental

results of elastic and quasielastic data at lower energies and results of quasielastic

data at 197 MeV have been already published [1.20,2.21].

1.2 The 'He Nucleus

1.2.1 Propertities

The 3He nucleus is a calculable fewbody nuclear system in norelativistic approx-

imation using the Faddeev 3-body equations or variational calculus, and nucleon-

nucleon realistic force models. It is a spin 1 system with positive parity and has

2808.414 MeV/c 2 mass. Its binding energy is 7.710 MeV and its magnetic moment

is -2.13 /PN in nuclear magnetons. In fact, the binding energy and magnetic mo-

ment of the 3 He nucleus are so precisely known that they have been used to probe

sensitivity to sub-nucleon degrees of freedom.

The 3He charge and magnetic form factors have been determined at low mo-

mentum transfer using elastic (e,e') scattering [1.22].
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Figure 1.1. A collection of measurements on the 3He charge form factor [1.22].
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Figure 1.2. A collection of measurements on the 3He magnetic form factor [1.22].
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Also, the structure functions RL(q, w) and RT(q, w) in the quasielastic and the

dip regions have been measured [1.23].
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Figure 1.3. Bates and Saclay data for the longitudinal RL(q, w) and the transverse

RT(q, w) response functions at jqj = 500 MeV/c.
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Also, there exists a determination of the proton momentum distribution by

measurement of exclusive (e,e'p) quasielastic scattering [1.24].

[MeV/c I1j (MeV/c)

Figure 1.4. Proton momentum distribution of 3 He for (a) 2-body and (b) 3-body

breakup. The 3-body breakup contribution has been obtained by integration up

to a missing energy of 20 MeV. Dots and crosses correspond to measurements in

kinematics I and II, respectively. The solid curves represent the calculation of

Dieperink et al. , the dashed lines that of Ciofi degli Atti et al. . The error bars

include both the statistical error and an 8% error due to estimated uncertainty in

the absolute normalization [1.24].
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1.2.1 Wavefunction Components

The 3 He nuclear wave function of the Faddeev 3-body equations or the vari-

ational calculus have been obtained using different nucleon-nucleon forces. The

nuclear wavefunction consists of a dominant S-state -90%, an S'-state -,1-2%, a

P-state -0.1%, and a D-state -8% [1.27]. The S-state is symmetric spatially and

has the protons always anti-aligned; the small S'-state has mixed spatial symmetry

and contributes to the protons spin-momentum correlation; and the D-state has the

protons always aligned together with the neutron in the opposite direction of the
3He polarization and is important at large Pm ' 400 MeV/c.

Channel Probability
Number L S l1 LQ P K (%)

1 0 0.5 0 0 A 1 87.44
2 0 0.5 0 1 M 2 0.74
3 0 0.5 1 1 M 1 0.74
4 0 0.5 2 2 A 1 1.20
5 0 0.5 2 2 M 2 0.06
6 1 0.5 1 1 M 1 0.01
7 1 0.5 2 2 A 1 0.01
8 1 0.5 2 2 M 2 0.01
9 1 1.5 1 1 M 1 0.01

10 1 1.5 2 2 M 2 0.01
11 2 1.5 0 2 M 2 1.08
12 2 1.5 1 1 M 1 2.63
13 2 1.5 1 3 M 1 1.05
14 2 1.5 2 0 M 2 3.06
15 2 1.5 2 2 M 2 0.18
16 2 1.5 3 1 M 1 0.37

Table 1.1. The partial wave channels of the three-nucleon wavefunction within the

Derrick-Blatt scheme [1.27].



1.2.2 Spectral Function

As previously mentioned, the 3He nuclear wavefunction is incorporated into

the electron scattering formalism as a convolution of the spin dependent spectral

function with the scattering tensor. The spectral function has been formulated by

Schulze and Sauer [1.28] as the tensor product of the projection of the nuclear wave-

function onto the plane wave states of the ejected nucleon and the recoiling system

and includes the possibility of 2-body and 3-body breakup in the scattering reac-

tion 3He( p ,pN)A-1. In the case of 2-body breakup, the ejected nucleon is a proton

and the recoiling system is a bound deuteron, and in the case of 3-body breakup,

the ejected nucleon can be either a proton or a neutron and correspondingly the

recoiling system is two unbound nucleons. All allowed states of the recoiling system

are included in the spectral function. Note, the wavefunction used does not include

effects of the Coulomb interaction.

In operator form, the spectral function may be written as,

E 1 1f

S(pN, E,tN) - { fo(PN, E, tN) + aN OA [ fl (PN, E, tN) - 2(PN,E, tN) ] +

aN PNaA PN f2(PN,E,tN) }
(1.1)

where PN and tN are the momentum and isospin of the nucleon and E is the sep-

aration energy of the nucleon from the nucleus A with resulting excitation energy

of the system A-1. The spin averaged contribution fo and the two spin-dependent

contributions fl and f2 are scalar functions which depend only on the magnitude

of PN. In the expression for quasielastic electron scattering cross section, the spec-

tral function tensor is convoluted with the e-N half-off-mass-shell scattering, or in

quasielastic proton scattering cross section with the nucleon-nucleon half-off-mass-

shell scattering. In plane wave impulse approximation, the quantities PN and E are

identified respectively with the missing momentum Pm and the missing energy Em.

The spectral function is also an essential ingredient in the convolution model for

spin-dependent deep inelastic electron scattering.

Assume the contribution to the cross section associated with the third term is

small. The function f2 is small compared to fo and f, so one can rewrite the spectral

function neglecting the third term,

^1 1f
S(PN, E, tN) 2 { fo(PN,E, tN) + UN aA [ fl(pN,E, tN) - 3 2 2(PN,E, tN) ]}

(1.2)

When integrated over the separation energy E, a momentum density operator
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Figure 1.5. The spin-dependent momentum distribution of (a) the neutron (solid

line) and the proton (dashed line) plotted vs. nucleon momentum PN. In (b) the 2-

body contribution (dashed), the 3-body contribution (dotted) and the total (solid)

proton distributions are plotted vs. PN. The spectral function is of Schulze and

Sauer [1.28] and uses the Paris NN-potential. The spectral function is integrated

over E to 500 MeV.

is obtained,

3(pN, tN) J dE S(pN, E, tN)

1 1 (1.3)
= { Po(PN,tN) + cN -crA[PI(PN,tN) - 3 P2 (PN, tN)

whereP= dE fi(pN, E, tN) .



Again, the approximate spectral function has been used here, and the momentum

density operator is diagonal in the space of the spin SN. Thus, one can obtain spin-

dependent momentum distributions defined for nucleon spin in the "up" direction

as

PsA,sN+(pN,tN) = (SA,SN = +| I(pN,tN) SA,SN = +), (1.4a)

and for nucleon spin in the "down" direction as

PSA,SN pN, tN) = (SA, SN = - PN, tN) SA,SN = -)-

Then, an asymmetry ratio in terms of these two distributions

N(pN,tN) = PSA,SN+ - PSA,SN- (1.4b)
PSA,SN+ + PSA,SN-

defines the "polarization" of the proton or the neutron in the nucleus. In plane wave

impulse approximation, this polarization can be measured, see section 2.4. For the

neutron, the polarization is 100% for PN < 100 MeV/c, indicating that at low PN

there are only the S and the small S' for both of which the neuteron spin is "up".

See figure 1.5(a). The polarization crosses the zero and becomes negative above

300 MeV/c where the D-state begins to dominate. For the proton, the polarization

is identically zero for the S-state. However, in the S'-state there is an asymmetry

of -12% at low PN values.

In quasielastic scattering, the 3He nucleus can fragment into the 2-body chan-

nel, a deuteron and a proton, or into the 3-body channel, a neutron and two protons.

In the case of proton knockout, the reaction can go via both channels while in the

case of neutron knockout, the reaction can proceed only via the 3-body channel.

At low PN values, the S-state proton has a polarization of . -25% for the 2-body

channel and - +25% for the 3-body channel, adding up to zero polarization. The

reason for nonzero polarization in separate channels in the S-state is that the 2-

body channel preferentially selects the struck proton spin "down"; and the 3-body

channel preferentially selects with equal probability the struck proton spin "up".

Still another way of looking at it, the protons have a 50% probability to be "up"

and 50% to be "down". If the struck proton is spin "up", the reaction has a higher

probability to go into the 3-body channel; if the struck proton is spin "down", the

reaction has an equally high probability to go into the 2-body channel.

The S-state probabilities can be estimated using the Clebsch-Gordon coeffi-

cients. The symmetric spin wave function of three nonidentical particles can be

written as, representing particle 1, 2, and 3 in that order,

2x2) = [ +. -. ) + 2+ -1 + + I- + (1.5)



However, in the 3 He S-state one of the three spin states is not allowed due to the

Pauli exclusion principle. If the nucleons are represented as neutron, proton, and

proton in that order, then the symmetric spin wave function becomes

IX3H) = 1 +1 +1 + ½) + I+1-+1 +1) (1.6)

This can be rewritten in terms of the 2-particle cluster and 1 particle as

"1 [ 1 1
IX He) = 1+ [ )1 -2 ) + 1 1 0) +.)) + 0 0) , (1.7)

where the terms inside the parentheses represent the 2-body channel and the term

outside the 3-body channel. The polarization of the proton in the 2-body channel is

-25% and in the 3-body channel +25%. This simple argument would also predict

that the probability to find the proton in the 2-body channel is 75% and in the

3-body channel is 25% in approximate agreement with the spectral function at low

PN values in figure 1.6. The difference is expected to be due to the S'-state. When

the 2-body and the 3-body momentum distributions are integrated out to about

190 MeV/c, the 2-body contribution is 74% and the 3-body contribution is 26%.

1.0 ., .

0.8 - - RP2 b(P) - --
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0.2 -

0.0 -

0 100 200 300 400
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Figure 1.6. The relative contributions of the 2-body channel (dashed) and the 3-

body channel (dotted) are plotted vs. nucleon momentum PN. The spectral function

is integrated over nucleon separation energy E to 500 MeV.

The nonzero polarization of the S'-state is due to a small difference in neutron-

proton force between when the proton spin is parallel and when anti-parallel to the



neuteron spin. The former has a stronger attractive potential than the latter, and

a proton with parallel spin tends to form a deuteron like cluster, remaining closer

to the center. Therefore, it has a larger momentum value than the other proton

which remains further out. The correlation of proton polarization with momentum

can be seen in figure 1.5(b) where the curve is the sum polazation of the S, S',

and D-state. The polarization changes from -12% at low PN to +20% at around

250 MeV/c, crossing the zero at around 90 MeV/c. The D-state is significant only

at PN above 450 MeV. Despite this correlation, the proton spins of the S'-state are

always anti-parallel to each other.

Similarly, when the approximate spectral function in equation (1.2) is inte-

grated over the nucleon momentum PN, a separation energy density operator is

obtained,

(PN, tN) = Jp/dpdp S(pN, E, tn)q(PN) tN)2 N

1 1 (1.8)= { Qo(PN,tN) + ON'aA[ Q1(pN, tN) - Q2(pN,tN)]}
2 3

where Qi = pdpN fi(pN,E, tN) .

The density operator obtained is diagonal in the space of the spin SN. Therefore,

one can obtain spin-dependent separation energy distributions defined for nucleon

spin in the "up" direction as

q.A,SN+(E, tN) = (SA,SN = +I (E, tN) IsA,SN = +), (1.9a)

and for nucleon spin in the "down" direction as

qSA,SN-(E, tN) = (SA,SN ="-I q(E, tN) ISA, SN =-

Then, an asymmetry ratio in terms of these two distributions

N(E, tN) = qsA,SN+ - qSA,SN- (1.9b)
qSA,SN+ + qSA,SN•--

defines the "polarization" of the proton or the neutron in the nucleus as a function

of the separation energy E as in figure 1.7.

It has been assumed that the contribution due to the scalar function

f2 (pN, E, tN) is negligible. Comparisons are made of the integrated scalar functions

plotted vs. PN in figure 1.8 and vs. E in figure 1.9. These show that the assumption
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Figure 1.7. The spin-dependent distribution of the neutron (solid line) and the

proton (dashed line) for 3-body channel plotted vs. nucleon separation energy E. A

solid circle is the proton 2-body channel nucleon polarization. The spectral function

is integrated over nucleon momentum PN to 6 GeV/c.

is valid for the proton when the nucleon momentum PN is less than 150 MeV/c and

the nucleon separation energy E less than 30 MeV and for the neutron when PN less

than 300 MeV/c and E less than 30 MeV. However, the factor aN -P^NA ' iPN in the

spectral function in equation (1.1) is expected to keep the third term small at high

nucleon momentum PN for the CE-25 experimental azimuthal angle acceptance.

Also, in figure 1.9 the spectral function is three orders of magnitude smaller at the

3-body channel separation energy E = 30 MeV than at threshold separation energy

E 7.74 MeV and therfore only has a negligible contribution to the spin dependent

momentum distributions.
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1.3 The TRIUMF Results

Two measurements of spin-dependent quasielastic scattering of polarized pro-

tons from polarized 3 He were carried out at TRIUMF to probe the ground state spin

structure of 3 He. The first experiment took data at 290 MeV [1.29] and the second,

with a better statistical precision at 220 MeV beam energy [1.31]. Large discrep-

ancies between neutron beam and target analyzing powers and PWIA calculations

were observed at both energies.

The 290 MeV asymmetry data are shown for different recoiling proton angles

and as a function of energy transfer in figures 1.10 and 1.11. The data for the

neutron knockout is combined for all recoiling neutron angles due to lack of statistics

in figure 1.12.

The 220 MeV asymmetry data have significantly higher statistical precision

and are shown as a function of energy transfer for different angles of the struck

neutron in figures 1.13-1.15.

The proton asymmetries were small as expected from PWIA. The TRIUMF

results cast serious doubt on the validity of using polarized 3 He as an effective

polarized neutron. Why was the target asymmetry of 3He(p,pn) close to zero?

Were final state interactions playing a major role? Why were the target asymmetry
of 3He(p,2p) data reasonable? These questions were the primary motivation for the

work in this thesis. Could medium energy polarized proton scattering be used to

extract any information on the ground state spin structure of 3He?
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The short dashed line is the calculation with final state interactions between nu-
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calculation with these final state interactions removed.
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Chapter 2
Quasielastic Scattering

2.1 Overview

In this chapter, the use of quasielastic scattering as a tool to study the nucleon

momentum distribution in nuclei is discussed. In particular, the Plane Wave Im-

pulse Approximation (PWIA), which is used to interpret the experimental results

is described. Starting from a general quasielastic scattering formalism, the PWIA

is developed. Finally, a Monte Carlo model of the experiment using the PWIA is

presented.

2.2 Quasielastic Scattering as an Experimental Probe

Scattering allows one to measure the dynamics of nuclear systems. Electron and

photon scattering reactions in nuclear physics in the last thirty to forty years have

provided a large body of information on nuclear structure. Reactions using hadron

beams, such as proton, neutron, and pion have also provided much information on

nuclear systems. In medium energy, beam kintetic energy -200-1000 MeV, there

is some probability for a scattering reaction to go into each of the following final

states: elastic scattering, nuclear resonances, quasielastic scattering, and nucleon

resonances. While the probe particle scatters coherently from the nucleons of a

nuclear system in the elastic reaction and nuclear resonances, the probe particle in

the quasielastic reaction and nucleon resonances, transfers dominantly an impulse to

a single nucleon and scatters as if from a free nucleon with a momentum distribution.

In order to study nuclear systems, particularly single nucleon properties, it is

important to have:

* the interaction of the probe particle with nucleons simple, well understood and

calculable;

* the observed effects be dominated by the dynamics of the nucleons;

* the product of its passage time r and interaction strength V with the nucleus is

small compared to h.

Under the third condition, the quasielastic scattering reaction can be approximated
by a single impulse interaction of the probe particle with an almost free nucleon
having an initial momentum. The nucleon is almost free because the nucleon is

not on-shell with a nonzero binding energy. In this framework, the single nucleon
momentum distributions could then be measured to understand the dynamics in

nuclei.
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By constrast when the third condition is not satisfied, multiple interactions are

not negligible, and the observed effects may not be easily interpreted. In the initial

state the beam particle can have interactions with multiple nucleons instead of an

impulse interaction, resulting in a large background to the experimental signal of

single nucleon properties in the nucleus. Such effects are called "initial state interac-

tions". When there are interactions between the scattered particle and the nucleons

after the impulse interaction, the outgoing momenta can be altered, similarly result-

ing in poor sensitivity of single nucleon properties. Such effects have been termed

"final state interactions". Some examples are: the electron beam is distorted from

the plane wave state due to Coulomb interaction with nuclear charge; similarly,

the hadron beams generally interacts more than once with target nucleons due to

the strong interaction; and the beam particle interacts with the meson exchange

currents in the nucleus.

For the photon and the electron, the impulse scattering condition is easily sat-
isfied in the medium energy range. Moreover, electromagnetic scattering is well un-

derstood and calculable to high precision using Quantum Electrodynamics. Given

that the electron and the photon probes easily satisfy the impulse scattering condi-

tion, they do not disturb the rest of the nuclear system in the quasielastic scattering

process, and therefore, they can be used to probe the dynamics of single nucleons

with high precision. Furthermore, it allows one to extract off-shell nucleon form fac-

tors in light nuclei, if the nuclear properties and the the multiple scattering effects

are known [2.1] and minimized. Even if electromagnetic processes are calculable to

high precision, the description of nonquasielastic effects are model dependent and

prescriptive. One such model is the distorted wave impulse approximation that is

often used to correct for the distortion in the plane wave of the incident electron
due to the Coulomb interaction with the nuclear charge.

However, proton beams are technically easier to produce and have interaction
cross sections with nuclear targets three to four orders of magnitude larger than
those of lepton or photon beams due to the strong interaction. Since hadron probes.
interact strongly with nuclear matter, the product of the passage time r and the
interaction strength V is not going to be much less than h. Multiple interactions in
the nucleus can dominate, and there is not likely to be a simple impulse interaction
with one nucleon as in the case of the electromagnetic probes. Due to multiple
scatterings of the probe, the observed effects may not be easily interpreted in ternms
of the dynamics of target nucleons. In the future, few body calculations can serve to
give a detail account of the nonquasielastic processes [2.2] for both electromagnetic



probes and hadron probes.

Despite the higher probability for multiple interactions, proton beams have

been sucessfully used as quasielastic scattering probes in the beam kinetic energy

range ~-200-1000 MeV to study nuclear systems from heavy nuclei to light nuclei.

The quasielastic scattering process of knocking out a single proton from nuclear

targets was first used in proton scattering experiments in 1952 at the 350 MeV

synchrocyclotron in Berkeley where strongly correlated proton pairs were observed

emerging from a Li target. In addition, the cross section was found to be Z (=

3) times the proton-proton cross section. Using the 185 MeV synchrocyclotron

in Uppsala, the shell structure in nuclei was confirmed by the quasielastic (p,2p)

scattering reaction in 1957. For a review of proton quasielastic scattering on nuclei

heavier than 4He, see the article by P. Kitching et al. [2.3].
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resonance
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Figure 2.1. A generic inclusive electron scattering spectrum. The figure is taken

from Frois and Papnicolas [2.4].

In the intermediate range of beam kinetic energies from -200-1000 MeV of
the proton, the electron, or the photon beams, there can be a number interactioni

channels with varying strengths depending on the kinematics: elastic scattering.

resonances, single nucleon excited states, quasielastic scattering, pion production.

and the delta resonance. Indeed, in Figure 2.1, a typical intermediate energy elec-
tron scattering cross section of the "inclusive reaction"-where only the scattere(d

particle is detected-is plotted as a function of energy transfer w for a fixed 4-



momentum transfer squared Q2, showing the structures of the different channels.

The structures are defined by only the kinematic variables Q2 and w. Specifically,

the elastic and quasielastic peaks are at energy transfers of

we. = Q2 /2mA (2.1a)

and

Wq.e. = Q2/2mN + Eb, (2.1b)

where both cases are similar in form and in the second case Eb is the nucleon removal

energy from the nucleus, indicating that the ejected nucleon is a bound nucleon.

One can extend the picture to describe the quasielastic scattering peak as

a hole excitation which results from the ejection of a single nucleon from one of

the energy shells of the nucleus. This picture of using the shell model is limited

to nuclear systems with mass greater than A = 4. When the nuclear system is

just 3-nucleons or 4-nucleons, the shell model is no longer valid. However, few

body calculations have recently become available for the 3-nucleon system where

nucleon momentum distributions or spectral functions have been formulated for use

in electron quasielastic scattering [1.27, 1.28].

As discussed above, each component in the electron scattering cross section

in Figure 2.1 is a function of Q2 and w only, with its strength diminishing with

increasing Q2. Each peak has a total mass energy Mx that results from energy and

3-momentum transfer to the nuclear system,

M = (w + MA) 2 -q 2

= -Q 2 + M2 + 2wMA. (2.2)

Upon substitution of the quasielastic condition into the mass equation above, the

total mass energy Mx becomes a function of either Q2 or Wq.e.:

M2q.e. = 2MA- 1) + 2EbMA +M
q.e. MN (2.3)
= 2w(MA - MN) + 2EbMN +M ,

from which one can estimate the minimum value of Q2 and w. If the quasielastic

scattering process can be described by a simple removal of a nucleon from the

nucleus, the minimum of Mx q.e. is just

Mx q.e.(min) = Eb + MA. (2.4)



Therefore, the minimum value of Q2 and wq.e. is:

Q2 Eb
min (MA/MN- 1) (2.5)

Wq.e.(min) = Eb •

At the minimum values of the kinematic variables, the nonquasielastic processes can

dominate, and one can minimize the nonquasielastic processes in inclusive reactions

by choosing kinematic regimes far above the minimum values. On the other hand,
as mentioned earlier, the signal strength of each structure in Figure 2.1 is decreasing
with increasing Q2 . Therefore, one has to optimize the signal to noise ratio over

the kinematic regimes.

Experimentally, the ejected nucleon in quasielastic scattering is often detected

in coincidence with the scattered particle, allowing a reconstruction of single nucleon
momentum distributions in nuclei [2.5,2.3] and exclusively detecting a particular

reaction, such as in the "exclusive reactions" 3He(p,p'N)A-1 or 3 He(e,e'N)A-1-
where one or more coincident particles in addition to the scattered particle are

detected. In the energy and momentum conservation equations,

E0 + MA= E, + E2 + EA-1
(2.6)

P0 + PA = P1 + P2 +PA-1,

the energy and momentum of the recoiling A-1 system are constrained once the
energy and momentum of the scattered and the ejected particles are determined.
Therefore, the energy and momentum EA-1 and PA-1 are measured and can be
used to define the "missing energy" Em and the "missing momentum" Pm as.

Em = FEA_1 - P- 1 + mbeam - mA (2.7)(2.7)

Pm = PA-1 •

In quasielastic scattering when the initial and final state interactions are negligible,
the removal energy E and the nucleon momentum PN are identified with the missing
energy Em and the missing momentum pm. Figure 2.2 shows plots of the measured
missing energy distributions at different missing momentum ranges obtained from
the 12C(e, e'p) scattering reaction.

The use of proton beams to measure the proton momentum distribution in
3He was shown by Epstein et al. to be in good agreement with results obtained
using electron beams up to the nucleon momentum ,-200 MeV/c, beyond which the
proton probe has been interpreted as not reliable [2.6].
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Figure 2.2. Missing energy Em distributions at different

from 12C(e, etp) scattering reaction [2.5].

ranges of Pm obtained

When the ejected nucleon is detected to measure the single nucleon momentum

in nuclei, one needs to minimize the final state interaction of the ejected nucleon

by selecting kinematic conditions for which the ejected particle moves through the

medium in a very short time so that the product of its average interaction strength

V and the transit time r is small compared to h. Equivalently, its momentum

must be large compared to the average nucleon momentum which is - 100 MeV/c

in light nuclei since the average nucleon momentum is determined by the average

interaction strength V between nucleons. This condition of large ejected nucleon

momentum will be used as a test on the spin-dependent quasielastic neutron results

of this thesis.
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2.3 Nucleon-Nucleon Elastic Scattering

Nucleon-nucleon elastic scattering is discussed in this section. A nucleon with

an incoming momentum k is scattered into momentum k' in the c.m. frame of

the two nucleons. The nucleon-nucleon elastic scattering matrix operator in the

c.m. frame can be written, assuming parity conservation, time-reversal invariance,

the Pauli exclusion principle, and isospin invariance, in terms of only the invariant

scattering amplitudes a, b, c, d, and e [2.7],

M{(a b
MNN(k ' , k) = (a +b) + (a-b)(ao.ri)( 2 .fi)

+ (c + d)(ai. rh)(a 2 i) (2.8)
+ (c- d)(or ,-)(02 1) + e[(a, fi+) + (U2

where the Pauli matrices a, and 02 act on the wavefunction of particles 1 and 2 and

the unit vectors are defined by the incident and the scattered momentum vectors

as

k'= .m. + kc.m. kA m. - kc.m. A kcm x k.m (2.9).m.M"", M=nfi = " "(2.9)
1k..m. + kc.m. Ik.m.- kc.m. ' Jkc.m. x k.m.I

Only in the c.m. frame, the matrix element is symmetric between the two particles

which is important if one is to do calculation of the scattering cross section. In

this section, the discussion is going to be limited to looking at the spin-dependent

formalism, and there is no need to write out explicitly the form of the operator.

Therefore, in what follows the nucleon-nucleon scattering operator MNN is no longer

defined in the c.m. frame as in equation (2.8) but is given for any frame. While

one set of unit vectors is sufficient to describe the spin directions of the initial and

the final states of the particles, four sets are needed in an unspecified frame:

A Po x pl A Po A A
p0 x pil' po

nI, k•N -- _.NN SN =- f1 x kN ;
PN

n , 1IN=S-= , s 1 =nxkN;PN

P1

n , k2 p  S2 = n X×k2 ; (2.10)
P2

where po and pi are the incident and scattered momenta of particle 1 while PN and

P2 are the initial and ejected momenta of particle 2. The unit vector fi remains
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the same as in the c.m. frame while the the other unit vectors are different. If the

target nucleon motion is slow compared to the incident nucleon, and it is on the

average stationary, then the set of unit vectors for the incident nucleon can be used

for the target nucleon since a stationary or near stationary particle can have its

spin state defined in any direction. In what follows, only the incident nucleon unit

vectors set will be used for the target nucleon.

The matrix amplitude is squared to obtain the elastic scattering probability,

FNN = I (plsltl, p 2s 2t 2 [ MN p0os0tO0, PNSNtN) 12 (2.11)

where the initial and final momentum, spin, and isospin states are respectively

jposoto) and Ipisiti) for particle 1 and respectively JpNSNtN) and |p 2 s 2 t2 ) for

particle 2. The spin-dependent scattering cross section can be expressed as,

d NN fluxNN 2E12EN (2x)4 (4)(p1 + P2 - P0 - PN)flux 2Eo2EN
xINN d3 p1  d3p 2  (2.12)

(27r) 3 2E 1 (27r) 3 2E 2  (2.12)
where

1 PO * PN
fluxNN (Po pN) 2 - mI2m•(P _N 0m1

Moreover, the matrix element MNN in equation (2.11) can be written for a

combination of isospin singlet and triplet configurations of T=0 and T=1 to describe

the proton-neutron scattering reaction or only isospin triplet configuration of T=1

to describe the proton-proton scattering reaction. While the total isospin of the

reaction is conserved, the total spin can change, allowing therefore, sixteen different

combinations of the initial and final nucleon spin states and resulting in 256 different

spin combinations of the scattering probability F. In the particles' spin space, the

cross section and the asymmetries are formulated in general as [2.7]

do"N N  1

d0 oc -Tr MtM
dQ 4 (2.13)

doN 1
Xpqij oc -Tr (or . P)(92 4) Mt (2 " ^)(a2 M ()Mdý4

where (al ,) and (C2 -.4) operate on respectively the scattered and ejected particle
states, and (o-1 -F) and (92 "J) operate on respectively the incident and target particle
states. The indices p, q, i, and j indicate respectively the spin directions of the
scattered, ejected, beam, and target particles to be along one of the corresponding



unit vector directions in equation (2.10). If the particle has zero spin or its spin

states are not known, then the index letter is replaced with zero. Including the

unpolarized cross section, there is a total of 256 such asymmetry observables. If the

spin states of the scattered and ejected particles are not known, then the number

of experimental observables is reduced to sixteen. They are the unpolarized cross

section and the fifteen asymmetries which are summarized as

daNN 1
d c -Tr MtMdQ 4

doNN 10 Aooio c -Tr Mt((- .)) MdQ0 4 (2.14)
d-NN 10NA 000j cc -Tr M t ((o 2  )) M
dQ 4

da-NN  1d Aooij c -Tr Mt ((0-. +))((o2 5)) M,
dQ 4

where (•l- •) and (U2 5 ) operate on the incident and target particle states. Of the

sixteen physical observables, half of these are zero due to parity conservation. They
ANN ANN A0NNANN ANN ANNA and ANNN

are 0 0ko, A 0m0, A000k, A000m, A00nk, 00kn Aoons, and00sn

The elastic scattering cross section in the c.m. frame can be then written in

terms of the polarizations and the remaining nonzero observables as

dNNN dN r (fi NN
d2- "1+ ( Pb)Aoonodft dGt

ANN n n N
+ (f -Pt)A on + (" -Pb)(i • Pt)AoonN

(l• P)(l • NN

+ (k - Pb)(k Pt)A00kk
NN00ksON - (A b)k NN

+ ( Pb)(-Pt)Aooss + • Pb)( Pt)A0 + (SPb)(kPt)ANOk

(2.15)
The derivation of equation (2.15) from equation (2.12) is given in Appendix B.

The normal asymmetries A0NN0 and A No nand similarly, the interference asym-

metries ANN0k and AN0Ns are equal to each other due to symmetry of the nucleons

which is the case in proton-proton scattering and is also the case in proton-neutron

scattering assuming that charge symmetry breaking is negligible. Furthermore, the

proton-proton scattering observables are symmetric with respect to the c.m. scat-

tering angle.

There exists now an extensive set of world data on nucleon-nucleon scattering

up to a few GeV of beam kinetic energy [2.8, 2.9]. Phase shift analyses have been

performed on the data to generate solutions which allow reconstruction of nucleon-

nucleon cross sections and asymmetries within the experimental kinematic ranges.



These solutions are available in the form of an interactive program called Scattering

Analysis Interactive Dialup (SAID), compiled by Arndt et al. [2.10]. The program

can generate experimental scattering observables defined using the laboratory co-

ordinate vectors as functions of the c.m. angle, the laboratory angle, beam kinetic

energy in the lab frame, and so on. The program's solutions are updated regularly

to include recent data or analyses. The version used for the Monte Carlo calculation

was updated in the Summer of 93' (SM93) and has

x2 /Ndata = 23224/12768 p - p scattering data

= 18237/10619 n - p scattering data.

There are also other phase shift solutions such as Bugg-Bryan, Bonn, Paris, etc.

available in the program. These solutions can be used to generate the asymmetry

observables that can vary up to 10%, one from the other, particularly for proton-

neutron scattering since there are less of precision data on proton-neutron scattering

than on proton-proton scattering. However, recently high precision data for proton-

neutron scattering have become available, improving the accuracy of the phase shift

results [2.9]. Below are plots of the cross sections and asymmetries defined in the

laboratory coordinates and generated by the SM93' solution of the SAID program at

200 MeV beam energy. Besides the nucleon-nucleon elastic scattering observables,

the program can also provide generate scattering observables for pion-nucleon and

kaon-nucleon interactions. Below are the nucleon-nucleon elastic scattering observ-

ables defined by the set of unit vectors for the incident nucleon as in equation (2.15)

but are plotted as functions of the c.m. angle.
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2.4 Spin-Dependent Quasielastic Scattering Using Protons

Spin-dependent quasielastic scattering allows one to look at small signals in
nuclear physics. Recently, the quasielastic "H e(-',e') inclusive reaction was used

to measure the neutron (very small) electric and magnetic form factors, Gn(Q 2)

and Gn (Q 2 ) [1.6-1.10] which are obtained from experimental asymmetries. The

asymmetries result from: (i) the polarized neutron (ii) the nonzero polarization of

the protons in 3 He, (iii) meson exchanged currents, and (iv) the elastic tail.

The signal from the neutron alone is an order of magnitude or two smaller than

these signals. Although the measurement was carried out on the quasielastic peak,

there were still interference processes and in this case, they were used to measure

small signals. Detection of the coincident neutron has been used to enhance the

small signals in the iHe(-,e'n) reaction [1.11] where the following backgrounds

were eliminated: (i)the nonzero proton polarization, (ii) the meson exchanged cur-

rents, and (iii) the elastic tail. Similarly, the quasielastic d(-,e'-n) reaction [1.12]

has been used to measure the electric and magnetic form factors of the neutron.

Detection of the knocked out neutron can "filter out" comparable asymmetry con-

tributions to the scattering from the protons in 3He. However, there is the added

complication of final state interactions with detection of the ejected neutron.

As mentioned in Chapter 1, comparison of theory to experiment for the spin-

dependent single nucleon dynamics in 3He will be important to the interpretation

of results from experiments of polarized 3 He as an effective polarized neutron tar-

get. The CE-25 experiment at IUCF was carried out to measure spin-dependent

nucleon properties using exclusive reactions He(Vp,2p) and iHe((,pn) extending

the kinematic regimes of the previous measurements at TRIUMF [1.29,1.31]. Here,

the formalism of spin-dependent quasielastic scattering is developed to allow inter-

pretation of the data and to motivate a Monte Carlo simulation for comparison to

the data.

As discussed previously, the quasielastic scattering exclusive reaction allows

one to measure the nucleon momentum distribution as in 3He(p,pN)A-1. By

polarizing the beam protons and the target 3 He's, one is further able to measure

the the spin-dependent nucleon momentum distributions of 3He. The derivations in
this section and in Appendix C show how the spin-dependent nucleon momentum
distributions can be determined.

