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Abstract

Many physical systems exhibit interesting critical behavior which depends on the
interplay of more than one order parameter. In this thesis, we report experimental
studies of the spin-Peierls transition in CuGeOj; and the phases and phase transitions
in the mixed Ising-XY magnets with quenched randomness: Fe,Co;_,TiO;, by using
synchrotron x-ray scattering techniques.

In CuGeOs3, below the spin-Peierls transition temperature Tj,, the superlattice
peak resulting from the lattice dimerization has a resolution limited profile, and the
peak intensity, which is proportional to the order parameter squared, is well described
by a simple power law, (1 — T/T;;)??. The best fit value of 8 is 0.33(3). In addition,
a spontaneous thermal contraction Ab along the b-axis perpendicular to the chain
direction was observed below the spin-Peierls transition temperature 7,,. This con-
traction, Ab, is found to scale like the dimerization squared, Ab ~ 2. The shift of
the transition temperature in magnetic fields, AT = T, (0) — Tip(0), is found to scale
as H? in quantitative agreement with the results of magnetic susceptibility measure-
ments and with theory. A small increase in the a-axis lattice constant is observed
below T,. Above the transition temperature T, pre-transitional lattice fluctuations
are observed within about 1K above Ty,. The length scale of these fluctuations is
about an order of magnitude larger than that characterizing the bulk critical fluc-
tuations. The line shape of these large length scale fluctuations is consistent with a
Lorentzian-squared form. The measured critical exponents associated with the large
length scale fluctuations are v = 0.56(9), and 4 = 2.0(3). Similar large length scale
fluctuations have been observed at the structural transitions in some perovskites and
the magnetic transitions in holmium and terbium. We suggest that in CuGeO; the
large length scale fluctuations reflect the disconnected susceptibility originating from
random field Ising-type local defects.

In Fe,;Co,_,TiOj3, for concentrations z = 0.35, 0.50 and 0.65, we observe at high
resolution a breakup of both the magnetic and the atomic structures of the crystal
into domains, as well as a uniform lattice distortion following the ordering of the XY
spin components. We argue that this breakup into domains in the XY phases results



from random anisotropy, random field and magnetoelastic effects in Fe;Co;_,TiO;. In
particular, we find that in random anisotropy XY magnets, there exists a novel phase
transition which is critical, but involves no long-range ordered phase. In addition
to the XY behavior, the Ising spin component in the mixed phase (z = 0.65) is
found to break into domains following the (short range) ordering of the XY spin
components. Specifically, the scattering profiles of the low temperature mixed states
are well described by a Lorentzian squared cross-section, which in three dimensions
corresponds to exponential decay of the real space spin-spin correlations. This loss of
the long-range order of the Ising order due to the ordering of the XY spin components
after initial establishment of the Ising order on cooling is difficult to understand within
our current picture of the random field Ising model. Furthermore, we have also carried
out a detailed study of the magnetic field effects on phase transitions in the mixed
Ising random magnet Feg75C09.25Ti0;, for fields up to 3T. It is found, as in the
diluted Ising antiferromagnets Mn,Zn;_,F, and Fe;Zn;_,F,, that when the sample
is cooled in the presence of a field, it evolves from the high temperature paramagnetic
phase to a low temperature domain state. The low temperature scattering profiles
are well described by a Lorentzian squared cross-section. However, if the sample is
cooled below the Néel temperature T in the absence of a field, and a magnetic field
is subsequently applied, the long range magnetic order persists on warming, up to a
well defined field-dependent metastability temperature, Ths(H). The shedding of this
LRO in the metastable region is consistent with the “trompe {’oeil critical behavior”
description, with a 8zrc ~ 0.15. The depression of the metastability temperature in
magnetic fields can be well described by Ty (H) = Tn(0) — bH? — aH*?¢, with the
best fit value for the crossover exponent ¢ = 1.2(1). This smaller value (than the
theoretical value ¢ = 1.4) for ¢ arises from the close proximity of a multicritical point
at higher fields. At the superlattice reciprocal lattice point (1,1, —1.5), we observe
a drastic field-dependence of the x-ray, but not the neutron, scattering intensity.
This additional x-ray intensity is believed to arise from a staggered lattice distortion.
In particular, the quadratic magnetic field dependence of the additional intensity is
consistent with a lattice and magnetism coupling of the form, d,M,M.

