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ABSTRACT

Three separate problems are addressed. First, the effects of reheating on density fluc-
tuations are examined in the framework of the inflationary cosmology. It is commonly
believed that appropriately chosen gauge invariant measures of density fluctuations
remain constant as long as the length scales of fluctuations greatly exceed the Hubble
radius. Since scales of cosmological interest are much larger than the Hubble radius
at the time of reheating, the behavior of such gauge invariant measures is often taken
to imply that details of the reheating process do not affect density fluctuations on
large scales. We demonstrate an exception using a simple instantaneous reheating
model.

Second, we examine a class of approximations, referred to as local approxima-
tions, which can be applied in the nonlinear regime before trajectory-crossing. It is
shown that the celebrated Zel'dovich approximation (Zel'dovich 1970) can be viewed
as one in a series of approximations that involve the truncation of a hierarchy of
Lagrangian fluid equations. They share the common property that the evolution of
quantities such as density at each mass element is described by a closed set of differ-
ential equations decoupled from those of other mass elements. An approximation of
this nature, which we call the Local Tidal Approximation (LTA), is introduced and
is shown to be exact in cases of planar, cylindrical and spherical symmetries. The
two approximations, along with a third example, are tested in the case of ellipsoidal
collapse and the LTA is found to be a good approximation.

Third, the Zel'dovich approximation, with appropriate smoothing and coupled
with the thermal and ionization evolution equations, is used to study the Lyman-a
forest. It is assumed that the Lyman-a forest is a manifestation of density and veloc-
ity fluctuations which result from gravitational instability in hierarchical clustering
cosmological models. The part of the forest that arises from mildly nonlinear re-
gions can therefore be treated using a local approximation such as the Zel'dovich
approximation. We introduce a method to compute the column density distribution.



Its dependence on the properties of the intergalactic medium as well as the power
spectrum is investigated.
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Chapter 1

Introduction

It is perhaps unusual that three separate problems of a different nature are brought

together in a single thesis. One of them concerns the state of the universe at its first

10- 35 second, when it was 10-27 times smaller that it is today and the temperature was

around 1027 K or 1014 GeV. The universe was filled with a sea of relativistic particles

and radiation pressure was significant. This is the beginning of what is commonly

called the radiation-dominated era. The universe was very homogeneous then. The

other two problems considered in this thesis concern the evolution of the universe from

about 103 years (when its temperature was about 104 K or 1 eV) up to today. This is

the era of matter-domination. Radiation pressure has become negligible. This is the

period when the structures including, quasar absorption systems, galaxies, clusters of

galaxies and superclusters formed out of the primordial cosmological fluid.

The common theme underlying these three problems is the evolution of den-

sity fluctuations. Today most cosmologists work within the paradigm of structure

formation by gravitational instability. It is believed that the early universe was very

homogeneous, except for tiny fluctuations, as is supported by measurements of the

microwave background anisotropy (Smoot et al. 1991; Bennett et al. 1994). The am-

plitude of fluctuations was one part in 105 on large scales at the time when radiation

decoupled from baryons. Structures that we see today form from the growth of the

density fluctuations under gravity. Overdense regions collapse to form galaxies and

clusters. Matter moves away underdense regions which turn into voids. This frame-



work is adopted in the present thesis. Alternative theories are discussed in Peebles

(1993).

There are then two questions the cosmologist must address. The first is the

specification of initial conditions. What was the spectrum of the primordial fluctu-

ations? How to explain its observed amplitude? Answers to these questions require

knowledge of high energy physics which is not tested in terrestrial experiment. Plausi-

ble theories exist, which are largely based on the idea of phase transitions in the early

universe. Combining them with the gravitational instability paradigm, predictions for

structure formation are made which can be tested against observations. The theory of

inflation is discussed in the first part of the thesis. In particular we focus on possible

effects of the phase transition between the inflationary and the radiation-dominated

stages on the density fluctuations.

The second question is one of evolution.' Given the initial conditions predicted

by plausible theories, the evolution of density fluctuations can be divided roughly into

three different stages.2 The first stage is when the fluctuations evolve according to

linear theory because they have very small amplitudes. This holds, for fluctuations

on scales of cosmological interest, from the the end of inflation, through the radiation-

dominated era and recombination to some point in the matter-dominated era. From

this time (which depends on the scales one is interested in) onward, the fluctuations

continue to grow under gravitational instability until gas pressure and/or virializa-

tion becomes important. The evolution of fluctuations during the period when the

overdensity (density fluctuation divided by mean density) is comparable to 1 but not

too much bigger can be treated using approximate methods. In the second part of

the thesis, we define a class of such approximations, referred to as local approxima-

tions. We show that the celebrated Zel'dovich approximation (Zel'dovich 1970) is one

1Strictly speaking, the first problem of initial conditions also involve evolution itself: how do
density fluctuations evolve through the phase transition that ends inflation? One can view the
initial condition problem as the problem of specifying the fluctuation at Hubble-radius crossing
after inflation.

2It should be emphasized that the stages we refer to are scale dependent. At any given time,
there are scales on which the fluctuations are in any one of the stages. In hierarchical clustering
cosmological models, the smaller scales tend to be in the more nonlinear stages at a fixed time.



example of it. Another example is discussed and a new local approximation is pro-

posed and tested. The local approximations can be applied in the mildly nonlinear

regime before orbit-crossing. The third stage is one in which nonlinear effects are

so important that the approximate methods fail. In the strongly nonlinear regime,

N-body simulations provide perhaps the only reliable means to compute the evolu-

tion of density fluctuations of cold (i.e. pressureless) matter.3 Hydrodynamics also

has to be incorporated to take into account the effects of gas pressure and shocks.

These powerful computational methods are not discussed in this thesis, although use

is made of some of the results obtained using them.

In the third part of the thesis, the Zel'dovich approximation is applied to study

the part of the Lyman-a forest that is in the mildly nonlinear regime. We develop

the methodology to use the approximation to compute, for any given cosmological

model, the distribution of neutral hydrogen column density, which is a commonly

used statistical measure of the Lyman-a forest. It is demonstrated how this can be

used to constrain cosmological models, which brings us a full circle back to the first

problem of initial conditions.

The following discussion is accordingly divided into three different parts, on the

subjects of inflation, local approximations and the Lyman-a forest respectively. We

state the questions to be addressed in the subsequent chapters and give a brief intro-

duction to the basic ideas of each field. Some background material on the Friedmann-

Robertson-Walker cosmology (Friedmann 1922; Robertson 1935; Walker 1936) is

given in the section on inflation. For general references on cosmology and structure

formation, the reader is referred to several excellent monographs (Weinberg 1972;

Zel'dovich & Novikov 1983; Peebles 1993; Padmanabhan 1993).

3 A possible exception is the application of the Press-Schecter theory (Press & Schechter 1974) to
study the statistics of cold matter halos.



1.1 THE INFLATIONARY UNIVERSE

Inflation was first formulated in a clear manner by Guth (1981) who emphasized how a

brief period of almost exponential expansion in the early universe, motivated by ideas

of Grand Unification, could solve a host of fundamental cosmological problems. The

original model did not work, as realized by Guth himself. Alternative formulations

avoiding the problem in the original model were proposed by by Linde (1982) and

Albrecht and Steinhardt (1982). Since then, numerous models, each realizing the

original ideas in a different way, have been proposed. Unfortunately, we do not

understand high energy physics (around 1014 GeV) well enough to pin down exactly

which model is the correct one. However, they all share certain common features, on

which we concentrate.

Shortly after the first successful inflationary models were proposed, it was

realized by several groups that besides solving the cosmological problems presented

by Guth (1981), all of which, one way or another, had to do with why the universe

was so smooth at an early time, inflation could also provide an explanation of why

there had to be small departure from smoothness (Starobinsky 1982; Hawking 1982;

Guth & Pi 1982; Bardeen et al. 1983). There are roughly speaking two parts to

the calculation of how inflation gives rise to density fluctuations in the later stages

of the universe, one making use of quantum physics and the other making use of

general relativistic perturbation theory. It suffices to say that the root-mean-squared

amplitude of a fluctuation on a given scale at the earliest moments is dictated by

quantum mechanics while the subsequent evolution through the end of inflation to the

radiation-dominated and matter-dominated stages is governed by general relativity.

Subtle questions arise concerning the quantum-to-classical-transition which is a whole

subject in its own right The reader is referred to Guth and Pi (1985) and references

therein.

We focus on the general relativistic part of the calculation. In particular,

we examine how reheating or the transition between the inflationary and radiation-

dominated stages can affect the density fluctuations. It is commonly believed that



one can define certain measures of fluctuations which determine the density fluctu-

ations in the post-inflation-stages and which remain constant throughout reheating

on scales of cosmological interest (i.e. much larger than the Hubble radius at the

time of reheating). The implication is that reheating has no physical effect on the

density fluctuations we can observe today, the reasoning being that physically signif-

icant quantities cannot change on scales larger than the Hubble radius. This view is

challenged in Chapter 2 and 3 of the thesis. A hypothetical situation is presented in

which inflation ended suddenly at some point when all fluctuations of cosmological

interest have wavelengths much larger than the Hubble radius. It is shown that the

amplitude of fluctuations in the later stages can be altered significantly depending

on the manner in which inflation is ended. The work was motivated by a claim of

Grishchuk (1994) that the standard calculation regarding the evolution of density

fluctuations is flawed. It turned out that an error was made by him in the junction

conditions used in connecting the fluctuations across the transition between the infla-

tionary and radiation-dominated stages, which has been pointed out by Deruelle and

Mukhanov (1995). While working independently on the same subject, we discovered

a different problem of the standard calculation which forms the subject of the first

part of this thesis.

We give below a quick tour of the major concepts that lead to the subject of

investigation. Two excellent reviews on the inflationary cosmology are recommended:

Blau and Guth (1987) and Linde (1990). For a comprehensive review on the sub-

ject of density fluctuations in the inflationary universe, see Mukhanov, Feldman and

Brandenberger (1992).

1.1.1 THE HORIZON PROBLEM

The standard hot big bang cosmology 4 is known to have several flaws when it is

extrapolated to early times. One of them is the horizon problem. There are two basic

equations that describe the evolution of the scale factor of the universe (in other

4 By standard hot big bang cosmology we mean Friedmann-Robertson-Walker cosmology without
inflation.



words, its size) in standard Friedmann-Robertson-Walker cosmology:

1 (da) 2  G(47r 4 3 C-()-- ( ,--3-Poa) =(1.1)2 dt a 3 2'
dpoa 3  da3

dt = -P° dt' (1.2)dt dt

where a is the scale factor, p0 is the average density and po is the average pressure of

the universe. t is proper time and C is a constant. G is Newton's constant.

Both equations can be viewed as expressions of energy conservation. In the

first equation, the first term on the left hand side is the kinetic energy of a particle

of unit mass moving with velocity a and and the second term is the potential energy

associated with such a particle if it is situated at the surface of a sphere of radius

a. -C/2 is then simply its total energy, which remains constant. (C is commonly

known as the curvature.) The second equation resembles statements of the first law

of thermodynamics: change in energy (a3dpo) equals minus pressure (-p0) times the

change in volume (da 3).

Given any equation of state that relates density and pressure, one can solve

the above two equations for the evolution of a. In the universe today, pressure is

negligible on large scales (matter-dominated). It then follows from equation (1.2)

that p0 oc a- 3 which when substituted into equation (1.1) and assuming C = 0

(which corresponds to a flat universe, a point we will return to in a minute), implies

that a oc t2/3. At earlier times, when the universe was hot and radiation pressure was

important, Po = po/ 3 . It can be shown similarly that a c t 1/2.

The horizon is defined as the proper distance a photon can travel from the hot

5Notice that we have not been entirely rigorous by saying that a oc t 2/ 3 in the matter-dominated
era. Suppose I = 0 is the moment of the hot big bang. Then during the radiation-dominated era
a c t 1/2 holds. But in the matter-dominated stage, a should be equal to const.A(t - const.B) 2/3

where the const.A and const.B are fixed by matching a and i at the transition between the two
era. However, for the purpose of the discussion here, it suffices to think of a cx t 2/13 in the matter-
dominated stage. In any case, for large enough t, this is a good approximation.



big bang up to some time of interest (t):

/, c dtHorizon = a(t) ct6d (1.3)Joa (0 *

c dA is the proper distance the photon travels in time interval dA; dividing it by a

gives the comoving distance traversed in the same time interval; summing over all the

little time intervals and multiplying by a(t) gives the total proper distance covered

measured at time t. For a oc t2/3 (matter-dominated), the above integral is propor-

tional to a3/2 and for a oc t 1/2 (radiation-dominated), it is proportional to a2 . The

important feature to bear in mind is that the horizon in both cases grows faster than

a.

Imagine a fluctuation today of a given wavelength. Its proper wavelength

grows like a (i.e. it grows more slowly than the horizon does).

This is the horizon problem: for a fluctuation of wavelength smaller than the

horizon today, at some sufficiently early time, the same fluctuation had a wavelength

which exceeded the horizon at that time. How, then, did it form? 6

In fact, it can be shown that at sufficiently early times, the required amplitude

of fluctuations on scales larger than the horizon was much smaller (but non-zero)

than what one would expect from pure Poisson fluctuations (unless the number of

particles becomes arbitrarily large in the early universe). No known causal process

can possibly explain the origin of such fluctuations in the framework of standard hot

big bang cosmology. This does not mean such fluctuations violate known laws of

physics. It just mean that we cannot explain them except to postulate them as initial

conditions given by some process beyond the standard model - or by the Creator.

Before we leave this section, let us quantify the horizon problem. In the

matter-dominated era, as we have discussed, the horizon grows like a3 /2 or t. The

reciprocal of the Hubble parameter (commonly known as the Hubble length or Hubble

6The horizon problem is often formulated as the riddle of why the universe was so smooth on
scales much larger than the horizon at some early time. We formulate it in terms of fluctuation
instead of smoothness but of course they are two sides of the same coin. The problem is why there
existed fluctuations on large scales on the one hand and why they were so small on the other.



radius) , (a/a)-', has the same time dependence and can be taken to be a measure

of the horizon. The same is true of the radiation-dominated era. Today the Hubble

parameter is of the order of 100 km s- 1 Mpc - 1 which translates into a size of 1028 cm

(cH-1). At 1014 GeV the universe had a temperature around 1027 K, which was about

1027 times hotter than it is today.' This means the ratio of the scale factor a today

to a at 1014 GeV is also 1027. Assuming the Hubble parameter has been growing

like a3/ 2 all the way back to 1014 GeV (which is of course not true because by then

the universe was already radiation-dominated and the growth rate was a2 but for

our present argument, making a small error in the order of magnitude estimate is

immaterial), this implies that cH-' was of the order of 10-12 cm at that time. On

the other hand, galactic scale today is around 1022 cm and so at 1014 GeV, the same

fluctuation had proper length of 10- 1 cm, 8 a full 7 orders of magnitude larger than

the Hubble radius! Considering larger scale fluctuations today such as clusters, voids

or even the cosmic microwave anisotropy only exacerbates the problem.

1.1.2 THE INFLATON

The canonical inflationary model postulates that at some early stage, the energy

density of the universe was dominated by that of a scalar field, which we call the

inflaton. The mean energy density and pressure of the inflaton had the following

forms:

1.2 (1.4)
Po = o + V(o) (1.4)

1
Po = 2 - V( o) (1.5)

7 We choose 1014 GeV because this is the canonical time when inflation was supposed to end. The
actual time when inflation ended can vary somewhat depending on the model. At earlier times, the
horizon problem could only be worse.

'We assume the comoving length remains constant and the proper length simply grows like a,
which is almost certainly not true for galactic scale objects. One can think about larger scale
fluctuations for which the assumption holds, but they are bound to create a worse horizon problem
i.e. they were even longer compared to the horizon at 104GeV.



where ~o is the mean scalar field and V is its potential. The dot denotes differentiation

with respect to proper time t. Suppose the potential was of the form shown in Fig. 1-1.

Let us further assume that the scalar field was initially very close to the origin and had

very little kinetic energy at first. Then according to the above equations, po~V(O)

and po- - V(0). Eventually the scalar field rolled away from the origin towards the

true minimum of the potential, gaining kinetic energy along the way. But there was

a period of time in which the energy density was to first approximation a constant

and the pressure was negative.

The implication is enormous if at some stage in the early universe, the above

conditions were satisfied. Recall equations (1.1) and (1.2). The latter is automatically

satisfied when energy density and pressure are both constant but have opposite signs.

The former implies that

a =-- sinhHinnfl(t - ti) (for C < 0)
Hinfl

a = H- coshHinfl(t - ti) (for C > 0) (1.6)
Hinfl

where Hinfl is defined by Hi2nfl = 87rGV(0)/3 and ti is simply a constant, which can be

regarded as the beginning of inflation (we will take inflation to mean the whole period

during which the scalar field dominated the energy of the universe). For sufficiently

large Hinfl(t - t4) (i.e. if the inflaton was perched at the top of the potential for a long

enough time), a was to excellent approximation proportional to exp Hinfl(t - ti), for

both solutions.

The early evolution of a was then very different from that of the standard hot

big bang theory. Instead of power law growth (t2) as in the radiation-dominated era,

we had exponential growth, hence the name inflation.

It should be emphasized though that because the inflaton did move, albeit

slowly, away from the top of the potential, the energy density was not exactly constant

(equation [1.4]). Hence the expansion was not exactly exponential. But during the

first stage when the inflaton had very little kinetic energy, the expansion was well

approximated by exponential. This period of inflation is called the slow-roll stage.



The magic of the exponential could be exploited to yield huge amount of expansion,

even with relatively modest amount of time passage (Hina(t - ti) of the order of 50

say).

An immediate consequence is that the ratio of C/2 to the potential energy

47rGV(0)a 2/3 in equation (1.1) became negligible by the end of inflation. That is to

say, the kinetic and potential energy of expansion almost balanced each other. This is

known as flatness. In fact it can be shown that without fine tuning parameters of the

potential, the amount of inflation was sufficient to keep the universe flat even up to

today, to excellent approximation. This is the famous generic prediction of flatness.

It is easy to get carried away when one discusses all the goodies of inflation.

We will turn our attention to the solution of the horizon problem offered by inflation,

because this leads us to the main concern of this thesis: generation and evolution of

density fluctuations. Before we do so, however, let us pause and discuss the motivation

for the domination of the inflaton in the early universe.

In any scheme of grand unification, the underlying gauge field theory always

had certain symmetries at early times when the temperature of the universe was high

enough but they were broken later on as the universe cooled. An example of such

symmetry breaking, which has come to be adopted as part of the standard model, is

the separation of the electroweak interaction into electromagnetism (where the gauge

boson, the photon, is massless) and the weak interaction (where the gauge bosons,

the W's and the Z, are massive). The idea of symmetry breaking is quite simple

and deep. Recall that in Fig. 1-1, the potential is symmetric about zero. Suppose

that at high temperature, the potential was still symmetric about zero but had a

different form such that ýo = 0 was actually the true minimum. The scalar field then

naturally sat at the origin. At lower temperature, the potential changed shape to one

that resembled that in Fig. 1-1. The origin became an unstable minimum. Quantum

fluctuations alone could cause the scalar field to roll away from it and eventually

settle at the true minimum, which was at po f 0, thereby breaking the symmetry.

In electroweak theory, the symmetry is not the same as the one in Fig. 1-1 but the

idea is quite similar. Suppose further that the scalar field was actually coupled to



other fields, for instance, the W's and the Z. The fact that the scalar field took an

expectation value away from the point of symmetry caused these particles to gain

masses. In the case of the electroweak theory, the agent of symmetry breaking (the

scalar field) is the Higgs field. Other attractive features of the idea of symmetry

breaking include renormalizability, which we will not discuss here.