The quasielastic scattering reaction on 3 He using a proton beam can be seen as
a 4-body interaction process in which the dominant interaction takes place between
the beam proton and a single off mass shell target nucleon. In this reaction, the



4-body system evolves from the initial state of

I pSO, PASA) , (2.16)

where Ipo) and IPA) are the beam and target particle plane wave state vectors-in

addition, the state vector IPA) includes the 3He wavefunction obtained from 3-body

calculations- to the final state as below

A Ipisi, p2S2, PA-1SA-lfA-1) , (2.17)

where Pi and P2 are respectively the scattered and ejected particle plane wave states

and PA-1 is the recoiling system plane wave state of the deuteron or an unbound

system of the proton and neutron or of the two protons. The operator A is used to

asymmetrize the outgoing plane wave states. The recoiling system A-1 can be a

deuteron as in the 2-body breakup of the 3He nucleus or a free neutron and proton

or two free protons as in the 3-body breakup. Again, the dominant interaction is

with a single nucleon; the energy and momentum of the beam proton is transferred

largely to the nucleon.

P2

k-1

Po ,Sol PA
Figure 2.6. Quasielastic scattering reaction (p + 3He --+ p + N + XA-1) of

the proton from the 3He nucleus showing the knockout of a nucleon along with

the remaining A-1 nuclear system which can be an unbound system or the bound
deuteron. The interaction transfer energy and momentum largely to a single nucleon

in order for the process to be quasielastic.
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As the beam particle approaches the target nucleus, an interaction with the

target nucleons takes place. The mutual pair interactions among the four nucle-

ons exist until the particles are far enough separated. Any single realistic-potential

model such as the Reid, Paris, or Bonn models can be used to describe the interac-

tion between pairs of nucleons. Carrying out a 4-body calculation would completely

describe the evolution of the scattering process assuming the following:

* no pion production;

* point and nonrelativistic particles;

* the mutual interaction can be described by nucleon-nucleon potentials;

* and furthermore, for the interaction to be quasielastic, the product of the beam

passage time r and its average interaction V with the nucleons in 3He is small

compared to h, satisfying the condition of quasielastic scattering; equivalently, the

beam proton motion is much faster than the nucleon motion ( 100 MeV/c) in the

'He nucleus.

A general spin-dependent quasielastic scattering cross section for the 3He(p,2p)

and 3He(p,pn) can be written as

dcr(so, SA) 1 (2r)4 (4)(pl + P2 + PA-1 - P0 - PA)
flux 2Eo2EA

d3 pi d3 p2  d3pAl-1×rP(so, SA)
(2r)3 2E (27r) 32E 2 (27r) 3 2EA_-1

where
1 Po PA

flux V(POPA)2 - m0A2 2

and

F(So,SA) =11A(pls, P2S2 , PA-ISA-lfA-1I tq.e. JPOSO, PASA) 12

SI,S2
SA-1,fA-1

(2.18)

in which as usual there are the flux factor, the phase space factor, and the "spin-

specified" interaction probability with the 4-body system quasielastic scattering tq.e.

operator. The spin states s, and s2 and the spin state SA-1 and the internal state

fA-1 have been summed over in F(so,SA) since the polarizations of the outgoing
particles and the internal states of the A-1 system in the final state were not

detected in the experiment.



2.5 Plane Wave Impulse Approximation

The quasielastic scattering reaction can be further discussed in terms of the

Plane Wave Impulse Approximation (PWIA). In this approximation, the following

conditions are assumed:

* the initial and final states of the particles can be described by plane waves;

* an impulse interaction takes place only with a single nucleon and there is no initial

and final state interactions; the ejected nucleon is removed from the nucleus without

disturbing the remaining A-1 system which remains in its initial state fA-1;

* interaction with meson exchange currents is neglected.

P,1 P2

PA-1

P beam A

Figure 2.7. Plane Wave Impulse Approximation scattering where a nucleon is

ejected from the nucleus due to interaction with the probe particle. The A-1
nuclear system recoils without any interaction.

Therefore, the general quasielastic tq.e. operator that includes nonquasielastic

corrections can be replaced by the half off-shell nucleon-nucleon tNN operator as

M = V (plS, p2S2, pA-1SA--lfA-1t3A-11 tNN IPOSO, PASAt3A) , (2.19)

where the factor J-N results from approximation of the asymmetrized final state in
PWIA.
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Inserting the completeness relation

N PNSNt'3 N) (psNt3'NI = 1 (2.20)
SN,t3N

into equation (2.19) the matrix element becomes

M. = Jd3p ~ /~V (plSli, p 2S2 , PA-lSA-1fA-1t3A-1I tNN PNSNt'3N)
SN,t3N

(pNsNt'3NpOSO, PASAt3A) . (2.21)

Letting
tNN1P' , t13__=MNN

(PIP21 tNN P0, pNN) NN

and

(pNt, pA-1 fA-1t3A-1 PAt3A) =g(PNt3N, PA-lfA-1)

6(p~ + PA-1 - PA) t N+tSA-,taA ,(2.22)

the matrix element can be rewritten as

M = Jd3p' V (sls 2 MNN ISOSN)(sN,SA-1 1 ISA)
SN,t3N

xb6(pN + PA-1 - PA) t3 s+t3 A_,t 3 A . (2.23)

Note that there is no corresponding simple delta relation for the spins between the

initial and the final states as the spins are coupled to the orbital angular momentum

also. The dependence on the spins is then implicitly kept in the operator 9. After

summing over the isospin tN and integrating over the nucleon momentum p' , the

matrix element becomes,

M = / (sis2 MNN(plp 2 poPN,taN) ISoSN)
SN (2.22)

(SNSA-1 [ (PNt3NfA-1) ISA)

where t3N and PN are the nucleon isospin third component and the nucleon mo-

mentum respectively, which are defined as

t3N = t3A - t3A-1 (2.24)

PN = PA -- PA-1 I



Next, the matrix element is squared to obtain the interaction probability in

equation (2.18). After the summation over the final spin states, the spin-dependence
is reduced to that of the beam and target spins. Notice that the 4-momentum delta

function has a dependence on the internal states fA-1 in the mass MA-1. Therefore,
a delta function below is artificially introduced to transfer the dependence on the

internal states fA-1 to the dependence on the separation energy E.

6(E 0 + EA - E1 -E 2 -EA-1) =

+00
SdE 6(Eo +EA -E - E2- EA-1(E- mN+ MA))

min(mN+MA-MA-1)

x (E - mN + MA - MA-1)

(2.25)
where EA-1 = Pm2 + (E - mN + MA) 2 depends only on fA-1 through the nu-

cleon separation energy E, and where the delta function 6(E - mN + MA - MA-1)

contains all the fA-1 dependence. The result is that the energy delta function can

be pulled out of the summation over the fA-1 states,

F(so,SA) = (SOS MNNt SIS 2 ) (sls 2J MNN ISOSN)
si,s 2  (2.26)S'N,SN

x (SASN I S(pN,E, tN) ISISA) ,

where

(SA,SN S(PNE, tN) IsSA) = { 6(E+ mN + mA-1 - mA)
SA-1 ,fA- 1 (2.27)

x(SAI t IS , SA-1) (SN,SA-1I g SA) }
Substituting the interaction probability F(so, SA) in the cross section equation

(2.18) and integrating over part of the phase space the quasielastic cross section

expression can be written as

do(so,SA) 1 1
d~ldi 2dpA-1 flux 2E02EA

p'dpi p2 dPp2 p_jdQA-1 )bPx (p)2dp p(2dp 2 p(d2A-1 (27r) (p - 1 - P2 - PA-1)] (2.28)
X (27r) 32E1 (27r) 32E2 (27r) 32EA_ 1

x f dE (27r) 6(Eo + MA - El - E2- EA-I(E)) J(so, SA).

~1IW~ ~I _I _



Experimentally only the polarization of the beam and target particles can be

detected instead of the spin state itself. Therefore, the cross section expression in

equation (2.28) needs to be recast in terms of beam and target polarizations as

da
dQ~dQ 2dPA...i

do0do- A 1 + (fi.-Pb)AoOnO
dfldQ2dpA-1

+ (fi -Pt)Aooon + (i" Pb)(fi Pt)Aoonn

+ (k -. Pb)(k. Pt)Ao00kk + ( Pb)(S Pt)Aooss

+ (k . Pb)(" Pt)Ao00ks + (" Pb)(k Pt)Ao00sk

where doo/dý21dR2dpA-1 is the unpolarized cross section, Pb and Pt are the beam

and target polarizations and A00ooij's are the asymmetries. The unpolarized cross sec-

tion and the asymmetries are proportional to different combinations of target and

beam spin states of the cross section expression in equation (2.28). The derivation

steps from equation (2.28) to (2.29) are detailed in appendix C. Below the unpolar-

ized cross section and the

unpolarized cross section

do'
dQldQ2dpA-1

Aoono do0o =
A0  did2 2 dpA-1

and
do,

d92, dQ2dpA-1

asymmetries are expressed in terms of the nucleon-nucleon

and asymmetries and the nuclear structure functions,

da-N NdEpA _l d A - 1 do S(pN, E, tN),1 dQ dQ2 (2.30a)

dEpi _ dPA-1 AoNN d°dQ2 S(PN,E,tN) , (2.30b)
d~p-ldA- A°n°d~idf•2

daoN
N

dEpr _dA1 Ai N p , dd 2

r(pN, E, tN) S(PN, E, tN) (2.30c)

where the index {ij} is either {On} the target asymmetry or {nn} a spin-correlation

parameter. Note for the neutron, rn is 1.0 at low PN values, and since the beam re-

lated neutron-proton scattering asymmetry is identical to the target related neutron-

proton asymmetry, the target related asymmetry An00 becomes identical to the

beam related asymmetry Aon0 0 in the PWIA model. The cross section expression

in equations (2.29a-c) can be further integrated over the angular acceptance of the

experiment to obtain the quantities measured in the experiment: A00oono0, A000ooon, and

(2.29)



2.6 Monte Carlo Model

No complete theoretical calculation of spin-dependent quasielastic scattering

from 3He exists. An experimental Monte Carlo simulation is necessary to quantify

the effects of the experimental geometry on measured physical quantities to allow a

precise comparison between theory and experiment. The angular range of particles

detected by the large acceptance detectors varies over the length of the extended

target, which moreover, has a varying target density with a triangular distribution.

See Figure 3.13 in the chapter on target apparatus. The basics assumptions and

inputs of the model are:

* Schulze and Sauer spin-dependent spectral functions; Blankleider and Woloshyn

spin-dependent momentum distributions;

* on mass shell nucleon-nucleon interaction cross section and asymmetries from

SAID;

* no initial state or final state interactions;

* no meson exchange current, isobar configuration, or relativistic correction consid-

ered.

The calculation was carried out in two steps. First, events that satisfied the

kinematic conditions and detector and target cell geometry requirements were gen-

erated. Each event consisted of numerical values of the nucleon-nucleon on mass

shell cross section and asymmetries and components of the spectral functions. Sec-

ond, events were binned into histograms of the recoiling system momentum PA-1 or

the 3-momentum transfer q for a specific beam and target spin state with weight-

ing of the spectral function, cross sections, asymmetries, and the factors p-'
cosq, cos 2q, and sin 2 q. Here, the kinematic variables were smeared to simulate the

experimental resolution, and events with detection of three or four nucleons were

rejected. From four histograms of specific beam and target vertical spin states, a
relative yield and three experimental asymmetries A00, 0 , Ao000on, and Aoo00nn were

formed. A box diagram for the Monte Carlo simulation is given in Figure 2.8. In
addition, the experimental asymmetries were calculated with the target nucleon

polarization 100% for use in the thesis to extract the nucleon polarization from the

data in chapter 5 and chapter 6.

It was pointed that in the laboratory frame the azimuthal angle € of the scat-
tered particle, although well defined in the (p,pn) reaction, is ambiguous in the
(p,2p) reaction particularly when the three body phase space is considered [2.11].
When only the two body phase space is considered, the angle 0 is the same for

CdL~r~-~--------- ---~----·--~--~ ~-~ ·-----
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if the scattered particle hit detector plane,
if the ejected particle hit detector plane.

Record ntuple.

if the scattered and ejected particles
hit respective detector planes
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Bin ntuples into histograms STEP II

smear in the detector resolution
reject events with detection of 3 or 4 nucleons
weighting of

kinematic flux factor,
N-N cross section and asymmetries of SAID,
spectral function,
recoil system momentum,
and factors of scattered particle azimuthal angle phi.

Divide each of the three asymmetry histograms by the yield.

Form one yield and three asymmetry histograms.

Figure 2.8. Algorithm for the experimental Monte Carlo.
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Figure 2.9. The comparison between the Schulze and Sauer spectral function

integrated over the separation energy E and the Blankleider and Woloshyn spin-

independent momentum distribution for the neutron polarization in (a) and the

proton polarization in (b).

either the left-scattered proton and the right-scattered proton. In the calculations
presented in the thesis, the asymmetries were determined for the left-scattered pro-

ton and the right-scattered proton separately, and the average of the two was used

as the result.

The ambiguity can be resolved by transforming from the lab frame to the
c.m. frame of the beam and the struck proton momentum and spin for the initial
kinematics or the two outgoing proton momenta and spins for the final kinematics
calculation. In the c.m. frame, one particle is always moving diametrically opposite
in direction of the other, requiring only a single 0 value. The trasformation of
the proton momenta is a well understood problem on one hand, however on the
other, it is not understood how the spin can be transformed as there will be a time
component of the spin. Prior to any numerical calculation, a detail formalism i.
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Figure 2.10. The comparison between the Schulze and Sauer spectral function

integrated over the separation energy E and the Blankleider and Woloshyn spin-

dependent momentum distribution for the neutron in (a) and the proton in (b).

necessary.

The spin-dependent momentum distributions of Blankleider and Woloshyn have

also been used. Although no direct comparison has been made between using the

two different nuclear momentum distribution inputs, the results are expected to

be different only at high recoil momentum due to the nonzero missing energy. In

fact, the difference was seen to be most pronounced in the asymmetries plotted

vs. the 3-momentum transfer q. Below a comparison between the Schulze and

Sauer spectral function integrated in separation energy E from 0 to 500 MeV and

the Blankleider and Woloshyn spin-dependent momentum distributions is made in

figures 2.9 and 2.10. They show good agreement between the two solutions at low

recoil momentum for the neutron polarization. The proton calculations differed by

at most 10%.

b) Schluze & Sauer

Blankleider & Woloshyn - - -

E ' ' '



Chapter 3
Polarized 3He Internal Gas Target

3.1 Introduction

Internal targets refer to gas targets constructed for use as an integral part of a

storage ring where charged particles are stored. To date jet targets and storage cell

targets have been constructed, although because of the highly efficient use of the

gas, the storage cell target can give rise to a significantly increased target thickness

[1.13, 1.5, 3.1]. In a jet target, a stream of gas is directed at the intersection point

with the beam, and the interaction vertex is precisely determined. The jet target

can be made more diffusive as in the CE-25 calibration measurement, to reduce

sensitivity of the beam position to the loss of luminosity. Gas can also be contained

in an open ended, ultra thin walled storage cell to achieve a thicker target. This

configuration is particularly useful for polarized targets. By careful choice of the

transverse dimensions of storage cells, interaction of beam halo with cell walls can be

minimized to achieve essentially ideal beam and nuclear target interaction. Further,
energy losses of beam and reaction products are negligible in the ultra thin gas, and

sub-MeV reaction products can be detected outside the thin walls of the target cell.

Polarized internal gas targets have been of considerable current interest in nu-

clear and particle physics, e.g. for use at the HERA collider ring to measure the

neutron quark structure function g'(x). There are also plans to use a polarized 3He

internal gas target in the Bates South Hall Ring. The work described here repre-

sented the first measurement of a scattering asymmetry with a polarized internal gas

target and a polarized stored, charged particle beam. In the polarized 3 He internal

gas target described here, pure 3He gas is polarized by the metastability exchange

optical pumping technique and flowed into the storage cell. The metastability ex-
change optical pumping technique to polarize 3 He gas was first demonstrated by

Walters, Colgrove, and Schearer in 1962 [3.2]. Using a 4 He discharge lamp, they

achieved a 4% 3He nuclear polarization in 1 Torr of 3 He gas in a sealed Pyrex

glass cell and later increased the polarization [3.3] as measured by the laser light

transmission technique. Their work had its origins in an earlier effort that suc-
cessfully aligned 4He metastables using a bright 4 He discharge lamp and soon led

to the construction of a closed cell polarized 3He gas target for nuclear reactions
with a target polarization of 8.5% at Rice University [3.4]. The low polarization

in the target was caused by the increased relaxation rate from mechanisms such as



the metal wall and beam ionization depolarization. Optical pumping rates much

higher than those available using discharge 'He lamps are necessary to obtain high

polarization and also to overcome the increased relaxation rate for application in

nuclear physics targets. With the commercial availability of tunable Nd:YAP CW

lasers in the 1.05-1.1 ~pm wavelength region in the early 80's [3.5], there was renewed

interests in polarizing 3 He atoms for applications in a number of fields. A cyrogeni-

cally cooled double, closed cell system was developed by Leduc et al. [3.6] and later

adapted to a target by Milner et al. [3.1] for scattering experiment. In this target,

an Nd:YAP laser tuned to the Doppler width of the metastable optical pumping

transition provided several hundred mWatts of the intense circularly polarized light,

and target polarizations close to 30% were maintained during the experiment [1.6].

In recent years, with the commercial introduction of the Nd:LMA tunable

CW lasers, 4-6 Watts of the output laser power [3.7] at the Doppler width of the

metastable optical pumping 1.0834 im transition have become routinely available.

The increased laser power nearly doubled the polarization of the double cell target

in the recently completed 3He(e,e') measurement at Bates Linac [1.9,1.10]. Corre-

sponding to 4-6 Watts of laser powers at the transition, high pumping rates of 1018

(1019) atoms/sec and respectively 82% (50%) polarizations in sealed Pyrex cells

have been achieved [3.8]. Finally, the increased laser power also made possible high

polarization with high flow rate in this polarized 3He internal gas target used in

the IUCF Cooler Ring. The increased laser power provided sufficient pumping rate

to replenish the polarized 3He atoms in the target. The target was prototyped and

designed at MIT-Bates in 1989-91 and was installed in the Cooler Ring at IUCF in

1992. The target flowed polarized 3He gas at a stable rate of 1 x 1017 atoms/sec with

polarizations approximately ±50% [3.9, 3.10]. This target was the first laser pumped

source of polarized atoms used to feed an internal target in a storage ring.



3.2 Principles

3.2.1 The Metastability Exchange Optical Pumping Technique

Optical pumping is the transfer of angular momentum from polarized photons

to atoms to create a nonthermal population in their magnetic substates, i.e. to

polarize the atoms. Optical pumping is to date by far a more efficient technique

than alignment by strong magnetic field. The versatility of the technique is that it

can also be used to polarize the excited states of atoms.

In the ground state of the 3He atom, the spins of the two electrons are anti-

aligned to form the 11So parahelium ground state and only the spin I=.1 of the2

nucleus contributes to the magnetic moment. In thermal equilibrium, the magnetic

ground states are equally populated by the 3 He atoms. To create a nonthermal

population in the magnetic ground states by direct optical pumping requires exci-

tation to the 21P 1 parahelium state using 0.5844 ym ultraviolet radiation [3.11].

However, the 3 He atoms in the metastable 23S, orthohelium state can be polarized

by optical pumping with excitation to a 23P orthohelium state using 1.0834 Ym in-

frared radiation. The angular momentum imparted by circularly polarized photons

to the metastable atoms then resulted in polarized ground state atoms by exchange

of electron clouds in collisions between the polarized metastable atoms and the

ground state atoms. The ground state atoms can also be polarized by a buffer

gas of polarized Rb atoms through a very weak dipolar spin exchange interaction

[3.12] between the polarized electron cloud of the Rb atoms and the spin of the
3He nucleus. In the former technique, to be discussed further in detail below, the

metastable atoms form only a tiny fraction 2 x 10- 6 of the 3He gas and act as a

separate species from the ground state atoms.

When external electrons collide with enough energies, the 3He atoms are excited

to higher energy levels, including ones not acessible by single photon excitations. By

coupling to RF fields from a few hundreds of kHz to tens of MHz, the 3He atoms are

also excited to higher energy levels as in excitations by electron collisions. A weak

RF field maintained in the 3 He gas creates a fluorescent discharge that populates a

small fraction 2 x 10- 6 of atoms in the the 23S, metastable state. It is important to
note that the fluorescent discharge can only be maintained at pressures of a few Torr
in the 3He gas.

Due to the hyperfine interaction with the nuclear spin I=., the 23S, metastable32

state separates into the hyperfine sublevels F=z, 1 with 6.7 GHz separation. The2corresponding magnetic sublevels are m - , 2a = T
corresponding magnetic sublevels are M and MF=-",+!-. The
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metastable atoms are then optically pumped by excitation to 2 P levels with circu-

larly polarized photons of 1.0834 m. Due to hyperfine interactions, the quantity J

from the fine interaction is no longer a good quantum number and there are five 23 P

levels called P0, Px, P1 , Py, and P2 from highest to lowest energies with admixtures

of different J values as

123 P, F) = x, 123P, J1) + x2 123P, J2) ,

where x, and x2 are admixture amplitudes. See table 3.1. The Po and PI states

have a hyperfine value F=- and are admixtures of J = 0 and 1 states respectively.

Similarly, the P, and P, states have a hyperfine value F= ~ and are admixtures of

J=1 and 2 states. The P2 state with the lowest energy value has a hyperfine value

F=- and is just a single J=2 state. The corresponding magnetic substates of the

hyperfine 23 S, levels and the 3 P levels are labelled as A 1,... , A6 and B 1,... , B18

respectively as in figure 3.1 for ease of discussion.

Between the 23S1 levels and the 23 P levels, there are nine allowed dipole

(El) transitions labelled C1 ,..., C9 as in figure 3.2 with increasing energy values

as given table 3.2. In the dipole transition, only the orbital angular momentum is

changed by the selection rule, AL=±1 and Am=0,-1; neither the electron spin nor

the nuclear spin is reversed in the transitions. Transitions that involve the electron

spin or the nuclear spin are orders of magnitude smaller in strength.

The dipole transition rate between the individual states Ai and Bj is given by

1 e_2E F'
ePj = ' (ww 2 I (Ail ( A- R |Bj1) |2, (3.1)r2 5 ( !')2k)2

where Ee, and - are the electric field and the frequency of the absorbed radiation.

F', wk and eR are the damping factor, the frequency, and the dipole operator of

the transition. For a comparison between the transition rates, the relative value of

transition between two states is given by

Tij = (Ai A ^, R Bj) 12, (3.2)

where , is a normalization factor to give T11 = 1. The Tij coefficients range between

0 and 1 and are given in the paper by Nacher and Leduc [3.13], tabulated according

to the different Ck transitions and the polarization of the radiation. These transitionl

coefficients are just the square of the projection amplitude of the angular momentum,

and spin wavefunction of the Ai states onto the Bj states for the same magnet i
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Table 3.1. The
and 23P levels.

admixture amplitude values and relative energy values in the 23 S 1

values of the electrons and nuclear spins, i.e. spin directions are conserved in the

dipole transition. See table 3.4 for the Tij values of the Cs and C9 transitions.

Under absorption of a circularly polarized photon of a ( :) polarization at one

of the Ck transitions, the metastable atom is excited to a 23 P level with a transfer

of one unit of ±h of angular momentum from the photon that changes the magnetic

mF value by +h where mF quantization axis is defined by the incident direction.

See figure 3.3 for the optical pumping scheme. The atom then decays back to
the metastable state emitting a photon with a(-), 7r, or -(+) polarization, say

in the incident direction and changing the mR value by +1, 0, or -1 with equal

probability. Note here that the photon can be emitted with some probability in all

directions. When the photon is emitted in the direction opposite to the incident

Level x1 x2  (GHz)

Po 0.994 -0.109 0.0
PX 0.553 -0.833 -27.39
P1  0.109 0.994 -28.13
Py 0.833 0.553 -32.64
P2  1.0 0.0 -34.41
2S 1,F = 1  0.0
23 S 1, F= 2 -6.7397
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Figure 3.2. C1,..., C9 allowed transitions between the 23S1 levels

and the 23 P levels.

Table 3.3. Relative energies of the nine allowed dipolar transitions.

Table 3.4. Relative probabilities for Cs and C9 transitions.
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Figure 3.3. Optical pumping process for the C8 and C9 transitions with photons

re-emitted along the direction of incidence.

direction, the mF value changes by -1, 0, or +1. The metastable atom now has
3

probability to be in its previous mp value, , to be in the next higher value, and

Sto be in the even higher value. When the atom decays from the 2 3 P state to3

the 23S state, the atom can be in magnetic hyperfine states with high mF values,
indicating that the nuclear spin has also changed even though the dipole transition

allows no flipping of the electron spin or the nuclear spin. The reason that the

nuclear spin direction could be changed is that the atom in the 2 3P state sits for

long enough time and has sufficient coupling between the electrons and nuclear spin

spin and the orbital angular momentum to mix into different electrons and nuclear

spin states, allowing dipole decay transitions into states with different electrons

and nuclear spin states from the initial 2 S, hyperfine state. Under absorption

of a second circularly polarized photon, the metastable atom in its new mF state

is excited and then decays again to redistribute equally in the same or higher ms
state as long as the dipole transition is allowed. This is the principle of the optical

pumping process.

As shown in the diagrams in figure 3.3, the atoms can decay to both the F =
-2

and F = 3 levels, allowing the atoms to be pumped into the mF = + (m = - )

state and the mF = +2 (mF = -2) state. At first glance, the atoms in the

m = + (mF = -) state can not further be pumped, thus limiting the nuclear

polarization to 50% when the atoms are equally populated at mF = + (mF = -)

and mF = +- (mF = -2). However, due to the dominant exchange collision rate

described below, the different metastable states can be described as coupled to
each other through the ground state, resulting in further optical pumping to obtaini
nuclear polarizations beyond the 50% barrier. The mF = +' (mF = -. 1) state i-2 2

coupled to the states mF = +3 (mF = -_) and mF = -- (mF = +1), the latter

of which can absorb another circularly polarized photon a(+) (or(-)), thus allowiinl,.

MOM- _ .-/D __)^l~P -·-I ~ L I



further optical pumping. By illumination of ao(+ ) (o-)) light, the metastable atoms

then become populated in the highest (lowest) mF state. At the same time, the

coupling of the mF = +1 (mR = -- ) state with the mR = +½ (mE = --. ) state

limits the maximum nuclear polarizations to below 100%.

Aj GA

0

Ai Gk

Figure 3.4. Electron clouds are exchanged between a metastable atom and a

ground state atom to form a metastable atom and a ground state in different mag-

netic substates.

Angular momentum imparted by circularly polarized photons to the metastable

atoms results in polarization of the ground state atoms through the metastability

exchange collision. In the RF discharged 3 He gas medium, atoms are in constant

collision, and there are many different collisions: with each other, with the sur-

rounding walls, and from different initial states and into different final states. In

the collision of the metastable atoms with ground state atoms, there is a small cross

section of oo , 7.6 x 10-16 cm 2 [3.14] to exchange electron clouds with the ground

state atoms. The exchange collision is sufficiently short in time that the polariza-

tions of the electron clouds and the nuclear spins are preserved. After the exchange

interaction, the metastable electron cloud is coupled to the ground state nuclear

spin and the ground state electron cloud to the metastable state nuclear spin, re-

sulting in a ground state atom with nuclear polarization of the initial metastable

atom. See figure 3.4. The exchange interaction matrix element can be expressed as

(G'AI i~ IGkAi) = ao (G'I Gk{electronic}Ai{nuclear} ) (AI Gk{nuclear}Ai{electronic} )
(3.3)



where M is the electron cloud exchange operator, ao the total cross section given

above, and the subscripts on the right side of the equation to indicate spin com-

ponents that are being combined together. When final spin states of the matrix

element are summed over, it becomes

S(G'nAJ M. IGkAi) = co (GiI Gk{electronic}Ai{nuclear} )
n=16,2 n=1,2
j=1...6

x E (A I Gk{nuclear}Ai{electronic} ) , (3.4)
j=1...6

= go (1) (1).

Moreover, the average rates of the exchange collision per ground state atom and

per metastable atom are respectively given by

1 _ 1
- = coVnm =
Te 0.3 sec (35)

1 1 (3.5)
- = crovN =
Te 0.2 psec

where co = 7.6 x 10-17 cm 2 , V = 2.06 x 105 cm/sec, nm = 2.1 x 1010 atoms cm -3

[3.15], and N = 3.2 x 1016 atoms cm - 3 .The metastablity exchange collision rate is

much higher than the rates of depolarization of ground state atoms and of optical

pumping of the metastable atoms so that the polarization of the ground state atoms

is directly proportional at all times to the nuclear polarization of the metastable

atoms.

3.2.2 Model of Density of States

A detailed equation of motion for the ground state polarization and the

metastable densities can be found in the paper by Nacher and Leduc [3.13]. Essen-

tial details of the model are discussed here for completeness. To facilitate discussion,

the densities of the ground state atoms Gk, the metastable state atoms Ai, and the

23 P state atoms Bi are defined as gk, ai, and bj where

6

N = gk and nm= ai. (3.6)
k=1,2 i=1

First, the metastability exchange polarization transfer mechanism is considered.

The interaction rate between the atoms in th Ai and Gk states are given by

I(GIn Gk {electronic}Ai {nuclear} )12 (A]I Gk {nuclear}Ai {electronic} )12 oV ai gk ,

(3.7)
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which can be used to write the equation of motion for the densities ai and gk as

dai 1 1a

da=+ a' +(A+| Gk {nuclear}Al {electronic}|2algk )
dt 7"ek=1,2

I=1...6

dt T- ( -gk + -- J(Gk1 Gh {electronic}Ai {nuclear} 2 aigh (3.8)dtmTen ,

i=1 .. 6
6

= ( -gk + .I(G'I Ai {nuclear}I 2 ai )
nmi=1

Furthermore, the energy difference between the F = and F = levels with the

Ai state is small and its effect on the equation of motion is ignored.

Secondly, the optical pumping mechanism is considered. Under illumination of

the optical pumping radiation, there are absorption and spontaneous emission, and
stimulated emission of photons changing the density of the 23P and the metastable

magnetic states. Using the transition rate for the absorption and the spontaneous

emission per atom from equation (3.1), the equation governing the density of the

Ai and Bj states can be written as

dbj 1 1
=d - -bj + - (ai- bj)

18 

(3.9)

dai 1 18b1 (bj - a1 ) ±+ bj,
dt _ J=1 7ij  TiJ

where 7-i is the transition rate for absorption and spontaneous emission and <71
the rate of stimulated emission between states Ai and Bj. The stimulated emission
causes the 3 He atom in state B, to emit a photon in the same state as the photon
beam and decay to a state Ai with nuclear polarization opposite to photon beam
helicity direction. It has the effect of lowering the maximum possible polarization.
However, the process is not important compared to the spontaneous emission for
the intensities of the laser light at the optical pumping cell where the beam is blown
up to the dimensions of the cell.

Thirdly, the different relaxation mechanisms are considered. The excited B,
states and metastable Ai states are constantly being mixed into different states
by the incessant collisions of the atoms with each other in similar states or in
states other than had already been mentioned, with impurities in the gas, and with
container walls. The ground state, although it has a closed electron structure and



thus is not changed by direct collisions, can also get mixed into the state with

opposite spin direction by interaction with transverse gradients in the magnetic

holding field, with local fields of container walls when they are adsorbed on each

bounce, and with local fields of 3He molecular ions created by beam ionization.

The relaxation rates for individual density due to corresponding mechanisms can

be parameterized by time constants rb, ra, and rg and the respective equations of

motion are given by

dbj 1 ( 18

dt _a 6G-T = • 1=1 18 b

dgk I gn g
dt rg n=,2 2 nn=1,2

Combining equations (3.8-3.10) together gives a set of equations of motion to com-

pletely describe the density of states bj, ai, and gk. The equations above although

have different notations and forms from that in the paper by Nacher and Leduc

[3.13], the mechanics are identical.

One important effect that has not been discussed up to now is the Doppler

broadening of the laser radiation frequency seen by the 3He atom by its thermal

motion. Each transition has at a given temperature a frequency width
Wk V

27r c
where U is the average thermal speed. It is an important effect that needs to be

accounted for in the model of equations of motions especially if each frequency com-

ponent in the Doppler width does not get the same amount of laser light radiation

due to a laser line width more narrow than the Doppler width. A simple way of

treating the unequal matching between the Doppler width and the laser line width

is discussed also in the paper by Nacher and Leduc [3.13]. The table below gives

the frequency width in three different temperatures of experimental interest.

T [K] 300 77 4.2

V[10 5 cm/sec] 1.29 0.653 0.152

D [GHz] 1.19 0.603 0.141

Table 3.5 Average thermal velocities and Doppler widths for optical pumping

absorption at three different temperatures [3.13].
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3.2.3 Optical Detection of 3 He Polarization

For low 3He nuclear polarization, an optical pumping light transmission tech-

nique was used in the early 3He polarization experiments to monitor the metastable

polarization of the 3He gas. The difference in light transmission at the optical

pumping wavelength between the unpolarized state and a partially polarized state

is related to the polarization of the metastable atoms and thereby to the nuclear

polarization. This technique has been limited by the difficulty in measuring with

precision a small difference in light transmission. An optical technique was devel-

oped by Pavolic et al. [3.16] to measure the nuclear polarization by detection of

the circular polarization of the 31D -+ 31P (ls3d --+ 1 ls2p) transition which has a

wavelength of 667.815 nm [3.17].

20

15

10

5

0 1 2 3 4 5
pressure (Torr)

Figure 3.5. Ratios of the nuclear polarization Pn to the measured optical polar-

ization P at 668 nm measured using NMR by Lorenzon et al. [3.18] and using laser

light transmission by Pinard et al. [3.19].

In the RF-discharge, a small fraction of the atoms is excited from the ground

state to the 31D state, in which, the nuclear polarization is transferred to the

atomic polarization of the 31D state via the hyperfine interaction. The photons

of the spontaneous emission 31D -- 31P then carry a fraction of the nuclear

polarization on average. In the limit of zero gas pressure, the ratio of optical

I I I' I I ' ' ' I I I I ' I I I I ' -

* Caltech NMR data 7

fit to Caltech data 7

- - - - fit to Pinard data
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polarization to nuclear polarization is given by

P_ a2 (J + 1)/2
Pn r 2 + a2(j+ ) 2

0.24 (3.11)
0.24

1 + (P/ a)

where J = 2 for the 3'D level, r (=6.58 x 107 /sec is the transition rate to the

21P level, a (=3.496x108 Hz [3.18]) is the hyperfine coupling constant defined by

the hyperfine Hamiltonian, aI - J.

