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Abstract

As for toric varieties, with any projective spherical variety is associated a convex polytope,
and any facet of this polytope is defined by a prime divisor stable under a Borel subgroup
[4]. In this paper we use the moment map to prove, for certain smooth projective spherical
varieties, two characterizations of the facets that are defined by divisors stable under the full
group action. As a corollary we get a necessary criterion for certain symplectic manifolds with
multiplicity-free Hamiltonian group actions to admit invariant compatible Kiihler structures.
In cases when the group acting is SO(5), we prove that the criterion is sufficient as well as
necessary, and show that the existence of a compatible Kiihler structure invariant under the
action of a maximal torus implies that there exists a compatible Kihler structure invariant
under the action of SO(5).
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1 Introduction

Most of the standard examples of Hamiltonian actions arise from projective varieties in the

following way: Let K be a compact connected Lie group acting on projective n-space P'

via a unitary representation K --+ U(n + 1). If one gives Pn a symplectic structure via the

Fubini-Study form, then the action of K on P' is Hamiltonian, and any smooth K-invariant

sub-variety M C P" inherits the structure of a Hamiltonian K-manifold from Pn. Naturally

one wants to know what class of Hamiltonian actions arise in this way, and to phrase a

related question, what class of Hamiltonian actions admit an invariant, compatible Kihler

structure.

One expects the answers to these questions to depend on the "degree of symmetry" of



the symplectic manifold in question. For instance, by the results of Thurston, McDuff, and

Gompf and Mrowka (see e.g. [13],[14]), we know many examples of symplectic manifolds

without group actions that admit no compatible Kihler structure. On the other hand, as

observed by Kostant and Souriau, transitive Hamiltonian actions of compact groups are

coadjoint orbits, and therefore Kihler. Coadjoint orbits are examples of multiplicity-free

Hamiltonian actions, which are a class of symplectic manifolds with very high symmetry.

Multiplicity-free torus actions were studied by Delzant (under the name completely integrable

torus actions) who showed that, under certain assumptions, each of these actions admits an

invariant compatible Kihler structure.

The idea of this paper is to study the existence of invariant Kifhler structures on a class of

Hamiltonian actions which in a previous paper [40] we more or less classified: multiplicity-

free actions whose moment maps are transversal to a Cartan subalgebra (which we call

transversal multiplicity-free actions.) Under certain assumptions, these actions are in one-

to-one correspondence with a collection of convex polytopes which we call reflective Delzant

polytopes. The correspondence is given by assigning to a compact connected Hamiltonian

K-manifold M with moment map 4 : M --+ e* its Kirwan (or moment) polytope, which is

the intersection

A = D(M) n t*

of '(M) with a closed positive Weyl chamber t_. In [41] we show that not all of these actions

admit invariant, compatible Kihler structures.

The main result of this paper is a necessary criterion, in terms of the polytope A, for

certain transversal multiplicity-free actions to admit invariant compatible Kifhler structures.

Let A be a convex polytope in t., and let V(A) denote the set of inward pointing normal

vectors to facets of A. (The elements of this set are unique up to multiplication by positive

scalars.) We say that a facet F C A with inward-pointing normal vector VF is negative if

VF lies in -t+. For each simple root a E t*, let H, C t* denote the hyperplane defined by

(a, .) = 0, where (.,-) is an invariant inner product on t. Our criterion is

Theorem 1.1 Let K be a compact connected Lie group with center Z, and let M be a com-



pact, connected, transversal, multiplicity-free Hamiltonian K-manifold, with discrete princi-

pal isotropy subgroup. Let A C t* denote the Kirwan polytope of M, and assume that An H,

is non-empty for all simple roots a. If M admits a compatible invariant Kdhler structure,

then a facet F is non-negative if and only if F contains A n H for some simple root a.

Furthermore, the number of non-negative facets is less than or equal to 2 rank K/Z.

Since many Hamiltonian actions do not satisfy this criterion, the Theorem implies that

the symplectic category is much larger than the Klihler category in this highly symmetric

situation.

The idea of proof is to show that after perturbing the symplectic form, and replacing the

complex structure, we can assume that M is a projective K-variety. By an observation of

Brion [4], any smooth multiplicity-free projective K-variety is spherical; that is, if G denotes

the complexification of K, then a Borel subgroup B C G has a Zariski-open orbit. In this

case, each facet F of the polytope A corresponds to a (not necessarily unique) B-stable

prime divisor in M. The main idea is to identify the B-stable divisors that are not G-stable

in two different ways: 1

Theorem 1.2 Let M be a smooth projective K-variety satisfying the assumptions of Theo-

rem 1.1. A facet F C A corresponds to a B-stable prime divisor that is not G-stable if and

only if

1. F contains A, n Ha for some simple root a; if and only if

2. F is non-negative.

We should emphasize that because of the assumptions this result does not apply to many

spherical varieties. However, Theorem 1.2 does apply to several well-known examples that

arise in representation theory, such as the flag variety GL(n + 1, C)/B under the action of

GL(n, C) (Gelfand--Zetlin system) and similarly the generalized flag variety of SO(n + 1, C)

SAnother way of identifying these divisors begins with the knowledge of the generic stabilizer H C G.
However, because we want to deduce results about the existence of complex structures, we will always work
without knowledge of H.



under the action of SO(n, C) (at least for a generic projective embedding.) Other examples

will be given later.

The main ingredients in the proof of characterization (1) are Brion's expression for the

polytope associated to a line bundle over a spherical variety [4], and the stability of the

transversality condition under perturbation. Characterization (2) is derived from Knop's

definition of the little Weyl group of a G-variety [25]. The bound in Theorem 1.1 follows

from the fact that for a simple, reflective polytope A and simple root a, there are most two

facets F± of A satisfying F± D A n H,.

In the second half of the paper we prove a sufficient criterion for the existence of an

invariant Kihler structure. For certain actions of SO(5), we show that our existence and

non-existence results combine to give a complete answer, and that our criterion is equivalent

to a criterion for the Kihlerizability of Hamiltonian torus actions due to S. Tolman [39]. The

main result is

Theorem 1.3 Let K be SO(5) with maximal torus T C K, and M a Hamiltonian K-

manifold satisfying the assumptions in Theorem 1.1, and assume that M is torsion-free.

(This term will be defined in the next section.) Then the following conditions are equivalent:

1. M admits a compatible K-invariant Kahler structure.

2. M admits a compatible T-invariant Kdhler structure.

3. The Kirwan polytope A of M satisfies the necessary criterion in Theorem 1.1.

In particular, in this case the criterion in Theorem 1.1 is sufficient as well as necessary.

We hope that the results of this paper might be extended in several ways. First, under

the assumptions of Theorem 1.2 one might hope to identify the generic stabilizer H, and

perhaps even compute the colored fan from the polytope. This would give alternative proofs

to many of the results in this paper. In particular, one would like to show that any two invari-

ant complex structures compatible with the symplectic form are related by an equivariant

complex automorphism. One would also like to know whether the criterion in Theorem 1.1

is sufficient for actions of higher rank groups.



2 The definition of a spherical variety

Let G be a connected complex reductive group, with Borel subgroup B C G. A G-variety

X is called spherical if B has a Zariski open orbit.

Recall that to any connected G-variety X and G-line bundle L we can associate a convex

set A(L) C t* as follows. For any dominant weight A E t we denote by VX the corresponding

irreducible representation. (Here we assume that we have chosen the chamber t_ so that

it contains the weight of any B-eigenvector in a finite-dimensional representation of G.)

Following Brion [4] we define

A(L) = { V C HO(Ln), some n E Z+}. (1)

One can show, by tensoring highest-weight sections, that the set A(L) is convex. Now let

K C G be a maximal compact subgroup with maximal torus T as before. If X is smooth

and compact, w E 'l(X) is an invariant positive form representing the first Chern class

of L, and D is a moment map for the action of K on (M, w) then up to a central constant

A(L) equals the Kirwan polytope 4(X) n t_. This is an easy consequence of "quantization

commutes with reduction" (Guillemin-Sternberg multiplicity formula) [36, 34]. 2

If X is spherical, then it follows from work of Brion [5] that the facets of A(L) are defined

by B-stable prime divisors in X:3 For any B-module V let V(B) be the set of non-zero B-

eigenvectors in V. For any element v E V(B), we denote by x(v) : B -+ C* the associated

character of B, which we identify with a weight in t*. Let C(X) denote the field of rational

functions on X. The set of B-eigenfunctions C(X)(B) has the structure of an abelian group

under multiplication, and since X is spherical, we have an exact sequence

C* -+ C(X)(B) 4 t*.

2Similar results should hold for non-compact X, provided the map I is proper.
3This was pointed out to me by F. Knop.



The image A = x(C(X)(B)) is a lattice in t*. The rank of X is the dimension of A.

Now let D(X) denote the set of B-stable prime divisors in X. Each element D e D(X)

defines a valuation

VD : C(X) -+ z

measuring the order of vanishing of any rational function at D. By restriction to C(X)(B),

the divisor D defines an element of Homz (A, z) which we also denote by VD.

Remark 2.1 The map V(X) --+ Homz (A, Z) given by D vD is not in general injective,

e.g. for X = P' x P' and G = SL(2, C).

Let C(L) denote the space of rational sections of L, and assume that H°(L) C C(L) is non-

trivial. Since Ho(L) is locally finite [28, p. 67], there exists a B-eigensection a E Ho(L)(B)

which defines an isomorphism

C(X)(B) n C(L)(B), f f 0 a.