The inflaton can be viewed as the analog of the Higgs for unification at higher

energy scale. The canonical energy scale at which symmetry breaking occurs is around

1014 GeV. Unfortunately, there are a lot of grand unified theories and we do not know

which is correct, if any. However, it is not unreasonable to expect that the universe

underwent phase transitions such as the one described above. If the energy associated

with the agent of symmetry breaking dominated that of the universe at some point,

something like inflation had to occur.

Eventually, this period of inflation came to an end. Otherwise, we would have

been left with a very cold universe due to the enormous expansion. This happened

after the inflaton picked up kinetic energy and rolled into the valley of the potential.

As it oscillated around the minimum of the potential, it lost energy through coupling

to other particles. The universe reheated. By the time the inflaton lost most of its

energy and settled into the true minimum of the potential, the radiation-dominated

era of the standard hot big bang theory began. The period of inflaton decay is called

reheating.

1.1.3 SOLUTION TO THE HORIZON PROBLEM

Recall that we have shown the Hubble radius at 1014 GeV was around 10- 12 cm while

galactic scale fluctuation had a length scale of around 10. cm at the same time. The

horizon problem is solved because inflation implies that the Hubble length of 10- 12 cm

was really not the horizon size at 1014 GeV.

Suppose that at the beginning of inflation, the Hubble radius was also around

10-12 cm (remember that during inflation, because of the almost constant energy den-

sity, the Hubble parameter was also almost constant). Suppose further that 10- 12 cm

was indeed the horizon size at the beginning of inflation. Then the galactic scale



fluctuation when extrapolated to the start of inflation, (i.e. shrink its proper length

10- 5 cm further by the amount of expansion during inflation) could have a length scale

smaller than the horizon size at that time with, say, only 17 e-foldings of expansion.

Double the number of e-foldings and the entire observable universe today was within

the horizon at the beginning of inflation! With 50 e-foldings, the observable universe

plus much more was within the horizon. Such is the power of the exponential.

Note that we can repeat the same argument without assuming the Hubble

radius corresponded to the horizon size at the beginning of inflation at all. After all,

we really do not know very much about the state of the universe at such high energy

scales. But given any horizon size at the beginning, a sufficient amount of inflation

can always be chosen so that the observable universe was within the horizon then.

Notice that by the end of inflation, the Hubble radius, 10- 12 cm, was not the

horizon size anymore. To see that, suppose again that the horizon at the beginning

of the inflation had a proper length of 10-12 cm, a lower bound on the horizon size

at the end of inflation is simply 10- 12 cm multiplied by the amount of expansion

during inflation. This is because the horizon at any given time is equal to the Hubble

scale factor at that time multiplied by the comoving distance a photon has traversed

by then. The comoving distance a photon had traveled by the end of inflation was

certainly larger than it was at the beginning. This distance (the comoving length

that the photon has traversed before inflation began), when multiplied by the Hubble

scale factor at the end of inflation, was precisely 10- 12 cm multiplied by the amount

of expansion during inflation. This provides a lower bound to the horizon size at the

end of inflation. The horizon was therefore much larger than the Hubble radius after

inflation.

Within the framework of inflationary cosmology, fluctuations on all observable

scales today were actually within the horizon at early times. This means that it is

possible to explain them using known causal processes.



1.1.4 DENSITY FLUCTUATIONS: THE STANDARD LORE AND ITS

PROBLEM

Fig. 1-2 depicts the evolution of a fluctuation in the inflationary cosmology.

What inflation achieves is to destroy the equality of the horizon size and the Hubble

radius, thereby allowing the wavelength of the fluctuation to be much larger than

the Hubble radius but smaller than the horizon at the end of inflation (which can be

taken to be the beginning of the standard hot big bang universe).

Consider a fluctuation which still had proper wavelength much smaller than the

Hubble radius after some amount of inflation had already taken place. The universe

was very cold. The inflaton was settled at its ground state. By this we do not mean

the inflaton had already settled at the true minimum of the potential. On the contrary

the inflaton was perched at the top of the potential. If one decomposes the inflaton

field into Fourier modes, each mode behaved like a simple harmonic oscillator. Each

was in its ground state because the amount of energy required to excite it was much

larger than the thermal energy available.

Quantum mechanics tells us that even in its ground state, the inflaton had

inevitable fluctuations due to the uncertainty principle. This led to energy or mass

fluctuations because the inflaton itself carried energy. Furthermore, because of cou-

pling to gravity, metric perturbations arose as well.

Because of inflation, the proper wavelengths of these fluctuations grew by

enormous amounts. Eventually, they were stretched beyond the Hubble radius. By

the end of inflation we thus had a whole set of fluctuations (those on larger scales

having exited the Hubble radius at earlier times), the wavelengths of which were much

larger than the Hubble radius, but of course, smaller than the horizon.

In this thesis we will concentrate on the evolution of the fluctuations from the

moment they left the Hubble radius until the end of inflation (see Fig. 1-2).

The proper framework for discussing the evolution of density fluctuations in the

early universe is provided by general relativity. Since the amplitude of the primordial

fluctuations was small, linear perturbation theory (i.e. throwing away terms that are



second or higher order in density, pressure or metric perturbations) is sufficient for our

purpose. By virtue of general covariance, one is free to pick any space-time coordinates

to follow the perturbations. This is commonly known as gauge freedom. Different

observers can see different things. For instance, density fluctuations can be zero in

one gauge but not in another. Alternatively one can choose certain combinations of

the perturbed quantities which are gauge invariant to first order. One useful example,

to which we will return again and again is

oc a2 HicaI - (1.7)

where p is the full energy density (mean density plus its fluctuation), a has its usual

meaning as the Hubble scale factor and Hlocal is a measure of the local expansion rate.

The definition of ( here agrees with that by Mukhanov, Feldman and Brandenberger

(1992). The proportionality factor left out has no time dependence. These quantities

are defined more carefully in Chapter 2. What is important here is the resemblance

of the above with equation (1.1). If one equates the Hiocal above with the familiar

Hubble parameter (a/a), comparing with equation (1.1), it is not hard to see that

is then simply a constant proportional to the curvature C.

Now, equation (1.7) is, of course, not equivalent to equation (1.1). After all

the former is meant to describe fluctuations about the mean while the latter refers

to the mean itself. p in equation (1.7) contains fluctuations while po in equation

(1.1) the other does not (it is the average value). Similarly, while ia/a describes the

global expansion rate, Hiocai is defined as the local divergence of velocities, which can

vary from one place to another. Therefore, ( is a measure of the local curvature (as

opposed to global curvature C). Put it in another way, it quantifies by how much a

given local region deviates from flatness. 9

C is a useful quantity because a particularly simple equation can be written

9It turns out, however, that C really carries two modes, one of them is like the local curvature as
suggested. The other is the subject of almost half the thesis.



down for its evolution during inflation (its proof is deferred to Chapter 2):

(a / (7)" + k2 - (a (aV() = 0 (1.8)

where the prime (as opposed to dot) denotes derivative with respect to conformal time

r (conformal time and proper time are related by adT = dt), k is the wavenumber of

the particular fluctuation of interest and 7 is defined by

/ 2

= 2a 2H2  (1.9)

where ý0o, to remind the reader, is the mean inflaton field and H is the global Hubble

parameter a/a.

When a fluctuation was within the Hubble radius during the early phase of

inflation, k 2 was large (small wavelength limit) compared to (av-j)"/(a/-j). (This

assumes something about how 7 behaves. We will discuss this in detail in Chapters 2

and 3) Equation (1.8) can be approximated by (av-()" + k 2 av-(, which is the

equation of a simple harmonic oscillator of frequency k2 . It fits in nicely with our

idea that the perturbation originated as the fluctuation of a quantum mechanical

simple harmonic oscillator in its early phase. This can be made more precise by

noting that there is in fact an exact quantum analog of the same equation with

being an operator (Mukhanov et al. 1992).

Eventually, because of the enormous stretching by inflation, the same fluc-

tuation left the Hubble radius. k 2 was then small compared to the other term

(av-y)"/(av'f7) in equation (1.8). Ignoring the k 2 term, one obvious solution of the

equation is ( being a constant. If one can show that the other solution decayed

(remember equation (1.8) is second order and so has two independent solutions),

would approach a constant.

This is in fact the standard lore. Any given fluctuation mode, embodied by

the variable (, oscillated in its "quantum mechanical phase" when it was within

the Hubble radius. After it exited the Hubble length, it stopped oscillating and

the amplitude became eventually frozen. In fact, its amplitude remained unchanged



until the same fluctuation re-entered the Hubble radius at a later time after the end

of inflation (see Fig. 1-2). Afterwards, the fluctuation could grow in the matter-

dominated era, which gave rise to structures we see today.

The non-constant mode of equation (1.8) can be written as (assuming k2 can

be ignored) ( oc r d/a 27 where rTi is a constant. Note how the expression becomes

problematic if -y vanishes. According to equation (1.9), -Y could be zero when the

inflaton stopped moving.

9' (or y7) was small but non-vanishing during the initial phase of inflation,

when the inflaton moved slowly away from the top of the potential. However, after

the inflaton rolled into the valley of the potential, it picked up speed, went past the

minimum of the potential and eventually came to a stop. We will call it the point of

turn-around from now on. At this particular moment, 7 became strictly zero and it

is not obvious how C behaved. In particular, did its amplitude remain frozen through

the point of turn-around? Did it diverge at the moment of turn-around and what

happened after it? What is the implication for density fluctuations today and under

what the circumstances does the standard lore break down?

These questions will be addressed in Chapters 2 and 3.

1.2 LOCAL APPROXIMATIONS

In the second part of the thesis, a set of approximations to the gravitational collapse

of cold (pressureless) matter are discussed. They share a common property which we

call locality. By this we mean that each mass element behaves as if it is independent

of all the others. To be more precise, properties of each element, such as its density,

velocity gradient and so on, are described by a set of ordinary differential equations

which are decoupled from those describing other elements.

The present work was motivated by that of Bertschinger and Jain (1994) who

examined the consequences of what we call the Non-magnetic Approximation (NMA).

They used the fact that if a quantity known as the magnetic part of the Weyl tensor

vanishes in the Newtonian limit, a set of exact Lagrangian fluid equations for cold



dust becomes local. This was first proven in general relativity by Matarrese, Pantano

and Saez (1993) following earlier work of Barnes and Rowlingson (1994); part of the

motivation for such an assumption was the statement of Ellis (1971) that there is

no counterpart to the magnetic part of the Weyl tensor in Newtonian theory. One

important result they obtained is that spindle (filamentary) collapse is favored in

general as opposed to pancake collapse. (Pancake collapse had been thought -

correctly - to be the generic outcome of gravitational collapse of cold dust following

the work of Zel'dovich 1970.)

Since then, it has been shown by Bertschinger and Jain (1994) and Kofman

and Pogosyan (1995) that the magnetic part of the Weyl tensor does have a Newtonian

counterpart and so spindle collapse is not favored by the exact dynamics. Kofman

and Pogosyan (1995) also showed that the tidal evolution equation implied by the

Zel'dovich approximation is local.

In this thesis, we extend the above work by first showing that the celebrated

Zel'dovich approximation can be formulated entirely in the language of local La-

grangian fluid equations. The aim is to make it easy to search for generalizations of

the Zel'dovich approximation, which is known to be an excellent approximation in

the mildly nonlinear regime before orbit-crossing. Are there other local approxima-

tions that incorporate one of the successful features of the Zel'dovich approximation,

namely that it is exact in the case of one-dimensional collapse or planar symmetry,

and perhaps extends the property of exactness to cases of cylindrical and spherical

symmetry as well? Why does the NMA result in spindle collapse generically? Are

there other local approximations, other than the Zel'dovich approximation, that do

not share the same feature? These questions are addressed in Chapter 4 and 5.

A new local approximation is put forward and is compared with the previous two

approximations in the case of general ellipsoidal collapse.

Two important remarks are in order here. The first is that the local approx-

imations can be applied only up to trajectory crossing. However, it is true that for

hierarchical clustering cosmological models, the approximations can be still applied,

with appropriate smoothing, on large enough scales which are in the mildly nonlinear



regime, even if trajectory crossing has already occurred on small scales. This pro-

cedure has been shown to work well in the context of the Zel'dovich approximation

(Coles et al. 1993). Peebles (1993) gave a nice summary of the history of ideas evolv-

ing around the original proposal by Zel'dovich. An excellent review of the Zel'dovich

approximation and the larger subject of structure formation can be found in the ar-

ticle by Shandarin and Zel'dovich (1989). Our second remark is that although some

of the early ideas on local Lagrangian fluid equations originate from work on general

relativity, the discussion of local approximations can be (and is) held entirely in the

Newtonian framework. For the applications of local approximations to general rel-

ativistic problems, the reader is referred to work by Bruno, Matarrese and Pantano

(1995) and Matarrese and Terranova (1995).

In the following, we illustrate the idea of local approximations with an ex-

tremely simple example.

1.2.1 LOCALITY

The equations that describe a pressureless, self-gravitating fluid in an expanding

universe are:
dS
d-r + (1 + J)Viv'= 0, (1.10)

dvi  a'
= --- v-V , V(1.11)

dT a

V20 = 47rGa2poS. (1.12)

Mean mass density is denoted again by po. J is the overdensity defined by J = (p -

po)/po where p is the full mass density. i = dr/dT is the proper peculiar velocity where

x is the comoving spatial position and 7- is the conformal time. We neglect spatial

curvature so that Cartesian coordinates can be used such that V = Vi = O/Ox'

for the ith spatial coordinate. q is the gravitational potential. The prime denotes

derivative to conformal time as before. The notation d/dr stands for:

d a
-- -+ vii (1.13)dr- cg



This is called the Lagrangian derivative. It denotes the time derivative of a quantity

following a fluid element, as opposed to at a fixed spatial position (&/0r).

The description here is Newtonian except for the expanding cosmological back-

ground. Equation (1.10) expresses mass conservation. Note how the rate of change

of density depends on the local divergence of the velocity field. The second one is the

equation of motion. It describes how a mass element moves under the influence of the

background expansion (first term on the right hand side) and the gravitational at-

traction of other elements (second term on the right). Equation (1.12) is the Poisson

equation that relates overdensity to the gravitational potential.

The terms that contain spatial gradients are what we shall call non-local ones.

Their presence means that to evaluate the time evolution of quantities of interest at

one mass element, it is necessary to have information of the neighboring ones as well.

If gravity were absent, it would be easy to solve this problem. For instance,

suppose one is interested in the evolution of 6 at one particular mass element. Equa-

tion (1.10) tells us that the local divergence of the velocity field has to be known.

But one can write down the evolution equation for the local divergence of the velocity

field by taking the gradient of the equation of motion:

dVivj a'dVv -VivkVkj - aViv - Vivj, (1.14)
dT a

Summing over i and j gives us the evolution equation for the divergence of

the velocity field. It can be seen immediately that the divergence of the velocity field

is coupled to other components of the velocity gradient tensor Vivj, the evolution

of which is also described by the above equation. Note that if gravity is absent

(Vi•O =- 0), equation (1.14) together with the mass conservation equation (1.10)

form a closed set of equations that can tell us how the overdensity 6 and the velocity

gradient tensor VivJ evolve at any given mass element without having to know what

others are doing. This is true as long as one is given the initial conditions on 6 and

the velocity gradient tensor at the mass element of interest. It is our first example of

locality.



Without gravity, the above is almost a silly exercise. After all, with no grav-

itational interaction (i.e. the last term on the right hand side of equation [1.11] is

absent), each particle simply moves in a straight line without caring about others.

Naturally, locality is observed.

With gravity however, one has to know the distribution of all mass elements

in order to calculate the gravitational acceleration at any one of them. The Poisson

equation has to be solved, which is the biggest obstacle to locality. In other words,

one has to think about how to deal with the last term on the right hand side of

equation (1.14).

There are a lot of approximations one can make to restore locality. Each of

them in one way or another eliminates the need of solving the Poisson equation. With

locality, one can deal with one mass element at a time, which greatly simplifies the

computation of predictions for large scale structure. It is perhaps surprising any local

approximation could approach reality at all.

In Chapters 4 and 5, we show two known examples and propose a new local

approximation. That one of them, the Zel'dovich approximation, is very successful,

gives us the motivation to look for even better approximations along the same lines.

1.3 THE LYMAN-ALPHA FOREST

The third part of the thesis is on the Lyman-a forest, a whole separate subject in its

own right. We do however make use of the Zel'dovich approximation described in the

second part of the thesis. It is also argued that observations of the Lyman-a forest

has some bearing on the initial conditions in the early universe.

The Lyman-a forest, which refers to a subset of the numerous Lyman-a ab-

sorption lines in quasar spectra, was first discovered by Lynds (1971). The main

properties of the forest are summarized as follows. First, the Lyman-a forest consists

of those Lyman-a absorption lines with column densities of neutral hydrogen less

than about 10"17cm - 2. Above this column density, the optical depth of the Lyman-a

absorption greatly exceeds one. The Lyman-limit systems and the damped Lyman-a



systems belong to this later category, and they usually have associated metal line

absorption. Second, the comoving number density of the forest absorption lines in-

creases with redshift (Peterson 1978; Lu et al. 1991b). Third, no significant spatial

correlation beyond that of a random distribution has been detected between the forest

absorption lines at velocity separations larger than about 250 km s- 1 10, implying they

are quite uniformly distributed (Sargent et al. 1980). Based on this observation, it

is commonly believed that the Lyman-a forest is not associated with galaxies. Weak

clustering has been reported at lower velocity separations, a finding that was made

possible by high resolution studies of C IV systems that were known to be associated

with the Lyman-a forest at column densities higher than about 1014.5 cm- 2 (Songaila

& Cowie 1996; Fernandez-de Soto et al. 1996). Fourth, the number of absorption

lines per unit column density per unit redshift is approximately proportional to N7/

where NHI is the column density and 1.4 </3 r 1.6 although there exists evidence of at

least one break in the power law somewhere in the range 1014 - 1017 cm - 2 (Petitjean

et al. 1993; Hu et al. 1995; Lu et al. 1991a). Fifth, the number of absorption lines per

unit equivalent width (equivalent width W is the integral of the transmission over

the wavelength range of an absorption line and has the unit of A usually) per unit

redshift oc exp -W/0.3A except for a possible excess at equivalent widths less than

0.2A (Murdoch et al. 1986). It is commonly assumed that the above approximate

relations hold independent of redshift. Sixth, the b-parameter (or b-value) , which is

a measure of the width of a line, is observed to have a wide spread at a fixed column

density but there is a lower limit at about 15 - 20kms - 1 (Songaila & Cowie 1996;

Lu et al. 1991a) at z - 3. The precise definitions of column density, equivalent width

and b-value are given in Chapter 6.

Obviously we cannot list all the interesting properties of the Lyman-a for-

est here. The reader is referred to a review article by Weymann (1993) for more

information.

There are of the order of a hundred Lyman-a absorption lines in each quasar

absorption spectra. Multiplying that by the number of quasars that can be observed,

lovelocity separation is equal to the speed of light times AA/A where A is observed wavelength



it is not hard to see that the amount of information contained in the Lyman-a forest

is enormous. Most of the above observational facts were obtained using spectroscopic

identification and counting of absorption lines together with profile-fitting techniques.

This is not the only way, and perhaps not even necessarily the best way, to study the

forest. An alternative is to take the forest in its entirety and study its aggregate prop-

erties, such as the mean transmission (transmission is the observed intensity divided

by emitted intensity). For examples of such approaches applied to the observational

data, see Jenkins and Ostriker (1991) and Press, Rybicki and Schneider (1993) and

references therein. Moreover one can in principle study the variations in the transmis-

sion without restricting oneself to spectroscopically identified lines (Miralda-Escudi

et al. 1995).

On the theoretical side, there exist several models of the Lyman-a forest.

Traditionally, each absorption line is thought to arise from a cloud embedded in an

otherwise smooth medium. Examples of such models include the Self-gravitating

Clouds (Black 1981), the Pressure-confined Clouds (Ostriker & Ikeuchi 1983) and the

Freely-expanding Clouds (Duncan et al. 1991). A discussion of them, in addition to

other examples, can be found in the review article by Bajtlik (1993). Rees (1986)

proposed that the gravity of dark matter mini-halos can confine intergalactic clouds.