At finite gas pressures, disorientation and disalignment of the 31D state can

modify the ratio of the polarizations. The effects can be parametrized with some

modifications to the above formula as

Pa a2(r + 72)J(J + 1)/2
S( + 2)(P +1) 2 + a2J(J+ 1)(r + 71)(r + y2)/r + a2(r - , + 272)/4 '

(3.12)
where -/1 and 72 are the disorientation and disalignment rates, respectively with

Ti = Nuivr. N is density of the gas, oi is an associated cross section, and vyr is the

average relative velocity between atoms. This ratio has been calibrated as a function

of gas pressure using the optical pumping light transmission technique [3.19] and

nuclear magnetic resonance technique [3.18]. The calibrated polarization ratio curve

in figure 3.5 then serves for conversion of the measured optical polarization of the

668 nm line to the nuclear polarization of the 3He discharge gas.
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3.2.4 Polarized 'He Source

To carry out the CE-25 experiment, a new polarized 'He internal gas target

was developed at MIT-Bates. A schematic diagram of the target is shown in fig-

ure 3.6. The 3 He atoms flow through a glass pumping cell of volume V at a rate

of F atoms/sec. As shown, the 3 He gas has an input density of pi and traverses an

input conductance C1 . The gas in the pumping cell has an average density of pp

and exits through a conductance C2 to the storage cell. The average residence time

of an atom in the pumping cell, tr, is given by

tr = ppV . (3.13)
F

For equilibrium flow with p0 o 0, one has

F = C(pi - pp) = ppC 2 , (3.14)

and so V
trV= . (3.15)

C2

Thus, the average residence time of an atom in the pumping cell depends only on

the quantities V and C2 . Further, from equation (3.14) we have

pi-- C1  (3.16)
pi C,1 +C 2

and so a measurement of pp as a function of pi measures the ratio of conductances

C1 and C2 . Note that in the intermediate flow region C1 and C2 are functions of

pp and Pi.

In the pumping cell the atoms are polarized by absorption of angular momen-

tum from the laser pumping light at the 1.083 ym transition. Consider a sample

of 3He atoms in a valved cell, i.e. a pumping cell where there is no flow and the

sample of 3He atoms is static. In the approximation that the polarization rate does

not depend upon polarization, the 3He atoms will be polarized to an equilibriuiii

polarization Pv with a pump-up time-constant of tv given by

P(t) = Pv(1 - e ) . (3.171

Similarly, the atoms in an identical pumping cell but flowing at a rate F atoms/seV.

will be polarized to an equilibrium polarization Pf witha pump-up time constant

tf where
1 1 1(31
S- tr+ t(3.1Stf tr tvp p



PUMPING CELL

Pi

F ATOMS/SEC CONDUCTANCE C2

P0

Figure 3.6. A schematic diagram of the internal target. Typically pi 0 5 Torr,

pp 0.5 Torr, and p0 o 10-i Torr.

The equilibrium polarization obtained with a flowing system, Pf, and the equilib-

rium polarization obtained on a valved copy of the pumping cell, Pv, are related

by pfpv tr
P 0 = P +tr (3.19)

tr + tvp

where the difference between valved and flowing systems is the presence of a po-

larization relaxation with time constant tr due to unpolarized atoms entering the

pumping cell through C1. tr is equal to the residence time of the atoms in the

pumping cell. From (3.19) we see that for high polarization in the flowing system

we require that tr > t', tf, i.e. the pump-up time must be much shorter than the

residence time in the pumping cell. A pumping cell of volume 500 cm 3 containing
3 He gas at a pressure of 0.66 mbar and flowing at a rate of 1017 atoms/sec will have

a residence time of tr = 75 sec. As such a cell can be polarized to ~ 65% with a

pump-up time t - 10 sec, we see that the condition tr > t', tf is well satisfied and

we expect an equilibrium polarization in the flowing system, PJ, greater than 50%.

To study the operation of the flowing system it is convenient to define two

quantities. First, we define the polarization rate of a sample of 3He, R, to be

NP0
R = , (3.20)

tp

~---·~·rar~l~·r~·a;~-~·1^-31~ ·-· I~--~P~IY-YI--^



where the sample contains N 3He atoms which are polarized to an equilibrium polar-

ization Po with a pump-up time constant tp. Secondly, the 3 He atoms are polarized

by means of a discharge whose intensity is characterised by rd, which is the time

constant associated with the polarization decay in the absence of optical pumping

and in the presence of the discharge. As we shall see below, the performance of the

polarized 3He internal target is strongly dependent on R and rd.

P

Figure 3.7. A schematic drawing of gas density in the storage target cell of length

L.

As the gas exits into the storage cell, it diffuses out the two ends at very

low pressures ýmTorr's and forms approximately a triagular distribution with the

maximum density po at the exit capillary as shown in figure 3.7. The density po is

given by

(3.21)=

where Ccen the molecular conductance for the entire length of the storage cell. One
then obtains the target density,

L FL
s = po -

2 8Ccen

where L is the length of the target cell.

(3.22)
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Figure 3.8. Calibration of pp vs. pi. The solid curve is a calculation using the

Knudsen conductance equation in the intermediate flow region with parameters

fitted to 3He and 4 He gas flow data from known volumes. The dashed curve is a

second order polynomial fit to the data.

Knowledge of the pressure in the pumping cell, pp is necessary for use of the

optical calibration for a nuclear polarization measurement, for calculation of the

flow-rate from equation (3.14) above, and for optimization of polarization as a

function of the gas pressure. Measurement of pp is accomplished by temporarily

attaching a baratron gauge by means of a mini-conflat flange attached to a glass

nipple to the pumping cell. Then the pressure of the 3 He atoms in the pumping cell.

pp, is measured as a function of the input pressure Pi. The pressure calibration data
for the flow through system are shown in figure 3.8. The solid curve is a calculation

of the equation (3.16) using the Knudsen equation for intermediate flow and is inii

good agreement with the data. The Knudsen equation is given in Roth [3.20] as

Ccapillary = (CID 4  + 12D

where
7r

128,q

- I I I I I I I I I I I

I I I I I I I I



T3 1 1 + 1.10 x 10- 4  /DP/C2 = 3.81 X 103 - ,D/7 (3.23)
2M 1 + 1.36 x 10-4 M-TDP/ ' (3.23)

and where Ccapillary is the capillary conductance in [cm 3 /sec], T the temperature in

[K], M the atomic mass in [amu], P the average gas pressure accross the capillary

in [Torr], D the capillary diameter in [cm], L the capillary length in [cm], and 7 a

temperature dependent parameter associated with the size of atoms in [Torr sec].

The parameter q in the coefficient cl was adjusted to fit 4 He gas flow data at

pressure >1 Torr for a known, large volume. Moreover, the numerical values in the

coefficient c2 were slightly modified from values given in Roth to fit 3He gas flow

data for individual pumping cell at pressure <1 Torr. In both cases, the volume

was filled with the corresponding gas of He isotope, and the pressure was monitored

as the gas flowed out. The data obtained from using the large volume had a much

higher precision than from using pumping cells with much smaller volumes. A set

of numerical values used in c2 was obtained for individual cells. However, it was not

understood why there was no unique set of numerical values for all the pumping

cells.

After the calibration, attachment for the baratron gauge is removed from the

pumping cell. The flow rate F was determined by measurement of pp and calculation

of C2 . This resulted in a ±10% systematic error in the knowledge of F. Only

knowledge of the relative target thickness was necessary in this experiment, and

absolute cross section measurements in the future using the internal gas target

would require a high precision determination of the flow rate F for gases of different

masses and of the target cell geometry conductance.



3.3 Polarized sHe Target Apparatus

The target operated by flowing 3 He atoms through a glass cylindrical optical
pumping cell, made by Finkenbeiner G. Inc. [3.21], of volume 400 cm 3 at a rate of
1.2 x 1017 atoms/sec [3.9]. The 3He gas was fed at an input pressure of 5 Torr and
traversed an input precision capillary with a conductance of 0.9 cm 3 /sec into the
glass pumping cell where the gas is polarized by laser radiation. The polarized gas

in the pumping cell had an average pressure of 0.5 Torr and exited through a second
precision capillary with a conductance of 8 cm 3/sec to an open ended aluminum

target cell. figure 3.9 shows the schematic layout of the target apparatus. This

configuration resulted in a target thickness of 1.4 x 1015 atoms/cm2 . The target

was polarized along the holding magnetic field in the vertical direction provided by

a 40.0 in (101.6 cm) diameter Helmholtz-like coil pair. The original Helmholtz pair
was opened up slightly from the separation of 20 in (50.8 cm) to 20.6 in (52.3 cm)-

extracted from CAD drawings- so that the optical pumping glass cell on the target
chamber is centered in the uniform magnetic field region. The target assembly was

mounted on a single aluminum flange, which was attached to the top of an aluminum

ultra-high vacuum chamber. The chamber rested on top of the lower coil in order

that the pumping cell, located in a well in the target flange, was centered within

the uniform field region of the coils to minimize the effects of depolarizing field
gradients. The optical pumping laser radiation was directed onto the pumping

cell by the optics mounted above the coils. Also, a polarimeter which viewed the

668 nm line of the 3He discharge in the pumping cell was mounted on the table. The
vacuum chamber, the Helmholtz coil pair, and the optics table were all mounted on

an aluminum stand with vertical and lateral adjustments, which in turn was placed

on top of a 36 in (91.4 cm) high steel frame to bring the target cell to the beam

height, 77.0 in (195.6 cm).

3.3.1 Target Vacuum Chamber

The target vacuum chamber was designed to be an all nonmagnetic metal
bakeable ultra high vacuum system, to have a large angle range in 9 and q for
an extended target cell, and to be placed inside the Helmholtz coil pair. It was
manufactured from a single forged block of 6061-T6 aluminum. Nonmagnetic metal
was used to minimize the depolarizing effects of nonuniform magnetic fields in the
vicinity of the target pumping cell. The chamber was designed at MIT-Bates and
was contracted out to Meyer Tool & Mfg., Inc. for manufacturing [3.22]. The seals
used were aluminum conflat from Ulvac Ltd. [3.23] and Viton rubber seals designed
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Figure 3.9. A schematic diagram of the CE-25 polarized 3He internal gas target.

at MIT-Bates. The complete vacuum chamber assembly was coated with titanium

nitride to harden the sealing surfaces.

The chamber was constructed from a single block of aluminum, and circular

pipes were welded to the chamber. Figure 3.10 shows the top and side views of the

chamber with an optical pumping glass cell in the top oval flange. The aluminum
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Figure 3.10. The design drawing of the aluminum chamber and the top flange for

mounting the optical glass cell.

chamber, without the end pipes and the windows, had the dimensions of 43 in

length x 9.75 in width 8.25 in height (109.2 cm x 24.8 cm x 21.0 cm). Prior to

machining, the block of aluminum was examined by X-ray for internal cavities which

could cause imperfections on sealing surfaces. The block was machined through the

sides forming a long oval slot 4.25 in height x 37.4 in length (10.8 cm x 95.0 cm).

A short oval opening 10.8 in breadth x 22.2 in length (27.4 cm x 56.4 cm) for the

target assembly flange was machined out on the top side toward the upstream end

of the chamber. The location was chosen so that the center of a 40 cm long storage

target cell has a 150 forward angle line of sight with the front end of the oval slot

openings on both the left and the right side, i.e. scattered particles can exit at the
15' forward angle. The ends were bored out circular holes to which Ulvac UHV

aluminum knife-edge flanges with aluminum pipes of 6.0 in (15.24 cm) diameter
were attached by welding. These flanges were used for coupling the chamber to an

accelerator storage ring. The bottom side was bored out also with two circular holes
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to which were attached aluminum knife-edge flanges via a short 8.0 in (20.32 cm).

These flanges served either as ports for mounting turbo molecular pumps (TMP)

or for making electrical connections to detectors installed inside the chamber. In

addition, three smaller ports with aluminum knife-edge flanges had been attached

to the chamber for installation of ionization vacuum gauges. All knife-edge conflats

were from Ulvac Ltd.

The UHV chamber was designed so that custom made Helicoflex seals with

a delta edge were to be used in sealing all the oval shaped ports, model no. H-

301742 for the top oval port and model no. H-301743 for the side oval ports. For

protection of the sealing surfaces the chamber was hardened with titanium nitride

coating similar to that on the Ulvac UHV aluminum knife-edge flanges. However,

double Viton O-rings race track seals designed at the Bates linac were found to be

satisfactory. A high 10- '9 Torr vacuum was achieved with the double Viton O-rings
race track seals while a 2200 liter/sec TMP was pumping on the emptied chamber

after a moderate bake out for three to four days at 800 C. The Viton O-rings seals

were significantly lower in cost than the Helicoflex seals and during the course of

the experiment it was necessary to open and reclose the side windows frequently

requiring the seals to be reusable several times.

3.3.2 Optical Pumping Pyrex Glass System

The glass system for polarizing the 3He gas was constructed from a cylindrical

cell of volume V with an entrance capillary of conductance C1 and an exit capillary

tube of conductance C2 and UHV compatible components for interfacing to 3He or
2H gas sources and to the vacuum chamber. The capillary tubes were of precision

drawn Pyrex with inner diameter (ID) uncertainty of ±0.002 in (±0.0051 cm) from

Wilmad [3.24]. The entrance capillary connected a top corner of the glass cell

to a glass-to-metal mini-conflat flange UHV compatible transition which used the

magnetic Kovar material. The presence of the small amount of Kovar material

approximately 10 in (25 cm) away from the glass pumping cell did not have noticable

depolarizing effect on the 3He polarization. Tests with different materials that were
slightly magnetic, such as a stainless steel bolt, showed that the 3 He polarization

was decreased slightly only when the bolt was within 1 in (1-2 cm) of the glass

pumping cell. A 0.25 in (0.64 cm) ID glass tube with a Kontes teflon valve [3.25]

also connected the top of the glass cell to the glass-to-metal transition as a by-
pass tube to allow for faster vacuum pump-out. At the bottom, the exit capillary
connected the glass cell to the center of a flat glass disk of 4.72 in diameter x



0.5 in thick (12.00 cm x 1.27 cm) and polished to optical smoothness via an 11 mm

(.433 in) ID glass tube as in figure 3.11 for interfacing the glass cell to the vacuum

chamber. As the connection of the exit capillary to the external glass tube was the
weakest in the glass system, reinforcements were made between the side of the glass

cell to the top of the disk at three equally spaced locations.

I I- L
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TO GAS
FEED
SYSTEM

UPPORTS

Figure 3.11. The optical pumping glass system to

aluminum flange.

012345

cm

be mounted in the well of the

The glass disk was then clamped onto the well of the top oval flange by a

circular aluminum flange, compressing the double Helicoflex aluminum seals. The
double seals configuration used a delta ring seal at the bottom and a C ring seal

at the top of the glass disk and was designed with the help of an engineer at
Helicoflex [3.26]. The delta seal was designed to require just a few lb per linear in,
thus suitable for use with the glass disk. The C seal having the same diameter as
the delta seal was used only for uniform compression directly on top of the delta
seals. The circular aluminum flange was carefully tightened down by the brass
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screws to obtain an vacuum of 10- 5 or 10-6 Torr at the initial pumping. The brass

screws were tightened down further iteratively while closely monitoring vacuum

leaks around the delta seal.

A small gap of 5 mm between the bottom of the glass cell and the top of the

glass disk was left for a split gold coated filter Schott glass [3.27] that reflected the

optical pumping laser radiation while absorbing the 668 nm radiation for polariza-

tion monitoring. Tests using sealed cells had shown that retro-reflecting the optical

pumping laser radiation for a second passage through the 3He gas increased from

5% to 15% the nuclear polarization depending on the laser beam spot size at the

cell and the length of the cell. A filter glass was used to minimize reflected light

into the 668 nm polarimeter. As the filter glass could not be heated to the Pyrex

glass annealing temperature of 580 ° C, the filter glass was split in two pieces to

be installed, after the annealing, around the exit capillary tube. In addition, the

cylindrical glass cell was completely wrapped in black electrical tape, allowing only

the discharge radiation to exit through the top glass window of the cell.

At the top, a short 0.25 in (0.64 cm) ID glass stem connected the cell to a mini-

conflat flange for connection with a baratron that was used for calibrating 3 He or 2H

gas pressure in the glass cell as a function of input pressure to the glass system. The

entrance end of the glass system was connected to gas supplies via UHV compatible

0.75 in (1.92 cm) manifold with a baratron that was used for monitoring the input

pressure. After calibration, the glass system was dismounted from the chamber and

the glass stem was removed by the glass blower.



3.3.3 Gas Feed System

The gas feed system was assembled with UHV components to flow gas from

stainless steel 3He or 2H gas bottles. As shown in figure 3.12, gas bottles were

connected on each end of the T manifold via a UDV Balzers thermal valve. There

were normally two to three 3He gas bottles and only one 2H gas bottle. At the
2H gas bottle side of the T manifold, there were a 0-100 Torr baratron and an

electro-pneumatic valve that opened to an Alcatel 100 liter/sec turbo molecular

pump.

glass

baratron gauge
ultra high vacuum
(UHV) chamber

Figure 3.12. Schematic drawing of the gas feed system.

The vacuum valve was opened only for pumping out the manifold and the

glass system. When 3He gas was flowing through the glass system, the 2H gas UDV

thermal valve was closed either manually or thermally. The UDV valve operated

by pressing a polished Sapphire flat disc onto a metal valve seat with a rod which
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was in turn pressed down mechanically with a manually controlled lever. Thermal

expansion of the rod by electrical heating was used for closing the valve or by a

pressure feedback controller for maintaining a stable pressure in the manifold, and

hence a stable flow. The manifold and the glass system were pumped out by opening

the vacuum valve before switching to 2H gas.

It was found in the development of a prototype target that constructing the

manifold with UHV compatible components greatly improved the 3He polarization

from 30% to over 50%. All parts in the manifold including the UDV thermal valves

were UHV compatible to decrease or eliminate sources of depolarizing impurities

flowing into the 3 He gas as the level of impurity must be limited to just 10- 4 mm

Hg partial pressure [3.3] or -100 ppm (see section 3.7.1). At a few Torr of 3He

gas pressure in the manifold any small leak would degrade the system's cleanliness

over a few hours. Only the Kontes teflon valve on the glass by-pass stem was

rated for high vacuum and therefore, the base vacuum estimate in the glass cell was

approximately 10- 6 Torr when the base vacuum near the TMP was 10-8 Torr, well

below the 10- 4 mm Hg partial pressure limit.

3.3.4 Storage Target Cell

The exit capillary of the 3He pumping cell was connected to a glass flange

which was in turn attached to the top of the target chamber. The lower end of the

capillary extended into the chamber and was coupled to the target cell with a short

teflon sleeve. The target cell, which was 400 mm long, 16.6 mm high and 13.1 mm

wide, was constructed from 0.2 mm thin aluminum as shown in figure 3.13. The

sides of the cell, which served as exit windows for reaction products including low

energy recoil particles, were 1.7 ym thin aluminized mylar sheets attached to the

target cell with Torr Seal low vapor pressure resin from Varian [3.29]. The cell

dimensions, which were chosen to meet the designed storage ring acceptances at

the target location, provided 35ir mm mrad acceptance in the vertical direction and

30r mm mrad in the horizontal plane.

The thickness of the gas target can be estimated using the molecular flow

conductance equation for a straight conductor of uniform cross section [3.20]

Ccell- 3.44 x 104 K T• A 2  (3.24)Ccell,=(3.24) VlrM Ca(BL)'
where Ccell is the target conductance in [cm 3 /sec], T the temperature in [K], M the

mass number of atoms in [amu], A cross sectional area in [cm 2], B the parimeter
in [cm], L the length in [cm], and K a dimensionless factor for rectangular shaped
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Figure 3.13. A schematic layout of the target cell.

conductor. Substituting the numbers for the target cell dimensions into equations

(3.22) and (3.24) and using the table below, the target thickness Sceni was estimated

to be 1.4x105 atoms/cm2 for a flow rate F of 1.2x 1017 atoms/sec.

b/a K

1 1.108
0.667 1.126

0.5 1.151
0.333 1.198

0.2 1.297
0.125 1.400

0.1 1.444

Table 3.6. The dimensional factor K for different ratios of the rectangular con-

ductor side dimensions. K is 1 for circular conductor.

The scattering chamber was centered along the beam axis using a transit and
crosshairs placed in the end flanges. The target cell, transport tube and pumping
cell were attached rigidly to the top flange, which was bolted to the chamber. Pins
were placed in two of the bolt holes so that the top flange could be removed and
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replaced at a reproducible position. Initial alignment of the target cell was done

using apertures placed in the two ends of the cell. Measurements of the position

of target cell relative to the top flange allowed the cell to be removed and replaced

with an alignment accuracy of less than ±1 mm in both horizontal and vertical

directions.

3.3.5 Differential Vacuum System

Significantly lower vacuums are required in storage rings than when conven-

tional nuclear physics techniques are employed. In the IUCF cooler ring the base

vacuum is typically 10- ' Torr. A comparable vacuum in the absence of target gas

was attained in the target chamber. This allowed for routine operation of the stor-

age ring for other experiments. When the target was in operation a gas flow of

1.2 x 1017 aHe atoms/sec was pumped away in the target region and differential

pumping stages were used to attain the storage ring vacuum in as short a distance

as possible.

The 3 He gas leaving the cell was pumped differentially along the beam axis.

Removal of this background gas was important because it contributed to the stored

beam loss rate, and thus adversely affected the average luminosity. Therefore, the

design goal of the differential pumping system was to minimize the thickness of

the background gas. In the present experiment this was accomplished with three

turbomolecular and two cryogenic pumps in an arrangement shown in figure 3.14.

Turbo pumps were located on the scattering chamber (Balzers TPH 2200, nom-

inal 4 He pumping speed: 3200 liter/sec) and on each neighboring pumping stage

(Balzers TPH 1500, nominal 4He pumping speed: 1500 liter/sec). On the two

outer stages, which connected the experimental area to the rest of the ring, cryo

pumps (Leybold RPK 3000S12, nominal 4He pumping speed: 1300 liter/sec) were

employed. Cryo pumps have a limited capacity to store helium which made fre-

quent regeneration necessary (typically once or twice a day in this experiment).

For this reason, the cryo pumps were equipped with an internal heater which could

be activated remotely to regenerate the pumps within a few minutes.

The differential pumping stages were separated by gas flow limiters which, like

the target cell, were located outside the ring acceptance, both vertically and hori-
zontally. Their position and length were optimized, within the constraints imposed

by particle detection requirements, such that the thickness of the 3 He gas outside
the target cell was a minimum, and amounted to only 2% of the target thickness.
The two limiters upstream of the target cell were 11.3 mm wide by 15.3 mm high.



Downstream, the first limiter was 16.6x 17.6 mm2 and the second 26.8x23.3 mm 2

in width and height, respectively: The typical pressures at a 3 He flow rate of

1.2 x 1017 atoms/sec, measured by ionization gauges in the differential pumping

stages, were (from upstream) 6, 140, 1500, 210 and 20 x 10- 9 Torr.

1300 t/s
cryo

1300 I/s

HC

TC PA

BEAM
PA

2200 I/s 3200 I/s turbo

turbo turbo

1m

Figure 3.14. A schematic layout of the differential vacuum system. The flow

limiters between pumping stages are labeled FL. The target cell is labeled TC and

the Helmholtz coils HC.
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3.3.6 The Laser Light Source

An LNA laser was a source of the 1.083 pm photons for metastability exchange

optical pumping of the 3He gas. A single LNA or Nd:LMA (La1-iNdsMgAlij019)

crystal was the lasing medium in a cavity for Nd:YAG krypton-arc-lamp pumped

laser system model 9550 from Lasermetrics [3.31]. The crystal rod, made by the

Union Carbide Corp., was 4 mm diameter x 79 mm long and had 15% in atomic

weight of Neodymium (Nd) doping [3.32]. Its ends were ground concave with radius

of 60 cm to correct for thermal lensing due to temperature gradients between the

central axis and outsides of the rod. The laser cavity had a nominal length of 30 cm

with an HR flat mirror at one end and at the other end an output coupler, a flat

mirror with reflectivity ;99.25% at 1.083 ym. A single uncoated etalon of 0.5 mm

thickness was used to tune to the Cs or the C9 transition. Tuning was facilitated by

passing a small beam of light that leaked out from the HR mirror through a tuning

cell containing 3He with discharge on. Typical output powers were 3 to 4 Watts at

14 Amp lamp current when the laser was tuned to one of the transitions.

etalon
(0.5mm; mounted
on a resistively heated
rotatable copper tongue)

Tuning cell

Kodak Rattan filter

RF dischare g3T-TLNAmcrystagr H~uil~,e gas sealed cel N rsal LNA crystal(200kHz) (1 Torr) (4mm x 47mm; 60cm radius of curvature)

Figure 3.15. The laser system.

The LNA crystal has a hexagonal unit cell with unit lengths a=b=5.57 A' and
c=21.97 A'and grows naturally in the plane along the directions a and b. Hence,

for use in transversely pumped cavities, crystal rods longer than a few centimeters

are grown and cut with the long axis along the direction a (or b) although lasing

efficiency is higher for light propagation along the direction c. In the free running
mode, the LNA laser spectrum has peaks at 1.054 Mm and 1.083 pm, and depend-

(99.6%R)

.083g m wavelength)



ing on doping level of Nd, one peak dominates over the other; at 15% level, the

1.054 um peak is negligible. Thermal conductivity of the LNA crystals is poor,
and with increasing laser power the rods suffer from increasing temperature gradi-

ents between the insides and outsides of the rod which causes thermal lensing as

mentioned above. At high output powers this effect can cause the crystal to heat,
thus limiting the laser operation to low power.

The laser crystal performance was characterized by its output power as a func-

tion of lamp current as in figure 3.16. A typical output power curve had a threshold,
a slow rise, a rapid rise, and saturation. The lasing threshold was caused by the

de-focussing of the concave ends designed for use when the thermal lensing effect

set in; a crystal with flat ends had lower lasing theshold than a crystal with concave

ends. The laser power increased slowly at first and then linearly as a function of

lamp current until the thermal lensing effect became greater than the de-focussing

by the concave ends at which point the laser power increased slowly again as a func-

tion of lamp current. As the lamp current was increased slightly further, the power

decreased indicating a transition to the next higher transverse mode, accompanied

by a change in the beam spot profile as seen on an infrared photo-luminescent Ko-

dak card. In fact, at lamp currents below the saturation region for a particular rod

and cavity configuration, the laser operated dominantly in the TEMoo00 mode with

one large diamond shaped spot in the center and two very small spots on opposite

corners. In the saturation region, the two small spots increased in size to that of the

the center spot until the beam profile changed to a central large spot surrounded

by four small spots uniformly spaced around the central spot. The output power

dropped noticeably at this point with increasing lamp current.

The laser crystal performance also depended on the cavity length as shown in

figure 3.16and on curvature of the end surfaces of the crystal rod and the mirrors

[3.34]. Only flat mirrors were used in the laser system. For the configuration with

concave ends rod and flat mirrors, the lasing threshold was lowest for the shortest

cavity length. While the concave end curvature (60 cm) corrects for the thermal

lensing effect to some degree, when the cavity length was shortened by moving

in the mirrors neither the thermal lensing nor lensing from the concave curvature

becomes important. The mirror holders of the laser system were slightly modified

to reduce the shortest possible cavity length to 30 cm from 33 cm.

The tuning of the laser was carried out in three steps. With the mirrors po-
sitioned for shortest possible cavity length, the mirrors were first aligned to be

exactly perpendicular to the central axis using the beam of a small He-Ne laser.

i~ ·----------
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Figure 3.16. Laser output power vs. lamp current without any etalon in cavity for

LNA laser rods A and B. Different cavity configuration, i.e. different cavity length

and similar output coupler, produced different output power as seen in the data for

rod A. The solid diamond data points were measured at Caltech [3.33] while the

other two data sets were measured at MIT.

The He-Ne laser beam was first aligned to the LNA crystal longitudinal axis by

orienting the He-Ne laser until the strongest reflection from the crystal end surface

appeared right back on the output coupler of the He-Ne laser. With the He-Ne laser

beam aligned, a mirror for the LNA laser was inserted at the far end of the crystal

and was adjusted in angular position until the reflection from the inserted mirror

appeared on the crystal. Since the 79 mm long crystal was contained inside a laser

head with small openings on each end to the crystal, it was enough to adjust the

inserted mirror until the reflection was directed into the opening of the laser head.

Then, a second mirror was inserted at the close end of the crystal and was adjusted

until the reflection appeared back on the output coupler of the He-Ne laser. This

mirror alignment procedure was critical to tune the laser when an Nd:YAP crystal
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was used. When the Nd:YAP crystal was replaced with an LNA crystal, this mir-

ror alignment procedure became less critical, and was used only to obtain optimal

performance. This step was often omitted during the experiment when time was

valuable.

In the second step, mirrors were adjusted to maximize power at threshold.

Each mirror mount had two degrees of freedom in angle orientations. It was found

to be most efficient to reduce the tuning procedure to a two dimensional problem by

adjusting the mirrors in pairs to iteratively step in one degree of freedom followed by

optimization in the second degree of freedom. Following this procedure, laser power

at threshold was optimized by adjusting the two mirrors first for only one degree

of freedom, and then for the second degree of freedom. Afterwards the first degree

of freedom was stepped in one direction followed by an optimization in the second

degree of freedom to determine if the first degree of freedom should be stepped in the

same direction or the reverse direction depending on whether the laser power had

slightly increased or decreased. Once the optimal mirror orientations was found,

only a slight adjustments of mirrors was necessary as the laser power was brought

to an operational level by by increasing the lamp current slowly in steps between

0.5 Amp to 1 Amp. The laser was usually operated at lamp currents well below its

plateau region, and an output power of 4 Watts was more than enough to polarize

the 3 He gas, ie. 3 He polarization of the target saturated at powers above 2 Watts.

In the third step, a 0.5 mm thick solid etalon mounted on a copper support

was inserted in the laser cavity to tune to a narrow bandwidth at one of the optical

pumping Ck transitions. The etalon was oriented as close as possible to the zero

degree incidence by optimizing the laser power. A low Q resistor heater above the

etalon on the support was used to heat the etalon via heat conduction along the

support. As the etalon temperature was slowly rising, the copper support, which

was mounted on a motor-mike rotation stage was stepped in its tilt angle orientation

until tuning cell fluoresence signal was seen. There was usually a large peak called

C5 and two smaller peaks called C8 and C9 at larger tilt angles. At this point,
the motor mike could be stepped in the reverse direction to find the corresponding

fluoresence peaks at etalon tilt angles on opposite side of the zero degree, with

the C5 being at smallest tilt angles in either directions. The temperature was then

decreased slowly moving the C5 peaks toward the zero tilt angle where the C5 peaks

merged into one peak and finally disappeared. The temperature was lowered until

the C8 peaks were close to the zero tilt angle at which point there was little power

loss from tilting the etalon. There was no temperature sensor or feedback control
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on the etalon heater used in the experiment for rapid stabilization, and therefore

temperature changes were made by changing current to the resistor heater in small

steps at a time. However, once a stable electrical current setting was found, the

laser was further fine tuned to the peak of the C8 or the C9 transition with the

motor-mike, and the tune was found to be extremely stable for a few hours.

Furthermore, cleanliness of the optics inside the cavity was critical to obtaining

optimal power output. Laser power was seen to decrease over days, and careful

cleaning of the mirrors and the etalon usually restored the laser output power at

the 3He transitions.

3.3.7 The Laser Light Transport

The laser beam at the output coupler was then transported to the glass optical

pumping cell using a series of lenses and mirrors. The laser light transport system is

shown in figure 3.17. Lenses were anti-reflectivity coated at the 1.06 ym wavelength.

There were three beam compressor lenses and one beam expander lenses right above

the optical pumping cell. The four mirrors were high-reflective 450 angle mirrors at

1.06 pm wavelength. Still, the beam transport efficiency from the point before the

mirror M1 to the point after the Pockel's cell [3.35] was only 80%. The laser power

in the beam path was monitored continuously by a thin polished glass disc which

reflected about 4% of the laser power at a laser power meter.

The spot size of the laser beam was maintained at -1 cm diameter along most

of the transport path until it was reduced to ;1.5-2 mm for entrance into the

Pockel's cell. Immediately after the Pockel's cell, the beam spot size was expanded

reaching 5 cm x 7 cm in elliptical shape at the top of the optical pumping glass cell.

The spot size could be made more circular by rotating the etalon to 00 incident

angle and adjusting the heat applied to the etalon to maintain the laser tune on

Cs or C9 . Finally, the spot size was adjusted by changing the beam expander to

optimize polarization.

It was critical to have the beam to be true along the optics rail in the last

section of the transport path in order to obtain optimum laser polarizations for

both laser light helicities. Ordinarily with thin A wave plates, errors with the laser4

beam direction could be acceptable up to a few degrees. With the Pockel's cell. a

few cm long crystal, used as aA wave retarder, a slight angle error from the crystal

longitudinal axis caused asymmetric polarizations between the two helicities.
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3.3.7 The 3 He Optical Polarimeter

A polarimeter was mounted on the optics table above the Helmholtz coils as

shown in figure 3.9. As discussed in the section on the optical technique to measure

the He nuclear polarization, the 668 nm 31D - 21P discharge line carries a

fraction of the nuclear polarization, and the circular polarization of the discharge

line was analyzed continuously by the polarimeter.

3.3.7.1 Components and Measurement

670nm Narrow
Bandpass Filter

Linear J4 Wave Plate
Polarizer & Chopper

mo X=668nm (3D 2 )P

'IPMT JU

Figure 3.18 Schematic drawing of the nuclear polarization optical polarimeter.

