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Abstract

A geometric model for a class of bipartite graphs is introduced, and a type of per-
fect matching, called an acyclic matching, is defined and through geometric reasoning
shown to exist for a subset of the bipartite graphs discussed. These acyclic matchings
imply a nonvanishing determinant for a class of weighted biadjacency matrices.

This matching theory is applied to address a question raised by E. K. Wakeford
in 1916, on the possible sets of monomials which can be removed from a generic
homogeneous polynomial through linear changes in its variables.

The notion of essential rank for the p-th graded piece of the exterior algebra is
given a geometric interpretation. It is shown that essential rank gives information
about the Pliicker embedding of the Grassmannian G(p, V) in projective space over
AP(V). The Lottery problem is then discussed, and its relationship to the essential
rank of AP(V) is explained.
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Introduction

This thesis represents the author's attempt to answer some of the combinato-

rial questions which naturally arise in the theory of canonical forms. The canonical

forms of which we speak are generic expressions for the representation of symmet-

ric or skew-symmetric tensors over a finite-dimensional vector space. The theory of

canonical forms itself was actively pursued near the end of the nineteenth century

through the early part of the twentieth, chiefly by British and German algebraists,

and mainly for symmetric tensors. In fact, it is a question raised by E. K. Wakeford

in 1916 which motivated the first two chapters of the present work. We may interpret

his question as: Which sets of monomials are removable from a generic homogeneous

polynomial through a linear change in its variables? Using the notion of apolarity,

which dates back to the time when E. Lasker, H. W. Richmond and Wakeford consid-

ered such questions, we easily transform the problem into the study of a certain class

of weighted bipartite graphs. The matching theory which arises, due to the present

author in collaboration with C. K. Fan, is geometric in flavor and seems interesting

in its own right.

The first chapter contains a development of this matching theory and is presented

without reference to the above question which inspired it. We briefly outline the

theory as follows. Consider a finite subset B of Z q , whose elements we may think of

as balls, and a set D C Zq \ {0} satisfying DI = BI, which we think of as containing

arrows or directions. Think of a pairing (b, d) E B x D as an assignment of the initial

point of the arrow d to the ball b. Is it always possible to assign the arrows to the

balls in a one-to-one fashion so that for each assignment (b, d) we have b + d ý B?

The answer is yes, and the proof combines geometric reasoning with an application

of the Marriage Theorem.

We then consider questions of existence of such one-to-one assignments (perfect

matchings) with special uniqueness properties. In this vein, we define the notion

of acyclic matching, prove that it exists and show how it implies a nonvanishing



determinant for a class of matrices with entries from a polynomial ring. It is this

property of acyclic matchings which we find useful in giving a partial answer to

Wakeford's question in the following chapter.

It is in the second chapter that we discuss the concept of apolarity and show how it

can be applied to the theory of canonical forms. Apolarity is useful in that it enables

us to avoid working with large Jacobian-like matrices. We transform Wakeford's

problem, via apolarity, into a question on the nonvanishing of the determinant of a

certain weighted biadjacency matrix. Using our results from Chapter 1, we prove

the following result: Let V be a q-dimensional vector space over C. Any set B of

q(q - 1) monomials in SP(V) of the form x', where each ik > 0, may be removed from

a generic element of SP(V) through a linear change in variables.

The theory of canonical forms for homogeneous elements of the exterior algebra

A(V), as developed recently by R. Ehrenborg, is described in Chapter 3 for the

purpose of studying the notion of essential rank of a space AP(V) of skew-symmetric

tensors. The essential rank of such a space is the minimum number n such that a

generic skew-symmetric tensor can be written as a sum of n decomposables. It turns

out that the essential rank gives information about the way Grassmannians G(p, V)

sit in projective space P(AP(V)) under the Plicker embedding. And it is once again

the concept of apolarity, suitably generalized, which enables us to view the situation

from a combinatorial perspective.

We can obtain upper bounds for the essential rank of AP(V), where dim(V) = q,

by considering the Lottery problem. The Lottery problem, stated combinatorially,

asks us to find the smallest possible size of a collection S of p-element subsets of

a q-element set T such that every p-element subset of T intersects some set in S

in at least I elements. When 1 = p - 1, this minimum number is an upper bound

for the essential rank of AP(V). We provide an integer programming formulation of

the Lottery problem, which in principle provides a means for finding such minimum

collections S. We conclude by deriving some lower and upper bounds for their sizes.



Chapter 1

Some Matching Theory

We begin by studying a matching problem in Z q . In the first section we introduce

the bipartite graphs of interest to us and prove that they always admit perfect match-

ings. In Section 2, we study a subclass of perfect matchings which we call acyclic

matchings. In Section 3, we discuss certain weighted biadjacency matrices arising

from our bipartite graphs.

1.1 Perfect matchings

Let B be a finite subset of Zq and let D be a subset of Zq\ {0} satisfying IDI = IBI.

We associate a bipartite graph G = (N(G), E(G)) to the pair of sets B and D, as

follows. Since B and D are possibly nondisjoint we associate to each b e B the

symbol xb and to each d E D the symbol Yd, and then we set X = {Xb b E B} and

Y = {Yd I d e D}. The nodes of G are given by the bipartition N(G) = X U Y, and

there is an edge e(xb, Yd) E E(G) joining Xb E X to Yd E Y if and only if b + d V B. A

matching in an arbitrary graph is a collection of edges, of which no two are incident

with a common node. A perfect matching is a matching which covers all the nodes.

For the bipartite graph G associated to the pair of sets B and D we can, and will,

identify perfect matchings with bijections f : B -- + D satisfying b + f(b) V B for all



b e B. Our first objective is to prove that such bipartite graphs necessarily admit a

perfect matching. To accomplish this, we introduce some geometry.

1.1.1 Geometric notions

We fix a positive definite, nondegenerate bilinear form (., .) : Z x Z -- Z.

Definition 1.1.1 Let v E Zq and let w E Z q \ {0}. The closed half-space H(v, w)

defined by v and w is given by

H(v,w) = {x E Z q I (x -v,w) • 0}.

Definition 1.1.2 Let S be a finite subset of Z q and let v C Zq\ {0}. The wall defined

by S and v is given by

W(S,v) = {x z SIS C H(x,v)}.

Observe that if S /: 0, then W(S, v) = 0, by the finiteness of S.

Definition 1.1.3 Let B be a finite subset of Z q and let D be a subset of Z q \ {0}

satisfying jD] = JB. Let S C B and d E D.

1. We say that S accepts d if there exists a b E S such that b + d V B;

2. We say that S hyperplane-accepts d if there exists a b E S such that b + d ý B

and SC H(b, d).

If S = {b}, then we also say that b accepts d or that b hyperplane-accepts d.

Let B, D, S and d be as in Definition 1.1.3. Notice that the wall W(S, d) may

contain elements b such that b + d E B.

Proposition 1.1.1 Let B be a finite subset of Zq and let D be a subset of Zq \ {0}

satisfying DI = IBI. Given S C B, let A C D denote the set of all d E D which are

hyperplane-accepted by S. Then AlI > ISI.



Proof: If S = 0, then the result is trivial. Assume S h 0. For each d G D \ A choose

an element bd E W(S, d). Observe that bd + d E B \S. We claim that if bd + d = bc + c

then d = c. Let p = bd + d. We have that bd is the unique closest point to p in S, since

S C H(bd, d). Likewise, b, is the unique closest point to p in S, since S C H(b, c).

Hence, bd = be, so that d = c.

From the above, we obtain IB \ SI Ž ID \ Al, which implies that A > ISI. This

completes the proof.