Bond, Szalay and Silk (1988) proposed a similar model based on the Cold Dark

Matter (CDM) theory in which some of the clouds, in addition to being attracted by

dark matter halos, were also allowed to expand when triggered by the reionization

radiation. These were the first attempts to place the study of the Lyman-a forest

within the larger framework of structure formation although they still subscribed to

the traditional picture of distinct clouds embedded in an otherwise smooth medium.

In subsequent work by McGill (1990) and Bi, B6rner and Chu (1992), the traditional

picture was given up in favor of one where the intergalactic medium had fluctuations

on all scales due to initial conditions and gravitational instability, of which the Lyman-

a forest was a manifestation. Recent work using numerical simulations gave a big

boost to this way thinking by showing how its observational consequences could be

computed in detail (Cen et al. 1994; Zhang et al. 1995; Hernquist et al. 1995; Petitjean



et al. 1995; Miralda-Escud6 et al. 1995).

We adopt the same framework in this thesis. The question we would like to

address is: what determines the shape and normalization of the column density dis-

tribution (the number of absorption lines per unit column density per unit redshift

as a function of column density)? A set of tools is developed to calculate the col-

umn density distribution given a cosmological model and the thermal and ionization

properties of the intergalactic medium. We make use of the Zel'dovich approximation

to compute the density and velocity fields, thereby avoiding the use of full hydrody-

namic simulations and allowing us to systematically study how the column density

distribution depends on various cosmological parameters. In a sense, our work is a

natural extension of the classic paper by McGill (1990) who simulated absorption

spectra using one-dimensional Zel'dovich approximation.

1.4 OUTLINE

The organization of the thesis is as follows. Chapters 2 and 3 cover the work on

density fluctuations in the early universe. In Chapter 2 we lay down the groundwork

and in Chapter 3, the main issue, the behavior of ( close to the point of turn-around,

is discussed. Chapters 4 and 5 cover the local approximations. In Chapter 4, we

discuss the basic concepts of local approximations and introduce three examples. In

Chapter 5, they are tested in the case of the collapse of a homogeneous ellipsoid. In

Chapter 6, we apply the Zel'dovich approximation to compute the column density

distribution of the Lyman-a forest. Finally, we briefly summarize the main results

of the thesis in Chapter 7. Appendix A contains a summary of results from general

relativistic perturbation theory that are used in Chapters 2 and 3. Appendix B and

Appendix app-mij contains discussions of topics left over from Chapters 3 and 5. A

list of symbols used in this thesis and their definitions can be found in Appendix D.

A word on the notation. Greek indices denote spatial-temporal components

and Latin indices are reserved for spatial components. c, the speed of light, is always

set to one, unless stated otherwise, in Chapter 6 for instance. Factors of G are kept



in Chapters 4 and 5 while 87rG, as well as c, are set to one in Chapters 2 and 3.
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Chapter 2

Density Fluctuations in the Early

Universe: Basic Results

2.1 INTRODUCTION

The following expression has become part of the standard lore of the inflationary

theory of cosmological fluctuations (Guth & Pi 1982; Bardeen et al. 1983; Starobin-

sky 1982; Hawking 1982):
Sp(k) HSp(k)

oc (2.1)
Po0 0

Sp(k)/po is the Fourier component (wave-number k) of a density fluctuation as it

comes within the Hubble radius in the radiation-dominated or matter-dominated era.

S6p(k) is the fluctuation of the inflaton field. ýo is the time derivative of the smooth

background field and H is the Hubble parameter. The combination H&Sp(k)/ýo is

evaluated at the time when the fluctuation exits the Hubble radius during inflation.

The density fluctuation is imprinted at the moment of Hubble-radius-exit.

Its evolution outside the Hubble radius depends on the particular gauge one uses.

But it is often argued that the amplitude of appropriately chosen gauge invariant

combinations of metric and matter perturbations is frozen between the exit and re-

entry of the Hubble radius. Typically their time derivatives are proportional to the

spatial gradients of some other perturbed quantities. An example is the variable (,



which is related to the inflaton fluctuation by

HSoGI (2.2)

where 8 GI denotes a gauge invariant measure of Spo. ( obeys the following simple

equation
d( 2po k2

2 - 4) (2.3)dt 3(po + Po) Ha2  (2.3)

where po and po are the background density and pressure, a is the Hubble scale factor

and OP is a gauge invariant measure of pressure perturbation. These equations will

be derived in the following sections. What is important is that in the long wavelength

limit (small k), ( is negligible. This is often used as a justification that the details

of reheating have no effects on the amplitude of density fluctuations at late times,

since wavelengths of cosmological interests are much larger than the Hubble radius

when reheating takes place. That is why in equation (2.1), the right hand side can

be evaluated at the moment of Hubble-radius-exit: essentially the imprint of density

fluctuation is unchanged by whatever happens between the exit and re-entry of the

Hubble radius.

However, there is a factor of po + p0 in the denominator of the expression

for (. The sum of density and pressure can exactly vanish. When the universe is

inflaton-dominated, po + Po is simply proportional to the kinetic energy of the scalar

field. At the point of turn-around, when the inflaton has rolled past the minimum

of the potential, decelerated and stops momentarily, the sum of energy and pressure

vanishes and the argument for the conservation of ( breaks down.

We examine the consequences in Chapters 2 and 3. An approximation of

instantaneous transition is used. This is not meant to be realistic but it serves the

purpose of demonstrating the possibilities. We calculate the evolution of density

fluctuations for two cases: one where the inflationary stage ends during the slow-roll

phase and one where it ends very close to the point of turn-around. The evolution

of density fluctuations is followed only up to the radiation-dominated stage. It is

straightforward to extend the analysis to the matter-dominated stage.



The organization of this chapter is as follows. The notation and description

of the background and perturbed metric tensor and energy-momentum tensor is es-

tablished in the next section. The evolution of gauge invariant metric variables in

the inflationary and radiation-dominated era is discussed. In Section 2.3, We derive

junction conditions for metric variables at the transition between the two stages. This

is also discussed in Ratra (1991) and Deruelle (1995). Armed with the results in this

chapter, we will be ready to tackle the problem of the evolution of C in the next. In

order not to disrupt the flow of our arguments, we defer the proofs of a number of

basic results in general relativistic perturbation theory to Appendix A.

A word on our terminology. When we use the word inflation, we mean the

whole period during which the inflaton dominates the energy of the universe. This

includes the slow-roll phase, as well as some of the initial reheating phase. In particu-

lar, in the framework of an instantaneous transition, by inflation we refer to the whole

period before the transition to the radiation dominated stage. Immediately before

the transition, the scalar field is not necessarily in the slow-roll phase. It depends on

the model of the transition.

Both Chapters 2 and 3 are based on a preprint (Hui & Guth 1996). Greek

indices denote spacetime components and Latin indices are reserved for space com-

ponents. c = 1 and 87rG = 1.

2.2 FORMALISM

The treatment follows closely that of Bardeen (1980) (see also Mukhanov, Feldman

and Brandenberger 1992 and Grishchuk 1994). The key equations of this section are

(2.17) and (2.19). Their counterparts are (2.28) and (2.29) in the inflationary stage

and (2.33) and (2.34) in the radiation-dominated stage. The derivation of equation

(2.17), as well as the proof of gauge invariance of the variables employed, are given

in Appendix A.



The background spacetime is described by the flat Robertson-Walker metric:

ds 2 = a2 (T)(-d 2 T + i3 dxidx"). (2.4)

The proper time t is related to the conformal time T by dt - adT. We denote

differentiation with respect to proper time by a dot and that with respect to the

conformal time by a prime.

The unperturbed energy-momentum tensor is that of a perfect fluid at rest

with respect to the above coordinates

TOO =-po, Tj = poji (2.5)

Mixed components vanish.

The evolution of the scale factor a is governed by

3H 2 = Po (2.6a)

- 3H2+2 + )=po, (2.6b)

where H -= a/a = a'/a2 is the Hubble parameter.

The conservation of energy can be derived from the above equations.

Po + 3aH(po + po) = 0 (2.7)

We define two useful quantities -y and cj.

2- 3(po + po)7 -H/H -(2.8) 2po

where the dot denotes differentiation with respect to proper time t. -Y vanishes in

de Sitter space and is expected to be small during most of the inflationary stage. It



equals 2 during the radiation-dominated era when P0o = Po.

2 P 2 __C - = -1 +-7- (2.9)po 3 3aH (

c2 is not restricted to be positive.

Only scalar perturbations are considered in this thesis. They can be expanded

in terms of spatial harmonics Qk(x) which satisfy

Q,i,i + k2Q = 0 (2.10)

where i is summed from 1 to 3. , i denotes ordinary differentiation with respect to the

i-th spatial coordinate. k is the wave-number. Each k mode evolves independently of

the others in first order perturbation theory. From now on we assume the separation

into individual harmonics has been made. The label k of perturbed quantities will be

suppressed for the rest of the discussion.

The full metric is

goo - -a 2 (T)[1 + 2A(T)Q] (2.11a)

goi - a2(-r)B(T)eQi (2.11b)k

1
gij - a 2(T)[(1 + 2HL(T)Q)8ij + 2HT(T)(k- 2Q,,. + I ijQ)]. (2.11c)

3

The full energy-momentum tensor is

TO - -(po + Sp(r)Q) (2.12a)

To - (Po + Po)V(7) Q (2.12b)
k

To E -(po + po)(v(r) - B(r))Qi (2.12c)
k

Tj (po + 6p(T)Q)> . (2.12d)

It is implicitly assumed that the anisotropic stress (traceless part of Tj) is negligible.



Q and Q,i denote the same ordinary derivative of Q with respect to the spatial

coordinate. Note that the perturbation amplitudes A, B, HL, HT, v, Sp and Sp are

all functions of k as well as 7r. We define the following gauge invariant measures of

the density and pressure perturbations:

aH
SPGI Sp + 3 -a (po + po)(v - B) (2.13a)

k
aH

SPGI E + 3 kp (po + po)cs 2 (V - B). (2.13b)
k

They exactly equal Sp and Sp respectively in the comoving gauge where To = 0.

Their gauge invariance is proved in Appendix A.

Two gauge invariant combinations of the metric perturbations will be used

throughout this and the next chapter:

aH 1
- k (HT - kB) - (HL + -HT) (2.14a)

3
-'(aH) - 1 +=( + D+ , (2.14b)7

where 7 is defined in equation (2.8). The definition of C follows that of Grishchuk

(1992). There is an alternative, physically more transparent definition:

S 3a2 H.o2l- ) (2.15)

where p is the full density and Hlocal = VUa/3, where Vc, denotes covariant differ-

entiation. UO is the fluid velocity. For perfect fluids, which we consider in this thesis,

TO = (p+p)UU, +pg" . Hiocal is a measure of the local expansion rate with respect

to the fluid observers. The uniform part of Hlocal is just the Hubble constant. So for

a flat universe, the combinationHo~ - E has no homogeneous part. The quantity

( is then a measure of how much the universe departs from flatness locally. It will

be shown in Appendix A that the two definitions, equations (2.14b) and (2.15), are

equivalent. Note also that equation (2.15) is expressed in Fourier space and we have

dropped the spatial harmonics Q.



It is shown in Appendix A that 0 and 3 pGI are related by the Poisson equation:

a2

aD= 2k2-pi. (2.16)
2 kSGI

We also prove in Appendix A that Ž satisfies the following equation (equation

[4.9] of Bardeen (1980)):

d 2 _ (po + po)l d (po + Po)* k2 (
dpo -H + I -di H + - (po + Po) , (2.17)

dt2 PO + d Po + Po a2

where the dot denotes differentiation with respect to proper time. OP is defined by

analogy with equation (2.16).
a2

p -- 2k2 6PGI (2.18)

It follows from the definition of C (equation [2.14b]) that

d_ 2 po
dk2 D (2.19)

dt = 3a2H(po + Po)

Equations (2.17) and (2.19) are completely general. The only assumption made is

that the anisotropic stress and the background spatial curvature is negligible. A

similar equation was derived by Mukhanov, Feldman and Brandenberger (1992) but

the right hand side was put to zero at some point in their derivation assuming the

small k limit. It is commonly argued based on equation (2.19) that ( is roughly

constant when k2 or k2 /a 2H 2 is small enough (the long wavelength limit). This is

often taken to imply that the amplitude of density fluctuations (which is related to

the amplitude of () is unaffected by reheating because wavelengths of cosmological

interests are much longer than the Hubble radius at the end of inflation. We will

discuss where this argument breaks down.



2.2.1 THE INFLATIONARY ERA

The energy density of the universe is dominated by that associated with a scalar field

p(T, x) which can be split into two parts, a smooth background and a fluctuation:

Q(7, x) = (o(T) + SO(T)Q(x). (2.20)

The energy-momentum tensor is

Ttv = P,41LP,V - gt i3 1 9cP, CV,3 + (2.21)

where V(ýo) is the potential of the inflaton.

Hence the background density and pressure, ignoring contributions from mat-

ter or radiation, are

1 12

po = a O + V(P)
1o = /2 - ()

P0 a P oP

(2.22a)

(2.22b)

The equation of motion for po follows from the conservation of energy (equa-

tion [2.7]).

o + 2aHp' + a2 0 V

(o=PO0

=0. (2.23)

The perturbations in density and pressure are

A 12Jp = a2 O

A , 2p = -a2 (o

1 av+ ob' + ±

1 LiV+ 0 O(P' -O
a (=WO

(2.24a)

(2.24b)

where A is the metric perturbation defined in equation (2.11a).



The scalar field fluctuation is also related to the energy flux (equation (2.12c).

TO Qi = - (po + po)(v(T) - B(T))Q,i (2.25)

Let me define a gauge invariant measure of the inflaton field fluctuation:

P'GI (2.26)SGI S = - -_H(HL + 1 HT) (2.26)aH 3

where HL and HT are the metric perturbations defined in equation (2.11). The proof

of its gauge invariance is left to Appendix A. It will also be shown that that

PGI =_ ( (2.27)aH

where ( is defined in equation (2.14b).

Equation (2.17) becomes a very useful equation in the inflationary era because

OP = I. To see this is the case, first note that both OP and 0 are gauge invariant. It

is sufficient to demonstrate their equivalence by proving so in one particular gauge.

In the comoving gauge where To = 0 and hence Sp = 0 (equation [2.25]), Sp equals Sp

by equation (2.24). It then follows from equation (2.13) that SpaGI = SPGI. Therefore

OI = ( (equations [2.16] and [2.18]).

Substitute this relation into equations (2.17) and (2.19), the following is ob-

tained:

d2 ( (PO0 d (po+po) k2
dt2 + H (- + p 0= (oPo+a) - (2.28)dt2 PO +0PO + PO a2

and
d• 2po d(k2 

(2.29)dt 3a 2 H(po + po)

Making use of the above equations and the definition of C (equation [2.14b]),

a single equation for ( can be written down:

d2( * (3H + d( k2
dt- -  H+ + - = 0 (2.30)
dt2 7± ,dt a2 =0(.)



where 7 is defined in equation (2.8). The fact that po + po = o, together with

equation (2.6a), implies that
/ 2

7 = 2a2H2  
(2.31)2a 2H2

y is a measure of the contribution of kinetic energy to the total energy content of the

universe.

Equation (2.30) can be rewritten as:

(a 7()" + k2 -_ (a ) (a/7_() = 0 (2.32)

where the prime stands for differentiation with respect to the conformal time T.

= •V'/V/2aH and can be positive or negative depending on the sign of ý0.

In this thesis we adopt the approximation that the inflationary era ends

abruptly, giving rise to a radiation-dominated universe. It is worth emphasizing

that by the inflationary stage we include not just the slow-roll phase, but, depending

on when we choose inflation to end, possibly also the phase when the scalar field

rolls quickly and oscillates around the minimum of the potential. The potential and

kinetic energy associated with the scalar field dominates the energy content of the

universe until the next stage, the radiation-dominated era.

2.2.2 THE RADIATION-DOMINATED ERA

In the radiation-dominated universe, po = 5po and Sp = ip. There is no entropy

perturbation. Equation (2.7) implies that p evolves like a - 4 from which it follows

that a oc t1 /2 OC " by equation (2.6a).

In this phase 1) = l. We can show it in the comoving gauge, where SpGI = SP

and SPGI = Sp (equation [2.13]). Since p = 1p, equations (2.16) and (2.18) imply

that 4) = (D. It then follows from equations (2.17) and (2.19) that

d2 ( (Po + Po)° de (po + Po)* k 2

2+ H- oH 4 = (Po + Po) - (2.33)dt2 Po+Po it Po+Po a2



and
d( 2po

( 2Po k2 
2. (2.34)

dt 9a 2H(po + po)

Note that in the radiation-dominated universe the above equations simplify enor-

mously because Po + po = 4 Po/ 3 and (po + po)o/(po + P0) = -4H. A particularly

simple equation for a( can be written down using equations (2.33), (2.34), (2.14b)

and the fact that -y -H-/H = 2 (equation [2.8]) in the radiation-dominated uni-

verse.
k2

(a()" + -(a() = 0 (2.35)
3

where the prime denotes differentiation with respect to conformal time T.

An explicit solution for ( is

Kr i kT Kr 2  kT
-= sin( ) + -cos( ) (2.36)

a + a V-3

where KrI and Kr 2 are constants of integration. Equation (2.34) then implies

S 2a-( )-2 sin( )- _ cos(-k )+2a- ( ) - Kr2 Cos sin

(2.37)
We have used aH= 1/T.

Relating 4) to SpGI through equation (2.16), it can be shown that &pcI/po

oscillates with a nearly constant amplitude after the fluctuation comes within the

Hubble radius (k/aH > 1). In this limit, measurements of the density fluctuation in

different coordinate systems agree with each other. SP/po in this regime is given by:

Sp 4k [ kT kT
__ 4k ricos( ) K K 2sin( O) (2.38)
Po V-3a2H V3 N/3

where 4k/(/-3a2H) is a constant in time because a o T. The amplitude of oscillation

is determined by the constants Kr, and Kr 2 which are evaluated by matching ( and (

across the transition between the inflationary and radiation-dominated stages. This

is the subject of the next section.



2.3 JUNCTION CONDITIONS

The inflationary stage is assumed to end abruptly at an equal energy density surface

(Ratra 1991; Deruelle & Mukhanov 1995). Inflation allows small scale quantum

fluctuations in p and hence in p to expand to large scales. p then acts as a timer: when

it reaches a particular value, inflation ends, reheating takes place instantaneously and

gives rise to a radiation-dominated universe. To follow the evolution of fluctuations,

we need junction conditions for ( and 0, which satisfy equations (2.17) and (2.19).

First we will show that 0 is continuous across the transition. This will be

demonstrated in the synchronous gauge. The gauge invariance of D guarantees that

it is continuous in any other coordinate system.

In the synchronous gauge, A = B = 0 in equation (2.11). We define the

following symbols for simplicity of notation:

1
h -2(HL + -HT) , he = 2HT (2.39)

3

In these variables, the first order Einstein Equations are

3Hh k2  Hh
h' + -h - ha = Sp (2.40a)

a a2  a e

h a2(po + P v (2.40b)
k

1
-1 (h" + 2aHh') = Sp (2.40c)
a

ht' + 2aHh' - k h = 0. (2.40d)

The symbols on the right hand side are defined in equation (2.12). The first two

follow from the GO and Go equations. The last two are derived from the G equations.

The last equation is a result of the no-anisotropic-stress assumption.

First note that a and H are continuous by virtue of equation (2.6) and the fact

that neither po nor po has a delta function at the transition. In fact, p0 is continuous

while p0 has a discontinuity at the transition. One has the freedom in the synchronous

gauge to choose the transition surface (equal-energy-density surface) to be an equal-



time surface. In this coordinate system, Sp = 0 and there are no delta functions on

the right hand side of the above four equations. It automatically follows that h, he,

h' and h' are continuous which implies Jp itself is continuous. Sp, on the other hand,

is allowed to have a jump at the transition.

