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ABSTRACT

A pattern of a "coordinate-free approach to multiple gamma functions
is introduced. Derivatives of certain L-functions at non-positive
integers are expressed in terms of values of multiple gamma functions
at rational points.

A commutative associative binary operation, "the finite convolution",
is introduced on some class of holomorphic functions. The logarithm
of a multiple gamma function becomes the finite convolution of the
function log u and a polynomial in u in an appropriate space of
analytic functions. This operation seems to be useful for
investigating arithmetic properties of some analytic functions.
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Multiple gamma functions were introduced and studied by E.W.Barnes at the end of the
last century (cf. [Ba]). It became clear since the time of Barnes, that similar to the case of
Dedekind (-function, multiple gamma functions are "gamma-factors" of functional equations
for Selberg zeta-functions (for the case of double gamma function see [Vi], in general [K1]).

On the other hand, multiple gamma functions appear naturally as characteristic "polyno-
mials" of certain differential operators of first order (cf. [Den] for the case of the usual gamma
function). In the context of regularized determinants it is possible to define these character-
istic "polynomials" correctly and relate them to the Riemann (or Hurwitz) (-function.

This note would never have been written without generous help of and encouragement from
Alexander Goncharov. Discussions with, remarks, interest and/or criticism of Alexander
Beilinson, B.H.Gross, Don Zagier, David Kazhdan, and David Vogan helped me to improve
the original text crucially. I am also indebted to Andrey Levin, who had initiated my study
of the subject, and Yu.I.Manin for his interest and emotional support during preparation of
[R].

Finally, my thanks to people at Math. department, Phyllis Block, who made these four
years enjoyable and the lack of time disables me to name all of them. Special thanks to Phyllis
Block, without whose help I would certainly get lost in the formalities. Understanding, how
many problems I have caused them these years, how many appointments, and deadlines I
have missed, I hope they spare me...

1. NOTATION AND CONVENTIONS

B,(x) are (resp., Bn = Bn(0)) Bernoulli polynomials (resp., Bernoulli numbers) defined
by the power series

tetx 00 B, (x) )
et - 1 n!

n=O

(resp.,

t t Bn tn.

et --1 n!
n=o

C(s, u) is the Hurwitz zeta function, defined for Rs > 1 and ~Ru > 0 by absolutely conver-

gent series C(s, u) = %n=O(n + u)- -. In fact ((s, u) as a function of s is meromorphic in C,
has a simple pole at s = 1, and ((1 - n, u) = _(u) for all positive integers n.

('(s, u) denotes its derivative with respect to the variable s.
((s) is the Riemann zeta function, ((s) = ((s, 1) = l1 n-8"
L(s, x) is the Dirichlet L-function of a (multiplicative) character X, defined for ~Rs > 1 by

absolutely convergent series L(s, X) = E' x(n)n=11 k- -s

Lin(z) is the n-logarithm, defined for JzI < 1 by the power series z k

The Gothic letters are reserved for operators. In particular, T will denote a locally unipo-
tent linear operator on the space of polynomials, or on a completion with respect to a
topology on it (e.g., the linear operator f (x) F- f(x + 1)).

In order to avoid confusion between action of a linear operator 0 on a function f and
compositions the operator 0 with the operator of multiplication by the function f, let us
write them as Df and D - f, respectively.



2. DEFINITIONS

2.1. Gamma functions. It is well-known that the classical F function satisfies some very
nice properties, such as

* easy behavior under translations by an integer: F(u + 1) = uF(u);
* Gauf3 multiplication formula: F(u) = (21r)-- mu- 1/ 2  m-1

* F(u) is a meromorphic function of order 1 of maximal type and all its poles are non-
positive integers;

* F(u) has integer values at positive integer points;
* The complement formula holds:

IF(u) F(1 - u) =
sin 7ru

The aim of this section is to define a homomorphism F from the additive group of the
ring of polynomials with integer values at integer points 1? to the multiplicative group of
meromorphic functions with properties similar to those of F(u). More precisely, we would
like the fraction F(P)(u + 1)/F(P)(u) to be equal to a product of some powers of u and of
F(Q)(u) for polynomials Q of degree less than the degree of P. As a "first approximation"
to this homomorphism we can try

F: P- Fp(u)= exp P(t)dlog F(t).

Then

rp(u + 1) = exp P(t)dlog F(t) -exp P(t + 1)dlogr(t + 1)
1 dt= Fp(2) I p(u) -exp P(t + 1) t/"dt'

where TP(t) = P(t + 1).
In order to improve this "approximate" definition and make the above formula nice, con-

sider a polynomial correction of the integral in this definition. This appendix is given by a
linear operator Q on the space of real polynomials shifting degrees by one and given by the
formula

fon = ( _ Id) - n ('(-n) + ((-n, u) n-1 d n
n! 1 m dun '

n=O m=1

where Z is the operator of value at 1, and Id is the identity operator.

Definition 2.1. The homomorphism F : P ý- Frp assigns to any polynomial P with integer
values in integer points, a meromorphic function defined by

Fp(u) = exp [IP(u) + f P(t)dlogF(t)]. (1)

It will be explained below (cf. Lemma 3.4), why it is a reasonable and in a sense the only
reasonable definition of multiple gamma functions.

REMARKS. 1. This definition coincides with a definition of Fn+l1 given by Barnes when
the polynomial P(t) = (nnt) is chosen. It will be shown in Corollary 3.3 that

Fn+ 1(u + 1) = Fn(u)F]P 1(u)
for all natural n. Clearly, F 1 (u) is the usual gamma function.
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2. The definition of the multiple gamma function above is given to make it a meromorphic
function. However, as it was noticed by Don Zagier, the log multiple gamma functions
are more natural. In particular, there is no "global" presentation of the multiple gamma
functions as a "period" (like

F(u) = e-ttUdt

and that was the reason, why we did not mention this property among those of the usual
gamma function). Another point is that in their connection with various L-series, the multi-
ple gamma functions appear only in logarithmized form. Moreover, unlike the (exponential)
gamma functions, the log multiple gamma functions log FPp(u) can be p-adically interpolated
to analytic p-adic functions (cf. [C-N], [I]). One more argument can be found in Section 4
below, where a polynomial P E R is replaced by any entire function of order less than one.

2.2. The "sine functions" and the polylogarithms. Once a gamma function is defined,
one can symmetrize its definition to get the "multiple sine" function

Ap(u) = rp(u)rp.(1 - u) = exp 3P(u) -r j P(t) cot 7rtdt , (2)
1/2

where P*(t) = P(1 - t) and 3 is a polynomial operator,

0 ('(-2n) d2n +1
d/du. -3 = -2E (2n)! du2 n +1

n=o (2n)! du2 1

These functions are closely related to polylogarithms.
Classically, the polylogarithm is defined in the unit disc Iz| < 1 by the power series

Lin(z) = 1 -"
k=O

Using the obvious identity
d

Lin-l(z) = z-Lin(z),
dz

one can get an analytic continuation of Lin(z) by means of an iterated integral. For any
path yz : [0, 1] -+ C\{0, 1}, joining the origin and the variable point z, i.e., yz,(0) = 0 and
7z(1) = z

Lin(Z) dz [ . dz _ dz dyz(tn) d7z(t2) dyz(ti)
L(z= -- 0...0 0o -=J ... .

- -z z 1- z o<Jtl<...t<t , Y<z(t,) 7z (t2 ) 1-z 1)
n-1 time

In particular, if the path 7y does not cross the ray of reals greater than one, then the corre-
sponding branch of the polylogarithm can be proved to be equal to the following integrals

z 00 tn-ldt z 1 (- log t)n-ldtLin (Z)= -
Li(z) = (n- )! o et - z (n- i)! J 1 - tz

for any z not on the real ray z > 1. The polylogarithm extends to an analytic function on
the whole P• with ramification at 0, 1, oc.



* Up to a constant multiple, Ap coincides with

exp -7ri P(t)dt + 3P(u) + (2i)k-1) Lik(e - 27iu)

k=1

where Qu < 0.
* Up to an exponential multiple any meromorphic function of the type

exp fk(u)Lik (e-27riu)
k=1

for some meromorphic functions fk, coincides with Ap(u) for a polynomial P E R.

Proof.