1.1.2 Existence of perfect matchings

The following fundamental theorem is due to Frobenius [8]. For a discussion of

its relationship to other results in matching theory, as well as a proof, see Lovisz and

Plummer [14].

Theorem 1.1.1 (The Marriage Theorem). A bipartite graph G = (N(G), E(G))

with bipartition N(G) = X U Y admits a perfect matching if and only if IXI = IYI

and for each T C X, we have ITI < jr(T)j, where F(T) equals the set of elements of

Y which are joined to some member of T.

Corollary 1.1.1 Let B be a finite subset of Z q and let D be a subset of Z q \ {0}

satisfying IDI = BI. Then there exists a perfect matching f : B -- D.

Proof: Let G be the bipartite graph associated with the pair of sets B and D. Let

T C X (recall the definition of N(G) = X U Y). The subset T of X corresponds

to a subset S of B, which, according to Proposition 1.1.1, hyperplane-accepts the

elements of a subset A of D of size AI > SI. Let U be the subset of Y corresponding

to A. Since F(T) D U, we have IjF(T)J > UI = IAI > ISI = ITI. By the Marriage

Theorem, the graph G admits a perfect matching, which we can identify with a

bijection f : B -- D satisfying b + f(b) V B for all b E B, as required.



1.2 Acyclic matchings

Throughout this section, B will denote a finite subset of Z q and D will denote a

subset of Z q \ {0} such that IDI = BI.

Definition 1.2.1 For any perfect matching f : B -+ D we define its multiplicity

map mf : Z q -- Z by mf(v) = #f {b e B I b + f(b) = v}.

Definition 1.2.2 An acyclic matching is a perfect matching f with the property

that for any perfect matching g satisfying mf = mi, we have f = g.

Definition 1.2.3 A hyperplane chain C of length 1 is a sequence of pairs (bi, di) E

B x D for i = 1,... , 1 such that the following four properties hold:

1. The bi are all distinct;

2. The di are all distinct;

3. Each bi accepts di;

4. B \ {bi, ... ., bi_1} C H(b,, d).

Given a hyperplane chain C = {(bi, di)} of length 1, we define B(C) = {bl,..., b,}

and D(C) = {dj,...,dj}. Note that by definition, IB(C)l = ID(C)I = I. We also

define B1(C) = bi and D'(C) = di.

Lemma 1.2.1 Let C = {(bi, di)} be a hyperplane chain of length 1. Assume that we

have a vector d E D \ D(C), integers 0 < j < m < 1, and a hyperplane chain C* of

length j + 1 satisfying

B(C*) = {bl,...,bj,bm},

D(C*) = {di,...,djd}.

Define the sequence C' = {(Bi (C'), DZ(C')} of length l in two steps, as follows.



First, set Bi(C') = Bi(C*) and D (C') = Di(C*) for i = 1,... ,j + 1. Sec-

ond, let the sequence Bj+2 (C'), ... , B'(C') equal the sequence bj+l,..., bm, .. . , bl, and

similarly let the sequence Dij+2 (C'),..., D'(C') equal dj+,... , din,..., d.

Then the sequence C' is a hyperplane chain of length 1.

Proof: The first three parts of the definition of hyperplane chain are obviously

satisfied by C'. To see that the fourth part holds as well, consider the set

B \ {B (C')I ... , B'-'(C')}.

For i < j + 1 we have B \ {B(C'),. . . , B- 1 (C')} = B \ {B(C*),..., Bi- 1 (C*)} c

H(Bi(C*),Di(C*)) = H(Bi(C'),Di(C')). If i > j + 1 and i - 1 < m we have

B\{B(C'),...,Bi-'(C')} IC B\{bi,...,bi-2} C H(bi 17•di- 1)= H(Bi(C'),Di (C')).

Finally, if i > j + 1 and i - 1 > m, then B \ {BI(C'),...,B'-1 (C')} = B \

{b, ... , bi-• 1} C H(bi, di) = H(B'(C'), Di(C')), as desired.

Proposition 1.2.1 Let T C D. There exists a hyperplane chain C of length TI such

that D(C) = T.

Proof: Let P, denote the following statement:

Given a hyperplane chain C of length I and any d C D \ D(C), there exists

a hyperplane chain C' of length 1 + 1 such that D(C') = D(C) U {d} and

B(C) C B(C').

We prove P, for 0 < 1 < IDI by induction on 1. Once this is done, our result follows

by successive applications of P1, starting at 1 = 0.

We start with the base case. Given d E D, choose any b C W(B, d). Put C' =

{(b,d)}. This proves P0 . Let 1 satisfy 0 < l < jDI and assume P, is true for all

s = 0,...,1-1. We show that P1 is true. Let U = B \B(C). We have that U

hyperplane-accepts at least IBI - 1 elements of D by Proposition 1.1.1. Hence, U

must hyperplane-accept at least one element of D(C) U {d}.



We now construct by induction a sequence (Co, do),...,(CM, dM) of hyperplane

chains Ci of length 1 and vectors di such that for each i,

1. B(C2) = B(C);

2. D(Ci) U {dil} = D(C) U {d};

3. {do,.. ., di-- 1} = {D(Ci),..., D'(Ci)};

4. U does not hyperplane-accept any element of {DI(Ci),... ,D'(Ci)}.

Start by setting Co = C and do = d. Assume that Ci and dj have been defined

for an integer j, 0 < j < 1. If U hyperplane-accepts dj, then set M = j and

terminate the construction. If instead U does not hyperplane-accept dj, we proceed

to construct a hyperplane chain Cj+1 of length 1, and dj+1 , as follows. Consider the

hyperplane chain of length j consisting of the pairs {(B (Cj), Di(Cj))}•=1 ,...,j. With

the vector dj in hand, we can apply the induction hypothesis Pj to obtain a hyperplane

chain C* of length j + 1 such that D(C*) = {DI(Cj),... , Di (Cj),dj} and B(C*) D

{BI(Cj),...,Bi (Cj)}. Moreover, since U does not hyperplane-accept dj nor any

Di(C3) for 1 < i < j, we have B(C*) C B(C). Thus, B(C*) = {B 1 (Cj),... B ()U

{Bm(GCj)} for some m, j < m < 1.

Define Cj+1 as follows. For i = 1,... ,j+1, let Bi(Cj+1) = Bi(C*) and Di(Cj+1) =

Di(C*). Let the sequence Bj+2(C +1) ... , B l(+ 1 ) equal B+ 1(C),.. , B'(C) with

the term B m (Cj) removed. Similarly, let the sequence Dj+2(C 3+1),I ... , D'(Cj+l) equal

Dj+(Cj),-...,D'(Cj) with the term D m (Cj) removed. By Lemma 1.2.1, Cj+l is a

hyperplane chain of length 1. Finally, let dj+l = Dm (Cj). It is easy to see that the

sequence (Co, do),..., (Cj+1, dj+1 ) satisfies the four properties listed above.

Note that this construction must terminate because the di constitute a set of

distinct elements from D(C) U {d} and we have observed that U must hyperplane-

accept at least one element in D(C) U {d}. Let M denote the largest integer for

which CM is defined (possibly M = 0). Then U hyperplane-accepts dM. In other

words, there exists a b eU which accepts dM, and U C H(b, dM). We now define C'



by letting Bi(C') = Bi(CM) and Di(C') = D2 (CM) for 1 < i < 1 and then setting

Bl+I(C') = b and D'+'(C') = dM. This construction proves that P, is true. By the

principle of mathematical induction, the proof is complete.

We now state and prove the main result of this chapter, which we shall call the

acyclic matching theorem. We explain its significance for a particular class of weighted

biadjacency matrices in the next section.