It is worth pointing out that the above conclusions do not hold if one uses

a coordinate system in which the transition (equal-energy-density) surface is not

an equal-time surface. Suppose a new synchronous coordinate system is related to

the one used in the last paragraph by rnew = t0ld + Ar(k)Q(x) (together with a

corresponding change in x). Then Spnew = Pold - P'oAT. Since the background

pressure Po is discontinuous at the transition, SPnew contains a delta function and

equation (2.40c) implies that h' is not continuous.

This does not mean that the calculation cannot be carried out in the new

coordinate system. As long as the appropriate discontinuity in the derivatives of

the metric are taken into account, any coordinate system can be used. One can

however make a gauge independent statement regarding the junction condition. (,

which equals (aHh' - k 2h)/(2k 2 ) in the synchronous gauge by equations (2.14a) and

(2.39), is continuous across the transition. This is because h and h' are continuous

in the particular synchronous coordinate system in which the transition surface is an

equal-time surface. The gauge invariance of 0 then guarantees its continuity in any

coordinate system.

One more junction condition is needed because we have to match solutions

of a second order differential equation (2.17) at the transition. We will derive the

discontinuity in C (equation [2.19]) as the second junction condition.

(P, defined in equation (2.18), is proportional to 8pGI. According to equation

(2.13b), 8 pGI contains a delta function due to the presence of c . This is because po

or -y jumps at the transition (equation [2.9]).

To derive the jump in C, let me again employ the synchronous coordinate

system in which the transition (equal-energy-density) surface is an equal-time surface.

At the transition, Sp = 0 implies that h' = -(k 2 h - aHh')/3aH (equation [2.40a]).

From equation (2.40b), it follows that -a 2(po + po)v/k = -(k 2h - aHh')/3aH. The



part of SPGI that contains a delta function is therefore c'(k2 h - aHh')/a2 . Note that

Sp does not have a delta function because we are working in coordinates in which the

transition surface is an equal-time surface. Using equations (2.9), (2.18) and (2.19),

it can be verified that ( has a jump at the transition:

%A( (1) (2.41)
3a2H 2

where A denotes the change across the transition. We have used the fact that 4 =

(aHh' - k2h)/(2k 2) in the synchronous coordinate system.

A new gauge invariant quantity can be defined,

(p - ( + 3 2 H 2  (2.42)3-/a2H2

which is obviously continuous in the particular synchronous gauge used and so is

continuous in any coordinate system.

The continuity of (p or equation (2.41) can be used as the second junction

condition. Note that because of the jump, ( does not remain unchanged through the

transition. However, the jump is very small if the inflationary stage ends during the

slow-roll phase. We will discuss this point in the next chapter.

Let me denote the values of D and C right before and after the transition by

the subscripts infl and rad. Let me also define the following symbols:

_k7"tr k
tr - /atrtr (2.43a)

V3 2 'l4atrH3r

F =- COnf - Xtr(DinflA -(2.43b)

G= Oinf (2.43c)

where the subscript tr denotes evaluation at the transition. A(1/7) = 1/rad - 1/infl.

Then the continuity of 4 and the discontinuity of ( (equation [2.41]), together



with equations (2.36) and (2.37) implies that

Krl F )atcO s Xtr, = (F - G)atr + Fatrsinxtr (2.44a)
Xtr

sinxtr
Kr2 = -(F - G)atr i + Fatrcosxtr (2.44b)

Xtr

Fluctuations of cosmological interest have wavelengths much longer than the

Hubble radius at the time of transition, hence Xtr << 1. In this limit, Kr, is approxi-

mately equal to (F-G)atr/Xtr and Kr2 is insignificant compared to KrI. Substituting

this into equation (2.38), we obtain the asymptotic amplitude of acoustic oscillation

after the fluctuation enters the Hubble radius in the radiation-dominated phase:

P - 4(F - G) (2.45)
P0 asyrnp

where F and G are defined in equations (2.43b) and (2.43c). We have used the

definition of Xtr (equation [2.43a]) and the fact that a2H = a 2Htr in the radiation-

dominated stage.

The amplitude of the acoustic oscillation is completely determined by the

values of ( and I immediately before the transition. It is worth emphasizing that 4

is related to the derivative of C through equation (2.29). Thus it is sufficient to follow

the evolution of C in order to evaluate F and G in equation (2.45).



Chapter 3

Density Fluctuations in the Early

Universe: Dependence on Reheating

3.1 INTRODUCTION

In the last chapter, we have reviewed the basic results of general relativistic linear

perturbation theory, for the inflationary and radiation dominated stages. It has been

shown that the amplitude of density fluctuations at second Hubble-radius-crossing

during the radiation-dominated era is determined by the values of ( and 0 at the end

of inflation (equation [2.45]). Our aim in the chapter is to find out how these values

depend on the manner in which inflation ends.

The next section is devoted to a study of the evolution of the important quan-

tity ( in the inflationary era. In Section 3.3, the singularity of C at the point of

turn-around is analyzed. In Section 3.4, we put everything together and derive the

amplitude of density fluctuations in the radiation-dominated universe for two different

models of the transition, one where instantaneous reheating occurs in the slow-roll

phase and the other where it takes place very close to the point of turn-around. We

conclude in Section 3.5. In Appendix B to this chapter, we revisit the behavior of

( close to the point of turn-around and reconcile it with the interpretation of ( as a

curvature fluctuation.



3.2 THE EVOLUTION OF ( IN THE INFLATIONARY ERA

The evolution of C is determined by the simple equation (2.32). There are clearly two

separate regimes. When k2 > (a/)"/av, af•( simply oscillates. Hence,

V2HH [Kqisin(kTr) + Kq2cos(kr)] (3.1)
(Po

where IKq and IKq2 are integration constants. They are determined by the quanti-

zation procedure, which will not be discussed in the present work (see Mukhanov,

Feldman and Brandenberger 1992). Note that we have used VT = ýo/I'/ aH (equa-

tion [2.31]), which can be positive or negative.

The other regime is when k2 < (a )"/av. This is further divided into two

periods, a plateau/slow-roll phase and a valley phase. By the plateau we refer to

the stage when the scalar field slowly rolls at the top of the potential. The energy

content of the universe is dominated by the potential energy associated with the scalar

field. The Hubble parameter H is nearly constant and the universe expands almost

exponentially. The subsequent phase, when the scalar field departs significantly from

the plateau, is called the valley phase. The scalar field is not in the flat part of the

potential in this phase.

In the plateau or slow-roll phase, the kinetic energy of the inflaton is an in-

significant portion of the total energy, hence ] < H 2. The acceleration is also very

small, which means ý < H•o. If we further assume d3 o0 /dt' < H 2 0o, it can be

shown that (a1 /7)"/aV/--y2a 2H2 by using the expression for 7 in equation (2.31).

Hence the transition between the early oscillatory phase (equation [3.1]) and the

plateau/slow-roll phase (k2 < (aV1y)"/avF-2a2H 2) corresponds to Hubble-radius-

crossing.

An approximate solution for equation (2.32) in both the plateau/slow-roll

phase and the valley phase is

K = K 2 + K2  (3.2)
cr a3•



where we use proper time t instead of conformal time 7 and tcr is the time of Hubble-

radius-crossing. K1 and K 2 are integration constants which can be approximately

related to Kq, and Kq2 (equation [3.1]) by matching C and its derivative at tcr.

Note that ( = K2/-ya 3. 7-y, which is equal to ý2/2H 2 (equation [2.31]), increases

with time in the plateau/slow-roll phase. That H decreases with time follows from

H = -_g/2 (equation [2.8]). The time dependence of o2 follows from the slow-roll

approximation that •0o - (3H)-1 OV/IO (by rewriting equation [2.23] using proper

time and ignoring the 0 term). The factor of H - 1 increases with time as argued

before. If one assumes the potential is convex (i.e. 0 2V/&p2 < 0), (OV( ýo0 )/o)2 also

increases with time as o0 slowly moves away from zero or the top of the potential.

Hence both 7 and a in the denominator of the expression for ( increase mono-

tonically in the slow roll phase. a grows almost exponentially in this phase because

the energy content of the universe is dominated by the potential energy of the in-

flaton, or a cosmological constant. The enormous expansion of a causes ( to decay

quickly. C approaches a constant soon after tcr, the time of Hubble-radius-crossing.

This behavior is the origin of the statement that C remains constant for a

fluctuation of long enough wavelength. This is commonly demonstrated through

equation (2.29) or its cousins. Note that po + Po or 7 (equation [2.8]) occurs in the

denominator of the expression for (. As a measure of the contribution of kinetic

energy to the total energy content of the universe (equation [2.31]), 7- is small but

non-zero during the plateau/slow-roll phase. As long as k2 is sufficiently small in the

slow-roll phase, ( is negligible according to equation (2.29). However, 7 or p0 + Po

can vanish in the valley phase, in which case the argument for the conservation of

breaks down. Let us now turn to the valley phase.

We denote by t, the time when the plateau/slow-roll phase ends and the valley

phase begins. Equation (3.2) is rewritten in the form:

/ rt dif di_

((t) = K + K2  + ' 2  (3.3)

The terms in the bracket on the right hand side give the asymptotic value of C in the



plateau/slow-roll phase. C rapidly approaches this limit soon after Hubble-radius-

crossing, as argued before. Let us define

tv d(
s- K 1 + K2 Jtcr a (3.4)cr aS3

to represent this asymptotic value.

At the start of the valley phase, the inflaton begins picking up speed because

it is now in the steeper part of the potential. Then it rolls past the true minimum

of the potential and starts decelerating. Eventually, the inflaton comes to a halt,

0 = 0. y (equation [2.31]) vanishes. According to equation (3.3), ((t) diverges. I

define t = 0 to be the instant when this occurs, the time of turn-around. It raises

a few interesting questions. Does 4, which is a measure of the density fluctuation

(equation [2.16]), also diverge? Does C remain infinite after the inflaton starts moving

again? These questions are addressed in the next section.

3.3 SINGULARITY AT THE TURN-AROUND

To understand the behavior of C and ( close to the turn-around, we solve equations

(2.28) and (2.30) by a series expansion. Let t = 0 be the instant of turn-around.

We expand the coefficients of the differential equations in powers of t. At t = 0,

H = - /2 = 0 (equations [2.8] and [2.31]). Hence H vanishes at t = 0 also but the

third derivative is non-zero if 0o # 0. Equation (2.30) can be rewritten in the form

S+ C(t)( + D(t)( = 0 (3.5)

where C(t) = Eo =-1 C(n)tn and D(t) = 2T`0 D(")t". The first few coefficients are

0 - 1) = 2 ,D () k- (3.6a)
a2



Similarly, equation (2.28) can be rewritten as

S+ X(t)ý + Y(t)D = 0 (3.7)

where X(t) = X(")t' and Y(t) = Eo _I Y(n)t n. The lowest order coefficients
are

X(-) = -2 , Y(-) = -2Hit=0  (3.8a)

The series solutions for ( and ( are

= ((I + C(O) (I In t1)1 - - 2  ] I + ... (3.9a)

( 0= ( I + Z l In It 1) 0 +t3 -..

+()1 1 - Hft=0 t + 2(X(O) + H 2 + Y(O) 2 + ... (3.9b)
2t=O

where (I, II, (I and VI are integration constants. Z is a finite constant that

depends on the values of a and its derivatives at t = 0. Its exact form is unimportant

for our purpose. Note that the constants (I and ( I are not independent of I and

V" because C and ( are related by equation (2.14b).

The above expressions can be obtained by assuming C (or 4() has a solution

of the form tm E'0 b(n)tn where b(n)'s are constants. This is substituted into the

respective differential equations. m is determined by requiring that b(0) does not

vanish. It turns out this method gives only one of the two independent solutions,

the one associated with the constants (I (or II'). Let us denote this solution by

s'(t). The other independent solution s"II(t) is obtained by solving an equation for

the Wronskian which is defined as

W - 8 1 I I - 1sII = (SI) 2 . (3.10)



The equation for the W can be derived from the differential equation for C or (.

-WIW is equal to C(t) or X(t) depending on whether one is solving equation (3.5)

or (3.7).

The ( expansion contains divergent terms proportional to In It and t - 1. In the

small t limit, t- 1 dominates. Note that ( does not remain infinite for t > 0 (after the

point of turn-around). Therefore ( is well-behaved after the inflaton starts moving

again, even though it diverges at the instant of turn-around. (, on the other hand,

is regular at t = 0. The divergence of In It is killed by powers of t multiplying it.

The gauge invariant density perturbation SPGI, which is simply proportional to Ž

(equation [2.16]), is finite throughout the turn-around.

3.4 SENSITIVITY OF FLUCTUATION AMPLITUDE TO THE

TIME OF TRANSITION

It is often argued that the amplitude of density fluctuation at late times, the quantity

JP/Plasymp used in equation (2.45) for instance, is unaffected by the details of the

transition from the inflationary to the radiation-dominated stage. We demonstrate in

this section the possibility that the detail of the transition process does matter. For

this purpose we use an instantaneous-reheating-approximation. This is not meant

to be realistic but serves the purpose of illustrating the possibilities. The behavior

of 6 P/Plasymp is investigated for two cases: when inflation ends during the slow-roll

phase and when it ends very close to the point of turn-around.

Suppose inflation ends at some time ttr during the slow-roll phase. It is argued

in Section 3.2 that in the plateau/slow-roll phase, ( quickly approaches a constant

value (si (equation [3.4]) after Hubble-radius-crossing. Therefore, right before the

transition

((ttr) = (sl (3.11)

According to equation (3.2), ( = K 2/(a 3y). Hence K2 = a3 y tcr where tcr is the time

of Hubble-radius-crossing. D is related to the derivative of ( through equation (2.29).



Therefore right before the transition

H
'(ttr) = - a a3 H (3.12)

tcr ak2 
ttr

Putting the two expressions above into equations (2.43b) and (2.43c), it can be shown

that F - (sI and G is negligible to excellent approximation as long as a(tcr) << a(ttr),

that the universe expands by significant amount from Hubble-radius-crossing to the

transition. It is also important that 7, although small, does not vanish in the slow-roll

phase.

Putting F7 - G'(sl into equation (2.45) and making use of equation (2.27) to

relate C and poc.I, the following is obtained:

_p 'YGIP = 4H . (3.13)
P asymp O

The quantity on the right hand side can be evaluated at any time after Hubble-radius-

crossing as it rapidly approaches a constant value. This gives the amplitude of the

acoustic oscillation after the fluctuation enters the Hubble radius in the radiation-

dominated stage. This is the formula that has become part of the standard lore of

the inflationary theory. A fluctuation that enters the Hubble radius in the matter

dominated stage obeys a similar relation with a different numerical constant on the

right hand side.

The key to the derivation of the above result is that C remains almost constant

in the slow-roll phase. C is not, strictly speaking, conserved through the transition

(equation [2.41]). However, its jump at the transition is small if the inflationary stage

ends during the plateau/slow-roll phase. This is because wavelengths of cosmological

interests are much longer than the Hubble-radius at reheating and 7, although small,

is non-vanishing in the slow-roll phase. That is why we can use F - (sI and G - 0.

The constancy of ( from the exit to the entry of the Hubble radius is a very good

approximation for wavelengths of cosmological interests, if inflation ends during the

slow-roll phase.

The same is not true if the inflationary stage ends close to the point of turn-



around. It is shown in the last section that ( diverges close to it. We denote this

point by t = 0. For sufficiently small t,

(•. MI/t , . I , (3.14)

according to equations (3.9a) and (3.9b). The constant (I" can be related to K 2 in

equation (3.3) by expanding the integrand in powers of t:

a3 3 d3 H 2 + ... (3.15)
a 2H 2 dt3 t= o

Performing the integration in equation (3.3) using the above expansion, the dominant

contribution to ( in the small t limit is obtained. Comparing it with equation (3.14)

2H2 d3H -1
S a3  d K2  (3.16)

t--0

can be calculated from the same equation (3.3). 1 is related to ( by equation (2.29).

Hence
i I  H Kk= tK2, (3.17)ak2 t=0

where equation (2.8) has been used.

K 2 is simply equal to a3 Itcr (equation [3.3]). Substituting equation (3.14),

together with the expressions obtained above, into equation (2.43), one can obtain

F~= [(tcr)Y H (d3H(o0)  []a3 (tcr)I Hd)t 3 3(H))+2]-G (3.18a)

(G - ((t[)cr) • Jr (0) (3.18b)((te)7(or)a3,(cr)

6H(0) a3(0)

In obtaining F, we have used 7 = 2 after the transition and 7_-t 2 (2H(0)2 )-1 d3H(0)/dt3

close to the point of turn-around, but before the transition. We have also equated

a and H at the time of transition (t = ttr) with their respective values at the point

of turn-around (t = 0), assuming the transition takes place very close to it. This is

good enough for our purpose because we are interested in deriving the most diver-



gent contributions in the small t limit (t is now the difference between the times of

transition and turn-around).

G is exponentially suppressed because of the factor of a3(tcr)/a 3(O). So is F

unless H(O)t is extremely close to zero, which means the transition takes place very

near to the point of turn-around.

Let us consider the different contributions to F. ( can be expressed in terms

of the derivative of HSJGI/I through equation (2.27). Using equations (2.31) and

(2.8), it can be shown that d3H/dt3 = _(0o)2 at the point of turn-around. Putting

the expression for F into equation (2.45) and ignoring G, one obtains

[= ]] ( 33H2 )t2(3.19)P asymp a3(0) H 2 d t  
r =0 3H2(0)t2

tcr is the time when k2 /(2a 2 H 2 ) = 1 (equation [3.2]). t = 0 is the time when the

inflaton turns around. t is the difference between the time when inflation ends and

the time of turn-around. Note that we have kept only the most divergent term: 1/t 2.

Note that equation (3.19) was derived by setting the integration constant K2

equal to (a 3 -lt (see the paragraph preceding equation [3.18a]). This follows from

taking the derivative of equation (3.2) at time tcr (when k 2 = (a'i5)"/aiY'). Strictly

speaking, equation (3.2) holds only at some time later than tcr because it is an ap-

proximation in the regime k2 <K (av-i)"/av/-. Hence, the first two brackets on the

right hand side of equation (3.19) should really be evaluated not exactly at the time

when k2 = (aif)"/av1-' but some time later when equation (3.2) is a good approx-

imation. Exactly what time one picks is unimportant because as long as equation

(3.2) holds, the product of the first two brackets on the right hand side of equation

(3.19) is independent of the time at which it is evaluated.

There are a few note-worthy features of equation (3.19). First, the expression

is negligible unless t is fine-tuned to be very close to the time of turn-around, because

of the exponential suppression due to a3 (tcr)/a(O). This does not mean the density

fluctuation vanishes if the t is not close enough to zero: we have dropped terms that

are higher order in t in equation (3.14). It can be shown that some of these terms do



not have the exponential suppression factor a3(tcr)/a 3 (0).

Second, the amplitude is dependent upon, not HSGI/3o as in the standard

formula, but its derivative. In addition, the expression above is also dependent on ý0

at the end of inflation. Hence the amplitude of density fluctuations is sensitive to the

slope of the potential where the transition takes place.

3.5 CONCLUSION

Equations (3.13) and (3.19) contain the main results of the first half of this thesis.

If inflation ends during the slow-roll phase, we obtain equation (3.13) as the

expression for the amplitude of density fluctuations when they enter the Hubble

radius in the radiation-dominated era. It agrees with the standard result. (, which

obeys equation (2.19), is, to excellent approximation, a conserved quantity throughout

reheating. The reason is because the decaying mode for ( (the mode associated with

the constant KI2 in equation [3.2]) is redshifted away by enormous amount of inflation,

after Hubble-radius-exit.