For any element D e D(X) we denote by VD(a) the order of vanishing of a at D. An element

f ® a E C(L)(B) is a global section if and only if

VD(f) + VD(U) > 0 for all D E D(X).

One sees that

A(L) =: X(a) + {X EA ®z RI VD(X) Ž -VD(O), for all D e D(X)} (2)

=: {x E A ®z R VDo(x) -VD(O) + VD(X(a)) for all D E D(X)}. (3)

Since X is spherical, the set D(X) is finite so that (3) expresses A(L) as a finite intersection

of half-spaces. It follows that if F is a facet of A(L) then there exists a divisor D E D(X)



such that F = A r-1 HD where

HD = {x c A z R IVD (X) = -VD(U) + VD(X(a))}. (4)

We call any D with F = A n HD a divisor corresponding to F.

Remark 2.2 There are two important differences from the toric case:

1. The divisor D is not necessarily unique, and

2. Not every set of the form (4) is a facet, even if the line bundle L defines a projective

embedding of X. See the example in Section 8, and also Lemma 5.3.

2.1 An example from representation theory

To get an idea of how these definitions work in practice, we give in the simplest case Brion's

proof of "Pieri's formula" (see [6, Section 2].)

Theorem 2.3 Let G = GL(n, C), let V denote the standard representation of G, and

S(V*) denote the. representation of G on polynomials on V. For any dominant weight

A = (Ai,..., An) - Zn , Ai Ž> Ai+ 1 for i = 1,...,n - 1, let VX denote the irreducible rep-

resentation of G with highest weight A. Then

S(V*) 0 V= GV,.
............ ... ,Ln)

Ž1 2>ŽA > 2Ž ...>hPn>An

Let B (resp. B+) denote the Borel subgroup of lower (resp. upper) triangular matrices

in G. Let X be the variety V x G/B+ and L the line bundle 7r*LA, where LA = G x B+ CA is

the line bundle over G/B+ with Ho(LA) = VA, and 7r2 : V x G/B+ -+ G/B+ is the projection

onto the second factor. The global sections Ho(L) of L form the representation S(V*) 0 VA.
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Figure 1: The case n = 2

We will consider the simple case n = 2, in

three B-stable prime divisors. Let (z, w) where

for C2 x Pl. The three B-stable divisors are

which X - C2 x Pl. In this case there are

z = (z1 , z2) and w = [w1, w2] be coordinates

Di ={zi = 0}, D2 ={wl= 0}, and Da = {zEw}.

Only the divisor D)3 is G-stable. One checks that the corresponding valuation vectors vi e t

are

vi = (1,0), v2 =(0,-1), and v3 =(0,1)

and that the B-eigenvector a E HO(L)(B) with x(a) = A is given in homogeneous coordinates

by

U(z, w) = wAw2

We have

v1(a) = v3((a)= 0, and v2(a)= A1 - A 2

H3



which implies that

x(HO(L)(B)) = {p Z I v(p) > A1, v2 (P) >-A 1 , V3(01) Ž A2}

={ Z2 1 pi 2 > 2 }

as required. The hyperplanes

Hi = {p E R2 1 vi() = -vi() + vi(x(o))}, i = 1,2,3

are drawn in Figure 1.

One can prove Theorem 2.3 for any n in a similar way. To get a compact example one

could replace X = V x G/B+ with P(VEC) x G/B+. The flag variety GL(n+ 1, C)/B+(n+ 1)

is also a G-equivariant compactification of X.

3 Multiplicity-free Hamiltonian actions

In this section we will review the symplectic geometry needed to prove Theorems 1.1 and 1.2.

A complex representation V of a compact connected Lie group K is called multiplicity-free

if each irreducible representation appears at most once in V, or equivalently, if the algebra

EndK(V) of K-equivariant endomorphisms is abelian. A Hamiltonian K-manifold M is

called multiplicity-free if the set C' (M) of K-invariant smooth functions forms an abelian

Poisson algebra [17]. That is, for any fl, f2 E C'(M) we have {f,, f2} = 0. Let G be the

connected complex reductive group that is the complexification of K. Brion has noted that

Proposition 3.1 (Brion [4]) Let M C pN be a smooth projective G-variety. Then M is a

multiplicity-free K-manifold if and only if M is a spherical G-variety.

There is an important, alternative definition of multiplicity-free in terms of symplectic

reduction. Recall that if M is a Hamiltonian K-manifold with moment map 4) : M -+ *,

then for each coadjoint orbit Kx C f*, x E t* there is an associated Marsden- Weinstein



symplectic reduced space M, defined by

Mx = b-1(Kx)/K.

If x is a regular value of 4P then Mx is a symplectic orbifold.

Proposition 3.2 (Sjamaar) A compact connected Hamiltonian K-manifold is multiplicity-

free if and only if Ms is a point for any x E C*. If the principal isotropy subgroup is discrete,

then M is multiplicity-free if and only if dim M = dim K + rank K.

That this holds not only for generic x is a consequence of the fact that singular reductions

have the structure of "stratified symplectic spaces" as in [37]. See also [40, Proposition A.1].

By Proposition 3.2, a compact connected Hamiltonian K-manifold M is multiplicity-free if

and only if the map ( induces a homeomorphism M/K E A. (See [4] for the proof when

M is a projective K-variety.) The decomposition of M/K into orbit-types is related to the

face decomposition of A:

Lemma 3.3 (Delzant) Let M be a compact, connected multiplicity-free K-manifold with

discrete principal isotropy subgroup, and F C A an open face contained in the interior (t*)'

of t+. Then the Lie algebra •m of the isotropy subgroup Km of any point m e I-I(F) equals

the annihilator F' C t of F. Furthermore, if the principal isotropy subgroup is trivial then

Km is connected.

For a proof see [12] or [40, Lemma 3.2]. In particular, a face F C A n (t*) ° is a vertex of

A if and only if '-1(F) is a T-fixed point.

Remark 3.4 Describing the orbit types of points in ( -(F) C 0t* is in general an open

problem. For the transversal case, see [40, Theorem 7.2].

Note that if M is a connected Hamiltonian G-manifold, then the principal isotropy sub-

group (which in general is only defined up to conjugacy) is fixed by the choice of maximal

torus and positive chamber ti. Indeed, there exists a face a of tý such that D- (Ka) is



connected and dense (see [30, Theorem 3.7]), and we define the principal isotropy subgroup

of M to be the isotropy subgroup K, of any point x in the principal orbit-type stratum for

the action of Kr, on 4-'(u). Since Kx contains the semisimple part of K, (see [30, Remark

3.10]) Kx is independent of the choice of x. Th6 following conjecture has been proved in

many cases [11, 23, 12, 40]:

Conjecture 3.5 (The Multiplicity-free or Delzant Conjecture) Let M1 and M2 be

compact connected multiplicity-free Hamiltonian K-manifolds with the same Kirwan polytope

and the same principal isotropy subgroup. Then M1 and M2 are equivariantly symplectomor-

phic.

Remark 3.6 A. Knutson points out that the statement fails if one allows M1 and AM2 to have

singularities. Also, F. Knop has observed that a multiplicity-free Hamiltonian K-manifold

may admit invariant complex structures that are not equivariantly isomorphic. The simplest

examples are the SL(2, c)-spherical varieties PI x P1 and SL(2, C) X B P1 which are SU(2)-

equivariantly symplectomorphic for suitable choice of symplectic forms.

If the conjecture holds, it suggests that geometric properties of multiplicity-free actions

should be "translatable" into the language of convex polytopes. We call a Hamiltonian K-

manifold transversal if the moment map is transversal to a Cartan subalgebra. There is a

characterization of transversality in terms of isotropy subgroups (see [40, Lemma 2.2]):

Lemma 3.7 (Guillemin-Souza) Let M be a Hamiltonian K-manifold, and a C t* any

face of the positive chamber. Then D is transversal to t* at 4-V (a) if and only if for any

x E o the semisimple part (Kx, Ký,) of Kx acts locally freely on 4-'(x), or equivalently, if (P

is transversal to u.

The main result of [40] is that transversality has the following description in terms of convex

polytopes: For each x E A we denote by H(x) (resp. V(x)) the set of hyperplanes in t*

intersecting A in facets meeting x (resp. inward pointing normal vectors to these facets.)

The polytope A is called simple if V(x) is linearly independent, for all x e A. We call A

reflective if



1. the set H(x) is W,-invariant, for all x e A, and

2. the intersection A f t* is a union of faces of codimension at least 2.

Here W denotes the Weyl group of T C K, and We the isotropy subgroup of x.

Theorem 3.8 [40] Let M be a compact, connected multiplicity-free K-manifold with Kirwan

polytope A and discrete principal isotropy subgroup. If M is transversal then A is simple

and reflective.

In fact the converse is also true, but at this point our proof is too technical to publish.

For the proof of the bound in Theorem 1.1 we will need the following combinatorial

result on reflective simple polytopes. For any convex polytope A, let H(A) denote the set

of hyperplanes intersecting A in facets.

Proposition 3.9 [40, Proposition 5.1] Let A C t*+ be a simple reflective convex polytope and

a a simple root such that A meets the hyperplane Ha. Then there are exactly two elements

H+ eH (A) such that H± contains An Ha. The corresponding normal vectors v± E t satisfy

(v±, a) > 0, and the intersection A n H+ n H_ equals A n Hf .Any other element of H(A)

meeting H, n An intersects H0 transversally.