* For a proof note that logarithmic derivative of (3) is

d
du

-3P(u) - w7riP(u) + (k) (U) Lik(e -2iu)
S(27ri)k-1 i

d e - 2 iriu= d - 3P(u) - riP(u) - 2ri - P(u) 1 - e- 2 i

du ~~1 - -7i

and coincides with logarithmic derivative of (2) .
* Consider the logarithmic derivative:

-c
k=0

d
du

P(k)(u) 2i -Lik(e-21iu

(21ri)k • 2 i

• 3P(u) - 7rP(u)cot 7ru,

00

E (fk(u) - 27rifk+l(u)) Lik(e-2riu).
k=O

It is a meromorphic function. Denote fk(u) - 2,rifk+l(u) by gk(u).
Let gN(u) : 0 and gk(u) = 0 for all k > N. We prove that g9k(u) = 0 for all k > 0 by

induction on N, case N = 1 being trivial. Then

E gk(u) Lik(e 6-2riu)

k=1 gN(u)
is a meromorphic function too. Its derivative

-2i 91 (u) 1 ed gk (U)

k=1
Lik(e - 2riu)

should be equal to -2lriugl(u)/(gN(u)(exp(27iu) - 1)) by the induction assumption.
Thus

d gk (u) _ 2 7igk+1 (u)
dugN(u) gN(u)

for any k > 0. Thus for a polynomial P of degree N - 1 we get

gk(u) = 9N(u)(2ri)-kp(k-1)(u).

Thus
N

E(21ri)-kp(k-1
k=1

Lemma 2.2.

)

g2rigNl(u)

(u)Lik (e- 2, i)



is, again, meromorphic. But the monodromy of the latter about an integer point m
subtracts

N )1-kS(27ri) p(k-1)(u)(2 i(u - m))k-1 = P(m).

k=1 (k-)

Thus, P(u)= 0, and fk(u)= 2wifk+1(u).
El

3. PROPERTIES OF THE GAMMA FUNCTIONS

One of the aims of this note is to show that study of derivatives of Dirichlet L-functions
is equivalent to study of the values of the multiple gamma functions at rational points. So
in all the formulas below the stress will be made on various constants and reducing them to
the exponent of the first derivatives of the (-function at non-positive integers.

Lemma 3.1. Fp(u) is a meromorphic function of order deg P + 1 and infinite type. There
is the following decomposition into Hadamard-Weierstraf? product

00 ( )-P(-k) (• U2 
+.- (_,u) (deg P+1) P(-k)]

rp(u) = e P(U)u - P(0) 1J + [ ) e( . (degp+l)kdeg +r (k) (4)
k=1

where 6 is a polynomial operator such that 6P(0) = 0 and

d P(O) - P(u) kdegPp(u) _ (_u)deg PP(-k)
d P(u) = - P(u) + uZ (k + u)kdeg P + 1

du u k=1

Proof. Consider the infinite product presentation of F(u):

u= e [u 1 + e-u .
( k=1

Take the logarithmic derivative to get

F'(u) 1 U
= --- + (5)F(u) au k (u + k)k'

and multiply by P(u). Then we are trying to replace the polynomial multiple P(u) in the
kth summand by a constant one, namely by P(-k):

u u P(u) - P(-k)U -P(u) = P(-k) U + u -Pu (k
(u + k)k (u + k)k u u + k

After some more work we get the decomposition (4). O
The following is the most powerful property of the gamma functions.

Theorem 3.2. Gamma functions are related to the Hurwitz (-function by the formula

Fp(u) = exp [ ()n p(n) (u) (('(-n, u) - ('(-n)) . (6)
_n= n!



Proof. For any s with ~Rs > 1 the series ZEnco(n + u)-' is absolutely convergent, so one
can see the following obvious functional equations:

((s, u) = u-' + ( (s, u + 1) and ('(s, u) = - log u. u- + ('(s, u + 1), (7)

('(s, u) = -•-= log(n + u)(n + u)-s and 0/0u<'(s, u) = s E- 0 log(n + u)(n + u)-s- -
E0n=1(n + u)-s-1.Thus we get an identity

('(s, u) = -((s + 1, u) - s('(s + 1, u). (8)
Now take logarithmic derivatives of both sides of (6). Then use the identity (8) and a formula
of Lerch

S(01 ) '(u)
Bu r(u)

coming from the Bohr-Mollerup theorem (on uniqueness of the function F(u) such that
F(u + 1) = uF(u), F(1) = 1 and d2/du 2 log F(u) > 0 for positive real u).

To see the Lerch formula, specialize (7) to s = 0. This gives the identities

('(0, u + 1) = logu + ('(0, u), and exp ('(0, u + 1) = u -exp ('(0, u).

The formula (8) above implies

02
a24'(s, u) = s(s + 1)('(s + 2, u)+ (2s + 1)((s + 2, u).

When s = 0 this function is reduced to ((2, u), which is real positive for all real positive
u. Thus exp(((0, u) - ('(0)) satisfies the assumptions of the Bohr-Mollerup theorem, and
coincides with F(u).

This Theorem has a number of consequences, as can be seen from

Corollary 3.3. 1. Fp(u) admits a presentation as a (-regularized product:
0O

Fp(u) = exp[-(P(u)] -H(u + k)-P (-k)

k=O

where (P(u) = (''0 (C (-n)P(")(u), and (u + k) - P(- k) is understood as the
product of IP(-k)I copies of the multiple (u + k) - 9nP(-k).

Choose a path joining infinity with the origin. Then one can choose a branch of
the logarithm and for any sequence of complex numbers a,, a2, a3,... not on this
path, the series (a(s) = E- 1 a-s is defined. Suppose that this series is convergent
for sufficiently large Rs and admits an analytic continuation to a simply-connected
domain, containing the origin and a point of convergence. Then the (-regularized
product of the sequence a,, a2, a3,... defined as exp (a(0).

2. The homomorphism F commutes with the translation by one in the following way

Fp(u + 1) = up(') F17Tp(u), (9)

where TP(t) = P(t + 1). In particular, for any positive integer m

Fp(m + 1) - 1P(m). 2 P(m-1) . (m - 1)P(2) .P(1), (10)

or

rp(m + 1) = 1!P(m)- P (m - 1) . 2 !P(m-1)-P(m-2) (m- 1)!P(2)- P(1) m!P l) (11)



3. "Gaufl multiplication formula"
r-i

rp(u) = cp(m, u) m' (U) fII• u p , (12)
k=0

where 3P(u) = n!0 (-1)"-n -,L)P(n-1)(u)1, k,mP(t) = P(mt - k) and cp(m,u)
is the exponent of a polynomial, the "GauJ? exponent". The latter can be expressed
via values of derivatives of the Riemann (-function at non-positive integers:

00 n Mn1_)"pn)Ucp(m, u) = exp '(-)( - 1)P()(u) .
-n=0

4. Value at 1/2

Fp(1/2) = 2E'n=i 12n!P(n-)(1/2) exp ! ((-n)(2- - 2)P n)(1/2) (
L-0 n. (13)

5. Denote by Q(,im) the m-th cyclotomic extension of the field of rationals. Then the
Q(ijm )-subspaces of C generated by

(a) logarithms of values of gamma functions of order less than n at positive
rational points with denominator dividing m;

(b) first derivatives of Dirichlet L-functions with conductor dividing m at in-
tegers between 1 - n and 0

coincide.

Proofs.
1. By the definition of (-regularized product

H(u + k)-P(-k) = exp - P(-k) log(u + k)(u + k)-]
k>0 k>0 s=0

Then from the Taylor formula E (-u-k)n dnP= P(-k) we get

(u + k)-P(-k) = exp - z (-u- k) P(n)(u) log(u + k)(u + k)-s
_k k,n>_O s=0

Summing over k's identifies the product with

exp [ (-1) U n! (n(s - n, u)
-n>0n! -n =0

The rest is straightforward.
2. From an obvious identity

('(s,u+ 1)- ('(s,u) = u-` logu
and theorem 6 we get an identity

00

l og p~ + 1 ) = E ( -1)n
log I'p (u + _1) = P(")(u + 1) (('(-n, u) - ('(-n) + un log u).

n=0

'Notice, that -2P(u) = P(u).