Theorem 1.2.1 Assume that the elements of D are all of equal length. Then there

exists an acyclic matching f : B -+ D.

Proof: By Proposition 1.2.1, there exists a hyperplane chain C = {(bi, di)} of length

JBj. Define f : B -+ D by f(bi) = di for all i = 1,..., BI. Let g be any perfect

matching satisfying my = mf. We prove by induction on I that f(bl) = g(bj) for all I.

For 1 = 1 we have B C H(bl, dl), and b, is the unique closest point in H(b1 , di) to

b, + d. Since the elements of D all have equal length, we must have mf(bl + d) = 1.

Since mg(bl + di) must also equal 1, we obtain g(bl) = di.

Let 1 > 1 and assume that f(bi) = g(bi) for all i < 1. We show that f(b1 ) = g(bl).

Since b, is the unique closest element of B \ {bl,... ,bt-} C H(b,,d) to bi + d1 , we

have mf(b, + d1) = 1 + #{i I 1 < i < 1 - 1 and bi + di = b + d} = mg(b, + di).

Therefore, we have g(bl) = dj. We conclude that f = g, as desired.

Remark 1.2.1 It has recently been proved that the conclusion of Theorem 1.2.1 is

true without the equal length assumption on D. See [1]. The strategy employed is

necessarily different from ours, since a perfect matching f coming from a hyperplane

chain of length BI is not necessarily acyclic. For our purposes in the sequel, however,

the result stated and proved above is adequate.

1.3 Acyclicity and determinants

We continue to let B denote a finite subset of Z q and D a subset of Z q \ {0}

such that IDI = IBI. Recall from the first section of this chapter the definition of the



bipartite graph G = (N(G), E(G)) associated to the sets B and D.

To each v E Zq associate a symbol h,. Let H = {h, I v e Zq}, and form the

polynomial ring C[H]. Associate a weight map WG : E(G) -+ C[H] to the bipartite

graph G = (N(G), E(G)), as follows:

WG(e(xb, Yd)) = hb+d.

We may now consider the weighted biadjacency matrix M(G) of the weighted bipartite

graph G = (N(G), E(G), WG), indexed by X x Y. Its entries are

M(G)XbYd WG(e(xb, Yd)) if e(xb, Yb) is an edge of G;

0 otherwise.

Notice that the determinant of M(G) is well-defined up to sign.

Proposition 1.3.1 If there exists an acyclic matching f : B --+ D, then the deter-

minant of M(G) is nonzero.

Proof: Let f : B -+ D be an acyclic matching. The determinant of M(G) equals,

up to sign,

a (-1)' beB M(G)bof(b)

where a ranges over all permutations of D. There is a one-to-one correspondence be-

tween the perfect matchings of G and the nonzero summands in the above expansion.

The summand corresponding to a = 1 is

I M(G) b, f (b) I= W (e(xb, yf (b))) = hb+f (b)= r hm' M),
bEB bEB bEB v

where in the last product v ranges over all vectors in Zq. Since f is an acyclic match-

ing, this term is not cancelled in the above expansion. Therefore, the determinant of

M(G) is nonzero.



Chapter 2

Symmetric Tensors and

Removability of Monomials

Let V be a q-dimensional vector space over the complex field C and consider the

symmetric algebra over V:

S(V) = @ SP(V).
p> 0

We are interested in finding canonical expressions for the elements of SP(V), the

symmetric tensors of degree p. The canonical expressions we seek are of a special type,

which we now describe. Call a product of p vectors from V (not necessarily distinct)

a monomial of degree p. Given q elements Xi,..., Xq of V, we construct monomials

Xj ... . X qq of degree p from the Xi according to the multi-indices I - (i, ... , iq)

of nonnegative integers satisfying il + ".. + iq = p. Let T(q, p) denote the set of

all such multi-indices. We ask: For which subsets B C T(q,p) is it true that a

generic element of SP(V) may be written as Iý,B c -X••.' - . Xq, for some c E C and

Xi,..., Xq E V? When a generic element of SP(V) can be written in this way we

think of the monomials constructed from X 1,..., Xq corresponding to multi-indices

I e B as having been removed. We also say that the set B itself is removable.

The above question was asked by E. K. Wakeford in 1916, in his dissertation on

the possible canonical forms for homogeneous polynomials; see [20]. His question is



largely answered by the main theorem of this chapter (Theorem 2.2.1), which states

that any set of q(q - 1) monomials of the form X" ... X q , where each ij > 0, is

removable. Furthermore, any removable set contains at most q(q - 1) elements.

This chapter is divided into two sections. The first section provides the background

material for the second. We start with a description of apolarity, a notion which dates

back to the work of Clebsch, Lasker and Wakeford. The apolarity concept, including

its relation to the theory of canonical forms, has been revisited and reworked by

Richard Ehrenborg and Gian-Carlo Rota, and our treatment of the subject reflects

their exposition in [6].

In Section 2, we show how apolarity theory transforms Wakeford's question into a

question about certain weighted biadjacency matrices arising from a class of bipartite

graphs. To each subset B of T(q, p) satisfying IBI = q(q - 1) we associate such a ma-

trix, and if this matrix has nonzero determinant, then the monomials corresponding

to B are removable. The analysis of these matrices uses our results on matchings in

Zq from the previous chapter.

2.1 Apolarity and canonical forms

Let V be a q-dimensional vector space over C. Since the space SP(V) of degree p

symmetric tensors is finite dimensional, we may endow it with the Euclidean topology.

We say that a property P holds generically in SP(V) if P holds for every element of

some dense subset of SP(V). The canonical forms we arrive at will be generic canonical

forms in the sense that each represents some dense subset of SP(V).

2.1.1 The apolar bilinear form

In this section, we introduce the apolar bilinear form. This bilinear form plays

an important role in our development of the theory of canonical forms for symmetric

tensors. Fix a basis x1 , . . , Xq of V, and let ul,..., Uq be the corresponding dual basis



of V*. Let T(q, p) denote the set of all q-tuples I = (i.... ., iq) of nonnegative integers

satisfying ii +... + iq = p. We define x1 = ... x and I! = ii! .. iq!. We define

the apolar bilinear form

( SP(V*) x S (V) --4 C,

by setting (u', x J ) = I! - 6 ij and extending in a bilinear fashion. It is easy to see

that this bilinear form is nondegenerate. It has another property which is important

for our purposes; namely, it is invariant under the natural action of the general linear

group GL(V) on SP(V*) x SP(V).

For completeness, we develop this property of the apolar form in some detail. We

start with the natural linear actions of GL(V) on the spaces V and V*. If A E GL(V),

v e V and f E V*, then these actions are given by A-v = A(v) and A.f = foA - 1. The

latter is known as the contragredient action of GL(V) on V*. If GL(V) acts linearly

on a vector space W, we shall indicate this fact by the notation GL(V) : W. Thus, we

have GL(V): V and GL(V): V*. Now, any linear action of GL(V) on a vector space

W induces a linear action of GL(V) on the p-fold tensor product W®p. The resulting

action is the unique linear action satisfying A -(w 9.• .®wp) = (A.wi)® .. .®0(A.wp) for

all A e GL(V) and w, ... , wp E W. In this way, we obtain linear actions GL(V): V®p

and GL(V): (V*)®P. Let U be the subspace of V®p spanned by all elements of the

form vi ... 90 v, - v,(1) 0... 0 v,(p), where v, ,..., vp, E V and a is a permutation of

{1,... ,p}. Since U is an invariant subspace of V®P under the action of GL(V), we

obtain a linear action of GL(V) on the quotient space V®P/U = SP(V). Similarly,

we obtain GL(V): SP(V*). Finally, this pair of linear actions induces a linear action

GL(V): (SP(V*) x SP(V)) in the obvious way.