Thesis Supervisor: Robert J. Birgeneau
Title: Dean of Science and Cecil and Ida Green Professor of Physics
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Chapter 1

Introduction

1.1 Phase Transitions

Phase transitions are a fascinating field of study. During a phase transition, such
as the transformation from a thermally disordered paramagnetic state to an ordered
ferromagnetic state, in which the neighboring spins tend to align parallel to each
other, large number of particles, typically of the order of 10?3, behave collectively.
Proper description of this cooperative behavior at the phase transition is a challenging
problem for both experimentalists and theoreticians. Given the number of particles
involved, there is apparently little hope of finding out how each particle behaves with
respect to its neighbors. Moreover, even if such a solution existed, it would prove
impossible to monitor experimentally the motion of the 10*® or so particles at the
same time.

We can, however, measure some macroscopic variables, such as the magnetization,
M, and from these macroscopic variables, we can easily distingﬁish one state from
the other. For instance, in the case of a paramagnet-to—ferromégnet phase transition,
the magnetization M = 0 in a paramagentic state, and M # 0 in a ferromagnetic
state. The existence of a quantity which is non-zero in one state, and zero in the other
state is a common feature with a wide variety of physical systems. We say that the
magnetization M is the order parameter for the paramagnet-to-ferromagnet phase

transition. In a phase transition between a paramagnet and an antiferromagnet in

15
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Figure 1-1: The growth of the sublattice magnetization as a function of temperature
for single crystal Fep 75Cog.25Ti03. For T close to T, the growth is well described by

a power law, M, x (1 - T)ﬂ The solid line in the figure represents the best fit of

the data, with the fit 8 value of 0.36(3). The inset shows the same plot on a log-log

scale, and the horizontal axis is the reduced temperature, t =1 — TZ

which the neighboring spins tend to align anti-parallel to each other, the sublattice
magnetization M, serves as the order parameter.

The order parameter usually grows in a certain fashion from zero to non-zero,
for an example, Fig. 1-1 shows the evolution of the sublattice magnetization in a
transition from a paramagnetic state to an ordered antiferromagnetic state for a
single crystal Feg75C0.25Ti03. At a temperature, T, there is a sudden rise of the
order parameter, M;. We call T, transition temperature.

For T close to the transition temperature 7., we notice that the sublattice mag-

16



netization, M;, follows a simple power law (Fig. 1-1),

M, (1 - %)ﬁ (1.1)

The power law behavior of certain macroscopic variables near the transition temper-
ature is another common feature of phase transitions in a wide variety of physical
systems. The index on power, such as (3, is called a critical exponent. Further-
more, while the transition temperature T, depends sensitively on the details of the
interatomic interactions, and therefore varies considerably from systerh to system,
the critical exponents, such as 3, for a continuous phase transition depend on the

following three properties and nothing else [1, 2, 3, 4]:
e The dimensionality of the system, d.

e The dimensionality of the order parameter, n, or more precisely, the symmetry
of the order parameter; in simple cases, this is equivalent to the number of

dimensions in which the order parameter is free to vary.
e Whether the forces between the particles are of short or long range

This enormous generalization is the hypothesis of universality [5, 6, 7]. Since it has not
been “proven” from more basic ideas, the correctness of universality must be judged by
reference to experiments, where in fact measurements seem to support the hypothesis.
There are still some doubts as to how good universality is. For instance, Haldane
[8, 9] has conjectured different behaviors for one-dimensional magnetic systems with
integer and half-integer spins, but, nonetheless, the hypothesis of universality forms
a reasonable starting proposition from which to proceed to other questions.

We know that most real systems are three-dimensional (d = 3). So when we say
the dimensionality of a system is one (d = 1) or two (d = 2), we usually mean that
the one-dimensional (1D) or two-dimensional (2D) systems are actually imbedded in
real three-dimensional (3D) systems. In some materials, within the (temperature)
region concerned, the interactions between the particles along one direction (1D) or

within a particular plane (2D) are much stronger than the interactions along the other

17



directions. Examples for lower dimensional magnetic systems include CsNiF, (1D)
[10], (CD3)4sNMnCl; (TMMC) (1D) [11], K2NiFy4 (2D) [12] and RbyCoF, (2D) [13].

We shall again use the language of a magnetic phase transition to explain the
dimensionality of the order parameter (n). Due to the detailed atomic arrangements
of a system, the spins may be confined to align along one particular axis, we call
this magnetic system an Ising magnet (n = 1); or, the spins may be confined to vary
within a particular plane, we then have an XY magnet (n = 2); or, there may be
no restrictions on spins’ direction at all, i.e. the spins are allowed to point in any
direction, this system is then called a Heisenberg magnet (n = 3).