Finally in Section 8 we will need the following definitions. We call a transversal Hamilto-

nian K-manifold torsion-free if (Kx, Kx) acts freely on (-'(x) for all x E A. If (Kx, Kx) is

simply-connected, we call A Delzant at x if V(x) extends to a basis of the lattice exp-'(Id),

where exp : t -+ T7 is the exponential map. Otherwise, we say that A is Delzant at x if the

conditions in [40, Remark 10.2] hold. We call A Delzant if A is Delzant at all x E A.

Theorem 3.10 A compact connected transversal multiplicity-free K-manifold with trivial

principal isotropy is torsion-free if and only if A is Delzant.

This is proved in the case 7r,((K,, K,)) = {1} in [40, Theorem 6.2].



Theorem 3.11 [4'0] The map M -+ A(M) induces a bijection between compact connected

transversal torsion-free multiplicity-free K-manifolds with trivial principal isotropy and re-

flective, Delzant polytopes.

In particular, Delzant's conjecture 3.5 holds for these actions.

4 Algebraization

The main goal of this section is to show that in the proof of Theorem 1.1, we can assume

that M has the structure of a smooth projective variety. Proposition 4.4 is also used in the

proof of Theorem 1.2. Our first result in this direction is

Proposition 4.1 Let (M, w) be a compact Hamiltonian K-manifold and J an invariant

compatible Kdhler structure. Suppose that the fixed points of a maximal torus T are isolated.

Then there exists a perturbation 0 of w, an integer n E N, and an invariant compatible

Kdhler structure J such that (M, no, J) embeds in projective space.

Proof - Since M admits a C*-action with isolated fixed points, then by the results of Carrell-

Liebermann [10] or Carrell-Sommese the cohomology HJ(M) vanishes unless i = j. In

particular, H 2',0 (M) HO'2(M) vanishes, so there exists an invariant perturbation of 0 of

w such that E Q"1'(M) and [a] e H 2 (M, Q). Since e 1Q',', the pair (0, J) defines an

invariant Kidhler structure on M. Let n, e Z be an integer such that [niY] E H 2 (M, 7Z).

Let L be a holomorphic metric line bundle with invariant connection and curvature 0 [15,

p. 149]. By the Kodaira embedding theorem, there exists an integer n2 E N such that the

sections of Ln2 give an equivariant embedding i : M --+ pN of (M, J) in projective N-space.

Let wFS denote the Fubini-Study 2-form. Unfortunately, i*WFS will not usually equal n1 n2 o.

However, the metrics i*WFS(', J.) and n1 n20(., J.) are positive definite. If Wt is the invariant

closed 2-form defined by

wt = ti*WFS + (1 - t)n 1 n2 o



then for t E [0, 1] the metric wt(-, J.) is also positive definite, and so wt is symplectic for

t e [0, 1]. Furthermore, wo is cohomologous to wl, so by Moser isotopy (see e.g. [33, p. 91])

there exists a K-equivariant symplectomorphism

ý : (M, i*wFS) - (M, n1n2).

Defining J = ~*J and n = n1 n2 completes the proof. 0

To apply this result to Kdihler multiplicity-free actions, we need to note that if M is a

compact multiplicity-free K-manifold, then any maximal torus T C K acts with isolated

fixed points. Indeed, let MT denote the T-fixed point set. Let m E MT and let N C MT be

the connected component of MT containing m. The image ID(N) lies in t*, by equivariance of

(, and because N is a smooth connected symplectic submanifold on which T acts trivially,

in fact (I(N) equals I(m). Since M is multiplicity-free,

-1(¢(m)) - Kt(m)/Km

and it is known that the fixed point set of the action of T on any K-homogeneous space is

finite.4 In case M is transversal, one can argue alternatively that D(MT) C *eg and so MT

is discrete by Delzant's Lemma 3.3.

Combining with 4.1 and 3.1 we have proved that

Corollary 4.2 Any compact connected multiplicity-free K-manifold which admits an in-

variant Kdhler structure admits (after a perturbation) the structure of a projective spherical

variety.

Remark 4.3 These arguments work only if M is compact. For results in the general case,

see [21].

We want to check that certain properties and invariants of the Hamiltonian K-manifold

M are invariant under perturbation.

4In fact the fixed point set has a transitive action of W, as was pointed out to me by F. Knop.



Proposition 4.4 Let (M, w) be a compact connected Hamiltonian K-manifold, and t '-4 wt

an (affine) linear map of Rk into the space of closed, K-invariant 2-forms on M, with wo = w.

There exists a linear map t " t such that each Dt : M -- e* is a moment map for the action

of K on (M, wt). There also exists a neighborhood, U, of 0 E R' such that for t E U

1. the form wt is symplectic.

2. If (o is transversal to t*, then

(a) 1 t is transversal to t*;

(b) if (o(M) meets a face o C t* then Jt(M) does; and

(c) if M is multiplicity-free and has discrete principal isotropy then V(At) = V(Ao).

Proof - The existence of (t follows from the discussion on [2, p.23], by which the contraction

z(XM)wt is exact for any X E e and t e Rk. It follows that for any t there exists a map

)t : M -4 * such that z(XM)wt = d(, X). The map (t may be made equivariant by [20,

Section 26]. To construct a linear map t " )t, choose a basis tl,... , t, for Rn, construct (It,

as above, and define 41)t for arbitrary t by linearity.

Statement (1) follows from the compactness of M, and the fact that the set of non-

degenerate 2-forms on TnM is open, for any m E M. Statement 2(a) follows from a similar

argument. By Lemma 3.7 Io is transversal to a, and so any perturbation of (o also meets

u, which shows 2(b).

The proof of 2(c) uses the correspondence between lines perpendicular to facets of An(t* )
with one-dimensional isotropy subgroups of T acting on

Y+ := +

For any subset S C- M let I(S) C P(t) denote the set

I(S) = {ts s E S,dimT. = 1}



of Lie algebras of 1-dimensional isotropy subgroups of T acting on S. Let

N(A) = {Ho E P(t) I HE H(A), Hn A (t*+) :0}

denote the set of normal subspaces to hyperplanes meeting A in interior facets. By Delzant's

Lemma 3.3,

I(Y+) = N(A). (5)

The following lemma shows that one can replace Y+ in (5) by a small neighborhood of Y+

in 4V-1(t*e•g). If M is transversal, even more is true: one can replace Y+ by a neighborhood

of Y+ in M.

Lemma 4.5 Let M be a compact connected multiplicity-free K-manifold with polytope A

and discrete principal isotropy subgroup. Then

1. for a sufficiently small neighborhood U of Y+ in -(eg), we have I(U) = I(Y+) =

N(A), and

2. if P is transversal to t* then for a sufficiently small neighborhood V of I-1(t_) in M

we have I(V) = I(Y+) = N(A).

Proof - Let m be a point in U with dim tm = 1 and k e K an element such that km E Y+.

By definition of Y+ we have that Tkm = kTmk - 1 is contained in T. Let v be a non-zero vector

in t km. Then Ad(k)v E t which implies that Ad(k)v e Wv. Since (I-'(e* eg) is isomorphic to

K XT Y+, we can assume that U is of the form UKY+, where UK C K is a neighborhood of

T such that UK n N(T) = T. Thus Ad(k)v = v and tkm = tm which shows (1).

Now assume that 4I is transversal to t*. Let a C t* be a face and let K, denote the

isotropy subgroup of any point in a, K,8 its semisimple part, e~" the Lie algebra of Kg8 ,

and ir : * --+ (e8")* the projection. A simple check shows that I is transversal to eC, so

that 4D-1(t*) is a smooth submanifold of M. Lemma 3.7 implies that the restriction of 4 to



I -r (e~) is transversal to the center z, of e~*. That is, the map

7r, 0 | -(;

is transversal to 0. Since 7r, o ,I|-1(;) is K,-equivariant, its fibers are K,.-diffeomorphic in

a neighborhood of (r, 0o )-1(0).

Let m be a point in V such that dim tm = 1, and k e K be such that 4(km) e t_. Then,

as before, tkm = wtm for some w E W. We can assume that V is a union of sets of the form

V, Y, ý- V, xK, Y ., where

1. VO, is a neighborhood of K, in K such that V, n N(T) = K, n N(T),

2. YO, is a K&-invariant neighborhood of a point x E '-l(a) in - 1(),

3. the fibers of the map (7r, o (D) I|y are K,-equivariantly diffeomorphic, and

4. the image 'I(Y,) n t( meets only those faces H, such that H" contains a.

Suppose that m lies in V0 Y,, so that w has a representative k' e K0 . The point k'km lies in

YO, and tk'km equals tin. By definition of Y, there exists a point m' E Y, n Y+ such that

tin, = tk'km= tm

as required. O

Now we finish the proof of 2(c). Let

(r+)t := 4t(t))

let Ut be a neighborhood of (Y+)t in (I- 1(e eg) = K(Y+)t and Vt a neighborhood of (Y+)t

in M. Since (Y+)o contains only a finite number of orbit-types, we can choose a compact

subset Z C (Y+)0 such that I(Z) = I((Y+)0). For t sufficiently small, Z C Ut and so by (1)

of the Lemma,

N(Ao) = I(Z) Cg I(Ut) = N(At). (6)



On the other hand, for t sufficiently small (Y+)t C Vo and so by (2) of the Lemma

N(At) = I((Y+)t) C I(V0) = N(A0). (7)

Since the polytopes At are reflective RV(At) = N(At) so by (6) and (7) RV(At) = RV(A 0 ).