However, if inflation ends very close to the point of turn-around, the same

mode that decays in the slow-roll phase can actually become dominant. This gives

rise to equation (3.19). The amplitude of density fluctuations diverges if inflation

ends exactly at the point of turn-around. But since this effect is associated with the

"decaying" mode in the slow-roll phase, the divergence is exponentially suppressed.

Hence, the divergence dominates only if inflation ends almost exactly at the time of

turn-around.

The divergence occurs to fluctuations on all scales. We have therefore demon-

strated an exception to the conventional wisdom, that the transition process cannot

affect large scale density fluctuations, which have wavelengths much larger than the

Hubble radius during reheating.

The break down of the standard lore occurs because C or other analogous

quantities, which is often argued to remain constant for super-Hubble-radius wave

modes, does change close to the point of turn-around. In fact, it diverges. It should be



emphasized, however, that this does not imply any physical divergence unless inflation

ends right at the moment of turn-around. We have shown in Section 3.3 that o, which

is proportional to a gauge invariant density fluctuation, remains finite throughout the

turn-around. It is the divergence of ( at that particular moment, together with the

role it plays in the junction conditions, that causes the physical divergence of density

fluctuations at second Hubble-radius crossing, if one forces inflation to end precisely

at the moment of turn-around.

The divergence is obtained in a simple model of instantaneous transition. In

a more realistic calculation, one expects a few changes. First, the great increase in

the amplitude of density fluctuations at second Hubble-radius-crossing occurs only if

one artificially ends inflation almost exactly at the point of turn-around. In a more

realistic calculation, it is quite possible that this effect will not be dominant. Second,

the divergence occurs because the sum of pressure and energy, in equation (2.19),

vanish when the scalar field momentarily stops at the points of turn-around. If a

small amount of radiation is allowed to be present, the denominator in the expression

for C cannot vanish any more and the divergence is suppressed.

Nonetheless, it remains to be shown whether the reheating process can affect

large scale density fluctuations, when the relevant physics of the inflaton-decay is

taken into account properly. The very existence of the divergence at the point of

turn-around is an interesting indication of what can happen.



Chapter 4

Local Approximations: Formulation

4.1 INTRODUCTION

The complexity of nonlinear gravitational instability challenges our understanding of

the universe. Even though the law of gravity between two bodies is very simple in

the non-relativistic limit, the long-range interactions among exceedingly many bodies

leads to behavior that defies simple analysis beyond the linear regime. Computer sim-

ulation with N-body methods provides a comprehensive approach to this problem, but

it suffers from finite dynamic range and computational expense. Even more impor-

tantly, simulations do not increase our understanding of dynamics without guidance

from analytical approaches.

In Chapters 4 and 5, we explore a class of what we call local approximations

for the nonlinear dynamics of self-gravitating cold matter. By local we mean that the

density, velocity gradient, and gravity gradient for each mass element behave as if the

element evolves independently of all the others once the initial conditions are specified.

This might sound quite implausible. After all, mass elements do influence each other

through gravity. However, as we will demonstrate, the celebrated Zel'dovich (1970)

approximation (henceforth ZA) can be viewed as exactly an approximation of this

sort. (For readers who are familiar with the ZA, it is probably obvious that the ZA

is local. Our aim is to cast the ZA in a form useful for generalization to other local

approximations.)



In the past several years, there have been various attempts to improve upon

the ZA. A notable recent example is the modified Zel'dovich approximation (MZA)

proposed by Reisenegger & Miralda-Escud6 (1995). The approximation is exact for

the gravitational collapse of a mass element with spherical, cylindrical or planar sym-

metry, just like a new approximation that we propose in this chapter. Unfortunately,

the MZA suffers from unphysical singularities for a certain class of otherwise accept-

able initial conditions (Reisenegger & Miralda-Escud6 1995).

Other attempts to improve upon the ZA include the adhesion approximation

(Kofman et al. 1990), the frozen flow approximation (Matarrese et al. 1992), the

frozen potential approximation (Brainerd et al. 1993; Bagla & Padmanabhan 1994),

the truncated Zel'dovich approximation (Coles et al. 1993), the smoothed potential

approximation (Melott et al. 1996) and higher-order Lagrangian perturbation theory

(Melott et al. 1995) (note that the ZA can also be regarded as the first-order solu-

tion in Lagrangian perturbation theory). Most of them are attempts to deal with

the evolution of high density regions after trajectories cross, when the ZA ceases to

be adequate. However, this is a difficult problem. Aside from the spherical model

(Peebles 1980) and its cousins, there still exists little in the way of approximation

methods for post-collapse evolution.

In this thesis , we will not try to tackle the problem of trajectory crossing or

the subsequent nonlinear evolution. Instead we ask whether one can improve upon the

ZA even before orbits cross by seeking generalizations of the ZA within the framework

of local approximations. In simple terms, a local approximation is one in which the

evolution of each mass element is described by a set of ordinary differential equations

in time in which there is no coupling to other mass elements, aside from those implied

by the initial conditions. For instance, as we will explain more fully later, the evolution

of a given mass element under the ZA is completely determined once the initial

expansion, vorticity, shear and density at this mass element are specified. (The first

three quantities correspond to the trace, antisymmetric part and traceless symmetric

part of the velocity gradient tensor.) The evolution of other mass elements have

no effect on the evolution of these quantities at this mass element. In other words,



under the ZA, all the information about other mass elements is encoded in the initial

conditions. Once these are specified, each mass element goes for its own "free ride"!

We shall seek generalizations of the ZA by first systematically writing down a

set of Lagrangian evolution equations for the velocity and gravity gradient for a given

fluid element. We discuss two local approximations based on ignoring certain terms

in the evolution equation for the Newtonian tidal tensor. One of them was introduced

by Bertschinger & Jain (1994). The history associated with it has been discussed in

Chapter 1 and is not repeated here.

The second local approximation based on the tidal evolution equation is en-

tirely new. It is based on dropping several more terms in addition to the Weyl tensor

term. We will show why this is a better approximation compared to the one proposed

by Bertschinger & Jain (1994). In fact, in tests this new approximation performs even

better than the ZA, both in cases where exact solutions are known and where numer-

ical solutions are calculated. In this thesis, we concentrate on a comparison of the

three local approximations for ellipsoids, with and without symmetries.

To understand the main ideas underlying these local approximation methods,

and how they differ from other approaches, it is useful to draw an analogy with grav-

itational lensing. Our use of Lagrangian fluid equations is akin to solving the optical

scalar equations (Sachs 1961), whereby one follows the two-dimensional cross-section

of a congruence of light rays propagating through space. Our approach is similar,

with light rays replaced by cold dust, and with the two-dimensional cross-section re-

placed by the three-dimensional volume of a mass element. In fact, both approaches

follow from the pioneering work in general relativity by Ehlers (1961) and Kundt &

Triimper (1961). The first application of these methods to matter was by Hawk-

ing (1966), who pioneered the covariant fluid approach to cosmological perturbation

theory. The formalism was championed by Ellis (1971) and eventually was applied

to the formation of large scale structure (see Bertschinger 1995 and the references

cited previously). As in the case of gravitational lensing, this approach can tell how

a given (mass) element evolves but does not give its trajectory. The optical scalar

equations do not replace the gravitational lens equation, they supplement it. Like-



wise, the local methods can supplement N-body simulations or other approximations

such as Lagrangian perturbation theory, by providing accurate ways to follow the

deformation of mass elements as they evolve under gravity.

The organization of this chapter is as follows. In Section 4.2, we show how the

ZA is a local approximation. Section 4.3 presents two additional local approximations

based on dropping terms from the tidal evolution equation, and shows under what

circumstances these approximations are exact. In the next chapter, we describe tests

to compare the three approximations. Chapters 4 and 5 are largely based on a preprint

(Hui & Bertschinger 1996).

4.2 ON THE ZEL'DOVICH APPROXIMATION

In this section we review the Zel'dovich approximation starting from the Eulerian

fluid equations in comoving coordinates. We then show that it can be regarded as a

local approximation.

The cosmological fluid equations for cold dust in a perturbed Robertson-

Walker universe with expansion scale factor a(T) are (Bertschinger 1995):

a- + Vi [(1 + )vi ] = 0, (4.1)

av
i  a/

+ vIvV3v = -- v ' - V70 (4.2)aT --- _
7 a

V 2 = 47rGa2poS . (4.3)

The mass density is p = po(T)(1 + 5) and & = dy/dr is the proper peculiar velocity

where Y is the comoving spatial position and r is the conformal time (hence, dTr = dt/a

where t is the proper time). We are neglecting spatial curvature so that we can use

Cartesian coordinates where V i = Vi = /axzi for the ith spatial coordinate. The

prime denotes differentiation with respect to conformal time.

The trajectory of a fluid element is x'(j, T) where qis a Lagrangian coordinate



labeling the element, conventionally chosen to be the initial position:

x'(q, -) = q' + V'(, IT) . (4.4)

Now we introduce the Lagrangian time derivative d/dT - /&T + vJVj. This time

derivative commutes with a/aqi. Using v' = d'i/dT, we can rewrite equation (4.2)

as
d 2 a' dd_2 a_ + 0 - 47rGa2poo' = -V - 47rGa2po . (4.5)

d -2' a d-

Each term on the left-hand side is first order in 0'. The right-hand side can be

estimated from the Poisson equation (4.3), but first we need the mass density. It

follows in the Lagrangian approach by noting that pd3x is conserved along a fluid

streamline provided d3x is computed from the mapping ( -+ X. If there are no

displacements, q = Y and p = po. The volume element follows from the Jacobian

determinant, leading to
i -1qp(,)=o - (4.6)p(' , = P0Oqjy

For small displacements the Jacobian may be expanded in a power series; the first-

order term gives p = po(1- aoi/aqi)+O(02). Now note that ao'/&xt = (aO'/aqJ)(aqJ/&xi ) =

ao'/aq' + O(02). Therefore, using equation (4.3), we see that the divergence of the

right-hand side of equation (4.5) vanishes to first order in 0'. If 0i is longitudinal

(i.e., has vanishing curl), then the right-hand side itself vanishes to first order. Dis-

placements that grow by gravity are necessarily longitudinal in linear theory. The ZA

consists of setting to zero the right-hand side of equation (4.5). (It can be generalized

to allow for a transverse displacement; see Buchert 1993 and Barrow & Saich 1993 .)

Under the ZA, the evolution of displacement thus obtained is used in equation (4.6)

to get the density field. The ZA is equivalent to first order Lagrangian perturbation

theory for the trajectories (q, 7T).

With vanishing right-hand side, equation (4.5) is identical to the linear per-

turbation evolution equation for S (a fact that becomes obvious when one notes

S = -f/•/8q' and d/dT = a/aT to first order in 0). This second-order ordinary



differential equation in time has two independent solutions that we write D±(r) (Pee-

bles 1980). Taking the growing solution and requiring # to be longitudinal, we get

the solution

0i(q, 7) = D+(rT) (4.7)

where p(q) is a displacement potential which is fixed by initial conditions.

Next we will show that equations (4.4) and (4.7) imply that the ZA displace-

ment field is longitudinal in x-space (the irrotational initial conditions already imply

it is irrotational in q-space), a first step needed before we show that the ZA is a local

approximation. We have

)a a(a (ql 2V = D+(7*)%ikaxj aqki 'k(K j = D+ k (ax) j (aqk&q 1

where eCijk is the usual antisymmetric Levi-Civita symbol. Now, note that the Jacobian

matrix defined by the transformation of equations (4.4) and (4.7), Ox'/Oql  = j8 +

D+O2 /Oq j &q1, is real and symmetric. By a theorem of linear algebra its inverse,

Oq'/axi, is also symmetric. So is a2 /aqk Iq1 and, because they commute, so is their

product. Thus, in the equation for V x b above, eijk is contracted with a matrix that

is symmetric in j and k, yielding V x = 0 (Zel'dovich & Novikov 1983).

The implication of this result is that 0 is longitudinal in Y-space as well as in

q-space. The same conclusions hold for the velocity field V, since it differs from by

only a time-varying factor D'I/D+. As a result, under the Zel'dovich approximation

we can write

'(ý(X', 7), 7)a= D+(7) 0 i) and v'(7, 7) = D'1 (r)0(xT) d( _ ,T) 0+ ; d-r -0 .

(4.8)
The last equation follows from the fact that a8/ax8 = pO/Oq' (cf. eq. 4.7). Recall

that under the ZA the right-hand side of equation (4.5) vanishes. Using equation

(4.8), we then get

( 2 1 - 2a'fS= -D+ 47rGa poD+) - V - 3H V (4.9)+ ( ý3•oHo02



where f - dIn D+ /dln a. Thus, in the Zel'dovich approximation, the velocity field is

always (not just to first order in b) proportional to the gravity field (Kofman 1991).

It is clear geometrically that this result must be correct for planar, cylindrical, or

spherical flow for growing mode initial conditions. For plane-parallel flows, but not

otherwise, the coefficient of proportionality of the ZA is also correct, so that the ZA

is exact (until orbit-crossing) in one dimension.

We are now going to present the ZA from another point of view. Similar work

has been done by Kofman & Pogosyan (1995). Our aim is to motivate how one might

improve the ZA by generalizing it to a broader class of local approximations. It will

become clear shortly exactly what we mean by local approximations.

Let us first give a brief summary of the Lagrangian fluid equations (Bertschinger

& Jain 1994). First of all, the gradient of the fluid velocity field is decomposed into

its trace, traceless symmetric and antisymmetric parts, which are the expansion 0,

shear oij and vorticity wi, respectively:

1
ViV -3 0 ij + ij +•Wij ij = Oji Wij --= ijk k = -W ki (4.10)

where 2W' = V x iY. Then, converting time derivatives from Eulerian to Lagrangian,

equation (4.1) becomes
dS

•T (1 + 5) 0 = 0 (4.11)

Taking the trace of equation (4.2) and using equations (4.3) and (4.10), one obtains

the Raychaudhuri equation:

dO a' 1+ -+ 0 + o -2 + ja - 2w 2 = -47rGa 2poS , (4.12)
dT a 3

where w2 w wi. Similarly, taking the antisymmetric and traceless symmetric parts

of equation (4.2) gives respectively

dw' a' 2
dT + - W + -3 w -- w = 0 (4.13)

dT a W 3 W J



and

dcxij a' 2 1dair a' ¾' + 2 aij c~k. + WiWj - I (H ak +W2~d- +  --a 3 + ik k 3 3j 3k•  2 = -Eij , (4.14)

where Eij Vi7Vj - (1/3) Si V 2q is the gravitational tidal field.

In keeping with the spirit of Lagrangian fluid dynamics, we would like an

evolution equation for Esj. From equations (4.1) and (4.3), Bertschinger & Hamilton

(1994) derived

dEe, a'd-- +-- Eij - Vk 6kl (iHj)l + OEij + Sj u kl Ekl - 30k(iEj)k - Wk(iEj)k = -47rGa 2 p 2ij.d7 a

(4.15)

Parentheses around a pair of subscripts indicates symmetrization, e.g., a k(iEj)k =

(akjEjk + ak3EA,)/2. The new quantity HiN is the Newtonian limit of the magnetic

part of the Weyl tensor in the fluid frame. The definition and discussion of this term

will be deferred until the next section.

Equations (4.11) to (4.15) form a hierarchy of Lagrangian fluid equations. It

is an incomplete set because we have not stated the evolution equation for Hlj. In

order to arrive at a local set, we must eliminate the gradient term in equation (4.15),

either by finding an approximation for -Vk Ckl( Hj)l or by truncating the hierarchy

in a way that eliminates our need to determine it.

The ZA eliminates the need to calculate Hij by approximating the evolution

of the gravity field - equation (4.9) relates Vq to i~. As a result, the tidal tensor in

the ZA follows from the shear:

47rGapo 3t 0H(
E =- Hf ' = 2a' f 'i  (4.16)

Furthermore, the divergence of the gravity field is given in the ZA by the velocity

expansion scalar 0 instead of the density fluctuation. Thus, the ZA is equivalent to

solving the local evolution equations

dO a' 1 0 .. 47rGapo
d+ a 0 + -0 + rijjs - 2w 2 -= Hf 0 , (4.17)

dT a 3 Hf



d + - i+1 +j +()UklUkI + 2) - 47rGapo . (4.18)
d7i a 3 2 + "j- Jf o-%j_.(4.18

Together with equations (4.11) and (4.13), these give a closed set of equations for the

evolution of quantities for a single mass element with no spatial gradients. This is

what we mean by locality. Note that we have assumed the irrotational flow initial

condition and so wij = 0 from equation (4.13) at all times before trajectories intersect.

Equation (4.18) can be written also as an evolution equation for Eij by making use of

equation (4.16) (Kofman & Pogosyan 1995). But it is clear that in terms of obtaining

a closed set of local equations, it is sufficient to stop at the level of the shear equation

(4.18).

Hence, we have shown that the ZA is a local approximation based on truncat-

ing the set of Lagrangian fluid equations at the shear evolution equation by setting

Eij proportional to aij and by approximating the gravitational source term in the

Raychaudhuri equation. It is then very natural to ask whether we can go further, by

using the exact Raychaudhuri equation and by truncating the system of equations at

the tidal evolution equation with a different approximation from the ZA.

There is a simple argument for why we should expect to be able to improve

on the ZA. It is well known that the ZA gives incorrect results for spherical infall.

For spherical infall, the velocity and gravity fields are isotropic around a point, so

that ij = EiJ = 0 at that point. Yet, the ZA overestimates the collapse time for

a uniform spherical tophat. The reason for this is that the ZA does not obey the

Poisson equation, so the right-hand side of equation (4.17) is not exact. We can

at least correct this term. We have tested this approximation - using equation

(4.12) in place of equation (4.17), and using equation (4.18) for the shear evolution

- and found that it works poorly aside from spherical flow. Thus, we seek improved

approximations based on a more accurate treatment of the tidal tensor.



4.3 Two LOCAL APPROXIMATIONS BASED ON THE TIDAL

EvoLUTION EQUATION

As remarked in the last section, the hierarchy of Lagrangian fluid equations can be

truncated at the tidal evolution equation, provided that we approximate, or elim-

inate, the Hij term (and possibly other terms also). If possible, we would like to

find local approximations that retain the successes of the Zel'dovich approximation.

These include giving the correct results in linear perturbation theory and giving the

exact solution for plane-parallel flows. Ideally, we would also like to improve on

the Zel'dovich approximation by giving exact results for spherical and/or cylindrical

flows. We use these criteria in seeking improved approximations.

Let's look at the magnetic part of the Weyl tensor more closely. The definition

is given in Bertschinger & Hamilton (1994):

1

Hi -I V(iHJ) - 2 vk Ckl(Ej) (4.19)

where Hi satisfies:

Vx H= -167rGa 2 f± , 'V. TH = 0. (4.20)

Here f1 is the transverse part of the mass current, defined as follows:

f-- f - A = P- , 1 • T (4.21)

Using these definitions, we can rewrite equation (4.15) as follows:

dE__ a'd + --Eij + Mij = -47rGa 2poi3 , (4.22)dT a

where

Mij - -Vk Ckl (iHj) + OEij + ij o klE kl - 3 k (iEj)k - k(iEj)k

2 ld
-47rGa2pV(ivj) _I d (Vi•Vjao)

a d7



= -47rGa 2V(iLf±j) - Vk VkiV7 + V(iVj)V 2, .

Let us first consider plane-parallel flows, for which the ZA is exact. The

velocity and gravity gradient tensors may be written

Vivj = 0diag(0, 0,1), ViV = V 2 diag(0, 0,1), (4.24)

where diag() denotes the elements of the diagonalized tensor. Evaluating MiA using

equations (4.23), we find that the curl Hj1 term as well as the sum of terms propor-

tional to the tidal tensor vanish identically. The individual tidal terms do not vanish.

This result suggests two different closure schemes for the tidal evolution equation

(4.22). The first one is to discard Vk 6kl (iHj)l. The second is to discard the complete

tensor Mid. If some of the tidal terms of Mi3 were retained, the resulting approxima-

tion would not be exact for one-dimensional flows, hence would not improve on the

Zel'dovich approximation.