The hypothesis of universality also says that the details of the the microscopic
interactions between particles, that is, whether they are electronic or magnetic, are
irrelevant, the only relevant part regarding the interatomic interactions is whether the
interactions themselves are short-ranged or long-ranged, i.e. whether the interactions

are confined to neighboring sites or they extend beyond the nearest neighbors.

1.2 Coupled Order Parameters

In some physical systems, there are more than one order parameters, or the order
parameter itself has several components. The ultimate critical behavior near a phase
transition of such systems understandably depends on the interplay of these order
parameters, or the different components of the order parameter. A well-studied ex-
ample is that of a uniaxially anisotropic antiferromagnet in a uniform magnetic field
(14, 15, 16, 17], in which spins may order antiferromagnetically parallel to the field for
low values of the field, or transverse to the field for high values of the field. A second
example is that of the structural displacive phase transition in stressed perovskite
crystals, where the direction of the rotations of the atomic octahedra depends on the
external uniaxial stress [18, 19, 20].

In this thesis, we present experimental studies of two such systems, which exem-

plify the importance of the coupled order parameters:

18



Spin-Peierls Systems

For an ideal one-dimensional magnetic system with short-range interactions, ordering
can occur only at T = 0K [21]. Weak interchain interactions are therefore necessary
to induce a phase transition at a finite temperature T, # 0.

For a crystal made up of one-dimensional (1D), spin half-integer, antiferromag-
netic Heisenberg or XY chains in a 3D lattice, there are two possibilities: (1) If the
interchain interactions are magnetic, the transition leads to a magnetic ordered state
below T.. This ordering temperature is related to the ratio of the interchain to in-
trachain coupling. (2) Alternatively, if the lattice is allowed to distort, the uniform
spin chain can then undergo a phase transition at a transition temperature T, to
a dimerized state. This can be visualized as a state in which neighboring pairs of
ions are displaced from their “uniform positions” alternately closer and further apart.
This transition is referred as spin-Peierls transition, for its close similarity to the
Peierls transition in 1D metals [22]. In the spin-Peierls transition, the interchain
couplings are in the form of a three-dimensional phonon field. Spin-Peierls transition
is therefore a structural transition driven by the coupling between a 1D spin system
and a 3D phonon field. The onset of a spin-Peierls transition precludes additional
magnetic ordering at lower temperatures; and the onset of a magnetic ordering, in
turn, prohibits further spin-Peierls transition in the system.

In real systems, usually neither the interchain magnetic coupling is zero, nor the
lattice is completely rigid. We can therefore view the situation as a competition be-
tween the magnetic order, which is driven by the interchain magnetic couplings, and
the dimerization, which is driven by the couplings of the 1D magnetic interactions
and the 3D phonon fields. In the case that the former wins, we will have a low
temperature magnetic ordered state. In the spin-Peierls systems, in which we are in-
terested in this thesis, it is the spin-phonon coupling that wins the battle. There are
not many 1D magnetic systems in the nature, moreover, there are even fewer cases
when the spin-lattice coupling wins its battle with the conventional magnetic order.
In Part I of this thesis, which includes Chapter 2, Chapter 3, Chapter 4 and Chapter

5, we report a detailed experimental study on the first known, and to-date, the only
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known, inorganic spin-Peierls system CuGeQ;. The advantage of being inorganic is
that the sample does not deteriorate in an x-ray or neutron beam, which therefore

allows for a detailed experimental investigation.

Mixed Ising-XY Magnets with Quenched Randomness

Suppose that we have two magnetic systems A and B, each undergoes a paramagnet-
to-ferromagnet phase transition at temperatures T;* and T2 respectively. The only
difference between A and B is that in system A the magnetization is within one
particular plane, say, the z-y plane, while the magnetization in system B is confined
to a particular direction, say, the z-axis direction, which is perpendicular to the z-y

plane. This is to say that for system A,

0 T>TA
(M3, M,},0) or (M7,0), where [M{ > = (M2)? + (M)? #0 T < TA

M4 =

and for system B,

0 T>TF
(0,0, MEB), where MB £0 T < T5

M? =

In other words, systems A and B exhibit XY and Ising behavior respectively. Now
if we mix A and B together to form crystalline random mixtures of A,B;_,, where
z is the concentration of system A in the mixtures, 0 < z < 1. Clearly, in the
binary compounds A;B,_., there is competition between the ordering of the different
components M, and M, of the magnetization. This can be understood by considering
two extreme cases: (1) for very small z ~ 0, the phase behavior in the mixed systems
is expected be similar to that of system B (in the case of z = 0, we simply go back to
system B), i.e. in the mixture, the behavior of the magnetic component M, dominates
over that of the magnetic component M, ; (2) alternatively, for z close to one, we
expect the phase behavior in the mixed systems to be similar to that of system A

