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Abstract

Many physical systems exhibit interesting critical behavior which depends on the
interplay of more than one order parameter. In this thesis, we report experimental
studies of the spin-Peierls transition in CuGeO 3 and the phases and phase transitions
in the mixed Ising-XY magnets with quenched randomness: FeGCoji-TiO 3, by using
synchrotron x-ray scattering techniques.

In CuGeO 3, below the spin-Peierls transition temperature T8p, the superlattice
peak resulting from the lattice dimerization has a resolution limited profile, and the
peak intensity, which is proportional to the order parameter squared, is well described
by a simple power law, (1 - T/T8 p)20. The best fit value of P is 0.33(3). In addition,
a spontaneous thermal contraction Ab along the b-axis perpendicular to the chain
direction was observed below the spin-Peierls transition temperature T8p. This con-
traction, Ab, is found to scale like the dimerization squared, Ab 3 V2. The shift of
the transition temperature in magnetic fields, AT - T.p(0) - T8p(0), is found to scale
as H2 in quantitative agreement with the results of magnetic susceptibility measure-
ments and with theory. A small increase in the a-axis lattice constant is observed
below T8p. Above the transition temperature T5p, pre-transitional lattice fluctuations
are observed within about 1K above T8p. The length scale of these fluctuations is
about an order of magnitude larger than that characterizing the bulk critical fluc-
tuations. The line shape of these large length scale fluctuations is consistent with a
Lorentzian-squared form. The measured critical exponents associated with the large
length scale fluctuations are v = 0.56(9), and j = 2.0(3). Similar large length scale
fluctuations have been observed at the structural transitions in some perovskites and
the magnetic transitions in holmium and terbium. We suggest that in CuGeO3 the
large length scale fluctuations reflect the disconnected susceptibility originating from
random field Ising-type local defects.

In FeCo1 _..TiO 3, for concentrations x = 0.35, 0.50 and 0.65, we observe at high
resolution a breakup of both the magnetic and the atomic structures of the crystal
into domains, as well as a uniform lattice distortion following the ordering of the XY
spin components. We argue that this breakup into domains in the XY phases results



from random anisotropy, random field and magnetoelastic effects in FeCol-zTiO3. In

particular, we find that in random anisotropy XY magnets, there exists a novel phase
transition which is critical, but involves no long-range ordered phase. In addition
to the XY behavior, the Ising spin component in the mixed phase (x = 0.65) is

found to break into domains following the (short range) ordering of the XY spin

components. Specifically, the scattering profiles of the low temperature mixed states

are well described by a Lorentzian squared cross-section, which in three dimensions
corresponds to exponential decay of the real space spin-spin correlations. This loss of

the long-range order of the Ising order due to the ordering of the XY spin components
after initial establishment of the Ising order on cooling is difficult to understand within
our current picture of the random field Ising model. Furthermore, we have also carried

out a detailed study of the magnetic field effects on phase transitions in the mixed
Ising random magnet Fe0o.75 Co 0.25 TiO 3, for fields up to 3T. It is found, as in the

diluted Ising antiferromagnets MnxZnlxF 2 and FexZnl-xF 2, that when the sample
is cooled in the presence of a field, it evolves from the high temperature paramagnetic
phase to a low temperature domain state. The low temperature scattering profiles

are well described by a Lorentzian squared cross-section. However, if the sample is

cooled below the Niel temperature TN in the absence of a field, and a magnetic field

is subsequently applied, the long range magnetic order persists on warming, up to a

well defined field-dependent metastability temperature, TM(H). The shedding of this

LRO in the metastable region is consistent with the "trompe l'oeil critical behavior"
description, with a /3ZFC 0.15. The depression of the metastability temperature in
magnetic fields can be well described by TM(H) = TN(0) - bH2 - aH 2/ 0, with the
best fit value for the crossover exponent 4 = 1.2(1). This smaller value (than the

theoretical value 0 = 1.4) for ¢ arises from the close proximity of a multicritical point
at higher fields. At the superlattice reciprocal lattice point (1, 1, -1.5), we observe
a drastic field-dependence of the x-ray, but not the neutron, scattering intensity.
This additional x-ray intensity is believed to arise from a staggered lattice distortion.
In particular, the quadratic magnetic field dependence of the additional intensity is
consistent with a lattice and magnetism coupling of the form, 6,SMsM.

Thesis Supervisor: Robert J. Birgeneau
Title: Dean of Science and Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

1.1 Phase Transitions

Phase transitions are a fascinating field of study. During a phase transition, such

as the transformation from a thermally disordered paramagnetic state to an ordered

ferromagnetic state, in which the neighboring spins tend to align parallel to each

other, large number of particles, typically of the order of 1023, behave collectively.

Proper description of this cooperative behavior at the phase transition is a challenging

problem for both experimentalists and theoreticians. Given the number of particles

involved, there is apparently little hope of finding out how each particle behaves with

respect to its neighbors. Moreover, even if such a solution existed, it would prove

impossible to monitor experimentally the motion of the 1023 or so particles at the

same time.

We can, however, measure some macroscopic variables, such as the magnetization,

M, and from these macroscopic variables, we can easily distinguish one state from

the other. For instance, in the case of a paramagnet-to-ferromagnet phase transition,

the magnetization M = 0 in a paramagentic state, and M = 0 in a ferromagnetic

state. The existence of a quantity which is non-zero in one state, and zero in the other

state is a common feature with a wide variety of physical systems. We say that the

magnetization M is the order parameter for the paramagnet-to-ferromagnet phase

transition. In a phase transition between a paramagnet and an antiferromagnet in
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Figure 1-1: The growth of the sublattice magnetization as a function of temperature
for single crystal Feo.75Co0.2 5TiO3 . For T close to Tc, the growth is well described by

a power law, Ms oc (1 - -). The solid line in the figure represents the best fit of
the data, with the fit /3 value of 0.36(3). The inset shows the same plot on a log-log
scale, and the horizontal axis is the reduced temperature, t = 1 -1.T12

which the neighboring spins tend to align anti-parallel to each other, the sublattice

magnetization Ms serves as the order parameter.

The order parameter usually grows in a certain fashion from zero to non-zero,

for an example, Fig. 1-1 shows the evolution of the sublattice magnetization in a

transition from a paramagnetic state to an ordered antiferromagnetic state for a

single crystal Feo.75Co0.25TiO3. At a temperature, Tc, there is a sudden rise of the

order parameter, Ms. We call T, transition temperature.

For T close to the transition temperature T,, we notice that the sublattice mag-



netization, Ms, follows a simple power law (Fig. 1-1),

M s oc I - -
( 1.1)

TCT

The power law behavior of certain macroscopic variables near the transition temper-

ature is another common feature of phase transitions in a wide variety of physical

systems. The index on power, such as 3, is called a critical exponent. Further-

more, while the transition temperature T, depends sensitively on the details of the

interatomic interactions, and therefore varies considerably from system to system,

the critical exponents, such as g, for a continuous phase transition depend on the

following three properties and nothing else [1, 2, 3, 4]:

* The dimensionality of the system, d.

* The dimensionality of the order parameter, n, or more precisely, the symmetry

of the order parameter; in simple cases, this is equivalent to the number of

dimensions in which the order parameter is free to vary.

* Whether the forces between the particles are of short or long range

This enormous generalization is the hypothesis of universality [5, 6, 7]. Since it has not

been "proven" from more basic ideas, the correctness of universality must be judged by

reference to experiments, where in fact measurements seem to support the hypothesis.

There are still some doubts as to how good universality is. For instance, Haldane

[8, 9] has conjectured different behaviors for one-dimensional magnetic systems with

integer and half-integer spins, but, nonetheless, the hypothesis of universality forms

a reasonable starting proposition from which to proceed to other questions.

We know that most real systems are three-dimensional (d = 3). So when we say

the dimensionality of a system is one (d = 1) or two (d = 2), we usually mean that

the one-dimensional (ID) or two-dimensional (2D) systems are actually imbedded in

real three-dimensional (3D) systems. In some materials, within the (temperature)

region concerned, the interactions between the particles along one direction (ID) or

within a particular plane (2D) are much stronger than the interactions along the other



directions. Examples for lower dimensional magnetic systems include CsNiF 3 (ID)

[10], (CD 3)4NMnC13 (TMMC) (1D) [11], K2NiF 4 (2D) [12] and Rb2CoF 4 (2D) [13].

We shall again use the language of a magnetic phase transition to explain the

dimensionality of the order parameter (n). Due to the detailed atomic arrangements

of a system, the spins may be confined to align along one particular axis, we call

this magnetic system an Ising magnet (n = 1); or, the spins may be confined to vary

within a particular plane, we then have an XY magnet (n = 2); or, there may be

no restrictions on spins' direction at all, i.e. the spins are allowed to point in any

direction, this system is then called a Heisenberg magnet (n = 3).

The hypothesis of universality also says that the details of the the microscopic

interactions between particles, that is, whether they are electronic or magnetic, are

irrelevant, the only relevant part regarding the interatomic interactions is whether the

interactions themselves are short-ranged or long-ranged, i.e. whether the interactions

are confined to neighboring sites or they extend beyond the nearest neighbors.

1.2 Coupled Order Parameters

In some physical systems, there are more than one order parameters, or the order

parameter itself has several components. The ultimate critical behavior near a phase

transition of such systems understandably depends on the interplay of these order

parameters, or the different components of the order parameter. A well-studied ex-

ample is that of a uniaxially anisotropic antiferromagnet in a uniform magnetic field

[14, 15, 16, 17], in which spins may order antiferromagnetically parallel to the field for

low values of the field, or transverse to the field for high values of the field. A second

example is that of the structural displacive phase transition in stressed perovskite

crystals, where the direction of the rotations of the atomic octahedra depends on the

external uniaxial stress [18, 19, 20].

In this thesis, we present experimental studies of two such systems, which exem-

plify the importance of the coupled order parameters:



Spin-Peierls Systems

For an ideal one-dimensional magnetic system with short-range interactions, ordering

can occur only at T = OK [21]. Weak interchain interactions are therefore necessary

to induce a phase transition at a finite temperature Tc #= 0.

For a crystal made up of one-dimensional (1D), spin half-integer, antiferromag-

netic Heisenberg or XY chains in a 3D lattice, there are two possibilities: (1) If the

interchain interactions are magnetic, the transition leads to a magnetic ordered state

below Tc. This ordering temperature is related to the ratio of the interchain to in-

trachain coupling. (2) Alternatively, if the lattice is allowed to distort, the uniform

spin chain can then undergo a phase transition at a transition temperature T8p to

a dimerized state. This can be visualized as a state in which neighboring pairs of

ions are displaced from their "uniform positions" alternately closer and further apart.

This transition is referred as spin-Peierls transition, for its close similarity to the

Peierls transition in 1D metals [22]. In the spin-Peierls transition, the interchain

couplings are in the form of a three-dimensional phonon field. Spin-Peierls transition

is therefore a structural transition driven by the coupling between a 1D spin system

and a 3D phonon field. The onset of a spin-Peierls transition precludes additional

magnetic ordering at lower temperatures; and the onset of a magnetic ordering, in

turn, prohibits further spin-Peierls transition in the system.

In real systems, usually neither the interchain magnetic coupling is zero, nor the

lattice is completely rigid. We can therefore view the situation as a competition be-

tween the magnetic order, which is driven by the interchain magnetic couplings, and

the dimerization, which is driven by the couplings of the 1D magnetic interactions

and the 3D phonon fields. In the case that the former wins, we will have a low

temperature magnetic ordered state. In the spin-Peierls systems, in which we are in-

terested in this thesis, it is the spin-phonon coupling that wins the battle. There are

not many 1D magnetic systems in the nature, moreover, there are even fewer cases

when the spin-lattice coupling wins its battle with the conventional magnetic order.

In Part I of this thesis, which includes Chapter 2, Chapter 3, Chapter 4 and Chapter

5, we report a detailed experimental study on the first known, and to-date, the only



known, inorganic spin-Peierls system CuGeO 3. The advantage of being inorganic is

that the sample does not deteriorate in an x-ray or neutron beam, which therefore

allows for a detailed experimental investigation.

Mixed Ising-XY Magnets with Quenched Randomness
Suppose that we have two magnetic systems A and B, each undergoes a paramagnet-

to-ferromagnet phase transition at temperatures T A and Tc respectively. The only

difference between A and B is that in system A the magnetization is within one

particular plane, say, the x-y plane, while the magnetization in system B is confined

to a particular direction, say, the z-axis direction, which is perpendicular to the x-y

plane. This is to say that for system A,

MA 0  T> T A

(M A M A , 0) or (M A, 0), where M A 2  (M A )2  A 2  0 T<TA

and for system B,

T>IB
MB {0 T>_T

(0, 0, MzB), where MzB # 0 T < T

In other words, systems A and B exhibit XY and Ising behavior respectively. Now

if we mix A and B together to form crystalline random mixtures of AxBIx, where

x is the concentration of system A in the mixtures, 0 < x < 1. Clearly, in the

binary compounds AxBi-x, there is competition between the ordering of the different

components M 1 and Mz of the magnetization. This can be understood by considering

two extreme cases: (1) for very small x - 0, the phase behavior in the mixed systems

is expected be similar to that of system B (in the case of x = 0, we simply go back to

system B), i.e. in the mixture, the behavior of the magnetic component Mz dominates

over that of the magnetic component M 1 ; (2) alternatively, for x close to one, we

expect the phase behavior in the mixed systems to be similar to that of system A

(when x = 1, we return to system A), i.e. the component M1 is more significant



than the component Mz.

But how about a mixed system with x being neither very close to zero, nor very

close to one? Naively, we would expect that the spin component in the x-y plane,

MI, follows the behavior of MA, while the spin component along the z-axis, Mz,

mimics the behavior of MB. Do real mixed magnetic systems behave like this? What

are the other factors we must consider in a random mixed magnetic system? Part II

of this thesis, which includes Chapter 6, Chapter 7 and Chapter 8, reports an exper-

imental study of one physical realization of such mixed Ising-XY magnetic systems

with quenched randomness: FexCol-xTiO 3.

In both cases, the phase transitions involve the change of the structure, that

is, magnetic (and atomic) in FexCojxTiO3 and atomic in CuGeO 3. This makes

the scattering technique an excellent choice of the tool in investigating the phase

transitions in these two systems. In particular, we used synchrotron x-ray scattering

techniques in studying of these two systems with coupled order parameter - CuGeO 3

and FexCol-xTiO3.

1.3 Synchrotron X-ray Scattering in Solids

In order to understand the basic physical and chemical behavior of materials, it is

usually essential to understand their structures first. For decades, the x-ray scattering

technique has been the technique of choice for the precise determination of the geo-

metric arrangements of atoms and molecules in condensed matter. In the past decade,

with the high fluxes available from synchrotron radiation sources, the x-ray scatter-

ing technique has also established itself as a powerful tool in studying the magnetic

structure, that is, the arrangements of the magnetic moments, in magnetic materials.

With the high resolution available from synchrotron radiation sources, synchrotron

x-ray-scattering experiments allow the detailed study of physical properties at length

scales ranging from 0.1 to several microns. These length scales, which often turn out

to be very important in understanding some experimental results, for example, the



two length scale phenomenon reported in Chapter 5 of Part I, and in random magnetic

materials as illustrated by the results reported in Part II, are generally inaccessible

by other experimental techniques.

Synchrotron Radiation

Synchrotron radiation is electromagnetic radiation emitted by charged particle mov-

ing with relativistic speeds in curved trajectories. There are three generic kinds of

synchrotron radiation sources: bending magnets, wigglers and undulators [23]:

* Bending Magnets - In bending magnets, charged particles constrained to

move in arc trajectories at relativistic speeds experience a centripetal accelera-

tion and thus radiate, as predicted by Maxwell's equation [24]. The continuous

spectrum is produced in bending magnets. The continuous spectrum is also

referred to as a "white beam".

* Wigglers - A wiggler is a linear array of magnet poles with alternating po-

larity. An electron beam passing along the axis of the wiggler will execute a

trajectory akin to a series of sine-like wiggles. Synchrotron radiation is emitted

from each bend in the wiggler. The output is the sum of these emissions.

* Undulators - An undulator is very similiar in construction to a wiggler. The

essential difference is that the deflection of the electron beam in the undulator is

less than, or of the order of the natural emission angle of synchrotron radiation

(given by 9 = 7- 1 - moc2/E, the ratio of the electron rest mass energy to

its total energy). This allows interference between photons from individual

wiggles, giving a radiation spectrum consisting of a discrete line together with

many harmonics.

Although the synchrotron radiation may come from different sources, they share

some common features: exceptionally high brightness, wide tunability, high polariza-

tion and narrow angular divergence, and it is these features that make synchrotron

radiation an incisive and versatile probe in modern scientific research.
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Figure 1-2: The schematic layout for a synchrotron-x-ray scattering experiment.

The Scattering Gemoetry

In Fig. 1-2, we show the setup of a typical synchrotron x-ray scattering experiment.

The multi-wavelength beam from the synchrotron radiation source, which is continu-

ous for both bending magnets and wigglers, and discreet for undulators, shines on a

mirror, which focuses the beam to a small spot at the sample position, and therefore

achieves a high flux density at the sample position. In addition, the mirror also serves

to eliminate the higher order harmonics. A single wavelength is then selected by the

monochromators. The monochromatic x-ray beam then shines on the sample, and is

scattered by the electrons

When an x-ray - an electromagnetic wave - meets an electron in the crystal,

the electronic charge is accelerated by the electric field of the wave, and begins to

oscillate. This oscillating electron, in turn, emits an electromagnetic wave - the

scattered x-ray. However, this is not the full story, since the electromagnetic wave

also contains a magnetic field, and the electron has a magnetic moment - both

the spin of the electron and its orbital moment. The magnetic field and magnetic

moments interact and this interaction produces magnetic scattering.

Therefore, a technically demanding synchrotron x-ray scattering experiment can

be simply summarized: x-rays hit the sample, scatter, and an analysis of the dis-

r



tribution of the intensity of the scattered x-rays reveals information regarding the

atomic and magnetic structures of the materials. In the rest of this Section, we will

briefly review the formulation of the interactions between x-rays with the electrons

in the solids. A full derivation is given in Ref. [25]. X-rays also interact with the

protons in the solids. However, this interaction can generally be neglected because

the interaction is inversely proportional to the mass of the charged particles, and the

mass of a proton is - 2000 times that of an electron.

The Hamiltonian
The Hamiltonian for electrons in an electromagnetic field can be written:

1= ( e - A(rj))2 + V(Rij)2m c 3

e Sj . V x A(rj) - -- S- - E(rj) x Pi - cA(r)j ' 2

+ TAhk Ckak ( 1.2)
ka

where A(rj) is the vector potential of the x-ray photon field. The first term on the

right-hand side, Ej P - A(rj)) 2 , represents the kinetic energy of the electrons.

The second term, Eij V(Rij), is the electron-electron pair interaction. The third

term, 2mcE • Sj -Vx A(rj), is the interaction of the electrons' spins with the mag-

netic field of the x-rays. The fourth term, 2( )2 jSj - E(rj) x (P× - A(r)), is

the interaction between the electrons' orbital moments with the x-ray photon field.