The first choice, setting Hij = 0 in equation (4.15), was proposed by Bertschinger

& Jain (1994):

d + - Eij + OEi + J6i klEkl - 3k(iEj)k - k(iEj)k = -47rGa2p Oij . (4.25)
dTr a

We shall call this the non-magnetic approximation (NMA). Combined with equations

(4.11)-(4.14), it provides a closed set of local evolution equations. The NMA was

inspired, in part, by the remark of Ellis (1971) that the magnetic part of the Weyl

tensor has no Newtonian counterpart. However, it leads to unusual behavior, im-

plying that cold dust fluid elements generically collapse to spindles (Bertschinger &

Jain 1994). Also, Bertschinger & Hamilton (1994) were able to derive equation (4.15)

with HiN defined using equations (4.19)-(4.21) from Newton's laws in an expanding

universe, as well as constraint and evolution equations for Hij itself (the latter using

post-Newtonian corrections), from which we now know that Hij is not identically zero

in the Newtonian limit, aside from some special cases of high symmetry.

Thus, we are motivated to try the second approximation, setting Mij = 0 in

(4.23)



equation (4.22):
dE-j a'dZ + -Ea = -47rGa 2paiJ . (4.26)
dr a

Equation (4.26) and equations (4.11)-(4.14) form our new set of closed local equations.

We shall call this the Local Tidal Approximation (LTA) to distinguish it from equation

(4.25), the non-magnetic approximation.

The LTA is, in a sense, a close cousin of the NMA. Recall the definition of

Hi in equation (4.19). Substitute this into the definition of Mj in equation (4.23).

All terms involving the product of Eij and the velocity gradient tensor cancel. The

result is

Mi. = -VkCkl(IH'j)l + VmVk [6kl mn (El)n + 6 kl mn(iE]) , (4.27)

where H j- H i +2 vk 6 k1 (kEJ) is gotten by setting vk = 0 in equation (4.19). While Hii

represents the magnetic part of the Weyl tensor in the fluid threading, Hy represents

it in the comoving threading (Bertschinger & Hamilton 1994).

The distinction between Hiy and Hfj is most clear using the 1 + 3 threading

split of spacetime (Bertschinger 1995). The electric and magnetic parts of the Weyl

tensor follow by projecting the Weyl tensor and its dual using a timelike unit vector u"

(threading) onto the spatial hypersurface orthogonal to u". An analogous procedure

is used in electromagnetism to obtain the components of the electric and magnetic

field from the field strengh tensor. The magnetic part of the Weyl tensor in the

fluid threading, HiJ, follows from using the fluid 4-velocity, which has components

u" = a-l(1, v2). Using instead the 4-velocity of observers stationary in the given

coordinate system (the Poisson gauge in this case; see Bertschinger and Hamilton

1994), u' = a-1 (1, 0), yields the magnetic tensor Hi' in the comoving threading.

Either threading may be used in general relativity. Fluid threading leads to

equation (4.15). Comoving threading leads to

dEi__j_ a' l m

d + - Eij - Vk kl (iHj') +VmVk [kl icmn(jEI)n + k% j mn(i El) = -47rGa 2p oj
a 3(4.28)

(4.28)



Equations (4.15) and (4.28) can be shown to be equivalent by using equations (4.23)

and (4.27).

Comparing equations (4.26) and (4.28), we see that the LTA makes two ap-

proximations: (1) The curl of the magnetic part of the Weyl tensor vanishes in the

comoving threading (Vk Ckl (iH') = 0), and (2) the advective terms on the left hand

side of equation (4.28) vanish (the bracketed terms vanish or else Vm vanishes) at the

position and moment of interest. By contrast, the NMA assumes that the magnetic

part vanishes in the fluid threading. At this stage we cannot say which is a better

approximation. For that we must compare both with exact solutions.

The LTA, like the ZA, is exact for plane-parallel flows prior to the intersection

of orbits. What about spherically and cylindrically symmetric flows, for which the

ZA is not exact? For the LTA, we use equations (4.23) to evaluate Mij3 for flows that

are spherically symmetrical around the fluid element under consideration. As long as

the gravity gradient is finite at the origin (a condition that holds for any continuous

finite-density mass distribution), this restriction implies that all three eigenvalues of

VijV% are equal, so Eij = 0 identically (similarly Uj = 0). Equations (4.25) and

(4.26) are satisfied trivially. Thus, the LTA is exact for spherical mass elements. So

is the NMA.

Next we consider a non-singular fluid element on the symmetry axis of a cylin-

drically symmetric flow. By this we mean that two eigenvalues of ViVjq are equal

and the third one vanishes and similarly for Vivj. In this case we have

1 1
Viv=i 0 diag(11,, O), VVj=_ = V 24 diag(1,1,0). (4.29)

2 2

Using this, it is easy to show that the sum of tidal terms in the first form of equation

(4.23) do not vanish, while, with equations (4.3) and (4.11), the second form for Miy

leads to Mij = 0. Thus, the LTA is also exact for cylindrical flows, while the NMA

is not. Bertschinger & Jain (1994) erred in concluding that the NMA was exact for

cylindrical flows even though they were correct in saying that Hij = 0 for such an

element. Although Hi3 vanishes, its curl (taking Hij to be defined everywhere in



the fluid threading) does not. However, when expressed in the comoving threading

discussed before, the curl of the magnetic part of the Weyl tensor does vanish for a

cylindrical flow '(hence the LTA is exact in this case).

One can generalize these results to show from the second form of equation

(4.23) that Mij = 0 for any flow for which (V 2 )-1 ViVjo equals 0-'V(iVj) and is a

constant tensor. These conditions are equivalent to saying that the orientation and

axis ratios of the gravitational and velocity equipotentials are constant for the mass

element under consideration. Thus, the LTA is exact for flows with equipotentials

of constant shape. Although this condition does not always hold, it is valid for

the growing mode in the linear regime and it includes spherically and cylindrically

symmetric flows as well as plane-parallel flows. Moreover, the gravitational potential

contours are more nearly spherical than the density contours around a peak, so their

shape would be expected to change relatively slowly with time, suggesting that the

LTA may be a good approximation in general.

In the linear regime, the LTA, NMA, and ZA all agree. It is already clear

that they must differ in second-order perturbation theory; in the Appendix of the

next chapter we present the calculation of Vk kl (iHj), and Mij. However, it is more

important to see how these various approximations behave as collapse is approached.

We know already that generic initial conditions lead to collapse along one dimension

(pancake) with the ZA while the NMA leads to collapse along two dimensions (spin-

dle) (Bertschinger & Jain 1994). What about the LTA? How accurate is the LTA

for asymmetrical initial conditions? Before answering these questions we first exam-

ine the relative sizes of the terms in equation (4.22) for an overdense homogeneous

ellipsoid in an expanding universe.



Chapter 5

Local Approximations: Tests

5.1 INTRODUCTION

Three different local approximations were introduced in the last chapter. Some of

them were shown to be exact in the presence of certain symmetries. For instance, the

Zeldovich Approximation (ZA) is exact in cases of planar symmetry while the Local

Tidal Approximation (LTA) is exact if the gravitational and velocity potentials have

spherical, cylindrical or planar symmetry at the mass element of interest.

In this chapter, we compare the three different local approximations for more

general initial conditions. In Section 5.2 we consider the motion of a homogeneous

ellipsoid, in both cosmological (Friedmann-Robertson-Walker background) and non-

cosmological (vacuum) contexts. The Weyl tensor and other relevant terms in the

tidal evolution equation are evaluated. In Section 5.3 we discuss how different non-

linear approximations predict pancake versus spindle collapse from generic initial

conditions, for which we also calculate the collapse times. Conclusions are presented

in Section 5.4. In Appendix C we present some relevant results of second-order per-

turbation theory.



5.2 COLLAPSE OF A HOMOGENEOUS ELLIPSOID

We summarize here the equations of motion for an irrotational homogeneous ellipsoid

embedded in an expanding universe. The various interesting quantities in the tidal

evolution equation are then calculated for the collapse of a particular ellipsoid.

We consider an irrotational homogeneous ellipsoid with proper axis lengths R 1,

R 2, and R 3 embedded in a Friedmann-Robertson-Walker background. The equations

of motion are (Icke 1973; White & Silk 1979):

d2R, [2 Pb)] (2 51dt - 27GRi Pb + Ci(pe - Pb)  (5.1)

where t is the proper time (dt = adT) and ai is defined by

ai = RiR 2R3  ds(5.2)
S(R + ) (R•• s ••R2 + s)(R 32 + )

Here Pe is the total density within the ellipsoid while pb is the density of the expanding

universe surrounding the ellipsoid. They are related to the mean and perturbed

densities used previously by pb = p and p, = pi(1 + J). We evaluate them from the

evolution of the axis lengths and the background expansion scale factor:

peRIR 2R 3 = Peo , Pba 3 = Pbo , (5.3)

where Peo and p,o are constants. Note that al + a 2 + a 3 = 2 and we assume fQo =

1. Note also that since equation (5.1) is second order, there are in general two

independent modes. We choose growing mode initial conditions. For small a the first

order solution or, equivalently, the ZA result, is

Ri(t) = a(t)X, I - aio-ooa (5.4)

where the Xi's give the initial axis ratios, a 0io gives the initial ellipsoid parameter, and

Jo gives the linear amplitude of the density perturbation. We set J0 = 1 for overdense



ellipsoids without loss of generality.

Equation (5.3) implies that the total mass, including the mass inside the el-

lipsoid as well as outside, is actually not conserved even though the mass inside the

ellipsoid is. Hence equation (5.1) can only be an approximation to the true evolution

of an initially homogeneous ellipsoid. In general, one expects that such an ellipsoid

would cause the density of its immediate surroundings to deviate from the cosmic

mean. Tidal fields from this perturbed external material should then induce depar-

ture from homogeneity in the ellipsoid. Based on results from an N-body simulation

(S.D.M. White, unpublished notes), we assume that it is a good approximation to

ignore departures from homogeneity inside and outside the ellipsoid when calculating

the evolution of the axis ratios.

It is noteworthy that equation (5.1) is exact if pb = 0, i.e., for a homogeneous

ellipsoid in a vacuum. Later in this section we will test our approximations using the

exact solution in this case.

The peculiar velocity field inside the homogeneous ellipsoid is described by:

vi = -'_ ' xi (5.5)RT a

and the gravitational potential within the ellipsoid is:

= 7rGa2(pe - Pb) aix . (5.6)

(The xi are comoving coordinates and primes denote conformal time derivatives.)

Quantities like the expansion, shear, and tidal field can be immediately read off from

these expressions:
R'a'

0 = _ -3 a (5.7)
R i a

S= diag E (5.8)
)Ri 

3 k Rk

E"j = 27rGa2 (p - Pb) diag ai - 2) (5.9)
3 )



The tensor MiJ defined in equation (4.23) is given for the homogeneous ellipsoid by

MAj = 27rGa2p. diag -2cij + (ai - 0 1 (5.10)

Using the time evolution of Ri given by equation (5.1), the evolution of the

various quantities above can be calculated. In particular, we are interested in the

relative magnitude of various terms in the tidal evolution equations (4.15) and (4.22).

We integrated equations (5.1) and (5.2) numerically starting from equation (5.4)

at a = 10-8 with axis ratios 1 : 1.25 : 1.5. From the axis lengths Ri and their

time derivatives, using equations (5.7)-(5.9) we calculated the velocity and gravity

gradient terms inside the ellipsoid. From these we then calculated the evolution of

-Vk fkl (iHj), Mij, and 47rGa2pij inside the ellipsoid. Note that in this test we do

not integrate the tidal evolution equation itself; rather, we evaluate the terms in it

assuming that the system evolves according to the homogeneous ellipsoid solution.

Although, as we noted above, this solution is not exact, we are being self-consistent by

evaluating the various tensor quantities using equations (5.7)-(5.10), which assume

spatial homogeneity inside the ellipsoid.

Figure 1 shows the results of this calculation. The magnitudes of -Vk fk1 (iHj)

and Mij are divided by the magnitude of 47rGa2pa~ij, where by the magnitude of a

matrix we mean the square root of the trace of its square. We see that -Vk Ckl H()l

and Mij are both small compared to 47rGa2prij at both early and late times, but not

intermediate times (near maximum expansion). Interestingly, the magnetic term and

Mij have similar magnitude throughout the collapse process.

We can easily understand why 47rGa2p rij is much bigger than both -Vk Ckl (.Hj)l

and Mij at early times using perturbation theory. The shear is first order. The last

form of equations (4.23) is the best place to see that Mij is second order: fLi is

second order because, to first order, fi = Piv is longitudinal (we assume irrotational

initial conditions). The other contributions to Mij are obviously second order. From

the first form of equation (4.23), we conclude also that -Vk Ck1 (Hj) is second order.

Expressions for these two tensors in second order perturbation theory are given in



Appendix C. They are both nonzero in general.

The behavior of these quantities close to the moment of pancake collapse can

also be estimated analytically. Suppose that the third axis collapses while the other

two axes still have finite lengths. The term 47rGa2purij diverges at the moment of

pancake collapse because p diverges and so does aij, owing to the R' /R 3 term in

equation (5.8). For the behavior of -Vk Ck1 (iHj), and Mij approaching collapse, we

need to understand the behavior of the ai's.

It follows from equation (5.2) that O1 and a2 vanish in the limit of vanishing

R 3 for finite R 1 and R 2 , because the integral is finite while the factor of R 3 in front

vanishes. Note also, by definition, the three ai's always add up to 2. Hence c3 = 2

at collapse. Moreover, it can be verified using equation (5.2) that the a"s are finite

at the moment of collapse, assuming the R 's are finite. It can then be shown using

equations (5.7)-(5.10) that the particular combination of ai's conspires to render

both MiJ/4rGa2p and -Vk 6 k1 (Hj)1/47rGa2p finite. Hence at the moment of pancake

collapse, -Vk fkl(iHj)j and Mij are indeed much smaller than 47rGa 2po3j.

The fact that -Vk kl(iHj), and Mij are both small compared to 47Ga2paij

at early times and at the moment of pancake collapse suggests that the NMA and

LTA might both be good approximations. However, Figure 1 shows that these terms

are not negligible throughout the collapse process. Hence there is no guarantee that

either approximation can reproduce the correct features of the collapse process (cf.

Shandarin et al. 1995 ). In particular, we do not know from these results whether the

NMA or LTA would produce pancake collapse given the initial conditions we have

chosen. We also do not know which approximation will be more accurate for generic

initial conditions, although Figure 1 suggests that it may be better to neglect Mij

than Hij.

5.3 PANCAKES VERSUS SPINDLES

The oblate and prolate configurations are distinguished by the signature of the eigen-

values of EiJ and ij. For the collapsing oblate (pancake) configuration, the eigen-



values of Ei3 have the signature (-,-, +) and those of aij have (+,+,-). For the

collapsing prolate (spindle) configuration, Eij has eigenvalues with signature (-, +, +)

and aij has (+, -, -). One way to see why this is true is by inspecting equations (5.8)

and (5.9). For the pancake configuration, one can use the fact that a 3 is close to 2

(supposing collapse occurs in the third direction) while a1 and a 2 almost vanish. For

the spindle configuration, suppose that collapse occurs for the second and third di-

rection and suppose for simplicity that they collapse at the same rate. Then from

equation (5.2), one can show that close to the spindle configuration, a 3 -• a 2 - 1 and

a, - 0. Using this and equations (5.8) and (5.9), it is possible to obtain the signature

for the eigenvalues of Eij and aii. Note also that it is sufficient to consider only the

divergent parts of Eij and oij to get the right signatures.

Consider equation (4.25). This is the tidal evolution equation of the NMA,

which ignores the magnetic part of the Weyl tensor. First of all, the term proportional

to a'/a always tends to decrease Eij, encouraging spherical collapse. But by the time

the motion of the object under consideration breaks away from the expansion of the

universe, this term becomes unimportant. Suppose now that the object is close to the

pancake configuration with Eij having signature (-, -, +) and crij having (+, +,-).

Then it can be seen that all the terms favor pancake collapse (or favor neither pancakes

nor spindles) except the shear-tide coupling terms Sij " klEk1 - 3ok(iEj)k. The net sign

of these two terms is such that the growth of Eij towards the pancake signature

is suppressed. Suppose on the other hand that the object is close to the spindle

configuration with Eij and ori having signatures (-, +, +) and (+, -, -) respectively.

Then all the terms, including the shear-tide couplings, encourage the growth of tide

towards the spindle signature. In other words, the NMA on the whole favors collapse

toward the prolate or spindle configuration.

Consider, on the other hand, the exact tidal evolution equation (4.22). For an

object with a very short third axis compared to the other two, we expect a 3 to be

slightly less than but close to 2 and a1 and a 2 to be small and positive. Substituting

this into equation (5.10) and looking only at the most divergent terms, one can verify

that Mij has signature (-, -, +) close to the pancake configuration. Using similar



arguments, it can be deduced that Mij has signature (-, +, +) close to the spindle

configuration. Hence, Mi has the same signature as Eij close to collapse, whether

it be pancake or spindle; therefore it stabilizes collapse just like the Hubble damping

term proportional to a'/a. Hence ignoring Mij, which is the LTA, does not favor

spindles over pancakes. This is very different from the NMA.

Equation (4.23) tells us that Mi3 contains both -Vk Ck1 (iHj) and the shear-

tide coupling terms. We can now see what is wrong with the NMA - for the spindle

configuration, -Vk k1 (iHj)l has a signature that is opposite to the shear-tide coupling

terms, and it is large enough to reverse the spindle-enhancing effect of the latter. As

a result, Mij as a whole, which includes the sum of these terms, plays no favorites.

Numerical integration bears out this analysis. We tested the LTA and NMA

by integrating the sets of local Lagrangian fluid equations which are obtained by

ignoring the relevant terms in the tidal evolution equation: equations (4.11), (4.12),

(4.14), and either (4.25) or (4.26). The tensor equations were diagonalized along

principal axes. Initial conditions were chosen using equations (5.4) and (5.7)-(5.9)

so as to correspond to the homogeneous ellipsoid model with initial axis ratios 1 :

1.25 : 1.5. Given the numerical solution for 0(T) and o-j(r), we then predicted the

evolution of the homogeneous ellipsoid axis lengths by solving equations (5.7)-(5.8) for

Rl/Ri and numerically integrating it to get Ri(r). For comparison, we also computed

the prediction of the ZA for the axis evolution given the same initial conditions.

We obtained the same results for the ZA by integrating the local Lagrangian fluid

equations (4.17) and (4.18) as we did from equation (5.4).

Figure 2 compares the local approximations (ZA, LTA, NMA) for the evolution

of the axis lengths with each other and with the solution given by integrating equations

(5.1). Both the ZA and LTA reproduce the qualitative features of pancake collapse.

As we have already noted, the NMA predicts collapse to a spindle instead of pancake.

For these initial conditions, at least, the LTA is even more accurate than the ZA.

The LTA overestimates the expansion factor at collapse by only 3%, compared with

52% for the ZA. The LTA appears to rectify one of the well-known problems with

the ZA, namely the fact that it underestimates the rapidity of collapse for non-planar



perturbations. This result is consistent with our observation in §4.3 that the LTA is

exact for spherical and cylindrical symmetry. We note in passing that the modified

Zel'dovich approximation mentioned in the introduction performs even a little better

than the LTA for the above test case but it suffers from unphysical singularities for

more generic initial conditions (Reisenegger & Miralda-Escud6 1995).

It is also useful to compare the local approximations with the exact solution for

cylindrically symmetric perturbations. Consider a homogeneous overdense cylinder in

an Einstein-de Sitter universe, with radius R(t). The equation of motion is given by

Fillmore & Goldreich (1984). It can be written in a form corresponding to equation

(5.1):
d = -27rGR 23Pb + (Pc- Pb) , (5.11)
dt2 

-3 -2G

where Pc is the density inside the cylinder. In fact, this is identical to equation (5.1)

for a homogeneous ellipsoid with axis ratios R : R : oc, for which a, = a 2 = 1,

a3 = 0. We repeated the comparison of local approximations with the exact solution

given by integrating equation (5.11). The results are shown in Figure 3. The LTA is

exact, while the NMA underestimates the expansion factor at collapse (by 23%) and

the ZA overestimates it (by 36%).