The next proposition says that if A E GL(V), then the adjoint of the automor-

phism of SP(V) induced by A is the automorphism of SP(V*) induced by A - 1 (with

respect to the apolar form).



Proposition 2.1.1 For any A E GL(V), g E SP(V*) and f E SP(V) we have

(A' -g, f) = (g, A -f).

Proof: Fix a basis x,., Xq of V, and let ul, . . ., Uq be the corresponding dual basis

of V*. It suffices to prove that (A-'.u', xj) = (uI, A.xJ). Write A.xi = E•= Aij'xj,

where the Aij E C are uniquely determined. Observe that A-1 -u = iq=l Aj,i uj.

We have

(A- 1 - u, x) ((A - 1 . ui)i . . (A - 1 uq) i q , x J )

q( Zi1 q I

SAkli,1 Uk, . ( Akq,q Ukq)
km=1 kq=1

- J! q-l- tj q= Amk'

M 1=1 ml1,... l > q k=1

AMk
= I! J!. II

M 1<k,l<q k

where in the last two sums M ranges over all q by q matrices {mk} with entries in

N satisfying Ek m1 = i1 and E ml = jk. On the other hand, one can verify that

(u', A -xJ) is equal to the same expression. This completes the proof.

Corollary 2.1.1 The apolar form (., .) is invariant under the action of GL(V) on

SP(V*) x SP(V).

Proof: Let A E GL(V), g E SP(V*) and f C SP(V). By Proposition 2.1.1, we have

(A - g, A f) = (g, A-' . (A . f)) = (g, (A-'A) - f) = (g, f),

as desired.

Definition 2.1.1 Let g e SP(V*) and f E Sr(V). We say that g is apolar to f if at

least one of the following two conditions hold:



1. r < p and (g, f - h) = 0 for all h C Sp-r (V);

2. r > p and (g. -h, f) = 0 for all h e Sr-P(V*).

2.1.2 The apolarity theorem

Fix p > 0. Let dj,..., dr be nonnegative integers and let Q be a finite subset

of NI. For each r-tuple I e Q let t1 be a homogeneous symmetric tensor over V.

Assume that for all I E Q we have

il dl + i2d2 +... + irdr + deg(ti) = p.

The above data determine a proposed canonical form; that is, we may propose that

a generic element of SP(V) can be written as

t .- sl... si r  ,

IE2

where each sj E Sdj (V).

The following theorem, due to Ehrenborg and Rota [6], characterizes those pro-

posed canonical forms which are, in fact, canonical. For completeness, we supply a

proof here.

Theorem 2.1.1 A generic element of SP(V) can be written as

F = tI. sil . . . si,
IEQ

for some sj e Sdf (V) if and only if there exist s' E Sd'j (V) such that the only g E

SP(V*) apolar to all the (F-) is zero.

Proof: Assume that F is canonical. Fix a basis xl,...,xq of V. Expanding each

variable symmetric tensor sj in terms of the monomials x J , that is, writing sj =

IJET(q,d3 ) aj,g ' X, we obtain variable coefficients a,j, which we call parameters. Let



P be the set of all parameters coming from F. Notice that since F is canonical we

must have

dimS (V)= < P = +.. + .

p d, dr

Expand the variable symmetric tensor jre t -si ..- . str in terms of the monomials

xJ, where J ranges over all elements of T(q, p). We obtain

E t,1s.. 8i= . , X
IEQ JET(q,p)

where the gj are elements of the polynomial ring C[P]. The statement that F is

canonical is equivalent to the statement that the polynomial map

Xp• • C
P _* (fT(qp)

where j= {fj}JET(q,p), has dense range. This in turn is equivalent to the statement

that the polynomials Oj are algebraically independent. The condition of algebraic

independence of the set {/jIJ c T(q,p)} is equivalent to the condition that the

Jacobian matrix

{' J(J,a) ET(q,p) x P

has full rank over the quotient field C(P). Therefore, we can choose values a' E C for

the parameters a• P so that the resulting evaluated matrix {j (a') I has full rank

over C. Notice that choosing values for the parameters is tantamount to selecting

symmetric tensors s of degree d. for j= 1,...,r.

Since the matrix { o- (a') } has full rank, its columns (indexed by the a E P)

span the space CT(q,p) . This space is naturally isomorphic to SP (V). Under this iso-

morphism, the column corresponding to a, (19- (a')) JT() , is sent to the symmetric



tensor

z(a) OF(
JeT(q,p)

Thus, the symmetric tensors o (a'), where a ranges over P, span SP(V). Each param-

eter a occurs in precisely one of the variable symmetric tensors s1,..., sr. Suppose a

occurs in sj. Since = x- for some I E T(q, dj), we have by the chain rule

OF OF Osj _ F xI
0 a sj 9 O s38j

We therefore have that the symmetric tensors (j,) , ', where I ranges over

T(q, dj) and j ranges from 1 to r, span SP(V). Owing to the nondegeneracy of the

apolar form, there is no nonzero g C SP(V*) satisfying

g, -s ' =0
3Os,(8 _F S/=

for all I e T(q, dj) and j = 1, . . ., r. But this is the same as saying that the only

g e SP(V*) apolar to all the (f) is zero. Observing that our argument is valid

in reverse, our proof is complete.

2.2 Removability of monomials

We say that a subset B of T(q, p) is removable if a generic element of SP(V) can

be written as

11l... X
IET(q,p)\B

for some ci E C and X1,...,Xq E V. In this section, we attempt to describe as

completely as possible those subsets B of T(q, p) which are removable. Assume that

p, q > 1 throughout.



2.2.1 The size of removable sets

Let el,..., eq E Z q be defined by ei = (61i,..., 6q).

Proposition 2.2.1 If B C T(q,p) is removable, then Bj < q(q- 1).

Proof: Let B C T(q,p) satisfy Bf > q(q - 1). We show that

F= E cqX X
IET(q,p)\B

is noncanonical. Let c' E C and X ' E V be arbitrarily chosen. If the X, are linearly

dependent, we may assume, by applying an element A E GL(V) if necessary, that each

X lies in the span of xi,..., Xq-1. Then g = u is apolar to " (c'; X'), ,-(c'; X')

for all I T(q, p) \B and r = 1,..., q. If instead the X ' are linearly independent, we

may assume, again applying an element A E GL(V) if necessary, that each X, = x,.
Now, any g E SP(V *) apolar to the OF-(C'"

Now, any geS(V*) apolar to the (c~I, Xr) for I e T(q, p) \ B must have the form

g = Z ai u".
IEB

We aim to show that there exists a nonzero such g apolar to the

OFoX c x,) =  1_ i -C', -XI-e-xr (I IET(q,p)\B

for all r. Observe that g is apolar to -(c I; Xr) for all r if and only if g is apolar to

°-(c'I; Xr) x , for r s. These apolarity conditions produce q(q - 1) homogeneous

linear equations in the unknowns a,, of which there are B I > q(q - 1). Hence,

there is a nonzero solution, i.e., a nonzero g apolar to '(c'; Xr), -(c',; xr) for all

I E T(q,p) \ B and r = 1,..., q. Applying Corollary 2.1.1 and Theorem 2.1.1, we

obtain that F is noncanonical. Hence B is nonremovable, as desired.