(when z = 1, we return to system A), i.e. the component M, is more significant

20



than the component M,.

But how about a mixed system with z being neither very close to zero, nor very
close to one? Naively, we would expect that the spin component in the x-y plane,
M, follows the behavior of M4, while the spin component along the z-axis, M.,
mimics the behavior of ME. Do real mixed magnetic systems behave like this? What
are the other factors we must consider in a random mixed magnetic system? Part II
of this thesis, which includes Chapter 6, Chapter 7 and Chapter 8, reports an exper-
imental study of one physical realization of such mixed Ising-XY magnetic systems

with quenched randomness: Fe,Co;_;TiOs3.

In both cases, the phase transitions involve the change of the structure, that
is, magnetic (and atomic) in Fe;Co;_;TiO3 and atomic in CuGeO;3. This makes
the scattering technique an excellent choice of the tool in investigating the phase
transitions in these two systems. In particular, we used synchrotron x-ray scattering
techniques in studying of these two systems with coupled order parameter — CuGeOs3

and Fe,Co;_,TiO3.

1.3 Synchrotron X-ray Scattering in Solids

In order to understand the basic physical and chemical behavior of materials, it is
usually essential to understand their structures first. For decades, the x-ray scattering
technique has been the technique of choice for the precise determination of the geo-
metric arrangements of atoms and molecules in condensed matter. In the past decade,
with the high fluxes available from synchrotron radiation sources, the x-ray scatter-
ing technique has also established itself as a powerful tool in studying the magnetic
structure, that is, the arrangements of the magnetic moments, in magnetic materials.
With the high resolution available from synchrotron radiation sources, synchrotron
x-ray-scattering experiments allow the detailed study of physical properties at length
scales ranging from 0.1 to several microns. These length scales, which often turn out

to be very important in understanding some experimental results, for example, the

21



two length scale phenomenon reported in Chapter 5 of Part I, and in random magnetic
materials as illustrated by the results reported in Part II, are generally inaccessible

by other experimental techniques.

Synchrotron Radiation
Synchrotron radiation is electromagnetic radiation emitted by charged particle mov-
ing with relativistic speeds in curved trajectories. There are three generic kinds of

synchrotron radiation sources: bending magnets, wigglers and undulators [23]:

e Bending Magnets — In bending magnets, charged particles constrained to
move in arc trajectories at relativistic speeds experience a centripetal accelera-
tion and thus radiate, as predicted by Maxwell’s equation [24]. The continuous
spectrum is produced in bending magnets. The continuous spectrum is also

referred to as a “white beam”.

e Wigglers — A wiggler is a linear array of magnet poles with alternating po-
larity. An electron beam passing along the axis of the wiggler will execute a
trajectory akin to a series of sine-like wiggles. Synchrotron radiation is emitted

from each bend in the wiggler. The output is the sum of these emissions.

e Undulators — An undulator is very similiar in construction to a wiggler. The
essential difference is that the deflection of the electron beam in the undulator is
less than, or of the order of the natural emission angle of synchrotron radiation
(given by 8 = v~ ! = mgc?/E, the ratio of the electron rest mass energy to
its total energy). This allows interference between photons from individual
wiggles, giving a radiation spectrum consisting of a discrete line together with

many harmonics.

Although the synchrotron radiation may come from different sources, they share
some common features: exceptionally high brightness, wide tunability, high polariza-
tion and narrow angular divergence, and it is these features that make synchrotron

radiation an incisive and versatile probe in modern scientific research.
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Figure 1-2: The schematic layout for a synchrotron-x-ray scattering experiment.