An exact solution also exists for a homogeneous ellipsoid in a vacuum (non-

expanding) background (Lin et al. 1965). It is easy to modify the NMA and LTA

equations for this case, by setting a = 1 and pb = p = 0. We did not integrate the

non-cosmological analog of the ZA. As for Figure 2, we set the initial axis ratios to

be 1 : 1.25 : 1.5, although in this case we set the initial velocity field to zero. Figure 4

shows the results. Once again we see that the LTA is rather accurate for generic initial

conditions (the collapse time here is 1.5% too large) and leads to pancake collapse,

while the NMA incorrectly predicts spindle collapse.

To compare the three local approximations (ZA, NMA, LTA) with more gen-

eral initial conditions, we follow the notations of Bertschinger & Jain (1994) and write



traceless symmetric tensors in terms of a magnitude and an angle:

2 8G)
caij = 2 u Qij (a) , E= - Ga2 1 ) . (5.12)

We have introduced new scalars or < 0, C > 0, a and 3 (0 < a, _< r), and a

one-parameter traceless quadrupole matrix

cs(a +27r ,o a -27r
Qij(a) diag [cos ( 2 , cos ( 2), cos () (5.13)

3 3 3

With this parametrization, oblate configurations have cos a > 0 while prolate config-

urations have cos a < 0. Of course, the shape of a perturbation can change with time.

The equations of motion for a, c, a, and 3 for the NMA are given by Bertschinger &

Jain. For the LTA, their equations (13) and (14) are changed to become

dc 0C = -a cos a- (5.14)dr3 '

d= --3 sina - (5.15)
dT T 3

One quantity of interest for general initial conditions is the expansion factor at

collapse, i.e., the linear overdensity when a given mass element collapses. Following

Bertschinger & Jain (1994), we parametrize the initial conditions by co and •0 , which

are related to the values of c and a in linear theory through c = aco and a = a0 .

Because initially underdense perturbations can collapse if the shear is sufficiently

strong, we treat both initially overdense and underdense perturbations by specifying

Jo = +1, respectively (Jo being related to 5 in linear theory by J = aSo). The

expansion factor at collapse, a,, is determined by integrating the local evolution

equations for the LTA and NMA. For the ZA, it is simpler to use equations (4.4) and

(4.8), noting that collapse occurs when the determinant of ax1/aqj vanishes. With

our parametrization of the initial velocity and gravity gradient tensors, it follows that

3
ao = oS(o/3) (ZA). (5.16)Jo + 2(:o cos(ao/3)



The collapse expansion factor ac is defined to be the absolute value of the linear

overdensity when a given mass element collapses to infinite density. For example,

an overdense spherical perturbation collapses when ac = 1.686, while a cylindrical

perturbation collapses when a, = 1.466 and a plane-parallel perturbation collapses

when ac = 1. Although there exists no exact solution for arbitrary initial conditions,

it is informative to compare all three methods. Based on our previous results we

expect the LTA to be accurate to a few percent.

We plot contours of constant collapse time for different initial tidal parameters

c0 and a0 for the three local approximations in Figure 5. In each part, the left

panel gives results for overdense perturbations while the right panel is for initially

underdense perturbations. Figure 5b presents the same results as Figures 1 and

2 of Bertschinger & Jain (1994). We see that the LTA and ZA are qualitatively

similar, although the ZA overestimates the collapse time for overdense configurations

with small tide (near the center of the figures). According to the ZA, a, = 3 for

spherical perturbations while the exact value is ý(2/37r)2/3 = 1.68647.... Both the

ZA and LTA indicate more rapid collapse for initially oblate configurations. As noted

by Bertschinger & Jain, initially prolate configurations collapse faster in the NMA

because according to its incorrect dynamics initially oblate configurations must change

shape before collapsing to a spindle.

Bertschinger & Jain (1994) also noted that shear can lead to collapse of under-

dense perturbations. From Figure 5, we see that that the size of the non-collapsing

region in parameter space (in the middle of the right-hand panels) is largest for the

NMA and smallest for the ZA, indicating that the NMA underestimates the fraction

of initial underdense perturbations that can collapse, while the ZA overestimates it.

Using the probability distribution of co and •0 derived by Bertschinger & Jain for

a Gaussian random field, we find that the probability that a randomly chosen mass

element will collapse is 0.780 for NMA, 0.888 for LTA, and 0.920 for ZA. Thus, taking

the LTA as the most accurate, approximately 78% (= 2 x 0.888 - 1) of the initially

underdense perturbations (and 100% of the overdense ones) will collapse. This esti-

mate neglects the crossing of mass elements, which increases the likelihood of collapse



by increasing the density owing to multi-streaming Indeed, we expect most mass ele-

ments to collapse eventually in a perturbed self-gravitating cold dust medium. Note

also that the probabilities quoted above apply to underdense regions in the early

universe, not the universe today. For instance, the fact that most underdense mass

elements in the early universe collapse does not imply the probability of finding voids

in the present universe is small. On the contrary, weighing by volume, the probability

of locating voids or highly underdense regions in a random sample of the universe to-

day is quite high because most of the mass has collapsed, leaving most of the volume

emtpy.

5.4 CONCLUSION

In Chapters 4 and 5, we have discussed three different local approximations for grav-

itational collapse of perturbations in an expanding universe: the Zel'dovich approxi-

mation (ZA), the non-magnetic approximation (NMA) of Bertschinger & Jain (1994),

and a new local tidal approximation (LTA) introduced here. Conventionally, the ZA

is presented as a mapping of Lagrangian to Eulerian positions. However, we showed

that it can also be regarded as a certain truncation of the set of Lagrangian fluid

equations for the density, velocity gradient, and tide following a fluid element of cold

dust. With the ZA, the gravity gradient is explicitly proportional to the velocity gra-

dient, resulting in modifications to the Raychaudhuri and shear evolution equations.

The tidal evolution equation need not be integrated in the ZA because the gravity

field acting on a mass element is given by a simple extrapolation of initial conditions.

The other two approximations we discuss extend the ZA by integrating the exact

Raychaudhuri and shear evolution equations, with approximations made only to the

tidal evolution equation.

All three local approximations are exact for plane-parallel perturbations. How-

ever, the behavior for other shapes of perturbations shows significant differences in

behavior. The ZA is only approximate for non-plane-parallel distributions. The NMA

is exact for spherical perturbations but not cylindrical ones. The LTA is exact for



spherical and cylindrical perturbations and, more generally, for any growing-mode

perturbations whose gravitational equipotential surfaces have constant shape with

time.

In order to test these approximations for non-symmetrical shapes, we com-

pared them in the case of the collapse of a homogeneous ellipsoid. As expected from

the results of Bertschinger & Jain (1994), we find that the NMA generically pro-

duces spindle-like singularities at collapse. The LTA, on the other hand, generically

produces pancakes, just like the ZA. For triaxial ellipsoids, we compared numerical

integrations of the local evolution equations with known solutions for a homogeneous

ellipsoid in both cosmological and vacuum backgrounds. (An exact solution exists for

the latter case while, in the former case, the homogeneous ellipsoid solution is not

really exact because tides will cause the background, and then the ellipsoid itself, to

become inhomogeneous. However, these effects are expected to be small.) We find

that the LTA is significantly more accurate than the ZA (see Fig. 2).

These results suggest we have found a promising new approximation for nonlin-

ear gravitational instability. However, we have only studied the evolution of isolated

irrotational perturbations. Caution is needed because we do not know how accu-

rate the LTA is for more general initial conditions, for example, those with vorticity.

Moreover, we do not know by how much the tide produced by other mass elements

degrades the accuracy. External tides modulate the equipotentials surrounding a

mass element; qualitatively, we expect little effect as long as the external tide evolves

weakly or is small compared with the trace part of the gravity gradient. Quantitative

analysis is best (lone using N-body simulations, which we leave for later work.

The LTA has one significant limitation compared with the ZA. It tells us

only the internal state of a given mass element (density, expansion rate, shear) and

the tide on the element, but does not give the position of the element. However,

for many purposes one cares more about the internal evolution of a mass element

than about its position. For example, simple models of galaxy formation are based

on spherical infall. These can be improved by inclusion of shear and tides (Bond

& Myers 1993; Eisenstein & Loeb 1995). Our approximations could lead to even



more accurate models of this sort. Also, if one does need to know the positions of

mass elements, then one can always supplement the Lagrangian fluid equations by

the equation of motion for positions, perhaps using the Zel'dovich approximation or

higher-order Lagrangian equations of motion. In principle, by following the velocity

gradient for many mass elements, one can reconstruct the velocity field (up to an

irrelevant overall constant), and then integrate the positions with dI/dT = T. An

equivalent procedure was suggested by Matarrese et al. (1993).

Perhaps the most important reason for seeking new approximations like the

LTA is that we still lack a good understanding of the behavior of collisionless sys-

tems under nonlinear gravitational instability. Future work will tell whether local

Lagrangian flow methods will provide new insights.
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Fig. 5-1.- Evolution of the magnitudes of -Vk 6kl (iHj)l (dashed line) and Mij (solid
line) divided by the magnitude of 47rGa 2pori, evaluated for a homogeneous ellipsoid
with initial axis ratios 1 : 1.25 :1.5 embedded in an expanding universe. The magni-
tude of a matrix is defined here as the square root of sum of squares of eigenvalues.
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Fig. 5-2.- The evolution of axis lengths for a homogeneous ellipsoid embedded in
an expanding universe. The initial axis ratios are 1 : 1.25 : 1.5. The "exact" solution
(ignoring development of inhomogeneity, solid curve) is compared with the ZA (short
dashed curve) and two local approximations: the local tidal approximation (LTA, long
dashed curve) and the non-magnetic approximation of Bertschinger & Jain (NMA,
dotted curve).
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Fig. 5-3.- The evolution of the radius of a cylindrical perturbation in an expanding
universe, corresponding to a homogeneous ellipsoid with axes R: R : 0o (a cylinder).
The exact solution (solid curve) is compared with the ZA (short dashed curve) and
the NMA (dotted curve). The LTA is exact for this case.
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Fig. 5-4.- The evolution of axis lengths for a homogeneous ellipsoid embedded in
empty space. The initial axis ratios are 1 : 1.25 : 1.5. The exact solution (solid curve)
is compared with the predictions of LTA (long dashed curve) and NMA (dotted curve).
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Fig. 5-5a.- Contours of constant collapse time computed using the ZA, expressed by

the cosmic expansion factor ac or its reciprocal, versus initial tidal field parameters.
Left panel: initial positive density perturbations. The light (heavy) contours are

spaced by 0.1 (0.5) in ac, with the outermost contour ac = 0.4 and the central value

(corresponding to spherical collapse) ac = 3.0. The ZA significantly overestimates
the collapse time for low-shear perturbations. Right panel: initial negative density

perturbations. The light (heavy) contours are spaced by 0.1 (0.5) in aZ , with the

innermost contour a = 0 and the outermost one a; = 2.3. Initial perturbations in

the central region do not collapse. Perturbations are oblate (prolate) for co cos a0 > 0

(co cos ao < 0).
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Fig. 5-5b.- Same as Fig. 5a except that the NMA is used. In the left panel the
innermost contour is ac = 1.6. In the right panel the outermost contour is ac = 1.8.
The smaller extent of the contours for prolate configurations (co cos •o < 0) reflects
the fact that the NMA favors prolate collapse.
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Fig. 5-5c.- Same as Fig. 5a except that the LTA is used. In the left panel the

innermost contour is ac = 1.6. In the right panel the outermost contour is a - = 1.6.

The LTA, like the ZA, favors oblate (pancake) collapse over prolate (spindle) collapse.



Chapter 6

The Statistics of Density Peaks and the

Column Density Distribution of the

Lyman-Alpha Forest

6.1 INTRODUCTION

There is a long history of theoretical efforts to place the study of the Lyman-a forest

within the framework of cosmological structure formation theories (Rees 1986; Bond

et al. 1988; McGill 1990; Bi et al. 1992). Recent work making use of numerical simula-

tions has greatly advanced our understanding in this direction (Cen et al. 1994; Zhang

et al. 1995; Hernquist et al. 1995; Petitjean et al. 1995; Miralda-Escude et al. 1995).

(See also Bi et al. 1995 for a linear theory calculation). The emerging picture is that

it is possible to account for all the observed properties of the Lyman-a forest (with

column densities [NHIm] less than about 1017 cm- 2 ) by assuming it originates from

the small scale structure, including the network of filaments, pancakes and mild den-

sity fluctuations, which arises naturally in hierarchical clustering cosmological models

(Weinberg et al. 1996).

A commonly used statistic to characterize the forest is its column density dis-

tribution, the number of absorption lines per unit column density per unit redshift as

a function of column density. Other useful statistics include line-line correlations and
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the distributions of b-values and equivalent widths (Murdoch et al. 1986; Carswell

et al. 1991; Press et al. 1993; Cristiani et al. 1995). There have also been proposals

of new statistical tools (Meiksin & Bouchet 1995; Miralda-Escud6 et al. 1995; Pando

& Fang 1996). (See Tytler 1992 for a general overview of the statistical issues con-

cerning quasar absorption systems.) We focus our attention on the column density

distribution in the present work.

One of the most striking features of the observed column density distribution

of quasar absorption systems is that it can be approximated by a single power law

that extends over many orders of magnitude. This was emphasized by Tytler (1987),

among others who found that in the range 1013 < NHI < 1022 cm- 2 , the distribution

was reasonably well represented by a power law, oc NH- with /3 = 1.51 + 0.02.

However, there exists evidence of at least one break. It has been demonstrated that

there is a deficit of absorption systems somewhere in the column density range 1014

to 1017 cm- 2 compared to a power-law extrapolation of the distribution from lower

column densities (Carswell et al. 1987; Petitjean et al. 1993; Hu et al. 1995; Giallongo

et al. 1996). For reasons that have to do with the nature of the approximations that we

make (Sec. 6.5.1), we focus our attention on absorption systems with column densities

in the range 1012.5 < NHI < 1014.5 cm - 2.Hu et al. (1995) obtained 3 = 1.46 with a 95%

confidence range of (1.37,1.51) in the column density range 1012.3 < NHI < 1014.5 cm - 2

. Lu et al. (1996) found the same best-fit 3 of 1.46 for the same range of column

densities.

An obvious ultimate goal of recent theoretical work on the Lyman-a forest is to

constrain theories of structure formation. The natural question is: what determines

the normalization and slope of the column density distribution? What are the major

determining factors, in addition to the usual parameters specified by a given cosmo-

logical model? To answer these questions, another question has to be addressed: what

are the analytical and/or computational tools necessary to make accurate predictions

for the column density distribution, given all the required parameters?

Accordingly, the present work can be divided into three parts, where the tools

are developed, the factors that influence the column density distribution are analyzed
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and one application to a class of cosmological models is discussed.

Numerical hydrodynamic simulations (Cen et al. 1994; Zhang et al. 1995;

Hernquist et al. 1995; Miralda-Escude et al. 1995) provide the most obvious tools to

study the Lyman-a forest. Computational costs, however, prevent one from testing

a lot of cosmological models. The Zel'dovich approximation (Zel'dovich 1970), with

appropriate smoothing, is presented in this chapter as an efficient and accurate al-

ternative. Our basic assumption is that the part of the Lyman-a forest with column

densities less than about 1014.5 cm - 1 arises mostly from regions of mild overdensities

(< 5) or even underdensities which have not undergone orbit-crossing. The Zel'dovich

approximation can be coupled with the equations governing the thermal and ioniza-

tion states of the gas to yield predictions for the density of neutral hydrogen and the

peculiar velocity as a function of position. Absorption spectra are then generated and

analyzed. Basic expressions for the absorption optical depth are presented in Sec. 6.2

and the approximations that go into its computation are discussed in Sec. 6.3.

Given an absorption spectrum, the column density distribution depends on

the methods of identifying lines and assigning column densities. This is discussed in

Sec. 6.4.1. Using a method described in that section (Miralda-Escud6 et al. 1995), we

investigate the effects of peculiar velocities on the column density distribution. We

find that although peculiar velocities can strongly influence the shapes of absorption

profiles, they play a minor role in determining the column density distribution. The

various interesting effects of peculiar velocities are discussed in Sec. 6.4.2. Motivated

by this finding, a very different way of assigning column densities is introduced in

Sec. 6.5, in which no absorption spectrum needs to be generated. In the absence of

peculiar velocities, there is a one-to-one correspondence between density peaks in real

space (if they are separated by a distance larger than a minimum corresponding to the

thermal broadening width) and minima in the absorption spectrum. One can simply

identify density peaks in real space and assign a column density to each based on its

height and curvature. The number density of such peaks is then converted into the

column density distribution. We apply this procedure (we call it the Density-Peak-

Ansitz) to the density field predicted by the truncated Zel'dovich approximation and
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test the result against that of a full hydrodynamic simulation. The column density

distribution obtained in this way is compared to that obtained from the hydrodynamic

simulation using the Voigt-profile-fitting-technique, which is the line-identification

method most commonly used. The level of agreement is found to be excellent. In

Sec. 6.5.1, we discuss the range of parameters in which our computed column density

distribution is expected to be reliable.

Armed with the right tools, we turn our attention to the second question:

what factors determine the column density distribution? They can be divided into

two categories. One has to do with properties of the intergalactic medium, including

its temperature, the equation of state, the ionizing radiation intensity and the baryon

density. Uncertainties in all of them have to be taken into account before one can

meaningfully confront theories with observations. We distinguish between the factors

that mostly affect the normalization of the column density distribution and those that

mostly affect its slope. It is also emphasized that the temperature and the equation of

state depend on the reionization history of the universe (see Hui and Gnedin 1996 ).

The second set of factors affecting the column density distribution has to do with the

specific cosmological model, namely the normalization and shape of the corresponding

power spectrum. We study a few Cold Dark Matter (CDM) models in Sec.6.6 for this

purpose. It is found that the amount of (linear) power on comoving scales of around

2 h1oo00 Mpc -1 to 20 h100 Mpc - ' is the single most important factor in determining the

slope of the column density distribution. Increasing the power tends to flattens the

distribution. In Sec.6.7, we write down expressions relating the slope of the column

density distribution to the equation of state and the amount of power on small scales.

We then study a group of Cold plus Hot Dark Matter (CHDM) models in

Sec. 6.8, making: use of the insights gained in Sec. 6.6. The Q, = 0.2 (density param-

eter in neutrino) models have steeper column density distributions compared to those

with , -= 0.1 because they have less power on the relevant scales. In particular,

the low Hubble constant (H0 = 50kms -1 Mp c - 1 ) •, = 0.2 models predict slopes

that are steeper than the observed one for most of the parameter-space specifying the

properties of the intergalactic medium. Only for almost isothermal equations of state
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can the two be made consistent with each other. We emphasize however that a more

detailed comparison between the models and observations, taking fully into account

instrumental noise and biases of the line-identification method(s), is necessary before

one can firmly reject a model. In Sec. 6.9, we summarize our conclusions.

On our notations, bold faced letters are reserved for three-dimensional vectors.

The symbols Vpec and x denote the three-dimensional peculiar velocity and comoving

position while vpec and x are their counterparts along the line of sight of interest.

Standard symbols are used for cosmological parameters: H for the Hubble constant

as a function of z, H0 for the Hubble constant today, h100 for H0/100 kms- 1 Mpc - 1 , Qo

for the density parameter today, with the subscript b to denote its baryon portion and

v its neutrino content. The term multiple-streaming is reserved for the situation where

a single observed redshift corresponds to more than one position in real space. We

distinguish it from the term orbit-crossing, which is commonly used interchangeably

with multiple-streaming in other contexts. Orbit-crossing refers to the case where a

single position has more than one velocity.