The last term, Eka hWk (CtaCkC + is the energy of the photon field. The ctk and

Cka are the creation and annihilation operators for a photon with momentum k and

polarization a.

The Cross-section
One quantity in which we are interested in a scattering experiment is called partial

differential cross-section, a . It is defined as the scattered power per unit solid6O2&Ef"



angle, per energy band-width, per unit incident flux:

2o. Wp(Ef) (1.3)-- (1.3)
OQOEf Io

where p(Ef) is the density of the final state f >, 1o is the incident flux, and W is

the probability of the transition from an initial state I i >- |a >,I k, a >P, to a final

state I f >-I b >sI k', a' >,, where the subscripts s and p denote sample and photon

respectively. The transition probability W is simply given by Fermi's "Golden Rule":

1 <f l-(I><mtl-( i 2
W = - <f< f I • i> < + m >  6(Ei -Ef) (1.4)

h m Ei - Em

Careful calculations lead to the following scattering cross-section [25], including

all terms up to second order.

( e2  < b I eiQr I a a > . E
00-'8 E' i..l mc2 j

2
*hw (.(Q xP 1 )N

- mc2 < b iQeQr i hk 2  A + S -B a >

x 6(Ea - Eb + hWk - hwk') (1.5)

where Q _ k' - k is the momentum transfer, F and ' are the unit polarization vector

for the initial and final photon. The vectors A and B are defined as:

A X (c'×[)

B (6 x E) + (1k' x ')(1'. ) - (x )(k •') + (1^' x E) x (kx ) (1.6)

where k and 1k' are the unit momentum vector for the initial and final photon.

The cross-section indeed has contributions from both the charge scattering and

the magnetic scattering. However the contribution from the magnetic scattering is

a factor of ( )2 smaller than that from the charge scattering. The contribution

from the magnetic scattering is further reduced by the fact that only unpaired elec-

trons contribute to the magnetic scattering process. Specifically, the number of the



electrons which participate in the magnetic scattering, Nm, is usually an order of mag-

nitude smaller than the number of those which participate in the charge scattering,

N (all electrons). The ratio of the magnetic contribution to the charge contribution

is therefore:

amag ( Nm)2 (1.7)~(1.7)
Ocharge (MC2 N

For 10KeV photons this factor is 2.5 x 10-' [25]! It would be hopeless to try to detect

a magnetic signal of 1 on top of a monstrous charge signal of 4 x 106. Fortunately, in

some magnetic systems, such as antiferromagnets, the magnetic structure has a peri-

odicity different from that of the atomic structure, one therefore can find positions in

the reciprocal space at which the coherent charge scattering is zero. In addition, the

high fluxes available at the synchrotron sources have helped to transform magnetic

x-ray scattering from an academic curiosity [26, 27, 28] to a powerful everyday tool

[29] in studying magnetic materials.

Due to the strong coupling of the neutron spin to the magnetic moments in the

sample, magnetic neutron scattering has played an eminent role in the studies of

magnetic materials since the techniques were first developed by Clifford G. Shull and

Bertram N. Brockhouse, for which the two were awarded the 1994 Nobel Prize in

Physics. One may then ask what the advantages are in using synchrotron x-rays

scattering techniques to study the magnetic properties. The most significant benefit

of using x-rays to probe the magnetic properties on an atomic scale lies in the fact

that they provide high wave-vector resolution and are therefore sensitive to even slight

magnetic structure distortions - the very same characteristic makes x-ray scattering

an unsurpassed tool in studying the geometric arrangements of atoms and molecules.

The importance of this advantage will be exemplified in the studies reported in this

thesis. In addition, the x-ray beam polarization and energy can be chosen to meet

the requirements of a specific experiment. In particular, the scattered radiation by

spins and orbital momenta leave different signatures [25], which makes it possible

to learn about the spin and orbital contributions to a sample's magnetic moment.



Free of extinction effects, magnetic x-ray scattering is also the best technique for

studying the details of the magnetic ordering as the temperature is varied near the

critical temperature. Finally, small samples can be studied using x-rays while neutron

experiments usually require relatively large samples.



Part I

Spin-Peierls Transition in CuGeO 3



The cooperative behavior of lower dimensional quantum spin systems is a sub-

ject of continuing research. One particularly interesting phenomenon is the so-called

spin-Peierls transition, which is a structural phase transition driven by the magnetic

interaction in one dimensional (1D) S = 1 chain compounds. By analogy with the2

well-known Peierls instability in a 1D metal [22], it can be shown [30, 31] that a

uniform antiferromagnetic chain is unstable with respect to a lattice distortion which

dimerizes the chain into an alternating antiferromagnet; thereby introducing a gap

into the chain spin excitation spectrum.

Until about two years ago, spin-Peierls transitions had only been observed in a few

organic compounds such as TTF-CuS4 C4 (CF 3 )4 [32, 33] and (MEM)-(TCNQ) 2 [34].

However, because of size and crystal quality limitations, information on the static

and dynamic spin and lattice fluctuations associated with the spin-Peierls transition

in these materials was quite limited. Thus, many essential features of the transition

are not yet characterized or understood. Much more complete experimental work

on the spin-Peierls transition has been made possible by the discovery that a struc-

turally simple, inorganic chain compound, copper germanate (CuGeO3 ), exhibits the

behaviors predicted for a spin-Peierls system.

In the first half of this thesis, we report a detailed synchrotron x-ray study of the

phase behavior at the spin-Peierls transition in CuGeO 3. The organization of this

Part is as follows. In Chapter 2, we summarize the theoretical understandings of

the spin-Peierls transition. In Chapter 3, we measure the temperature dependence of

the superlattice reflections, resulting from the lattice dimerization. In Chapter 4, we

report the observation of a concomitant thermal contraction below the spin-Peierls

transition temperature in CuGeO 3 . Finally in Chapter 5, we report the observa-

tion of large length scale fluctuations at the spin-Peierls transition in CuGeO 3 for

temperatures above the transition temperature.



Chapter 2

The Spin-Peierls Transition

2.1 What is the Spin-Peierls Transition?

Consider a system which consists of an assembly of uniform quantum spin chains

described by a spin- Heisenberg or XY, for reasons which we will explore in next sec-

tion, Hamiltonian with nearest-neighbor-only antiferromagnetic exchange couplings.

These chains are stacked parallel to one another, and interchain magnetic couplings

are neglected. However, allowance is made for the possibility of an elastic distortion of

the lattice, i. e. the lattice is soft. Since the exchange energy of the neighboring spins

along the chain direction is a function of separation between adjacent lattice sites, an

elastic distortion of the lattice will influence the spin hamiltonian of the system. It

turns out that for some of such systems, as the temperature is lowered, the uniform

spin chain undergoes a transition at a finite critical temperature T8p to a dimerized

state, which is a state in which the neighboring pairs of ions are displaced a small

amount from their "uniform positions", alternately closer and further apart. We call

this magnetoelastic transition spin-Peierls transition for its similarities to the Peierls

transition in a quasi-one-dimensional metal [22]; and the systems that undergo the

spin-Peierls transition are referred to as spin-Peierls systems.

To understand why the dimerized state is energetically favored at low tempera-

tures for spin-Peierls systems, we first examine the excitation spectrum for both a

uniform and a dimerized chain as well as the effects of quantum fluctuations.



2.2 Excitation Spectra and the Role of Quantum

Fluctuations

The excitation spectrum [35] for a uniform infinite one-dimensional antiferromagnet

Heisenberg chain is depicted in the left panel of Fig. 2-1. The salient point is that

the excitation spectrum is degenerate with the ground state at q = 0, ±ir/a. This

degeneracy brings excited states infinitely close to the ground state (of which the

Neel state is a component). Therefore, quantum zero-point fluctuations of the chain

will populate the low-lying excited states. This implies that the state at T = OK is

a composite of the singlet ground state and triplet excited states. The consequences

are that the Niel state is not a true eigenstate of the Hamiltonian, and there is

no long-range order at T = OK. If the chain is dimerized, a gap develops in the

excitation spectrum which lifts the above-mentioned degeneracy of the ground and

excited states (see the right panel of Fig. 2-1). The zero-point fluctuations can now no

longer populate the excited states, and the net magnetic energy is lowered. However,

this lowering of magnetic energy is countered by the increase of the elastic energy due

to the distortion of the lattice.

We emphasize that the spin-Peierls transition results from an inherent instability

of a quantum Heisenberg or XY chain. An Ising or classical antiferromagnetic chain

can not show the spin-Peierls effect. This is because an Ising chain effectively has an

energy gap between the ground and excited states. A classical chain has no zero-point

energy, and therefore its magnetic energy is independent of chain dimerization. Also,

the spin-Peierls transition can only occur in quantum magnetic chain systems with

S being half-interger. This is because in contrast to half-integer spin chains, integer

spin chains have a gap- Haldane gap - in the excitation spectrum. Furthermore,

quantum fluctuations decrease rapidly as S increases, so one would therefore expect

spin-Peierls transition more likely to occur in systems with S=I. A spin-Peierls

transition is such that its onset precludes the establishment of magnetic order at

lower temperature; i. e., the spin excitations remain paramagnetic down to T = OK.

The order parameter is therefore given by the degree of the lattice distortion 6, or
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equivalently the magnitude of the magnetic gap A.

In order for the spin-Peierls transition to occur, the decrease of the magnetic

energy produced by a lattice dimerization must outweigh the increase of the elastic

energy due to the lattice distortion. In the following section, we will show that this

is indeed the case in the spin-Peierls systems.

2.3 Formulation of the Problem and Some Theo-

retical Results

2.3.1 Hamiltonian

The Hamiltonian for nearest-neighbor-coupling-only spins with antiferromagnetic in-

teractions on a rigid lattice is simply:

s= J(j,j + 1)(S, -Sj+,) (2.1)

where J > 0, and the sum over lattice sites j includes nearest intrachain neighbors

only. Now, if we assume that the exchange integral J depends on the instantaneous

positions of the magnetic ions, and that the lattice is soft i. e. the lattice is allowed

to distort, an elastic distortion can influence the spin hamiltonian 7s. This effect

represents the spin-phonon (or spin-lattice) coupling. In addition, as we pointed out

earlier, in spin-Peierls systems the decrease of the magnetic energy is countered by an

increase in the elastic energy due to the lattice distortion. This elastic energy can be

written as qa wo(qa)bobq, where bt q(bqa) is the creation (destruction) operator

for three-dimensional phonons with wave-vector q on branch a, and w0 is the phonon

energy. The Hamiltonian for a model spin-Peierls system may therefore be written as

7-= J(j,j + 1)(Sj -Sj+) + E wo(qa)btbqa. (2.2)
3qa



Since the exchange constant J(j, j + 1) is a function of the three-dimensional spatial

separation of sites j and j + 1, the one-dimensional spin interactions depend on the

three-dimensional motion of the lattice sites. Thus we are treating a one-dimensional

magnetic system coupled to a three-dimensional phonon system. The treatment pre-

sented here largely follows Ref. [36].

2.3.2 Jordan-Wigner Transformation

The most common method [31, 37] of tackling Eq. 2.2 is to first convert the spin

operators to pseudofermion operators via the Jordan-Wigner transformation [38]. In

the pseudofermion representations [39, 40], a site with spin-down is said to have a

pseudofermion and a site with spin-up is said to be empty.

Following Ref. [37], we will describe the spin system by the fermion operators

I = (-2)j-lS Sz ... S (2.3)

where

S+ = Sz + iSy.

In terms of these operators, we have

s{s11,4} = ¢¢j+

3 1
Si = 2 I- WJ. (2.4)S•=2

Making use of Eq. 2.3 and Eq. 2.4, Eq. 2.2 becomes

1 1H jJjj~j+ I/jl - -2H J(jj + 1)[TI'I'j+l + qXWlXj - 24'Fj + 2 1l>' j1 t + ]

+ wo(qa)bnobqc. (2.5)
qa



In the above and the following equations, three-dimensional vectors are boldface and

wave vectors along the chain direction are italic.

Since Eq. 2.5 can not be solved exactly, various approximations have to be em-

ployed.

2.3.3 Linearization of J(j, j + 1)

One important approximation involves the treatment of the separation dependence

of J. By far the most common approach is to expand J(j, j + 1) only to first order

in inter-site spacing, thereby obtaining a spin-phonon coupling term [37].

J(j,j + 1) = J + E[u(j) - u(j + 1)] - VjJ(j,j + 1) +... (2.6)

Here the u are the lattice displacement operators in three dimensions. It is important

to notice that the phonons are three-dimensional, because the one-dimensional spin

system by itself can not undergo a phase transition at a non-zero temperature [21].

The treatment of this three-dimensionality is therefore crucial to the ultimate transi-

tion. This has been discussed in detail by Cross and Fisher [31]. An exact treatment of

the three-dimensional lattice is impossible, and most theoretical work has used meth-

ods such as the Hartree-Fock approximation or the random phase approximation,

which effectively treated the chains as decoupled. However, the three-dimensional

nature of the phonons is implicitly used to suppress the one-dimensional fluctuations

of a single chain, which as noted above otherwise would preclude a phase transition

at non-zero temperature.

The lattice displacement operator u and the phonon operators bq,, btq are con-

nected through the following:

u(j) = (mN)- 1 2  e(qa)eiq*RjQ(qa) (2.7)
qa



where

Q(qa) = [2w 0o(qa)]-1/2(bqa + btqa)

and where e(qa) is the phonon polarization vector, m is the mass of the magnetic

site, and N is the number of chain sites.

Combining Eq. 2.6, Eq. 2.7 and k = N - 1/2 Zj eikjTj, we have [37]:

v(k2 - k3) Tt Ik 2tk k4
kl+k 2=k3+k4

+N-1/ 2 E gl (kqa) 'Jk 'k-q(bq + b-qa)
kqa

+N-1 g2(k2 - k3, qa)Ik f1 ' 24Jk 34Fk4 (bqa + b-qa)
kl+k 2=k3+k4 -q

+ wo(qa)bq bq, (2.8)

where

Ek = J(coska- 1)

= Jcoska

= g (qa)(1 - e-iqa)(e ika

2
- 1)(1 - ei(q- k)a)

= g(qca) eika(1 - e- iqa)

= [2mwo(qa)]-1/2e(qa) VJ(j,j + 1).

Eq. 2.8 is exact except for the linearization of J(j, j + 1).

2.3.4 Hartree-Fock Approximation

To proceed from Eq. 2.8, earlier work by Pytte [37] and Bulaevskii [41] treated

the fodr-fermion terms in Eq. 2.8 in the Hartree-Fock approximation to reduce Eq.

2.8 to the same form as that used to describe the conventional Peierls transition.

v(k)

91 (kqa)

g2 (kqa)

g(qa)

W = EkXk k + N- 1



Specifically, all four-fermion terms can be converted to two-fermion terms through:

< kq nk6kq (2.9)

where nk = [exp(3Ek)+ 1]- 1 ( -- 1/kBT), and the average is taken in the undistorted

state. Eq. 2.8 thus becomes [37]

= EkX1k4'Ik + g(kqa) J! k.k-q(bqo + bq&) + E wo(qa)btbqa (2.10)
k

where

Ek -- pJ cos ka

g(kqo) = ipg(qa){sinka - sin[(k - q)a]}

p = 1-2N- Z nkcoska.
k

The renormalization factor p is approximately constant p = 1.64 for temperatures

T < J.

2.3.5 Random-phase Approximation (RPA)

Similar to the Fr6hlich Hamiltonian used to model the conventional Peierls transi-

tion [42], the pseudofermion-phonon interactions in Eq. 2.10 are treated by appling

the random-phase approximation (RPA). The random-phase approximation, like any

other mean-field approach, neglects the effects of fluctuations. While it is well known

that mean-field approach is a poor approximation for lower dimensional systems, the

use of the RPA here may, however, be justified by the fact that the phonons are

three-dimensional. In particular, in systems, such as (TTF)(CuBDT), the three-

dimensional softening of the phonon leading to the phase transition persists to much

higher temperatures than expected [34].

We then obtain the dispersion curve for the renormalized phonon in the undis-



torted lattice:

2 2 1 g(k - q, qa)nk - g*(kqo)nk-qW = Wo (qa) + g(kqa) WEkqEkN w - Ek-q + Ek
(2.11)

where wo(qa) is the phonon frequency in the absence of the spin interactions. Eq. 2.11,

at q = 7r/a and near Tsp, leads to:

W2 = (T/Tsp - 1)/ ln(O.83pJ/Tsp). (2.12)

At Tsp, w(q = 2kF) = 0, where kF = 7r/2a is the Fermi wave vector. This leads to

the gap equation:

w2(q, q = 2kf) =
g2 2
J2 7r

S [(Jp)2 - E212 tanhdE tanhJp E

In the limit, Tp <« pJ, i.e. the weak-coupling assumption, the expression for the

transition temperature is of the Bardeen-Cooper-Schrieffer (BCS) form [43]:

Tp = 0.83pJe- / (2.14)

where

A 4g 2p/W 2rJ

g g(aq, q = 2kF)

Wo- wo(aq, q = 2kF).

2.3.6 Dimerization

Some authors [30, 44, 45] have elected to begin with a different Hamiltonian:

'= E(JSj,1  - Sj,2 + J2Sj,2 Sj+ 1,2)+ wo(qa)b+bqq
Sgqa

(2.15)

(2.13)2( IE).E



where J1 and J2 are intra- and inter-dimer exchange couplings and j labels the dimer.

It is easy to see that the dimerization is built into this Hamiltonian. Since Eq. 2.15

and Eq. 2.2 represent the same physical system, specifically, J1 = J2 = J(j, j + 1)

at T = T8p, their proper solution should give identical results. The problem is that

for the mean-field approximation most often used, their solutions are not the same.

Fortunately, they are not wildly different.

Below T8p, the lattice is dimerized and two unequal and alternating J's are pro-

duced. If we again assume the J is linearly dependent on the inter-site separations,

we have:

J = J(1 + 765)

J2 = J(1 - 776) (2.16)

where 6 is the distortion magnitude. It then follows [37] that if the phonon normal

mode coordinate is replaced by its thermal average

Q(Aq) =< Q > 6q,2k F  (2.17)

then

5 = (2g/J) < Q > . (2.18)

Furthermore, the gap energy A scales like the dimerization 6:

A(T) = pJS(T), (2.19)

and the ground-state magnetic energy E0 at T = OK as a functions of dimerization 6

is found to be:

Eo0 oc -62 In2 6. (2.20)

The cost in lattice energy is proportional to 62. Therefore, the energy difference



between the uniform chain and the dimerized chain is:

AE , A6 2 - 6 21n2 6. (2.21)

Hence for very small 6, AE < 0, the dimerized state is energetically favored.

2.3.7 Beyond The Hartree-Fock Approximation

While the random phase approximation in treating spin-phonon coupling may be

justified by the three-dimensional nature of the phonons, it is difficult to justify the

use of Hartree-Fock approximation, which is also mean-field, in treating the four-

fermion terms. Cross and Fisher [31] therefore went beyond the mean-field approach

to give a better account of the effects of the interaction terms. Specifically, the Cross-

Fisher treatment takes advantage of the close similarity between the pseudofermion

representation and the exactly soluble [46] Luttinger-Tomonaga model [47, 48]. The

basic idea is that responses that are divergent can be approximately calculated by

modeling the Hamiltonian with a soluble form that maintains the essential features

in the region near the Fermi surface which lead to the divergence. Within this model

the four-fermion interactions can be exactly included, and no perturbation expansion

is needed [31]. It should be noted here that although Cross-Fisher treatment is non-

perturbative, it is still approximate in treating the four-fermion interaction terms.