The Scattering Gemoetry
In Fig. 1-2, we show the setup of a typical synchrotron x-ray scattering experiment.
The multi-wavelength beam from the synchrotron radiation source, which is continu-
ous for both bending magnets and wigglers, and discreet for undulators, shines on a
mirror, which focuses the beam to a small spot at the sample position, and therefore
achieves a high flux density at the sample position. In addition, the mirror also serves
to eliminate the higher order harmonics. A single wavelength is then selected by the
monochromators. The monochromatic x-ray beam then shines on the sample, and is
scattered by the electrons

When an x-ray — an electromagnetic wave — meets an electron in the crystal,
the electronic charge is accelerated by the electric field of the wave, and begins to
oscillate. This oscillating electron, in turn, emits an electromagnetic wave — the
scattered x-ray. However, this is not the full story, since the electromagnetic wave
also contains a magnetic field, and the electron has a magnetic moment — both
the spin of the electron and its orbital moment. The magnetic field and magnetic
moments interact and this interaction produces magnetic scattering.

Therefore, a technically demanding synchrotron x-ray scattering experiment can

be simply summarized: x-rays hit the sample, scatter, and an analysis of the dis-
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tribution of the intensity of the scattered x-rays reveals information regarding the
atomic and magnetic structures of the materials. In the rest of this Section, we will
briefly review the formulation of the interactions between x-rays with the electrons
in the solids. A full derivation is given in Ref. [25]. X-rays also interact with the
protons in the solids. However, this interaction can generally be neglected because
the interaction is inversely proportional to the mass of the charged particles, and the

mass of a proton is ~ 2000 times that of an electron.

The Hamiltonian

The Hamiltonian for electrons in an electromagnetic field can be written:

H = Z% (P] eA(I'j))2+ZV(Rij)
eh eh
e 5V X AR = g 108 Ble) x (P - SAlm)
+ g huwy (cLacka + %) (1.2)

where A(r;) is the vector potential of the x-ray photon field. The first term on the
right-hand side, 3°; %n- (Pj - fA(rj))2, represents the kinetic energy of the electrons.
The second term, 3°;; V(R;;), is the electron-electron pair interaction. The third
term, —ﬁ‘; 25 S;j -V x A(r;), is the interaction of the electrons’ spins with the mag-
netic field of the x-rays. The fourth term, _Wiﬁ? >;S; - E(r;) x (Pj - gA(rj)), is
the interaction between the electrons’ orbital moments with the x-ray photon field.
The last term, Y, fuwg (c}:acka + %), is the energy of the photon field. The cLa and
Cka are the creation and annihilation operators for a photon with momentum k and

polarization o.

The Cross-section
One quantity in which we are interested in a scattering experiment is called partial

differential cross-section, %95. It is defined as the scattered power per unit solid
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angle, per energy band-width, per unit incident flux:

0%s _ Wp(Ey)
900E; — Iy

(1.3)

where p(Ey) is the density of the final state | f >, I is the incident flux, and W is
the probability of the transition from an initial state | i >= |a >,| k, @ >, to a final
state | f >=| b >4| k', @' >,, where the subscripts s and p denote sample and photon

respectively. The transition probability W is simply given by Fermi’s “Golden Rule”:

<FlH|m><m|H|i>|
E,-E,

1
:—h— <f|H|Z>+Z

S(E-E)  (14)

Careful calculations lead to the following scattering cross-section [25], including

all terms up to second order.

<b|Y e ja>e. ¢
j

( 0? ) e
IVOE ), | mS
2

hk?
(5(Ea — Ep + hwg — hwk:) (15)

—z——<b]Ze‘Q’J< QxPy) -A+S;- B)]a>

where Q = k’ — k is the momentum transfer, € and €’ are the unit polarization vector

for the initial and final photon. The vectors A and B are defined as:

= (€x§

B = (@x8+®x(K-8)—(kxe)k &)+ ®x)xkxé (16)

where k and k' are the unit momentum vector for the initial and final photon.

The cross-section indeed has contributions from both the charge scattering and
the magnetic scattering. However the contribution from the magnetic scattering is
a factor of (;nf‘—‘é—’g—)z smaller than that from the charge scattering. The contribution
from the magnetic scattering is further reduced by the fact that only unpaired elec-

trons contribute to the magnetic scattering process. Specifically, the number of the
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electrons which participate in the magnetic scattering, N,,, is usually an order of mag-
nitude smaller than the number of those which participate in the charge scattering,

N (all electrons). The ratio of the magnetic contribution to the charge contribution

Inag (1 2(&)" 17)
Ocharge mc? N '

For 10KeV photons this factor is 2.5 x 10~7 [25]! It would be hopeless to try to detect

is therefore:

a magnetic signal of 1 on top of a monstrous charge signal of 4 x 10%. Fortunately, in
some magnetic systems, such as antiferromagnets, the magnetic structure has a peri-
odicity different from that of the atomic structure, one therefore can find positions in
the reciprocal space at which the coherent charge scattering is zero. In addition, the
high fluxes available at the synchrotron sources have helped to transform magnetic
x-ray scattering from an academic curiosity [26, 27, 28] to a powerful everyday tool

[29] in studying magnetic materials.