2.2.2 The weighted bipartite graph

We turn our attention now to subsets B of T(q,p) of size q(q - 1). To each such

subset B we associate a weighted bipartite graph GB = (N(GB), E(GB), WGB), as

follows. Let D =: {ei - ej 1 < i, J < q, i # j}. The nodes of GB are given by the

bipartition N(G?) = (B, D), and there is an edge e(I, J) joining I C B to J e D if

and only if I + J E T(q,p) \ B. To each I c T(q,p) \ B associate a symbol cI, and,

letting HB = {cI I E T(q,p) \ B}, form the polynomial ring C[HB]. The weight

map WGB : E(GB) -- + C[HB] is then given by

WGB(e(I, J)) = (ik + 1) I! * C+j,

where J = ek - em. As with any bipartite graph, we may define its weighted biadja-

cency matrix, M(GB). We index M(GB) with the set B x D, so that

M(GB)IJ WGB(e(I, J)) if e(I, J) is an edge of GB;
M (GB)I,J

0 otherwise.

We remark that the determinant of M(GB) is well-defined up to sign.

Example 2.2.1 Fix q = 2. We may represent the elements of T(2,p) as locations

along a straight line, as indicated in Figure 1.

O 0 0 0 O O
(p, 0) (p- 1, 1) (p- 2, 2) (2 ,p- 2) (1,p- 1) (0,p)

Figure 1

Let B C T(2,p) satisfy BI = 2. For q = 2, D = {(-1, 1), (1,-1)}. We may indicate

in our diagrammatic representation the elements of B by blackening the correspond-

ing locations; also. we may represent (-1, 1) as a unit length rightward pointing arrow



and (1, -1) as a unit length leftward pointing arrow. Then the graph GB has an edge

joining I C B to J c D if and only if in our diagrammatic representation, when we

place the initial point of the arrow J onto I, the arrowhead points to a location in

our diagram which has not been blackened. The case B = {(3, 1), (2,2)} C T(2,4)

is depicted in Figure 2, wherein the unique perfect matching of the bipartite graph

GB is indicated by the assignment of the two arrows to the two blackened locations.

(4,0) (3,1)
(2,2) (1,3)
(2, 2) (1, 3)

Figure 2

GB

The bipartite graph GB itself, together with the weights of its edges, is depicted

in Figure 3.

(3,1) 24 -C(4,0) (1-)(3, 1) • (1, -1)

12 • c(1, 3)
(2, 2) 1 (-1,1)

Figure 3

Example 2.2.2 Fix q = 3. We may represent the elements of T(3, p) as locations in

a triangular configuration such as the one depicting T(3, 3) in Figure 4.

0
(0,4)



(3,0,0)
0

(2,1,0)0 0(2,0,1)

(1,1,1)
(1,2,0) O O (1,0,2)

(0,3,0)0 0O 0 0(0,0,3)
(0,2,1) (0,1,2)

Figure 4

Let B C T(3,p) satisfy BI = 6. For q = 3, we have

D = {(1, -1, 0), (0, -1, 1), (-1, 0, 1), (-1, 1, 0), (0, 1, -1), (1, 0, -1)}.

We indicate in our triangular configuration the elements of B by blackening the

corresponding locations. The element (1, -1, 0) of D is represented by a unit length

arrow which points in the northeast direction. The element (0, -1, 1) points east,

(-1, 0, 1) points southeast, (-1, 1, 0) points southwest, (0, 1, -1) points west and

(1, 0, -1) points northwest. Just as in Example 2.2.1, the graph GB has an edge

joining I e B to J e D if and only if in our diagrammatic representation, when we

place the initial point of the arrow J onto I, the arrowhead points to a location in

our diagram which has not been blackened. The case

B = {(2, 1,0), (2,0,1), (1,2,0), (1,0,2), (0,2,1), (0,1, 2)} C T(3, 3)

is depicted in Figure 5; a perfect matching of the bipartite graph GB is also indicated

in this figure by the assignment of each of the six elements of D to a different blackened

location. There is one other perfect matching which would have all arrows pointing



to the interior location.

O0 S

Figure 5

The relevance of the graph GB to our discussion of removability of monomials is

made explicit by the following result.

Proposition 2.2.2 Let B C T(q,p) be of size q(q - 1). Then B is removable if and

only if the determinant of M(GB) is nonzero.

Proof: We have the proposed canonical form

F(cI; Xr) =
ET c, -Xp ... X )

IET(q,p)\B

By Theorem 2.1.1 and a change of variables argument, F is canonical if and only if we

can set each Xr = xr and choose c' E C so that the only g e SP(V*) apolar to all the

S(ci; Xr), -- (c'; Xr) is zero. So set each X, = xr, leaving the c, to be determined.

Any g e SP(V *) apolar to -' (cI; Xr) for all I E T(q,p) \ B is of the form

g -- S a~ • tI

IEB

Further, g is apolar to '9 (c_; x,) for all r if and only if g is apolar to - (ci; x) -xs

for all r s. These apolarity conditions produce a system of q(q - 1) homogeneous

OX



linear equations in the q(q - 1) unknowns a,. We claim that the coefficient matrix of

this system is the weighted biadjacency matrix M(GB). To prove this claim, we look

at the apolarity condition

o = g, - (c; x=) • x,8XOF

- T aI uI, OF(•I; X).

IE1 r

= a, - I! {coefficient of x1 in
IEB1

S- , a
len

IEB- Z~ai
IeB

!. (ir + 1). cI+er-e,

A 0

" M(GB)I,e,-e,.

OFOF (cI; xr) -XS

if I + er - es E T(q,p) \ B

otherwise

Our claim is justified. The result follows.

2.2.3 Relation to matchings

Assume that the bipartite graph GB admits a perfect matching. Such a per-

fect matching can be identified with a bijection f : B -- 4 D such that I E B is

joined to f(I) E D for all I E B. Given such a perfect matching f, we define, in

analogy with Definition 1.2.1, its multiplicity map mf : T(q,p) -- + Z by letting

mf(I) = #{Je B | I = J + f(J)}. Observe that mf vanishes on B.

Definition 2.2.1 We say that a perfect matching f of GB is finite-acyclic if for any

perfect matching g with mf = mng, we have f = g.

Remark 2.2.1 Not every GB admits a perfect matching. For example, take B =

{(2, 0), (1, 1)} C T(2, 2). Even if GB admits a perfect matching, it may not admit a



finite-acyclic matching. For instance, if one takes

B = {(3, 0,0), (2, 1,0), (1, 1, 1), (1,0, 2), (0,3,0), (0,0, 3)} _ T(3, 3),

then one can verify that GB admits precisely two perfect matchings

satisfy mf = mg.

Proposition 2.2.3 Let B C T(q,p) have size q(q- 1). If GB

matching, then B is removable.

Proof: The proof follows that of Proposition 1.3.1. Let f

acyclic matching. The determinant of M(GB) is, up to sign,

f and g which

admits a finite-acyclic

B -- D be a finite-

(-)"- M(GB) I,of(I)
a \ IEB/

where a ranges over all permutations of D. There is a one-to-one correspondence

between the perfect matchings of GB and the nonzero summands in the above expan-

sion. The summand corresponding to a = 1 is

II M(GB)I,,(I) = II WGaB(e(I, f(I))) = K II cI/f(I) = K H mcj ,
IEB IEB IEB JET(q,p)\B

where K is some positive constant. Since f is a finite-acyclic matching, this term is

not cancelled in the above expansion. Hence the determinant of M(GB) is nonzero.

By Proposition 2.2.2, B is removable.

2.2.4 Interior q-tuples and removability

Definition 2.2.2 Let I E T(q,p). We say that I is an interior q-tuple if I + J e
T(q, p) for all J E D.

The following theorem is the main result of this chapter. Its proof relies on the

matching theory in Z q which we developed in the previous chapter.



Theorem 2.2.1 Let B C T(q,p) consist of q(q - 1) interior q-tuples. Then B is

removable.