That is, given any facet F of A we can find a facet Ft of At such that F° = Ft, and vice-

versa. By taking t small we can assume that Ft is close to F, and in this case Ft and F must

have the same normal vector.

Remark 4.6 Using 2(c) one can simplify the proof of Proposition 4.2 in [40].

5 Review of the Luna-Vust classification

In this section we review the Luna-Vust classification theorem and related results of Brion.

In fact, the results in this section are not needed for the proofs of Theorems 1.1 or 1.2, but

they provide an important background for the results about the little Weyl group covered in

the next section.

Let G be a connected complex reductive group and X a spherical G-variety. Let x E X

be any point in the open B-orbit, and H = Gx its isotropy subgroup. Then' X is an

equivariant embedding of the homogeneous space G/H. The Luna-Vust theory classifies

such embeddings by a combinatorial invariant of X called the colored fan. Let V (X) denote

the set of B-stable prime divisors in X. For each G-orbit Y C X, let Cy c Homz (A, Q) be

the cone on the vectors VD, for D e 1D(X) containing Y. Let Ey denote the set

Ey = {D E D(G/H) I D D Y}.

The pair

Cy = (Cy, Ey)



is the colored cone associated to Y. The set

.F(X) = I Y C X}

is the colored fan of X. Note that if D C X is a G-stable divisor, then the corresponding

valuation VD is G-invariant. Let VG C Homz(A, Q) denote the image of the set of G-

invariant discrete valuations (with rational values) on C(G/H) - C(X). It is a convex cone

containing Homz (A, Q) n -t+ (see [24, Corollary 5.3].) A pair (C, E) with C C Homz (A, Q)

and E C D(G/H) is called a colored cone if

1. C is generated by vectors VD with D E E, together with finitely many elements of VG.

2. The interior C° of C intersects VG.

A colored cone (C, E) is called strictly convex if C is strictly convex, and VD # 0 for D E E.

A colored cone (C', E') is called a face of (C, E) if C' is a face of C, and E' = {D E EI VD E

C'}. A colored fan is a non-empty finite set F of colored cones such that

1. If CC E F, then every face of Cc lies in F.

2. For every v E VG there is at most one (C, E) e F such that v E C.

A colored fan F is called strictly convex if each colored cone in F is strictly convex. For the

following see also [24, Theorem 3.3].

Theorem 5.1 (Luna-Vust [31]) The map X '-+ F(X) induces a bijection between iso-

morphism classes of embeddings and strictly convex colored fans.

Define

C(X)= U c.
(C,E)EF

The variety X is complete if and only if C(X) contains VG [24, p.12].

For projective spherical varieties, the colored fan is related to the fan of the polytope of

the hyperplane bundle. Recall that if A is a convex polytope, its associated fan F(A) is the



set of dual cones to faces of A. Here the dual cone to a face F' of A is the cone generated

by normal vectors VF to facets F of A containing F'. The following results are due, in a

somewhat different form, to Brion [4].

Lemma 5.2 Let X be a projective spherical G-variety of maximal rank with polytope A,

generic stabilizer H, and colored fan F. Then the set C(X) of cones C1 such that (Ci,El) E

F for sorhe E, C D(G/H) equals the set F(A, VG) of cones C2 in T(A) such that C2 n VG

is non-empty.

For the proof we will need the following Lemma.

Lemma 5.3 Let X be a projective spherical G-variety with polytope A = A(L), where L is

the hyperplane bundle, D e D(X) a divisor corresponding to F, HD C A ®z R the hyperplane

defined by D as in Equation (4), and Y C X a- G-orbit. Let Ay = Av(L) denote the

polytope of the restriction of L to Y as in Equation (1). Then D contains Y if and only if

HD contains Ay.

Proof - This follows from Brion's [6, Theorem p.409]. Alternatively, by Equation (4) HD

contains Ay if and only if any element s of Ho(Ln)(B) zero on D also is also zero on Y, for

any n E N. By [24, Corollary 1.7] (where we let v0 be a valuation with center Y), this holds

if and only if any global section s of L n vanishing on D vanishes on Y, for any n E N; that

is, Y is contained in D. 0

Proof of Lemma 5.2 - First, note that A3 is a face of A. Indeed, the locus of vanishing of a

section s E HO(L)(B) is the union of D E V(X) such that VD(S) > 0. Since D(X) is finite,

s does not vanish identically on Y if and only if VD(s) = 0 for every D e V(X) containing

Y. Therefore,

A= = AN N HD.
DDY

It follows from Lemma 5.3 and Equation (3) that the dual cone to Ay equals Cy, which

implies that C(X) is contained in F(A, VG). Conversely, since X is complete, C(X) must

contain VG and so any C2 E F(A, VG) of maximal dimension must be contained in C(X).



Any other cone in F(A, VG) is the face of a cone C2 E F(A, V G) of maximal dimension and

so contained in C(X). 0

Remark 5.4 The proof of Lemma 5.2 shows that if X is a projective spherical variety with

polytope A and G-orbit Y, then AT is a face of A. If X is smooth, transversal, and maximal

rank, then the face AT intersects the interior (t_)° of the positive chamber. Indeed, let a C t*

be a face of maximal dimension intersecting cI(Y), so that Y is locally contained in I - (a).

Let y E Y n I-(a) be any point; then the tangent space to the orbit (K, K ,)y lies in TyY,

since Y is K-invariant, but also lies in the symplectic orthogonal to TyY, by definition of

the moment map. By Lemma 3.7, Ty((K,, K,)y) is of positive dimension, which contradicts

that Y is a complex and therefore symplectic submanifold of X.

6 Little Weyl groups and collective functions

In this section we will make an application of Brion and Knop's theory of the little Weyl group

of a projective G-variety to the smoothness of invariant collective functions. This application

was suggested by Knop [26]. For the following, see Brion [7] or Knop [25, Theorem 1.3].

Theorem 6.1 (Brion, Knop) Let G be a connected complex reductive group, X a spherical

G-variety and VG (X) C Homz(A, Q) the cone of invariant valuations. There is a finite

reflection subgroup Wx C W such that VG(X) is a fundamental domain of Wx acting on

Homz (A, Q).

Brion and Knop's definitions of Wx are quite different, and one of the main results of

[25] is that the definitions agree. For simplicity we present Knop's definition of Wx in the

case that X is maximal rank. The variety X need not be spherical. Recall that the rank of

a G-variety is the dimension of the lattice of characters X(C(X)(B)).

Let ThX denote the bundle of holomorphic cotangent vectors. The action of G on X

induces a holomorphic moment map : Th -+ ~*. Let I C g be the complexification of the

real Cartan subalgebra t C e. Composing with the quotient map qh : g* -+ *//G c- */W we



get a morphism : Th* -+ */W. We form the fiber product

T*(X) x(./w 1*

T (X) *

_ýhý qh

r* / W

Because X is maximal rank, one can show that the inverse image 7 (e) is non-empty, and

that the morphisra 7r1 is a ramified cover with generic fiber W. The fiber product TX x•.w*

may have several irreducible components, which are closures of the components of 7r1 (l*)

and are permuted transitively by W. By [25, p. 317] there is a distinguished component T*

of TX x L /W [*, called the polarized tangent bundle. The little Weyl group Wx C W is the

set of elements w E W such that wT = TI.

Now let M be a Hamiltonian K-manifold with moment map D : M -+ e*, and let

•: M -+ t* be the composition of D with the quotient map q : t* -+ t* which assigns to any

x E f* the unique point of intersection Kx n t*+. A collective function on M is a function of

the form *f, for some continuous function f on e*. A K-invariant collective function can

be written 4* f. Our application of the little Weyl group is the following theorem which was

suggested by Knop [26].

Theorem 6.2 Let M be a smooth projective K-variety of maximal rank, i.e., with Kirwan

polytope of maximal dimension. If f E C"(t*)wM is a WM-invariant smooth function, then

the function j*f is smooth.

Remark 6.3 If f E R[t*]w then this follows from Chevalley's theorem.

Proof - First, we consider the case when f E R[t*]wM is polynomial. Let a = In ]z12 be the

Fubini-Study 1-form on L\0, the geometric realization of the pull-back of the hyperplane

bundle, minus its zero section. The variety L\0 is a spherical G x C* variety, and the Weyl

groups of the complex maximal torus Tc in G and Tc x C* in G x C* are naturally identified.



Under this identification, the little Weyl groups WL\o and WM are isomorphic [27, p.11]. Let

7r : L\0 -ý M denote projection onto the base.

The restriction 7r |T(L\0) is a ramified cover with generic fiber WM, and the quotient

Th(L\O)/WM equals Th(L\O). Indeed, since 71 is WM-invariant, its restriction to Th*(L\0)

induces an affine birational morphism Th(L\O)/WM -4 T,(L\O). This map has finite fibers

and normal target space, and is therefore an isomorphism by Zariski's Main Theorem. Hence

7F2 1 induces a morphism

7r2/WM : Th(L\O) 4 I*/WM x C* -+ l*/WM.