This identity, when combined with the Taylor formula E'-0(-1)n +)u n

log u = P(1) - log u, gives the identity (9).
3. This follows from an obvious identity

m-1
1:;' (8,
k=O

u+k =
u ) =k M(W(s, u) + (s, u) log m).m

Plug u = 1 and m = 2 into the "Gauf3 multiplication formula".
Apply the formula (6) of the Lemma to P = (1 - 2t)n and specialize u to 1/2. This
gives a formula for ('(-n).
The same formula, applied to P = (a - mu)n describes ('(-n, a/m) as a linear
combination of logarithms of multiple gamma functions at 1/2 and at a/m, and a
rational number. The corollary comes as soon as one notices that any Dirichlet series
with conductor, dividing m, is a linear combination of ((s, a/m) for 1 < a < m. E

REMARKS. 1. Strangely enough, differences of the logarithmic derivatives of the gamma
function at rationals are algebraic linear combinations of logarithms of algebraic numbers
(e.g., [An]). More precisely, for any integers 0 < j < N

F'(j/N) I'(1)
F(j/N) F(1) (14)E ( - 1) log(1 - )

(Proof. Using the formula (5), we get

E'(j/N)

F(j/N)
N

j
N

j + kN

o0

E
k=1

+ E
kNk=1

N
kN

j-N+kN
j -N +kN)

It is not hard to see that

Z~m={N0M NN0
if m divides N
otherwise

where YN denotes the group of roots of unity of order N, and

((m _ ( 1) = E
CE-AN

(m - (1) =
N
-N
0

if N divides m and N does not divide k
if N does not divide m and N divides k .
otherwise

(- N - N+ kN 00

m=1
E

10CEIAN

r _ m-j= ( -- 1) log(1 - (). C)
1#(6EN

2. A formula of Moreno [Mo] suggests that certain more general multiple gamma functions
(also introduced by Barnes) are appropriate to deal with second non-trivial coefficients of
Taylor series of (-functions of totally real number fields at non-positive integers. However,
they can be avoided in the case of totally real abelian extensions of Q.

14
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3.1. A universality property of gamma functions.

Lemma 3.4. For any system of meromorphic functions Fn such that• '•(u+l) aprdc
*r(u) is a product of powers of rk(u) for 1 < k < n and a power of u;

* Frn(u) is a fraction of entire functions of finite order and it has neither zeroes nor poles
in a right half-plane;

* n (u) is real for positive real u and r (1) = 1,
there exists a unique system of polynomials Pn with Frp, = rn-

Proof. By induction on n, it is easy to see, that the order of pole (or minus order of zero)
of Fr at a non-positive integer p is the value of a polynomial P (u) of degree n - 1 at p.
For n = 1 this polynomial is a constant, for n > 0 there is a unique polynomial Pn(u) with
a fixed value at 0 and such that P,(m + 1) - P,(m) coincides with the value at m a fixed
linear combination of Pk(u) for 1 < k < n and all negative integer m.

Then the fraction
rn(u)

rP (u)
is a periodic meromorphic function of a finite order with no zeroes and poles in a right half-
plane, and must be the exponent of a real polynomial of degree < n and a rational function
of e27ri u simultaneously. So it is the unity. 0

3.2. Properties of sine-functions.

Corollary 3.5. 1. The homomorphism A, when considered as a function on the prod-
uct 7R x C, is invariant under the action of the subgroup of even numbers, when
Z-action is given by the formula f(P(t), u) -+ f(P(t - 1), u + 1). More precisely,

Ap (u + 1) = (-1)P(1) Ap(u), (15)
where TP(t) = P(t + 1). In the same sense, it is invariant under the involution
f(P(t), u) ý- f(P(1 - t), 1 - u):

Ap(1 - u) = Ap. (u), (16)

where P*(t) = P(1 - t).
2. "Gaup multiplication formula"

00 ((2) 21 p(nU m-1u+k
Ap(u) = exp 2 '(-) (m 2 +1 -1)(2n)(u)] (IA,p (17)U )

n=o k=O

where £ik,mP(t) = P(mt - k). 2

3. Value at 1/2

Ap(1/2) = 2- P( / 2) exp 2(2n 2)! ('(-2n)P(2n)(1/2) . (18)
.n= o

4. Denote by Q(Ptm) the m-th cyclotomic extension of the field of rationals. Then the
Q(pm)-subspaces of C generated by

(a) logarithms of values of sine-functions of order less than n at positive ratio-
nal points with denominator dividing m;

The functional equation for C(s) implies 22 = (-1)n+1 ~.



(b) '"2-normalized" values of Dirichlet L-functions with conductor dividing m
at positive integers not exceeding n

coincide.

Proof follows immediately from Corollary 3.3. E

3.3. The complement formula and fields of sine-functions. Suppose for a moment
that we do not know yet what is the function (F(u)F(1 - u)) 1 . Then we can describe it
as the only solution of the differential equation f" = -r 2f, with the initial data f(0) = 0
and f'(O) = 1. There are no that simple differential equation for the functions Ap. But the
following claim may be considered as a replacement of the complement formula.

Lemma 3.6. 1. The function Ap is of the same order as F p; if degree of P is even,
then the type of Ap is a positive integer multiple of (degP+1)!"

2. Unlike gamma functions, any multiple sine function Ap generates over C (resp.,
over Q) a differential field (D' of degree of transcendence not more than three (resp.,
[(deg P - 1)/2] + 5).
If deg P > 2, then differential endomorphisms of the field (D' over C form a group
isomorphic to one-dimensional algebraic torus CX, which coincides with the differ-
ential Galois group of the field (D over ý1= C(u, w/sin ru).

3. Multiple sine functions of order < d generate over C a differential field Ad of degree
of transcendence d + 1.
Differential endomorphisms of the field 1 d form a group isomorphic to a (certainly,
non-algebraic) group (CX )d - 1 x Z.

Proof.
1. Suppose that tu < 0. Then Lik(e - 27iu) is bounded by ((k) for all k > 1. Then in

the expression (3) the corresponding terms are bounded by a polynomial of degree
degP - 2. The only term left is exp(u - ' log(1 - exp(-2wiu))). Since .7u < 0,
the values of log(1 - exp(-2wiu)) lie on the half-strip Rz < log2, R9z| < r. Then
Sexp(un- 1 log(1-exp(-2wiu)))j < 2~"~ .e -un -. Finally, the type of Ap coincides
with (r/(deg P + 1)) x (the leading coefficient of P) (see below).

2. Immediately from the definition

d 00 ('(-2n)log Ap(u) = -2 '(2n) P( 2 +l)() - 7rP(u) cot Wu.dug Eu =- (2n) 1
n=o

Thus a field, generated by Ap(u), u, ir cot iru, r2 and ('(-2m) for all integer m
between 0 and (deg P - 1)/2, is closed under the differentiation.

3. Since the subfields C(u) and C(cot ru) are closed under the differentiation, they
should be preserved by any differential endomorphism. Clearly, their endomor-
phisms form groups isomorphic to Ga (C) and Gm (C), respectively.
The above expansion for the logarithmic derivative of Ap shows that differential
endomorphisms should almost preserve the set of poles of P(u)cot 7ru ('almost'
means upto a finite set). Thus they must act as translations by integers on C(u).
M



One can visualize the above in the commutative diagram of fields
0f

1444

1
I F

where each non-horizontal arrow is a purely transcendental Picard-Vessiot extension of degree
one.

The above Lemma contrasts with the case of one-dimensional extensions of fields of con-
stants.

Lemma 3.7. For a finitely generated differential extension F of degree of transcendence
one of an algebraically closed field k of characteristic zero, the monoid of all differential
endomorphisms is an algebraic group.

This group is either a finite group, or connected one-dimensional (Ga, Gm, or an elliptic
curve). The case of an affine group corresponds to a Picard-Vessiot extension of the field of
constants (P2x = 0, or ax = x, respectively).

Proof. Choose a smooth projective model X of the field F over the field k. It is defined
uniquely. Then a differentiation is presented by a vector field v on X. Differential endomor-
phisms are mappings of X into itself, preserving the vector field v. Clearly, this implies that
all differential endomorphisms are invertible, and condition of preserving the vector field v
is algebraic, as far as the group of automorphisms of X is algebraic.