The polarimeter consisted of four principal compenents: an Amperex XP2023B

photomultiplier tube (PMT), an ORIEL narrow bandpass filter [3.36], a Polaroid

linear polarizer sheet [3.37], and a CVI 1.0" QWPM-667-10-4 ¥ wave-plate [3.38]

mounted on a rotating tube. The tube rotated at high speed, 20 Hz, on two light

duty, thin ball-bearings and was belt driven by a DC motor. See figure 3.18. The ro-

tating tube also had a bi-slotted circular chopper that momentarily allowed passage

of light from an infrared light emitting diode (LED) to a sensor, thereby generating

electrical pulses at twice the rotation frequency for triggering a lock-in amplifier

described below. The 668 nm radiation of nonzero circular polarization, passing

through the rotating wave-plate and the linear polarizer, produced a light signal
with intensities modulated at twice the rotation frequency, which was converted by

the PMT into an electrical signal having a small AC voltage at twice the wave-plate

rotation frequency and a constant small negative DC voltage; the ratio of the AC
amplitude to the DC value is proportional the polarization of the photons [3.18],

VAC 1
P VDC cos (3.25)VDC CosO



The high voltage applied on the PMT between its photo-cathode and anode was

typically negative 1.0-1.2 kV. The PMT signal was then input into an EG&G 5290
lock-in amplifier to amplify the small AC component oscillating at twice the wave-

plate rotation frequency and into a DC amplifier constructed by the LNS electronic

facility to amplify the DC component. The lock-in amplifier was triggered by a

TTL signal which was converted from the pulsed signal generated by the infrared

LED switch. The lock-in amplifier served to detect the small AC component of the

modulating signal and suppress all signals not at the modulating frequency.

The ouput PMT signal had a DC level of negative 100 mV and an AC signal

of 5 mV. There were four types of noise in the output signal. The white noise

(<1 mV) inherent in the PMT, the RF Noise (;1-2 mV) due to the RF discharge

of the 3He gas, and the ambient electromagnetic noise (;1 mV) at 60 Hz were all

easily suppressed by the lock-in amplification technique. The fourth type of noise, at
or close to the modulation frequency, contributed to the lock-in output as an offset.

Although it could be subtracted, this noise offset was found to be dependent on

the magnetic field direction. The noise was a few yV and its shape and phase with

respect to the trigger signal changed slightly when the field direction was changed,
resulting in a difference of 2% nuclear polarization between field directions. The

effect was seen to be relatively constant from a few to 30 Gauss (3 mT) of field

in the center of the Helmholtz coils pair. A secondary layer of magnetic mu-metal

sheets, electrically insulated from the primary layer, was wrapped around the PMT.
together with additional sheets placed at the front of the PMT. This reduced the

magnetic field strength inside the polarimeter such that the effect only decreased

from 2% to 1.8%.

3.3.7.2 Calibration of the Polarimeter

Components critical to the polarization measurement were the DC amplifier.
the lockin amplifier, and the optics of the polarimeter. The DC amplifier was
checked for its linearity for a range of voltages and for the 10x gain setting. The
DC amplifier was checked several times over the course two years, and the gain and
linearity remained unchanged. The data shown in figure 3.19were taken before the
experiment. The slope of a linear fit to the data was used to correct for any difference
from the nominal gain of the DC amplifier, and the correction was implemented iil
the target data acquisition software as an input parameter.

Similarly, the lockin amplifier was checked for linearity for a range input sinu
soidal signal voltages at - 40 Hz and for three different voltage scale settings. Tli,
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Figure 3.19. Calibration of the DC amplifier.

input sinusoidal signal was generated by a Phillips PM 5191 function generator and

was fed into the amplifier through a variable voltage divider. The input signal at the

lockin amplifier was measured using a Tektronix oscilloscope. The lockin amplifier

output value was found to have the specified gain for the 100 mV scale setting and a

deviation of 1% larger than the specified gain for the lockin scales 10 mV and 3 mV

as shown in figure 3.20. The voltage values in the figure are shown as peak-to-peak

values of the sinusoidal signal.

Lastly, the optics in the polarimeter was checked. This included the rotating

CVI • multiple order wave plate at 667 nm wavelength, the ORIEL 690 nm narrow

band pass filter, and the Polaroid linear polarizer sheet in the polarimeter optics.

First, the polarization attenuation of the linear polarizer sheet was determined

to be e2 = 0.0102±0.0022. In place of the rotating : wave plate, a similar size linear

polarizer sheet was used. The rotating linear polarizer produced a sinusoidal light

signal that gave approximately 100% "polarization" upon illumination of the 3 He

discharge light. The narrow band-pass filter allowed only the 668 nm wavelength of

the discharge light to be detected at the PMT (see section 3.3.7). Furthermore, the
"polarization" can be related to the linear polarizer sheet attenuation coefficient e

of linearly polarized light as, assuming the coefficient to be same for both sheets in

100
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the setup,

1 + 2 = Pl.p. , (3.27)

where Pi.p. was the measured "polarization". Figure 3.21 shows the Vpp/2 of the

polarimeter signal measured with the lockin amplifier (used a digital voltmeter to

measure its analog output) as a function of the its DC level measured via the DC

amplifier with the same digital voltmeter. The DC amplifier was set to the 10x

gain. The Vp,_p/2 value and the DC level had been corrected for the deviation

from specified gain of corresponding amplifier. The slopes of the linear fit to the

two data sets in the figure were the measured "polarizations" for two 1800 opposite

phase angle settings of the lockin amplifier. The phase angle setting was adjusted

to minimize to zero output at the two 1800 opposite phase angle settings that were

900 apart from the former two phase angle settings. The average result of the two

measurements was determined to be 96.0 ± 0.9% which was used to obtain the

coefficient 2

Under the illumination of a known 100% circularly polarized light, the mea-

sured polarization must also be 100%. After accounting for calibrations of the DC

amplifier, the lockin amplifier, and the linear polarizer finite value attenuation co-

efficient for one linear polarization direction, a deviation from 100% polarization

would be attributed to the ¥ wave plate and the band pass filter in the polarime-

ter analyzer optics. It was assumed that the filter meet the design specification as

narrow band pass filter. To check the ý wave plate, a Polaroid circular polarizer

sheet was placed between the discharge light source and the polarimeter. When a

100% circularly polarized light source was not available such as with using a circular

polarizer plastic sheet, the response of the polarimeter could not simply be deter-

mined from one measurement. It was necessary to make numerous measurements

with the polarizer sheet at different angles rotated along the optics axis, from which

the polarization of the light and the retarding phase of the polarimeter ý wave plate

were determined. The response of the polarimeter system using a lock-in amplifier

was given as, similar to that in the reference Lorenzon et al. [3.18],

(1 - C 2Poinr
Pm = 1+E 2 PCsin(3.26)2( 2 1 2 r :.6

1 + P1 I + c2I os -20 cos2a
(1 +6+e Y1+ e- 2 2 co2/

where Pc and P1 are respectively the circular and the linear polarization of the light

source, 0r the retardation angle of the A wave plate in the analyzer optics, e2 the
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Sattenuation of light in one linear polarization direction, and a the rotation angle of

the optics axis of the circular polarizer sheet with respect to the polarimeter.

The polarization response equation gave values from below to above the 100%

value as a function of the rotation angle a for an elliptically polarized light. The

response equation turned out to be sensitive to the polarization of the light and

not very sensitive to the the analyzer optics in the polarimeter. It is therefore,

suggested in the reference [3.18] to use two stock identical sets of aA wave plate4

and a linear polarizer one for the construction of a good circular polarizer and

the other for the polarimeter analyzer. However, calibration data using plastic

sheet circular polarizers were taken right after the experiment and a year later,

and the importance of having two good identical optics sets was not realized then.

Furthermore, a number of attempts to construct a 100% circular polarizer using

one of the A wave plate and a CVI broadband linear polarizer BBLPG10-57 were4

not successful. The constructed polarizer appeared to perform similarly to a platic

circular polarizer sheet.

Here, the last set of data taken with a plastic sheet circular polarizer is dis-

cussed. In order to facilitate the discussion, the response equation is rewritten in

the form used for fitting the data,

Pm = cl , (3.27)
1 + c2 cos(2a+c 3 )

where ci's are the fit parameters given in table 3.7 below.

Quantity phase(-47.6) phase(132.4)

Cl -0.9502 ± 0.0005 0.9514 - 0.0004

c2 -0.0990 ± 0.0007 -0.0990 = 0.0006

c3 -35.02 ± 0.36 -34.70 + 0.30

Table 3.7. Fit parameters of the polarization response function in equation (3.27)

to data for lockin phase settings at -47.6' and 132.4".

Identifying the parameters cl and c2 with the quantities in the expression in

equation (3.26), two nonlinear equations were found, from which the polarization of

the light source and the retarding phase angle of the A wave plate were determined.

Figure 3.21 shows a fit of equation (3.26) to the polarization data as a function of

the rotation angle. There is an increase in polarization around 2000 for both phase

settings, which did not show up in earlier data. From the parameters obtained, two
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solutions were found to the nonlinear equations and are summarized in the table

below. Finally, under illumination of a 100% circularly polarized light, the measured

polarization was estimated using equation (3.26) to be 96.49±0.67% (97.33±0.55%)

corresponding to the ¥ wave plate retarding angle Or 80.0±1.7 deg (96.6±1.7 deg).

Soln Parameters phase(-47.60 ) phase(132.4 0 )

1st P 1  0.166 ± 0.003 0.166 ± 0.003

Pc 0.986 ± 0.0005 0.986 ± 0.0005

Or 80.0 ± 1.7 deg 80.0 ± 1.9 deg

2nd P 1  0.218 ± 0.006 0.216 ± 0.008

Pc 0.976 ± 0.0013 0.976 ± 0.0018

Or 96.6 ± 1.7 deg 96.1 ± 1.8 deg

Table 3.8. Polarizations P1 and Pr of the light after the circular polarizer sheet

and the retarding phase 0r of the A wave plate in the polarimeter.
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Figure 3.21. Measured light polarization vs. orientation angle a of the circular
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3.3.8 Target Electronics and Data Acquisition System

The target was controlled and its status and target polarization were monitored

via a CAMAC crate interfaced with a micro-VAX computer. An ORTEC EG&G

lock-in amplifier, a DC amplifier, and two ADC's were used to monitor the discharge

light polarization of the 'He gas in the target glass cell. These were the primary

components of the data acquisition system and have been in use from its predeces-

sor polarized 3He external cryogenic gas target constructed at Caltech. The data

acquisition system for the MIT internal gas target was similarly developed during

the prototype period. For the CE-25 experiment, new features were added to the

target data acquisition system. Two important additions were the capability to

flip periodically the target polarization and to set and monitor remotely the input

gas pressure to the target glass cell from the micro-VAX computer. A low voltage

level was sent from the CAMAC crate to set the Pockel's cell bipolar high voltage

controller of Fastpulse Technology, model 8403 [3.39]. The polarity and magnitude

of the applied high voltage to the Pockel's cell determined the helicity and the

circular polarization of the optical pumping light. In the experiment, the target

polarization was flipped by only reversing the helicity of the light periodically. The

input gas pressure was regulated by a Balzers UDV 135 leak valve and its controller

with feedback of the input gas pressure from a Baratron. The pressure set point

of the controller was remotely fixed also with a low voltage level via the CAMAC

crate. The gas pressure was maintained around set point values but had a 2.5%

fluctuation throughout the course of the experiment. Thus, it was important to be

able to monitor the gas pressure continuously for realtime calculation of the target

nuclear polarization. Other additions were the nulling of the 3He polarization, the

shuttering of the laser, the flipping and monitoring of the target holding B field.

and the monitoring of the laser power, target chamber vacuum gauge readings, am-

bient temperature, and settings on various electronics devices. Although there were

important and new features added to the data acquisition system, there were also a

number of devices operated remotely at the hardware level such as the laser and its

power supply. The remote capabilities of the target electronics and data acquisition

system were important to the quality of the target operation during the experiment.
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3.4 Depolarization Mechanisms

We consider four potential sources for depolarization of the 3He target atoms

in nuclear physics experiment. They are: molecular impurities, field gradients,

container surface, and ions created by the passage of the charged particle beam.

3.4.1 Molecular Impurities

A small trace of molecular impurity can decrease the lifetime of the metastable

atom polarization in the 3He discharge gas, limiting the polarization and pump up

rate. The criteria for allowed level of impurity is that the spin-lattice relaxation time

of the metastable atoms (, 10-' sec) must not be appreciably shortened by collision

with impurities [3.3] (see table 3.9). In practice, 3 He gas vessels were cleaned until

the discharge was spectroscopically pure, i.e. there were only six distinct lines visible

through a spectroscope. The relaxation rate by impurities is given by

11> > oiVn , (3.28)
Tr

where ai is 1- 10- 1' cm 2 [3.3] for collision by impurities, v = 2.06 x 10' cm/sec

[3.15] the relative thermal speed, and ni the impurity gas density. It is likely that the

contamination fo the gas in the pumping cell is the limiting factor in the polarization.

Tm-i (msec) n (atoms/cm3 ) ppm

0.0100 5 x 1010 1.51

0.0010 5 x 1011 15.1

0.0001 5 x 1012 151

Table 3.9. Spin-lattice relaxation times due to collisions with impurity at different

contamination levels.

3.4.2 Magnetic Field Gradients

The 3 He nuclear spin precesses around the holding magnetic field with the

Larmor frequency wo. If there were an oscillating magnetic field in the transverse

direction with frequency wo, the precession motion of the atom's spin is changed

to the precession motion plus a precession around the transverse field direction

resulting in the reversal of the atom's spin if the oscillating field can be turned on

for a short enough time. In the presence of magnetic holding field, the atom's spin
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reverses indefinitely, resulting in depolarization of the polarized 3He gas. If the

holding field and the oscillating field were perfectly uniform, the polarization of the

gas would reverse indefinitely. However, any small gradients in the holding or the

oscillating field would cause a phase difference in the precession at different regions

in the gas volume. Combined with the fast diffusion of the atoms in the gas, the

polarization would be zeroed in a very short time (-,,psec).

When there is a gradient in the magnetic holding field, the 3He atom in its rest

frame sees an oscillating field as it moves in a Brownian motion. The oscillating field

has directions along the direction of the gradient and a distribution in frequency.

At or near the Larmor frequency, the random oscillation causes, as discussed above,

the reversal of the atom's spin. In a gas sample, each atom sees an oscillating

field that is not correlated to each other in phase and strength of the field. This is

sufficient to cause the atom spins to go out of phase with each other resulting in

zero polarization. The time constant of spin-lattice depolarization of the 'He gas

in a vessel has been formulated as [1.7,3.40]

1 _2 IABtI2  
___1 = Bt12 (v2 ) (3.28)

= 3 IBI1 2  27c 2 +  '

where wo = 3.241Bil kHz and re = (2.2±0.2) x 10- .p-I sec with p in [Torr] [3.41].

Note that the holding field strength can be increased while keeping the transverse

field gradient constant to increase the time constant. Also, if the gas pressure is

increased, thus decreasing the mean free path, or if the gas temperature is lowered,

thus reducing the collision rate of Brownian motion, the time constant becomes

longer.

3.4.3 Surface Depolarization

As introduced in chapter 1, because the 3 He atom has a closed electron shell,
the polarized atom does not depolarize with high probability from collisions with
vessel surfaces. Although the nuclear spin does not have direct contact on each

collision, it can become coupled to the local magnetic field of surface atoms as it
is adsorbed to the surface for a short time on each bounce. At high temperature,
gas atoms are absorbed onto surfaces by permeation while at low temperature, gas
atoms are adsorbed by chemical potentials. The relaxation time for Pyrex at room
temperature has been determined to be 10' sec [3.42], long compared to relaxation
from field gradients. Morever, the choice of the vessel surfaces and coatings applied
has proven to be an effective way to lower the adsorption chemical potential at low
temperature [1.7].
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The surface materials that have been used widely now for making polarized
3 He gas targets are: Pyrex glass, Aluminum, copper, and Mylar. Any nonmagnetic

material is expected to be a good candidate for specific applications as long as it

does not introduce too much contaminants into the gas. Aluminum and copper are

used for their high thermal conductivity in cryogenic targets [3.1,3.43].

3.4.4 Storage Target Cell Depolarization

The degree of depolarization can be estimated from the mean residence time

and the number of bounces off surfaces in the capillary tube and storage cell. First,

the decay time in a clean glass cell is dominated by depolaration due to the field

gradient mechanism, typically 400 sec measured with a -~ 80 cc sealed glass cell. In

contrast to the 400 sec, the atom residence times on average in the capillary tube

and the storage cell are respectively, equation (3.13),

no. of atomscapillary 0.5 [Torr].- 1.0-7r. 0.12/4 [cm 3 ] 1016 atoms
=3.22 x< 101 [_atflowrate 1.2 x 1017 [atoms/sec] Torr cm

6 x 1013 [atoms]
1.2 x 1017 [atoms/sec]

= 0.5 [msec]

and
no. of atomscell 1.4 x 1015 [atoms cm - 2]12 x 1.4 [cm 2 ]= 1.2 x 1.4 [cm 2]

flowrate 1.2 x 1017 [atoms/sec]

1.7 x 101' [atoms]
1.2 x 1017 [atoms/sec]

= 14 [msec] .

(3.30)

Therefore, any depolarization due to the field gradient mechanism is negligibly

small. However, when there is a gradient in the magnetic field, particularly when

the holding field direction varies along the cell, the effective polarization of the gas

is lowered as the field direction is followed by the spin of the 3 He atoms. If there

is a deviation of 50 from the vertical, the polarization is reduced by a fractional

amount of 0.4%.

Secondly, once the atoms are in the storage cell, they can be depolarized with

some probability on each bounce off the Aluminum cell surface. In the follow-

ing, the "probability of depolarization" on each bounce and the average number of
bounces per atom in the storage target cell are estimated. The first quantity ca<
be estimated from the Caltech double cell target assuming that the depolarization
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effect by copper surfaces is similar to that of Aluminum. It was known that when

the copper cryogenic cell was not coated properly with N2 gas, the relaxation time

was short. Assuming that it was 100 sec long, the probability of depolarization per

bounce can be estimated as

polarization decay ratedepolarization prob/bounce = polarization decay ratesurface flux

[f kT/2rm3HaepdA r] -1

. fpdV J
6.62 x 10 [cm/sec].- 170 [cm 2]. 100 [see] -

- 100 [cm3]
= 8.9 x 10- 7

(3.31)

Next, the average number of bounces per atom in the storage target cell can be

estimated as, extending the concept in equation (3.13),

surface flux
no. of bounces/atom total no. of atoms

total no. of atoms
f /kT/27m=HepdA

flowrate
3.6 x 104 [cm/sec]. 3.5 x 1013 [atoms/cm]- 96 [cm 2 ]

L 1.2 x 1017 [atoms/sec]
= 1.0 x 103

(3.32)

The number of bounces per atom can be multiplied with the probability per bounce

to obtain the "fractional depolarization" in the storage cell,

prob = 1 - exp [-(no. of bounces/atom) (depol. prob/bounce)]

= 1 - exp [-(1.0 x 103 ) (8.9 x 10-7)]

S1 x 10- 3

(3.33)

The estimate shows that the polarized 3He gas can lose its fractional polariztion by

about 0.1% at the two ends and a negligible drop in polarization from the pumping

cell value on average over the whole length of the storage cell.
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3.4.5 Beam Depolarization

'He atoms may be depolarized also by the beam from magnetic field and ion-

ization of the beam. The magnetic field from the beam can be estimated using the

expression
I

B = gor106  r , (3.34)

where I is in Amps, r the distance from the beam center in cm and B in Gauss.

Assume that the beam has a Gaussian distribution radially with its oa = 1 mm.

Then, the maximum B field generated is only 0.1 mGauss, and the gradients over the

widths of the target cell becomes 0.2 mGauss/cm. In the holding field of 10 Gauss,

equation (3.28) gives the longitudinal relaxation time T1 = 25,000 sec. Therefore,

any field gradient due to the 100 /A beam current is much too small to cause the

atoms in the target cell to depolarize, and the depolarization effects due to the beam

magnetic field are negligible.

In contrast, at close range from beam protons the 3He atoms become ionized.

The rate of ionization is given by the rate of average energy loss of the beam protons

traversing the gas target

R = 3.13 x 10-11[g atoms] dERI= IbeamStarget , (3.34)

P Ptargetd x

where Ip, the 4He singly charged ionization potential, is 24.6 x 10-6 MeV, Ibeam the

beam current in [pA], starget the target thickness in [atoms/cm2 ], and dE/7itargetdx

the stopping power in [MeV/g cm-2]. It is assumed here that all the energy loss

contributes to the formation of singly charged atomic ions. At 200 MeV proton

beam energy, dE/overlineptargetdx is 5.7 MeV/g cm - 2 for 3 He [3.44]. Then the

rate of ionization is 1.0 x 1012 ions/sec. Assuming that each ionized atom becomes

completely depolarized, the "fractional depolarization" can be estimated as

ionizationrate
prob flowrate

1.0 x 1012 [ions/sec] (3.35)
= m 10-

1.2 x 1017 [atoms/sec]

showing that the estimated fractional loss of the polarization is negligibly small

from beam ionization of the ultra thin target gas.

In an ultra thin target gas where the target density is - 1013 atoms/cm3 , the

mean free path is limited by the dimensions of the target cell. In a thicker target

gas, the ionization rate becomes higher. In contrast, when the mean free path is
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small compared to the dimensions of the target cell where the target density is

> 1015 atoms/cm3 , the atomic ions have a significant probability to undergo three

body collision forming diatomic ions [3.45]. Collision of the atoms with the diatomic

ions constitue the dominant source of depolarization where it is assumed that upon

collision the atom becomes completely unpolarized. This mechanism does not exist

in the ultra thin internal gas target while it is the dominant source of beam depo-

larization in the thicker external gas target. Note also that depolarization from two

body collision in the internal gas target is negligible for the same reason. Finally, the

negligible depolarization from the mechanisms considered above is consistent with

the null evidence for depolarization in the storage cell from the nuclear scattering

asymmetry result at 45 MeV (see section 6.2).
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3.5 Target Operation and Performance

When the entire target apparatus was assembled together, the gas manifold

and the glass system were pumped out by opening an electro-pneumatic valve on

the feedline to an Alcatel 100 liter/sec turbo molecular pump. For pump out,

the feedline and the glass system were heated to slightly above 1000 C with the

exception of all the valves. Initially, the base vacuum rose to 10- 5 Torr indicating

outgassing of mainly water from the inner surfaces. The baking was maintained for

three to four days until the base vacuum improved to low 106 Torr. At this point,

the base vacuum could reach low 10' Torr near the Alcatel pump when the gas

system was allowed to cool down to room temperature.

After the system was allowed to cool back to lower temperature, usually high

power RF discharge cleaning was applied on the target glass cell for two to six more

hours while flowing 3 He gas at approximately 1 x 1016 atoms/sec or less. In the initial

minute, it was normal to observe a violet hue in the discharge, presumably from

discharge of the hydrogen gas outgassing from surfaces. After a few minutes, the

gas flow was usually interrupted to pump out the glass cell and was resumed again

repeating for several cycles. In the second cycle, the discharge usually appeared

to have less violet hue. After a few cycles, the discharge already turned to bluish-

white. At this point, the discharge was spectroscopically pure, having only six

distinct bright lines as visible in a small hand-held spectroscope.

After allowing the system cooled back to room temperature, the base vacuum

was normally in the low 10- Torr. However, due to finite conductances in the gas

system, the vacuum at the glass cell was estimated to be 10- 6 Torr. Compared

to the estimates of allowable impurity density given in table 3.9, the 106 Torr

(3x1010 atoms/cm3 ) was two orders of magnitude less. These estimates can only

regarded with a grain of salt as no systematic understanding exists of the effects of

impurity types and levels on metastability exchange optical pumping.

For accurate monitoring of the discharge polarization, it was important to have

the polarimeter see only light from a direct line of sight. Reflected light from metal

surfaces would usually decrease the measured polarization of 668 nm discharge

line. Therefore, the cylindrical glass cell was wrapped carefully around on the

side with black electrical tapes to allow only the discharge radiation to exit at the

top. The surrounding metal surfaces were also covered to minimize light reflection.

Furthermore, the target area was generally shaded to minimize background light at
the same wave length.

Four cell length long and 1 cm wide aluminum or copper electrodes were taped
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on the outside of the 7 cm diameter x 13 cm long cylindrical glass cell to achieve

a uniform discharge of the 3He gas. From 0.1 to 1 Torr pressure, the discharge was

seen to be fairly uniform. In tests using a larger size sealed 3He Pyrex cell, it was

found that the polarization and pumping rate were higher when four evenly placed

electrodes were used instead of two.
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Figure 3.22. Target polarization as a function

2000

of time, flipped every 180 sec.

The target operation was marked by stability and reproducibility during each

of the series of CE-25 experimental runs. The simple gas flow system was trouble

free, and gas was switched from the 3He gas to the 2H gas for detector system

calibration whenever beam energy was changed and back to 'He gas for data pro-

duction. Typically, the target polarization was flipped every 180 sec as shown in

figure 3.22. The LNA laser system maintained output powers greater than 3 Watts

at the C8 or the C9 transition with only a steady decrease from 4 to 3 Watt over
the period of two to three days. Correspondingly, the target polarization decreased

slowly from 55% to 45%.'

1 To our dismay before the first test measurement, we saw a huge background
noise in the silicon detector signals due to the laser light leaking into the target
chamber via the exit capillary of glass pumping cell. Putting a penny on the top
center of the glass cell reduced the noise and also the polarization. A penny was
replaced with a smaller diameter aluminum collimator in later measurements.
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Chapter 4
Description of The Experiment

4.1 Overview

The experiment measured the analyzing powers of the spin dependent cross-

section for both 3He(i(,2p) and 3Hie(p,pn) quasielastic scattering over a large

kinematic range. In the framework of plane wave impulse approximation in fig-

ure 4.1, the experiment probed the spin-dependent momentum distribution of the

nucleons in the ground state of 3 He. The incident proton with a momentum Pine

knocks out a nucleon having an initial momentum p0 without involving the remain-

ing nucleons which recoil as a spectator system with momentum PA-1. In the final

state the spectator system can either be a bound particle as in 2-body breakup or

two individual nucleons as in 3-body breakup.

P, P2

PA-1

PbeamP A

Figure 4.1. Quasielastic nucleon knockout by an incident proton with momentum

Pine resulting in the outgoing nucleons with momenta p, and P2 and the recoilings

systemt with momentum PA-1.

The experiment was carried out at the IUCF cooler storage ring using a high

duty factor and high intensity polarized proton beam, and the polarized 3He inter-

nal gas target described in chapter 3. Two large acceptance nonmagnetic detector
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arms were employed one on each side of the beam for coincidence measurements

over a range of angles from 360 to 67' on the left and from 210 to 470 on the right.

The asymmetric configuration was chosen to optimize the angular range with avail-

able detectors covering a much larger kinematic range than the previous TRIUMF
experiments [1.29, 1.31]. Data were taken at three incident proton energies: 197,

300 and 414 MeV to look for beam energy dependence of the analyzing powers.

Each detector arm consisted of one thin plastic scintillators, wire chambers, and

six large position-sensitive scintillator bars to reconstruct the trajectory and mo-

menta of detected particles from the wire chambers and the scintillator bars and

from time-of-flight information, respectively. See the layout of the experiment in fig-

ure 4.2. The detectors also triggered on scattered deuterons and pions thus allowing

detection of various other reactions.

Because the target was ultra-thin, low energy recoil particles, e.g. sub-MeV
3He, could exit the target with sufficient energy to be detected. Such particles

were detected by large area silicon detectors located near the target. In this way
3He(p,p3'He) elastic scattering was measured. Moreover, these detectors also allowed

a separation of 3 He(p,2p)pn and 3 He(p,2p)d final states by detecting slow recoiling

deuterons.

The data production runs with the above configuration were realized only in the

last months of 1992 and the early months of 1993. The 197 MeV data reported here

were recorded in March of 1993. Preceding the data production runs were many

test runs during which the Cooler beam development was carried out to obtain

high stored beam currents and polarizations; beam currents ranged only from 10 to

30 pA initially and were greatly improved to maximum beam currents over 100 PA.

In the final production phase of the experiment, the data taking rate was limited by

the data acquisition system. Prior to the quasielastic experiment, measurements of

the target asymmetry in elastic scattering at 45 MeV were taken in April of 1992.

4.2 Polarized Proton Beam in the IUCF Cooler Ring

Storage rings offer a new precision tool for nuclear physics and recently, several

of these rings have come into operation, such as the Bates South Hall Ring, the

Nikhef Amps Ring, and the IUCF Cooler Ring. The Cooler ring successively stored

its first beam for a full turn in October of 1987 and for a few seconds in early 1988

[4.1]. The storage rings at the facilities mentioned above make use of existing low

duty cycle accelerators to produce beams of high duty cycle, high beam current.

and good energy resolution. Macroscopic structures of the injected psec beam
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Figure 4.2. (a) A schematic layout of the experiment. In each detector arm, there

are the start AE scintillator, two pairs of wire chamber planes labelled WC, stack

of scintillator bars labelled E, and two layers of backing scintillators BPL(R). The

external luminosity monitors are labelled Mon2L(R). (b) An expanded view of the

target region. The target cell has 3 large area silicon detectors labeled SDL/SDR

on each side for recoil detection. A silicon detector and plastic scintillator labeled

Monl are placed just downstream of the target on each side and used for luminosity

monitoring.
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pulses from a low duty cyle machine are removed once stored in the ring with

circumferences of about 100 m creating an almost continuous beam. Beam can

be accumulated over a short time with repeated injection of the beam pulses and

cooling of stored beam to give high stored beam currents. From a knowledge of the

storage ring circumference and storage radio frequency, beam energies are known

to very high precision, e.g. a few hundred keV. At IUCF, developments have been

carried out to store beams with high polarizations in different directions, beams of

different light ions, and beam with energies up to the maximum. In 1992, polarized

proton beams at energies of 197, 290, and 414 MeV were stored in the Cooler ring

with stable beam currents of 50 [A or greater. During the experiment, typical

beam currents were 50-60 [pA and the target thickness was 1.5 x 1014 atoms/cm2 ,

corresponding to luminosities of about 5 x 1028 events/cm 2 sec. At the energies of

the experiment, the stored beam lifetimes were 1000-2000 sec without gas in the

target cell and 600-900 sec with gas in the target cell.

4.2.1 IUCF Cooler Ring

The Cooler Ring is a zero gradient synchrotron that can accelerate light ions

of charge q and atomic number A to about 500. q2 - A-1 MeV (maximum magnetic

rigidity 3.6 T m). The ring is hexagonal in shape with four straight sections alloted

for experiments. See figure 4.3. This experiment was carried out in the A section

occupied partially by an RF cavity for beam acceleration. Cooling of the beam
phase space is a continuous action accomplished in a straight section, called the C

section by an intense beam of nearly monoenergetic electrons travelling together

with the ions. In the rest frame of the electrons, a dissipative force is exerted on

ions in motion bringing the stored ions to rest. The acceptance is 351r mm mrad

at the most restricted part of the ring.

The stored beam is injected from the Main Stage cyclotron in strip injection

mode (only unpolarized beam currently) or in stack injection mode. In strip injec-

tion mode, a beam of ions from the cyclotron is injected through a thin Carbon foil

removing remaining electrons from the ions. For example, a 90 MeV beam of H+

ions is strip injected, resulting on average 1.8 of 45 MeV protons and 0.2 Hydrogen

neutrals for each dissociation [4.2]. Beam is accumulated by moving the closed orbit

of the stored, cooled beam to the edge of the foil, injecting more beam through the

foil, and then cooling the beam. The action is continued until the beam accumula-

tion rate is equal to the beam loss rate from heating and interaction with the foil

and other beam loss mechanisms. In stack injection mode, a low emittance beam of
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CE-

CE-

Figure 4.3. A schematic layout of the IUCF Cooler Ring. The stored beam is

injected in Section I and the electron cooling occurs in Section C. Section A contains

the apparatus for the CE-25 experiment. Section G contains the CE-01 apparatus

where additional 1H(p,2p) measurements were made to calibrate the luminosity

monitors of the main experiment.

protons from the cyclotron is injected into the large longitudinal phase space of the

ring. Beam accumulation is accomplished by repeating the process of kick injection

followed by RF stacking and cooling until the beam accumulation rate equals the

rate of loss to the stored beam from kick injection. Cooling reduces the emittance

of the stored beam allowing an increased number of protons to be in the available

phase space.

A parametric current transformer (PCT) installed in the T straight section was
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used to monitor the DC beam current in the ring. A voltage signal proportional to

the beam current is generated at the output of the Cooler PCT amplifier [4.3] and

is converted to a frequency of electrical pulses that can be integrated with scalers

to give integrated charges. The output voltage was calibrated by sending a known

current through the toroid cores. Linearity of the PCT output voltage to input test

current values through the wire is shown in figure 4.4. Calibration current pulses

of 20 yA were sent through the wire at regular intervals during data taking. The

offset of the PCT output drifted to + 10 MA in a few hours and regularly required

resetting to positive 10-20 yA since negative voltages were not registered by the

frequency converter.

1000
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200

Figure 4.4. Calibration of PCT output voltage to wire current values.

4.2.2 Synchronization with the Cooler

Experiments with the Cooler have a macroscopic time structure that consists

of cycles. This is shown schematically in figure 5.20 where the stored current in

the ring as measured by the PCT is plotted as a function of time. The polarized

protons are injected, accelerated to an experimental energy, and cooled. The data

taking then commences as the intensity of the stored beam decays because of loss

mechanisms. When the stored beam has decayed to about one half of its initial
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is kicked from the ring. This constitutes one cycle. The duration was chosen to

optimize the integrated luminosity based on the fill time and lifetime of the stored

beam.
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Figure 4.5. A schematic figure of the time structure of the experiment.

The Cooler was filled to 100 pA of polarized beam using the method of RF-

stacking [4.1]. The beam was then accelerated to the final energy and cooled. At this

point a start pulse was sent from the Cooler controls computer to the experiment.

The start pulse was used to trigger a programmable timing and sequencing module

(Jorway). The Jorway issued the command to ramp the wire chamber voltages from

the quiescent level at injection to their plateau voltage, to clear CAMAC modules

at the begmnning of each cycle and to enable data taking. 20 pA calibration pulses

to the PCT were triggered by the Jorway several times throughout the cycle. After

600-900 sec, the data taking was stopped and the wire chambers were reset to the

quiescent voltage levels. The residual beam was kicked from the Cooler, the ring

magnets were reset and the ring was then filled with beam of the opposite spin

state.
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4.2.3 Impact on the Cooler ring

With conventional external target experiments the accelerator and experiment

are essentially unconnected. In this experiment, where the target was internal to

the storage ring, there were several new considerations. The apertures, vacuum

properties and magnetic field of the target, in addition to the presence of gas target

atoms in the path of the stored beam, all directly influenced operation of the storage

ring.