The last map is just projection onto the first factor. Let fh E C[l*]WM be the analytic

continuation of f, so that f = fhlt.. We write fh as a polynomial h E C[f*/ WM] in the

generators of C[I*]WM, so that fh is the pullback of h by the quotient map map l* .-+ */WM.

The function

a*(2/WM)*h

is a smooth function on L\0 and we claim it equals 7r*. f. This follows from the commuta-

tivity of the following diagram.



r2/WM
Th*(L\O)

L\O

I*/Wu

qh
7h

) I*/W

In the top square we have left off extra factors of C; for example, (Ih denotes the holomor-

phic moment map for the action of G x C* on L\0, composed with projection onto g*. The

notation (Va)* denotes the fundamental domain of WM acting on t*, containing -t*. Note

that t* denotes Hom (t, R), while g* denotes Homc (g, C). Since g is isomorphic to t e it, an-

alytic continuation defines an inclusion e* -+ g*. The map r is the restriction of 1* - [*/WM

to -(V)*. The map p is defined as follows. Let il denote the restriction of 7r to Th(L\0).

Since 4Ih(a(L\O)) is contained in e*, we have that

r2 (~f- (a(L\O))) C t*.

Since 7r2 is WM-equivariant, we can quotient by the action of WM to obtain a continuous

map

a(L\O) -+ -(VG)*

r

p

q

\\-y

-t \h

I

t*• L
•

+



whose composition with a we define to be p. By definition por equals a 0 7r2 / WM. The map

7h is the polynomial map obtained by expressing a set of generators of C[[*]W in terms of a

set of generators of C[i*]WM. The map 7y is the restriction of q to -(VG)*.

Lemma 6.4 The restriction of 7 to p(L\0) is the identity.

Proof - We first show that there exists an element w E W such that 7(x) = wx for all

x E p(L\0). Recall the

Lemma 6.5 (see e.g. [30]) Let M be a compact connected Hamiltonian K-manifold with

moment map 4 : M -+ t* such that )-1 (teg) is non-empty. Then (I-(•eg) is connected and

dense.

By the Lemma, - 1(e-(reg) is connected and dense. Hence, the image p(ir-l(- reg)) is

connected and therefore contained in some chamber w (t* )0 in t*eg. By continuity, 7(x) = wx

for all x E p(L\0).

To see that w = Id we need to invoke Knop's definition of T7. We will use freely

the notation developed in his paper [25]. Let 71 e (t*)o be a generic point in A and let

I E -V- 1(i) be a point in its inverse image. It suffices to show that p(1) = T. In the

notation of [25, p.5], there exists an element b E A' such that XD() = T1. The image

V(1, b) E Th,(L\0) is therefore

and

4h(% W*(1,1)) E T+b

where b is the Lie algebra of B. Now let

(t = tal + (1 - t)4*(1, b)

for t E [0, 1]. The image 4h(Ct) lies in 7 + b, and in particular the coadjoint orbit of 7.

Therefore the path

((t, 7), t E [0, 1]



lies in the fiber product Th(L\O) x[./w [*, and so (at, q) is contained in T,(L\0). It follows

that p(ao) = 77, as required. O

By Lemma 6.4 the pullback 7r*(i*f equals p*f. By commutativity of the diagram above

we have

7r** f = p*f = a*(r2/WM)*h

as claimed.

Now let f E Cw(t*)WM be any smooth WM-invariant function. By a theorem of G.

Schwarz [35], f can be written as a smooth function of the generators of the WM-invariant

polynomials on t*, so the result follows from the previous case. C

Theorem 6.6 Let M be a smooth projective K-variety of maximal rank with moment map

4 : M --+ *. Suppose that ( is transversal to a face a C t*, and let W, be the Weyl group

of T in K,. Then W, C WM.

Proof- Let W' C W be the subgroup of W generated by reflections contained in both W, and

WM. It suffices to show that W' equals W,. Let al C t* be the subspace perpendicular to

a. First, we show that R[aOl]W' is contained in R[a&]Wa. Let y : t* -+ a denote orthogonal

projection onto a- , and let f be any element of R[TL]W'.

The following argument, provided by E. Lerman, shows that the pullback 4*r* f is smooth

at any point m E -'(a). Let p E C"c(t*) be a cutoff function supported near I(m), with

p = 1 in a neighborhood of D(m). Let

h= 1 w*(p - rf)
wEW

which is a W-invariant smooth function equal to 7r f near ((m). By Theorem 6.2 4*h is

smooth at I(m), which shows that *7r; f is.

Since ( is transversal to a, we can choose a submanifold U C (-l(et;) such that I is

a diffeomorphism on U and ((U) meets a transversally at 4(m). The function q*7r*f is

therefore smooth on I(U), and since the restriction of q*7rf to t* is locally constant on the



fibers of 7r near 1(m), this restriction is smooth at 1(m). Let V be a small K,-invariant

neighborhood of 1(m) in e). Since KV C E* is isomorphic to K XK, V and q*wrf is K-

invariant, it follows that q*Trwf is smooth at I(m).

We claim that f is W,-invariant. Let R(a) be the set of simple roots perpendicular to

a. For any a G r(o), let r, E W, denote the corresponding reflection. The function q*7*f

is even with respect to r., and therefore

(D q* r*f)(4(m)) = (D7rwf)(D(m)) = 0

for n EN odd. Since f is polynomial, this shows that f is itself even with respect to r•a, for

each a E R(o), and therefore f is Wq-invariant.

That W' equals W, is now a simple application of the theory of finite reflection groups.

By [22, Theorem 3.9] the order JWFRI of any finite reflection subgroup WFR C W is the

product of degrees of generators of

C[[*]WF R[t*]W ® C.

It follows that IW| = IW'j and since Wq contains W', the two groups are equal. El

Corollary 6.7 Let M be a smooth projective transversal K-variety with polytope A of max-

imal dimension that meets the hyperplane He for each simple root a. Then WM = W.

7 Proof of the criterion

Characterization (1) in Theorem 1.2 follows from

Theorem 7.1 Let G be a connected complex reductive group, and M a smooth projective

transversal spherical G-variety of maximal rank, with moment polytope A such that A n H.

is non-empty for all simple roots a. Let F C A be a facet and D E D(M) a corresponding



B-stable divisor, and assume that the action of G lifts to the line bundle [D].5 Let UD E

Ho([D])(B) be the canonical section, and x(D) = X(UD) the corresponding character of B.

Then for any simple root a, the pairing (x(D), a) is non-zero if and only if

F DA n H,. (8)

In particular D is G-stable if and only if (8) holds for no a.

Proof - The proof follows from considering the variation of the moment polytope as L varies

by multiples of [D]. Let WD E Q11'(M) be a curvature form of [D], and let E < 0 be a rational

number sufficiently close to zero so that w, = W + EWD is symplectic. By taking a sufficiently

high multiple of w, we can assume that E is integral. Let L, be the line bundle L + 4[D].

First we consider the effect of the perturbation in terms of the description (3). If a is a

B-eigensection of the hyperplane bundle, then a 0 a' is a B-eigensection of L,. By (3)

A(L,) = x(a ® a) + {x E t* I VD(X) Ž -VD,(a 0 os), for all D' E D(X)}.

Since vD' (aD) = 1 if D' = D, and VD (aD) = 0 otherwise, we have that

A(L,) = cx(D) + Az

where

Ix= { e A VD(X) Ž -VD(a) + VD(X(a)) + E}-

On the other hand, w, E Qe,1(M) represents the first Chern class of L, so up to a central

constant A(L,) equals the Kirwan polytope A, = 4•(M) n t*+ where 4, is a moment map

4I for the action of K on (M, w,). By Proposition 4.4 the polytope A, meets Ha, for E

sufficiently small. Therefore,

min(x, a) = -E(x(D), a)

xThis is always possible up to finite cover of G [28.
'This is always possible up to finite cover of G [28].



and so (x(D), a) vanishes if and only if AE meets Ha. But this happens exactly when

equation (8) holds: If F DAn H1, then since AY does not contain F, the polytole A does

not meet H.. On the other hand, suppose that there exists a point x E A n H - F. Then

for E sufficiently small, A contains x as well. C

Example 7.2 Let K = SO(4), and M is a generic coadjoint orbit of SO(5), on which

K acts via the inclusion SO(4) -+ SO(5) given by A -+ diag(A, 1). With respect to the

standard basis for t C e, the polytope A of M equals [A, p] x [-A, A] for A, p E R such that

0 < A < p. Let F be the top facet of A, and D a divisor corresponding to F. By the above

argument, x(D) is proportional to (-1, 1). See Figure 2.

I,

Figure 2: The polytopes (1) A (2) A, and (3) A,

Proof of Theorem 1.2 - Let F C A be a facet. By Theorem 7.1, it suffices to show that F

corresponds to a G-stable divisor D if and only if vfE -t+. By Corollary 6.7, WM = W,

so VG(M) = -t+ and if vF does not lie in -t+ then D cannot be G-stable. On the other

hand, if D is not G-stable then by Theorem 7.1 F contains A n Ha for some simple root a.

By Proposition 3.9, (v, a) > 0, so v -t_. 0

Proof of Theorem 1.1 - By Corollary 4.2 and Proposition 4.4, we can assume that M is a

smooth projective K-variety, and the result follows from Theorem 1.2. O

Remark 7.3 The bound in Theorem 1.1 is not in general sharp, because a facet F may

contain A n H,, for more than one simple root a. See Figure 2.