If the genus of the curve X is greater than one, or X is an elliptic curve and a point is
marked, or X is the projective line and three points are marked, then its group of automor-
phisms is finite. Indeed, the consider corresponding punctured curve. It is hyperbolic, in
particular, has a canonical (depending only on the complex structure) metric. Thus group
of its automorphisms is a closed complex subgroup of a unitary group, hence finite.

Any differentiation on a field defines a vector field on its model. Differentiation preserve
this vector field, and poles and zeroes of this vector field play the role of marked points.

A 0
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The only cases left are an elliptic curve with a translation-invariant vector field, and
the projective line with a vector field with either 2 distinct zeroes (then after a change of
coordinate, it is axz, so its group of automorphisms is Gm), or with only one zero (then
after a change of coordinate, it is I , so its group of automorphisms is Ga for a constant
P, and trivial otherwise).

4. THE FINITE CONVOLUTION PRODUCT

The contents and methods of this section either come from, or very close to [DP].
For a set S let Maps(N, S) be the set of S-valued functions on the natural numbers. Let for

a pair of sets S and S2, and a group G a binary operation S x S2 -_+ G. In this situation
we define the following Maps(N, G)-valued pairing between Maps(N, Si) and Maps(N, S2 ),
given by 'the finite convolution product':

Definition 4.1. Let p be an element of Maps(N, G2) and 4 be an element of Maps(N, G1 ).
Then the pairing

n-1

Maps(N, Si) x Maps(N, S2) -- + Maps(N, G) is given by (f * g)(n) = -M(f(k), g(n - k)),
k=1 (19)

where n is a positive integer.

Lemma 4.2. For any commutative associative ring A the operation • defines on Maps(N, A)
a structure of a non-unitary commutative associative A-algebra.

Proof. Straightforward.

Definition 4.3. A set M of holomorphic functions on the right half-plane Ru > 0 is called
admissible, if both of the following two conditions are satisfied

* The natural mapping V : M --+ Maps(N, C), assigning to a function f(u) its values
at positive integer points (f(1), f(2), f(3),...), is injective.

* For any f and g in M the finite convolution V(f) *V(g) lies in the image of M.
Thus, if a set M of functions is admissible, the pull-back of * under mapping V defines the
finite convolution *M on the set M itself.

To construct first non-trivial example of an admissible algebra we need the following claim,
essentially due to [DP].

Theorem 4.4. The operator
Iu +1 u+1

• f (u) -+ f (t) dt

acting on the space of all entire functions of order less than one (i.e., functions f : C -- + C
such that If (z)I < aeb'IzIP for some a > 0, b > 0 and 0 < p < 1) is invertible and preserves
the order of any function.

Proof. Let f(u) be an entire function of order less than p < 1. Let f(u) = '-'%o anu n be
its Taylor series at the origin. Then

limnoon/Plan 1/n = 0.

(For a proof of this claim we refer to [Sh].)



Consider the series E..0  u)n - t_. Since the function u is regular for Itl < 27rand has a pole at t = 2i, the radius of convergence of the above series is 2. Hence, the
and has a pole at t = 27ri, the radius of convergence of the above series is 27r. Hence, the

1/n
upper limit of

Bn_(u) is 1/(27r), when n tends to infinity and u is fixed.

Now consider a series3

d/du
ed/du - 1f(U)

00

= ZanBn(u).
n=O

limn-•_• (anBn(u)J)1 / • = limnIno (nian 11/) . (IB(U)
)1/n • 1/n

= 0,

00 an d/du on t e s a e f
the series jn=O anB,(u) converges absolutely, defining an operator ed/u on the space of

entire functions of order less than one. The component-wise integration

J u+1Bn(t)dt = u"

___ld/d d/du . u+lshows that both compositions fu+. d/d- and d/d- u1 are the identity.
u d-/d-u~ fu' arh dniy

The rest is a rather technical estimate of the order of the function d/d f (u). We again

refer to [Sh] for a proof of the following claim.
If the sequence nt/PIbn 1/ " is bounded then the function g = n=o b z" is of order < p.
We rewrite (20) as a Taylor series and estimate its coefficients as follows.

f (u) = E a E ) Bn-kuk =
n=O k=0 k=O

0 1B-k(E ann! (n k)!n=k

The sequences n1/PlanI 1/, n ) n, and ( n) n are bounded.

corresponding upper bounds. Then

Bk n 1a-
(n-k)!

< / n - k

-- n n(1/p- 1) and Bn-k n!a n
n>k (nk)! S -n>k

n>k

Let 6 = log(ao) and n is big enough to satisfy log n - + 1 > 1. Then
1-p

:Bn-k n!an - k  1 (log n -
nk(n- k)! -~

n>k n>k

The last sum can be dominated by the integral

+1) )
1 -p n n ( 1/ p - 1) "

3-k (logx 1 -p
-k _l - p

(a3)l _ /-k

+11XX(1/p-l) - /p - 1

3 It is not hard to see, that as operators on the space of polynomials, '/du= fU+1

Since

(20)

d/du

ed/du - 1

Let a, 0 and 1 be the

nn(l/p-1)

(a )k-1

(k - 1)(k-1)(1/p-1)



for k sufficiently big. Finally,

Bn-k n1a < -k (a3)k-1

n>k (n - k)! - 1/p - 1 (k- 1)(k-1)(1/p- 1)

for k sufficiently big, so

1/k
Bn-k a-1 (a)1-1/k

(n - k)! - (11p- 1)1/k (k - 1)(1-1/k)(1/p - 1)  k k o

as k tends to infinity, and

1/k

hiMk-,k 1' 1 Bn-k n1an l < ae.limk oak!/ I: (n - k)!na e
n>k n-k

Thus, the order of d/du/(ed/du - 1)f (u) is at most p. Since the operator fuu+l does not

increase the orders, we see that both d/du/(ed/du - 1) f (u) and fu+ preserve the orders. O
Let An<' be the algebra of holomorphic functions on the universal cover of the complement

of C to a discrete set of branch points of order less than one. We say that the order of an
analytic function f is less than one, when there is a positive p < 1 such that

If(7 ) I -< aeb(length of yz)P

for any path in the complement of C to the set of branch points, joining a fixed point with
the variable point z. Here "length" means the hyperbolic length, if f has at least 2 points of
ramification. If f has only 1 point of ramification then the "length" is the euclidean length,
induced by the universal cover C -2 Cx.

Lemma 4.5. * The space of all entire functions of order less than one is admissible.
* The additive group of 1Z with a multiplicative structure given by * is isomorphic to the

ideal in Z[t], generated by t. In particular, integer *-powers of 1

1*n = (t 1) (21)

generate R as an abelian group.
*

S•(-1)mBm+l(t) + Bm+i dm
(P * Q)(t) = E1 (m + 1)! dm- (P(t)Q(u - t)) . (22)

m= o u=te

(PQ)(t) = d/dr (P(t - r)Q(r)) dr. (23)(P * Q)() = ed/d~r 1

Proof.

* Number of zeroes of a function of order less than one cannot grow linearly, as it does
when that function has zeroes at all natural points. This proves injectivity of the
operator V.



To verify the second condition of admissibility we use the formula (23) to be proved

later. Due to Theorem 4.4, the operator d/d_ is defined and preserves the order of
the function.

* Let P(t) = Emm>O pmt m and Q(t) = Enm>o qmt m . Then

n-i n-1 I

(P Q)(n) = plqm Z kmn(n - k)' = Z Z pq E(-l)r rnl-rkr+m
I,m>O k=1 k=1 l,m>O r=1

P=q r (l) n -r Br+m+l(n) - Br+m +1(1) I
r r+ M+ 1

1,m>O r=O

r qm Br+m+1(n) - Br+m+1(1) •:_A 1! _n-r
=~> (lr! r + m + 1 ( -r)!r,m>_O l>r

= Z (-l)r )Q(m - r)(O) Bm+l(n ) - Bm+ l (1)p(r) (n )
r (m + 1)!

d " (- 1)m Bm+ l (t) + Bm+l dm 1
dt =o (m + 1)! dtm

S(-1) mBm+l(t) + Bm+l dm +1 + (-l)Bm(t) dm

E= (m + 1)! dtm+1 E m! dtm

m=o m=o
00 Bm dm  

d/dt

Z= m! dtm ed/d - 1
m=0

To see how do the multiple gamma functions fit into this scheme, we need the existence of
the finite convolution product in a slightly more general situation. To be precise, we should
talk about logarithm of the multiple gamma functions rather than the multiple gamma
functions, since orders of the latter are at least one. We consider the algebra of analytic
functions with ramification in a discrete set of branch points in the left half-plane with
certain growth restrictions.