In general, the Cross-Fisher results support the approximate accuracy of ther-

modynamic properties calculated in the mean-field approach. However, there are

some notable difference in their solutions. For Tp, they obtain a linear functional

dependence on A [31] (cf. Eq. 2.14):

TSp = 0.8JACF (2.22)

where ACF -- A/p = 4g 2/wrJw2 . Also, they find an increase of the rate of phonon



softening above Tp (cf. Eq. 2.12):

w2(2kF, T) = w (T/Ts - 1). (2.23)

They find that the mean-field order parameter should be scaled by a factor (Tsp/J)1/2,

and that the lattice distortion for a given A and T/Tsp is reduced from the mean-field

result by the factor (TSP/J)1/2 .

Finally, they find that at T = OK the dependence of the ground-state magnetic

energy of the spin system E0 and the excitation gap A on the distortion parameter J

are (cf. Eq. 2.19 and Eq. 2.20)

E 0 oc -6 4 3

A ox 62/3. (2.24)

This result is very close to that of Duffy and Barr [49], which was derived by extrap-

olation from numerical calculations of finite dimerized chains.

2.4 Field Dependence of Spin-Peierls Transition

Since the spin-Peierls transition is a magnetically driven transition, one expects mag-

netic fields to have interesting effects on the transition. This is indeed the case. For

instance, very large magnetic fields may have drastic effects: when H is larger than

a critical field, He, it may force all spins to align along the field direction. However,

this is trivial, and not the case that interests us. The interesting limit is H < He,

and this is the situation we are concerned with here.

The magnetic field H couples to the system via a Zeeman term:

HM = -gPBH E S (2.25)

where g is the gyromagnetic ratio, and pB is the Bohr magneton. This Zeeman energy

term must be added to the Hamiltonian, Eq. 2.2 (or Eq. 2.15). It turns out that the



addition of the Zeeman term to Eq. 2.10 merely modifies Ek:

Ek = J(cos ka - 1 - h) (2.26)

where h - 2UBH/J.

Mean-field results

Within the mean-field approximation, the Zeeman energy manifests itself in the mod-

ification of the Fermi wave vector:

kF(0) - kF(H) = 1.44pBH/pJa for pBH < J. (2.27)

The magnetic energy now has its minimum at a different wave vector 2kF(H). How-

ever, the lattice Umklapp energy associated with the reciprocal lattice vector Q =

7/a = 2kF(0) causes the lattice to distort at 7r/a until H becomes large enough for the

reduction in magnetic energy to exceed the Umklapp energy. This Umklapp energy is

also called the commensurability energy, and is present for all values of 2kF(H) that

are commensurate with the lattice. In the regime of small H where the distortion

wave vector q is fixed at 7r/a, Tp(H) is determined by [50, 51]:

ln(Tp(H)/Tp(0)) + Re[4(- + ip(H)/27rTp(H)) - T( )] = 0 (2.28)
2 2

where for pBH < J, the Fermi level t(H) _ -1.44pBH. T is the digamma function.

For small pBH/kBT5 p(0), one obtains the following expansion [50, 51]:

gBH )_ g( BH)

Tp(H) = Tsp(0)(1 - a2( 92 kTBH(O) 2 a4( 2k9T(BH ) ), (2.29)2kBTc (0) 2 kBTc(0)
where a2 = 0.44, and a4 = 0.2.

Beyond the mean-field approximation

Cross [52] went beyond the mean-field approach by using the boson algebra approach



[31], and obtained the following results (cf. Eq. 2.27 and Eq. 2.29):

kF(0) - kF(H) = 1.27pBH/Ja (2.30)

Tsp(H) = Tsp(0)(1 - ( 22k c(BH ))2) (2.31)
22kBTc(0)

where c' = 0.36. These results are qualitatively the same as the mean-field results,

with some quantitative differences.

We see from both Eq. 2.29 and Eq. 2.31 that in a spin-Peierls system, Tsp(H)

is a monotonically decreasing function of H. This is consistent with the role of the

magnetic field and quantum fluctuations. The effect of H is effectively to decrease

the number of the spin components by one. Magnetic quantum fluctuations decrease

as the spin-dimensionality (n) decreases. But as discussed in earlier sections, in a

spin-Peierls system it is the quantum spin fluctuations that provide the driving force

for the transition. Since H reduces these fluctuations, it therefore reduces the energy

available to form the spin-Peierls phase. This effect and the Zeeman energy effect,

which also reduces the transition temperature, combine to depress the transition

temperature T8p(H).

When H exceeds a critical value He, q rapidly moves away from w/a either to

2kF(H) - commensurate-incommensurate (C-I) transition, or to some new commen-

surate values where it stays for some range of H - commensurate-commensurate

(C-C) transition. The details can depend on the actual phonon spectrum of the

system concerned. Direct observation of a magnetic field induced commensurate to

incommensurate transition has been reported in x-ray scattering studies of the organic

and inorganic (i.e. CuGeO 3) spin-Peierls systems in magnetic fields [53, 54].

2.5 Pre-CuGeO3 Spin-Peierls Systems

The spin-Peierls transition was predicted theoretically in the 1960s [55, 56, 57]. How-

ever, the first clear-cut experimental realization was not discovered until 1975 [32, 33].

The discovery was first made in the organic compounds (TTF)(MBDT) where M is a



metal atom such as Cu, Au or Pt. Later, another organic compound MEM(TCNQ) 2

[58] was also found to undergo the spin-Peierls transition. Most theoretical work on

the spin-Peierls transition is built around and tested against the experimental results

in these organic systems.

The spin-Peierls transition in these organic systems exhibits quite mean-field-like

behavior [32, 33, 34, 58]. This is thought to be the direct consequence of one impor-

tant feature shared by these systems: the existence of a precursive three-dimensional

softening of the phonon corresponding to the dimerization wave vector (2kF), which

reduces the phonon frequency to about an order of magnitude below its usual value.

Actually, the occurrence of the spin-Peierls transition in these organic systems is gen-

erally attributed to this pre-existing soft mode, i.e. the spin-phonon coupling wins

the battle with regular magnetic ordering. The three-dimensional, rather than one-

dimensional, character of the soft phonon, which corresponds essentially to lattice

planes perpendicular to the chains moving in unison [31], goes a long way toward

validating a mean-field approach to the problem [31, 32], which, as noted above, is

the foundation of most theoretical treatments.



Chapter 3

The Spin-Peierls Transition in

CuGeO3

3.1 CuGeO3

The crystal structure of CuGeO 3 is orthorhombic, space group Pbmm(Dh), with a

unit cell (Fig. 3-1(a)) of dimensions a = 4.81 A,b = 8.47 A, and c = 2.94 A at

room temperature [59, 60]. There are two molecules in a unit cell, with the atoms

occupying the following positions [59, 60]:

x y z

Cu in 2(d): with 0 0

Ge in 2(e): with 0.0743(8) 4 2

O(1) in 2(f): with 0.870(6) 1 0

O(2) in 4(i): with 0.281(4) 0.084(2) 2.

In CuGeO3 , each Ge 2+ is tetrahedrally coordinated to four oxygens, and each dis-

torted tetrahedron shares oxygens at the corners with two other tetrahedra to form

a [GeO 3] chain along the c axis. The Cu 2+ ion, which carries a spin S = ½, is oc-

tahedrally coordinated to the neighboring oxygens, and each distorted octahedron

shares edges with two neighboring octahedra (Fig. 3-1 (b)) to form [CuO 4] chain par-

allel to the [GeO] chain. The two chains are linked together through oxygen atoms.



(a~

Figure 3-1: (a) The unit cell of CuGeO 3; the space group is Pbmm(D'h). The atomic
positions are: Cu in 2(d) at 1, 0, 0; Ge in 2(e) at x, 1, 1(x = 0.0743); 0(1) in 2(f) at
x, ,0(x = 0.870) and 0(2) in 4(i) at x, y, (x = 0.281, y = 0.084). (b) The successive) 41 2

Cu 2+ S = spins along the c-axis direction are coupled through the superexchange
interactions via the bridging oxygen atoms, 0(2).

C



The successive Cu 2+ S = 1 spins along the c-axis direction are antiferromagnetically

coupled through the superexchange interactions via the bridging oxygen atoms. The

intrachain and interchain nearest-neighbor exchange parameters are J, ? 10.4 meV,

Jb 0.1J, and Ja -0.01J, [61].

Since the first report of magnetic susceptibility measurements by Hase et al. [62],

CuGeO 3 has been found to exhibit the behavior predicted for a spin-Peierls system

in several respects. First, Hase et al. [62] discovered that the magnetic susceptibil-

ities in all directions drop exponentially to small constant values below a transition

temperature (Tsp) of 14K. Second, Tsp shifts to lower values with increasing mag-

netic field [63, 62]. Third, Nishi et al. [61] confirmed the formation of a gap in the

spin excitation spectrum below the transition temperature by using inelastic neutron

scattering techniques. Using the same experimental technique, Fujita et al. [64] char-

acterized the nature of this gap mode to be triplet by observing the splitting of the

gap mode into three distinct modes under the application of a magnetic field. Fourth,

the superlattice reflections resulting from the lattice dimerization below the transi-

tion temperature have been observed by electron diffraction [65], x-ray and elastic

neutron diffraction [63, 66, 67]. Hirota et al. [67] mapped out the low temperature

dimerized phase in a detailed neutron study. It is found that the dimerization of

Cu-Cu pairs along the c-axis direction (Fig. 3-2 (b)) is accompanied by shifts of the

bridging oxygen atoms in the a-b plane (Fig. 3-2 (a)), which gives rise to superlattice
reflections at the (h k -) (h, 1: odd and k: integer) reciprocal-lattice positions [67]

In this Chapter, we present an x-ray-scattering study of the spin-Peierls transition in

CuGeO 3.

3.2 Experimental Details

The experiments were carried out on the MIT/IBM beamline X20A at the National

Synchrotron Light Source at Brookhaven National Laboratory, interested readers are

referred to Ref. [68]. In brief, the white x-ray beam from the bending magnet was

focused by a platinum coated, fused quartz mirror and monochromatized by a pair of
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Figure 3-2: The dimerized structure of CuGeO 3 below the spin-Peierls transition
(T,p). The dimerization of the Cu 2+ ions along the c-axis(b) is accompanied by the

shifts of the bridging oxygen ions in the a-b plane(a).



bounce Ge(111) crystals. The incident photon energy was E = 8.0KeV(A = 1.5498A).

The scattering occurred in the reflection geometry in the horizontal plane and a flat

Ge(111) crystal was used as the analyzer. The two single crystals labeled sample #1

and sample #2 used in the experiments were grown by the floating-zone method. The

single crystal of CuGeO 3 is translucent, blue in color, and easy to cleave along the

a-axis direction. One of the two crystals, sample #2, had a transition temperature

of , 13.26(3)K, about 1K lower than the more typical value of - 14K as reported

previously in the literature [62, 65, 66, 67, 69, 70, 71]. Sample #1, on the other

hand, had a transition temperature of 14.25(3)K. Both samples showed essentially

the same phase behavior and properties. Due to the superior quality of sample #2,

which gave higher scattering intensity than sample #1, most of the data presented in

this chapter (Chapter 3) and Chapter 5 were taken from sample #2, unless otherwise

stated. The samples were mounted with (h, 0, h) and (0, k, 0) in the scattering plane

in a split pair superconducting magnet, manufactured by Oxford Instrument, Ltd.

Ref. [25] provides a detailed description of the apparatus. The samples were cleaved

along the a-axis direction just before being put into the cryostat (within a minute or

two). The temperature stability was within 15mK during the course of a scan. The

measurements were carried out around the reciprocal-lattice position (1.5, -1, 1.5).

3.3 Spin-Peierls Transition in CuGeO3

Representative scans below the transition temperature along the H, K and L direc-

tions through the superlattice reflection (1.5, -1, 1.5) are shown in Fig. 3-3 . Below

the transition temperature TsP, the widths of the superlattice peaks are independent

of temperature, resolution-limited, and the peak profiles are well described by the

functional form:

I(q) = Ioe-(H-Ho)2 / (K - Ko) 2 + g2 e-(L-Lo)2/ (3.1)
(K-Ko KI
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Figure 3-3: Representative scans through the superlattice reflection (1.5, -1, 1.5) be-

low the spin-Peierls transition temperature, Tp for CuGeO 3 . The solid lines are the

results of least-square fits to the data of the resolution function, Eq. 3.1. The count

rates are normalized to a ring current of 200 mA.
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where (Ho, Ko, Lo) is the superlattice reflection position (1.5, -1,1.5). Eq. 3.1 is

therefore the measured spectrometer resolution function. The half-width-at-half-

maxima (HWHM) of the resolution function, that is, V Hn2aH, VK- laK, and

~caL, had the values of 0.00242 A-1, 0.00188 A'-1 and 0.00215 A-' along the

H, K and L directions respectively. The solid lines in Fig. 3-3 are Eq. 3.1 with the

above HWHM.

Below the transition temperature, the superlattice peak is resolution limited and

its peak intensity, 10, is therefore proportional to the square of the order parameter,

that is, the lattice dimerization, 6, Io ox 62. Fig. 3-4 illustrates the peak intensity

below the transition temperature as a function of reduced temperature, t = 1 - .

Close to the transition temperature, Tp, the peak intensity is well fitted by a simple

power law, 10 _ 62 _ Itj2 .The best fit 0 value is 0.33(3), in quantitative agreement

with the results of neutron scattering measurements [70]. The slight difference be-

tween the /3 value obtained in this work and that reported in Ref. [71] (/3 = 0.26+0.03)

results from fitting the data over different temperature ranges. Specifically, only data

very close to the transition temperature are included in the fitting in this work whereas

a broader range was used in Ref. [71]. This difference in /3 could indicate a tricritical

3 = 0.25 to three-dimensional Ising (/3 = 0.325) crossover near Tsp [70, 71].

The theory of Cross and Fisher predicts that the spin gap A varies as 62/3 or

equivalently A _ '1/3 [31]. We show in Fig. 3-5 the data of Nishi et al. [61] for the

spin gap together with the power law of Fig. 3-4 raised to the power I and the low
3

temperature superlattice intensity data of superlattice reflection (1.5, -1, 1.5) also

raised to the power 1. These different sets of data are normalized at 8K. Clearly

the agreement is quite satisfactory given the combined uncertainties. Thus once

more we see the consistency between the theory for the spin-Peierls transition and

the experimental data of CuGeO3 . The small gap exponent of 0.093 suggested in

the paper of Nishi et al. [61] is the result of fitting the gap data far away from

the transition temperature to a power law. Clearly, in order to draw a definitive

conclusion on the scaling of the spin gap with the atomic displacements, additional

data on the gap energy, especially close to the transition temperature, are needed.
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Figure 3-4: The order parameter squared as a function of the reduced temperature.
The empty circles are data taken from Sample#1, the filled circles are data taken
from Sample#2, the empty squares are neutron data from Hirota et al. and the solid
line represents a simple power law, 62 t0.66 where 6 is the lattice dimerization.
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Figure 3-5: Gap energy together with 11/3 and the power law in Fig. 3-4 raised to
the power 1. The empty circles are the intensity of the superlattice reflection at
I(1.5, -1,1.5) raised to the power 1. The solid line is the power law (1 - T)2I of Fig.
3-4 raised to the power i. The filled circles are the gap energy.
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Magnetic Field H Transition temperature Tp /3 ( I (1- T )20
T,, y(H))2

0OT 14.25(3)K 0.33(3)
6T 13.57(3)K 0.29(3)
7T 13.33(3)K 0.30(3)

Table 3.1: The depression of the spin-Peierls transition temperature in the magnetic
fields.

3.4 Field Dependence of the Spin-Peierls Transi-

tion in CuGeO3

Since the spin-Peierls transition is a magnetically driven, progressive spin-lattice

dimerization, one expects that the application of an external magnetic field should

alter some features of the transition. This is indeed the case in CuGeO 3.

This experiment was conducted at X20B. The setup of the experiment was similar

to that described in Section 3.2 , except that the incident wavelength was fixed at

A = 0.71A. A vertical magnetic field was applied along the direction that was per-

pendicular to the scattering plane defined by (h, 0, h) and (0, k, 0). The direction of

the magnetic field was constrained by the limitation of the tilt angle of the spectrom-

eter (a maximum of +50). However, since the magnetic interactions in a Heisenberg

system is isotropic, the field effects on a spin-Peierls transition should be indifferent

to which direction the field is applied with respect to its crystalline axes.

The results from magnetic field H = 6T and H = 7T are plotted in Fig. 3-6. The

solid lines in the figure are the best fits of a simple power law, I ox (1 - T ) 2,

where the best fit values for /3 and T8p in these two fields are listed in Table 3.1,

together with the results from H = OT.

Clearly, the magnetic field depresses the spin-Peierls transition temperature in

CuGeO 3. Apart from this, the phase behavior of the transition in magnetic fields

retains the characteristics of that in zero field. However, this is the case only for

magnetic fields up to 12.5T. Kiryukhin and Keimer [54] observed an incommensurate

phase in CuGeO 3 for fields exceeding 12.5T. Specifically, they find that the chains
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Figure 3-6: The magnetic dependence of the spin-Peierls transition temperature. The
magnetic field depresses the spin-Peierls transition temperature. The data at H = 6T
and H = 7T, shown in this figure, were taken at X20B. The solid lines in the figure
are the best least-square fits of the data to a simple power law, I oc (1 - T )23,

where the best fit f and T8p values in two fields are (a) Tsp(6T)=13.57(3)K, 0(6T)
= 0.29(3). (b)T8p(7T) = 13.33(3)K, 3 (7T) = 0.30(3). These numbers are to be
compared with T8p(0T)= 14.25(3)K and 3(OT)= 0.33(3) from a different experiment
at X20A on the same sample, Sample # 1.



are no longer simply dimerized, instead the interatomic spacing is modulated with a

wavelength determined by the external magnetic field.

3.5 Why CuGeO 3 Favors Spin-Peierls Transition?

As we have seen, in many aspects, CuGeO 3 has demonstrated itself to be a model spin-

Peierls system. However, there are still some questions yet to be answered. Among

them, the most significant is how important the interchain couplings are, that is,

whether CuGeO3 is best described as a one-dimensional antiferromagnetic chain sys-

tem or a spatially anisotropic two-dimensional system. Specifically, the temperature

dependence of the magnetic susceptibilities are found to depart significantly from

the Bonner-Fisher [72] curve for a linear spin-! antiferromagnetic chain. Nishi et al.

[61] find significant dispersion of the magnetic excitations along both the b and c

axes, with zone boundary energies of - 6 meV and - 16 meV respectively, while the

dispersion along the a-axis is negligible.

For pedagogical purpose, it is useful to review the effects of the interchain cou-

plings, in particular their effects on the occurrence of the spin-Peierls transition.

Most magnetic systems enter a long-range ordered phase, commonly ferromagnetic or

antiferromagnetic, as the temperature is lowered through a transition temperature.