Proof: The set D = {ei - ej 1 < i # j < q} Zq \ {o0} has size q(q - 1).

Moreover, with respect to the standard bilinear form (., .) Zq x Z q -+ Z given

by (es, ej) = 6ij, the elements of D all have length V-2. By Theorem 1.2.1, there

exists an acyclic matching f : B ---+ D. Since B consists of interior q-tuples we

have b + f(b) E T(q,p) \ B for all b E B, so that f is in fact finite-acyclic. By

Proposition 2.2.3, B is removable.

2.2.5 A closer look at the case dim(V) = 2

Assume that p > 1. In the language of homogeneous polynomials, the following

theorem states that any pair of terms of a generic binary form is removable through

a linear change of variables, except the two pairs {fP, xP-ly} and {xyP-1 , yP}.

Theorem 2.2.2 Suppose dim(V) = 2. Let B C T(2,p). Then B is removable if and

only if IBI < 2 and B # {(p, 0), (p- 1, 1)}, {(1,p - 1), (0,p)}.

Proof: Assume that B = 2 and consider the weighted bipartite graph GB. The

condition that B equal neither of the sets {(p, 0), (p - 1, 1)}, {(1,p - 1), (0,p)} is

equivalent to the condition that GB admit some perfect matching f : B -- D.

Observe that the existence of a perfect matching f : B -- D is a necessary condition

for the nonvanishing of the determinant of M(GB). Also, it is easy to see that since

|B = 2, every perfect matching of GB is finite-acyclic. Therefore, by Proposition 2.2.2

and Proposition 2.2.3, we have that for IBI = 2, the condition that B equal neither of

the sets {(p, 0), (p- 1, 1)}, {(1, p - 1), (0,p)} is equivalent to the condition that B be

removable. To complete the proof, it is enough to observe that by Proposition 2.2.1,

any removable B C T(2,p) has at most two elements, and that any B C T(2, p)

satisfying IBI < 1 is removable.



Chapter 3

Results on Skew-Symmetric

Tensors

Let V be a q-dimensional vector space over the complex field C and consider the

exterior algebra over V:

A(V) = (DAP(V).
p> 0

One can study the problem of finding canonical expressions for the elements in AP(V),

the skew-symmetric tensors of step p, and the apolarity framework developed in

Chapter 2 can be adapted for this purpose. In fact, Ehrenborg [4] has recently

extended the theory to handle the study of generic canonical forms in a rather broad

class of objects, called S-algebras; we will prove our results within the S-algebra

setting.

We now describe the basic question of interest to us. In accordance with current

terminology, we call a wedge product of p vectors vi, . .. , vp E V a decomposable skew-

symmetric tensor, written v, A ... A vp. We ask: What is the smallest integer n such

that a generic element of AP(V) can be written as a sum of n decomposables? This

integer n is known as the essential rank of the space AP(V), and in this chapter we

describe what this number means geometrically, as well as show how one can obtain

upper bounds for the essential rank by considering the Lottery Problem.



In the first section, we outline Ehrenborg's general theory of apolarity and canon-

ical forms. We then show how the theory can be applied to skew-symmetric tensors

with an example.

In Section 2, we discuss the Plicker embedding of the Grassmannian G(p, V) in

projective space over AP(V) and describe the connection between this embedding and

the concept of essential rank.

Finally, in Section 3, we discuss the Lottery Problem and how it relates to essential

rank. We conclude with a conjecture on the asymptotics of the Lottery Problem.

3.1 General theory of canonical forms

For proofs of the results in this section, we refer the reader to [4].

3.1.1 S-algebras

Definition 3.1.1 An S-algebra is a pair (A, S) consisting of a vector space A and

a collection S of multilinear forms on A. For each M E S we let k(M) denote the

integer k such that M : Ak -+ A.

The simplest examples of S-algebras include all associative and nonassociative

algebras. In these cases, the set S consists of a single bilinear form.

In what follows, A will always denote a Hausdorff topological vector space over

C. If B is a finite-dimensional linear subspace of such an A, then B is closed and

the induced topology on B is Euclidean. For the basic facts about topological vector

spaces, see [16]. In addition, we will assume that the multilinear forms contained in

S are continuous.

Definition 3.1.2 Let A{x 1,..., x,} denote the smallest set containing A and the

symbols xi,..., x.,, and which is closed under the following two operations:

1. ifp,q E A{x 1,...,x,} and a,O c C, then oap+ q e A{x 1,...,xn};



2. if M E S has k(M) = k and PI,... ,Pk e A{x•... ,x,}, then M(pI,... ,Pk) C

A{xl,..., ,n}.

We call the elements of A{xl,..., x,} S-polynomials in x 1,..., xn.

Lemma 3.1.1 There is a unique mapping A{xl,... , Xn} x A n -- A, which we

denote by eval, such that for all (ai,...,an) E A ,

1. eval(xi; a, ... , an) a.;

2. eval(a; a, ... , an) =a for all a E A;

3. eval(oap + Qq; a,,..., an) - a -eval(p; al,... , an) + --• eval(q; a,. . . , an)

for all a, c C and p,q e A{xI,...,XnI};

4. eval(M(pl,... ,Pk); al,.. .. , an) = M(eval(p; a, . ., an),.., eval(pk al,.. an))

for M C S, k= k(M) and pl,...,Pk e A{xl,...,x}.

3.1.2 Polarizations and homogeneity

Lemma 3.1.2 There is a unique linear map A{xl,...,xn} - A {t, x,...,xn},

which we denote by Dt,x,, satisfying

1. Dt,x, (a) = 0 for all a E A;

2. Dt,x, (xj) -= ij - t;

3. Dt,x,(M(pj ...- Pk =1 M(pl,... ýPj-I, Dt,x,(Pj),Pj+l,.. -,Pk)

for ME S, k = k(M) and pl,...,pk E A{xl,...,xn}.

We call the linear map Dt,x polarization of xi to t.

Definition 3.1.3 Let V, W 1 ,..., Wn be finite-dimensional linear subspaces of A. We

say that an S-polynomial p c A{x 1,... , x } is homogeneous with respect to the spaces

V, W 1,..., W, if for all w E W,1,...,w EC We we have eval(p;wl,...,wn) C V.



Proposition 3.1.1 Let p E A{xi,...,x } and let al,...,an E A. The following

mapping A --- A is linear:

y F-+ eval(Dt,x,(p); y, a,...,an)

Moreover, if the S-polynomial p is homogeneous with respect to the finite-dimensional

linear spaces V, W 1, .. , W,, then Dt,x, (p) is homogeneous with respect to the spaces

V, W Wi,W . .. , Wn.

3.1.3 Apolarity theorem: general case

Definition 3.1.4 Let V and W be vector spaces over C, and let f : W -- + V be a

linear map. We say that L C V* is apolar to f if for all w C W,

(L I f(w))= O.

Definition 3.1.5 We say that a property P holds generically in a finite-dimensional

vector space V if P holds for every element of some dense subset of V in the Euclidean

topology.

Theorem 3.1.1 Let A be an S-algebra, and let V, W1, . . . , Wn be finite-dimensional

linear subspaces of A. Suppose p E A{x, .. , Xn } is homogeneous with respect to

V, W1,..., Wn. Then a generic element v e V can be written in the form

v = eval(p; wi,..., wn)

for some wi e Wi if and only if there exist w' E Wi such that the only element of V*

apolar to the linear maps Wj -+ V,

yj - eval(Dt,, (p); yj, w', . Wn) for all j = 1,...,n



is zero. When this is the case, we will say that p is canonical.