Lemma 4.6. * The algebra of analytic functions generated by logarithms of entire func-
tions of finite order with no zeroes in the right half-plane, by their derivatives and
(iterated) integrals, is admissible.

* In the space of holomorphic functions on a sector as above

log rp (u) = logu * P(u). (24)

Proof. To verify injectivity of the operator of values at all natural numbers, suppose that
there is a function f(u) on the right half-plane of order less than unity (i.e., If(u) 1 < a -ebluIP

for some non-negative real p < 1) vanishing at all positive integer points and such that it
does not tends to zero on the real positive ray4. Then there is a sequence of real positive
numbers (an) such that If(an)I > e-anc > 0 for some a > 0, 0 < c < 1 and an > n.

4or, if it does, than not faster than the exponential function.
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Then the Jensen formula gives

2 [ log f(an + anei')Id Ž> log f (an) I+ log k an
logr +jk-anl<an,kEZ k an

The sum above is greater than Eka] log m r- an. On the other hand, the left hand side
grows only as aP, when n tends to infinity, hence we get a contradiction.

This implies that the operator fu+l is injective. Indeed, any element (o of its kernel should
be periodic (derivative of fL+l ýp(t)dt is trivial). In particular, it defines an entire function
on the whole complex plane. Moreover, p(t) = 4(exp(27riu)) for some entire function V, and
cannot be of polynomial growth.

5. AN L-FUNCTION

Let Q(t) be a monic polynomial of degree m with roots in the left half-plane. Generalizing
[Va] (compare, however, with [C-N]), let us introduce the following L-series:

Definition 5.1. For a polynomial P(t)
OO

Lp(s, Q) = 0 P(-n) (25)
n:o Q(n)

The following accounts some basic properties of Lp(s, Q).
Lemma 5.2. 1. Lp(s, Q) is C-linear with respect to P.
2. For a positive integer v

Lp(t) (s - v, Q) = Lp(t)Q(-t)v (s, Q).
3. For any p with a non-negative real part

Lp(s, Q) = Lp(s, ,Q) + (P * Q-)( p) + Q(O)- P(P). (26)
4. The function Lp(s, Q) admits an analytic continuation to the universal cover of the

variety {(s, Q) E C x AT jQ(k) 0 0 for k E {0, 1,2,3,...}} with simple poles along
the divisors s = -k/m, where k is a positive integer not divided by m, and

E 1 2 degP+ 1
s e , ,...,.

m m m

5. For any positive integer n and a polynomial P the function Lp (1-n, Q) is a polyno-
mial of degree deg P + m(n -1) + 1. Its coefficients are rational linear combinations
of the coefficients of P.

6. For any positive integer n

L' (1 - n, Q) = L'p(t)Q(_t)_-1 (0, Q),
and (compare with [Va], Prop. 3.1)

m a (_1)00 m m
L',p (0, Q) - Elog I'P() = E n ('(-n) P(n)(ui) + Z*P(ui)

i=1 n=0 i=1 i=1

1 •-Pt")(1) (-1)" d" +i

n=1 t=O



where Q(-ui) = 0 and *P(u) = _ (u-1)+' (1 + 1 +.. + ) P()(1).
7. If deg P < m - 1 then the series (25) is absolutely convergent at s = 1 and

m

Lp(1, Q) = -
i=1-

P(u,) F'(u,) P(- 1)" P) (u_ )Q-(-u) r(ui) + S ( 1)nB (nui) - (u, 1) " )

Q/(-ui) F(ui) n - n! Q'(-ui)

where Q(-ui) = 0.

REMARK. For a detailed analysis of the quadratic term in (27), the 'determinant anomaly',
see [KV].

Proof.
1. Straightforward.
2. Straightforward.
3. If p is a positive integer then

P(A)Lg p(s, Q) = Q()Q(0) n=0

P(-n)
Q(n))

P(p - n)

Q(n + p))'

and Lemma 4.6 implies the rest.
4. Consider the Taylor series of a function L,(s, Q) = Z"L= n'Q(n)- q

More explicitly, let Q(n) = (n + ul) ... (n + urn) then
oo

E
kl ,...,k.n =0

at Q(t) = tm.

(u./n)k .. (um/n)km.(;ki)
Thus we get an analytic continuation for Rs < (1 + 1)/m as a series

Li(s,Q) =
oo

E
kl,...,km=O

for any non-negative integer 1. Linearity implies the rest.
5. Straightforward from the above expansion for L,(s, Q). (Note that values of the

Riemann (-function are rational at non-positive integers.)
6. The first identity comes from the second property.

For the second one use the Taylor series of L,(s, Q) at Ul = = Urn = 0 above
and a well-known identity

d- (s((s + 1))
sdsOS=o

(coming from the functional equation of the Riemann (-function).
Then we get

L'(O, Q) = m('(-l) + ( (1)- k - 1)(u+ + +()L 1 + ,+ , 1'
I k ( ( " ) + (--1+17u l +1 +
k=1

k:1+1

+ (-1) L+1 u + -u +l+.+ uL+l (-1)+1 zm (l+.-+1/1) 1+1 - m  m U
m 1<i<j<m k=1

Now compare L'(0, Q) with Emi1 log Lp(ui + 1) for P(t) = (1 -
23

1+1-k

l+1-k

t).

•... ( )

ki .
... ( S * *...u km (( ns + ki + + km - 1)

= -'(1) = '



The definition of Fp (u) once combined with a well-known Taylor expansion

log F(u + 1)
00

= -u + (-1)m((m)
m=2 m

gives

dod log rp (u) -du
dd£2P(u) -

du

00

"yP(u) + E(-1)m+1~ (m +
m=1

1) (u - 1)m'P (u).

Finally, we identify L,_t), (0, Q(t + 1)) with

m

log r(1-t), (u + 1) + (-1)L
i=1 (1 +

1

2+

u+1 + + U z+1
• +' 1 m

1+ 1

1)k ()(1(k -1)(uk +. + u km)

and L' (0, Q) = •0 , (-'P')(1)L'(0, Q(t- 1)).
7. The convergence is straightforward.

To compute the value of Lp (1, Q), consider a one-parameter
(25), namely, Lp (s, Q + 7). Clearly,

variation of the series

- L'p(s,Q+r) = -sL'(s + 1, Q + T) - Lp(s + 1, Q + ).

Now specialize s and r to 0. We get

SL' (07 Q + T)

r=0
Then use the formula (27):

= Lp(1,Q).

a 

m

i=1

1 00+ L
2m 1n=1

L'P(ui(0)) ,(7) +rp(u (-r))
n=0o

n=0

P(n+1)(ui(T)) -u'(r)

P(")(1)
n!

(-1)n dn+1 l_ log 2 (tm(Q(1/t _ 1) +,r))(n + 1)! dtn+l (97 t=o
Under the assumption on degree of the polynomial P, the latter sum is trivial, since

8 (- log 2 (tm(Q(/t 1) + T)) =TT.
Clearly, u (r) =
mula (29) below

2 log(t m (Q(1/t- 1) + r)) tm.
tm (Q(1/t - 1) + T)

1/Q'(-ui(7)), in particular, u'(0) = 1/Q'(-ui). We use the for-
to find

a'* = E(--)rn+l (u - 1)m dm
A= Z(=-1)m+1 1) dum

=m. m! dumm=-1

Finally we get the desired identity.

L'(0, Q) =

+(-
k=O

(-1)I
+ l

2m
1<i,j <m k=1

1+1-k'

1+

(-1)n )'(-n)

I I k %

+ n (7) - P

8 w

(u (r))



The operator * admits more descriptions:

Lemma 5.3. 1. Integral formula:

1 j(u) = - - dtdv = j V - dtdv. (28)
2 V J t f11 v- t

2.