However, in the case of an ideal one-dimensional magnetic model with short-range

interactions, ordering can occur only at T = OK [21]. Weak interchain interactions

are necessary to induce a nonzero transition temperature. Such systems are termed

quasi-one-dimensional. The order temperature is related to the ratio of interchain to

intrachain coupling and is therefore relatively low. This ratio is, in fact, a measure of

the degree of one-dimensional character of the material. Quasi-one-dimensional or-

dering occurs in a model of exchange-coupled spins on a rigid lattice. If allowance is

made for the possibility of an elastic distortion of the lattice, a spin-Peierls transition

can occur. One may therefore view the situation as a competition between the spin-

phonon and the inter-chain spin-spin coupling. In the case that spin-phonon coupling

mechanism dominates, one expects the spin-Peierls transition to occur, and in the case



that inter-chain spin-spin coupling dominates, one expects the quasi-one-dimensional

magnetic transition to occur.

As we pointed out earlier, the inter-chain coupling is not that small in CuGeO 3 ,

Jb ? 0.1Jc [61], a reasonable guess is that the inter-chain interactions would lead the

system to a magnetic order, which subsequently would have precluded the occurrence

of the spin-Peierls transition. However, in reality, the spin-Peierls transition sets

in first, which prevents the establishment of magnetic order at lower temperatures.

So what makes the spin-Peierls transition preferencial to the magnetic transition in

CuGeO 3? Recently, Castilla et al. [73] have suggested that it is the competing ex-

change interactions - the antiferromagnetic interactions between both the nearest

and the next-nearest neighbors along the chain direction - that increases the tem-

perature at which the spin-Peierls transition takes place in CuGeO 3. As inferred

from an electronic calculation by Mattheiss [74], the Cu-Cu superexchange interac-

tion along the chain should be much smaller than typical CuO chains because the

O(2p) orbitals are not directed toward both of the adjacent Cu 2 + ions. Thus, the

next-nearest-neighbor interactions may well not be negligible. The view that the

next-nearest-neighbor effects play an important role in the spin-Peierls transition in

CuGeO 3 is supported by Zhang et al. [75] in a theoretical study of the phase dia-

gram, ground-state properties and excitation gaps of a spin-Peierls chain with both

nearest-neighbor and next-nearest-neighbor interactions; and is further supported by

some numerical studies [76, 77], which find that a model including both the nearest-

neighbor and the next-nearest-neighbor antiferromagnetic interactions along the chain

satisfactorily reproduces the experimental results for the magnetic susceptibility, the

dispersion relation, the temperature dependence of the spin-gap, and the spin-Peierls

transition temperature of CuGeO 3.

The atomic displacements below the transition temperature as determined by Hi-

rota et al. [67] in CuGeO 3 are also more complicated than the simple dimerization

along the chain direction as expected from an idealized spin-Peierls transition. The

atomic displacements of Cu 2+ and O(2) may not only dimerize the intrachain interac-

tion, but may also modify the interchain interactions, suggesting that spin-ladder gap



effects could also play a role [78, 79]. Recently, Plumer [80] employed a Landau-type

phenomenological model to describe the atomic displacements below the transition

temperature T8p as proposed by Hirota et al. [67], and suggested that the Cu dis-

placements are primary, and the O(2) displacements are secondary.



Chapter 4

Thermal Contraction at the

Spin-Peierls Transition in CuGeO3

In a neutron scattering study, Lorenzo et al. [81] observed an anomalous softening of

the longitudinal acoustic phonons propagating along the b-axis perpendicular to the

chain direction. They also observed a spontaneous lattice contraction in the same

direction below the transition temperature of 14K which coincides with the spin-

Peierls transition temperature in the magnetic susceptibility measurements [62, 69],

and the superlattice measurements [63, 65, 66, 67]. The motivation of this study was

to understand the nature of this thermal contraction, in particular, its relation to the

spin-Peierls transition in CuGeO 3.

In this chapter, we present an x-ray-scattering measurement of the lattice constant

b as a function of temperature under various external magnetic fields [71].

4.1 Experimental Details

This experiment was carried out on MIT/IBM beamline X20B at NSLS. For the de-

tails regarding beamline X20B, interested readers are referred to J. P. Hill's thesis

[25]. The white x-ray beam from a bending magnet was monochromatized by a sin-

gle Si(111) crystal. The energy of the incident x-ray photons was fixed at 17.4KeV.

Scattering was in the horizontal plane and a flat Si(111) crystal was utilized as the



analyzer. A single crystal of CuGeO 3, labeled Sample # 3, grown by the floating zone

method, was used in the experiment. The sample was mounted with wave vectors

(0kl) in the scattering plane in an x-ray-compatible split pair superconducting mag-

net. The measurements were carried out around the (080) reciprocal-lattice position,

since in this experimental configuration, the ratio of A, where Aq is the HWHM,

at (080) was the smallest among those at (020), (040), (060) and (080). The longi-

tudinal HWHM at (080) was - 0.0013A 1, while the in-plane transverse resolution

was controlled by the sample mosaic of - 0.0090 HWHM. A variable temperature

insert of liquid He flow type was used. Hence stable and reproducible experimental

conditions could only be obtained for T > 7K, where the experiment was performed.

4.2 Results and Data Analysis

Representative scans along the K-direction in the reciprocal space, around the re-

flection (0,8,0) are shown in Fig. 4-1 , at different temperatures. Notice the peak

position, which is inversely proportional to the lattice constant, shifts to the smaller

values with increasing temperature. The solid lines in the Fig. 4-1 are the best fits

of the data to a Lorentzian squared,

I(K) = (4.1)
[(K - K0)2 + r2]2

where (0, K0 , 0) is the reflection position (0, 8, 0).

The experimental results at zero field are shown in Fig. 4-2. The lattice contrac-

tion appears below a Tc of - 14.2K, consistent with Lorenzo et al.'s observation [81].

As noted in Ref. [71, 81], this T, of -, 14.2K coincides with the spin-Peierls transition,

T8p. The b-axis direction lattice constant data are well described by the simple form:

b(T) = b0 (1 + BT 4) - Ab (4.2)

where the first term on the right-hand side of the equation is the conventional thermal

expansion of the lattice derived from a = b OC T for small T [82]. The second



CuGeO 3,
5.0

3.5

2.0

$ 5.0
E

,4 3.5

2.0

5.0

€--

5.0

3.5

2.0

n0

Sample #3, (0,8,0)

7.9978 7.9998 8.0

K (r.l.u)
018 8.0038 8.0058

Figure 4-1: Representative scans along the K-direction in the reciprocal space, around
(0, 8, 0) across the transition temperature. Notice the peak position, which is inversely
proportional to the lattice constant, shifts to the smaller values with increasing tem-
perature. The solid lines are the best fits to a Lorentzian squared, Eq. 4.1 of the
data.

7.99587.99,58



CuGeO3

-D

8.3860

8.3858

8.3856

8.3854

8.3852

8.3850

8.3848
5 10 15 20 25 30

Temeprature (K)

Figure 4-2: The lattice constant b of CuGeO 3 as a function of temperature. A spon-
taneous contraction along the b-axis is observed below a Tc - 14K. The solid line is
the best fit to Eq. 4.2.



term Ab is well represented by the single power-law form:

0 T > Tsp
A(1 - )z T < Tsp

where the exponent x is found to be close to 0.5. The solid line in Fig. 4-2 is the

result of a least squares fit to Eq. 4.2 of the data with the exponent x fixed at 0.5.

In order to probe further the connection of this thermal contraction along the

b-axis to the spin-Peierls transition observed in this compound, we repeated the

measurement of the lattice constant as a function of temperature in several fields

up to 6T. The magnetic field was applied in the vertical direction, that is, the a-axis

direction. ResuLts similar to those found at zero field were obtained for a series of fields

up to 6T. Shown in Fig. 4-3 are the lattice constant measurements under H = 2T

and H = 5T along with the lattice constant measurement at H = OT. While applying

magnetic fields, the sample position moved slightly compared with that at zero field;

this necessitated realigning the spectrometer, thence causing a slight difference in

the arm-zero position in different magnetic fields; this subsequently led to a small

difference in the apparent absolute value of the lattice constant. Accordingly, in Fig.

4-3 we have normalized the lattice constants in different magnetic fields at 25K.

In Fig. 4-3, the solid curves are the best fits of the data to Eq. 4.2 with x = 0.5;

one can clearly see that T, shifts to lower values with increasing magnetic field. Fig.

4-4 shows the magnetic field dependence of Tp. The solid line in the figure is the

best fit to:

Tsp(H) = Tsp(0) (1 - a( IBH 2 (4.4)
2 ksBTsp(0) (4.4)

where PB is the Bohr magneton and kB is the Boltzmann constant [41, 52]. The

j-factors of CuGeO 3 observed by ESR along the a-, b- and c-axes are ga = 2.15, b =

2.23 and g§ = 2.05 respectively [83]. The fit value for a is 0.45 + 0.09, in very good

agreement with the value a = 0.40 deduced from magnetic susceptibility measure-

ments [62] on a polycrystalline sample of CuGeO 3 . These two values for a in turn

also agree well with the theoretical values of 0.44 calculated in the Hartree-Fork ap-
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proximation [41] and 0.36 in a theory based on the Luther-Peschel type treatment

of the spin-correlation functions [52]. We note that the approximation of Eq. 4.4,
______ g/I~~~9BH 01ad06frH1

9ABOH < 1, is only moderately well satisfied since kBp( 0.1 and 0.6 for H=1TkBTsp(O) BPO

and 6T respectively.

We also fitted all of the b-axis lattice constant data simultaneously to the following

equation:

b(H,T) = bo(1 + BT 4 ) - Ab(H,T) (4.5)

where

b(HT) 0 T > Tsp(H) (4.6)
SA(H)(1 - T())x T < Tsp(H)

with bo, B, A(H), Tsp(H) and x as adjustable parameters. The best fit gives x =

0.53 + 0.02. This value for x provides satisfactory fits to the temperature dependence

of Ab at all magnetic fields studied.

As noted in Chapter 6, the intensity (I) of the superlattice reflections from the x-

ray [63] and neutron diffraction measurements [67] is well described by a simple power

law, I oC (1 - A) 2'3. In Fig. 4-5, we show the measured lattice contraction Ab from

x-ray studies together with the intensity of the superlattice reflection at I(0.5, 5, 0.5)

from neutron measurements [67], and the intensity I(1.5, -1, 1.5) of the superlattice

reflection at (1.5, -1,1.5) from x-ray measurement [63]. The agreement is clearly

quite good; this can be understood simply as originating in the coupling between the

lattice contraction and the order parameter in a Landau free energy formalism. We

also note that both Ab and the intensities are well described by a single power law

(1 - T/Te(0)) y , with the best fit value of exponent y being 0.58(8).

The appearance of the superlattice reflections is the result of the Cu 2+ dimerization

and oxygen displacements below the spin-Peierls transition temperature. If we let 6

denote a generalized lattice distortion amplitude, then the intensity of the superlattice

reflections, I, is simply proportional to 62. We can write down the extended Landau
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Figure 4-5: Ab together with the intensity, I, of the superlattice reflections measured
using x-ray and neutron diffraction techniques. The empty circles are the intensity of
the superlattice reflection at (0.5, 5, 0.5) measured by neutron scattering. The filled
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x-ray scattering technique. The empty squares are the lattice contraction Ab data
from the x-ray measurements reported here. The solid line is the result of the fit of

all data to a simple power law, I oc 1 - )23, where the fit value of i is 0.29+0.04.



free energy F after integrating out the spin degrees of freedom [84]:

.F = Fo + a(T - Tsp)62 +u 464 + -U6 6 + K(Ab)2 + TyAb 2  (4.7)
2 4 6 2

where !K(Ab) 2 is the elastic energy contribution of the lattice contraction (K is the

corresponding elastic constant) and the TAb6 2 term represents the lowest order non-

vanishing coupling between the distortion amplitude 6 and the contraction Ab. From

the condition that the sample is stress-free, one has = 0, which gives:

Ab = 6 2. (4.8)
K

Combining Eq. 4.8 with I oc 62, we have Ab - I, which is exactly the result displayed

in Fig. 4-5.

By inserting Eq. 4.8 back into the free energy expression Eq. 4.7, we can see some

indication why 3 might be close to the tricritical value of 0.25. Combining Eq. 4.7

and Eq. 4.8, one has:

1 1 2724 16
F = .To + -a(T- Tc)6 2 +(u 4  + -u 6 . (4.9)

2 4 K 6

Since u~ (u 4 - 2k2) < U4 , the system is closer to a tricritical point (u4 = 0 at

the tricritical point) than the non-coupling situation (7-y = 0). The magnetoelastic

interaction between the 1D antiferromagnetic chains and the 3D phonon field in the

lattice drives the system CuGeO 3 through a spin-Peierls transition and opens up a

finite energy gap in the spin excitations spectrum [61, 64] by dimerizing the lattice

[63, 65, 66, 67]. The atomic shifts induce the lattice contraction Ab and the coupling

between the contraction and the lattice distortion in turn puts the system near the

tricritical point. A similar argument might be made for the organic spin-Peierls

system TTF-CuS4C4 (CF 3)4 which instead has f = 0.5. However, in that case, there

is a precursive 3D soft phonon mode at the superlattice position which persists to

very high temperatures [34]. Cross and Fisher [31] argue that this soft phonon mode

causes the mean field 3 =1 behavior in the TTF-CuS4 C 4 (CF 3 )4 salt. No such soft



phonon has been observed in CuGeO 3 so far.

We also observed a small increase of the lattice constant a in the a-axis direction

below the transition temperature Tc (Fig. 4-6). The change of the lattice constant a

between 10K and 15K is about 0.002%, which is to be compared with the 0.0065%

change along the b-axis direction.

The relevance of the appearance of these elastic anomalies to the spin-Peierls tran-

sition in CuGeC 3 is further confirmed in several recent experimental studies: Winkel-

mann et al. [85] measured the thermal expansion coefficients a of CuGeO 3 along the

three orthorhombic directions using a high-resolution capacitance dilatometer; Poirier

et al. [86, 87] and Saint-Paul et al. [88] measured elastic constants of CuGeO 3 with

an ultrasonic propagation technique. The results they obtained are consistent with

those reported here.

4.3 Summary

In summary, we have accurately measured the lattice constant b as a function of tem-

perature and magnetic field in CuGeOa. A spontaneous thermal contraction Ab is

observed below the transition temperature T, of about 14K, which coincides with the

spin-Peierls transition temperature, Tp. The quadratic magnetic field dependence

of Tsp agrees quantitatively with the results from the magnetic susceptibility mea-

surements [62], which in turns agrees with theory [41, 52]. Ab is well described by a

simple power law, with an exponent x close to 0.5. Ab is also found to scale with the

intensity of the superlattice reflections, which is explained through a simple coupling

term between the contraction and the order parameter in the Landau free energy

formalism. It is noted that the transition may be close to a tricritical point. Future,

more precise experiments on the heat capacity, the critical fluctuations above T, and

the order parameter below T, should serve to distinguish between tricritical behavior

and the expected asymptotic 3D Ising behavior at the spin-Peierls transition.
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Chapter 5

Large Length Scale Fluctuations at

the Spin-Peierls Transition in

CuGeO3

A second order phase transition is one in which the order parameter (e.g. the sub-

lattice magnetization in a paramagnet-to-antiferromagnetic phase transition or the

lattice distortion in a structural transition) grows continuously from zero as the tem-

perature is lowered below the critical temperature T,. Above Tc, there is no long-

range order, but one finds that regions with typical linear dimension ý, the correlation

length, tend to be momentarily ordered such that the system exhibits critical fluc-

tuations into the ordered phase with characteristic length (. As T approaches Tc,

Sbecomes longer and longer, and eventually it diverges at Tc, with a characteristic
behavior, ( = 1 - , where v, like 3, is a critical exponent.

The modern theory of critical phenomena rests in a fundamental way on the

assumption that the correlation length ( is the only length scale at a given tem-

perature, i.e. that all quantities having the dimension of length will change with

temperature as ( itself. This is the scaling hypothesis. Recently however, the ex-

istence of a second larger length scale fluctuation has been reported in a couple of

magnetic systems [89, 90, 91, 92, 93]. These results are reminiscent of the two length-

scale phenomenon reported at the cubic-to-tetragonal structural transition in some



perovskites [94, 95, 96, 97, 98, 99, 100]. However, in the case of structural transi-

tions in perovskites, the situation is made complicated by the first-order nature of

the transition in the bulk sample.

In this Chapter, we report the observation of large length scale lattice fluctua-

tions at the spin-Peierls transition in CuGeO 3. The length scale of these fluctuations

is about an order of magnitude larger than that characterizing the thermal fluctua-

tions probed with neutron [70] and lower resolution x-ray scattering [66]. Detailed

deconvolution of the effects of the instrumental resolution function on the measured

profiles suggests that the intrinsic line shape is described by a Lorentzian squared

form. We suggest that a model involving both random fields and random bonds not

only explains our experimental results, but also appears consistent with the published

data on the two length scale phenomenon in other systems [63]. The experimental

set-up is identical to that of Section 3.2 in Chapter 3. We therefore proceed directly

to present the experimental results.

5.1 Large Length Scale Lattice Fluctuations

As the sample, CuGeO 3 , is heated above the transition temperature T5p, the superlat-

tice peak broadens rapidly and anisotropically in all three directions. Representative

scans at temperatures 0.2K and 0.55K above T8p are shown in the Fig. 5-1. The solid

lines are the best fits of these scans to the following functional form:

I(q) = R(q')S(q - q')dq' (5.1)

where I(q) is the measured intensity at the momentum transfer q, and R(q') repre-

sents the experimentally measured instrumental resolution function (Eq. 3.1). The

cross-section, S(Q), which we take as a Lorentzian squared, is given by:

S(Q) = Txd (5.2)
=[1 + (H - Ho)2//+ (K - K0)2/i'2 + (L - Lo)2/( 2
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Temperature The value of x2 with S(Q) The value of X2 with S(Q)
given by a Lorentzian given by a Lorentzian squared

Tsp+0.10K 9.388 5.542
Tsp+0.15K 4.986 2.002
Tsp+0.20K 4.353 2.819
Tsp+0.25K 2.233 2.654
Tsp+0.30K 2.287 2.423
Tsp+0.75K 1.060 1.163

Table 5.1: Comparison between the fits to Eq. 5.1 of the data, with the cross-section,
S(Q) given by either a simple Lorentzian and a Lorentzian squared to the data for
T > Tsp. The value of X2 indicates the goodness of the fit.

This choice of a Lorentzian squared is motivated by earlier research on the two length

scale phenomenon [89, 94] and the possible origin of the large length scale fluctuations

observed here, which we shall discuss later in this section. We have also tried to fit

the data to Eq. 5.1 with S(Q) given by a simple Lorentzian. We found that, although

away from Tsp both Lorentzian and Lorentzian squared line shapes give similar quality

of fits, for the data very close to the transition temperature Tsp, the cross-section given

by a Lorentzian squared describes the data much better than that given by a simple

Lorentzian. This is reflected in a smaller goodness-of-fit x2 value for the Lorentzian

squared line shape near T8p, as shown in Table 5.1.