The transverse dimensions of the target cell were carefully chosen based on

several considerations. The thickness of the target increases rapidly as the trans-

verse dimensions of the cell are decreased. The effectiveness of the flow limiters

also improves rapidly with decreased radius. However, sufficiently small apertures

can intersect the beam halo and produce backgrounds. In addition, small apertures

can lower the geometrical acceptance of the accelerator thus impacting the beam

lifetime and making it more difficult to inject beam into the ring. The target cell

and pumping aperture dimensions were chosen to be approximately equal to the

machine design acceptance 35 7r mm mrad. The best performance seen in previous

experiments was half this value [4.2]. By choosing the target acceptance to be larger

than the operating machine acceptance it was straightforward to tune the stored

beam through the target. In addition, the scattering of beam halo from the target

cell was minimized.

The presence of target gas reduced the stored beam lifetime. This directly

influenced the time required for data taking and refilling the ring. With no target

gas in the cell the beam lifetime was typically 2000 sec and depended on the tune

of the Cooler. With the target gas flowing this value was reduced to 500-900 sec.

It took about 100-200 sec to fill the ring to 100 MA.

The polarized target required a holding magnetic field of about 10 G (1 mT)

both to orient the 3 He atoms by optical pumping and to define the direction of

polarization. The field was present over about 1 m along the beam line resulting

in a maximum field integral of 1 mT m. This was sufficiently large to produce a

nonnegligible deviation in the trajectory of the stored beam. Without correction.

the stored beam lifetime and the rate of background events in the detectors would(

be different for the two field directions. Further, any change in the magnetic holding

field would disrupt beam injection. To correct for the effect of the target holding field

two additional magnets were added to the straight section immediately following

the target. These magnets were controlled using a shunt across the power supply

which provided current to the target magnetic field coils. This combination of three
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magnets then allowed for a local motion of the beam without affecting the closed

orbit elsewhere in the ring. With this configuration deflections of the beam in

the target cell were less than ±0.1 mm, and operation of the ring could be made

independent of the field in the target.

4.2.4 Polarized Proton Beam

The injected polarized proton beam is produced in three stages: the Preinjector,

the Injector cyclotron, and the Main Stage cyclotron. See the complete accelerator

floor plan of the IUCF in figure 4.6. Protons from the source are accelerated to

0.6 MeV and then injected into the first cyclotron. The injector cyclotron has

four separated magnet sectors operating at fields up to 1.5 T and RF cavities in

two opposing regions between magnet sectors operating typically at 35 kV and

frequencies from 26-35 MHz to accelerate ions to energies up to 15 MeV for injection

into the Main Stage. The Main Stage cyclotron, similar in design and three times

larger in size, also has four magnet sectors operating at fields up to 1.7 T. RF cavities

in two opposing regions between magnet sectors operate at voltages from 60 kV to

200 kV increasing radially out and frequencies from 25.4 MHz up to 35.2 MHz to

accelerate protons to energies up to just over 200 MeV [4.2]. The beam pulses

from the Main Stage cyclotron can be directed to the Cooler ring or to one of

the experimental areas in the top right section of figure 4.6. It is interesting to

note that whenever Cooler injection energies matches the beam specifications of

an experiment in one of these experimental areas, the cyclotron can run in a time

sharing mode where beam pulses can be injected into the Cooler ring for a time and

then directed to the second experiment while the ring is in data taking mode.

There are two Preinjectors in figure 4.7, and in the larger Preinjector is an

atomic-beam polarized hydrogen ion source sitting on a high voltage platform with

which protons are accelerated before injection into the Injector Cyclotron. Compo-

nents in the polarized hydrogen ion source are an RF dissociator to form hydrogen

atoms, a sextupole selection magnet, a transition polarizer, and an ionizer. See

figure 4.7.

From the hyperfine interaction between the electron spin S= ! and the nuclear

spin I= the ground state hydrogen atoms in the levels F=0,1 are separated by

1420.4 MHz. In the presence of a small external magnetic field, the ground state

levels split into magnetic hyperfine levels, labelled as magnetic states 1,...,4, and

and at field strengths greater than the nuclear spin field on the electron field, cou-

pling between the external field with each of the spins becomes stronger than the
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Figure 4.6. The IUCF acclerator floor plan.

hyperfine coupling, changing the quantum numbers of the atom from F to ms and

mI as in figure 4.8. Note that the magnetic field due to the electron spin on the

nuclear spin is , 10' G (10 T) while the field on the electron spin due to the nuclear

spin is only - 102 G (0.01 T). The force acting on the atoms in the presence of a

gradient field is given by the slope of the magnetic energy levels,

dE dH
F =---- . (4.1)

dH dx

Atoms passing through the gradient field of a Stern Gerlech type magnet then

become separated according to magnetic states.
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Figure 4.7. Schematic diagram of an atomic-beam polarized-ion source.
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Figure 4.8. Energy level diagram of the hydrogen ground atom in a magnetic field.

Magnetic state 1 which has 100% nuclear polarization, can be selected by a
small gradient field. However, in practice, the polarized atomic beam intensity is
severely limited at small fields and most polarized hydrogen sources use strong fields

that are greater than the nuclear spin field [4.4].

In the polarized source, the dissociator is a glass discharge tube where hydrogen
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atoms are formed by a high power RF field generated by a solenoid wound around

the tube. At the end of the tube is either a pin hole nozzle or a stack of capillary

holes through which hydrogen atoms effuse out in the forward direction toward the

selection sextupole magnet. A small opening collimator before the sextupole magnet

further collimates the beam of atoms, and as the atoms move into the magnet, the

gradient field of the sextupole magnet deflects out the ms=-! states and deflects

in the ms=½ states along the central axis focussing the atoms to a point on the

central axis outside the magnet. The atoms exiting from the sextupole magnet are

collimated further to keep the ms=. states as they enter into a transition field

region where they become polarized in the direction of the transition field. The

beam travels into the ionizer where the atoms lose an electron to form protons or

pick up an electron to form H- ions. The deflected or stopped atoms are pumped

away at each stage maintaining a high vacuum inside the source.
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4.3 The Detectors

The detectors consisted of three main subsystems designed to simultaneously

record data from a number of different reactions: main detector arms to the left

and the right of the target, recoil detectors inside the target vacuum chamber on

each side of the target cell, and forward angle detectors. The quasielastic events,
3 He(p,2p), 3He(p,pn), and 3 He(p,pd), were defined by a charged particle in one of

the main detector arms and a charged or neutral particle (a neutron) in the other.

The internal recoil detectors were used to detect low energy (sub-MeV) particles

such as 3He and 2 H in coincidence with either the main detectors or the forward

angle detectors. The forward angle-recoil coincidence events originated from fast

protons due to 3 He(pp 3He) elastic scattering in coincidence with the 3 He recoil

particles. These detectors were left-right symmetric to allow for separation of the

luminosity from spin dependent quantities.

A T.. A R

IR Y1R

Y2L X2L

Im

Figure 4.9. A side view of the main detector arm. The labels are as defined in

the caption to figure 4.2.
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4.3.1 The Main Detector Arms

Each main detector arm consisted of a AE-E scintillator pair with two planes

of x - y multi-wire proportional chambers positioned between them. A pair of

thick backing scintillators were located behind the E scintillators. This is shown

schematically in figure 4.10.

The AE detector was made of a thin BC400 scintillator [4.5], 3 mm thick,

54.7 cm wide, and 10.8 cm high. connected at the longer edge to a Burle 8575

photomultiplier tube with a 64.8 cm long tapered triangular light guide designed to

emphasize direct rather than reflected photons. The AE detector was suspended

from the optics platform on top of the target Helmholtz with the scintillator paddle

positioned close against the exit window of the chamber on each side. The upstream

edge of the paddle was aligned at 11.75 cm from the upstream edge of the chamber

box for the left detector arm and at 26 cm for the right detector arm. The paddle

area was larger than the acceptance of each detector arm so that exact positioning

was not critical.

Each E detector consisted of a stack of six NE102 scintillator bars 102 cm long,

10 cm high and 15 cm thick. An Amperex 2240 photomultiplier tube was attached

to each end with a ~-32.4 cm long hyperbolic light guide to optimize the timing

characteristics of the bars. Timing difference between the two PMT signals was

used to determine particle intersections along the scintillator bar. Spacers were

required between the bars to avoid stressing the light guides, resulting in a 65 cm

high stack on the left and a 63 cm high stack on the right. Each stack was set

on top of an Aluminum table and their locations were determined by measurement

of the distance from the corners of the target chamber box to the corners of the

detector stack.

The center points on the front plane of the left E detector stack and the right

E detector stack were located 197.61 cm and 169.64 cm respectively from the center

of the storage target cell. Angular acceptances were approximately 36" <OL < 670,

210 < OR < 470, and -100 < OL(a) < +100. The neutron detection efficiency at

197 MeV was approximately 15%.

Multi-wire proportional chambers (MWPC) [4.6] were used to reconstruct

charged particle tracks and thus to determine the event vertex. They were arranged

in two pairs: a large and a small set, located on each of the two major left-right

detector arms. The first detector of each pair was positioned with its wires in

a vertical direction (XnR, XnL chambers) and the second detector with its wires

running horizontally (YnR, YnL chambers). The small forward chambers (X1, Y1)
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had wire spacings of 1.92 mm and 2.54 mm respectively; the rear chambers' (X2,

Y2) wire spacings were about twice as large, 4.36 mm and 5.45 mm respectively,

giving an intrinsic angular resolution of about 0.20. The LeCroy PCOSII readout

system, employing model 7700 MWPC chamber boards (locally modified for noise

reduction), and separate model 2700 CAMAC-based controllers, was used to record

the MWPC hit patterns. Alternate odd and even wires were read out on separate

chamber boards to minimize cross talk. The wire chamber information was not

incorporated into the hardware trigger but was read out for every event generated by

the main detector arms. Constraints on the MWPC hit patterns were incorporated

in the replay software. The efficiency of the wire chambers was measured to be 99%

with minimum ionizing particles. A large effort was required to reduce the noise

level in the MWPC spectra. However, some chamber spectra always had one or two

super noisy wires, not due to the wires in chambers but the electronics.

Although the present experiment was conducted in the Cooler A region, which

is located approximately half way around the ring from the injection point (see

figure 4.3), considerable background was present during injection of the polarized

beam into the ring. For this reason the chamber voltages (nominally 3.1 kV for

the small, and 2.8 kV for the large chambers) were reduced by 50% during the fill,

ramp, and initial cooling phase of the Cooler cycle. This was accomplished by a

logic level supplied to the bin gate of commercially available high voltage modules

(with a slight internal modification to achieve the 50% voltage reduction) which

then held the MWPC at full voltage for a period longer than the data acquisition

time during each cycle. The chambers used an argon-ethane gas mixture (50%/50%)

to which n-propyl alcohol vapor was added to reduce sparking. The MWPC trip

circuit was integrated into the data "run gate" in order to guard against the effects

of occasional sparking during the acquisition period.

Two scintillator planes were placed behind each E detector stack to provide

additional energy information on high energy particles that did not stop in the E

detectors. The first plane was 7.0 cm thick with two photomultiplier tubes attached

at each end. The second was 2.54 cm thick with three PMT's attached along the

upper edge. The total scintillator thickness was sufficient to stop the highest energy

deuterons, thus allowing the separation of protons and deuterons at all energies.
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4.3.2 Recoil Detectors

For recoil detection, three silicon microstrip detectors were mounted on each

side of the target cell, 3 cm from the beam axis and slightly downstream of the

target center. These were type I detectors from Micron Semiconductor [4.7] with

an active area 4 cm high and 6 cm long. One was 500 pm thick, the others 300 fm.

Although each detector was segmented into 7 strips, in this experiment the strips

were read out in parallel and treated as a single large detector. To reduce noise

due to the turbomolecular pumps on the target vacuum system, the detectors were

mounted inside a Faraday cage connected to the electronic ground. The other main

noise source was the infrared laser light that leaked down into the target chamber

through the 3He capillary. To block this light, an additional 0.2 pm of aluminum

was evaporated onto the mylar target cell windows. In addition, a small opaque disk

was placed on top of the pumping cell to prevent laser light from travelling directly

down the capillary. The effective solid angle subtended by the recoil detectors

for the entire target length, weighted by the triangular target density distribution,

amounted to 3.1 Sr.

The microstrip detectors were calibrated continuously with a 228Th alpha

source mounted inside the Faraday cage. This source had resolvable lines at 5.38,

5.69, 6.29, 6.78, and 8.78 MeV. The recoil detector energy resolution was typically

200 keV (FWHM) with the laser beam shuttered. With the laser on the target,

the light noise limited the resolution to about 300 keV and the energy threshold to

0.5 MeV.

4.3.3 The Luminosity Monitor Detectors

The luminosity is the product of the beam current and target thickness. This

was monitored by measuring 3He(p,p 3He) elastic scattering at forward angles out-

side the acceptance of the main detector arms. The forward scattered protons were
detected in separately mounted plastic scintillators and the coincident 'He nuclei

were detected in the recoil detectors. There were two left-right symmetric sets of

plastic monitor scintillators, one inside (Monl) and one outside (Mon2) the target

vacuum chamber. The Monl detectors were 6.35 cm high, 4.45 cm wide, 1.27 cm

thick, and centered at 27.8 cm on a line 16.10 from the target center. The angular

acceptance of the scintillators was centered near the forward maximum in the ana-

lyzing power of the 3He(p,p3 He) reaction at all incident beam energies. The Mon2

scintillators were 10.2 cm wide, 25.4 cm tall, and 5.1 cm thick, were centered at

115.1 cm on a line 18.00 from the center of the cell.
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The scintillator material for the Monl detectors located in the Cooler vacuum

was Bicron BC-400 plastic scintillator [4.5]. A polystyrene light guide, chosen due

to its lower outgassing rate compared to plexiglass, brought the light from the

scintillator to an optical viewport. The scintillator and light guide were loosely

wrapped in one layer of 12.7 1pm thick aluminum foil, which had a slit to allow easy

escape of the gas load from the plastic. The additional gas load and reduced bakeout

temperature due to the Monl detectors did not significantly affect the quality of

the ring vacuum.

4.4 Electronics and Data Acquisition

S
C
h.
S
.0-'
'U

Figure 4.10 Schematic block diagram of the electronics and data acquisition system

used in the experiment.

4.4.1. Data acquisition and readout

Online data were processed using a network of 4 computers plus one VME crate

for CAMAC readout. A schematic block diagram of this arrangement is shown in

figure 4.10. The main data acquisition and control computer of the system was

linked to the other computers via an Ethernet network. Four CAMAC crates were
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read out through the VME crate which sent buffered data by Ethernet to the main

computer, where the data were written to disk (later archived to 8 mm tape) and

sorted into histograms that could then be used for online analysis. The control

computer for the polarized target transmitted updates of the target status in five

minute intervals to the main computer.

4.4.2 Trigger

The utilization of a windowless internal target with a cooled proton beam

provided a relatively background free environment. In addition, a high duty cycle

beam provided a low event rate with less than 0.1% accidental coincidence. To

take advantage of the low background, the low accidental coincidence, and the

large kinematic acceptance provided by the various detectors, the electronic trigger

system was designed with the flexibility to accommodate all possible coincidence

combinations. See the schematic layout in figure 4.12 for an overview of the trigger

system.

In the first level, there are the "fast" and the "slow" trigger. To initiate the

fast trigger logic a coincidence between the AE and E detectors on one side was

required, indicating the passage of a charged particle or a coincidence between all

the six scintillator bars in the E detector on either side was required, indicating the

passage of a charged particle vertically through the stack of E detector.

The slow trigger logic is initiated by a coincidence between the any of the side

silicon microstrip recoil detectors and one of the forward scintillators on the other

side of the beam to detect mainly elastic events for luminosity and beam polarization

measurements. The OR signal from each trigger circuit along with the computer

BUSY logic signal are then used to gate the output logic signals of the other trigger

circuit.

The output logic signals of the fast trigger were put through a long delay

line before combining with each other and with the slow logic signals from the side

silicon microstrip dectectors and the forward scintillators. A coincidence was sought

between the AE and E detectors on one side and the E detector on the opposite side

of the beam to detect quasielastic events (p,2p), (p,pn), and (p,pd). A coincidence

between the AE and E detectors on one side and one of the side silicon microstrip

detectors on the opposite side of the beam was sought to detect the elastic events
(p,p3 He). Further, a coincidence between the AE and E detectors on one side and

a forward silicon microstrip detector on the opposite side of the beam was used to

detect (p,ir+4 He) events which has a target anayzing power of -1. As mentioned
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Figure 4.11. Schematic diagram of the trigger system used in the experiment.
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above, these signals have been gated with the OR signal from the slow trigger circuit

and the computer busy signal.

SThe coincidence signals that involve the main detector arms are called event 5's,

and the coincidence signals that involve only the side silicon microstrip detectors and

forward luminosity scintillators are called event 6's. The event 5 logic signal, when

triggered, is used to start the readout of the coincidence register signals which had

the detector hit patterns and the status bits for the beam and target polarization

and the target holding field direction. Also, either the event 5 or the event 6

logic signal, when triggered, is used to start the conversion of the slow ADC and

TDC analog signals of the silicon microstrip detectors and the forward scintillators

and the wire chamber PCOSII signals, and the ADC analog signals of the target

polarization and pressure. Other than the mutual inhibit, the event 5 and event 6

triggers operated independently. The event 5 and event 6 coicidence triggers are

summarized in Table 4.1 and 4.2.

Trigger

C-single

pLnR

pRnL

p-single

pLMR

pRML

pLFMR

pRFML

busy

dEL/dER

CL/CR
EL/ER

ML/MR
FML/FMR

[CL U CR] n busy

(dELn EL) n ER n busy

(dERn ER) n EL n busy

[(dEL n EL) U (dER n ER)] n busy

(dEL nEL) n MR n busy

(dERn ER) n ML n busy

(dELn EL) n FMR n busy

(dERnER) n FML n busy

computer and electronics not busy

start scintillator (Left/Right)

no dE and all six E bars in the stack

at least one of the six E bars in the stack

at least one of the three transverse ~ detectors

forward y detector

Table 4.1. The event 5 triggers.
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Trigger

ML-FSR transverse M detector left
and forward scintillator right and busy

MR-FSL transverse y detector right
and forward scintillator left and busy

ML-FSR2 transverse y detector left
and forward externalscintillator right and busy

MR-FSL2 transverse y detector right
and forward external scintillator left and busy

busy computer and electronics not busy

Table 4.2. The event 6 triggers.

The conversion of analog scintillator signals in fast encoding ADC and TFC

modules was initiated by the gated fast OR logic signal. In the absence of an event

5 logic signal, a delayed version of the gated fast OR trigger provided a fast clear

to the ADC and TDC modules. The total electronic processing time (dead time)

for each event was about 2.6 psec.

A periodic trigger was generated every 0.1 sec by a clock to initiate scaler

reads. These scalers monitored rates at various stages of the electronics-namely

logic signals at every detector including the MWPC's, first level triggers, the fast

OR and the slow OR triggers, the gated fast OR and the slow OR signals, the

output event 5 and event 6 triggers, and so on. Also, it monitored the PCT signal

of the beam current, and the 60 cycle AC signal for a possible use in the analysis

for control of the AC signal background. The scaler events are summarized at the

end of appendix D.

Due to the time structure of the cooler beam it was possible to make a direct

measurement of the quasielastic accidental rate. The time separation between the

cooler beam pulses was typically about 100 nsec, and so it was possible to delay a

copy of the first level trigger into the next beam burst, and then look for coincidences

with the undelayed first level trigger from the other side of the beam. The accidental

coincidence rate measured in this manner was typically about 0.1% of the total

quasielastic trigger rate at the luminosities attained during the experiment.
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Chapter 5
Data Analysis

5.1 Introduction

As discussed in section (4.4.2), coincidence signals of the quasielastic reactions

(p,pn), (p,2p), (p,pd), the elastic reaction (p,p 3He), the pion production (p,7r + 4 He),

and cosmic ray muons were recorded as event 5 data in the experiment. For relative

luminosity monitoring, the experiment also recorded (p,p3'He) coincidence events

with symmetrically configured detectors in the target chamber. These events were

named event 6. Moreover, the target polarization and target input gas pressure at

the optical pumping glass cell were read out for each data event. Cumulative counts,

i.e. scalers, detector logic signal pulses at various points in the trigger system,

clock pulses, and beam current signal pulses from the PCT (see section 4.2.1)

were recorded as events every 0.1 sec in the data stream. These scaler events were

named event 9. In addition, a large amount of target diagnostic data were recorded

at 10 min intervals. Finally, these diagnostic events were named event 10.

The data were written continuously to hard disks in files of approximately one

hour long, typically segmented into four experimental cycles (see section 4.2.1),

and were later copied to 8 mm video tapes for portability and backup.

Analysis of the data were carried out at five different locations among the

experimental collaborators. At IUCF, the data were recorded and analyzed using

XSYS data acquisition; at the University of Wisconsin-Madison (UW) and at

MIT, the data files were first processed and then converted to HBOOK files for

analysis using PAW (Physics Analysis Workstation); at the University of Louisville

(UL) and Ohio State University (OSU) analyses were carried out using XSYS.

Analysis steps for the data presented in the thesis are shown in the flowchart

in figure 5.1. There were two steps in the analysis of both event 5 and event 9

data before asymmetries were computed. For each event 5, reconstruction of the

kinematic quantities was carried out in the first step, such as the particle trajectory,

kinetic energy, and momentum in each detector arm, the missing momentum, and

the missing energy of the quasielastic reactions (p,pn) and (p,2p). Results were then

written as an ntuple 5 into HBOOK files to be analyzed in PAW in the second step.

Here, conditions were applied to filter and sort the data into histograms of missing

momentum or momentum transfer for different combinations of beam and target

spin states for (p,pn) and (p,2p) reactions. As the first step in event 9 analysis,
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computer and electronics livetime and beam current spectra as a function of the

experimental cycle time were generated. Results were then written as an ntuple 9

into HBOOK files. In the second step, the beam charges for all beam and target

spin configurations were computed from the beam current time spectra. Finally,

the asymmetries of the quasielastic reactions (p,pn) and (p,2p) of the 197 MeV data

were calculated.

5.2 Reduction of the Event 5 Data

There were eight different coincidence triggers in the event 5 data stream

(see table 4.1). In the quasielastic analysis, only the event triggers, pLnR and

pRnL, were selected. These events were formed by a coincidence between the dE

and the E detector triggers on the same side of the beam and the E detector trigger

on the opposite side of the beam. The first coincidence indicated a possible passage

of a leading charged particle, often a proton, and the E trigger in the second coinci-

dence indicated a possible passage in the second detector arm of a charged particle

or a neutron, identified by the presence or absence of a coincidence dE detector

trigger. Therefore, the quasielastic coincidence triggers, pLnR and pRnL, consisted

of (p,2p), (p,pd), and (p,pn) events. However, the identification of a charged parti-

cle required additional conditions including the wire chamber signals as the dE and

E detectors were not 100% efficient. This will be discussed further in section 5.4.

In the subsections below, the reconstruction of the trajectory, the time of flight

calculation, and the calculation of the kinematic quantities, such as kinetic energy,

momentum, and missing momentum are discussed.

5.2.1 Trajectory Reconstruction

The reconstruction of particle trajectories in each detector arm required a min-

imum of two points along each trajectory in space. For charged particles, the two

points were determined by two pairs of standard MWPC wire chamber planes sep-

arated by some distance. For the neutron, one of the points was determined by the

position sensitive scintillator arrays in the E detector, and the second point was the

vertex of the coincident charged particle on the opposite side of the beam.

5.2.1.1 Charged Particles

The first of the two trajectory points was determined by the intersection point

on the (Xln, Y1n) pair of small wire chambers located next to the holding magnetic

field coils pair, and the second was given by intersection point on the (X2n, Y2n)

pair of larger wire chambers located downstream from the first pair, before the E
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Figure 5.1. Flowchart for the analysis of the 197 MeV data.
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detector, approximately 65 cm (70 cm) in the left (right) detector arm. The index

n (=L or R) indicates the left and the right hand side of the beam.
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Figure 5.2. (a) Particle trajectory traversing the two sets of MWPC and the E

detector and (b) rotation from detector coordinates to lab coordinates.

The two intersection points were measured in the detector arm coordinate

system, (u, v, w). The ith intersection point was by convention on the second
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chamber plane of the ith pair and was determined as

ui = xi + di (x2 - X1 ) / (W2 - W1)

vi = yi (5.1)

wi = Di,

where xi was the horizontal intersection position measured at the Xin chamber,

di the separation between chamber planes in each pair, yi the vertical intersection

position measured at the Yin chamber, and Di the central line of sight distance from

the center of the target cell to the center of the second plane of the ith chamber

pair.

The detector arm coordinates were then transformed into the laboratory coor-

dinates having a common origin. The transformation can be written as

xi / CosOd 0 sinOd /

yi 0 1 0 vi , (5.2)

zi -sin 9 d 0 cosOd kwi

where the angle Od was the angle orientation of the chamber planes in the lab

coordinates. Finally from the two intersection points in the lab coordinate system,

the polar and azimuthal angles of the trajectory in the lab coordinate system were

calculated as

__ O _ 1  Z2 1- Z

0 = cos(+ Z))5

/(X2• - x•) + (y2 - y) 2 + (Z2 - z1)2
(5.3)

=tan-1 Y2 - Y1
(X2 - x1

The angles 0, 4, and one of the two intersection points then completely determined

the trajectory.

5.2.1.2 The Neutron (p,pn)

The MWPC's were sensitive to charged particles and high energy photon, but

not to neutral particles, such as a neutron. Thus, the E detector was used to measure

the first of the two intersection points of the neutron trajectory. The vertex of the

coincident proton on the opposite side of the beam determined the second point.

Each scintillator bar in the E detector was equipped with a photomultiplier tube
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at each end to measure the intensity and arrival time of the light signal from the

particle intersection, and in turn, to measure the time difference between light signal

arrival at the photomultiplier tubes. This technique yielded a position resolution

of ±3 cm along the scintillator bar. In addition, the six scintillator bars were

uniformly stacked to give the vertical position with ±5.5 cm resolution (see section

4.3.1). With the center of the EL (ER) detector 169.64 cm (197.61 cm) away from

the center of the target cell, the estimated angular resolutions were AOL = ±1.00

(AOR = ±0.90) and AOL = ±1.70 (AoR = ±1.50).

The intersection point at the E detector was then transformed from the detector

arm coordinates to the laboratory coordinates by a similar rotation as above in

equations (5.2). Construction of the vertex will be discussed in the next subsection.

Once the two intersection points were determined in the lab coordinate system, the

neutron trajectory angles 0 and 0 were immediately given by equations (5.3).

5.2.1.3 Vertex

After the trajectory of a charged particle was determined, its vertex could be

computed as the point along the trajectory of shortest separation from the beam

axis. For two charged particle trajectories, one on the left and one on the right, the

vertex could be computed as the average position along shortest separation between

the trajectories. The procedure used was simply to find the minimum with respect

to two parameters of the trajectory lines. It could be written in analytical form as

dilll - 1212dill=121 2(11 - 12) 1 = 0
dA1

dil1 - 12 12
dA2 = 2(12 - 11) fi2 = 0, (5.4)dA2

where

11 = A, fil + ri

12 = A2 f2 + r2

and where r, and r2 were the reference points of trajectories 1 and 2. The resulting

minimum equation could be rewritten as a 2 x 2 matrix equation,((r, - r2) -nx 1 i -n2 A
= . (5.4a)

(r, - r2) 2 -n1" ( I2 2
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This was then solved to obtain the parameters,

S(r - r2) . (5.4b)
(A2  -1 (1 2)r2)

The indices {1, 2} were for any combination of

{left trajectory, beam axis}

{right trajectory, beam axis}

or

{left trajectory, right trajectory}

5.2.1.4 Intersection Point on Detector Planes

Once the trajectory had been reconstructed, the intersection position on any

given detector plane could be computed, such as on the dE scintillator and the front

or mid plane of the E detector. The intersection position at a given plane can be

found by solving a linear vector equation and a nonparallel planar equation, which

were given respectively as

1=r+Afi
(5.6)

P = R + 71l U + 72V ,

where r was the intersection vector position on the reference, Yln chamber plane, ni

the unit vector of the trajectory direction, R the central point of a detector plane,

and e and V the horizontal and vertical unit vectors on the specified detector plane.

The unit vectors could be expanded in the unit vector basis of lab coordinate system

(i, ,Z, 2) as
h = sin~cosqi + sin0sinq! + cos92 ,

i = cosbdi - sin 6dZ , (5.7)

where 0 and 0 were the direction angles of the trajectory and 6d (= Od +ad) the sum

of the position angle and the tilt angle of the detector plane, e.g. -Od = +320 and

ad = +150 in figure 5.2. Equation (5.6) was then re-expressed in the lab coordinate

system as a 3 x 3 matrix equation

X0 - x0 /sin0cos -cosbd 0 /A

Yo - Yo = sinOsin 0 -1 71 , (5.8)

Zo - zo cos0 sinSd 0 7/2
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which can be solved to give

1AI1
7 sin0 cos0sinbd + cosOcosbd

772

( sinfd 0 cosbd Xo - x0

x -cos9 0 sinOcosq Yo - Yo

sin9sinosinbd -sin~cosqsinbd - cosOcosbd sin~sinqcosbd Zo - zo

(5.9)

Either A or 77 and 772 could be used to obtain the intersection point on a plane using

equation (5.6). Intersection points on the dE and the E detector planes were used

for determining the trajectory path length, which in turn was used for calculating

the particle speed from the time of flight discussed in the next subsection.

5.2.2 Time of Flight

At the experimental beam energy 197 MeV and certainly at the higher energies,

a large number of quasielastically scattered and recoil protons punched through the

E detector and formed a reaction tail in the pulse height signals making direct

energy determination difficult. Therefore, the time of flight (tof) technique was

used to determine the energy of particles. The technique involved determining the

flight path and the flight time of particle trajectories between two points in the

detector arm. The ratio of the flight path to the flight time was the speed of the

particle,
(x2 - x)2 + (Y2 - y)2 + (z2 - Z1) 2

#C =(t 2 - t1 ) (5.10)

from which the particle's kinetic energy and momentum were calculated as follows

1
1-Yl1- /1 - # 2,'

T = (7 - 1)mNc 2  (5.11)

P = -mNNOc [ sin9cos¢ X^ + sin~sine 3^ + cos9 ] ,

where mN was the particle mass and 0 and 0 were the trajectory angles.

The two referenced points along a trajectory were determined slightly differ-

ently for a charged particle and the neutron. For a charged particle, the first
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reference point was measured at the dE start scintillator and the second at the E

detector. In the case of the neutron, the first point was the vertex of its coincident

proton on the other side of the beam and the second was measured at the E detec-

tor. See the previous section for a discussion of calculating the intersection position

on a detector plane. At the vertex, the time tvertex was obtained by projecting

backward along its trajectory from the dE start time of a coincident proton as

| rdE -- rvertexl
tvertex = tdE - rdE-rrtex, (5.12)

where ti and ri were the time and position at corresponding points and Pc was the

charged particle speed at the vertex. The time projection was complicated by the

loss of kinetic energy by the proton from ionization on its exit through the target

chamber aluminum window and one of the silicon microstrip detectors.

In fact, each detected charged particle on its exit passed through one of the

silicon microstrip detectors, the target chamber window, the dE detector, the wire

chambers, and the surrounding air. Thus, it lost kinetic energy by a number of

mechanisms in each medium, such as ionization and excitation. The mean energy

loss per unit length is given by the Bethe-Bloch equation [5.1]

dE x2ZmedPmed Z2 2A•ec-2 2Tmax #2
- ~= 47rNAr~mec2  ie~nd~ in mc-Jia) - Zmedx2 Amed 22 Zmed

(5.13)
where Zmed is the charge of the medium, Pmed the density, Amed the atomic mass,

Iadj an adjusted ionization potential, 6 a density correction applicable at high energy,

C for shell corrections, Tmax the maximum energy transferred to an electron given

as 2mec 2 ~2 2
T max -- "

1 + 27- +(M

Although the ionization energy loss could be calculated using the Bethe-Bloch

equation, the energy-range empirical formula [5.2]

Pined drange = c, Tc2 [cI] , (5.14)

was found to be more useful. It gives the range d [cm] of a charged particle travelling

with a kinetic energy T [MeV] in a medium with density Pmed [gm/cm3]. If the

energy-range formula correctly calculates the average range of travel, then a given

kinetic energy To corresponds to a distance drangeo and a smaller kinetic energy TI
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corresponds to a shorter distance drangei. The difference between the two distances

Ad then was related to the energies To and T1 as,

Pined Ad = cl TW2 - cx lT1
2  (5.15)

Conversely, the distance Ad can be identified as the thickness of a medium into

which a charged particle enters with an initial kinetic energy To and exits with a

final kinetic energy T1 . In the analysis, the tof calculated kinetic energy loss in each

medium was corrected backward along the particle's trajectory to obtain its kinetic

energy at the vertex. Given a final kinetic energy T1 , the corresponding initial

kinetic energy To was calculated for each medium. However, the tof calculation

gave only some weighted average kinetic energy across the air medium, not the final

kinetic energy. Figure 5.3 (a) and (b) show an average energy loss by the protons in

each detector arm calculated using the dE/dx Bethe-Bloch equation. The dominant

energy losses of the protons occured in the the dE start scintillators.

After the kinematic variables had been determined for both detector arms, the

missing momentum and missing energy of the quasielastic scattering events were

calculated as

Pm = Pbeam - PR - PL, (5.16a)

Em = mL + ma + mA-1 - m3He - mbeam

= Tbeam - TL - TR - TA-1 , (5.16b)

where

A-1= /(Ebeam + m3He - EL -ER) - (IPm 2) , (5.17a)

TA-1 = Ebeam + m3He - EL - ER - mA-1
IPml'

,2 mA-1 (5.17b)
2 mA-1

5.3 Detector Calibrations

The essential functions of the detector arms were to measure the trajectory

angle, path length, and time-of-flight (tof) of detected particles. Below, a calibration

of the detector arms is discussed. The calibration relied on measurements of detector
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Figure 5.3. The 197 MeV 3He target proton dE/dx total energy loss for traversing

the silicon microstrip detector, the aluminum window, the dE scintillator, and the

W1.5 m of air in the left detector arm (a) and in the right detector arm (b) as a

function of the trajectory angle in the laboratory.

positions, involved comparison between the end photomultiplier time signals for each

scintillator bar using the cosmic ray muon trajectories formed in the E detector

stack, and required comparison of the tof in the detector arm to that expected

from kinematics for the 'H(p, 2p) data. The angular separations between the two

energetic protons were also compared to that expected from theory. During the

experiment, cosmic ray data were continuously recorded in the event data stream

and 1H(p, 2p) elastic scattering data were collected by flowing hydrogen gas in the

target cell at each beam energy. The calibration results of the cosmic ray analysis

were provided by the OSU analysis, and the detector positions and angles were

provided by the IUCF group who also analyzed the 1H(p, 2p) elastic data for fine
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adjustment of the wire chamber angular positions.