S1 + 1 (u - 1)m+l dm
, = (-1)m + 1 1 + -+... -+ (r29) u m

L= k 2 m (m + 1)! dum

3. 00
S= (-1) m+ (1 - (30)

m=1
00 (u-1)n•+l 

d n suhta

where can actually be replaced by any operator = -=1 . (A' ds such that

S ) n (n+(1)! dtn
* = •--]•=i (-I(n+l)! d--

t=1

Proof.
1. Replace p(v) and W(t) by their Taylor series at v = 1 and t = 1 respectively. This

proves the first identity.
2. Replace W(v) and p(t) in the integral by their Taylor series at v = u and t = u

respectively. This proves the second identity.
3. To prove the third one, notice that T = exp d/du, so dm /du m and (1- T-1)m

form two bases for the same space of "pro-differential" operators with constant
coefficients. Then -= -1 Pm(u)(1- T-1)m for some polynomials Pm(u).
Denote d/du by x and 1 - T-1 by N. Then

Pm(u) (u - 1)n+1 x dN
=Pm( 1) (n + 1)! res= Nm+-

resndN are e-z(t-l)dN

Notice, that resN=ON = (- 1 )--n resN N=o n+ . By the assumption on above

(e-x)u-ldN
Pm(u) = - * res= gNm+1

Since N = 1 - e-x, the residue is (-1)m (u1) and Pm(u) = (1)m+1 * (-1u)

APPENDIX A. p-ADIC LOG MULTIPLE GAMMA FUNCTIONS

This appendix is to show, how the above methods can work in the p-adic situation. In
fact, many of the questions considered above become simpler. For instance, the a much more
wide class of functions than entire ones is admissible (note, however, that the set of naturals
is not discrete anymore).

First some explanations, why do we make any difference between the (multiple) gamma
functions the log (multiple) gamma functions. An argument of the gamma function is a
multiplicative character, and the gamma function itself is defined as an integral of the product
of this multiplicative character with a fixed additive character over a cycle.
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The log gamma function is somewhat dual. In a sense, it is an integral of the product of
a pair of homomorphisms from the multiplicative group to the multiplicative and additive
groups of a field over a cycle.

Since the positive integers are dense in the ring ZP, the finite convolution of may be
interpreted in terms of multiplication of formal series as follows

00 00 00g)(n)t = (n)t" g()t"
tZE(f * g)(rt)t~ n 1 f (n) t' -1 Zg(n) t'.

n=1 n=1 n=1

The following lemma may be found in [Ko]. For a convenience, we give a proof.

Lemma A.1. The operator " fu+1  "remains" defined and "becomes" invertible on the space
of power series convergent on the unit disc {ulp, <• 1} C Ci. The inversion is given by the
formula

pm -1

f ý- lim p- m  f(u + k).
m- oo

k=0

Proof. The operator " fu+,' is defined by a series of operators: fu+ = n=o
uWe need to check the convergence for some class of functions.u mWe need to check the convergence for some class of functions.

0 1 dm

M= (m + 1)! dum
m=0O

= Zu Z n+ m an+mr
E  n m +n=O m=O

The operator

00 1 n!
= E n E a n u n-

m=0 (m + 1)! (n - m)! n:0

(n + m) un
0= m=0 00n=1 m=Om+ mn

00

am

m=0

pm-1f ý4 p-m f (u + k)

k=O

sends the monomial un to Bn+1(u+p m )-Bn+1(U) that p-adically tends to B,(u) when m tends
to infinity. Since B (u) = -k= 0 (n)B n - kuk, one can try to prolong this operation to some
power series in u by

00

E anu Hn

n=-0

00

E anBn(u)
n=0O

The only problem is to find some conditions to make series of constants convergent. It is
well-known that the Bernoulli numbers are p-adically bounded for all p 0 cc. This can be
seen as follows.

1 (n) Bn-kPNk
n k-1

In-1 +... + (pN_ 1)n-1

Let N be big enough. Then by the non-archimedean triangle inequality

IpN Bn-1 IP = In-1 +... + (p i)-l•

= Uk n
k=0 n=k

B (pN) - Bn
n

an (nk Bn-k*



We reduce the problem to estimates of some geometric progressions:

p N-1 pN-1

E kn-1=E PNm k -1.
k=l m=1 (k,p)=1

O<k<p m

The multiplicative group Z' is topologically cyclic. Let 0 be its generator. Then for any m

Skn- 1 -
(k,p)=1

O<k<pm

pm-1(p-1)-1

k=Ek=O

ord _(1 - 9 pm-1)(n1)
ord( 1 - On-1

we get

pNBn_ llp =
p-N
pl1-N

1 p m - l ( p - 1 ) ( n - 1 )

Ok(n-1) (modpm) -- 1 - 0pn - )1 (modpm)
1 - On-1

m

if p- 1
if p- 1

if p - 1 does not divide n - 1
if p - 1 divides n - 1

does not divide n - 1
divides n - 1

Finally, Bn-1 lp < p
Thus, whenever the sequence of coefficient (an) tends to zero, the series's ~• =-k an () Bn-k

are convergent and tend to zero, when k tends to infinity.

The p-adic log multiple gamma functions were introduced, probably, by P.Cassou-Nogues.
The asymptotic decomposition of the log multiple gamma function at infinity "becomes"

just a convergent series, and may be used to define the p-adic multiple gamma function. In
particular, for the logarithmic derivative of the usual gamma function

(p)F'(u) gu (_l)kk U-k.
()P(u) log k=l- k

(Proof.

d2d P'(u + 1) (u+ 1)p"(u + 1) - L(u + 1)2
log F (u + 1) = d =

r(u + 1)F'(u + a + 1) - F(u + a + 1)F'(u + 1)
aF(u + a +1)2 a=O

- B(u + 1, a)
du-

I log t -tudt

0 1- t

d
du

f

(F(u+1)F(a)r(u+ a+ 1)

- I lo~t.tu(1~tY~lId 1 tu(1 - t)a-ldt
du 

l a=O
Jo - / (1 - 0 - C1=0

o te- tdt 0B 00 tne-utdt = -n

Je -1- 1 -n=0 •  n=0B -Jn=O n=O

Then integrate to get the asymptotic for log r(u + 1).)
27
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This series is convergent, when considered as a function on the open subset ufp > 1 of
C,. Under the assumption |ulp > 1, one can therefore define (a first approximation to) the
p-adic log multiple gamma function as

U t

log Fp(u) = logu -3P(u)- - P(r)drdt

+ (-1)"( (-1)m+1 Bm+n+i P(m) (0) u-n"  (31)
nEZ,n5 O m>max(-n,O) +n 1 m! n'

where 3P(u) = E_ (-1)n- 1 Bl "(u)p (n - 1) (U) . Then, to modified definition 2.1 for the p-
adic case, we need to find a polynomial operator 5 such that the function log Fp(u) =

OP(u) + log Fp(U) satisfies the property corresponding to (9). Let

m(u) = (_1 )n+m+1 Bm+n+l u -

m+n+1 nn>-m,n$O

Then

Pm(U + 1) = (-l)n+m+ Bm+n+l 1  - : (-n) U-k

n>-m,n$O k>O

= (-1)n+m+l E n - I Bm+n-k+1 -- n

n>-m (O<k+nk n k (n-k)(m+n-k+1)

(1)n+m+ n-n+ E(_l)k+m Bm-k+l
= E (--)•+~lk re+n-k+1 n k(m-k+1)"

n>=-m,nlO (O<k<m+n,k n +n-k+) k=1m

Now we try to find a more convenient formula for the coefficients Cn,m = =0 () Bm+k+l
k km+k+l

for positive n. Clearly, Cn,m is the coefficient of t" in the power series

dtm 1 1n! -et

dtm et - 1 t

Note, that et dm /dt m = (d/dt - 1)m . et, so

dtnd (1 1)

d d _ 1)M 1meetCn,m = dt - - 1 et t O

0 0 n d m t ( l ~ ~ l B k + 1 1 T

Z tndl~ t (( k+ (k + 1)! k (+ 1)!)_
k=t= O=dt---- ' 1 -e - t2

t=0

=- " d- )t  -  (k + 1)! (k + 1)!