Least squares fits of these scans to Eq. 5.2, convoluted with the instrumental

resolution function, Eq. 3.1, yield values for the inverse correlation lengths ,', <

and r' as well as the staggered susceptibility Xd. The solid lines in Fig. 5-1 represent

the results of such fits. Evidently, as stated above, Eq. 5.2 describes the measured

profiles quite well. The results of these fits are given in Fig. 5-2 which shows the

inverse of the correlation lengths along the H, K and L directions as functions of

the reduced temperature. The correlation lengths diverge continuously as the tem-

perature approaches T8p. The solid lines represent the results of fits to simple power

laws, • -'~ tv, for the data close to Tp. The best fit value for the exponent v is

0.56 ± 0.09, which is consistent with the result v 1 from Ref. [66] obtained for the

thermal critical fluctuations over a much wider range of temperature (15 K < T <



40K). However, there are marked differences between the results shown in Fig. 5-2

and those reported by Pouget et al. [66] and Hirota et al. [70]. First, we find that

the length scale of the fluctuations in both samples studied in this work is about an

order of magnitude larger than that observed by Pouget et al. [66] and Hirota et al.

[70]. Secondly, the anisotropy ratio associated with these large length scale fluctua-

tions is different from that reported in Ref. [66]. Namely, instead of the relationship

c : ýb : ýa - 5.5 :1.8 : 1 in the vicinity of T8p, the large length scale fluctuations

exhibit (' > C > 1 .

Concomitantly, the amplitude, S(0) -- IBTXd observed in our high-resolution

x-ray measurements increases precipitously with decreasing temperature. Fig. 5-3

shows Xd as a function of reduced temperature on a semi-log plot. The solid line is

the best fit to a simple power law, Xd " t - Y, of the data, with the best fit , value

of 2.0 ± 0.3. The value of TP determined by fitting the simple power law, t', to

the inverse of the correlation lengths above Tsp is consistent with the value for TP

obtained from power law (t- Y) fits of Xd above Tp. These fitted values for T8 p, in turn,

are consistent with the value of T8p determined by fitting a simple power law, t2 ,

to the peak intensity for the data below Tsp. We note that for conventional thermal

critical scattering the susceptibility exponent y < 2v = 1.12 + 0.18, whereas we find

S= 2.0 + 0.3. This difference may provide an important clue to the microscopic origin

of the large length scale fluctuations in CuGeO 3.

5.2 The Effects of Defects and Strains

Although we cannot pinpoint the precise origin of the large length scale fluctuations

observed in this work, earlier work on the two length scale phenomenon indicates that

the narrow component arises predominantly from the outer 0.1mm of the sample

[91, 92, 93] and is correlated with random defects in the sample [94, 101]. In all

systems studied to-date, the length ratio between the large length scale fluctuations

and the bulk critical fluctuations is a factor of 10 to 20. Further, the large length

scale scattering profiles are better described by a Lorentzian squared rather than a
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simple Lorentzian line-shape. Finally, in CuGeO 3 as well as in certain other systems,

the Lorentzian squared amplitude exponent ý is - 3.5v. It is not clear at this stage

how universal this latter result is.

The large length scale fluctuations in CuGeO 3 can be simply explained by pos-

tulating that they arise from extended defects or strains in the near-surface region.

These defects may create both random bonds and random fields. If the random field

aspects dominate, then technically, we could expect that asymptotically, CuGeO3

would exhibit a random field Ising spin-Peierls phase transition. More generally in

the random field picture one would expect crossovers from mean field to Ising to ran-

dom field Ising behavior as TP is approached from above and below (for a review of

theory, see Ref. [102]). In each of these separate temperature regions S(Q) should be

comprised of both connected and disconnected components [102, 103]. The former is

typically described by a Lorentzian line-shape and the latter by a Lorentzian squared

profile [103, 104]. In mean field theory for random field Ising magnets the charac-

teristic lengths for the Lorentzian and Lorentzian squared components should be the

same [103]. More generally, however, scaling only requires that the exponents and

not the absolute lengths be identical. A dramatic illustration of this phenomenon

has recently been found for the first and second harmonic fluctuations in XY density

wave systems [105]. In that case the first and second harmonic correlation lengths

differ by nearly an order of magnitude even though the exponents themselves are,

by necessity, the same. To explain the large length scale phenomenon in CuGeO 3

we would then simply hypothesize that with high resolution x-rays we measure the

disconnected susceptibility which arises from random fields associated with strains

and defects in the near-surface region probed by the x-rays. We would hypothesize

further that the disconnected susceptibility is characterized by fluctuations whose ab-

solute length scale is about a factor of 10 larger than that characterizing the thermal

fluctuations as measured by neutrons or diffuse x-ray scattering. Presumably, this

larger length scale would be caused by the extended nature of the defects generating

the random fields. For the amplitude of the disconnected susceptibility one has the

exponent 7 = (4 - ý)v with 0 < ý < 1 for a second order phase transition [106, 107].



In CuGeO 3 we determine - = 3.6v, consistent with the above bound for 4. The fact

that we find v -= 0.56 ± 0.09 would imply that over the measured temperature range

one is in the mean field (v = ') and/or Ising (v = 0.63) [108, 109] rather than random

field Ising (v - 1.4) [106, 107] critical regimes. Below Tp we measure / = 0.33(3)

which also is consistent with simple Ising rather than random field Ising behavior

[106, 107, 108, 109]. In this model, asymptotically close to Tp, one must measure

random field Ising critical behavior. From our empirical results we would hypothesize

that the defect density is sufficiently low that the random field Ising critical regime

only occurs very close (< 0.1K) to Tp.

The above random field model appears to be consistent with the data of Thurston

et al. [89, 90] in holmium. In that case for t < 10-2 , v _ 1 and , 4; for t > 10- 2

Thurston et al. [89, 90] find v _ 0.5 and y7 - 1.2 for the thermal fluctuations. To

be consistent with our picture, this would require that as Tp is approached there

is a crossover from mean field/critical behavior to random field critical behavior at

t _ 10- 2 in the near surface region of the holmium sample as probed by x-rays.

Altarelli et al. [110] have emphasized the random bond rather than the random

field aspects of near-surface defects and dislocations. As we have noted above, we

expect both random field and random bond effects to occur and in a given physical

system, it is simply a matter of which dominates over the measured temperature

range. For defects which produce short range random bond disorder one expects only

a subtle change in the critical behavior and no dramatically new length scale [111]. As

emphasized in Ref. [110], building on the work of Weinrib and Halperin [112], more

dramatic effects may occur if the random bond disorder is of long range. Specifically

if the attendant temperature fluctuations fall off with distance like r - a then one ex-

pects a crossover to new critical behavior with v, = 2/a. This random bond picture

appears to be consistent with the data of Gehring et al. [91, 92, 93] in terbium.

We emphasize that in random bond systems the narrow component arises from the

connected rather than the disconnected susceptibility. A model involving both ran-

dom fields and random bonds also appears to be consistent with the published data

on the two length scale phenomena accompanying various structural phase transi-



tions [94, 95, 96, 97, 98, 99, 100]. However, in these cases the interpretation is made

complicated by the first order nature of the transition in the bulk sample. Indirect

support for the importance of quenched defects in solids comes from measurements of

the critical fluctuations of the nematic-smectic A transition in thermotropic smectic

liquid crystals. These systems, which typically have annealed rather than quenched

disorder, do not exhibit large length scale fluctuations [113].

We believe that the large length scale fluctuations in CuGeO which we have mea-

sured can be understood heuristically by considering the effects of extended random

field defects in the near-surface region of the sample. More generally, to explain data

obtained to-date on large length scale fluctuations in a wide variety of physical sys-

tems, one must consider the effects of both random bonds and random fields generated

by the presumed near-surface defects. It is, of course, possible that the large length

scale fluctuation phenomenon is truly intrinsic and would occur in the near-surface

region of a defect-free crystal undergoing a second order phase transition. In that

case, one must devise a surface region-specific mechanism which would generate the

large length scale fluctuations in solids over macroscopic distances (-0.1mm) beneath

the surface. Clearly, much more work will be required to unravel this conundrum and

to put the above ideas on a quantitative basis both experimentally and theoretically.



Part II

Phases and Phase Transitions in

the Mixed Ising-XY Magnet:

Fe Col- TiO3



In recent times, as homogeneous systems have become increasingly well under-

stood, the emphasis in condensed matter physics has shifted from the properties of

perfect systems towards those of imperfect systems. This is because imperfect sys-

tems are, in a sense, generic by nature, while perfectly ordered structures are, strictly

speaking, idealized objects. One important class of imperfect systems is the class of

systems with quenched disorder. These are systems in which the disorder has been

'frozen in'. Random magnets have emerged as prototypes for a wide variety of systems

with quenched disorder. This is due in part to the fact that many different kinds of

generic randomness can be physically realized in magnetic systems, and in part to the

remarkable fact that simple models of magnetism often capture the essential physics

of much more complicated systems.

In the second half of this thesis, we present synchrotron x-ray scattering studies of

the mixed Ising-XY magnet with quenched randomness: FeCol-,TiO3 . This Part is

organized as follows. In Chapter 6, we state the motivation of this work, and give a

brief description of the physical properties of the binary solid solution FeCol-,TiO3.

In Chapter 7, we detail the results of random anisotropy and random field effects on

the XY behavior in FeCol-,TiO3 (x = 0.35, 0.50 and 0.65). Finally, in Chapter 8

we describe the effects of applied magnetic fields on the phase behavior of the mixed

random Ising magnet, Fe0.75Co0.25TiO 3.



Chapter 6

Mixed Ising-XY Random Magnet:

FexCol _xTiO3

6.1 Introduction

In crystalline magnetic materials, the magnetic moments are arranged on a lattice.

In ideal magnets, this lattice structure is characterized by translational invariance.

The existence of this invariance often simplifies the theoretical analysis. In random

magnets, however, this translational invariance is absent. The fundamental problem

in the study of random magnets is to understand the effects of this lack of translational

invariance - the randomness - on the magnetic properties. In particular, at the

simplest level one would like to understand whether or not there exists a transition

out of the high-temperature paramagnetic phase and, if there is a transition, whether

it is to a state of conventional magnetic order or to a low-temperature disordered

phase not present in uniform magnets.

One version of the random Ising magnet problem - the Random Field Ising

Model (RFIM) - has been a subject of intense research for two decades [114, 102].

Fishman and Aharony [115] observed that the physics of the RFIM is closely related

to the behavior of a random Ising antiferromagnet in a uniform field. Following this

suggestion, a series of experiments (for reviews see Refs. [116, 117, 118, 119]) have

been performed on the properties of diluted Ising antiferromagnets in applied mag-



netic fields. These experiments have revealed a number of interesting features, and

these features are believed to be the consequences of random staggered magnetic field

effects. Specifically, in earlier neutron studies [120, 121, 122, 123], it was found that

if the field was applied in the paramagnetic phase, above the Niel temperature TN,

and the sample was then cooled slowly through TN (this procedure was referred to as

field-cooled, or FC), the system evolved continuously from the normal paramagnetic

state to a low-temperature microdomain state. Different behavior was, however, ob-

served if the sample was first cooled to low temperatures in the absence of a magnetic

field, and the field subsequently applied (this procedure was labeled zero-field-cooled,

or ZFC). In this case, the zero field long range magnetic order persisted until the

sample was heated above a well-defined field-dependent metastability temperature

TN (H). Recently, with the development of dedicated synchrotron radiation sources,

RFIM systems have also been studied in detail with magnetic x-ray scattering tech-

niques. Besides confirming the above-stated hysteresis effects, two very intriguing

results emerged. (1) The ZFC transition was found to broaden progressively with

increasing magnetic field. The loss of the long range order (LRO) near the transition

was well described by a power law with a Gaussian distribution of transition temper-

atures, of width azFC, and this width UZFC increased as H 2. This phenomenon was

labeled "trompe l'oeil critical behavior" [124, 125]. (2) The apparent discrepancies in

the RFIM literatures between the scattering measurements of the order parameter

and fluctuations [124, 125] and thermodynamic measurements [126, 127] could be

readily reconciled provided that one included the phenomenological term d 2 in the

interpretation of indirect heat capacity measurements and assumed the "trompe l'oeil

critical behavior" description for the sublattice magnetization Ms [128]. However,

most of the experimental work on the RFIM to-date has been carried out on the

diluted Ising antiferromagnets MnZnl-FF2 and FeZnlF 2. It is therefore clearly of

some interest to see how universal these results are, and specially whether alternative

realizations of RFIM systems exhibit the same features.

Contemporaneously, significant interest has also been directed toward the effects

of quenched randomness in systems with a planar (XY) symmetry; this is partly



stimulated by the relevance of the random field XY model to the problem of the

structure of the vortex lattice [129] in type II superconductors, which include the

high-T, superconductors. It is generally agreed that there is no LRO in XY magnets

with quenched random fields or random anisotropies in less than four dimensions due

to the domain-wall arguments of Imry and Ma [114]. However, the nature of the

ground state is not well understood. Some theoretical studies [130, 131] suggest that

the low-temperature phase possesses algebraically decaying spin-spin correlations,

while others [132, 133] imply a real space spin-spin correlation of the form e-"r. Very

recently, Gingras and Huse [134] argued that in an XY magnet in the presence of

a weak random field, the length scale (v at which the vortices appear is larger than

the pinning length cp [114], and that the spin-spin correlation is expected to decay

as a power-law for ýp < r < (v and exponentially for r > 'v. It is therefore highly

desirable to measure experimentally the low temperature spin-spin correlations in an

XY magnet with random fields and random anisotropies.

6.2 FexCOlxTiO 3

The crystal structure of both FeTiO3 and CoTiO 3 is rhombohedral, space group

CM(R3), with a unit cell (Fig. 6-1(a)) of dimensions a0 = 5.54A, a = 54041 for FeTiO 3,

and a0 = 5.49A,. a = 54042 for CoTiO3 [135]. The similarity of the lattice constants

ensures that excellent quality random alloys, FezCojxTiO3 , can be crystallized.

There are two molecules per primitive cell, as shown in Fig. 6-1(a). A triple

hexagonal unit cell (Fig. 6-1(b)) is often used to describe the rhombohedral structure.
The hexagonal lattice vectors (-h, Y, 'h) are related to the rhombohedral ones (Z,

y, 7' ) by

Xh = Xyr - r,

Yh = Yr -Z r,

Zh = Xr+S7r+Z (6.1)



(a)
r Ti4+
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The rhombohedral primitive cell

(b)

The hexaqonal unit cell

Figure 6-1: Crystal structure of FeTiO 3 and CoTiO 3 . (a) The rhombohedral primitive
cell contains two molecules. (b) The hexagonal triple cell contains six molecules.



As illustrated in Fig. 6-1(b), this hexagonal unit cell consists of six molecules. The

magnetic interaction between the neighboring magnetic ions (Fe2+ or Co 2+) in these

two titanate compounds are ferromagnetic within the a-b plans of the hexagonal unit

cell, and antiferromagnetic along the c-axis direction. [136, 137]. The magnetic ions

(Fe2+ or Co 2+ ) situate at (0,0,±u), (, ,, , ± u), (1, ý, ± u). The indices in this and

the next chapters are based on the triple hexagonal (chemical) unit cell (Fig. 6-1(b)).

The difference between the two magnetic structures is that at low temperatures,

the Fe2+ spins order along the hexagonal c-axis (11) in FeTiO3 [136], while the Co 2+

spins in CoTiO 3 order in the a-b plane (1), perpendicular to the c-axis [137]. These

anisotropies originate in the crystal-field effects due to the surrounding ions as well

as the spin-orbit interaction within the cations themselves. Detailed crystal-field

theory calculations on these ground terms exist [138]. The general conclusion is that

the Fe2+ ion has a triplet ground state and the Co 2+ ion has a doublet ground state,

appropriate to the pseudospin assignment SFe = 1, Sco = 1 The Fe2+ and Co 2+ spins

have Ising and XY characters respectively. The magnetic exchange interaction within

these ground states can then be described by the diagonal pseudospin Hamiltonian:

S= 2 {J (ij)S 1(i). - I (j) + Jj(ij)S±(i). S±(j)}, (6.2)
ij

or equivalently,

W = 2 { J(ij)S(i). S(j) + D(ij) [SI(i)• SI*(J) - -S±L(i) . S±(j)] , (6.3)

where the 11 and I_ signs are with respect to the hexagonal c-axis..

The binary compound FexCol-TiO has been studied in the context of competing

spin anisotropies [139, 140]. Similar to FezCo 1-,Cl 2 [141, 142] and FexCot-,Br 2

[143, 144, 145] it was found to exhibit a tetracritical-like phase diagram with Ising,

XY and mixed phases (Fig. 6-2).

In addition, as emphasized by Wong et al. [141, 142], the exchange interactions

between ions with orbital degeneracy are not necessarily well represented by the



usual Heisenberg form J(ij)Si -Sj. The charge distribution of these ions is spatially

anisotropic; their overlap (exchange) depends not just on whether the spins are par-

allel or antiparallel but also on the relative orientation of the charge cloud to the

displacement vector R•.. The pseudospin vectors Si and Sj are coupled to the charge

cloud of the two ions; the electronic exchange interaction is represented by an interac-

tion between Si and S. For the same Si" Sj, the amount of charge overlap is different

for different ij (rij - Rjj/ Rjl). In molecular-field approximation there should be

three independent components of the molecular field acting on Si in the directions of

ESj, ij and (Sj x rj). This should exhaust the possibility of bilinear scalar coupling

between Si and Sj. If the charge clouds are isotropic, the extra terms are unnecessary.

For ions with large spin anisotropy, the charge cloud is by necessity anisotropic; hence

instead of Eq. 6.3, the Hamiltonian should have the form

W = Z {J(ij)S(i) S(j) + K(ij)[ij. S (i)][ [- i(j)] + G(ij)[S(j) x •-]. S (i)} (6.4)
ij

In a pure system, the additional terms may sum to zero by symmetry. However, in

a mixed system these symmetry requirements no longer exist. In particular, for a

random mixed system we shall expect the local environment to vary from site to site.

Therefore the coupling constants K(ij) and G(ij) are site-random. These terms thus

serve to generate random anisotropy and random field effects.

In addition, the magnetoelastic coupling between the lattice and the magnetism

of the system may induce uniform distortions via coupling terms of the form MJ,2

or, in the presence of a magnetic field, staggered distortions via coupling terms of

the form MMS,6. Furthermore, discomposition of the magnetic LRO may lead to

a breakup into structural domains through the magnetoelastic coupling. These, to-

gether with random anisotropy and random field effects, can be extremely important

in understanding mixed random magnets, as the results reported here illustrate.

The phase behavior in FexCol_,TiO 3 is thus the result of the collective effects of

fixed and random anisotropies and magnetoelastic coupling as noted above, with both

random field and random anisotropy effects perturbing Ising, XY and mixed phases.



This yields a rich phase diagram in the concentration (x) versus temperature (T)

plane. Fig. 6-2 is the phase diagram from Ref. [140] revised with two results from this

study: (1) the low temperature phase at low Fe2+ concentration (the area bounded by

line AB and BD) is found to lack LRO, instead, it is a S± domain-state; (2) the line

AB that separates the two disordered phases - paramagnet and S± domain-state -

is a novel critical line in the sense that the correlation length diverges on the line and

yet there is no transition to LRO involved in this phase transition.