Due to the strong coupling of the neutron spin to the magnetic moments in the
sample, magnetic neutron scattering has played an eminent role in the studies of
magnetic materials since the techniques were first developed by Clifford G. Shull and
Bertram N. Brockhouse, for which the two were awarded the 1994 Nobel Prize in
Physics. One may then ask what the advantages are in using synchrotron x-rays
scattering techniques to study the magnetic properties. The most significant benefit
of using x-rays to probe the magnetic properties on an atomic scale lies in the fact
that they provide high wave-vector resolution and are therefore sensitive to even slight
magnetic structure distortions — the very same characteristic makes x-ray scattering
an unsurpassed tool in studying the geometric arrangements of atoms and molecules.
The importance of this advantage will be exemplified in the studies reported in this
thesis. In addition, the x-ray beam polarization and energy can be chosen to meet
the requirements of a specific experiment. In particular, the scattered radiation by
spins and orbital momenta leave different signatures [25], which makes it possible

to learn about the spin and orbital contributions to a sample’s magnetic moment.
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Free of extinction effects, magnetic x-ray scattering is also the best technique for
studying the details of the magnetic ordering as the temperature is varied near the
critical temperature. Finally, small samples can be studied using x-rays while neutron

experiments usually require relatively large samples.
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Part 1

Spin-Peierls Transition in CuGeOg;
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The cooperative behavior of lower dimensional quantum spin systems is a sub-
ject of continuing research. One particularly interesting phenomenon is the so-called
spin-Peierls transition, which is a structural phase transition driven by the magnetic
interaction in one dimensional (1D) S =  chain compounds. By analogy with the
well-known Peierls instability in a 1D metal [22], it can be shown [30, 31] that a
uniform antiferromagnetic chain is unstable with respect to a lattice distortion which
dimerizes the chain into an alternating antiferromagnet; thereby introducing a gap
into the chain spin excitation spectrum.

Until about two years ago, spin-Peierls transitions had only been observed in a few
organic compounds such as TTF-CuS;C4(CF3)4 [32, 33] and (MEM)-(TCNQ), [34].
However, because of size and crystal quality limitations, information on the static
and dynamic spin and lattice fluctuations associated with the spin-Peierls transition
in these materials was quite limited. Thus, many essential features of the transition
are not yet characterized or understood. Much more complete experimental work
on the spin-Peierls transition has been made possible by the discovery that a struc-
turally simple, inorganic chain compound, copper germanate (CuGeQOs3), exhibits the
behaviors predicted for a spin-Peierls system.

In the first half of this thesis, we report a detailed synchrotron x-ray study of the
phase behavior at the spin-Peierls transition in CuGeQOs;. The organization of this
Part is as follows. In Chapter 2, we summarize the theoretical understandings of
the spin-Peierls transition. In Chapter 3, we measure the temperature dependence of
the superlattice reflections, resulting from the lattice dimerization. In Chapter 4, we
report the observation of a concomitant thermal contraction below the spin-Peierls
transition temperature in CuGeQOj;. Finally in Chapter 5, we report the observa-
tion of large length scale fluctuations at the spin-Peierls transition in CuGeOs for

temperatures above the transition temperature.
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Chapter 2

The Spin-Peierls Transition

2.1 What is the Spin-Peierls Transition?

Consider a system which consists of an assembly of uniform quantum spin chains
described by a spin-% Heisenberg or XY, for reasons which we will explore in next sec-
tion, Hamiltonian with nearest-neighbor-only antiferromagnetic exchange couplings.
These chains are stacked parallel to one another, and interchain magnetic couplings
are neglected. However, allowance is made for the possibility of an elastic distortion of
the lattice, ¢. e. the lattice is soft. Since the exchange energy of the neighboring spins
along the chain direction is a function of separation between adjacent lattice sites, an
elastic distortion of the lattice will influence the spin hamiltonian of the system. It
turns out that for some of such systems, as the temperature is lowered, the uniform
spin chain undergoes a transition at a finite critical temperature T, to a dimerized
state, which is a state in which the neighboring pairs of ions are displaced a small
amount from their “uniform positions”, alternately closer and further apart. We call
this magnetoelastic transition spin-Peierls transition for its similarities to the Peierls
transition in a quasi-one-dimensional metal [22]; and the systems that undergo the
spin-Peierls transition are referred to as spin-Peierls systems.