= y(_l),•+m,+1 m ("Bk+1 )k+ 1
k-n k+7 (1 k+1--

k=n

= (-l)n+m+1 m Bk+n+l + (_l)k+n
\k k•¥+ k+n+1

k=O
28



= E(_)n+m+l Bk+n+1 + ()m+1 m!n!
k k+n+ 1 (m + n)!

k=O

There is a natural short exact sequence

0 ---+ C( (1) --+ BDR/F 2 BDR c --+ 0,

where B+R is the Fontaine's ring of periods. Following Colmez, it may be defined as the com-

pletion of the field K with respect to a topology, given by the basis pno(l) of neighborhoods

of 0, where OK-algebras O) are defined inductively by
T

O 9)=Ker ( m -1) - 0K

and O) = O0. Clearly, if the ring of integers OL in a field L is a subring of (O9(m ) , then
KK K'

so is O'. In particular, the ring of integers in the maximal unramified extension of K is
a subring of O m) for all m. Then the formula (14) and presence on the logarithm in the

K
last formula suggests that the natural range of the values of the logarithmic derivative of the
gamma function should be at least Bj+/F2 B+

A.1. The adelic log multiple gamma function. In the adelic case the series (31) is
convergent nowhere, so we must choose another approach to define the log multiple gamma
function. Instead, we interpret the formula

n

log Fp(n + 1) = Elogk - P(n - k + 1).
k=1

It is well-known that the logarithm on a field k can be interpreted as follows. Consider a
canonical map

kx ---+ H(Gal(kab/k), Z(1)), a ý-+ (a - (aa,/a,)),

where a, = a and a, = am. Clearly, the cohomology class is independent of ambiguity in
the choice of roots of a. Let W = lip W(FP),

W[Z(1)]] = lim W[/N],

where the limit is taken under the maps induced by the standard inverse system Z(1), and

an element t E W[[Z(1)]] is the difference of the unit in W and a topological generator of

Z(1). The Dieudonnd-Dwork short exact sequence (e.g., [An]):

0 --+ 7(1) -- + 1 + tW[[Z(1)]] --+ tW[[Z(1)]] --+ 0, (32)

where the first map is identical, and the second one is given by the identification of the
sequence (32) with the sequence

0 --+ (1 + t)' --+ (1 + tW[[t]]) x --. tW[[t]] ---+ 0,

where A : H(t) -4 log H(t) - p-1 log HO((1 + t)P - 1) and q is the Frobenius on W(Fp)
acting on the coefficients.



The homomorphism Log gives rise to a linear map
n-1

Maps(N, Z)[N] -+ Hl(Gal(kab/k), Z(1)), (W, n) Logk - o(n - k).
k=1

Clearly,
Logr(W, n + 1) = o(1)Log(n) + LogFr(Tý, n).

APPENDIX B. ARITHMETIC TODD GENUS (ACCORDING TO [GSZ])

This appendix is devoted to applications of the multiple gamma function to arithmetic (or,
if one wishes, differential) geometry. The well-known arithmetic Riemann-Roch theorem of
H.Gillet and C.Sould asserts that the Grothendieck-Riemann-Roch theorem remains valid
in the arithmetic case, if one modifies the notion of characteristic classes, and the notion of
the Todd genus. The arithmetic Todd genus itself was found by D.Zagier. We try to simplify
his calculations, but essentially just repeat them.

Let me remind some of definitions from [GSZ] (see also [F]).
Let X be a quasi-projective flat scheme over Spec (Z). If E is a locally free sheaf over

X, denote by Eo, the associated holomorphic vector bundle over the complex variety Xoo =
X (c).
Definition B.1. The arithmetic K-group Ko(X) is a quotient ring of direct sum of the ring
generated by vector bundles E with a smooth hermitian metric h on the associated holomor-
phic vector bundle E, over Xo invariant under complex conjugation, and the algebra of dif-
ferential forms on X, skew-invariant under the simultaneous action of complex conjugation
on X,, and on the coefficients. The relations are [(El, hi)]-[(E2, h2)]+[(E3 , hs)]-ch(&) = 0
for all exact sequences

S : 0 ---* El -- + E2 -- -E3 ---+O,

where the secondary Chern class ch(E) is any solution of the equation

ddcch(6) = ch(El, h1) - ch(E 2, h2 ) + ch(E 3, h3).

Multiplication is defined as follows:

[(El, h)] - [(E2, h2 )] = [(El ® E2 , hi ® h2 )],

[(E, h)] -w = [ch'(E, h) A w],

[W,1]. [W21 = Lw, A 1w2].

Definition B.2. The arithmetic Chow group CH (X) is generated by pairs (Z, g) of a sub-
variety Z on X and a "Green current" g for the corresponding cycle on Xoo. This means
that ddcg + 6z is a smooth form.

Multiplication is defined as follows:

(Z, gz) - (Z1, gz) = (Z -Z2, 9ZI 6Z2 + 6Z1 •Z2 92 - 9Z1 ' gZ2)

One can define a homomorphism of the rings ch : Ko(X) -+ CH (X), that coincides
with ch when projected to CH*(X).



There is a way to define a canonical hermitian metric on the direct images of any hermitian
vector bundles (cf. [F]) for any proper map. In particular, for an acyclic line bundle this
metric coincides with the L2-metric multiplied by the exponent of the analytic torsion. This

gives rise the direct image homomorphism R f. : Ko(X) --+ Ko(Y) for any proper map
f : X-+ Y.

The arithmetic Riemann-Roch theorem states that for any smooth proper morphism
f : X -+ Y of projective arithmetic schemes with metrized fibers the following diagram
commutes

Ko(X) R * Ko(Y)

ýhO.fd-R(TX/)

CH (X) -. CH (Y),

where R(x) = m> (2('(-m) + ((-m). - (1 + + + ±M -

m odd
The proof is parallel to the proof of Grothendieck-Riemann-Roch Theorem.
All details may be found in the lectures of Faltings [F], except for an explicit calculation

of the arithmetic Todd genus. We try to evaluate it on the projective spaces.

B.1. Chern character of the direct image of the trivial hermitian line bundle on
a projective space. We consider a projective space P', the trivial line bundle Op. with
the trivial hermitian metric on it, and compare two compositions in the diagram above:

ch (Rf, (Op., 1)) and f (Td (Tp-) , where f maps Pi to the point.

The left hand side of the Riemann-Roch theorem is

ch (Rf, (Op., 1)) = -log n! + (-1)q+lq(q(0),
q>0

where C(q (s) = (q (s) and Aq = D OX + 00 is the Laplacian acting on the space of differential
forms of bidegree (0, q) on Pn•

Ikeda and Taneguchi calculate in [IT] the spectrum of the Laplace operator Aq. They get
k(k + n + 1 - q) for all integer k > q as eigenvalues with multiplicities dn,q(k) + dn,q+l(k)
and dn,o(k) = 0, given by the formula

dnqk)=q(n) 1 + 1 (k+n)(k+n-q)
q k k +n+ 1- q n n

Denote by Sn,r(t) such a polynomial that dn,n+l-r(k) = Sn,r(1 - k). Notice that Sn,,(t) is

a polynomial of degree 2n - 1 and Sn,r(r + 2 - t) = -Sn,r(t). So,

Sn,r(t) =(-1)nr(n) (1 •i+r- )(t2) (rt) andr 1 -t r+ 1 -t n n
n

ch (Rf, (Opn, 1)) =- logn! + (-1)q+lq(q(0) - logn! + Z(-1)n+rL's,r(0, r+ 1).
q>0 r=1



By Lemma 5.2

L's,, (0, r + 1) = log r's,,, (r + 1) - 2 S M) (
Sn~~r M! snM) (1)m>1

m odd

Due to the lemma 2.4.1(ii,iii) and 2.4.2 of [GSZ] this equals to

1 n
2 -(-1) r+n

r=1

- coefficient of xn in

1
2+

1
+-1* Sn (r +1)7
2 ,

1 m+l. ) r m+l S(M) (1)+ M (m + 1)! n,,

( ) n+1

2 (n + 1 ) 1 -e n--
S
m>1

m odd

(m(- m)
M!

n
(n)

(t) = (-1)r m + i

rrr=1
n

(-1) r+rm Snr
r=1

I (t-2) n
-t n 7(

r=1
1)rrm+ 1l

(1
1~-t

1 N t-
r+ 1-t (r
nn
r (-1i)r m+l
r=1

n
1 ( r-t

r+ (-t n

2 1Tn+t2) [ 1 (Td/dT)m+1 n! dn/dT" (T- t(1 - T)")
I - tI T=1

+ T-t (Td/dT)m+l n!t d/dT"
o n

(T-t(1 - T)n) dT].