In the next two Chapters, we present the results from synchrotron x-ray scat-

tering studies of the mixed Ising-XY magnetic system with quenched randomness:

FexCoj_,TiO3 , with Chapter 7 emphasizing the XY behavior, and Chapter 8 devot-

ing to the behavior of the Ising spin component in external magnetic fields.
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Figure 6-2: The magnetic phase diagram of the crystalline binary compound

FexCojxTiO3 in the concentration (x) versus temperature (T) plane (from Ref. [140]
revised with the two results from this work). There exist four phases: paramagnet,

Sl1-ordered antiferromagnet, S 1-domain state, and the mixed domain state, in which

both the S± and S11 form short-range ordered domain states.



Chapter 7

Random Anisotropy and Random

Field Effects in XY Magnets with

Quenched Randomness

7.1 Experimental Specifications

The experiments were carried out on the beamline X20A at NSLS. The incident

wavelength was set at A = 1.305A (E = 9.5 KeV). The penetration depth at this

wavelength for FeColTiO3 was typically - 2pm. The diffraction occurred in the

reflection geometry in the vertical scattering plane and a flat Ge(111) crystal was used

as the analyzer. The excellent quality single crystals of FeCo-_zTiO3 were kindly

made available by Dr. A. Ito of Ochanomizu University, Japan. The samples studied

in the second half of this thesis (Chapter 7 and Chapter 8) are identical to the ones Ito

et al. studied with neutron scattering techniques in Ref. [139, 140]. The samples were

mounted on the cold finger of a closed cycle refrigerator. The temperature stability

was within 10mK in the course of a scan.

The sublattice magnetization measurements were carried out around the magnetic-

superlattice positions (0, 0, 4.5) and (1, 1, 1.5). Following Ref. [25, 146], the magnetic



x-ray intensity is given by

IM Tr[< Mm > p < Mm >t], (7.1)

where Tr denotes the trace operator, p is a 2 x 2 density matrix for the incident

polarization state, given by

0 Pi)

where the supscripts | and I indicate the directions that are parallel and perpendic-

ular to the scattering plane, and the matrix < Mm > is

( (sin 20)Sv -2 sin 2 0[(LT + ST) cos 0 - SL Sin 0]
M2 sin 2 0[(LT + ST)cos0 -Sv sin 0] sin 20[2(sin 2 0 )Lv + Sv]

where the subscripts L and T denote the directions that are longitudinal and trans-

verse to the momentum transfer Q within the scatteing plane, while the subscript

V denotes the direction perpendicular to the scattering plane. The magnetic x-ray

intensities at the magnetic-superlattice positions (0, 0, 4.5) and (1, 1, 1.5) therefore

are:

I(0,o,4.5) c< 0.5jiS± 2

I(1,1,1.5) oc 0.931S 1, 2 + 0.036S 1 12 + 0.038 S- + L ±12. (7.2)

where the subscripts I and IL are the directions along the hexagonal c-axis and within

the a-b plane, respectively. In reaching Eq. 7.2, we made use of 0(0,0,4.5) - 120

and 0(1,1,1.5) - 16' (for incident x-ray wavelength A = 1.305A). In the spin-only

approximation, the ratio between the contribution of S± to I(1, 1, 1.5), I±(1, 1, 1.5),

and its contribution to I(0, 0, 4.5), I±(0, 0, 4.5), is

I I(1, 1,1.5) sin20(1,1,1.5) (1,1,1.5) 2 0.074 0 2 (7.3)
I (0, 0, 4.5) (sin 20(0,0,4.5) f(0,0,4.5) 0.5



for A = 1.305A, where f denotes the magnetic form factor, and f(1,,1. 5_ ) - 0.88 when
f(0,0,4.5)

A = 1.305A.

7.2 Results and Data Analysis

7.2.1 Feo.35Coo.65TiO 3

Our first effort was to study the XY ordering in Fe0.35 Co0.65 TiO 3 . According to

earlier neutron scattering studies [140], only the XY spin component S± orders in

Fe0.35Co 0 .65TiO3, while the Ising spin component S11 does not order, at least for tem-

peratures higher than 7K.

In Fig. 7-1, we show transverse scans at the magnetic-reciprocal lattice position

(0, 0, 4.5) for several temperatures. As noted early, the magnetic intensity at (0, 0, 4.5)

is proportional to I_±12 . The scattering intensity at (0, 0, 4.5) therefore reflects the

magnetic structure of the XY spin component Sj along the hexagonal c-axis direction.

In Fig. 7-1, as the temperature is lowered, the scattering profile broadens with an

increasing peak intensity.

This broadening is detailed in Fig. 7-2, where we show the temperature dependence

of the peak intensity, the in-plane transverse HWHM and the longitudinal HWHM of

the magnetic reflection (0, 0, 4.5) for Feo.35Co0.65TiO3. At the transition temperature,

T±(x = 0.35) = 36.89(3)K, there is a sudden rise of the scattering intensity (Fig. 7-

2(a)), indicating the onset of the ordering of the spin component S±. Immediately

following the onset of this ordering, the reflection profile broadens progressively with

decreasing temperature in both the longitudinal and transverse directions (Fig. 7-2(b)

& (c)). For temperatures below T±(x = 0.35), the spin component S± starts to order,

but instead of achieving LRO, it forms finite size clusters - albeit with a very large

length scale - along the hexagonal c-axis, and the size of these clusters becomes

smaller with decreasing temperature. We note that thermal disordering effects be-

come less important as one lowers the temperature. This therefore exemplifies the

domination of the quenched disorder over the thermal disorder at lower temperatures
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in random systems.

In Fig. 7-3, we plot the intensity, the transverse and the longitudinal HWHM of the

charge reflection (0, 0, 6), which reflects the electronic structure (the atomic structure)

along the hexagonal c-axis direction. For temperatures higher than the XY ordering

temperature T± (x = 0.35), when the magnetic scattering intensity at (0, 0, 4.5) is zero

(Fig. 7-2(a)), the charge scattering profile at (0, 0, 6) is independent of temperature,

and resolution-limited. However, as soon as the sample is cooled below TL, when the

finite size magnetic clusters start to appear, there follows a broadening of the charge

reflection profile, along both the longitudinal and the transverse directions, indicating

the breakup into structural domains following the onset of the (short-range) ordering

of the XY spin component S1 . The more pronounced broadening along the transverse

direction in both Fig. 7-2 and Fig. 7-3 reflects the effects of mosaicity, as elucidated

later in this Chapter.

Fig. 7-4 summarizes the alteration of the magnetic and atomic structure along the

hexagonal c-axis following the short-range ordering of the XY spin component S. In

Fig. 7-4, we plot the integrated intensity of the magnetic reflection (0, 0, 4.5), along

with the in-plane transverse HWHM of the charge reflection (0, 0, 6), as a function of

temperature. As noted above, the (0, 0, 6) broadening along the transverse direction

primarily reflects the effects of mosaicity. This mosaicity effect scales linearly with

the magnetic integrated intensity of (0, 0, 4.5), which, in turn, is well described by a

simple power law,

I(0, 0, 4.5) oc Il12 1 - T1 (x = 0.35) (7.4)

near the transition temperature T±(x = 0.35) = 36.89(3)K. The best fit value of 3-L

is 0.35(2), in quantitative agreement with the theoretical result /3xy = 0.36 for a 3D

planar (XY) magnet [1]. However, the low temperature phase in this case is by no

means an ordinary ordered state. Instead, it contains both magnetic and structural

domains.

So far, we have been concentrating on the magnetic and atomic structures along
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the c-axis direction. But what happens within the hexagonal a-b plane following the

short-range ordering of the XY spin component? In Fig. 7-5, we plot both the longitu-

dinal and the transverse scans at the reciprocal lattice point (1, 1, 0) for temperatures

T = 10.00K (filled circles) and T = 37.73K (unfilled circles), which respectively re-

flects the atomic structure in the a-b plane before and after the establishment of

the short-range order (SRO) of the XY spin component S1 . Above the transition

temperature T_, the scattering profile at (1, 1, 0) is independent of temperature, and

resolution limited. The data are well described by the following form:

1I t~. (7.5)
11 + [(qL - q Lo)W 213 f, +2(T-T)WII

with WL = 0.000923A - 1, and WT = 0.000356A - 1. The subscripts L and T represent

directions that are longitudinal and transverse to (1, 1, 0) within the scattering plane,

specifically, the subscript L denotes the direction along (h, h, 0), while the subscript

T denotes the direction along (h, -h, 0). Eq. 7.5 with the parameters given above

is therefore the experimentally measured resolution function at the reciprocal lattice

point (1, 1, 0). The value WL = 0.000923A'- 1 is consistent with theoretical expecta-

tions for the longitudinal resolution of a vertical synchrotron-x-ray scattering geom-

etry using Ge(111) crystals as both monochromator and analyzer. The transverse

resolution was controlled by the sample mosaicity. The value WT = 0.000356A'- 1

corresponds to a mosaicity of 0.010. The dashed line in Fig. 7-5 is the result of a

least-squares fit; of the data for T = 37.73K to Eq. 7.5.

Below the transition temperature T±, the scattering profile at (1, 1, 0) broadens

significantly along both the longitudinal and transverse directions. This broadening

is consistent with a lattice distortion depicted in Fig. 7-6. Before the distortion,

there exists a sixfold symmetry within the a-b plane, specifically, the following six

reciprocal lattice vectors are equivalent: Q(1,1,o), Qi(2,-1,0), i (-1,2,0), i(-1,-1,0), i (-2,1,o)

and Q(1,-2,0). However, after the distortion, these six reciprocal lattice points are no
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Figure 7-6: The distortion of the lattice in the hexagonal a-b plane following the short
range ordering of the XY spin component S±.
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longer equivalent, in particular,

IQ(1,1,0)1 = IQ(-',-I,o)I = Qo(l - v_

IQ(-2,1,0)= Q(1,-2,O) = Q(2,-1,0) = IQ(-1,2,O)= Qo(1 +2 (7.6)

The difference AQ - I(1,1,o)1 - IQ(2,-1,o)| is proportional to the distortion 6. The

solid line in Fig. 7-5(a) is the result of fitting the longitudinal data of T = 10.00K to

the function form,

1 2 3 + Y 2 3  (7.7)I {1 + [(qL -- 9 2 L 0L2
[(qL)/wL] {1 + [(qL - (qO + AQ)/wL]

with WL fixed at the value for the resolution, 0.000923 A-'. The coefficient y is fixed

at 0.5, assuming the six equivalent domains are equally populated in the sample. The

best fit value of zAQ| for T = 10.00K is 0.00061(5) A-, which corresponds to a lattice

distortion 6 _ 0.0003. Clearly, the broadening along the longitudinal direction at

(1, 1, 0) is well accounted for by this lattice distortion, which is presumably induced

by the magnetoelastic coupling. We note that the broadening of the longitudinal

scattering profile can also be satisfactorily described by the finite size effect. The

dashed line for data of T = 10.00K is the result of a least-squares fit of the data to a

Lorentzian squared cross-section convoluted with the resolution function. However,

we shall see later in this Chapter that, although both lattice distortion and finite size

effects contribute to the broadening of the longitudinal scattering profile, it is the

former that plays the more important role.

The broadening along the transverse direction in Fig. 7-5(b) therefore reflects

the corresponding twinning arising from the lattice distortion. This twinning effect

is of the order of 6. Quantitative information regarding the broadening along the

transverse direction, however, depends on the details of the twinning. The solid line

in Fig. 7-5(b) is the best fit of the data at T = 10.00K to a Lorentzian squared
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(twinning)
1

I (7.8)
{1 + [(qT - qO)/1T]2}

convoluted with the resolution function. The twinning angle at T = 10.00K is given

by 60 - T/•Q(1,1,o)1 ~ 0.010.

In Fig. 7-7, we plot the temperature dependence of AQ and 'T. Clearly, in order

to resolve the small values of AQ for temperatures near the transition temperature,

higher resolution measurements are needed.

Since the component in the hexagonal a-b plane does not order in Fe0. 35Co0.65 TiO3

[140], the magnetic x-ray intensity at both the magnetic-superlattice reflection points

(0, 0, 4.5) and (1, 1, 1.5) arises from the ordering of the component along the hexagonal

c-axis. For the purpose of calibrating the ratio I±(1,1,1.5) we measured the magneticI±L(O,0,4.5)'

x-ray intensity at the reciprocal lattice point (1, 1, 1.5), and it was found that for the

x = 0.35 sample,
I(1, 1, 1.5) I(1, 1, 1.5) 0 4•~ 0.4. (7.9)
I±(0, 0, 4.5) I(0, 0, 4.5)

This may be compared with the spin-only value of 0.2. This discrepancy in the ratio
I-(1,1,1.5) reflects the effect of the orbital moment L1 as well as the details of the

crystal shape.

7.2.2 Feo.50Coo.50TiO3

Similar to the situation in Fe0.35Co0.65TiO3 , both the magnetic and the atomic struc-

tures along the hexagonal c-axis direction are found to break into domains following

the (short-range) ordering of the XY spin component S±. In Fig. 7-8, we plot the

integrated intensity of the magnetic-superlattice peak (0, 0, 4.5) (top panel), and the

transverse HWHM of the structural peak (0, 0, 6) (bottom panel). The broadening

of the structural peak (0, 0, 6) along the transverse direction, which is dominated by

mosaicity, is found to follow the growth of the magnetic intensity near the transition

temperature (cf. Fig. 7-4). However, contrary to the sharp growth of the magnetic

intensity and the transverse HWHM in Fe0.35Co0.65 TiO3, the transition is "rounded"
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verse HWHM of the structural reflection (0, 0, 6)(bottom panel) as functions of tem-
perature.
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in Feo.5oCoo.-oTiO 3 . The dashed lines in Fig. 7-8 are the results of least-squares fits of

the data to a simple power law, I 1 - T±(x= o0.50) . Clearly the power law does

not describe the data near the transition very well, and specifically, the data exhibit

significant rounding near the transition. We therefore fit the data to a "rounded"

power law:
T t ) 20j _ Tc)2I t exp -_( dt. (7.10)VA -T t 6Tc

This is a power law with a Gaussian distribution of transition temperatures. Given

that we do not have compelling physical explanation for this broadening, we postulate

that this spread of TL results simply from sample concentration gradients. It is im-

portant to note that although the functional form of Eq. 7.10 is also used in describing

the loss of LRO on warming from the ZFC state of the RFIM magnets, the broadening

in RFIM, however, has a completely different origin (see Refs. [124, 125, 128]). The

fit parameters from the magnetic integrated intensity at (0, 0, 4.5) and the transverse

HWHM of the charge peak (0, 0, 6) are identical, within the error bars, and they are:

the peak of the (transition temperature) Gaussian distribution Tc = 34.40(5)K, the

spread of Tc, 6T, = 0.75(5)K, and the exponent 3 = 0.32(5). The solid lines in

Fig. 7-8 are the results from fitting the data to Eq. 7.10. The transition temperature

Tj(x = 0.50) = 34.4(8)K therefore has a large error bar due to the concentration

gradients in the illuminated volume.

In Fig. 7-9, we plot the integrated intensity, the longitudinal and the transverse

HWHM of the magnetic-superlattice reflection (1, 1, 1.5) as functions of tempera-

ture. The integrated intensity of (1, 1, 1.5) is well described by a simple power law,

1 _- )2, with the best fit values for O3 being 0.34(4), and the transition temper-

ature, T1 = 33.7(2)K, in good agreement with the values deduced from the magnetic

reflection (0, 0, 4.5). In addition, the ratio between the magnetic x-ray intensities

at the reciprocal lattice points (1, 1, 1.5) and (0, 0, 4.5), 1(1,1,1.5) - 0.3, is consistent
, (0,0,4.5) 0 ,isc n st t

with the anticipated relative intensity assuming that only the I_ component orders

in Fe0.50Co 0.5oTiO3 . Any significant ordering of the 11 component should have re-

flected itself in the magnetic x-ray intensity at (1, 1, 1.5). Furthermore, both the
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value 03 = 0.32(5) deduced from the magnetic reflection (0, 0, 4.5) and the value

OL = 0.34(4) deduced from the magnetic reflection (1, 1, 1.5) are in good agreement

with the theoretical value ixy = 0.36 for a 3D planar (XY) magnet [1].

In Fig. 7-10, we plot the longitudinal scan at the reciprocal lattice point (1, 1, 0)

for temperatures T = 10.00K (below the transition temperature TL), and T = 35.34K

(above the transition temperature T±). Above T1 , the scattering profile at (1, 1, 0) is

independent of temperature, and resolution-limited. The data are well described by

1

1 + [(qL - q)/wL]2} 3  (7.11)

The dashed line in Fig. 7-10 is the result of a least-squares fit of the data at T = 35.34K

to Eq. 7.11. The best fit value for WL is WL = 0.00093(1)A - . The dashed line there-

fore represents the experimentally measured longitudinal resolution function. How-

ever, as soon as the temperature is lowered below the transition temperature TL, the

longitudinal scan at (1, 1, 0) broadens progressively with decreasing temperature, i.e.

with increasing magnetic intensity. This broadening arises from the lattice distortion

as evident in the data for T = 10.00K shown in Fig. 7-10. The solid line in Fig. 7-10

is the result of a least-squares fit of the data at T = 10.00K to

1 y
{1 + [(qL - q)/w]23  {1 + [(qL- (qO2

with the coefficient y = 0.35. The best fit yields for the parameters the values

AQ = 0.00125(2)A - and w' = 0.00105(2)A.- . The value y = 0.35 implies that

the six equivalent domains are not equally populated in this sample, while the value

w = 0.00105(2)A- 1(> wreso = 0.00093(1)A 1) indicates that the atomic structure

has lost its LRO in the hexagonal a-b plane.

In Fig. 7-11, we show representative scans along the longitudinal direction at the

magnetic-superlattice position (1, 1, 1.5). In the case that the Ising spin component

is not ordered, the scattering profile at (1, 1, 1.5) reflects the magnetic structure of

the XY spin component S 1 within the hexagonal a-b plane. It is interesting to notice
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Figure 7-10: Representative longitudinal scans at the structural peak (1, 1, 0) for
Feo.5OCoo.5oTiO 3 .
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that while the longitudinal profile of the structural peak (1, 1, 0) exhibits the feature

of a double-peak due to the lattice distortion, the longitudinal profile of the mag-

netic reflection (1, 1, 1.5) is symmetric (cf. Fig. 7-10). This is because only the spin

component perpendicular to the momentum transfer Q contributes to the magnetic

scattering intensity. Furthermore, the magnetic scattering profile at (1, 1, 1.5) for

T = 10.00K is slightly broader than that for T = 32.62K. The solid lines in Fig. 7-11

are the results of least-squares fits of the data to a Lorentzian squared cross-section

convoluted with the resolution. Since the magnetic intensity at (1, 1, 1.5) goes to

zero as the sample is heated above the transition temperature, it is therefore impos-

sible to measure experimentally the resolution function at the reciprocal lattice point

(1, 1, 1.5). Fortunately, the reciprocal lattice point (1, 1, 1.5) is very close to (1, 1, 0),

where the experimental resolution function can be obtained by measuring the scat-

tering profiles for temperatures above the transition temperature TL (Eq. 7.11). We

thus use Eq. 7.11 as the resolution function for (1, 1, 1.5). Clearly, at low tempera-

tures (e.g. T = 10.00K) both the magnetic and atomic structures break into domains,

albeit with a very long length scale of - 5, 000A, in the a-b plane. However, given the

extremely large length and the lack of precise resolution function at the reciprocal

lattice point (1, 1, 1.5), the information regarding the relative size of the magnetic

and the atomic structure within the a-b plane is unobtainable.