8 Example: Blow-ups of a product of coadjoint orbits

of SO(5)

In this section we describe an example: symplectic blow-ups of a product M of coadjoint

orbits of SO(5). The Hamiltonian K-manifold M contains exactly two symplectic K-orbits,

and we can symplectically blow-up either one. Depending on which orbit we choose, the

blow-up admits (resp. does not admit) an invariant, compatible Kihler structure.

Let K C SO(5) and T C K the standard choice of maximal torus. The usual choice for

a basis for t gives isomorphisms t ' R2 and

t*+= {(x,y) ER 2 10  y < x}.

Let A, p be positive real numbers, and define

A= (A, A) and = (p, 0)

so that A, f lie in the boundary 9t*. Let EA, Oi C so(5)* be the coadjoint orbits through A

(resp. 7.) Let

M = e) x e,

denote the product, with the diagonal action of K, which has moment map ( : M -+ *

given by

c (v, w) = v + w.

Theorem 8.1 The Hamiltonian K-manifold M is multiplicity-free with trivial principal

isotropy subgroup, and its polytope A equals

A = { (x,y) E R2 y A <x and x2-y•_tx+y}.

If pL does not equal A or 2A then D is transversal to t*.



k'L)

Figure 3: The polytopes A for (1) p > 2A, (2)A < p < 2A, and (3) /p < A.

Proof - The fixed point set MT equals

MT = WA x WAi

f {((±A, ±A), (±M, 0)), ((±A, ±A), (0, +±))}

so that

4)(MT) = {(+A ± ,u, ±A), (±A, ±A ± M)}

and

= f (t ± A,7A)}
= {(A, p - A), (A + p, A)}

( A - p)7 (A + pA)}

if A < p • 2A

if p K A

For simplicity we will consider only the case A < p < 2A. The weights of T on T(-,-)M are

the negative roots of e, and the negative roots (-1, 0), (-1, -1) which annihilate neither A

nor T appear with multiplicity two. Since for any m E Y+

TmM TmY+ e (t/t)*

the weights of T on T(x,)Y+ are (-1, 0) and (-1, -1). It follows that (D(Y+) = A 0 (t*)0 is

if p > 2A



locally the cone on the vectors (-1, 0) and (-1, -1). By similar arguments, near (A, / - A)

the polytope A equals the cone on (0, 1) and (1, -1). If M is any Hamiltonian K-manifold,

and x E (t*) ° is a vertex of A, then (ID(x) C MT. Therefore, (A + p, A) and (A, p - A) are

the only vertices of A lying in (t*) ° . By the description of the local cones, the only possible

additional vertices are X and f1.

Since the weights (-1, 0) and (-1,-1) of T on T(,)Y+ are a lattice basis, the map

T -+ Aut (T(X,,)Y+)

is injective, so the principal isotropy subgroup of T acting on Y+, which equals the principal

isotropy subgroup of K acting on M, is trivial.

The assertion on transversality follows from Delzant's list of local models [12], and can

also be verified directly.

8.1 Symplectic blow-ups of M

We will define symplectic blow-ups as a special case of Lerman's symplectic cuts [29]. Let

M be a Hamiltonian K-manifold, p : M -+ R a K-invariant continuous function, and a E R

a real number such that in a neighborhood U of ~- 1l(a), the function / is a moment map for

a Hamiltonian circle action. Let Ma = Iz-'(a)/S 1 be the Marsden-Weinstein reduced space

at a, and let M>a = p-1 (a, 0o). Then the disjoint union

M>a:= Ma U M>a

is called the symplectic cut of M at a. If S 1 acts freely on p- (a), then M>a has the structure

of a smooth Hamiltonian K-manifold as follows: Define v : M x C -+ R by

v(m, z) = p(m) - zl2/2



so that v is a moment map for the diagonal action of S' on U x C (where C has the opposite

symplectic form). Let

U>a = V-(a)S

be the symplectic reduction of U x C at a. Then

U>a U U U>a

and the map ý : U>a -+ M>a given by inclusion defines an equivariant symplectomorphism

U>a (p(U>a). Let M>a be the union of U>a and M>a modulo the identification of U>a with

(P (U> a).

In case X is the minimum of p, and S' acts on the normal bundle of X with weight one,

then for e > 0 small Ma+e is a symplectic blow-up of M along the symplectic submanifold

X ([29],[32]). We will need one further fact:

Proposition 8.2 (see [38, 18, 40]) Let M be a Hamiltonian K-manifold with moment map

1 : M -+ t*. The composition 1 : M -+ t* of ( with the quotient map is a moment map for

the K-equivariant action of T on KY+, which equals the usual action of T on Y+.

This is a consequence of the functoriality of symplectic induction, in the sense that the

Hamiltonian action of T on Y+ induces a K-equivariant action of T on the symplectic induced

space K XT Y+. We call this densely-defined, K-equivariant action of T the Thimm action.

We now come to the main result of this section:

Theorem 8.3 The Hamiltonian K-manifold M = OE x E, contains two symplectic K-

orbits: Km1 and Km 2 where m1 = (A, fi) and m2 = ((A, -A), (0, p)). Only the symplectic

blow-up of Km 1 admits an invariant compatible Kdhler structure.

Proof - For any Hamiltonian K-manifold M, an orbit Km C M is symplectic if and only if

Km = Ke(m). If M is transversal and multiplicity-free, then jD(x) can be a symplectic orbit

only if x e (t.) ° by Lemma 3.7, and then x must be a vertex of A, by Lemma 3.3.



Now let v, = (-1,0) and v2 = (2,1), and for i = 1,2 let S, -= exp(Rv,) be the corre-

sponding one-parameter subgroups, and let pi = (I, vi). Since

(vj, (-1, 0)) = (v1 , (-1, 1)) = 1

(v2 , (0, 1)) = (v2, (1,-1)) = 1

the Thimm action of Sf on KY+ has weight one on the tangent space Tmi Y+, and therefore

on the normal bundle to Kmi. Let

BIS(M) = M>(0(m,),v,)+e

be the corresponding symplectic blow-ups, which have polytopes (see Figure 4)

= {x e A (vi, x) (4(mi), vi) + e}.

Figure 4: The polytopes A' and A'

The polytope A' fails the bound in Theorem 1.1, so B12(M) admits no invariant com-

patible Kihler structure. On the other hand, Kml is a subvariety, since, if P\, P, C G are

parabolics such that

6Ae GIPA 8A c_= G/Pts



then the isotropy group Gin1, equals PA n P, = B, so Gm1 = Kml. By the equivalence

of Kahler and symplectic blow-ups of subvarieties, B1 (M) admits an invariant compatible

Kihler structure. (See [32] and, for another argument, the next section.)

9 Existence results

The main result of this section is a sufficient criterion for a multiplicity-free action to admit

a compatible invariant Kdhler structure (Theorem 9.7), assuming Delzant's Conjecture 3.5.

First, we review a few more topics from the theory of spherical varieties.

9.1 Local structure theory

We recall Knop's version [26, Theorem 2.3] of the local structure theorem of Brion-Luna-

Vust. Let G be a connected complex reductive group, X be a normal G-variety, and D a

B-stable Cartier divisor, which we assume for simplicity is effective. The divisor D induces

a line bundle [D] with canonical section a, and we assume that the action of G lifts to [D].

(This is always possible after taking a finite cover of G.) The parabolic subgroup P[D] of D

is the normalizer of the line Ca, and the character x(D) of D is the character of the action

on Ca. One has a morphism

OD : X\D -4 g* , x -+ l where lx() = (x).a

Theorem 9.1 (Knop) Let X be a normal G-variety with effective B-stable divisor D. Then

the image of OD is the P[D]-orbit through XD, and if we set E = D1 (XD) and L = GXD

then there is an isomorphism

X\D - P[D] XL E.

Typically one uses the local structure theorem to obtain information about X near a G-

orbit Y, and so one wants to choose a D not containing Y, but containing enough B-stable

prime divisors so that L is as small as possible. In the case that X is a smooth transversal



projective spherical variety of maximal rank there is a particularly good choice of D. By

Proposition 3.9 and Theorem 1.2, for any simple root a there are two divisors D± such

that HD± contains A n Ha. Not both D± contain Y, since HD+ n HD_ nA = Ha nA and

by Remark 5.4 AV is not contained in Ha. Therefore, for any a there is exists a divisor

Day e D(G/H) such that Da,y does not contain Y, and (VD.,Y, a) > 0. Define an effective

B-divisor by

Dy= naDa,y. (9)
a

For some choice of na E N, the divisor Dy has character x(Dy) E týeg, so that P[Dy] = B.

By Theorem 9.1 there is an isomorphism X\Dy - B xTc E. Since X is spherical the

variety E is a toric variety, and Y n E is a Tc-orbit in E. Furthermore, there is a one-to-one

correspondence between B-stable divisors in X\D and Tc-stable divisors in E, and the cones

Cynr and Cy are equal. By the smoothness criterion for toric varieties, we have the following

result, which is a special case of Brion's criterion for smoothness in [8].

Corollary 9.2 Let X be a smooth transversal spherical projective variety with polytope Ax

of maximal dimension such that Ax n Ha # 0 for all simple roots a. Then for any G-orbit

Y C X, the set of valuations vD e Cy such that D D Y form part of a lattice basis.