Let me introduce some series of bilinear operations on a class of functions:

1n

*n 2E(
r=O

-1) (n)T-r-1 {(1 - T-')[(r - x)b(x)]}*.

L =1 (A) ) .9
FL = (A + III + 1) - ) -

B.2. The direct image of the arithmetic Todd genus of a projective space.
The following lemma might be of use.

Lemma B.3. * For any pair of a polynomial and a formal power series p, /.

W(d/dx)V(x)
x=0

= 0(d/dx)W(x)
x-=0

* For any power series ~~0 amxm the coefficient of Xn in another power series

amxm )
n dm (u

is equal to amdum
m=O

X - n+11 - e- x
u=0

=

1- () (r - t) + ( - )r n n
(t

t)

(33)

RHS:



Proof. The first is obvious.
For the second one let us find the residue of euzdz at the origin.

(1e-z)ncoordinate 

y = 1 - e-+l we get

coordinate y = 1 - e -z we get

euzdz (1 - y)--1ldy
res= (1 - e-z)n+l = res= yn+1 -

After a change of

( + n
n

Then consider the derivatives at u = 0 of the both sides of the above equality. So

resz=o k (u+n)(1 e-z) n+l  duk n U=o
=0Finally, 

the coefficient of n in

Finally, the coefficient of Xn in

X1 - e-x)1 -e -

f

f(Td (Tn)

= fh T ( by

Denote the last residue by Rn.

amx m )

nE '
is am

m=0

f*(Td(T(n)) - JxM

Irn u+n)dm n ) n

u=0

Td (7i.) R (Fp.)

- resx=o [R(x)(n + 1) (1 - e-Cx-n-l dxl .

Following [GSZ], one calculates Td (Tpn) by the method of [BC]. Let Pn = P(V) is the
projectivization of an (n + 1)-dimensional space V. There is a canonical exact sequence

n : 0 -+ O(p(V) + V ®c O(P(V)(1) -+ T(V) -+ 0 (34)

where all bundles are endowed with the standard metrics, induced by an hermitian form on
V. Then f R

/ -(d R

where

o(n n+1

RP = coefficient of Xn in (n + 1) 1 -I e- +

t = coefficient of Xn+ 1 in 1 ) n+1

1- e -( x

Tdn = coefficient of X" in 1 - n1
1- e-x n1

£ (-m)E((-,m) M
m=1

The secondary Todd class of the exact sequence 4, can be computed as follows. Td (4n)
Denote by

S = -coefficient of Xn in (n + 1) ( ex +1 S((-m)
m>1
m odd

S(11+ -

It is proved in the appendix by Zagier to [GSZ] that

1 n 1n +

r=1 m=1

+1 rmS)(1) =Sntn+TdnS r) S )(1). , = sn + to + Tdn,

1= (n+) + + 2
1+ ---+ - -n,n)

_ ) Xm+...+ M!



verifying the Riemann-Roch theorem for the projective spaces.

REFERENCES

[An] G.Anderson, The hyperadelic gamma function, Invent.Math., 95 (1989), no. 1, 63-131.
[Ar] E.Artin, The gamma function. Athena Series: Selected Topics in Mathematics Holt, Rinehart and

Winston, New York-Toronto-London 1964.
[Ba] E.W.Barnes, On the theory of multiple gamma functions, Trans.Cambridge Philos.Soc., 19 (1904),

374-425.
[BD] A.Beilinson, P.Deligne, Interpretation motivique de la conjecture de Zagier reliant polylogarithmes

et rdgulateurs, Motives (Seattle, WA, 1991), 97-121, Proc. Sympos. Pure Math., 55, Part 2, A.M.S.,
Providence, RI, 1994.

[BG] I.N.Bernstein, S.I.Gel'fand, Meromorphic properties of the functions P1, Funkt.Analiz i ego Prilozh.,
3 (1969), no.1, 84-85.

[BC] R.Bott, S.S.Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic
cross-sections, Acta Math., 114 (1968), 71-112.

[C-N] P.Cassou-Nogues, Analogues p-adiques des fonctions F-multiples, Asterisque, 61, (1979), 43-55.
[C-N1] P.Cassou-Nogues, Valeurs aux entiers negatifs des sdries de Dirichlet assocides a un polyn6me. I, J.

Number Theory, 14, (1982), no. 1, 32-64.
[C-N2] P.Cassou-Nogues, Valeurs aux entiers negatifs des sdries de Dirichlet assocides a un polyn6me. II,

Amer. J. Math. 106 (1984), no. 2, 255-299.
[C-N3] P.Cassou-Nogubs, Applications arithmitiques de l'itude des valeurs aux entiers negatifs des series de

Dirichlet assocides & un polyn6me, Ann. Inst. Fourier (Grenoble), 31 (1981), no. 4, vii, 1-35.
[D] P.Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berke-

ley, CA, 1987), 79-297, Math. Sci. Res. Inst. Publ., 16, Springer, New York-Berlin, 1989.
[Den] Ch.Deninger, On the F-factors attached to motives, Invent.Math., 104, (1991), 245-261.
[DP] J.Dufresnoy, Ch.Pisot, Sur la relation fonctionelle f(x + 1) - f(x) = <p(x), Bull.Soc.Math.Belg., 15,

(1963), 259-270.
[E] Erdelyi et al, Higher transcendental functions, vol. I. Bateman Manuscript Project, New York,

McGraw-Hill, 1953.
[F] G.Faltings, Lectures on the arithmetic Riemann-Roch theorem. Princeton, 1991.
[GSZ] H.Gillet, C.Soul6, Analytic torsion and the arithmetic Todd genus, with an appendix by D.Zagier,

Topology, 30, no.1 (1991), 21-54.
[IT] A.Ikeda, Y.Taneguchi, Spectra and eigenforms of the Laplacian on S n and P"(C), Osaka J.Math., 15

(1978), 515-546.
[I] H.Imai, Values of p-adic L-functions at positive integers and p-adic log multiple gamma functions,

T6hoku.Math.J., 45, (1993), 505-510.
[Ko] N.Koblitz, p-adic analysis: a short course on recent work. London Mathematical Society Lecture

Note Series, 46. Cambridge University Press, Cambridge-New York, 1980.
[KV] M.Kontsevich, S.Vishik, Geometry of determinants of elliptic operators, a short version: Preprint

hep-th/9406140.
[Kl] N.Kurokawa, Gamma factors and Plancherel measures, Proc.Japan Acad.Sci., 68, Ser.A, no.9 (1992),

256-260.
[K2] N.Kurokawa, Multiple zeta functions: an example, Advanced Studies in Pure Math., 21 (1992), 219-226.
[M] Yu.I.Manin, Lectures on zeta functions and motives (according to Deninger and Kurokawa), S.M.F.,

Asterisque, 228 (1995).
[Mo] C.J.Moreno, The Chowla-Selberg formula, J.Number Theory, 228, 2 (1983), 226-245.
[R] M.Rovinskil, Meromorphic functions connected to the polylogarithms, Funkt.Anal.Pril. (in Russian), 25,

no.1 (1991), 88-91.
[Sh] B.V.Shabat, Introduction to complex analysis. Part I, 3rd edition. "Nauka", Moscow, 1985 (in

Russian). (French transl.: Chabat, B. Introduction a l'analyse complexe. Tome 1 "Mir", Moscow, 1990.)
[Va] I.Vardi, Determinants of Laplacians and multiple gamma functions, S.I.A.M. J.Math.Anal., 19 (1988),

493-507.



[Vi] M.-F.Vigneras, L'equation fonctionelle de la fonction zeta de Selberg du group modulaire PSL(2, Z),

Asterisque, 61 (1979), 235-249.
[Vo] A.Voros, Spectral functions and Selberg zeta functions, Comm.Math.Phys., 111 (1987), 439-465.

[W] A.Weil, Elliptic functions according to Eisenstein and Kronecker. Ergebnisse der Mathematik

und ihrer Grenzgebiete, Band 88. Springer-Verlag, Berlin-New York, 1976.

[WW] E.T.Whittaker, G.N.Watson. A course of modern analysis. Cambridge, 1962.