3.1.4 A demonstration

It is well known that every step 2 skew-symmetric tensor over an n-dimensional

vector space can be written as a sum of m decomposables, where m = [2]; see [5].

The following is an odd-dimensional alternative to the above classical canonical form;

the proof is a demonstration of how Theorem 3.1.1 can be applied in practice.

Proposition 3.1.2 Let V be a q-dimensional vector space over C. A generic element

of A2 (V) may be written as

E
1<i<j<q-1

cij vi A vj,

for some cij E C and v1 , . - - , Vq- 1 C V if and only if q is odd.

Proof: Let A = C E V1 E V2 E A2(V), where V, = V2 = V, and let S= {M}, where

M A x A x A -- + A is the unique trilinear map satisfying

M(a, b, c)= abAc
0 0

We endow the finite-dimensional space A

that the trilinear form M is continuous.

polynomial p A{ xij, yi,... , yq-1} (1 _ i

p =
<_i<j<q-1

if a C, b E V, cE V2;

otherwise.

with the Euclidean topology and observe

Our proposed canonical form is the 8-

< j 5 q - 1) given by

M(xxmiyj, yi, Yj).



Think of the xi,j as listed left to right according to the lexicographic order on the

pairs (i, j). Notice that p is homogeneous with respect to

A2(V) C,...,C, V,...,V.
(q-1)(q-2) q-1

2

Let w1,...,Wq- E V and let cij E C for 1 < i < j < q- 1. Consider the two

groups of linear maps

C -+ A2 (V), ak,1 - eval(Dt,Xk,l(p); ok,l, Ci,j, W1 ... , w q-1)

and

V -+ A2 (V), vk H- eval(Dt,y(p); Vk, Ci, W1 ... , Wq-1).

The first group can be written down explicitly as

Sk,• ak,1 - Wk A wl,

and the second as

Vk - Ci,j V k 
A Wj Cj,i ' j AV k -.

i<j<q-1 1j<i

Observe that if wl, ... , wq-1 are linearly dependent, then there exists a nonzero ele-

ment of A2 (V)* apolar to all the above linear maps. Therefore, by Theorem 3.1.1, p is

canonical if and only if we can choose linearly independent vectors wl,..., wq- 1 E V

and constants ci, E C such that the only element of A2 (V)* apolar to all the above

linear maps (with respect to these choices) is zero.

Let w 1,..., Wq-1 e V be linearly independent, leaving the ci,j to be determined.

Let L E A2 (V)* = A2 (V*) be apolar to the two groups of linear maps. The first group



causes L to have the form

L i,q X* A X.
I<i<q-1

The apolarity condition on the second group produces the following system of linear

equations:

0 -C1, 2  -Cl,3 -. C1,q-1

C1 ,2  0 -C 2 ,3  ... C2,q-1

C1 , 3  C2 , 3  0 -. C3,q_ 1

C1q-1 C2a-1 C3 q- 1 " " 0

1• ,q

02,q

03,q

0

0

0

o

The (q- 1) x (q- 1) coefficient matrix, which we may denote by C, is skew-symmetric.

If q is even, then det C vanishes. Since our choice of independent vectors w, ... , w,_1

was arbitrary, we can conclude in this case that p is noncanonical. On the other

hand, if q is odd, then in the expansion of det C the term +c ,2c3,4  Cq_ 1 is not

cancelled. Hence, for odd q, the S-polynomial p is canonical. This completes the

proof.

3.2 Grassmannians and essential rank

Throughout this section, V denotes a q-dimensional vector space over C.

3.2.1 Grassmannians

Let P(V) denote the collection of all one-dimensional subspaces of V. The set

P(V) is known as projective space over V. For any v E V \ {0} we let [v] denote

the line spanned by v, so that P(V) = {[v] v e V \ {0}}. Given a basis V1,.. . , Vq

of V, the dual basis vr,..., v* of V* is sometimes called a system of homogeneous

L I- | -- .[I0



coordinates on P(V).

Consider the space of degree p symmetric tensors over V*, SP(V*). An element

f 6 SP(V*) may be written in terms of the dual basis v*,..., vq as

f = .cI " (V*)i
1 .. (V )iq ,

IET(q,p)

for some c, G C. Let x E P(V). The condition f(x) $ 0 is well-defined, since

f(Av) = AP .- f(v) for all A c C and v E V. It therefore makes sense to speak of the

common zero locus of a collection of homogeneous symmetric tensors over V*. Such

a common zero locus is known as a projective variety.

By a linear variety in IP(V) we mean the common zero locus of some collection

S of elements from S1'(V*). Every such projective variety is the image in P(V) of a

linear subspace W of V, the linear subspace W being merely the affine variety defined

by S. Conversely, if W is a linear subspace of V, then its image {[w] I w e W \ {0}}

in P(V) is a linear variety.

The collection of linear varieties in P•(V) is closed under the operation of taking

arbitrary intersections. Dually, we define the span of a family of linear varieties to be

the smallest linear variety in P(V) containing their union.

Let G(p, V) denote the set of p-dimensional linear subspaces of V. In order to give

the Grassmannian G(p, V) the structure of a projective variety, we embed G(p, V) in

projective space, as follows. Let W E G(p, V) and let wl,..., wp, be a basis for W.

Consider the decomposable skew-symmetric tensor w, A ... A wp. If w ... wp, is any

other basis for W, then

w' A... Aw ,Wp = c -w I A A wp,

for some c $ 0. Therefore, there is a well-defined map G(p, V) -+ IP(AP(V)), which

sends a p-dimensional subspace W spanned by wl, . . ., wp to [wl A..-. A wp]. This map

is injective, and is known as the Pliicker embedding of G(p, V) in projective space. We



identify G(p, V) with its image in P(AP (V)), which is a projective variety of dimension

p(q - p); see Harris [11].

3.2.2 Essential rank

Definition 3.2.1 Let V be a q-dimensional vector space over C. We define the

essential rank of the space AP(V) to be the smallest integer n with the property that

there exists a dense subset D of AP(V) such that if f e D then

n

f = • vi, A... A vi,p,
i=1

for some vi, e V. We denote the essential rank by 'ess rank AP(V)'.

The following theorem gives a geometric interpretation of essential rank. It states

that the essential rank of the space AP(V) equals the minimum size of a collection

of projective tangent planes to the Grassmannian G(p, V) whose span is the entire

ambient space PI(AP(V)). Thus, it relates essential rank to the way the Grassmannian

sits in projective space under the Plficker embedding.

Theorem 3.2.1 We have the following equality:

J there exist x1 , ... , x, E G(p, V) such that
ess rank An(V) = mmn n

Tx, G(p, V), . .., TX G(p, V) span P(AP(V))

Proof: Let A = V1 E ... -e Vp e AP(V), where each Vi = V, and let S= {M}, where

M :A x ... x A -+- A is the unique multilinear map satisfying
p

M(a,...,a) a A... A ap ifeach ai Vi;

0 otherwise.

Endow the finite-dimensional space A with the Euclidean topology and observe that

M is continuous. Let Hn denote the set of all pairs (i, j) with 1 < i < n and 1 < < p.



Define the S-polynomial p e A{xi,j (i, j) E Hn } by

n

P= M(xi,1,... ,Xi,p).
i=1

Think of the x,, as listed left to right according to the lexicographic order on the

pairs (i, j). Notice that p is homogeneous with respect to the spaces

AP(V), V1,..., Vp,..., V1,..., VP.
np

Choose vectors wij C V for each (i, J) e H,. With respect to these choices, we

define a collection of linear maps fk,l V - AP(V), for (k, 1) e He, by

fk,1(v) eval(Dt,xkI(p);v,w

= Wk,1 A "...' A Wk,l 1 A v AA Wk,1+1 A '...' A Wk,p.