7.2.3 Feo.65Co o.35TiO3

In Ref. [141, 142], Wong et al. suggested that in magnetic systems with competing

orthogonal spin anisotropies, when one spin component orders, the other spin com-

ponent may experience a site-random field through the off-diagonal coupling terms

such as Gxx(ij)S,(i)Sz(j). Because of this random field effect, the low temperature

mixed phases contain domains. However, in the earlier neutron scattering studies

[139, 140, 141, 142, 143, 144, 145], the scattering profile of the mixed phases was

found to be resolution-limited. Our next effort was therefore to study the mixed

phases in Fe0.65Co0.35 TiO3. As suggested by Fig. 6-2, at this concentration, there

are successive Ising and XY transitions with decreasing temperature, and the lower
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temperature phase is a mixed phase.

In Fig. 7-12 and Fig. 7-13, we show a series of scans at the magnetic reflec-

tion (1, 1,1.5) along the longitudinal (Fig. 7-12) and the transverse (Fig. 7-13) di-

rections. The scattering profile is resolution-limited for temperatures higher than

17K, whereas the reflection is significantly broader than the resolution for tempera-

tures lower than 17K.

This broadening is detailed in Fig. 7-14, where we show the temperature depen-

dence of the integrated intensity, the peak intensity, the in-plane transverse HWHM

and the longitudinal HWHM of the magnetic reflection at the reciprocal-lattice po-

sition (1, 1, 1.5). At a temperature T11 (x = 0.65) = 41.55(5)K, there is a sudden

rise of the scattering intensity, indicating the onset of the ordering of the Ising mag-

netic component S11. For temperatures higher than - 17K, this magnetic reflection

is resolution-limited, so that this phase has LRO. For T near T11(x = 0.65), both

the integrated and the peak intensities are well described by a simple power law,

I • I T(x= 0.65) . The best fit value of /1, is 0.33(2), consistent with the the-

oretical result / = 0.35(1) for a random exchange three-dimensional (3D) uniaxial

(Ising) magnetic system [147, 148, 149]. The thick solid line BC in Fig. 6-2 is there-

fore confirmed to be a conventional second-order phase transition line to a LRO state,

consistent with the results from earlier studies [140].

As the sample is cooled further down to below - 17K, the magnetic reflection

profile becomes broader (Fig. 7-14(c) & (d)) with a corresponding decrease in peak

intensity (Fig. 7-14(b)). This indicates that below ,- 17K, the magnetic structure is

no longer long-range ordered; instead, it breaks into domains. The line shape of the

scattering profile is consistent with a Lorentzian squared cross-section:

S(q) 2 (7.13)
{1 + [(qll - q')/' 1 ] + [(i -L

where the f1 and I signs are with respect to the hexagonal c axis.

The solid lines in Fig. 7-12 and Fig. 7-13 for temperatures T = 13.51K and

T = 16.01K are the results of fits of the data to this Lorentzian squared cross-section
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Figure 7-12: Representative scans along the longitudinal direction at the magnetic-
superlattice position (1, 1, 1.5) for Feo.65Co0.35TiO 3.
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Figure 7-13: Representative scans along the in-plane transverse direction at the
magnetic-superlattice position (1, 1, 1.5) for Feo.65Coo.35TiO 3.
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Figure 7-14: The summary plots for the magnetic-superlattice reflection (1, 1, 1.5) for
Fe0.65Co0.a3 5 TiO3 . The unfilled circles are the data from a cooling (from 50K) run,
and the filled circles are the data from a subsequent warming (from 10K) run. (a)
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(Eq. 7.13) convoluted with the experimental resolution,

I(q) = R(()S(q - ()d( (7.14)

where I(q) is the measured intensity. R((), the experimentally measured resolution

function, has the approximate form

[I - j((v - q')/wvl]
R(() ~ ( v ] 2 (7.15)

1 + [((L - qf)/W } + [(T2- q 2)/WT

where the parameters WL, WT and Wv were determined by the measurements of the

resolution-limited peaks for temperatures higher than - 17K. In other words, for

temperatures higher than -~ 17K, the measured x-ray intensity is:

I(q) = f R(()Io6(q - ()d( R(q). (7.16)

Typical values for WL, WT, WV are 0.0008A- 1, 0.0007A- 1 and 0.02A7- 1. The value

of WL = 0.0008A- 1 is consistent with theoretical expectations for the longitudinal

resolution of a vertical synchrotron-x-ray scattering geometry using Ge(111) crystals

as both monochromator and analyzer. The WT value of 0.0007A- 1 was controlled by

the sample mosaicity, and the wv value of 0.02A- 1 was controlled by the horizontal

slits.

The coordinates {qL, qT, qv} are related to {q1%, q} by

q(1,1,o) = qL Ccos - qv sin 7

q(3,-3,o) = qT

q(0,0,0) = qL sin ~y + qv cos 7 (7.17)

where Y - 150, as shown in Fig. 7-15.

In fitting the data to Eq. 7.14, we make use of Eq. 7.17. The integration along

the out-of-plane direction can be performed analytically (Wv > K,, Kj,), the three

dimensional integration can then be reduced to a two dimensional integration. Least
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Figure 7-15: The comparison between the longitudinal component (qL), the transverse
component (qT) and the out-of-plane component (qv) of the momentum transfer with
those parallel (ql) and perpendicular (q±) to the hexagonal c-axis. The qr direc-
tion is perpendicular to both the qL direction and the q11 direction, and is therefore
perpendicular to the paper plane.

117



5

4

,_2

1

0
6

5

*'4
I

3
I

"2

10 

11 12 13 14 15 16 17

10 11 12 13 14 15 16 17
Temperature (K)

Figure 7-16: The inverse correlation length IL and K'T as functions of temperature.

118

0
0



squares fits of data for temperatures below ,- 17K to Eq. 7.13, convoluted with

the instrumental resolution function, Eq. 7.15, yield values for KL and KT, as shown

in Fig. 7-16. At T = 10K, the in-plane domain size of the spin component Sl1 is

~ 2, oooA.
As suggested by earlier neutron studies [140], for Feo.65 Coo.3 5TiO3 there is an

ordering of the XY spin component S± at -- 17K. Representative transverse scans at

the magnetic-superlattice reflection (0, 0, 4.5) are shown in Fig. 7-17. As noted before,

the magnetic x-ray intensity at (0, 0, 4.5) is proportional to ' 12. Unfortunately, the

scattering intensity at (0, 0, 4.5) was extremely weak, which limited the information

obtainable on the ordering of the XY spin component S1 . However, similar to the

case in both Fe0.35Co 0.65TiO3 and Feo.50Co0.50TiO3 , the atomic structure along the c-

axis direction breaks into domains following the onset of this ordering of the XY spin

component, as shown Fig. 7-18. It is therefore clear that the XY magnetic ordering

along the hexagonal c-axis is also short-ranged. This is because generally one expects

that the correlation length of the magnetic structure will be smaller, but not larger,

than that of the atomic structure.

We remarked early on that the much more significant broadening of the transverse

scans for the (0, 0, 1) reflections reflects mosaicity effects arising from the establish-

ment of the SRO of the XY spin component. This can be further seen by by com-

paring directly the following three peaks: (0,0, 3)(charge), (0,0, 4.5)(magnetic) and

(0, 0, 6)(charge). If the broadening along the transverse direction was mainly due to

finite size effects, the domain size, K-1, deduced from the data at these three reflec-

tions should be the same. However, if the broadening along the transverse direction

arises primarily from mosaicity, the angular width should be identical at these three

peaks. As shown in Fig. 7-19, mosaicity is clearly the dominant cause of the broad-

ening along the transverse direction for the (0, 0,1) reflections for temperatures below

S17K.

In Fig. 7-20, we plot both the longitudinal and the transverse scans at the recipro-

cal lattice point (1, 1, 0) at temperatures T = 10.00K (the mixed phase), T = 25.02K

(the S11-ordered phase) and T = 50.03K (the paramagnetic phase) for Feo. 65 Co 0.3 5 TiO3.
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Figure 7-19: The broadening along the traverse direction as a result of changing
mosaicity effect, rather than the finite size (domain) effect. The unfilled circles are
data at (0, 0, 3), which is a charge peak. The filled circles are data at (0, 0, 4.5), which
is a magnetic peak. The unfilled square symbols are the data at (0,0,6), which is
another charge peak. Clearly, the transverse broadening results mainly from mosaicity
effects. The solid line in the figure is the best fit of a simple Lorentzian squared to
the data.
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As noted above, the scattering profile at (1, 1, 0) reflects the structure in the hexag-

onal a-b plane. In both the paramagnetic and the S11-ordered phases, the scattering

profile at (1, 1, 0) is resolution-limited and independent of temperature. The dashed

lines are the results of least-squares fits of the data for T = 25.02K and T = 50.03K

to the form:
1

I ., (7.18)]21 {1 + -(T )W ]
l + [(qL - q )/wL]2} 2  q

2  (

with WL = 0.000767A - 1, and WT = 0.000845A - 1. The value wT = 0.000845A - 1

corresponds to a mosaicity of 0.0250. Eq. 7.18 with above-stated parameters is the

experimentally measured resolution function. For temperatures below - 17K, the

longitudinal data are again consistent with a lattice distortion within the a-b plane.

The solid line in Fig. 7-20 is the result of a least-squares fit of the data for T = 10.00K

to

SI ] 22 {2 (7.19)
[(( qq)/WL + gL -+Q L]2}

with the coefficient y fixed at 0.5.

7.3 Discussion

Among the data presented, one common feature is the breakup of both the magnetic

and the atomic structure of the crystal into domains following the ordering of the XY

spin components. This breakup of the XY phases into domains corresponds to our

expectations for random anisotropy systems, with strong magnetoelastic coupling.

The most straightforward origin of the random anisotropy in FeCoj_-TiO 3 is the

random nature of the mixture itself. Specifically, by analogy with Ref. [141, 142],

substitution of Co 2+ ions with Fe2+ ions reduces the local symmetry of the crystal

field acting on the Co 2+ ions. In particular, this substitution induces random diagonal

and off-diagonal exchange terms of the form Gjm(ij)Si(i)Sm(j) (1, m = x, y or z(ll))
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in the effective spin Hamiltonian

S= 2 {JEl(ij)S11 (i)S11(j) + J±(ij)[S±(i) S-±(j)]}. (7.20)
ij

This follows most simply from the anisotropy in the g-term induced by the resultant

lower symmetry crystal field.

In the cases of x = 0.35 and 0.50, because of the presence of terms of the

form Gxx(ij)Sx(i)Sx(j) # Gyy(ij)Sy(i)Sy(j), and terms like Gxy(ij)Sz(i)Sy(j), the

S1 -ordering transition falls into the universality class of a 3D XY magnet with ran-

dom anisotropy. This identification assumes that an XY magnet with a three-fold

random anisotropy is equivalent to an XY magnet with random anisotropy. In the

framework of the mean-field approximation, the anisotropy field HA (i) at the ith spin

under the term Gxx(ij)Sx(i)Sx(j), is proportional to (Gxx(ij) - Gyy(ij)) < IS-L >.

This random anisotropy field is zero above and at the transition temperature TL,

but nonzero and increasing with decreasing temperature below T1 . This is consistent

with the experimental findings of Fig. 7-2 and Fig. 7-9 where, as the temperature is

lowered below T1 , the domain size decreases progressively as a result of the increasing

strength of the random anisotropy field, H•A ,- S 1 .• We emphasize that the thermal

disordering effects become less important as one lowers the temperature. This there-

fore reflects the domination of the quenched disorder over the thermal disorder at

lower temperatures in random systems. The transition from the paramagnet to the

S 1-domain state is therefore critical at TL even though there is no conventional LRO

below T1 . The line AB in the phase diagram (Fig. 6-2) thus appears to be as a novel

type of critical line.

In the case of x = 0.65, on the one hand, for the XY spin component S_, besides

the random anisotropy effect described above, since the spin component S11 has already

ordered, the spin component S± experiences a site-random field G(ij)jj± < S11 >.

Further, since the S1 component has almost reached its saturation value at the XY

transition temperature, we might expect this random field effect to dominate the

phase behavior of the XY spin component S±1 for x = 0.65. On the other hand, for
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the Ising spin component S11, it experiences a local random field G(ij);± < S1 >

following the short-range ordering of the XY spin component S1 at - 17K. Naively,

this S 1-driven random field effect would seem to explain the destruction of the Ising

LRO below 17K. However, there is a serious caveat in this argument. Specifically,

since the Ising LRO is well established above 17K then the above process corresponds

to the ZFC rather than FC procedure. Thus, if the behavior corresponds to that

observed in other RFIM systems, then the Ising random field created by the S±

ordering should not have destroyed the Ising LRO. Apparently, therefore, the more

complicated coupled Ising-XY nature of this system obviates the simple mean-field

based analogy to the RFIM. Clearly, a more sophisticated theory will be required to

understand the rich physics exhibited by this system.

In addition to the above, as has been found in holmium [150], strains in the near-

surface region through the magnetoelastic coupling represent a second possible source

of random anisotropy; their relative role in FezCol-zTiO 3 may be clarified by future

x-ray experiments on pure CoTiO3 . X-ray measurements at higher energies in the

mixed crystals should reveal any possible depth dependence of the XY domain size.
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Chapter 8

Field Effects in the Random Ising

Magnet Feo. 75Co 0.25TiO3 - RFIM

In Chapter 7, we have been emphasizing the XY behavior in the mixed Ising-XY

random magnet FeColTiO3; the Ising behavior by itself does not appear to intro-

duce any unexpected new features. However, we have already seen that following the

(short range) ordering of the XY spin component S±, the Ising spin component Sil lost

the LRO due to the random field effects induced by the off-diagonal coupling terms

of the form G±11(ij)Sj1 (i)S.(j). Moreover, with the application of a magnetic field,

FeCol.,TiO3 , for x > 0.5, becomes a possible prototype for the Random Field Ising

Model (RFIM). In this Chapter, we report an x-ray-scattering study of the Ising (S11)

ordering in Fe0o.75Co0.2 5TiO 3 , and especially, its behavior in external magnetic fields.

8.1 Experimental Specifications

The experiments were again carried out on beamline X20A at NSLS. The wavelength

of the incident photons was set at A = 1.305A (E = 9.5 KeV). The diffraction oc-

curred in reflection geometry in the horizontal scattering plane and a flat Ge(111)

crystal was used as the analyzer. An excellent quality single crystal Feo.75 Co0.25 TiO3 ,

grown by the travelling floating zone method was used in the experiments. The sam-

ple was mounted on a copper rod in an x-ray-compatible split-pair superconducting
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Figure 8-1: The magnetic field direction with respect to the hexagonal c-axis direc-
tion. The magnetic field is applied along the vertical direction, perpendicular to the
scattering plane(a), which is horizontal. The magnetic field direction is -- 150 away
from the hexagonal c-axis(b).

magnet [25], with the vectors (1, 1, -1.5) and (3, -3, 0) in the scattering plane. The

magnetic field was applied in the vertical direction, that is, perpendicular to the scat-

tering plane. The sublattice magnetization measurements were carried out around

the magnetic-superlattice position (1, 1, -1.5). Because of the constraint that the su-

perconducting magnet could tilt a maximum of 50, the magnetic field was not along

the easy-axis, the c-axis. Instead, it was - 150 away from the c-axis as illustrated in

Fig. 8-1. The magnetic x-ray intensity at (1, 1, -1.5) is

Im O( 0.931S11 2 + 0.0361SJ_ 2 + 0.038S-L + LL 2, (8.1)

In the event that the component M1 does not order, as the case of Feo.7 5sCoo.25 TiO3,

Im is simply proportional to IS 1 2, Im S 112.
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8.2 Random Ising Magnet Fe0.75CO0.25TiO 3

At zero field, when the sample, Feo.75CoO. 25TiO3, is cooled through the transition

temperature of TN = 43.90(5)K, there is a sudden rise of the scattering intensity at

(1, 1, -1.5), corresponding to the onset of the magnetic ordering of the spin compo-

nent S11, with a. magnetic structure which is ferromagnetic within the hexagonal a-b

plane, and antiferromagnetic along the c-axis direction. The scattering profiles remain

resolution limited down to 10K, which is the lowest temperature studied in the exper-

iments. Fig. 8-2 shows scans at two representative temperatures, 10.11K and 39.01K.

The top and bottom panels show scans along the longitudinal and transverse direction

respectively. While the scattering profile is symmetric along the transverse direction

(bottom panel), it is asymmetric along the longitudinal direction (top panel). This

asymmetry in the longitudinal direction exists at all temperatures studied. The lines

(solid and dashed) in Fig. 8-2 are the best fits of the data. The fitting function form

was chosen, on a basis of trial and error, to reflect this observed asymmetry along the

longitudinal direction. Specifically, the lines represent least-squares fits of the data

to the following form:

00 if qL _L

1+ [(qL. - qf9)/WL] 2} + [(qrT- q T)/WT]2  L
I - IBG = L L2 (8.2)

Ioexp I- [(qL - qL 2  if qL (o
1+ [(qT - q)/wT] 2

where IBG is the flat background, qO _ q(1,1,- 1.5) I and q' = 0. The fit values for the

parameters are WL = 0.00141A - 1 , UrL = 0.00198A•1 and WT = 0.000573A - 1. Eq. 8.2,

with the parameters given above, is therefore the experimentally measured in-plane

resolution function for the horizontal scattering configuration.

Since the scattering profile is resolution limited, the peak intensity is therefore

proportional to the integrated intensity, which, in turn, is proportional to S2. In Fig. 8-

3, we plot the scattering intensity as a function of temperature near the transition

temperature, TN, at zero field. The solid line is the result of a least squares fit of the
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Figure 8-2: Representative scans at the reciprocal lattice position (1, 1, -1.5) for
Fe0o.7sCo0.25TiO3 at zero field. The unfilled circles are data taken at 10.11K, while
the filled circles are data taken at 39.01K. The solid and the dashed lines are the fits
of the data to Eq. 8.2 at 10.11K and 39.01K, respectively. Top Panel: Longitudinal
scans. Bottom Panel: Transverse scans.
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Figure 8-3: The ordering of the spin component S11 at zero field for Fe0 .75Co0 .25 TiO3.
The solid line represents a least-squares fit of the data to a simple power law, I
S2 (1 - T)2/3. The inset shows the data on a log-log scale, and the horizontal axis

is the reduced temperature, t - 1 - TTN'
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data to a simple power law,

I ~ S ~ 1 - (8.3)11TN 2

The best fit 3 value is 0.36(3), consistent with the theoretical value 3 = 0.35(1)

expected for the REIM [147, 148, 149], as well as the zero field results of the diluted

Ising antiferromagnets MnzZnl1-F 2 [124, 125] and FexZnl-F 2 [128, 151]. The inset

shows the same plot on a log-log scale, where the horizontal axis is the reduced

temperature, t 1- -. Clearly, the power law relation describes the data near theTN"

transition temperature rather well.