9.2 Line bundles over spherical varieties

We now review several results of Brion [6] on line bundles over spherical varieties. Let

d = EDED(X) nDD be a B-stable divisor and Y C X a G-orbit. For each divisor D E D(X)

containing Y, set ld,y(vD) = nD. If d is Cartier, then ld,Y extends to a linear map ldy :

Cy -+ Q and these maps patch together to form a piecewise-linear map ld : C(X) -+ Q. In

the case X is a projective variety and d is a B-stable hyperplane section, the function ld has

a simple expression in terms of A:

Lemma 9.3 Let X be a projective spherical G-variety with polytope A and d any B-stable

hyperplane section. Then for any v E C(X) we have ld(v) = - minX.z1E v(x) + v(X(d)).



Proof - Suppose that v E Cy for some G-orbit Y C X and let D e D(X) be a divisor

containing Y. Note that if a is the canonical B-eigensection of [d] then ld(VD) = VD(a). By

Lemma 5.3 HD meets A so by (3)

ld(VD) = - min(vD(x)) + VD(X(d)).

Since Id is linear on Cy, the same equation holds with VD replaced by v. O3

As for toric varieties, the association d '-4 ld is functorial in the sense that

Lemma 9.4 (Brion [9]) Let G/H be a spherical homogeneous variety, and O : X 1 -+ X 2

be a morphism of embeddings of G/H. Then l.d is the restriction of Id to C(X1 ) C C(X2).

Proof - By [6, Section 2] we can

G-orbit) and that

assume that X 2 is simple (i.e. contains a unique closed

d= [0] + E nDD
DED(G/H)

where q E C(X 2 )(B) is a rational

does not contain a G-orbit, then

of W. Therefore,

function, and nD= 0 if D contains a G-orbit in X. If D

W*D = D, since D does not contain the exceptional locus

nD D = [0*0] = VDI(cp*)D'
D'EV(X1 )

so if D' e V(X 1) contains a G-orbit then the coefficient of D' in p*d is VD'(*O) = Id(VDI)

as required. 0

9.3 Existence theorems

Recall that a fan F2 is a subdivision of a fan TF if any cone in F2 is contained in a cone

in F 1. We say that a fan F is rational if any cone C E Y is spanned by vectors that are

rational with respect to the lattice exp-'(Id) C t. If a convex polytope A has rational fan,

then there is a canonical choice of V(A): we can require that each v E V(A) is a primitive

D*d - (
DED(G/H)



lattice vector.

Theorem 9.5 Let X 1 be a projective spherical G-variety with polytope A,, and A2 C A1 a

convex polytope with rational fan -F(A2 ) such that

1. H(A 1) is contained in H(A 2 ),

2. V(A2) is contained in V(A 1 ) U VG (X 1 ), and

3. .F(A2 ) is a subdivision of F(Az1).

Then there exists a spherical variety X 2 such that C(X 2 ) = Y(A 2 , VG) and a morphism

ý : X 2 -+ X 1. Furthermore, if X 2 is smooth, and for each ve V(A 2 ) - V(A 1 ) the difference

c(v) = min v(x) - min v(x)
zXEAl xEA 2

is an integer, then there exists an ample line bundle L2 over X 2 with polytope A(L 2) = A2-

Remark 9.6 The polytope A(L) of a G-line bundle over a G-variety has rational, but not

necessarily integral vertices [4].

Proof of Theorem 9.5 - For any cone C2 E Y(A 2 , VG) let C1 E C(A 1, VG) be the cone in

F(A1 ) whose interior contains the interior of C2. By Lemma 5.2, there exists a subset

El C D(G/H) such that (C1, EI) E F(X1 ). Let E2 denote the set of divisors D E E1 such

that vD E C2. We claim that (C2, E2) is a colored cone. Indeed, suppose that v E V(A 2) is

an extremal vector of C2 that does not lie in VG. Then v lies in V(Al1) and C1. By Lemma

5.2, C1 is the dual cone to some face F1 of A,. The vector v is normal to some facet of A,

containing F1, so that v is extremal in C1. Since (C1, El) is a colored cone, there exists a

divisor De E1 such that vD equals v, and by definition E2 contains D as required. If we

let Y2 be the set of all such pairs (C2, E2), then it is straightforward to check that F 2 is a

colored fan for G/H. By the Luna-Vust Theorem 5.1 there exists an embedding X2 of G/H

with colored fan F2 and (see [24, Section 4]) a morphism : X 2 -+ X 1.



Now assume that X 2 is smooth. For each v E V(A 2) - V(AI) let Dv E D(X 2) denote the

corresponding G-stable divisor. Let dl be a B-stable hyperplane section of X 1, and define

d2 = p*dl + c(v)D,
vE(A2)-V(A,)

= Z n2(D)D.
DEV(X 2 )

Since X 2 is smooth, any Weil divisor is Cartier and so d2 defines a line bundle [d2] over X2.

We claim that A([d 2]) A 2.

Suppose that di = EDE)(X1 ) ni(D)D. By Proposition 9.4, for any v E V(A 2) - V(A 1 )

we have that

n2(D,) = ld1, (V) + C(V).

By Corollary 9.3

l1,(v) = - min(v(x)) + v(X(di))
xEA1

and since X(di) equals )(d 2 )

n2(Dv) = - min(v(x)) + v(x(d 2)).
xEA2

It follows that

A(L2) = {y E z1 v(y) > min v(x) for all v V(A2) - V(Al)}.
xEA2

Since H(A1 ) C H(A2 ), A(L 2 ) equals A 2 as required.

We now show that L 2 is ample. Let Y2 C X2 be a G-orbit. There exists a section

s E HO(L 2)(B) non-vanishing on Y2 if and only if the intersection A fn (An Xf(d2)) is non-

empty. Since the vertices of A 2 are rational we can choose an integer n E N such that

F n (A/n + x(d 2)) is non-empty for any open face FC A2. Let s E Ho(Ln)(B) be a section

with x(s) in the interior of Ay. By work of Brion [6, Section 2], it suffices to show that

VD(8) > 0, for any D E D(X2 ) not containing Y2.



Suppose that vD(s) = 0 for some divisor D E D(X 2). The vector VD must lie in Cy2,
since HD is a supporting hyperplane containing Ay7 . If D is G-stable, then D contains Y2

by [24, Lemma 2.4].

If D is not G-stable, let Di E D(X1 ) be the closure of D n G/H in Xx, and HD1 the

hyperplane defined by D1 as in Equation (4). By definition of d2, n1(Di) equals n2 (D) and

since X(di) = x(d 2) the hyperplanes HD and HD1 are the same. Let Y1 C X1 be the G-orbit

such that CO contains Cý2. It suffices to show that

HD1  A- (10)

since in this case D1 contains Y1 by Lemma 5.3 and so D E Ey2 by definition. Equation (10)

holds if and only if ni(Di) = 1ld (vD1 ). Since lad Ž Id, on C(X 2) and d, is ample we have that

n1(Di) Ž ld1 (VD) Ž ld2(VD) = n2(D)

which, since nl(Di) = n2 (D) implies the claim. O

Consider a compact, connected multiplicity-free K-manifold (M, WM) with polytope A for

which Delzant's Conjecture 3.5 applies. To construct a compatible invariant Kahler structure

on M, it suffices to construct a compact, connected Kihler multiplicity-free K-manifold M'

with the same polytope and principal isotropy.

Theorem 9.7 Let (M, wM) be a transversal, multiplicity-free, compact, connected Hamilto-

nian K-manifold with trivial principal isotropy and polytope AM. Let (X,wx) be a Kahler,

transversal, multiplicity-free, compact, connected Hamiltonian K-manifold with trivial prin-

cipal isotropy and polytope Ax = 4(X) n t* with Ax n H, non-empty for all simple roots

al.

1. Suppose that [wM] and [wx] are rational and that AM C AX satisfies (1)-(3) in Theo-

rem.9.5. Then there exists a multiplicity-free, compact, connected, Kihler Hamiltonian

K-manifold M2 with trivial principal isotropy and Kirwan polytope AM.



2. In the general case, suppose that for any invariant 2-form wM near WM there exists an

invariant compatible symplectic form w' on Wx such that the corresponding polytopes

A' and A'X satisfy (1)-(3) in Theorem 9.5. Then the same conclusion holds.

Proof of (1) - By taking a sufficiently high multiple of [WM] and [Wx], we can assume that X

is a projective spherical variety and the c(v)'s are integral. Let X2 be the variety given by

Theorem 9.5. To prove that X2 is smooth, let Y C X2 be any G-orbit. The image p(Y) is

a G-orbit in X and by Remark 5.4 the face Ay intersects the interior (t*) °. Let D--- be

the B-stable divisor in (9), and Dy the B-stable divisor in X2 defined by taking the closure

of each D0 ,1 (y) in X2. Since the support of D does not contain W(Y), the support of Dy

does not contain Y, and Dy is an effective B-stable divisor with P[Dy] = B. By Theorem

9.1 we have an isomorphism X 2\Dy - B XT, E. The cone Cyn equals the cone Cy of

Y, which is the dual cone to some face F of AM such that F n (t*)o is non-empty (since if

F C H0 then F C H± and so C; n -t+ = 0 which is a contradiction). Since M has trivial

principal isotropy, the polytope AM is Delzant at F (see [12]). Hence, the extremal vectors

of Cy form part of a lattice basis, which implies that Y n E consists of smooth points. This

shows that X2 is smooth, so by Theorem 9.5 there exists a Kdhler structure on X2 with

polytope AM.