For each (k, 1) E Hn let Qk,l denote the linear variety in P(AP(V)) corresponding

to the linear subspace Image(fk,l) of AP(V). Note that Qk,1 C G(p, V). By Theo-

rem 3.1.1, the S-polynomial p is canonical if and only if for some choice of vectors

wij the linear maps fk,l satisfy Z(k,1) Image(fk,I) = AP(V). The projective formulation

of this goes: p is canonical if and only if we can choose vectors ws,, E V such that the

span of the corresponding projective varieties Qk, is all of IP(AP(V)). We need the

following simple lemma.

Lemma 3.2.1 Assume p < q = dim(V). Let v1 ,...,vp, V, and for each i =

1,...,p, let Wi = {vl A ... A vi 1 A v A vi+1 A .. A vp v e V}. There exist linearly

independent vectors vi,... ., v( C V such that EiWi C Ei Wi', where W' = {v' A...A

vi_> Av A vi' 1  A'" A vp v V}.

Proof: If v1,. . . ,vp are independent, then the conclusion is obvious. If the space

spanned by these vectors has dimension less than p - 1, then each Wi = {0} and any



independent set v,., v', will do. Thus, we may assume without loss of generality

that v ,... , vI are independent and that vp = ZiOj- vj, for some aj C C. Put

v = vi for i 1,... ,p- and let ' be any vector in V\span{vi, . . ., v- 1 }. Observe

that Wp = W'. Let i < p, and let v, A . • A vi-1 A A vi+ A . • A vp E Wi. We rewrite

this vector as v, A -.- A Vi 1 A V A Vi+ 1 A .. A (Ep-laj - vj)

1
= •l •v, A ... A vi-1 A v A vi+l A ... A vp-1 A vj

= -a-v 1 A A vp-1 A v

SW'.P

The lemma follows.

Returning to our Theorem, we now fix k and consider the vectors wk,1, ... Wk,p.

By Lemma 3.2.1, there exist vectors w",,..., such that if f 1,. .. f,,f are the

corresponding linear maps, then Z(k,1) Image(fk,l) C (k,) Image(fk,1 ). Let Q", denote

the image in P(AP(V)) of Image(fk,/). Letting Qk denote the span of Qk,1, . k,p

and Q• denote the span of Q",1..., IQk,p, we have that each Qk,l C Qk C k .

Let xk a A...A ,p] E G(p,V). We have, for each l 1,...,p,

kl = Txk Qk,l Txk G(p, V).

As Tx kG(p, V) is a linear variety, we have Qk C k C TkG(p, V).

Now observe that if p is canonical, then the span of Q, ... Q, is all of P(AP(V)).

Since each Qk is contained in some projective tangent space Txk G(p, V), we have that

there exist x 1, . . . , x e G(p, V) such that TxG(p, V),... I T, G(p, V) span IP(AP(V)).

Conversely, if we are given such x1, . . .,x e G(p, V), it is easy to see that p is

canonical. In fact, a dimension count shows that the inclusion Q'k C TxkG(p, V)

above is equality. The result follows.



3.3 The Lottery problem

Let [n] denote the set {1, 2,... , n}, and let [n]k denote the set of all k-subsets of [n].

Definition 3.3.1 The Lottery number L(n, k, 1) = min|SI, where S ranges over all

subsets of [n]k with the property that, for each T E [n]k there exists U E S satisfying

IUnTI > 1.

The numbers L(n, k, 1) have the following popular interpretation. Consider a game

involving a lottery authority and yourself in which the authority selects k numbers

from 1, 2,...,n. Before this selection is made you may purchase tickets from the

authority, on each of which you select k numbers from 1, 2, .. ., n. Then L(n, k, 1)

equals the minimum number of tickets required to guarantee that on at least one

there will be at least 1 of the k numbers selected by the authority; i.e, the collection

of tickets bought ensures at least an 1-hit.

The Lottery problem is that of determining the values L(n, k, 1) for all possible

triples (n, k, 1).

Example 3.3.1 It is easy to see that L(n, k, 1) = [~J. In [10], Hanani, Ornstein and

S6s prove that
n(n-k+1)

L(n, k, 2) > k(k - 1)2k(k -1) 2

and

lim L(n,k, 2)
n-+00 n(n-k+l)

k(k-1)
2

In particular, then,

n(n - 2) <L(n, 3, 2) < (1 + o(1)).
12 - - 12

3.3.1 Integer programming formulation

The numbers L(n, k, 1) can in principle be computed using an integer programming

formulation of the Lottery problem. The integer programming approach is applied to



a similar problem in [18].

Let Wk = {x= (xl,...,xn) E {0, 1}n  Ei xi = k}, the binary vectors of length

n and weight k. Notice that Wk is in natural bijective correspondence with the

collection of k-subsets of [n]. Let nr,., i7. : {0, 1} -- {0, 1} denote the coordinate

maps 7i(x1, .. .,xn) xi , and let lk {(il*,...,rik) 1 ii < <k < n}. Let

Pk,1 {x (Xi, ... ,Xk) (E {0, 1}k I ix > 1}. A collection S C W k is specified by

setting

vx = 1 ifxcS;

vx = 0O ifx S.

Finding a minimal collection S of k-subsets of [n] ensuring at least an 1-hit is equiv-

alent to the following integer program:

minimize I Vx subject to
XCWk

SvX > 1 for all feC Ilk
f(x)EPk,l

vx eC {0, 1} for all x E Wk.

Example 3.3.2 Solving the above program for (n, k, l) = (9, 3, 2), (9, 4, 3), we find

that L(9,3,2) = 7 and L(9,4,3) = 9. Since L(n,k, k- 1) = L(n, n - k,n- k- 1),

we also get L(9,6,5) = 7 and L(9,5,4) = 9. And from the previous Example 3.3.1,

we have L(9, 2, 1)= 4 and L(9, 7, 6)= 4.

3.3.2 Some bounds for L(n,k, 1)

Definition 3.3.2 The Turin number T(n, k, 1) = min|S, where S ranges over all

subsets of [n], with the property that, for each T E [n]k there exists U E S such that

UCT.



Proposition 3.3.1 We have L(n, k, 1) > T(n, k, 1)

(k)

Proof: Let S be a collection of k-subsets of [n] such that each member of [n]k

intersects some member of S in at least 1 elements. Let S' = {T e [n]z T C

U, for some U e S}. We have S' < SI - (k). Every element of [n]k contains at least

one member of S'. Hence, T(n, k, 1) < S' < S - (k). The conclusion follows.

Remark 3.3.1 In [3], de Caen proves that T(n, k, 1) > rn-k+1 (e ). We therefore
11

obtain, after some simplification, the lower bound

(n- k+ 1). (• " )

L(n, k, 1) >
k. (k - 1

)
2

One way to bound the number L(n, k, 1) from above is to consider the covering

number C(n, k, 1). This number is the minimum possible size of a collection S of

elements of [n]k with the property that every element of [n], is contained in some

member of S. It is obvious that L(n, k, 1) < C(n, k, 1). Tables containing upper

bounds for C(n, k, 1) can be found in [9].

3.3.3 Relation to essential rank

Using Theorem 3.1.1, it is easy to prove the following result. See [4].

Proposition 3.3.2 We have ess rank AP(C q ) < L(q,p,p- 1).

Corollary 3.3.1 ess rank A3 (Cq) q< q(q2) 1 + o(1)).

Corollary 3.3.2 ess rank AP(C 9 ) < 1, 4, 7, 9, 9, 7, 4, 1 for p = 1, 2, 3, 4, 5, 6, 7, 8, re-

spectively.
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