5.3.1 Determination of Detector Position and Angle

The absolute position and orientation of the detector components were required

in the reconstruction of the trajectory angles (see section 5.2.1). To determine

the position and orientation of the detector components, i.e. with respect to the

target cell center and beam direction, measurements were carried out between a

number of locations in both detector arms and the target chamber. In each detector

arm, distances between corners of the target chamber and the center marks on the

front of the nearest pair of wire chamber planes were first measured, followed by

measurements of distance between detectors. Also in some cases measurements from

fixed points on the target chamber to the E detector ends were possible. Thus not

only were positions of other detectors relative to front chamber planes measured,

but also some measured relative to target chamber. The measurements were then

entered into a CAD drawing of the experimental layout to determine the absolute

position and orientation of each detector component with respect to the target

cell center and the beam direction. In general, there were sufficient measurements

to overconstrain the position. On the CAD drawing, the detector position and

orientation were determined with an accuracy of ±0.2 cm and ±0.30 respectively

[1.19]. However, the uncertainties of the measurements were small compared to the

resolution of the experiment.

The angular separation of the pair of outgoing protons in the elastic reaction

1H(p, 2p) provided a necessary calibration of the relative angular position between

the two detector arms. First, the difference of the azimuthal angle between the pair

of outgoing elastic protons is

AO=18(5.18a)
= 180' ,

thus, allowing a check on the 0 angle defined by vertical position of each wire

chamber plane. A large offset from 1800 could be seen when the vertical positions

of one or more of the wire chamber planes were incorrect. In figure 5.4 (a), a

histogram of the A4 was made showing the center of the peak to be at 1800 with

a spread of ±1.60.

Second, the opening angle between the protons pair is

Oopen = COS- 1 (sinLsin9Rcos(L -- OR) + COSOLCOSOR(518b )
90(5.18b)

S900
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Figure 5.4. (a) Oa - eL as a function of OL; The difference angle was independent

of OR and was centered at 180.4' ± 1.60, (b) 9open is plotted as a function of OL;

the calculated 9 open as a function of 9 L is the heavy line. The difference between

the two shown in the histogram is only 0.10 - 1.20.

which can be exactly calculated as a function of the beam kinetic energy and angle

of one of the particles, thus, allowing a check of the relative angular position of the

two detector arms. In figure 5.4 (b), the opening angle of the two elastic protons

is compared with that obtained as a function of OL at 197 MeV beam energy. The

histogram shows the difference to be centered within the resolution spread of ±-1.10.

However, these two comparisons did not provide an absolute determination of the

wire chamber positions.
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A third comparison was made in the IUCF analysis to determine the abso-

lute angle orientation of each detector arm. The beam related asymmetry of the

1H(--, 2p) reaction is zero at the 90' scattering angle in the center of mass frame.

See the discussion in section 2.3 and figure 2.4. Thus, the zero crossing of the mea-

sured beam asymmetry in the c.m. angle 0 was used for fine adjustment of the wire

chamber angular positions in each detector arm.

0.4

0.2
C
8 0.0

-0.2

-0.4

20 30 40 50 60 70 20 30 40 50 60 70
l b0 = right arm 0 ab
l1ab  (lab

A = left arm
- = SAID phase shift

Figure 5.5. Elastic asymmetry of 'H(-, 2p) data for 414 MeV and 197 MeV as a

function of laboratory angle. The solid curves are SAID SM89 phase shift solutions

[1.18].
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5.3.2 Cosmic Ray E Detector Calibration

The time difference between the light signal arriving at the photomultiplier

tubes was related to the intersection position of the particle along each scintillator

bar as,

xi= - (tfei - tfci+)7.6 + toffseti [cm] , (5.19)
n

where c was the speed of light, n the index of refraction = 1.6, and i the detector

index number (= 0-5 from top to bottom). The quantity tfci± was the time recorded

by a time-to-FERA-converter (tfc) module from the arrival time at the module of

a start dE scintillator signal pulse to the arrival time of a pulse from the ± end of

an E detector scintillator bar. In an ideal situation, when a particle intersects the

midpoint of the bar, the scintillated light signal travels in both directions toward

the ends, arrives at the same time at the photomultiplier tubes and is converted to

two electrical pulses that travel through electronic modules and cables and reach

the tfc module at the same time. Due to varying cable lengths and different delay

times of electronic modules, there was a difference between the arrival times which

was adjusted by a time offset, toffseti, obtained from the calibration.

Cosmic rays that penetrated vertically through all six E detector scintillator

bars were used to calibrate the offsets. See figure 5.6. At sea level, almost all the

penetrating component of the cosmic ray flux are the muons [1.3]; only f 3.5 % are

protons. Further, the muon flux has a mean energy of 2 GeV, and therefore, the

muons were minimally ionizing and formed a linear trajectory through stack. The

recorded cosmic events were then fit to linear trajectories to obtain the time offsets

toffseti for each bar. This part of the analysis was carried out by the collaborators at

Ohio State University who had used the scintillator bars in previous experiments.

Results of the calibrations are summarized below in table 5.2 for the 197 MeV

runs that have been analyzed. The quantity summarized is the position offset, an

equivalent of the time offset mentioned above.
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Figure 5.6. Events that triggered all six scintillator bars were recorded as cosmic

muons. Due to the cos2 0 distribution in the zenith direction, most cosmic events

pass through the stack at slight angles.

Table 5.1. The average and the rms values of the E detector
position offsets of the analyzed 197 MeV data.

scintillator bar tfc-
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Left Right

(cm) (cm)

bar 0 12.22 ±0.16 11.42 ±0.13

bar 1 5.83 ±0.13 10.39 ±0.15
bar 2 -1.75 ±0.17 6.08 ±0.15

bar 3 4.08 ±0.11 -13.56 ±0.05

bar 4 -9.89 ±0.08 24.35 ±0.09

bar 5 -24.86 ±0.09 6.90 ±0.09
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5.3.3 Time of Flight Calibration

For charged particles, the tof was measured as the difference between the par-

ticle arrival times at the E detector and the dE detector on the same side of the

beam. The charged particle tof was then given as

tof = (tfcEi - tdcdE)7.6 + tofoffset, [nsec] , (5.20a)

where tfcEi and tdcdE were respectively the digitized time signals of the E detector

scintillator bar i and the dE detector on the same side of the beam and tofqffseti the

tof offset of scintillator bar i for a particle of charge q.

In the case of the neutron, since it was not detected by the dE detector its tof

was measured using the E detector time signal and the dE detector time signal of

the coincident proton on the opposite side of the beam. The time signal at the dE

detector was projected back to the time at the vertex using the proton speed and

the pathlength from the dE detector to the vertex. The proton speed was corrected

for the energy loss due to ionization as it traversed through the 3 mm thick dE

start scintillator, the 0.012 in thin aluminum window, and the 300 ,pm thin silicon

microstrip detector. The neutron tof was then given as

tofn = (tfcEi - tdcdE)7.6 - At' + tof.ffseti [nsec] , (5.20b)

where the tfcEi and tdcdE were the digitized time signals of the E detector scintillator

bar i and the dE detector on opposite sides of the beam, the At' the tof (positive

quantity) from the dE detector to the vertex, and the tOfoffseti was the tof offset of

scintillator bar i for the neutron.

To calibrate the tof system, 1 H(p, 2p) data were taken at 197 MeV, 300 MeV,

and 414 MeV beam energies. The data were fit to a calculation to obtain the

offset constants, tofoffseti and tOfoffseti, at each energy. The calculation of the tof

involved the determination of the particle trajectory, the computation of the initial

speed from the elastic scattering reaction, and the correction of the particle's speed

due to energy loss in each medium of the detector arm-the 300 ,pm thin silicon

microstrip detector, the 0.012 in (0.305 mm) thin aluminum window, the 3 mm

thick scintillator, and approximately 1.5 m thick air. The wire chamber gases and

the mylar windows on the wire chambers were assumed to cause approximately the

same amount of energy loss as air. See figure 5.7 for a fit of the proton tof data to

a calculation.
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Figure 5.7. Proton time-of-flight 1H(p,2p) data fit to a calculation for 197 MeV

beam kinetic energy.

5.3.4 Missing Momentum and Missing Energy Resolution

Once the momentum and energy of the coincident particles were determined,

the missing momentum and energy were obtained using equation (5.16). The res-

olution of the missing momentum and the missing energy were approximately 10-

20 MeV and was due to the limited resolution of the electronics timing and the

trajectory determination. For the (p,2p) coincidence detection, the missing mo-

mentum Pmx, Pmy, and Pm, and the missing energy Em are shown respectively in

figures 5.8 and 5.9, prepared at the University of Wisconsin-Madison.

The mechanism for the coincidence detection of (p,pn) required that the E

detector time signal in one detector arm be measured with respect to the dE time

signal in the detector arm on opposite side of the beam. Due to the zero energy loss

from ionization by the neutron, it was not clear as to the use of protons in 1H(p, 2p)

elastic scattering reaction for calibration of this (p,pn) detection mechanism. The

approach chosen was to calibrate the time offsets of this (p,pn) mechanism to obtain

a similar missing momentum Pm distribution for the 'He neutron as for the 3He

proton. See figure 5.8. Also, in Appendix E, a different calibration of the neutron

and the proton missing momentum distributions is presented.
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Figure 5.8. Missing momentum Pmx., Pmy, and pm, plots of 197 MeV 'H(p,2p)

data for protons.
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Figure 5.9. Missing energy Em plot of 197 MeV 'H(p,2p) data for protons.
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Figure 5.10. Missing momentum Pm plots of 197 MeV 3 He(p,2p) and 3He(p,pn)

data. The solid curve is for pp, the dashed for LnRp, and the dotted for LpRn.

155

~YY"""3····rr~-~l~·iIrrrrusaL~··PI-~-



5.4 Selection of the Event 5 Data

After the construction of kinematic variables for the quasielastic (p,pn) and

(p,2p) event 5 data as ntuple 5 data, cut conditions were then applied to sort

the events into histograms of the missing momentum, pm, and the 3-momentum

transfer, q according to beam and target spin state and reaction type. There were

five different reaction types: pp, LpRn, LnRp, LpRd, and LdRp; the deuterons

were not analyzed for this thesis. Also, for each reaction there were four different

beam and target spin states namely: beam-up-target-up, beam-up-target-down,

beam-down-target-up, and beam-down-target-down.

For the 197 MeV data, there was no pion recorded since its production threshold

was at 290 MeV proton beam kinetic energy, and there was a small number of

quasielastic deuteron events recorded along with the proton events. The deuterons

had a longer tof than the protons for the same kinetic energy and were stopped in

the E detector 15 cm thick scintillator bars. Therefore, the deuteron events could
be separated from the protons in the plots of E detector pulse height vs. tof as in

figure 5.11. However, the deuteron events were diluted with the protons of bad tdc

timing. In order to see clearly the events with bad tdc timing, data from a hydrogen

target run were plotted similarly in figure 5.12. Although it was not done in the

analysis of the neutron and the proton data, the events with bad tdc timing could

be rejected from the tdc plots below in figures 5.13 and 5.14.
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Figure 5.11. The 197 MeV 3 He target data E detector pulse height vs. tof plot
for protons and deuterons in the left detector arm in (a) and the right detector
arm in (b). The protons are located in the main loci of events enclosed inside the
2-d cut regions. A small amount of deuterons located just above the protons are
diluted with protons that have bad tdc timing. All the deuterons are stopped in
both detector arms while the most energetic protons in the right detector arm were
not stopped in the E detector as indicated by the sharp bent in the distribution in
(b).
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Figure 5.12. The 197 MeV hydrogen target data E detector pulse height vs. tof
plot for protons in left detector arm in (a) and the right detector arm in (b). The
protons are located in the main loci of events enclosed inside the 2-d cut regions.
A small number of events located above the cut regions are protons with bad tdc
timing.
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Figure 5.13. The 197 MeV hydrogen target data tdCdEL vs. tdCdER scatter plot.

There were six loci of scatter points labelled a through f indicated also by the
corresponding number of events. The numbers inside parentheses were results of

changing the cut conditions from requiring only the four wire chambers in each
detector arm to trigger once to requiring also the E detector in each detector arm
to trigger once. With the E detector cut condition, the loci a, b, and d reduced to

zero number of events.

About 6-7% of the data were degraded from bad tdc timing. In figure 5.13,

there were six loci of events on the plot of tdcdEL vs. tdcdER. When the cut

condition required that the E detector triggered once in addition to each of the four

wire chambers, the loci labelled a, b, d reduced to zero and the loci labelled c, e,

and f reduced in number-indicated in parantheses. The loci c and f respectively

had a delay of about 100 channels (7-8 nsec) from the locus d. The delay also

occured in the tfc signals of the EL and ER detectors by the same amount. Note

that the events in loci e and f had almost a constant value of tdcdER, i.e. they were

started by the dER scintillator, while the events in locus c had approximately also

a constant value of tdCdEL. Due to the way the delays occured in different signals,
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Figure 5.14. The 197 MeV 3He target data tdCdEL vs. tdcdER scatter plot. There

are six loci of scatter points labelled a through f indicated also by the corresponding
number of events. The numbers inside parentheses are results of changing the cut

conditions from requiring only the four wire chambers in each detector arm to trigger
once to requiring also the E detector in each detector arm to trigger once. With

the E detector cut condition, the loci a, b, and d reduced to zero number of events.

the events in locus c resulted a 7-8 nsec shift in the tof of the left detector arm while

the events in locus f resulted a 7-8 nsec shift in the tof of the right detector arm.

In figure 5.14, the scatter plot of tdCdEL vs. tdcdER for the 197 MeV 3He data

show similar characteristics seen in the hydrogen data in figure 5.13. When the

cut condition required also to trigger the E detector once in each detector arm, the

loci labelled a, b, and d reduced to zero and the loci labelled c, e, and f reduced

in number. The loci c and f had delays of 7-8 nsec respectively in tdCdEL and

tdCdER values. The tdc timing degradation is given approximately by the ratio of

the number of events in loci c and f and the number of events in loci b and e.

Therefore, the small number events in loci c and f in figures 5.13 and 5.14 could be

thrown out although it was not done in the analysis for this thesis.

160

, ,i I, I , , , i l, , , , i i , , , ' i 1 1 , i f , 1, , " i ," l' , t i
"

f=1653 (1464)

.e=38708 (34396)

a=167 b=-3161

.. .

c=1223 (1082)

rd=111



From the numbers shown in figures 5.13 and 5.14, charge particle detection

efficiency of the E detectors were calculated to be approximately 90%. Similarly,

the dE detectors were not 100% efficient. Therefore, it was not sufficient to use only

the dE and E detectors for particle identification. By requiring no trigger for all

wire chambers in the detector arm, a detected particle was identified as a neutron.

In the analysis, particle identification for the neutron, the proton, and the deuteron

were defined as

neutron= dE- E- JWCi . mask

proton = (proton cut)- dE. E. WCi . mask
i

deuteron = (deuteron cut)- dE- E WCQi- mask

where the proton cut is shown in figure 5.11, the deuteron cut to be defined around

the upper loci of the events in the figure, and the mask was set to reject the data

when one of the wire chambers was tripped.

5.5 Background

There was very little background in the 197 MeV 'H(p,2p) elastic scattering

data as indicated by the less than 1% signal to background ratio shown in figure 5.15.

As discussed in section 5.3.1, the opening angle between the two elastic protons was

10

102

10

1

50 60 70 80 90 100 110 120 130
Opening Angle

Figure 5.15. Opening angle distribution of 'H(p,2p) elastic scattering events.
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around 89* given from kinematics. Any deviation was then a result of a combination

of the detector angle resolution and quasielastic events which have with a larger

spread in the opening angle distribution.
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Figure 5.16. The vertex distributions of the 197 MeV data along the cell length for

the 'He(p,2p) reaction in continuous line, the 3He(p,pn) LpRn reaction in dashed

line (x10), and the 3He(p,pn) LnRp reaction in dotted line (x10).

Moreover, the distribuitons of the vertex positions along the target cell length

shown in figure 5.16for the quasielastic data are close to the expected triangle dis-

tribution of the target gas density in figure 3.7. Cuts on OL and OR were applied to

remove angle dependence of the vertex distributions.

In figure 5.17 (a), the 197 MeV hydrogen data were sorted for a proton in the

left in coincidence with a neutron in the right detector arm, and in 5.17 (b), for a

neutron in the left in coincidence with a proton in the right detector arm. The events

were binned in histograms respectively as functions of tdcdEL and the tdcdER. Both

of these histograms contained very little (p,pn) events compared to the number of

(p,2p) events in 5.17 (c). The small number of events recorded as (p,pn) could have

resulted from interaction of target walls with beam halo, scattering from a small

trace of 3 He gas that was leaking out from its source, accidental triggering or even

neutron conversion of the proton on its exit trajectory from interaction with the

silicon microstrip detector, the thin aluminum window and the thin dE detector.
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Figure 5.17. The 197 MeV hydrogen target data. Events were sorted in (a) left

proton and right neutron; in (b) left neutron and right proton; and in (c) left proton

and right proton.

In figure 5.18 (a), the 197 MeV 3He data were sorted for a proton in the left in

coincidence with a neutron in the right detector arm. In 5.18 (b), the events were

sorted for a neutron in the left in coincidence with a proton in the right detector

arm. The events were then binned in histograms respectively as functions of tdcdEL

and the tdCdER channel numbers. Furthermore in 5.18 (c), the events were sorted

for coincident protons in the detector arms. The ratios of the (p,pn) to the (p,2p)
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Figure 5.18. The 197 MeV 3He target data. Events were sorted in (a) left proton

and right neutron; in (b) left neutron and right proton; and in (c) left proton and

right proton.

events with the neutron in the left and the right detector arms were respectively

0.0686 and 0.0684. The ratios were then multiplied by a factor 2, the ratio of the

neutrons to the protons the in 3 He, resulting in both cases 13.7%. This number

can be interpreted as the neutron detection efficiency given the proton detection

efficiency was 100%. In addition, the number was close to the expected neutron

detection efficiency of 15% for 15 cm thick plastic scintillators.
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5.6 Analysis of the Event 9 Data

In the analysis, only a few of the recorded scalers were used. See Appendix D

for a complete list of the event 9 scalers. These were the scalers used to obtain

the spin sorted averaged deadtimes and beam charges for normalization in the

asymmetry cross sections. In addition, the wire chamber scalers were used for

generating time masks to reject the data when the wire chambers were tripped off

during the experimental cycles.

One or two wire chambers were tripped off frequently during the experiment,

suspending the data acquisition temporarily while the scalers in their counting mode

continued counting triggers from the other detectors and wire chambers. In the time

spectra of a wire chamber scaler, then, large gaps appeared corresponding to the

time when the chamber was tripped off and the data acquisition suspended. Since

the deadtime scaler counts and beam charge counts were used in the normalization,

proper counting of these scalers was done by using, for every second in the experi-

mental cycles, time mask bits which equal to 1 or 0 to exclude the counts whenever

a wire chamber was tripped off. The time mask files for the experimental runs were

generated by looking at the wire chamber time spectra and setting the mask bits to

zero from the time 5 sec before the gap and to the time 5 sec after the gap. Also,

the time mask bits were set to zero for 10 sec into the beginning of every cycle to

wait for the chamber voltages to stabilize. The time mask files were generated by

the analysis at IUCF and were used as an input to this analysis.

The event 9 scalers were recorded at 0.1 sec intervals. In the first step of the

event 9 analysis, time spectra of the scalers were then generated by plotting the

difference between consecutive scaler counts as a function of the experimental run

time. In figure 5.19 are time difference plots of the fastOR and fastTrig scalers.
The triggers fastOR and fastTrig were defined in table 4.1. FastTrig was just

the fastOR trigger gated with computer and electronics busy. The ratio of fastOR

to fastTrig was used as a correction factor for the electronics and data acquisition

deadtime. See in section 5.7 for the use of the correction factor in calculating

asymmetries.

The PCT time spectra were fit to a functional form given below, which was

the sum of a smooth decay, the calibration pulses, and a background term with a

linear time dependence,
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Figure 5.19. In (a) and (b), respectively the time difference scaler spectra of
fastOR and fastTrig triggers as functions of the cycle time. In (c), the ratio of
fastOR to fastTrig used in the correction of the electronics and the data acquisition
deadtime. The cycle length of 800 sec is used only for display purposes.
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PCT(t) = beam(t) + calibration(t) + background(t)

where

Ai e- ti/ ti < ticutoff

beam(t) =

0 ti > ti toff

calibration(t) =

S(ti- tio0) ti0 < ti < ti0 + trise (5.21)
trise

1.0 ti0 +. trise < ti < ti0 + At - trise

(ti0 + At - ti) tio0 + At- trise < ti < tio0 + At
trise

background(t) = B0 + B1 t .

See figure 5.20. There were local and global parameters in the fitting procedure.

The parameters for the exponential decay beam component were adjusted for each

cycle while the parameters such as the start time and the width of the calibration

pulses and the slope of its edges were adjusted for all cycles. Similarly, the two

parameters of the background linear component were adjusted for all cycles. Note

that the beam fill and ramp in the experimental cycle were not included in the fit

in figure 5.20. Thus, the background linear component deviated slightly from the

actual PCT offset over most of each cycle time.

From the functional form obtained, beam charge was calculated for each beam

and target spin state. The uncertainty of the beam charge in each spin state was

estimated using

6Qij = Qij j , (5.22)

where the indices {i,j} were for the beam and the target spin states respectively, and

the quantity xj was the relative fluctuation of the PCT data from the fit function.

Uncertainty associated with the absolute measurement of the beam charge was not

included as it was not pertinent to the calculation of asymmetries. Lastly, the

uncertainty due to the difference between the background term and the actual PCT
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Q = 94.1454. mC
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Figure 5.20. Fit to the PCT data to determine the total charge of each beam and

target spin configuration in an experimental run. The total beam charge accumu-

lated is 94.1 mC.

offset was expected to be relatively small because the total drift in the PCT offset

was less than the fluctation width over the course of four experimental cycles as

seen in figure 5.20. Furthermore, the PCT offset appeared not to fluctuate greatly

as indicated by the good fit to the data in the interims between PCT offsets.
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5.7 Analysis of the Event 6 Data

Data from the luminosity monitors were analyzed at University of Louisville,

and a discussion on the calibration and operation of the luminosity monitors can

be found in the reference C. Bloch et al. [3.10]. In figure 5.21, a comparison of the

product Q xpressure xlivetime efficiency is made with the luminosity results for the

four beam and target spin states.

600 700 800 900 1000 1100
Monl / PCT

600 700 800 900 1000 1100
Mon1 / PCT

1200
x 10

3

1200
x 10

3

Figure 5.21. Histogram of the ratio of the luminosity monitorl to PCT normaliza-

tions for the different beam-target spin configurations at 197 MeV. The rms values

are 3-4 times larger than the statistical uncertainties of the monitorl normalizations.
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The beam polarizations were also extracted from the event 6 data [3.10]. Data

were taken with the CE-01 experiment and the CE-25 experiment simultaneously

to calibrate the beam asymmetry of the 3ie(V',p3He) elastic data of the CE-25

luminosity monitors. The CE-01 experiment was situated in the G section of the

Cooler Ring, and H2 gas was flowed in the experiment to measure the beam polar-

ization using the 1H(-,2p) reaction. As the beam polarization was stable around

±70value at each beam energy was sufficient. Thus, the elastic beam asymmetries

obtained with the luminosity monitors could be converted to beam polarizations

even though the data included breakup channels. In table 5.2 below, a summary of

the beam polarization measured in the CE-01 experiment.

Table 5.2. Beam polarization measured with the CE-01 experiment at 197 and

414 MeV beam energies [3.10].
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MeV Beam Polarizations

197 0.771 ± 0.028, -0.675 ± 0.027
414 0.724 ± 0.029, -0.645 ± 0.029



5.8 Extraction of the Asymmetries

The experiment measured the quasielastic events of the 3He(p,2p), 3He(p,pn),

or 3 He(p,pd) reactions which were binned in histograms as yields as a function of a

given parameter, such as the missing momentum. The yield of a particular reaction

of quasielastic events for a given beam and target polarizations combination can

be expressed as follows, as the quasielastic scattering cross section equation from

equation (2.30) integrated over time, the extended target, and the angle acceptances

of the detector arms:

Yij = Lijeijao 1 + PbiAo00no + PtAOOn + PbiPtAoo00nn + PbiPtjAoo00ss},

(5.23a)

where

/ a=d da.
Oso = j Ptargetij(z)dz dA d d2 2(5.23b)

d I df2ldf22dpA-1ax(z)o2(s)

Aooij 'o = Ptargetij (z)dz do,.A-1AooijSij f QdQ/ f2dpA-1
oz (s)a2(s)

(" P b)( Pt) dQ, df2 (5.23c)

Lij = ij(t) eij dt (5.23d)
{Tij }

sij = JPtarget~ij(z)dz (5.23e)

P{bi , tj } Lij = J P{bi, tj } ij(t) eij dt (5.23f

fTij}

and

PbiPt Lij = PbiPtj ij(t) eij dt . (5.23g)

{Tij}

The index i (j) stands for the beam (target) polarization state, and there are a

total of four possible different spin states when both the beam and target particles

are polarized. The quantities P{bi, tj} and PbiPtj are the luminosity and efficiency

averaged polarizations. The overall detection efficiency eij can be separated into

particle interaction efficiency and electronics efficiency due to electronics or com-

puter busy. The particle interaction efficiency was expected to be constant for each
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experimental run while the electronics efficiency was expected to be rate dependent.

The particle interaction efficiency, however, could vary over long periods of time.

Finally, the luminosity Lij(t) is a product of the beam current and target thickness,

which can be expressed as

Lij(t)= )Ibij (t) sij(t) (5.24)
1.602 x 10-13

where I(t) is the beam current in units of pA, typically 60 uA; s(t) the target

thickness, typically 1.5 x 101" atoms see-'; and Lij(t) the luminosity, typically

6 x 1028 events cm- 2 sec - 1. Therefore the integrated luminosity Lij is in units of

events see- 1 .

Comparing the above equation (5.23a) with equation (2.30), one finds that

in equation (5.23a) the terms containing the longitudinal polarization have been

neglected since both the beam and the target particles were polarized along the

laboratory vertical direction. To a good approximation, the beam and the target

polarizations were normal with respect to the horizontal plane. Due to the small

transverse dimensions of of the target cell, the maximum deviation of the beam was

+20 vertically or horizontally. In addition, any nonvertical component to the beam

polarization would rapidly average to zero due to g-2 precession. Moreover, the

alignment tolerance of target polarization allowed only a maximum of 1-2' deviation

from the vertical direction; the target chamber was close to perpendicular to the

uniform, vertical B field.

In the yield expression in equation (5.26), the term Aooss contributed only as

a small correction since the factor

(" •)(s ' tj) = sin 2 (!scat) (5.25)

was small due to the limitation of the acceptance in the azimuthal angle qscat to

+15'. In figure 5.22, a comparison using the Monte Carlo simulation with the ex-

perimental acceptance was made of the weightings by cos 2(q scat) and by sin2( scat),

showing that any observables multiplied with the weighting sin 2 (Oscat) was expected

to contributed at the small values of 2-3%.

Next, the yield of the four different beam and target polarization combinations
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Figure 5.22. A 197 MeV beam kinetic energy, Monte Carlo simulation of the

weightings by cos 2 (qscat) and by sin 2 (Qscat).

can be written as

LTI

LIT

T

L11 PbT

LT.PIT

LIT Pbl

LjPbI

LTTPtT LTTPbIPtT

LITPtT LITPblPtT

00

o'oAoono

OroA-400n

a0 (AOO0nn
I A N

-t.AOOss) /

(5.26)

In practice, the target thickness was known only with a relative precision, and

only the asymmetry cross sections A00ooij can be measured and not the unpolarized

cross section ao. As described in section (3.3.4) on the target storage cell, the target

thickness depended on the target cell geometric conductance and gas flow rate,

neither of which was known to better than -10% in the experiment. In the analysis,

the luminosity and integrated luminosity for each beam and target polarizations
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combination were then replaced by their corresponding relative quantities,

- J Ibij (t) Pcellij(t)

(Tij)
dt(5.27)

L = Ibij (t) Pcellij (t) eEij dt

{Tij

where Ibij (t) was the beam current in pA, Pceniij(t) the gas pressure in Torr in the

optical pumping glass cell, and eEij (t) efficiency due to the computer and trigger

electronics deadtime. The overall detection efficiency eij was replaced by the elec-

tronics efficiency Eij since the particle interaction efficiency was expected to be

constant in each experimental run. Moreover, since the pumping cell pressure was

constant on the time scale of the experimental cycle, it could be replaced in the

above expression with its time averaged constant
1

ellij Tij Pcell ij (t ) dt

S•-nt Pcei (5.28)1 cellij k
Nij _ _L nt

t=-1 k=1

where the first summation over k was for all events in a 0.1 sec time interval and

the second summation over t was for the 0.1 sec intervals in the total time Tij of

spin state {i,j}. The averaged results for each run were stored as a vector of spin

states to be used in calculating the asymmetries.

The electronics efficiency eEij, on the other hand, was rate dependent and thus

also time dependent through the beam current, and it could be integrated together

with the beam current to get

L = j ei Pcellij Ibij (t) eEij dt , (5.29)

{Tij}

or could be incorporated in the deadtime corrected yield as

Y Rij(t) -E dt , (5.30)

Tij

where Rij(t) was the rate of detected quasielastic events. This redefined the time

integrated luminosity as

L -- Pcellij Ibij (t) dt

{Tij} (5.31)

= Pcellij Qij
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The deadtime correction to the yield was used in our analysis although in hind

sight it would have been simpler to incorporate the deadtime efficiency into the

luminosity as in equation (5.29).

As mentioned previously, the beam polarization Pbi was obtained by the lumi-

nosity monitors averaged over at least one experiment cycle. Therefore, as it has

no time dependence in each experimental run, it could be taken outside the average

of the double polarization as

Pb iPb iPt =-Li-Pt (t) EE dt

{Wij}

= PbiPt j . (5.32)

The luminosity weighted average of the target polarizations could be simply com-

puted as
-- 1 Nij

Pti= Ni- Ptjk (5.33)
'i k=1

However, in the analysis it was averaged over time as below,

1
P = Ti--T Pii(t)dt

Aj nt pk

t-=1 k-=1nt

where the first summation over k was for all events in a 0.1 sec time interval and

the second summation over t was for the 0.1 sec intervals in the total time Tij of

spin state {i,j}. Also, the averaged results for each run were stored as a vector of

spin states to be used in calculating the asymmetries. The time averaged target

polarization was not expected to be different from the luminosity averaged value

as the target polarization was constant. However, differences arose from a period

of 10-20 sec in the beginning of the 300 sec period of the target cycle when the

polarization was still rising 10 sec after it was reversed and also from variation of

the gas pressure in the pumping cell.

The yield matrix equation (5.26) can then be re-expressed in terms of the
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redefined quantities as

L'TT bT L'TTPtT L'TTPbTPtT

L' PbT Ll Ptj Ll PbTPtI.

Ll 1Pbi L'jjPtT L'jjPbjPtj

where the unpolarized cross section o, is

section o'. The above matrix equation can

mill

M31M21

'o>Aoono

0 '(AoOnn
\ +AOOss) /

(5.36)

replaced with some uncorrected cross

be inverted to give,

M 12 M113 M14

M22 M23 M24

M32 M333 M34

M42 M43 M44 ,4 .4.
/

(5.37)

where a' is a polarization weighted average over the four spin states of the nor-

malized yield Y./L!4, o' A00 ij some polarization weighted combination of the the

normalized yield, and Mij matrix element some function of the beam and target po-

larizations. If the beam and target polarizations were 100%, then the above matrix

equation becomes

o Aoono

O '(AOOnn
i A

\ -A-OOss) /

1
4

/ 1 1 1 1\

1 1 -1 -1

1 -1 1 -1

1 -1 -1 1 /

The above inverted 4x4 matrix in analytical form was not simple to solve. So

the equation was solved using Maple, a symbolic algebra program. Later, it was

replaced with a small subroutine for matrix inversion, and the two codes were found

to agree with each other.
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In figures 5.23 and 5.24, the unpolarized "cross section" yields were scaled

to the size of the PWIA cross section convoluted with the target and the detectors

acceptance geometry. As mentioned earlier, no absolute cross section of any reaction

was measured by the experiment. Therefore, only qualitative comparison of the

shapes of the data distributions and the PWIA calculations are shown in the figures.

The asymmetries will be presented in the results and summary chapter.

197MeV (p,2p)

101

100

10-2

0 100 200 300 400

PN (MeV/c)

Figure 5.23. Unpolarized "cross section" yield for 3He(p,2p) reaction scaled to a

PWIA calculation using the SM93 phase shift solution.
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Figure 5.24. Unpolarized "cross section" yield for 3 He(p,pn) reaction in solid

circles (open circles) for left proton and right neutron (left neutron and right proton)

scaled at the peak to PWIA calculations using the SM93 phase shift solution.

5.9 The Experimental Uncertainties

To evaluate the error propagation of the matrix equation (5.37) in analytic form

would have been an enormous task. Instead, it was chosen to perform the error

propagation numerically, i.e. taking numerical partial derivatives of the solution

with respect to observables on the right side of the matrix equation and using

the partial derivatives as weightings to the uncertainties of the observables as in

standard error propagation.

There were four pieces of information used in obtaining the experimental asym-

metries, namely total event counts, luminosity, beam polarization, and target polar-

ization. The latter three quantities have systematical uncertainties and are listed in

table 5.3 with the resulting uncertainties on the asymmetries in table 5.4 following.