To understand why the dimerized state is energetically favored at low tempera-
tures for spin-Peierls systems, we first examine the excitation spectrum for both a

uniform and a dimerized chain as well as the effects of quantum fluctuations.
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2.2 Excitation Spectra and the Role of Quantum
Fluctuations

The excitation spectrum [35] for a uniform infinite one-dimensional antiferromagnet
Heisenberg chain is depicted in the left panel of Fig. 2-1. The salient point is that
the excitation spectrum is degenerate with the ground state at ¢ = 0,+m/a. This
degeneracy brings excited states infinitely close to the ground state (of which the
Néel state is a component). Therefore, quantum zero-point fluctuations of the chain
will populate the low-lying excited states. This implies that the state at 7' = 0K is
a composite of the singlet ground state and triplet excited states. The consequences
are that the Néel state is not a true eigenstate of the Hamiltonian, and there is
no long-range order at T = OK. If the chain is dimerized, a gap develops in the
excitation spectrum which lifts the above-mentioned degeneracy of the ground and
excited states (see the right panel of Fig. 2-1). The zero-point fluctuations can now no
longer populate the excited states, and the net magnetic energy is lowered. However,
this lowering of magnetic energy is countered by the increase of the elastic energy due
to the distortion of the lattice.

We emphasize that the spin-Peierls transition results from an inherent instability
of a quantum Heisenberg or XY chain. An Ising or classical antiferromagnetic chain
can not show the spin-Peierls effect. This is because an Ising chain effectively has an
energy gap between the ground and excited states. A classical chain has no zero-point
energy, and therefore its magnetic energy is independent of chain dimerization. Also,
the spin-Peierls transition can only occur in quantum magnetic chain systems with
S being half-interger. This is because in contrast to half-integer épin chains, integer
spin chains have a gap — Haldane gap — in the excitation spectrum. Furthermore,
quantum fluctuations decrease rapidly as S increases, so one would therefore expect
spin-Peierls transition more likely to occur in systems with S:%. A spin-Peierls
transition is such that its onset precludes the establishment of magnetic order at
lower temperature; . e., the spin excitations remain paramagnetic down to T' = 0K.

The order parameter is therefore given by the degree of the lattice distortion ¢, or
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Figure 2-1: Schematic representation of the elementary excitations versus wave vector
for a uniform Heisenberg antiferromagnet chain(a) and an alternating chain(b). In
(b), the dot at k=0 indicates the ground state. Also notice that the unit cell is
doubled in an alternating chain.
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equivalently the magnitude of the magnetic gap A.

In order for the spin-Peierls transition to occur, the decrease of the magnetic
energy produced by a lattice dimerization must outweigh the increase of the elastic
energy due to the lattice distortion. In the following section, we will show that this

is indeed the case in the spin-Peierls systems.

2.3 Formulation of the Problem and Some Theo-

retical Results

2.3.1 Hamiltonian

The Hamiltonian for nearest-neighbor-coupling-only spins with antiferromagnetic in-

teractions on a rigid lattice is simply:
Hy=3J(G5+1)(S;- Sjs1) (2.1)
J

where J > 0, and the sum over lattice sites j includes nearest intrachain neighbors
only. Now, if we assume that the exchange integral J depends on the instantaneous
positions of the magnetic ions, and that the lattice is soft . e. the lattice is allowed
to distort, an elastic distortion can influence the spin hamiltonian #,. This effect
represents the spin-phonon (or spin-lattice) coupling. In addition, as we pointed out
earlier, in spin-Peierls systems the decrease of the magnetic energy is countered by an
increase in the elastic energy due to the lattice distortion. This elastic energy can be
written as ¥ qq wo(Qa)bl,bqe, Where bl,(bgq) is the creation (destruction) operator
for three-dimensional phonons with wave-vector q on branch «, and wy is the phonon

energy. The Hamiltonian for a model spin-Peierls system may therefore be written as

H= Z 