Proof of (2) - Choose a linear K-invariant family of 2-forms wt E Q2 (M), t E Rn, with

wo = WM, such that the cohomology classes

{I 9 [Wt] }I =1

span H2 (M). Since H 2 (M, Q) is dense in H2(M), there exist K-invariant symplectic forms

wsuc... twn E aM

such that

1. [w1, ... , [Wn] E H2(M,Q),



2. each wi lies in the neighborhood U of wM in Proposition 4.4, and

3. w• is contained in the convex hull of the wi's.

Let Ai,i = 1,...,n denote the polytopes of (M, wi). Let cl,...,c, be such that Eci = 1

and
n

Z CiWi W WM.

i=1

By assumption, the sets V(Ai) are the same, so by the preceding case there exists a single

smooth spherical embedding X2 of G/H and invariant symplectic forms wx 2,i such that the

Hamiltonian K-manifold (X2, wx 2,j) has polytope AL. The form

n

WX 2 = E CijWx 2,i
i=-1

is symplectic and compatible with J, since the set of such forms is convex. Let Di (resp.

xX2 ,i) denote the moment map for the action of K on (M, wi) (resp. (X 2 ,wx 2,i)) so that

n

=x2 ci"x 2,i
i=1

is a moment map for the K-action on (X 2, wx 2). We claim that the polytope

Ax 2 =(X 2(X2)nt+

equals A.

We will prove this using localization. Since (M, wi) is a transversal multiplicity-free

Hamiltonian K-manifold, for any T-fixed point m E MT and any i E {1,... , n}, the image

Di(m) lies in the regular part 4eg, and by Delzant's Lemma 3.3 4i(m) must be a vertex of

wAi, for some w E W.

Similarly, the image 4 (x) for any x e (X2)T is a vertex of wAi for some w E A and

contained in the regular part t~eg. Indeed, the orbit Gx C X2 is closed and the polytope

AG. is a vertex of A. If AGo is contained in a hyperplane He then the dual cone, which is



generated by normal vectors to facets containing AGx, has interior which meets -t+ trivially

by Proposition 3.9 which is a contradiction.

Since the classes [wx 2,i] are close in H 2 (X 2) and (x2,i (X2)T depends only on the cohomol-

ogy class of the symplectic form, we can assume that for any x E (X2)T, the images (x 2,(x)

are arbitrarily close. Therefore, for any m G MT, there must exist an element x E (X2)T

such that (x 2 ,i(x) = 4I (m), for each i= 1,..., n, so that

Dx2((X2)T) = {CiX 2 ,i(x) Ix E (X2)T}

= Q(MT).

On the other hand, it is clear that the weights of T at m are the same as the weights of T

at x, since, for ((m) E (t*)o these are the edge vectors of the polytope wAi at the vertex

i (M) = (x 2,(xI), plus some subset of the roots determined by w. Therefore, by ld6calization

(see e.g. [16]) the push-forward measures

(,*WM = (DX 2 )*WX

are equal, which implies that (X 2 , WX 2 ) and (M, wuM) have the same Kirwan polytope. E

We now apply our existence theorems to the case K = SO(5).

Theorem 9.8 Let K = SO(5) and M a compact, connected, torsion-free, transversal,

multiplicity-free K-manifold with polytope A that meets both codimension 1 faces of t*. Then

M admits an invariant compatible Kdhler structure if and only if every non-negative facet

contains A nl H,, for some a.

Remark 9.9 Similar results hold for other rank 2 groups. For rank greater than 2 the

question of sufficiency is open, even for K = U(3).

Proof - By Theorem 9.7 and the Delzant Conjecture 3.5 in the case rank (G) = 2 [12] it

suffices to show that the spherical variety X = 6A x EO/ has a symplectic structure wx such



that A C Ax satisfies (1)-(3) in Theorem 9.7. First we note that Lemma 5.2, Corollary 6.7

and Theo.rem 8.1 imply that the colored fan of X consists of a single (non-trivial) colored

cone (C, E) where C is the cone on the vectors (-1, 1), (0, -1) E t. (That is, X is a two-orbit

variety.) Let

al = (1,-1) and &2 = (0, 1)

be the simple roots.

Let A, p be real numbers such that

A=(A,A) =AnH., and ft=(/,0) =An H.2

First, we show that H(AL,,) C H(A) where A~ denotes the polytope of X. Let v+ E V(A)

be the normal vectors to facets of A meeting A. By Proposition 3.9, we have (v±, a) < 0,

and since A is reflective, we must have

v± = nal ml

for some EH e H• and n, m E Z/2 with n + m E Z. Since A is Delzant,

(1, 1), (1, -1) E spanz {v±}

and so n = m = 1/2, in which case V(A) = {(1,0), (0,-1)}. A similar argument (using

the complicated definition of Delzant [40, Remark 10.2] in the case (K., K.) is not simply

connected) shows that V(1) = {(±1, 1)}.

Since A satisfies the criterion in Theorem 1.1, V(A) C V(A,\). Clearly F(A) is a

subdivision of F(A ,,), which completes the proof. 0

10 Equivalence to Tolman's criterion in the SO(5) case

In this section we will use a criterion of Tolman [39] to show



Theorem 10.1 Let M be a compact connected torsion-free transversal multiplicity-free SO(5)-

space with moment polytope A that meets both codimension 1 faces of t*. If A fails the

criterion in Theorem 1.1, then M admits no T-invariant Kdihler structure.

Together with Theorem 9.8 this proves Theorem 1.3.

10.1 Tolman's criterion

Let T be a real torus and Y a compact connected Hamiltonian T-space with moment map

4 : Y -+ t*. Let YT denote the fixed point set. For simplicity, we will assume that the

restriction 41 lY, of 4D to YT is injective. For any subgroup H C T let

Y(H)= Y E Y ITy = H}

be the corresponding orbit-type stratum. Let X denote the set of connected components of

the Y'H)s. Tolman defines:

X-ray(Y) = {D(Y) I X e x}.

By the convexity theorem of Atiyah and Guillemin-Sternberg, X-ray(Y) is a finite set of

convex polytopes whose vertices lie in 4Ž(YT).

Theorem 10.2 (Tolman Extendibility Theorem) Let Y be a compact, connected Hamil-

tonian T-space with a compatible, invariant Kiihler structure. Let y be a point in YT and

a, ... , a, k a subset of the weights of T on TyY such that the cone C on a,, . . . , ak.is strictly

convex. Then there exists a convex polytope P E X-ray(Y) such that

1. there is a neighborhood U of (D(y) such that P n U = C n U, and

2. for each face F of P there exists a polytope PF E X-ray(Y) of the same dimension as

F, containing F.



Tolman proves the above Theorem by constructing an orbit O of the complex torus Tc

such that P = I(O) has property (1). The other properties follow from a theorem of Atiyah

[1, Theorem 2].

Proof of Theorem 10.1 - As in the proof of Theorem 9.7 there exist A, p E R such that A

is contained in the polytope Ax,,. Let V+(A) (resp. V_(A)) denote the normal vectors to

facets of A appearing clockwise (resp. counterclockwise) between A and 7.

Casel 1: V_(A) = V_(A,M)= {(1,0),(1,1)}. Let x equal (A, p-A ) andletyl,...,ym bethe

vertices of A appearing between A and 7, moving clockwise. (See Figure 6.)

Figure 5: An example with V-(A) = V-(A, )

Let a, = (1, -1) and a2 = (0, 1) be the simple roots and r1, r2 E W the corresponding

reflections. Let C be the cone at x on (0, 1) and (1, -1), which are the weights of T on



T,-1(x)Y+ C To-1(,)M. Let P C t* be the polytope guaranteed by Theorem 10.2, and

Pi,... ,pi E t* the vertices of P, starting with Pl = x and moving clockwise. Since r1 yl is

the only element of 4(MT) lying in x + R+(0, 1), we must have

P2 = rfy 1

and by the same argument

p, = r2Ym.

The weights of T on Tb-l(rlyl)M are the elements of

r1N U {(-1, 1), (0, -1)}

where N is the set of negative roots. By convexity of P, we must have

P3 E P2 + R+(1, -1).

Similarly,

Pm-1 E Pm + R+(0, 1).

Since A fails the bound in Theorem 1.1, either v, 0 -t+ or vm+1 -t+. Assume the latter.

If a vertex Yk with k : m - 1 lies in

r2y4 + R+(0, 1)

then yk is contained in a facet F C A which lies in the interior (t*)o of t*.. By adding to w a

small multiple of the dual class of the submanifold 4 (F), we can assume that such a vertex

does not exist. Hence,

PI-1 = Ym.



By a similar argument, we can assume that no vertex of A lies in

Pi-1 + R+(-1, 1)

which implies that

Pl-2 - Ym-1-

But then vm+l is a normal vector to P lying clockwise between (-1, -1) and (0, -1) - that

is, v E -t+ which is a contradiction. The other case is similar.

Case 2: V_(A) # V(AA,,). Let xt ,..., Xk E A be the vertices of A appearing clockwise

between ) and ,. (See Figure 7.)

Figure 6: An example with V-(A) V-(A , )



Let C be the cone at x, on (0, -1) and (1, -1). The proof that there is no polytope P

satisfying the requirements of Theorem 10.2 is similar to the proof for Case 1, and left to

the reader.
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