The uncertainty in the target glass cell pressure resulted from a calibration
to extract the cell pressure from the input pressure combined with the precision

of the baratrons used, which contributed only a small uncertainty. The resulting

uncertainty in the cell pressure was then used along with other items listed in ta-
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Quantity X 6X/X Source

number of events N 1/VR p-3 He elastic, (p,2p) and (p,pn)
1. quasielastic events

glass cell pressure Pcen ±0.02 2. flow-pressure calibration
±0.002 3. Baratron precision

pressure factor Fp ±0.004 propagated error of items 2,3
±0.02 4. Caltech calibration

polarimeter angle cos O ±0.009 5. alignment and angular acceptance
VAC -- ±0.001 lockin amplifier precision, phase

6. adjustment and offset
VDC +0.002 7. DC amplifier precision and offset

target polarization Pt 8. polarimeter optics
±0.001 9. data acquistion CAMAC's
±0.025 total effect of items 2-9

beam polarization Pb ±0.01 statistical and cross clibration
with CE-01

beam charge Q +0.02 10. PCT fit error and noise
glass cell pressure Pceii ±0.001 11. pressure fluctuation
livetime efficiency LT ±0.0015 12. statistical precision
Effective luminosity Q Pcell± 0.028 total effect of items 10,11

Table 5.3. The Systematic uncertainties.

ble 5.3 to compute the uncertainty in the target polarization measured by the

optical polarimeter. The uncertainty in the calibration factor can be found in the

paper by Lorenzon et al. [3.18]. The uncertainty in the angle of polarimeter was

estimated to be +20. See section 3.3.7.2 for a calibration of the DC and the lockinA

amplifiers. The uncertainties of the optical analyzer, aA wave plate and a plastic

sheet linear polarizer, were not determined as attempts to construct a circular polar-

izer for calibration using good optical equipments were not successful. Calibration

data taken with a plastic sheet circular polarizer indicated an approximately 97%

measured polarization for a 100% circularly polarized light (see section 3.3.7.2).

If the calibration was correct, then the asymmetries presented in chapter 6should

be decreased by a factor 0.97 to account for the reduced measured value of the

polarimeter. If the discrepancy 0.03 were included in the systematics, target polar-

ization uncertainty would be increased from ±0.025 in table 5.3 to ±0.04.

The uncertainty in the beam polarization was due to the calibration with the

CE-01 experiment and the statistical precision of the monitors for each data run.

The calibration also inherently contained both systematic and statistical uncertain-
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ties. The resulting uncertainty in the beam polarization for each data run was

treated as a systematical uncertainty in the measurement of the quasielastic events.

Lastly, the uncertainty in the relative luminosity of the analysis included only

the uncertainties in the beam charge and the precision of the Baratron that mon-

itored the input gas pressure. The uncertainty of the cell pressure from the cali-

bration did not depend on the spin state of the beam and thus, was not used to

determine the uncertainty of the relative luminosity. However, the input gas pres-

sure fluctuated at 2.5% with a regular period of 110 sec in each data run of one hour

long. The 2.5% was reduced by a factor of 0.35 due to the cumulative averaging

effect in each of the four different spin states that were approximately 15 min long

and further, by a factor of 0.125 (sees 3.8) due to the damping on the pressure

oscillation by the glass cell volume. The resulting spin dependent uncertainty was

estimated to be 0.1%. The uncertainty of the beam charge resulted from the fit

to the PCT data. Only the uncertainties of the Baratron precision and the beam

charge were included in the uncertainty of the relative luminosity since the live-

time efficiency was incorporated as a weighting factor to the histogramming of the

quasielastic events, c.f. equation (5.30). Furthermore, the uncertainty in the live-

time efficiency was negligibly small due to the high count rate of the scalers when

the efficiency was calculated in intervals of 10 sec.

Quantity X bX Source

beam asymmetry A0no0  0.029, -0.029, ±0.029 (p,2p), (p,LpRn), (p,LnRp)
pN

target asymmetryA00n ±0.019, 1±0.019, ±0.019 (p,2p), (p,LpRn), (p,LnRp)

spin correlation
parameter A N -±0.04, 1±0.04, ±0.04 (p,2p), (p,LpRn), (p,LnRp)

Table 5.4. The result systematic uncertainties.
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Chapter 6
Summary of the Results and Discussion

The results of the 197 MeV quasielastic data are summarized here. In addi-
tion, previous experimental results are compared to the elastic beam asymmetry

for the unpolarized H2 target at 197 MeV and 415 MeV beam energies and the

target asymmetry for the polarized 3He target at 45 MeV. The H2 asymmetry data

allowed calibration of the wire chamber positions in both detector arms to high

precision, and the 3He asymmetry data provided the first measurement to prove

the feasibility of the 3He internal gas target in the Cooler Ring. Moreover, the

197 MeV quasielastic data are discussed in the kinematic regions where the PWIA

is valid in which case an extraction is made of the nucleon polarization in the 3He

nucleus at low pm. Finally, future measurements using polarized 3He are discussed.

6.1 The 197 MeV and 414 MeV Beam Asymmetry with Unpolarized

Hydrogen Target

0.4

0.2

0.0

-0.2

-0.4

20 30 40 50 60 70 20 30 40 50 60 70
la * = right arm lab
lab labA = left arm

- = SAID phase shift

Figure 6.1. Elastic asymmetry of 1H(-p, 2p) data for 414 MeV and 197 MeV.

The solid curves are SAID SM89 phase shift solutions [1.18].

Elastic scattering of polarized proton from unpolarized hydrogen has been com-
pared with the phase shift solution of the proton-proton normal asymmetry APPn0

from SAID. Since Aon0 has a zero crossing right at 90° c.m. angle, wire chamber
positions were adjusted slightly (0.60) to center the data zero crossing at the 90.
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The normal asymmetry at both the 414 MeV and 197 MeV beam energies, after

the detector angle adjustment, was in good agreement with the SAID FA89 phase

shift solutions as shown in figure 6.1.

6.2 The Elastic Results

The first result using the polarized 3He internal gas target were obtained at the

45 MeV beam energy [1.20]. This allowed a comparison with previous measurements

of the target asymmetry. Although there were no data at exactly this energy, there

was no indication of significant beam energy dependence at lower energies [6.1].

Therefore, a phase shift analysis was carried out on the previous data [6.1, 6.2, 6.3]

at 35 MeV for the cross section, and the beam and target asymmetries.

In figure 6.2, the target asymmetry at 45 MeV, analyzed at the University of

Wisconsin-Madison, is compared to a curve from the phase shift analysis and agrees

to within 10%. The curve is shifted slightly from the data to the forward angles,

but lack of previous data at the same energy does not allow any better comparision.

There is, therefore, no evidence for target depolarization in the storage cell at room

temperature.

A primary concern with the internal target was the possible depolarization of

the 3 He gas after it leaves the optical pumping cell from effects due to magnetic

field gradients, due to interaction with the storage cell wall, and due to interaction

with the proton beam in the storage cell. It was estimated in section 3.7 that

all three mechanisms caused no depolarization to the atoms in the exit capillary,

the transition region, and the storage target cell. Therefore, the agreement of the

target asymmetry with the previous data proved that the short dwell time of the
3He atoms in all three regions mentioned was too small for depolarization to be

significant in this experiment.

The 197 MeV elastic data analyzed at IUCF are also shown here in figure 6.3

and compared with the 200 MeV data from TRIUMF. There is a good agreement

between the two data sets in the forward c.m. angles but the CE-25 data deviates

from the TRIUMF at large c.m. angles. The disagreement at large angles has been

explained as dilution due to nonelastic reaction background.
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Figure 6.2. Target asymmetry Aooon of p- 3He elastic scattering at 45 MeV.
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3He(P,P 3 He) 197 MeV

a) A00no --- CE-25
- -- - TRIUMF

bAoL-C2~mm m

b) A00o " -- CE-25

100

0cm

Pb= 0.72,Pt= 0.45,normalization= Pitts April.

Figure 6.3. Beam asymmetry AoonO (a), target asymmetry Aooon (b), and spin-

correlation parameter Aoonn (c) of p- 3He elastic scattering at 197 MeV beam proton

energy compared with the TRIUMF data at 200 MeV energy [6.4].
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6.3 The 197 MeV Quasielastic Results

6.3.1 The 3He(p,pn) Results

The PWIA model in section 2.4 predicts that in 3 He(p,pn) scattering, thepn iidniatoteba asmer pn

target asymmetry A000n is identical to the beam asymmetry A~00no at low missing
momentum Pm values. From Fadeev calculations, the neutron spin is aligned 100%
along the direction of 3 He spin at low pm values, and from charge symmetry, the
asymmetry in scattering a polarized proton from an unpolarized neutron is identical

to that of the unpolarized proton scattering from a polarized neutron. Deviations
between the asymmetries would indicate that the PWIA is not a good model due to
effects such as initial and final state interactions. In fact, the results of the 197 MeV
3He(p,pn) data show a strong 3-momentum transfer q dependence of the target
asymmetry. When the protons scattered to the right detector arm in figure 6.4, i.e.
to small angles, the asymmetry A•0n is strongly suppressed from the asymmetry

A0n 0 . When the protons scattered to larger angles in figure 6.4(b), the left detector
arm, the asymmetry A0on is similar to the asymmetry A00no. Further, when the

protons scattered to larger angles in both figure 6.4(b) and (d), the data are much

closer to the PWIA curves at low Pm.

In figure 6.5, the beam and target asymmetry data are binned as a function of
the magnitude of the 3-momentum transfer q of the struck neutron. We see that

there is a good agreement between the two asymmetries at q>500 MeV/c. In this

region the neutron polarization, extracted by calculating the ratio of the target to
beam asymmetries, is 0.94±0.8±0.12, where the errors are statistical and systematic

respectively. At q<500 MeV/c, there is a significant deviation between the two
asymmetries, consistent with the TRIUMF data [1.29-1.31] taken at q;382 MeV/c
and at ;364 MeV/c respectively, i.e. at 220 MeV and 290 MeV incident kinetic
energies.' The apparent q dependence is interpreted to be due to final-state spin-
dependent interactions of the recoiling neutron at low q values. Such an effect has
been predicted in calculations of spin-dependent quasielastic (e, e'n) scattering [6.5].

The beam asymmetry appears to follow closely the PWIA initial kinematics
calculation, solid curve, using the SAID SM93 phase shift solution. At high q values,
where the PWIA model was put forward as correct in the previous discussion, the

1 The 220 and the 290 MeV TRIUMF (p,pn) data sets in the references [1.29-
1.31] were averaged over the experiment kinematical ranges. The 290 MeV data was
not available in a table and was read off from a plot. Note that the open cross-circle
for the 290 MeV target asymmetry is greater than the CE-25 data.
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Figure 6.4. At 197 MeV incident energy target and beam asymmetries and spin-

correlation parameter, A oAP00n , and AP0n , respectively, for 3 He(p,pn) scatter-

ing as a function of missing momentum pm: protons scatter to the right detector

arm in (a) and (c); protons scatter to the left detector arm in (b) and (d). The

curves are calculations of the PWIA model for initial kinematics using the Schulze

and Sauer spectral function and the SAID SM93 phase shift solution. The solid

error bars are for the statistical, and the dotted error bars are for the total.
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pn 197MeV, 0<pm<100
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Figure 6.5. At 197 MeV incident energy the target (open symbols) and beam (filled
symbols) asymmetries, A•n 0 n and A P respectively, for 3He(p,pn) scattering at

Pm <100 MeV/c as a function of the 3-momentum transfer to the struck neutron q.
Data where the proton scattered to the right (left) detector and neutron to the left
(right) detector are indicated by diamond (octagon) symbols. The TRIUMF data
at 220 (290) MeV are shown at 364 (382) MeV/c in cross-circle (square) symbols.
The curves shown are Monte Carlo calculations of the PWIA model for initial and
final kinematics using the Schulze and Sauer spectral function and the SM93 and
Bonn phase shift solutions. The solid error bars are for the statistical, and the
dotted error bars are for the total.

data points are more negative than the solid curve. The PWIA final kinematics

calculation, dashed curve, using the SAID SM93 phase shift solution is shifted to

the right due to the nucleon binding energy in the 3He. The dotted curve is the

PWIA initial kinematics calculation using the Bonn phase shift solution available

in SAID.
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Figure 6.6. At 197 MeV incident energy the spin-correlation parameter for
3He(p,pn) scattering at Pm <100 MeV/c as a function of the 3-momentum transfer
to the struck neutron q. Data where the proton scattered to the right (left) detector
and neutron to the left (right) detector are indicated by diamond (octagon) symbols.
The curves are Monte Carlo calculations of the PWIA model using SM93 and Bonn
proton-neutron phase shift solutions and initial and final kinematics. The solid
error bars are for the statistical, and the dotted error bars are for the total.

In figure 6.6, the spin-correlation parameter AP0n data are binned as a function

of the 3-momentum transfer q. We see that agreement between the data and the

PWIA calculation is better at the high q values where the proton is scattered to

the left. At the high q values, the data fall only about 5% below the PWIA initial

kinematics calculation, solid curve. The PWIA final kinematics calculation, dashed

curve, using the SAID SM93 phase shift solution is higher than the initial kinematics

calculation by 5-10%. The dotted curve is the initial kinematics calculation using

the Bonn phase shift solution.
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6.3.2 The 3Ile(p,2p) Results

In figure 6.7, the curves are PWIA calculations with detector resolution effects

included. The small target asymmetry A 00n agrees with the PWIA calculation
A2

at low Pm values. However, the beam asymmetry Ao0 n0 and the spin-correlation

parameter A0nn differ significantly from the calculations; the asymmetry A0n 0 is

overpredicted and the asymmetry A2np is underpredicted by the PWIA calculations

at low pm values. All the solid curves are calculated by turning off the events when

the third or fourth nucleon were detected by either detector arm. In the model, the

recoiling system of the 3-body channel is assumed to decay into a pair of nucleons

uniformly in angle in the c.m. frame. Approximately, 8% of the events in the 3-

body channel are rejected. The dashed curves are calculated with only the detector

resolutions.

The proton polarization in the nucleus (see section 1.2.2) is the sum of the

2-body and the 3-body breakup channels; the former has - -25% and the latter

;. +13% at low Pm values. When the reaction goes into the 3-body channel, the third

proton can also be detected as in (p,3p). However, the analysis was capable of only

reconstructing single trajectories in each detector arm. Therefore, the analyzed data

are biased to omit events where the third proton was detected. The consequences

are that there is more strength for the 2-body than for the 3-body channel, thus

possibly bringing down the asymmetry to -16% and that the zero crossing of the

proton polarization is also moved farther out from Pm 90 MeV/c as expected

from the sum of the two channels to pm ,150 MeV/c. The Monte Carlo calculation

that omitted events with detection of three or four nucleons, solid curve, has better

agreement in figure 6.7(c) with the data than the calculation without the event

rejection, lending some support for the above argument. The discrepancy remains

to be understood. Morever, such weighting between the 2-body and the 3-body

channels does not have any effect on the beam asymmetry Ao00o as in figure 6.7(b),

and the effect on the target asymmetry Ao2n is not dramatic since the target

asymmetry itself is a small quantity as in figure 6.7(a).

For the (p,2p) reaction, the 3-momentum transfer q=|P0 - p, I defined as the

magnitude of the difference of the beam proton momentum and the momentum of

the proton scattered into the left detector arm is not as good a kinematic quantity as

for the (p,pn) reaction due to indistinguishability of the two protons. As a result, the

3-momentum transfer q of the (p,2p) data cannot be used to select a region where the

PWIA is valid. In figure 6.8, the 197 MeV data, when plotted at pm <100 MeV/c as

a function of the 3-momentum transfer q, show good agreement with the asymmetry
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Figure 6.7. At 197 MeV incident energy the target and beam asymmetries and
spin-correlation parameter: respectively A000n (a), A00no (b), and A00nn (c) for
3 He(p,2p) scattering as a function of missing momentum pm. The solid curves are
resolutions built in PWIA calculations for initial kinematics using the Schulze and
Sauer spectral function and the SAID SM93 phase shift solution and with rejection
of triple or quadruple coincidence. The dashed curves has no rejection of the multi-
nucleon events. The solid error bars are for the statistical, and the dotted error
bars are for the total.
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Figure 6.8. At 197 MeV incident energy the target and beam asymmetries and
spin-correlation parameter: respectively A o00 (a), A2no (b), and A n2 (c) for
3He(p,2p) scattering at Pm <100 MeV/c as a function of 3-momentum transfer q.
The solid curves are resolutions built in calculations of the PWIA model for initial
kinematics using the Schulze and Sauer spectral function and the SAID SM93 phase
shift solution and with rejection of triple or quadruple coincidence. The dashed
curves has no rejection of the multi-nucleon events. The solid error bars are for the
statistical, and the dotted error bars are for the total.
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A4On calculation in figure 6.8(a), overprediction of the asymmetry A2n 0 calculation
12p

at high q values in figure 6.8(b), and underprediction of the asymmetry AOOann

calculation at all q values in figure 6.8(c). The agreement seen in figure 6.8(b)

of the asymmetry A0no at a low q value is only due to the zero crossing of the

proton-proton scattering asymmetry A00n 0.
The (p,2p) data are known to have less final state interaction [1.31-1.30] than

the (p,pn) data since the spectral function predicts the (p,2p) to go via the 2-body

channel 74% of the time and the 3-body channel 26% of the time at low PN values

(see section 1.2.2). A plausible hypothesis is that the final state interactions in

the 3-body channel induce the nucleons to come out with higher probability in the

directions of the scattered or ejected nucleon, thus, decreasing the weight of the

3-body channel in the analysis- more than that allowed in simple uniform decay

of the recoiling system. However, the recorded data lack any supporting evidence.

Most of the double hit events in the E detector plane were detected by neighboring

scintillator bars, over 90% in either detector arm, and were recorded as single tra-

jectories triggering all four wire chamber planes once, 82% in the right detector arm

and 68% in the left detector arm. Moreover, the number of double hit events were

respectively only 1.3% and 2.7% relative to the total number of single hit events in

the left and the right E detector plane.

Although the 3-momentum transfer q could not be used as a kinematic variable

for the (p,2p) data, the kinetic energy of the outgoing protons could be limited to

regions with less final state interaction [6.6]. Preliminary analysis showed that when

the proton kinetic energies were limited to above 100 MeV the PWIA calculation

agreed with the data at Pm <200 MeV/c. Both the data and calculation for the spin-

correlation parameter A0nn were more negative than without the kinetic energy

cuts while they were closer to zero for the beam asymmetry A2 0 . Even though

the statistics were reduced significantly due to the energy cuts and having analyzed

less than half the number of runs presented in this thesis, the statistical uncertainties

at low Pm values, out to 200 MeV/c, were increased only by a factor of four. The

kinematical cuts removed most of the data at Pm >250 MeV/c as also confirmed by

the Monte Carlo calculation. Thus, the final state interaction is a likely hypothesis
to explain the discrepancy. As the spin-correlation parameter A2pnn- for both

the data and the calculation-was more negative when the proton kinetic energy

T>100 MeV, the experimental acceptance must be biased more toward the two

body channel, i.e. also less final state interaction.
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6.4 Extraction of the Neutron and the Proton Spin-Dependent Momen-
tum Distributions

Below are plots of the momentum distributions of the nucleon polarization for
the (p,pn) and the (p,2p) reactions obtained from the ratio of the measured spin-

correlation parameter and the Monte Carlo spin-correlation parameter ApoNn(100%)

with the nucleon polarization in the nucleus 100%. The neutron and the pro-

ton data, respectively in figure 6.9 and 6.10, are overlayed with two Monte Carlo

calculations of the nucleon polarization momentum distributions. For both reac-
tions, the asymmetry 4pN

tions, the asymmetry Af0nn(100%) is not only large but also changing only slowly

over the kinematic range of the experiment that it can be used to divide out the

nucleon-nucleon spin-correclation to obtain the spin-dependent momentum distri-

bution. The spin-correlation parameters AP0n(100%) and A0nn(100%) vary re-

spectively from 90% to 50% and from 64% to 30% over the missing momentum

Pm range of the experiment, from 0 to 400 MeV/c. In each figure of the nucleon

spin-dependent momentum distribution, the solid curve is the result of the spectral

function closure over missing energy acceptance of the experiment, and the dashed

curve is the result extracted as the ratio described above. The good agreement

between the two calculations lends support to the extraction of the nucleon spin-

dependent momentum distribution in the kinematic regions where the PWIA is

valid.
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Figure 6.9. The neutron polarization in 3He obtained from the ratio of the197 MeV A'daaan hnaymer P'
197 MeV A n data and the asymmetry A00nn(100%) from the SAID SM93 phase

shift solution. The solid curve is an experimental weighted result of the Schulze and

Sauer spectral function. The dashed curve is the ratio of the Monte Carlo results
An adApn

A00n and A ~00nn(100%) obtained from the Schulze and Sauer spectral function and

the SAID SM93 phase shift solution. The solid error bars are only for the statistical.

and the dotted error bars are for the total.
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Figure 6.10. The proton polarization in He obtained from the ratio of the
2p dt n h aymtyA2p

197 MeV A n data and the asymmetry A00n(100%) from the SAID SM93 phase
shift solution. The solid curve is an experimental weighted result of the Schulze and

Sauer spectral function. The dashed curve is the ratio of the Monte Carlo results
A2p adA2p

00n and A00nn(100%) obtained from the Schulze and Sauer spectral function and

the SAID SM93 phase shift solution. The solid error bars are only for the statistical,

and the dotted error bars are for the total.
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6.5 Summary

The (p,pn) data for q<500 MeV/c are seen to agree at 350 and 300 MeV/c

respectively with the TRIUMF data at 220 and 290 MeV proton beam energies.

An advantage of using a large acceptance detector is that it allowed a simultaneous

measurement over a large q range. In the CE-25 experiment, this was crucial to

uncover the kinematic region where the PWIA is in good agreement with the (p,pn)

data. Specifically, the target asymmetry A000n agrees with the beam asymmetry

Apn0 as in PWIA at q>500 MeV/c. In this region, the neutron polarization in

polarized 3He has been extracted and is close the 100% polarization expected from

both the Blankleider and Woloshyn spin-dependent momentum distribution and

the Schulze and Sauer spin-dependent spectral function. Therefore, the S-state was

clearly observed in the (p,pn) data.

The (p,2p) data were expected to have less final state interaction as from the

TRIUMF data. The target asymmetry A 0on was small and consistent with the
2p

PWIA model while the beam asymmetry A0n 0 was over predicted by the PWIA

model. Moreover, the spin-correlation parameter A0nn was under predicted by the

calculations. The spin-correlation parameter A0nn data were -14% at low Pm and

crosses the zero at Pm -170 MeV/c. The discrepancy remains to be understood.

Even though the data are underpredicted by the curves for the spin-correlation

parameter A2pnn. The extracted proton polarization was -16%, greater than the

-9% polarization expected from calculations. In any case, the S'-state was clearly

observed at the low Pm values in the (p,2p) data.

The 300 MeV and 414 MeV proton beam energy quasielastic data have been

analyzed at IUCF [1.19]. Although less final state interactions is expected at these

energies, the (p,pn) data indicate that the region where the PWIA begins to be

valid depends on the scattered angle rather than the q value. At a higher proton

beam energy, the agreement between the target and the beam asymmetries begins

at a higher q value while at roughly a constant scattered angle. Such a running

condition remains to be understood as coming from reaction mechanisms.

Although the Cooler ring had energy resolutions of a few hundred keV for

hundreds of MeV beam kinetic energy, the missing momentum resolution obtained

was ± 20 MeV/c from using time-of-flight technique on approximately 1.5 m long

trajectory pathlengths in the nonmagnetic detector arms. The momentum and

energy resolution was poorer at higher beam energy data as the tof decreased from

10 nsec to 6-7 nsec.

The first polarized 3 He internal gas target for use in storage rings was demon-

196



strated at the IUCF Cooler proton ring. Large acceptance detection allowed mea-

surement of extensive kinematic regions to be observed in one experiment. The es-

sentially 100% duty cycle beam of the Cooler ring allowed detection of coincidence

particles with only a negligible amount of accidental events even for a large accep-

tance detector. Furthermore, the use of an ultra thin gas target and thin target cell

window also allowed detection of sub-MeV particles such as the deuteron and 3He.

This opens up the possibility of future interesting measurements of multi-particles

coincidence using storage rings and internal gas targets. There are approved exper-

iments at Bates to perform such measurements using the 'He internal gas target

in the South Hall Ring with the proposed BLAST detector [1.13]. Recoil detection

will be used to separate the 2-body and the 3-body channel of the proton knockout

reaction. The use of electron probe will provide measurement with less initial and

final state interaction the 3 He spin-dependent nucleon momentum distribution of

the S' and D-state. In addition, there are experiments planned at NIKHEF and

CEBAF. Finally, a systematic measurement of the 3He nucleon momentum distri-

bution is needed for proper interpretation of data on the deep inelastic scattering

from polarized 3He to extract the neutron spin structure function and for correction

to quasielastic data to extract G' at low Q2 values.
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Appendix A

The 197 MeV Quasielastic Data

Pm AOOOn OOnO AOOnn
(MeV/c)

25 -0.1835 ± 0.0165 -0.0963 ± 0.0105 0.5832 ± 0.0227
75 -0.1597 ± 0.0099 -0.1217 ± 0.0063 0.5639 ± 0.0136

125 -0.2128 ± 0.0127 -0.1557 ± 0.0080 0.4812 ± 0.0175
175 -0.2177 ± 0.0203 -0.1809 ± 0.0128 0.3319 ± 0.0283
225 -0.1786 ± 0.0284 -0.2109 ± 0.0178 0.3553 ± 0.0390
275 -0.1806 ± 0.0386 -0.1494 ± 0.0244 0.2437 ± 0.0536
325 -0.0205 ± 0.0486 -0.0926 ± 0.0306 0.1722 ± 0.0682
375 -0.2064 ± 0.0718 -0.1820 ± 0.0456 0.1955 ± 0.1013

,3

Table A.1. A00n , A00no, and A 00nn for the left-proton-right-neutron He(-p-,pn)

reaction. The uncertainties are only statistical.

Pm A000n AOOnO A00nn
(MeV/c)

25 0.1108 ± 0.0162 0.2351 ± 0.0101 0.5163 ± 0.0223
75 0.0247 ± 0.0102 0.1951 ± 0.0064 0.4877 ± 0.0141

125 -0.0986 ± 0.0128 0.1198 ± 0.0082 0.2755 ± 0.0179
175 -0.1886 ± 0.0186 0.0127 ± 0.0121 0.1646 ± 0.0263
225 -0.1252 ± 0.0262 0.0053 ± 0.0169 0.1432 ± 0.0370
275 -0.1785 ± 0.0372 -0.0039 ± 0.0241 0.1118 ± 0.0525
325 0.0016 - 0.0564 -0.0784 ± 0.0364 0.1735 ± 0.0796
375 -0.1110 - 0.1188 -0.0412 ± 0.0752 0.1408 ± 0.1637

Table A.2. Aoon, Aoono, and Ao00onn for the left-neutron-right-proton He(ppn)
reaction. The uncertainties are only statistical.
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q AoOOn Aoono Aoonn

(MeV/c)

220 0.0351 ± 0.0631 0.2434 ± 0.0405 0.6694 ± 0.0895
260 0.2378 ± 0.0286 0.3755 ± 0.0175 0.6131 ± 0.0393
300 0.1666 ± 0.0232 0.4215 ± 0.0140 0.5548 ± 0.0316
340 0.1213 ± 0.0224 0.2963 ± 0.0140 0.5241 - 0.0308
380 -0.0754 ± 0.0224 0.1547 ± 0.0144 0.4940 - 0.0310
420 -0.0827 ± 0.0241 0.0346 ± 0.0156 0.4374 - 0.0334
460 -0.1903 ± 0.0301 -0.0471 ± 0.0197 0.4977 - 0.0421

Table A.3. Aoo000n, Aoono, and A00oonn for the left-neutron-right-proton fie(-,pn)

reaction with a cut Pm <100 MeV/c. The uncertainties are only statistical.

qAooon 0Aoono .00nn
(MeV/c)

370 -0.0416 ± 0.0788 0.2848 - 0.0512 0.5098 ± 0.1111
410 -0.0900 ± 0.0325 -0.0138 - 0.0209 0.6335 ± 0.0445
450 -0.1569 ± 0.0225 -0.0700 - 0.0144 0.5525 ± 0.0308
490 -0.1563 ± 0.0187 -0.1332 - 0.0119 0.5471 ± 0.0257
530 -0.1811 ± 0.0188 -0.1776 - 0.0119 0.6377 ± 0.0257
570 -0.1703 ± 0.0266 -0.1749 -0.0169 0.5682 ± 0.0365
610 -0.2664 ± 0.0762 -0.2290 ± 0.0487 0.8428 ± 0.1036

Table A.4. -A 0oon, Aoono0 , and Aoonn for the left-proton-right-neutron i•He('p,pn)

reaction with a cut Pm <100 MeV/c. The uncertainties are only statistical.
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Pm Amon AOOnO AOOnn
(MeV/c)

25 -0.2073 ± 0.0224 -0.1400 ± 0.0142 0.5926 ± 0.0308
75 -0.1787 ± 0.0138 -0.1864 ± 0.0087 0.5712 ± 0.0190

125 -0.2292 ± 0.0177 -0.2257 ± 0.0111 0.4654 ± 0.0245
175 -0.2613 ± 0.0269 -0.2516 ± 0.0167 0.3671 ± 0.0374
225 -0.1971 ± 0.0369 -0.2588 ± 0.0229 0.3916 ± 0.0510
275 -0.2232 ± 0.0483 -0.2326 ± 0.0301 0.2640 ± 0.0672
325 -0.0092 ± 0.0558 -0.1155 ± 0.0346 0.2177 - 0.0781
375 -0.2370 ± 0.0744 -0.1842 ± 0.0473 0.1687 ± 0.1051

Table A.5. Aooon, Aoono, and A00oonn for the left-proton-right-neutron Hie(--,pn)
reaction with a cut q>500 MeV/c. The uncertainties are only statistical.

Pm 000n Aoono Aoonn
(MeV/c)

25 0.0102 ± 0.0033 -0.0857 ± 0.0021 -0.1405 ± 0.0046
75 0.0077 ± 0.0024 -0.0792 ± 0.0015 -0.1093 ± 0.0033
125 -0.0164 ± 0.0036 -0.0745 ± 0.0023 -0.0519 ± 0.0051
175 -0.0180 ± 0.0065 -0.0795 ± 0.0042 0.0249 ± 0.0091
225 -0.0738 ± 0.0106 -0.1458 ± 0.0067 0.0545 ± 0.0148
275 -0.2101 ± 0.0167 -0.2639 ± 0.0104 0.0822 ± 0.0233
325 -0.2806 ± 0.0276 -0.2995 ± 0.0169 0.1130 ± 0.0385
375 -0.2565 ± 0.0576 -0.2998 ± 0.0351 0.0941 ± 0.0801

Table A.6. AOOOn, Aoono, and Aoonn for the 3Hie('p,2p) reaction. The uncertainties

are only statistical.
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Table A.7. A000ooon, Aoono, and Aoonn for the 3He(-,2p) reaction with a cut
Pm <100 MeV/c. The uncertainties are only statistical.
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q Aooon A00oono Aoonn
(MeV/c)

370 -0.0235 -0.0170 0.0222 - 0.0110 -0.0513 ± 0.0239
410 0.0023 ± 0.0068 -0.0058 - 0.0044 -0.1025 ± 0.0095
450 0.0172 - 0.0047 -0.0358 - 0.0031 -0.0964 ± 0.0066
490 0.0090 - 0.0042 -0.0836 - 0.0027 -0.1228 ± 0.0058
530 0.0127 - 0.0045 -0.1344 ± 0.0029 -0.1308 ± 0.0062
570 0.0156 ± 0.0064 -0.1803 ± 0.0041 -0.1309 ± 0.0090
610 0.0457 ± 0.0185 -0.2430 - 0.0117 -0.1502 ± 0.0257



Appendix.B

Polarized Nucleon-Nucleon Elastic Scattering

Nucleons have spin and isospin values of I. Here in appendix B, a general
polarized elastic scattering cross section expression is derived starting from the

nucleon-nucleon scattering matrix element. A general form of the elastic scattering

cross section for the nucleons can be written as

do.NN~ 1 1dflu x 2Eo2EN (27r)' 6(4 )(pl + P2 - PO0 - PN)fl •UXN N 2E02EN 
(.1

x(SOSN)NN d3p d3p 2  (B.1)
(2r)32E1 (2r)32E2

where

r(so, SN)NN = j(psiti, p2 S2t2, I MNN IPOoto, PNStNt) 1

ss,2 (B.2)

= (SoSNI MNItM jSNSO) ,

is the "spin-specified" probability, and it has been summed over the final spin states
of particles 1 and 2 since their spin states are not detected in the measurement. In
the last step, the momentum and isospin states are dropped off for simplicity.

In order to facilitate the discussion of spin-dependence nucleon scattering, the
observables are expressed in one specific set of unit vectors. The aim in the follow-
ings is then to formulate the interaction probability using the set of unit vectors
below:

A _P___i_ POn - Po x Pl po S = fix •. (B.3)
IPo x p] ' po]

Let the quantum axis be along the unit vector fi, and it follows that the operators

(ca0o - ) and (aN - ) can be written explicitly as

( n fi) 1 0 -0

(oi -k) = 01 0 (B.4)(0 1
(ai -S)= 0i -i)0

In an experiment when both the beam and target particles are polarized, all

four possible beam and target spin states in equations (B.2) could be measured.
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"Spin-combined" probabilities which are related to the scattering asymmetries are

then formed by combining the above spin-specified probabilities

ways:

roNo = F(so+,s)NN + F(so+,s)NN + F(so-, sN+)NN +
r NN _ NN +r(s0+, sNN - rso-)N

ooo00So = r(so+, sN+) + (so+,s)NN - F(So-, sN+)NN -

ro sN = F(so+,s+)NN - r(so+,sN-)NN + F(so-,sN+)NN -
osN = (so+,s) - F(so+,sN) - (so, sN+)NN +

r00 NN = r(s0+,7 SN+ )NN - r(s0+, sN- )NN - soIN )N +

in the following

r(so_, SN)NN

r(so-, SN_) NN

F(so_, sN_)NN

F(s0o_,SN)NN
(B.5)

The combinations can be re-expressed as the trace operations of the nucleon-nucleon

interaction operators and the Pauli spin operators dotted with the spin unit vectors

so and SN defined along the directions of the beam particle spin and the target

particle spin. Expressing as the trace operations allows one to write out the spin-

combined probabilities without any dependence of a particular basis of spin states.