Following the observation of Fishman and Aharony [115], the phase behavior of

Fe0o.75Co0.2 5TiO 3 in an external uniform field should fall into the universality class of

the Random Field Ising Model (RFIM). The applied uniform field produces a random

staggered field both directly from the random Zeeman energy [152], and also indirectly

through the randomness of the exchange constants [115]. A characteristic feature of

the properties among the RFIM systems studied so far is that there exists a well-

defined metastability boundary in the H-T plane, which separates a high temperature

phase in which the properties are independent of the procedure by which the system

is prepared, and a low temperature phase in which the results are history dependent

(for reviews see Refs. [116, 117, 118, 119]). This is also found to be the case for

the mixed random Ising magnet Fe0 .75Co 0.25TiO 3 in magnetic fields, as illustrated in

Fig. 8-4, which shows the scattering profiles obtained when the state is reached via

two different routes: ZFC in which the sample is cooled first to a low temperature

state in the absence of a magnetic field, a magnetic field subsequently applied; and

FC in which the sample is cooled in the presence of a magnetic field. The results

(Fig. 8-4) exhibit strong hysteresis. The scattering profiles obtained with the FC

procedure have a much wider width in wave vector than those obtained with the

ZFC procedure. This means that, whereas the ZFC state has LRO, the FC state is

short-ranged ordered.
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Figure 8-4: The hysteresis shown in the scattering profile measurements. The unfilled
circles are data taken on warming from the ZFC state, and the filled circles are data
taken from the FC state. Top Panel: Longitudinal scans. Bottom Panel: Transverse
scans.
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8.3 ZFC Results

We first present the data taken on warming from the ZFC state in Feo.75Co0.2 5 TiO3.

The sample was cooled into the Ndel state in the absence of the magnetic field, a

magnetic field subsequently applied, and the data were taken on warming. Concor-

dant with the results in the diluted Ising antiferromagnets, the LRO was found to

persist to a field-dependent metastability temperature TM(H). For the field H - 3T,

the diminution of this LRO is plotted in Fig. 8-5. We notice that the transition is

"rounded" near the transition, this is reminiscent of the "trompe l'oeil critical behav-

ior" [124, 125, 128], which is the empirical finding in the RFIM systems MnzZnl-xF 2

and FeZnl-F 2, that the loss of the LRO on warming from the ZFC state is well

described by a power-law with a Gaussian distribution of transition temperatures.

The solid line in Fig. 8-5 is the best fit of the data to the following functional form:

Io -T- 2, exp -2(8.4)=7J t - Tco \ 0

with the center of the Gaussian distribution Tc = 34.00(5)K, the exponent / =

0.15(3), the spread of transition temperature, a = 0.41(5)K and the crossover tem-

perature Tco = 27.6(8)K. We emphasize that this broadening near the transition is

not due to any concentration gradients, nor is it due to the field inhomogeneities,

instead, it is an inherent feature of the RFIM [124, 125].

Eq. 8.4 is written to reflect the behavior of the experimental data, that is, at

low temperatures there is a linear temperature dependence of the order parameter

squared, but as the temperature is raised closer to the metastability temperature,

the data exhibit rounded power law behavior. Too is a crossover temperature from

the linear dependence to a "rounded" power law description. This form incorporates

a "mean-field-critical crossover form" proposed by Thurston et al. [153] and the

"rounded" power law emerged in studies of diluted antiferromagnets in magnetic fields

[124, 125, 128]. Note that Tc is different from the metastability temperature TM. Tc

is the peak of the Gaussian distribution, whereas the metastability temperature TM

is the temperature above which the ZFC LRO intensity disappears[125].
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Figure 8-5: The shedding of the long-range order (LRO) on warming from a ZFC
state at the external field H=3T. The solid line is a least-squares fit of the data to
a heuristic mean-field-rounded-power-law crossover form Eq. 8.4. The dashed line
is the best fit of the data to a first order transition with a Gaussian distribution of
transition temperatures.
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The dashed line in Fig. 8-5 is a least-squares fit of the data to a first order transition

[154],

{0 ifT > tc

A + B(tc - T) ifT<tc

where there is a Gaussian distribution of the transition temperature tc,

p(tc) - exp ( (tc TC ) 2) . (8.5)

The best fit parameters are Tc = 33.8(1)K and a = 0.5(3). Clearly, for the ZFC

data in Fe0o.75Co0.25 TiO3 , the rounded power law with a mean field-critical crossover

(Eq. 8.4) describes the data better.

The temperature dependence of the LRO on warming from the ZFC state was

studied for several different fields. The results are illustrated in Fig. 8-6, in which we

plot the evolution of the order parameter squared on warming from the ZFC state

for magnetic fields H = IT, 2T and 3T, together with the results from zero field.

For H = 1T (Fig. 8-6(b)), the transition appears to be sharp, and the data are well

described by a simple power law, I _ (1 - T )2,3 with TM(1T) = 42.45(3)K, and

S= 0.32(3). However, for data taken at H = 2T (Fig. 8-6(c)), we again see that

the data exhibit "rounding" near the phase transition; with a rounding at H = 2T

which is less pronounced than that at H = 3T (Fig. 8-5 or Fig. 8-6(d)). The solid

line in Fig. 8-6(c) is the best fit to Eq. 8.4, with the best fit parameters given by:

Tc(2T) = 39.16(5)K, 3 = 0.20(5), u(2T) = 0.27(3)K and Tco = 29.8(1.0)K. In studies

of the RFIM systems MnZnl_-F2 and FexZnlF 2, it was pointed out that this

"rounding" results from the random field, and in particular, in detailed magnetic x-

ray studies, it was found that the spread of Tc, a, increased with increasing magnetic

field H like H 2 [124, 125]. The data of H = 3T and H = 2T for Fe0 .75Co0 .25 TiO3 are

clearly consistent with this result, and with this in mind, it is possible that the Tc

spread at iT, a(1T) was too small to be visible. Further the values for the exponent

/3 of the "rounded" power law, 0.20(2) for H = 2T and 0.15(3) for H = 3T, are

consistent with the equivalent results / = 0.20(5) from MnZn1 ,zF2 [124, 125], and
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values ranging from 0.21 to 0.12 for FeZnli-F 2 [128, 151].

In Fig. 8-6, we notice the metastability temperature TM, at which the LRO dis-

appears, decreases with increasing magnetic field, as shown in Fig. 8-7. This also

determines the metastability boundary in the H-T plane for H < 3T. Using scal-

ing arguments, Fishman and Aharony [115] suggest that the random field transition

temperature follows the form,

TN(H) = TN(0) - bH 2 - aH2 /
0 (8.6)

where bH 2 is the conventional mean field shift, which is very small. In the case of

Fe0.75 Co0.25 TiO3 , this term merely produces a shift of 0.06K for a field of 3T. We

emphasize that TN(H) is the temperature at which in equilibrium, a transition to

the LRO in the RFIM occurs, but in practice, due to the anomalously slow dynamics

above TN(H), the system falls out of the equilibrium at a higher temperature, the

metastability temperature TM(H), below which the magnetic correlations are history

dependent. Nevertheless, we assume here that the scaling arguments that lead to

Eq. 8.6 also apply to the metastability boundary TM(H). The solid line in Fig. 8-7

is the fit of the data to the functional form

TM(H) = TN(0) - bH 2 - aH 2/ . (8.7)

The best fit exponent ¢, in a least-squares sense, is 0 = 1.2(1). This value of / is to

be compared with the theoretical prediction of 0 = 1.4 [155] for Eq. 8.6. In earlier

studies of diluted RFIM systems with weak spin anisotropies, it was discovered that

for magnetic fields not too far from the bicritical point, the transition temperature

was depressed further due to the additional crossover to the bicritical behavior at

higher fields. Accordingly, fits of TM(H) including data approaching the bicritical

point yielded a smaller value for the exponent ¢. This was the case, for example,

in Mn 0 .50Zno.50 F2 [123] (0 = 1.15(15)), and this is also the case in Fe0.75Co 0.25TiO3.

Specifically, for the magnetic field H = 4T, the x-ray scattering profile at the re-

ciprocal lattice point (1, 1, -1.5) differs significantly from those at lower fields, as
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shown in Fig. 8-8. This indicates the existence of a multicritical point for a magnetic

field value between 3T and 4T. A detailed study of the phase behavior for higher

fields are unfortunately prohibited by the extremely weak x-ray scattering intensity.

The equivalent result for the crossover exponent q in Fe0 .50Zno.50F 2 is ¢ = 1.41(6)

[126, 151].

Fig. 8-6 also presents us with a rather striking feature. That is, if we fix the

temperature at 15K, and read off the ZFC intensity at different magnetic fields of

Fig. 8-6, we arrive at the result shown at Fig. 8-9. The intensity data exhibit a

quadratic dependence on the magnetic field. The solid line in Fig. 8-9 is the result of

a least-squares fit of the data to the function form

I(H) = I(OT) + bH 2  (8.8)

In the meantime, the x-ray scattering intensity of the charge peak (2, 2, -3), at which

the momentum transfer Q is collinear with that at (1, 1, -1.5), is independent of the

magnetic field as shown in Fig. 8-10. Furthermore, we repeated the same measure-

ments, under the identical conditions, with neutron scattering techniques. The neu-

tron intensity at (1, 1, -1.5) as a function of magnetic field for temperature T = 15K

is shown by the filled circles in Fig. 8-9. The neutron and x-ray intensities are normal-

ized at zero field. In contrast to the result of x-ray measurements, there is no apparent

field-dependence of the neutron intensity at (1, 1, -1.5). If the additional x-ray scat-

tering intensity at (1, 1, -1.5) for the H = 3T ZFC state were purely magnetic, this

would require either a factor of - V7Y - 2.6 increase of the magnetic moment at

H = 3T, or the same factor increase of the magnetic structure factor, both of which

would have also reflected themselves in the neutron scattering intensity at (1, 1, -1.5).

But, this is clearly not the result exhibited in Fig. 8-9.

However, the additional x-ray intensity at (1, 1, -1.5) may arise from a lattice

distortion. In order to contribute to x-ray scattering intensity at (1, 1, -1.5), this

lattice distortion must be such that it doubles the periodicity along the hexagonal

c-axis direction. This distortion can be understood as originating from the coupling
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Figure 8-7: The metastability temperature TM as a function of magnetic field. The
solid line is a least-squares fit of the data to the function TM(H) = TN(O) - bH 2

aH 2/ € , with the best fit value for the crossover exponent given by 4 = 1.2(1).
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Figure 8-9: The ZFC intensities at T = 15K, from x-ray(unfilled squares) and neu-
tron(filled circles) scattering measurements as functions of magnetic field. The x-ray
intensity increases with magnetic field quadratically, I(H) = I(OT) + bH2 , while the
neutron data is almost independent of magnetic field. The x-ray and neutron intensity
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The x-ray scattering intensity at (2, 2, -3) as a function of magnetic
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between the lattice and the magnetism via a coupling term of the form 6,MsM,

in which 6, is the staggered lattice distortion which contributes to the additional

scattering intensity at the reciprocal point (1, 1, -1.5), Ms is the staggered magnetic

moment and M is the uniform magnetization. The change of the free energy AY can

then be written as:

AF~ 765SMsM + 162 (8.9)
2 8

where d6 is the increase of the elastic energy due to the distortion. It then follows

that

s, ý Ms M. (8.10)

The scattering intensity at the reciprocal lattice point (1, 1, -1.5) now includes both

the magnetic contribution, IM ~ M., and the charge scattering arising from this

staggered distortion, Ic ,6~ 2 (MsM)2 . For small magnetic fields, the uniform

magnetization M is linearly dependent on the external field magnetic field H as

shown in Fig. 8-11. In Fig. 8-11, we show the data from a SQUID magnetometry

measurement of the uniform magnetization M as a function of magnetic field H at

T = 15K for Fe0o.75 Co0.2 5TiO3 . The scattering intensity at (1, 1, -1.5) is then given

by

I = IM + Ic M2 + c(MsM)2 '• M2(1 + aH 2), (8.11)

which is exactly the result displayed in Fig. 8-9. It is important to note that the

temperature dependence of the scattering intensity at the reciprocal lattice point

(1, 1, -1.5) continues to reflect the temperature dependence of the sublattice magne-

tization Ms. The discrepancy between x-ray and neutron measurements of (1, 1, -1.5)

may then be attributed to the fact that for neutrons the magnetic and nuclear scatter-

ing cross-sections are comparable whereas for x-rays, charge scattering is intrinsically

six orders of magnitude larger than magnetic scattering. Thus a 10- distortion would

produce a negligible relative increase in the intensity for neutrons, but would produce

intensity comparable to that from the magnetic scattering for x-rays.
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8.4 FC Results

We now turn our attention to the FC results, that is, the sample was cooled from

the paramagnetic phase in the presence of a magnetic field. A series of FC scans are

shown in Fig. 8-12 for several temperatures on cooling at an external magnetic field

of 3T. It is evident that the peaks are much broader than the experimental resolution,

which is indicated by the dashed lines in Fig. 8-12. The state is, however, not frozen,

as the data show a steady evolution of the scattering profile which is very broad at

34.21K and ranges to much narrower (albeit still broader than the resolution) peak

at 20.01K. Similar to the situation in the diluted Ising antiferromagnets, the FC data

at every temperature could be well described by a cross-section of Lorentzian squared

form,

SA(q) }2 (8.12)S(q) =A 1 + [(qL - q)/L 2  [(qT -q)/KT + [(qv - q0 v]2 2

convoluted with the experimental resolution (Eq. 8.2). The solid lines in Fig. 8-

12 are the results of fitting of the data to Eq. 8.12 convoluted with the experimental

resolution. This implies that the FC state is composed entirely of short-range ordered

domains.

The temperature dependence of the FC state was studied for several different

fields. The results of the fits for the inverse domain size, KT, at several magnetic

fields are shown in Fig. 8-13. The domain size, the inverse of kT, decreases with

increasing temperature, and with increasing magnetic field. These are, respectively,

the consequences of the increase of thermal disorder and the increase in random field,

both of which cause the domain size to decrease. These results are consistent with

those obtained from the diluted systems MnxZnl-,F 2 and FezZn-1 ,F2 [116, 118, 124,

125].
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8.5 Summary

In many aspects, the random Ising magnet Fe0 .75Co0.25TiO3 in a magnetic field ap-

pears to be a good realization of the RFIM model. First, at zero field, we find that

Fe0o.75sCo0.2 5 TiO3 undergoes a phase transition at TN, to a LRO state, which is fer-

romagnetic within the hexagonal a-b plane, and antiferromagnetic along the c-axis

direction, with the spins along the the c-axis. In addition, we find that the transition

is well described by a power law, I oc (1 - T)21, with the best fit 3 value of 0.36(3),TN

consistent both with the theoretical value 3 = 0.35(1) for the REIM [147, 148, 149]

and with the zero field experimental results of the diluted Ising antiferromagnets

MnxZnl-xF 2 [124, 125] and FeZnl1-F 2 [128, 151]. Second, we find that if the sam-

ple is cooled in the presence of a magnetic field, then the LRO is not established,

and the scattering profiles in the low temperature FC states are well described by a

Lorentzian squared cross-section. However, if the sample is cooled to low tempera-

tures first, and a magnetic field subsequently applied then in that case, the LRO is

retained on warming until the sample is heated above a field-dependent metastability

temperature TM(H). These history dependent results agree in detail with the results

from the studies on the diluted RFIM systems [116, 117, 118, 119, 124, 125]. Third,

similar to the "trompe l'oeil critical behavior" found in the diluted metal fluorides

[124, 125, 128, 151], the loss of the LRO on warming from the ZFC state is found

to be well described by a power law with a Gaussian distribution of transition tem-

peratures and a /3 ZFC 0.15. Fourth, the metastability temperature, TM is found

to decrease with increasing magnetic field, TMH = TN(0) - bH2 - aH 2 / 0, with the

best fit value for the crossover exponent q = 1.2(1). This smaller value (than the

theoretical value = 1.4) for 0 arises from the close proximity of a multicritical at

higher fields.

Furthermore, we observed a drastic field-dependence of the x-ray, but not the

neutron, scattering intensity at the superlattice reciprocal point (1, 1, -1.5). This

additional x-ray intensity is believed to arise from a staggered lattice distortion. In

particular, the quadratic magnetic field dependence of the additional intensity can be
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explained through a lattice and magnetism coupling of the form, S6,MsM. It is noted

that the temperature dependence of the scattering intensity is still determined by the

temperature dependence of the sublattice magnetization. This is a new effect which

has not been observed previously in synchrotron x-ray scattering measurements. It

may, nevertheless, be important in many magnetic systems with strong spin-lattice

coupling.
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In summary', we have carried out a detailed synchrotron x-ray-scattering study

of the mixed Ising-XY random magnet Fe.Col-.TiO3. The measurements demon-

strate the power of magnetic x-ray scattering techniques, as well as the importance

of quenched disorder in phases and phase transitions in solid state systems.

The phase diagram for FeCol_-TiO3 in the concentration-temperature (x-T)

plane is found to consist of four phases: paramagnet, S11il-ordered antiferromagnet,

S 1-domain state, and a mixed domain state, in which both the S± and Sil form

short-range ordered domains (Fig. 6-2).

The transition from the thermally disordered paramagnet to the S;1-order phase

(thick solid line BC) is a conventional second-order phase transition (x = 0.65, and

0.75). The sublattice magnetization M11 is well described by a simple power law,

M oc 1 - L), the best fit values of 11, 0.33(1) for concentration x = 0.65 and

0.36(3) for x = 0.75, are in good agreement with the theoretical value / = 0.35(1)

expected for the REIM [147, 148, 149]. The phase behaviors of the random Ising

magnet Fe0 .75 Co0.25TiO 3 in external magnetic fields, in many aspects, are consistent

with the experimental observation of the RFIM to-date. The drastic increase of the

x-ray scattering intensity at the reciprocal lattice point (1, 1, -1.5) is attributed to a

field induced staggered lattice distortion.

The transition from the S11 long-range ordered phase to the mixed domain state

(thin solid line BE) is smeared (x = 0.65), and Ising and XY order parameters

are clearly coupled. In particular, the mixed phase is found to contain domains.

We therefore verified experimentally the suggestion put forwards by Wong et al. in

Ref. [141]. Specifically, this domain state is found to be well described by a Lorentzian

squared cross-section, consistent with a real space exponential decaying correlation

function.

The transition between the paramagnet and the S 1 -domain state (thick dashed

line AB) is a novel phase transition (x = 0.35 and 0.50) in the sense that the cor-

relation length diverges along that line, even though there is no low temperature

long-range ordered phase. Instead, the low temperature phase contains both mag-

netic and structural domains.
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Furthermore, following the SRO of the spin component S1 , through the magnetoe-

lastic coupling, the atomic structure is distorted in the hexagonal a-b plane (Fig. 7-6),

and presumably, the magnetoelastic coupling is also responsible for the breakup of

the crystal structure into domains. Clearly, it would be highly desirable to repeat

the same measurements as reported in this paper on the similar Ising-XY magnetic

systems, such as FeCo1-mCl 2 and FezCoj-xBr 2.
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