It also allows one to focus only on the spin operators dotted with the spin unit

vectors. When the spin unit vectors are expanded in a particular basis of unit

vectors, one obtains immediately the spin-combined probabilities defined in that

basis of unit vectors,

oNN = Tr{sr NN -= TrsOSN} MNNtM, (B.6a)

NNS= Tr{sosN} (o •) MNNtMNN

= Tr{sOSN} [f. so(oo r.f) + k- o((o -) + .* o(cTo r-) MNN*MNN}

= 0ioN + k SOfr0o k + ~-o s , (B.6b)

Fo sN  = Tr{sos} (ON s•^) MNNtMNN

= Tr{sosN} { ['N(ON'l.)-+ k+ N(ONk) + -- N(ON ')]MNNtMNN
SA NNNNNN

= - sNroo0 0 n0 + ý SN'ON + ^ oNN (B.6c)

and
rNN S NtN

OOSoSN = Tr{sosN} (0o- s%)(0N . sN) MNNtMNN

= Tr{sosNl} { I. sof SN(co fi)(+N. ) + Sok s(co )( k)
I - ^ 0 6 - o1A-- NN (0 '0 • .)(a N • )
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+ SO• .•N(oo fi)(N S-)

k . So n .N(gOk - )(UN n) + k -Sok s• (o -(• )( • k)
+ o .SOS.SN( c )(•o ^ N •) ,

s .sonflsN(cO - )(gN A ) + s - sok - N(gO .W)aN - k)

= o^ N1- - NN

Ss. .sNrNoonn

+ - ^O^ SN(0o - )(N )] MNNtMNN }
NN - NNf so " ANF 00nk + f0 S 0SSN 0 0 ns

^o SNNOOkk + S 'o NOs

AS0 NN +N N S NN"o 0 sNro00sn - S S k '- N l 00 sk + ' N 00ss

(B.6d)

A summary of the spin-combined probabilities are given below in Table B.1.

Beam + Target Pol
(go *) (UN -j) Directions Spin-Combinations

pNN 1,,(7i

Fo0o 1 1 unpol, unpol (Fll + r22 + 33 44)

roon (o" A) 1 normal, unpol 1i(r1l + r22 - r33 - r44)
Jooko (o• l ) 1 longi, unpol ¼(F31 + 1742 + 1"13 + 124)rNN Or k) 1 sgid, unpolrooko o 'i(-r31 +42 + r13 +r24)NN

00 o (goa 1 side, unpol 1(-r13 - 1F42 + 1r3 - r24)
1 (n (N fi) unpol, normal (rl1 - 122 + r33 - r44)

r0NNk 1 (aN ) unpol, longi '(r21 -+ r12 + 143 + 134)
1 NN 1sd

Foos 1 (UN ) unpol, side (-21 + 112 - 143 + F34)rNN n n 4¼(rlj - 22 - 33 + r44)
oonn (o -i) (aUN -fi) normal, normal ( - 2 - 44)

F70nk (0o0 ) (UN k) normal, longi (21 + 12 - 43 34)
Ons (o- fi) (aN -~) normal, side (-F21 + 12 + 43 - 34)

1On (N o k) (aN fi) longi, normal 1(r31 - r42 + r13 - r24)
F0k (o k) (aN k ) longi, longi ¼(P41 + 32 + 23 + 14)
FOrN (go. k) (aN ^) longi, side (-r41 + 132 - r23 + 14)
rooN (ao -) (aN fA) side, normal -(-r731 + r42 + r3 - 24
rNN .i

FO0sk ( 0o ") (TN k) side, longi (-F41 - 132 + 123 + 114)
F1o s (0o . ) (aN " ) side, side (-F41 + r32 + 123 - 14)

Table B.1. The Pauli matrices dotted to particular directions, i.e. fi, k, or S,
extracts in the trace operations the interaction probabilities for combinations of the
specified spin directions. The indices 00ij in oNoN follow the convention of nucleon-
nucleon scattering asymmetries given in the paper by Bystricky [2.7].

The 1 x7 ,' s in the last column of table B.1 are scattering probabilities computed
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using spin states in the direction fi,

Fx, = (AI MNNtNNN A')

where

A) : 11) = Ito+tN+), 12) = It0+tN-), 13) = ItO-tN+), and 14) = to0-tN->)

(B.7)

Furthermore, there are a total of sixteen spin-combined probabilities, and eight of
** NN NN NN NN NN NN

them are zero due to parity conservation: ,OOkO J00s0, OO0k r00rs, FO0nk, r0Nkn,

rNN rNN
OOns 00sn"

Using the spin-combined probabilities o0ij and the cross section expression in

equation (B.1), one obtains the unpolarized cross section and asymmetries below

do0

dQdQ

1 1)
fluxNN 2Eo2EN(2r

IPi 12dlpI IP212dIP 21(2r) 36(po P1 -P2 -PN-1)] NN

(27r)32E1 (27r)32E2

and
do- A 1 1da._ oo_ NN (27r)4

dld•d2 ij fluxNN 2Eo2EN

[IP()1pdoppl2I p212 1dIP2[0(27r) 36(po- Pl- P2 -PN-1)NN
S(27r)3 2E1 (27r) 32E2  - - -)] ij.

(B.8)

In the following steps, the spin-combined probabilities rooijNN are rewritten to

obtain cross section expressions given in terms of the beam and target polarizations.

For a given polarization, there is some probability for the particle spin to be in the

"up" or "(+)" state and some in the "down" or "(-)" state. Then, the beam and

target polarizations can be then defined as

Pb = PO+ - PO-, Pt = PN+ PN-,

where

P 0o+ + Po- = 1, PN+ + PN- = .

Let the normalized polarization states of the spin I particles be defined as

Ino = (so+lno) Iso+) + (so-Ino) so- )
and

InN) = (sN+InN) ISN+) + (sN-InN) IsN-)

(B.9)

(B.10)
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where the (+) and (-) states are the two available states along the direction of

polarizations for both the beam and the target particles, and the squares of the

probability amplitudes are the probabilities Po+, P 0 -, PN+, and PN-.

Let the interaction probability for a given beam and target polarization be

defined as, i.e. "polarization-specified",

(B.11)r = E I(solno)l2 I(sNlnN)l2 r(so,sN)
SO ,SN

which can be rewritten as the dot product of the row and the column matries as

r(so+, SN+)NN

r(so+, SN )NN
F = (Po+PN+ PO+PN- PO-PN+ Po-PN-)

r(so_, SN+)NN

r(So-, SN_)NN

(B.12)

The column vector of the spin-specified probabilities can be given in terms of spin-

combined probabilities by writing equation (B.5) as a 4 x 4 matrix equation

rNN
0000

T' osooo.rNN
00OO~o

rNNl•000So

NN
0OOSOSN

1

4

/

which can be inverted to giv

combined probabilities as

Sr(so+, SN+)NN

F(so+, sN_)NN

F(so-, SN+)NN

F(so-, SN )NN

1 1 1 1 / F(so+, SN- )NN

1 1 -1 -1 F(So+, SN- )NN

(B.13)
1 -1 1 -1 F(so_, SN+)NN

1 -1 -1 1 \F(So_,SN )NN /

e the spin-specified probabilities in terms of the spin-

1 1 1

1 -1 -1

-1 1 -1

-1 -1 1
1 /

/ " 0

rNN

00So

\osNN
\ 00SoS

(B.14)

Inserting the results into equation (B.13) gives in terms
polarizations and the spin-combined probabilities

of the beam and the target

S= Fr00 0 + PbNOsoo 1 0 + PtPNNSo + PbPtN0 SoSA.
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Therefore, now an interaction probability is written in terms of the beam and the

target polarizations and the spin-combined probabilities. Next, the spin-combined

probabilities are expressed in terms of the spin-combined probabilities in Table C.las

S= { NN + (Pb l)PNON 0 + P )n N + (Pb fl)(Pt fl)NN
F 00 + (Pb -k)(P t I)FOtk ±()Pb N ) (Pt t)PNN000-0n... .+ ( b A00nn(PD )(pt )NN sNN+ (Pb1) P 0-'0)kk + (Pb " )(Pt " ) NOss

r NND k)(Pt - rNNN
+ (Pb -k)(Pt -s-)0Osk. + (Pb ) sk}

where

Pb = Pbso and Pt = Pt§N.

(B.15)

Some of the spin-combined quantities given in equations Table B.1 are not included

since as discussed earlier these quantities are zero due to parity conservation.

The polarization-specified interaction probability can now be substituted in

the elastic cross section equation (B.1) in place of the spin-specified interaction

probability to obtain

da 1 1 [f IpiI2dipil lp2l 2dIp2, )]da - I NNIP112 dp, IJP212 dP21(2r) 6(po - p, - P2)d~id%2 fluxNN 2Eo2EN [I(27r)3 2E 1 (27r) 3 2E 2  o -P 2

x dE (27r) 6(Eo + MN - E1 - E2 )
SNN ,,NN p.)NN N{Io o + (Pb l)*N 0No Pt n)P000 + (Pb -l)(Pt )rNN

+ (Pb P1) (Pt i) N11+ (Pb ) )(Pt S )PNON

+ (Pb I)(Pt )oo Os +(Pb S)(Pt - )PNONI

(B.16)

The cross section equation can finally be rewritten as

do" duo
d~idQ2  dQ•dQ22

x 1 + (Pb" fi)A0oono + (Pt fi-)Aooon + (Pb i)(Pt fi-)Aoonn

+ (Pb" s)(Pt -)A 0 oss + (Pb i)( Pt - l)Ao0okk

+ (Pb )(Pt - i)Aoosk + (Pb i)(Pt . )Ao00ks

(B.17)

where

216



1 1
fluxNN 2Eo2EN

Ipil 12dJp1 I
(27r) 32E1

1p212djp 21(27)36(po - PI - P2)
(27r)32E2 I

x dE (2r) 6(Eo + MN - El - E2)roo ,

and
doo

dQdQ2 Aooij =

1
fluxNN

1

2Eo2EN
IP l2dpi,
(27r)32E,

P2 2dP2( 21  -
(27r) 32E 2 (2)(o - -

dE (27r) 6(Eo + MN - E1 - E2)ProN .

doo
dQ1 dQ2

x

(B.18)

P2)]

(B.19)
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Appendix.C

Proton Spin-Dependent Quasielastic Scattering off
3He

The general spin-dependent quasielastic scattering cross section for the

'He(p,pN) can be written as

da(so, SA) _ 1 1

dfidQ2 dIpA-1I flux 2Eo2EA/ [ Ipi djpi 1P2 2d jp2 I PA-i I2dGiA-1PA1J[ f PI12d'pil p2 12dIp21'PA-1[2 dA-1 (2r)3b(po -- Pl,--P2 - PA-1)
[ (27r)32E (27r) 3 2E 2  (2r)3

x JdE (27r) 6 (Eo + MA - El - E2 - EA-1(E)) F(so, SA),

(2.28)
where F(so, SA) is the "spin-specified" probability and can be written as the sum

over spin states of the product of the nucleon-nucleon scattering amplitude and the

spectral function,

r(so,SA) = (SOS MNN fss2) (s1s2( MNN ISoSN)
SI'S2sI,s (C.1)SNSN

x (SASNI S(IpN,E,tN) IS'NSA)

The final spin states of particle 1 and 2 and the final states of the recoiling A-1

system have been summed over in the probability expression. The label A refers to

the atomic number of the 3He system. The derivation steps to formulate the final

form of the quasielastic cross section expression in equation (2.28) below make use

of the probabilty expressions for convenience.

The probability expression is simplified below showing only the spin variables

that are going to be used in the derivations,

r(SO, SA) = (SoS MNNMNN ISNSO) (SASNI SNSA) (C.2)
S'N,SN

The spectral function has been parameterized by three scalar functions fo, fl,

and f2 in Schulze and Sauer [1.28] as

11
S= 2ffo(IPNEtN) ± [fl(IpNIlE,tN) - f2(IPN1,EtN)' rN • A

(1.9)
+±f2(pNI, E, tN ) oN* N uA N
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The three scalar functions are functions of the magnitude of the nucleon momentum,

the removal energy, and the nucleon isospin. Below, matrix elements of the spectral

function from equation (2.27) are introduced,

S11 = (i11 s ), S12 = (1i S 12), S21 = (21 S 11), S22 = (21 S 12),
S33 = (31 S 13), Sa4 = (31 S 4), S43 = (4 S 13), and S44 =(41 S 14),

(C.3)

where

j1) = "SN+SA+), 12) = |SN-SA+), 13) = ISN+SA-), and 14) = ISN-SA-.

Note that the matrix elements are symmetric (or anti-symmetric) with the exchange

of spin directions:

S11 = S44, S12 = -S43, S21 = -S 34, and S22 = S33. (C.4)

The sum of two diagonal elements that has either the nucleon or the nuclear spin

direction flipped gives the spin-independent spectral function S,

S = S 1 + S33 = S22 + S44 = S11 + S22 = S33 + S44 (C.5a)
= fo.

And the difference of these diagonal matrix elements is proportional to the nucleon

polarization rN ,

rN [S11 - S33] -[S 22 - S44] [S11 - S22] -[S33 - S44]
= S S S S (C.5b)
= s[f- f2 + f2( N.~o)2

Let uN be proportional to the sum of the off diagonal elements,

= [S 12 + S211 _ -[(S34 + S43)]
S S (C.5c)1 ,

S [(PN • SA)(N A 2 ,

and let uN be proportional to the difference of the off diagonal elements,

N i[S 12 - S2 1] -i[S 34 - S43]
U2 S S (C.5d)

1 A
- [(N " SA( N A SA12)f2]
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The unit vectors SA ,l, and L2 are orthogonal to each other and are defined such

that

(ON - SA)ISN±) = ±tSN±), (UN -'1)ISN±) = ISNF), and (0-N . 1
2 )jSN± +iISN±).SA I=± = ±IN

(C.6)
Below, these units vectors will be rewritten in terms of the basis of unit vectors for

scattering, namely fi, k, and ,.

In a beam and target polarized experiment, the spin directions of the particles

are flipped to measure all four possible beam and target spin states of the cross

section expression in equation (2.28) or equivalently the interaction probability in

equation (C.1). The four spin-specified probabilities are added below with different

permutation of signs to form "spin-combined" probabilities which are related to the

scattering asymmetries,

Fo0oo = I(so+,sA+) + P(so+,SA-) + r(S0-,SA+) + P(So-,SA-)

FO0ioO = F(so+,SA+) + (So,+,SA-) - P(so-,SA+) - P(so-,SA-)

Frooo00AA = r(so+,SA+) - F(so+,SA-) + (So-,SA+) - F(So-,SA-)
roooA = r(sO+,SA+) - r(so+,SA-) - r(so-,SA+) + (SO-,SA-)

(C.7)

These probability expressions can be rewritten as products of the nucleon-nucleon

spin-combined probabilities with the nuclear structure functions. The spin-

combined probabilities in equation (C.7) are then rewritten as

F0oooo = (SoSI MNNtMNN Is~so) (SASNI S ISNSA)
So,SN,SA SA

= Tr{sosN MNNtMNN {Tr{sA} S }
= Tr{soSN} MNNtMNN S

0000 NN oS , (C.8ai

Foo0oo = S (sosNI (o. o0 )MNNtMNN js so) (SASN S ISNSA)
So,SN,SN SA

= Tr{sosN} (co o0)MNNtMNN {Tr{sA} S}

= Tr{sosN} (ao "§o)MNNtMNN S

= fNN (C.
000o0 (C.8)
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rOO0aA = (SOSN MN NN E (SASI (TA -SA)S ISNSA)
So,SN,S'N SA

= Tr{sosN} MNNtMNN {Tr{sA} (aA "- A)S }
-= Tr{sOsN} MNNtMNN

f2 -

{ [rn - -(PN A)2] S (N -SA) + f2 AN A(N PN) }
- FNo AA -- (PN SA) 2 ] S + ro001N2PN SA

r ooor N - -(PN -A)] S , (C.8c)

and

roo9o~A = (SosN (o •0)MNNtM NN So 5 SAS' (0A B)S IsNsA)
SO,SN,S' SA

= Tr{soSN} (O - 0 )MNNtM {SA} (s A SA)S }
- Tr{soSN} (0 * 0 )MNNtMNN

[r2Nf )2]

{ [r -- ~pN 'A) 2 ] S(a• SA) + f AN ' A(N P'N) }
NN N 2 NN A

- F0aA [r -f2(^N AA)2] S + F~- 00'J 2N BA

FNN [rN - f2 (C.8d)
"• 00 asAt - g~l•N " A) 2 ] S, (C.8d)

where rN and S are the nuclear structure functions that have been defined in equa-

tions (C.5), and oo'is are the nucleon-nucleon spin-combined probabilities defined

in the basis of unit vector directions ,o, SA, and PN.

The quantities Fooop, and FoogofN can be reformulated in the basis of unit

vectors SA, S 1, and L2, that are defined in equation (C.6),
rNN Nt N

o 004 = Tr{sosN} (0o P N)MNNMNN

= Tr{sosN [S A"lN(ON "A) + "' N(OrN .AI)

+ 1t2 pN JNs 2) MNNtMNN
NN ~~~11 N 2N

= SA INP A + SA1 -NFNN + -I PNN
- NN +000 A 11 A"SN 9Ao1 + A-NN (C.9a)= A'N0.009A SA P 000A S A ' Nr000,A 2 ,*

and

NN = Tr{ss ( o)( )MNNtMNN

OOSoAN --TrfsoSN} (0-0 • A,0)(0N • PAN)NM N
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[ P"^N "*0( N"• )+ "J-1.- N(ro -,o)(aN . )STr{sosN} SA pN( 0S0)0)N + A PNSA

+A12 L2) MNNtMNNS A ' N (Or '-%0(N SAI
A NNJ . OO NNo12.i NN(

- SAA PN+000SA A+ PN00og + "A N P 00o2, (C.9b)

where the epansion of the unit vector ON

PN = ( -A 'N)^A + ( ' N) + (A L2 P)SA (C.10)

has been used.

Therefore, the expressions in equations (C.8c,d) can be rewritten in terms of

the nucleon-nucleon spin-combined probabilities defined in the basis of unit vectors,

fn, k, and §,

r NN rN + rNN g l +rNN 2UN }S

rooo0A = { o00,r + o 10uA + oao2 2 S

and
roosoA 0  +N rNN UN P0N UN } . (C.11)r0oO911A = F00909•A + 00io A 1 + SOOA ,22 S. (1)

In any given experiment, the spin value of a large number of particles is param-

eterized by the polarization. Therefore, in the following a "polarization-specified"

scattering probability is formulated with dependence on the beam and target po-

larizations instead of the spins. Since the steps are similar to that in equations

(B.9-B.14), only the resulting polarization-specified probability is given below,

F = {Foooo + Pboo0,o + PtFooo0 o + PbPtFoo,00A}, (C.12)

where Pb and Pt are the beam and the target polarizations respectively. Combin-

ing the equations (C.8), (C.11), and (C.12), the polarization-specified probability

becomes

P = NN 0 + NbN 00 PtNN A b NN ]r N

S= {Foooo + PbPoooo [Pt 000A + PbPtP 00904A

[P N N  N N  N
-+ tP0 _, + PbPt00_NO I Ul

+ Pt+o00A2 +PbPtroO•A 2 } S. (C.13)
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In order to relate to nucleon-nucleon scattering data, the FN0's are redefined

in the basis of unit vectors n^, k, and ^, 1

= Tr{sos MNNtMNNF0000 = TrjsosNI

Foio fNN A A NN
004 00 = n - O n ,

roNA A oNNo
--~i = ArOOnO

(C.14a)

(C.14b)

(C.14c)

and

raiOSA O SA) oonn + ( 10)(I 'A)•'Okk + ( ^0)( S A)rO

+ (k So)(g A) ++(k - S~o)(S" - A)0ks + (S So)(k S A)NOk N

= (a , , 1)rA I o N N

S-"A )'OOnO

(C.14d)

(C.14e)

PNN
00goiL =

rNN

Foool2 =
A

rNN _=2
00ogOS^

(^ ' ^o)('^9 S)Al" r n + (k so)(k I Sll (rNN .10 )( 1 NN
SA )" )OOkk + (S"' SO) S'A )rOOss

+ (ik. so)(s ' I) +N (s so)(k i SAll)r NN (C.14f)

(C.14g)(9 ,. 2 o• NN
•SA )r00n0

A . A)(9k. ",12frNN +12 )NN
A( Ao)(A -~)rNN + (g .o)(** . )rgOUkk

+ (k S S ' 'SA " "0 s s k SA 00sk . (C.14h)

These expressions of the nucleon-nucleon spin-combined probabilities can be substi-

tuted into the expression of the polarization-specified probability in equation (C.13)

to obtain

r= {rN + (NNPb)NN
rr 0000 + (n -P b)Foono

+ [( Pt)rN N

"•- 11" t] 00on
+ (i -Pb)(n -Pt) Onn

+ (k Pb)(k- Pt)P•Nk + ( P t)ONN

+ (k - Pb)(s Pt) + PN b) t) NNk]

+ Pt ( -uN)Fo + (ii-Pb) Pt (f uN) TOnn

1 The results in equations (C.14a - d) are similar to that in Appendix B.
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+ (k - Pb) Pt (k U-N)ONk + (Pb) PNt (.UN)rNN
)i0kk + (-̂ "Pb) Pt ( .u N F 0 s sN

+(k -Pb) Pt (s UN)- u0jL + ( .-Pb) Pt

(C.15)

where

uN =,1 ulN ,+ -2uN.U S A u 1 -- S A u 2

Finally, the above polarization-specified probability is substituted in the cross

section expression in equation (2.28) to give

da 1 1
d•jdQ 2djpA-1 flux 2Eo2EA

f P1j2dJpE Jp212 dIp 21 |PA-1 2dQA-(2r)(po -- p
(27r) 32E 2 (27r) 3

dE (27r) 6(Eo + MA - E1 - E2 - EA-1(E))

roooo + (fa -Pb)Foono + n Pt) NNN

+ (k([ -Pb)(' Pt) N'Ok + (S b Pb)(-"Pt)Pjoos

+ (k Pb)( Pt)NON+ Sb P)(k Pt)rOosk

+ Pt (n" -uN)Frjo 1  + ( -Pb) Pt (fiuN)

+ (k -Pb) Pt (k -uN)rO~Tjk + (s -Pb) Pt (s NofIjs

+ .Pb) Pt(S uNO + (A Pb) Pt (l -UN)Nk S

(C.16)

The cross section equation can finally be rewritten as in equations (2.29, 2.30),

dc
dfldQ2 djPA-1 I

dao
df~dn 2 djPA-1 I 1 + (ft. Pb)Aoono

+ [(fi- Pt)Aooon + (fi Pb)(fi Pt)Aoonn

+ (k - Pb)(k Pt)Aookk + Pb) ( Pt)Aooss

+ (k - Pb)( - Pt)AOOks + ( Pb)(k Pt)Aoosk

+ Pt Aooon + (fi -Pb) Pt A oonn
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+ (k1. Pb) Pt AbOkk + ( " Pb) Pt A oss

+ (k -Pb) Pt A'Oks + (, .Pb) Pt A'osk S,0 S A' Os

(C.17a)

where
do'o

dflldQ2djpA-1 I

doroAodnldf2 2djpA-1 =

do-
Aooij dd 2dpA-1 =

dEIPA-1 2 d1A-1

dEIpA- I2 dHA-1

dEIpA-1 I2dtA-1

fluxNN dN S(pNI,E, tN) ,
flux dfldQ2

(C

ANNo d0S S(IpNI, E, tN) ,A° dd2

(C
fluxNS NN daNN

flux dA i dO2

.17b)

.17c)

rN(IpNi,E, tN) S(psN,E, tN) , (C.17d)

and
do0

0J dfjdd2djpA-1 I

and where the index

parameter, and

12 fluxNN NN dNoNN
S dEIpA- I2dA-1 Aflux -°iJ

(i i uN)(th UN ) S(pNmI,E,tN) , (C.17e)

{ij} is either for the target asymmetry or a spin-correlation

1

flux
Eo

E02 - mo2

and
1 _EoEN - PO0PN

fluxNN V(EoEN - P0o PN) 2 - (momN) 2

In PWIA, the missing momentum Pm and the missing energy Em are identified with

the nucleon momentum PA-1 and the separation energy E. Moreover, implicit in

the spectral function S(IpN , E, tN) is the equality in the lab frame of the nucleon

momentum jPN I and the recoiling system momentum IPA-11. Therefore, the expres-

sion for the polarized quasielastic scattering in equation (C.17a-e) can be rewritten

in terms of the missing momentum pm. Finally, since the neutron polarization rn 1.
one at low Pm values and the beam related neutron-proton scattering asymmetry is
identical to the target related neutron-proton asymmetry, the target related asym-

metry Ao00on becomes identical to the beam related asymmetry A 0no0 in the PWIA
model at low Pm values.
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Appendix D

Detector Electronics and Scalers

Figure D.1. A schematic diagram of the dE and the E detector electronics.
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T EZ

Figure D.2. A schematic diagram of the side microstrip detectors, the forward
microstrip detectors, the forward scintillator, and the outside forward scintillator2

electronics.
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Figure D.3. A schematic diagram of the "fast" and the "slow" trigger system.
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Figure D.4. A schematic diagram of the backing scintillators and the multiwire
proportional chamber electronics.
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scalers

mLU
mLM
mLD
mRU
mRM
mRD
mL or
mR or
fsL = Monl L
fsR = Monl R
fsL2 = Mon2 L
fsR2 = Mon2 R
fmL
fmR
PCT: do not use
BIM
cosmic evt 5
pLnR
pRnL
p-sing / n
pLmR evt5
pRmL evt5
pLfmR evt5
pRfmL evt5
evt5 OR
p2 p
ppn
sc1r_28
sc1r_29
cycles
sclr_31
10Hz clock
LO+
R2-
L1+
R1-

L2+
RO-
L3+
R5-
L4+
R4-
L5+
R3-
RO+
L2-
R1+
L1-
R2+
LO-
R3+
L5-
R4+
L4-
R5+
L3-
dEL
BPR1
deR
BPL1
BPR2
BPL2
sc1r_63
sclr_64
wc R xl
wc R yl
wc R x2
wc R y2
wc L xl
wc L yl
wc L x2
wc L y2

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

ftrig
fast clear
pLR / n
dt clock ungtd
dt clock gated
pLnR accidental
pRnL accidental
sclr_80
EL
ER
pLR
Fast OR
cosmic L
cosmic R
sclr_87
sc1r_88
sc1r_89
sclr_90
sclr_91
sc1r_92
sc1r_93
sclr_94
sclr_95
sclr_96
mRfsL evt 6
mLfsR evt 6
slow OR
STRIG ungated
STRIG gated
evt 5 OR evt 6
mRfsL2 evt 6
mLfsR2 evt 6
sclr_105
beam spin 1
beam spin 2
sclr_108

Table D.1. The CE-25 scalers.
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Appendix E
Time of Flight Calibration

A different time of flight (tof) calibration is presented below. Towards the end

of the analysis of the 197 MeV data, it was noticed in a hydrogen target run that

the distribution of speed # in the right detector arm for the 'neutron' was slightly

higher than that for the proton while the two were in agreement in the left detector

arm. The unexpected finding prompted a study of the tof calibration, particularly

the particle trajectory of the LpRn reaction.

The intersection position on the E detector scintillator bars obtained using

the timing between tfc signal of the two end PMT's were compared with that

obtained from the wire chamber trajectories in figures E.1 and E.2. One finds in

figure E.2 that the tfc-intersection positions were different from the wire-chamber-

intersection positions , 3-7 cm, for each detector bar in the right side detector

arm. The differences were found only after the data analysis. Since the offset in

each bar were not uniform for the whole stack, the E detector as a stack could

not simply be rotated in angle to adjust for the position offsets although offsets

could be added for individual bars. After much trial and error, it was pointed

out that due to poor momentum resolution these offsets were not significant at all

to cause any diference in the asymmetry results. Three different 'He runs were

analyzed with new positon offsets, and the results were found to be identical to

that analyzed using old tfc-intersection offsets. If the discrepancies were corrected

for, the missing momentum resolution could be improved slightly. The almost null

effect on the final asymmetries, however, was not sufficient to not carry out a new

tof calibration as the unexpected discrepancy needed to be understood.

The discrepancy was not resolved by a simple procedure of the adjustment of

the intersection position offsets of individual scintillator bar and the angle of the
whole stack in the right detector arm. The adjustment did not center simultaneously

around zero for the LpRn reaction the missing momentum components Pmx and

pmz -the component pmy was almost always centered. Moreover, the adjustment
changed the missing momentum distributions for the p-p reaction. It was decided

that a new tof calibration for the LpRn reaction was needed to center simultaneously

all three missing momentum components. Furthermore, in the first calibration

analysis, the missing momentum resolution for the LpRn and LnRp reactions was
not calculated. In order to determine the resolutions, calibration was needed of the
mechanism that measured the 'neutron' tof using the hydrogen target data. A new

231

~r~··(UIC-·~··r~W~··YU10~011~~ ---- -~-r~~~~



10

-10

10
0

-10

10

0

-10

10

0

10

0

-10

0

-10

(ELX*COS(.91455)-ELZ*SIN(.91455)+169.64*SIN(.00401 )-XTM15) VS XTM15 bar5

Figure E.1. The difference of intersection position between that calculated using

the detector bar end PMTs' timing informations and that using the wire chamber

informations is plotted against the hit position from timing informations for the left

side detector bars 0, 1, 2, 3, 4, and 5.
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Figure E.2. The difference of intersection position between that calculated using

the detector bar end PMTs' timing informations and that using the wire chamber

informations is plotted against the hit position from timing informations for the

right side detector bars 0, 1, 2, 3, 4, and 5.
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tof calibration was undertaken to resolve the above questions.

In section 5.3.3, it was mentioned that the 'neutron' tof offsets were obtained

by comparing the missing momentum Pm distribution of the 3 He neutron and the
3 He proton. The individual missing momentum components, particularly Pmx and

Pm, were not centered around zero nor was it clear then that it should be centered

without any knowledge of the experimetal acceptance for the missing momentum

components.

As discussed in section 5.2, the 'neutron' tof was obtained from the E detector

tfc and the time at the vertex projected backward from proton dE tdc in the detector

arm on opposite side of the beam. In the time projection, the proton energy loss

at the passage through the dE start scintillator, the thin aluminum target chamber

window, and the silicon microstrip detector were corrected. Similar energy loss

correction was made for the outgoing 'neutron' on the other side of the beam. For

each scintillator bar, the measured momentum was then fitted to a calculation to

determine the time offsets discussed in section 5.2. The fit program was a combined

product of the relevant parts from the analyzer and the PCT fitting codes. The

fit analysis was carried out in detail only for one hydrogen run, and the results are

presented below.

Since, small changes in the position offsets provided by the cosmic ray analysis

of the Ohio State University, as mentioned above, had no effects on the asymmetries,

the position offsets were left unchanged from the original values. The correction

of ionization loss of the proton energy in each medium was determined by path

integration of the Bethe-Bloch equation, The kinetic energy before passage through

a medium can be projected by an iterative procedure from either the final kinetic

energy after energy loss or the averaged kinetic energy determined from the tof

measurement. This allowed determination of the particle kinematics at the vertex.

The time offsets obtained for the tof were dependent on the procedure of energy loss

correction. If the Bethe-Bloch equation were slightly modified, the data could still

be fitted to the calculation reasonably well giving new tof offsets. Also, changing

slightly the detector location or angular position changed slightly the tof offsets.

Therefore the tof offsets obtained could only be used with corresponding energy

correction procedure and detector configuration. Below are plots of the momentum

distributions for the proton and the 'neutron' in the left detector arm.
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Figure E.3. Momentum fit of the 197 MeV hydrogen data for the proton tof

mechanism in the left detector for bars 0, 1, and 2.
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Figure E.4. Momentum fit of the 197 MeV hydrogen data for the proton tf

mechanism in the left detector for bars 3, 4, and 5.
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Figure E.5. Momentum fit of the 197 MeV hydrogen data for the neutron tof
mechanism in the left detector for bars 0, 1, and 2.
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Figure E.6. Momentum fit of the 197 MeV hydrogen data for

mechanism in the left detector for bars 3, 4, and 5.
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When the missing momentum distributions for the p-p reaction were generated,

it was noticed that the distributions for Pmx and Pmz were not centered exactly at

zero. It was later found that the angle of the wire chamber planes in the right side

detector arm could be closed in, to center the peaks at zero. The right side wire

chamber planes angle was closed in by 0.80, an equal amount as the offset seen in the

opening angle of the recoiling p-p's when compared to the calculation in figure E.7.

The results of the fit to the momentum for each scintillator bar in figures E.3-

E.6 were with the wire chamber angle in the right detector arm adjusted by 0.8'.

The position of the peak was very sensitive to the error in the angular postion of

the detector arms. A difference of of 0.8' in each detector arm could cause a shift

of the peak by 5-7 MeV in the missing momentum in the y or the z direction. The

missing momentum and energy resolutions for the reactions pp, LnRp, and LpRn

are given in table E.1.

Reaction Pm (MeV/c) Em (MeV)

pp 25 7.8

LnRp 27 7.8

LpRn 24 7.9

Table E.1. Missing momentum and energy resolutions for the reactions pp, LnRp,

and LpRn, obtained from the results of the tof fitting above.
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Figure E.7. 9 open is plotted as a function of OL; the calculated 9 open as a function

of OL is the heavy line. The difference between the two shown in the histogram on

the right is only 0.8 ± 1.20. The results shown are before the wire chamber angle

in the right detector arm was closed by 0.80.
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Figure E.8. Missing momentum distributions of the 197 MeV hydrogen data for

the pp reaction.
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Figure E.9. Missing momentum distributions of the 197 MeV hydrogen data for

the LnRp reaction.
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Figure E.10. Missing momentum distributions of the 197 MeV hydrogen data for

the LpRn reaction.
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Figure E.11. Missing energy distributions of the 197 MeV hydrogen data.
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