This chapter is largely based on a preprint (Hui, Gnedin and Zhang 1996). We

thank Edmund Bertschinger for generously providing computer codes which, after

slight modifications, are used to generate the Zel'dovich density and velocity fields.

6.2 COSMOLOGICAL LYMAN-ALPHA ABSORPTION IN A

FLUCTUATING MEDIUM: BASIC RESULTS

A photon emitted with energy higher than 10.196 eV (wavelength of 1216 A) by a dis-

tant quasar is continuously redshifted as it travels through the intergalactic medium

until it reaches the observer. At some intermediate point, the photon is redshifted

to around 1216 A in the rest frame of the intervening medium, which may contain

neutral hydrogen. It excites the Lyman-a transition and is absorbed. Consider a

particular line of sight from the observer to the quasar, the optical depth (related to

the probability of transmission by e- 7) of a photon at a given observed frequency vo
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is given by:
fs dx

T(Vo) B dnHIxO + (6.1)
XA l+ z

where x is the comoving radial coordinate of some intermediate point along the line

of sight, z is the redshift and nHI is the proper number density of neutral hydrogen at

that point. The limits of integration, XA and XB, are the comoving positions of the

observer and the quasar. The Lyman-a absorption cross-section is denoted by o0'.

It is a function of the frequency of the photon with respect to the rest frame of the

intervening hydrogen at position x. Let us call this frequency v. The cross-section is

peaked when v is equal to the Lyman-a frequency, v.

The frequency v is related to the observed frequency vo by:

v = Vo(1 + z) (1 + V•ec , (6.2)

where Vpec is the peculiar velocity at position x and 1 + z is the redshift factor due

to the uniform Hubble expansion alone at the same position. The peculiar velocity

of the observer, which merely displaces the whole spectrum by a constant amount

(independent of x), is ignored. The quantity vpec/c, where c is the speed of light, is

much smaller than 1.

It proves convenient for later discussion to expand z around some mean redshift

of interest z, which could be the redshift of a simulation output or the average redshift

of an observed spectrum with limited redshift range. Using dx = cdt/a, where a is

the Hubble scale factor and t is the proper time, it can be shown that

V = vo(1+z) + + + z (X -t) + vec(X), (6.3)

where - is the position at which the redshift due to Hubble expansion coincides exactly

with i. The Hubble constant at the same redshift is denoted by H. We assume the

range of x is small enough so that u/c < 1. The convention a = 1 today is adopted.

The velocity coordinate u defined above contains contributions from both the

Hubble expansion and the peculiar motion. Without peculiar motion, u increases
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monotonically with x and is in fact linear in x. Peculiar velocities destroy the linear

relation and could give rise to situations where a given u corresponds to more than

one position x. It implies that a photon of a given observed frequency V0 can have

the same rest-frame frequency v at more than one place in its trajectory from the

quasar to the observer. We reserve the term multiple-streaming to this situation and

distinguish it from orbit-crossing where a given x carries more than one Vpec or u. We

will return to the subject of multiple-streaming in Sec. 6.4.2 and that of orbit-crossing

in Sec. 6.3.1 .

We define one more velocity coordinate uo, which is related to the observed

frequency vo by:

VO( (1 - U (6.4)

where vc, is the Lyman-a frequency. The velocity coordinate u0 is simply equal to u

when v coincides exactly with v•a (this can be seen by comparing equations [6.3] and

[6.4], bearing in mind that u/c and uo/c are both assumed to be much less than 1).

With the definitions in place, we change the variable from x to u in equation

(6.1), which results in the following expression for T, now a function of uo :

-1Uo B HI du - C e-(u-Uo) 2 A (6.5)
S 1 + z dx , a

The summation refers to a sum over multiple-streams (all the x's within the range

XA - xB that corresponds to a given u), and nHI, z and |du/dx|- 1 are now functions

of u. The limits of integration UA and uB are the velocity coordinates corresponding

to the positions XA and XB (assuming no orbit-crossing so that each x carries one u).

Note that in practice, only a limited range of u contributes to T for a limited range of

uo so that one can replace the redshift z with z. The same is also true for equation

(6.1).

The Lyman-a cross-section o,, is expressed as a function of u - uo. The con-

stant 0,o is equal to the combination of fundamental physical constants 0.4167re 2/(rnmeCVa),

where e is the charge of an electron and me is its mass. It is about 4.5 x 10- 18 cm 2.

The parameter b is equal to 2ks T/mn where kB is the Boltzmann constant, mP is
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the mass of a proton and T is the temperature of the gas.

The form of the line profile function above takes into account thermal broad-

ening but ignores the natural line width. A more general profile function involves

a convolution of the two, resulting in the Voigt profile (Rybicki & Lightman 1979).

However, for column density less than about 1017 cm - 2, the simple thermal profile is

adequate. Only for systems where the optical depth greatly exceeds one is it impor-

tant to use the full Voigt profile. The reader is referred to Spitzer (1978) and Press

and Rybicki (1993) for discussions of curve of growth analysis.

Note also that it is sometimes assumed b contains a component due to turbulent

motion. We do not include it explicitly in our formalism. Bulk motion, on the other

hand, is accounted for by Vpec or u.

Let us consider two different limits of equation (6.5).

Suppose there is a high local maximum in nHI Idu/dx - ' at some u = umax

with width in velocity space much smaller than the thermal width b. Then one can

take the line profile function associated with a, out of the integral in equation (6.5)

because nHI Idu/dx|-1 varies much more rapidly than the thermal profile:

(mdx) c (_rn 2

r(uo) = nHax •IX )- c e - (u O- umax) 2 /b 2 , (6.6)
(Lax 1 +Z z br

where the variable of integration has been changed back from u to x. The equation

holds when uo is close enough to Umanx. The integral is over the local maximum,

assuming that the amount of neutral hydrogen away from the maximum does not

cause significant absorption (until another maximum is encountered). One then sees

an absorption line with an exponential profile in optical depth. While the width of

the line tells us about b, which is proportional to the square root of the temperature,

the depth of the line provides information about both b and the column density, which

is the integral inside the first pair of brackets on the right hand side. Let us call this

the narrow-maximum-limit.

Consider another limit of the integral (equation [6.5]) in which rHIIdu/dxl-'

varies slowly with u. Suppose the scale of variation is much larger than the thermal
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width. In this case, one can leave the line profile function inside the integral but take

the rest outside: 1
nHI du -

T(Uo) = c- ao. (6.7)
1 +ý zdx

The velocity dependent terms on the right hand side are evaluated at uo. The profile

function has been integrated out.

In the above limit, 7 does not necessarily have the thermal profile around its

maxima. We will call this the broad-maximum-limit. An extreme example is that

of a homogeneous medium, which gives rise to featureless and uniform absorption

(Gunn & Peterson 1965).

Conventional analysis of quasar spectra involves identifying those parts of the

spectra that are due to the Lyman-a absorption and fitting them with superpositions

of the Voigt profiles (of which the thermal profiles are a subset) until the residual

signal is consistent with noise. This technique was motivated by the picture of the

intergalactic medium as consisting of a smooth component which causes relatively

little absorption and a set of clouds that satisfy the narrow-maximum-limit. For

each cloud, the best-fit Voigt profile then yields its temperature and column density

according to equation (6.6).

However, it is clear that not all maxima in - necessarily satisfy the conditions

leading to equation (6.6). In fact, according to most structure formation theories,

there invariably exists fluctuations in the intergalactic medium on scales larger than

the thermal width. In the broad-maximum-limit, the shape of a local maximum

in optical depth is determined by the distribution of nHI and Idu/dxl around it.

Each maximum in T can still be identified as an absorption line and one can even

apply standard techniques and try to fit its shape with superposition of the Voigt

profiles. Given the best-fit Voigt profiles, one can assign a b-value (width of the

profile) and a column density to each but it is no longer true, for instance, that the

b-value thus obtained is equal to 2kBT/mp. A reasonable question to ask is whether

there are other practical methods of identifying absorption lines and assigning column

iThe expression is not valid at velocity caustics, where du/dx vanishes. Further discussion can
be found in Sec. 6.4.2.
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densities without assuming every absorption line consists of a superposition of the

Voigt profiles. This will be discussed in Sec. 6.4.1. One might even seek ways other

than the column density distribution to describe the fluctuations in T. See Miralda-

Escud6 et al. (1995) for a discussion of some of these methods.

In general, there are regions of high density and limited extent, galaxies for

instance, which give rise to absorption profiles well approximated by the narrow-

maximum-limit, but there are also regions in the intergalactic medium with gentle

fluctuations where the broad-maximum-limit holds. Then there are those places where

neither limit applies, in which cases, a full integration of equation (6.5) has to be

carried out to compute the optical depth. To do so, one needs to know how the

neutral hydrogen density, peculiar velocity and temperature vary with space. This

is the subject of the next section. In any case, the above discussion should make it

clear that the quasar absorption spectrum contains a wealth of information on the

intergalactic medium.

6.3 INGREDIENTS FOR GENERATING QUASAR ABSORP-

TION SPECTRA

There are four quantities that go into the computation of the optical depth: tem-

perature, peculiar velocity, overdensity and neutral fraction. That the temperature

and peculiar velocity are important should be obvious from the expression for the

absorption cross-section in equation (6.5). The temperature determines the extent

of thermal broadening and the peculiar velocity changes the frequency of the photon

in the fluid rest-frame (equation [6.3]). Let us define carefully what we mean by the

other two quantities, the overdensity and the neutral fraction.

Suppose nH(x) is the total proper number density of all hydrogen species at

position x and FiH is its spatial average. The overdensity 3 b, which describes the

variation in space of nH(x), satisfies:

nH (X) = H [1 + Sb(X)] , pb(X) = Pb [1 + Sb(X)] . (6.8)
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In the first expression, 4b is defined as the number overdensity of hydrogen. In the

second expression , we equate Sb with the mass overdensity of baryons (Pb is the proper

mass density of baryons and pb is its mean), which is an excellent approximation

for our application because there is no significant conversion of hydrogen into other

elements, nor is there any interaction that could cause the spatial distribution of

hydrogen to deviate significantly from that of other types of baryons.

What the Lyman-a absorption directly probes is not the total hydrogen density

but its neutral component. The neutral fraction XHI is defined by the following

relation:

nHI(X) = nH(x)XHI(x), (6.9)

where nHI is the proper number density of neutral hydrogen as a function of space. The

neutral fraction is determined by the balance between recombination and ionization,

the rates of which are dictated by the temperature and radiation intensity respectively.

In general, all four quantities, overdensity 4b, peculiar velocity Vpec, temper-

ature T and neutral fraction XHI, are functions of position. In the next two sub-

sections, we discuss first how to determine the spatial distributions of 6b and Vpec,

and second how T and XHI vary with position through their dependence on 6b. All

quantities are evaluated at the redshift z (see equation [6.3]).

6.3.1 THE ZEL'DOVICH APPROXIMATION

In cosmological models where dark matter (a term we use interchangeably with non-

interacting matter) dominates the mass density of the universe, 8 b as defined in

equation (6.8) coincides with the dark matter overdensity 8 DM on large scales. 8 DM is

defined in an analogous manner as before (equation [6.8]):

PDM(X) = PDM[I + SDM(x)], (6.10)

where PDM is the mass density of dark matter at position x and PDM is its mean.

The equality 8 b = 8 DM is merely a statement that the hydrogen density (or in other

words, the baryon density, which we assume are proportional to each other) varies
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with position in the same manner as the dark matter density does. This is true on

large scales where gas pressure is insignificant compared to the gravitational attraction

of the dark matter, provided the baryons and dark matter start out having the same

spatial distribution, which is true for most popular cosmological models. Moreover,

with no significant interaction that distinguishes between the two on large scales, the

baryons and dark matter share the same peculiar velocity field. On small scales gas

pressure can cause the spatial distributions of baryons and dark matter to differ. We

will return to this point below.

Hence, on sufficiently large scales (how large is large, an obviously important

question, will be addressed later), it is adequate to know the overdensity and peculiar

velocity of the (lark matter. The Zel'dovich approximation (Zel'dovich 1970) is a well-

tested approximation to compute the density and velocity distributions of dark matter

in the mildly nonlinear regime (SDM < 5) before orbit-crossing. The reader is referred

to the article by Shandarin and Zel'dovich (1989) for a comprehensive review (see

also Hui and Bertschinger 1996 for an alternative formulation of the approximation).

For completeness, we include a brief discussion here.

The starting point of the Zel'dovich approximation is the following equation

for the displacement of a given mass element or particle:

x(q, t) = q + D+(t)Vq4(q), (6.11)

The coordinate q is the initial position of the mass element and x is its comoving

position as a function of time. The displacement is then D+(t)VqO(q). Its time

dependent part D+(t) is the linear growth factor ( Peebles 1980), which, for a universe

with critical matter density, can be equated with a, the Hubble scale factor. The time

independent function Vq4(q) is determined by initial conditions. Growing mode

initial conditions dictate that it is curl-free and hence its form as the gradient of the

potential 0 (Vq is the gradient in q space).

Expressions for the peculiar velocity and overdensity follow immediately from
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equation (6.11):

Vpec = aD+Vq , 1 + 6 DM = det - 1 Sij + D+(t) Oqiq (6.12)

The dot in the first expression denotes differentiation with respect to proper time

t. The peculiar velocity is defined by Vpec= adx/dt. The second expression follows

from mass conservation i.e. (1 + SDM)dx = d3 q.

The function 4(q) contains all the information on the specific cosmological

model one chooses to study. It is related to the commonly used power spectrum P

in the following way. Suppose Slin(q) is the linear overdensity today. The Fourier

counterparts of both quantities, denoted by the tilde, are related by:

O(k) = -k-2S1i.(k) (6.13)

where k is the magnitude of the vector k, the wavenumber. The power spectrum P

is defined in terms of the two-point correlation of Sin:

(P1in(k)kin(k')) P(k)(k - k') (6.14)

where the * denotes complex conjugation. Using the following convention for the

Fourier transform:

Jlin(q) = J 61n(k)eik.q d 3 k, (6.15)

it can be shown that the root-mean-squared linear overdensity fluctuation at a given

time t is:
OO

D()(n(q)) = D 2(t) 47rP(k)k2dk. (6.16)

We adopt the convention that D+ = 1 today. For to0 = 1 where D+ can be equated

to the Hubble scale factor, D' above can be replaced by (1 + z) - 2. The rms linear

overdensity fluctuation will turn out to be very important for our latter discussion.

To produce a realization of a given cosmological model, the procedure goes

as follows: first, we use the corresponding power spectrum to generate the Gaussian
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random field ?b(q) on a grid; second, we displace particles from their grid positions

(which are denoted by q above) according to equation (6.11) at the time t, which

corresponds to some mean redshift z of interest (equation [6.3]); third, a peculiar ve-

locity is assigned to each particle according to equation (6.12); finally, we use the TSC

(Triangular-Shaped density Cloud) scheme (Hockney & Eastwood 1988) to interpo-

late the particle positions and velocities to become momentum and mass densities on

the grid and divide one by the other to obtain the velocity itself. The interpolation

to obtain mass density is our way of enforcing mass conservation, as is expressed in

equation (6.12). In the last procedure, we smooth the momentum and mass density

fields over a small number of grid cells (in fact, we use one and have checked that the

precise number is not important as long as it is small) before performing the division

to obtain the velocity field so that we have well-defined velocities even in places with

zero density after the TSC interpolation (Kofman et al. 1994). Any line of sight can

then be chosen through the simulation box and the above procedure gives the over-

density and peculiar velocity (in fact only the component parallel to the line of sight

is needed) at each grid point on it.

The above procedure is very fast because there is no need to solve the Poisson

equation. Nor is it necessary to integrate any equation of motion. One simply multiply

the displacement of each particle by an appropriate factor of D+(t).

There are, however, two remaining issues we need to address if we are to apply

the Zel'dovich approximation intelligently.

The Zel'dovich approximation yields predictions for 5 DM, which can be equated

with Jb only on large scales. On smaller scales, two problems arise. Gas pressure

exerts its influence on baryons but not on dark matter, at least not directly, causing

8 b and 5 DM to differ. Furthermore, orbit-crossing occurs on small scales, in which

case the Zel'dovich approximation is known to break down because the post-collapse

gravitational force is not treated properly (Kofman et al. 1990; Matarrese et al. 1992;

Brainerd et al. 1993; Bagla & Padmanabhan 1994; Coles et al. 1993).
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JEANS SCALE SMOOTHING

The effect of gas pressure is to smooth the baryon density field compared to its dark

matter counterpart. The length scale below which this becomes important is the

Jeans scale. In linear theory, the baryon overdensity obeys the following equation in

a dark matter dominated universe (Bi et al. 1992; Peebles 1993):

a2 Sb a6b - kBTS+ 2H- = - 4 7rGpDMJDM + -kTk2 b (6.17)
at2  a 2 t a2

where the tilde denotes functions in Fourier space as before, H is the Hubble constant,

kB is the Boltzmann constant, G is the Newton constant, PDM is the average dark

matter mass density, T is the average temperature of the gas and Y is the mean mass

of each gas particle (for a fully ionized gas composed of hydrogen and helium with

primordial abundances, it is about 0.6 times the proton mass). The relation between

the temperature (not its average but its actual value) and 1 + 6b is described by Y7,

the temperature being proportional to (1 + Sb)X - 1

The Jeans scale is defined by

k-1 ,=kBT (6.18)
47ra2GlPDM

For a dark matter dominated universe, one can replace JDM by the total mean

density of the universe. For 7y = 1.5, z = 3, T = 104K and a flat universe,

kj = 16.8 ho00 Mpc - 1. Note that 7 does not necessarily equal 5/3 unless the gas

is fully ionized and behaves adiabatically.

For the special case of T cx a-', making use of an equation for SDM which is

similar to equation (6.17) except for the absence of the temperature term, it can be

shown that
SDM(k) (6.19)6b(k) 1 + k2/k (6.19)

if one ignores decaying modes. It expresses in a quantitative way the expectation that

the overdensity in baryons is the same as that of dark matter on large scales (low k)

but is lower on small scales (high k). For T with other time dependence, solutions
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for equation (6.17) are more complicated but the low and high k limits are the same:

Jb = DM for small k and 5 b = DMk'/k2 for large k (Bi et al. 1992).

We should emphasize, however, that equation (6.17) holds only in linear theory.

To incorporate pressure effects in the mildly nonlinear regime, one can multiply P(k)

in equation (6.16) by a factor of (1 + k2/k2)- 2 and use the resulting smoothed power

spectrum to generate the Zel'dovich displacement field. See Reisenegger & Miralda-

Escude (1995) for an application of the same method in a slightly different context.

In practice, we use instead the Gaussian smoothing kernel e- k2 /kI and have

checked that both ways of smoothing produce very similar column density distribu-

tions in our simulations for the same initial P(k). The Gaussian kernel is convenient

because we use the same form of smoothing for nonlinear scale truncation, our next

subject.

NONLINEAR SCALE TRUNCATION

There exists a well-known cure to the problem of orbit-crossing which has been ex-

tensively tested (Coles et al. 1993; Melott et al. 1995). The basic idea is to smooth

the initial power spectrum on small scales so that the amount of orbit-crossing that

might have occurred is not significant enough to destroy the accuracy of the Zel'dovich

approximation on large scales.

The initial power spectrum P(k) is multiplied by a Gaussian smoothing kernel

of the form e-k 2 /k, which is then used to generate the Zel'dovich displacement field.

The smoothing wavenumber ks is chosen to be proportional to kNL which defined as

follows:

1 = D2 (t) k 47rP(k)k2dk . (6.20)+ 0
Note that P(k) above is the initial power spectrum before any smoothing.

The proportionality constant between ks and kNL depends somewhat on the

power spectrum, with more smoothing (smaller ks) required for those that have rel-

atively more power on small scales (Melott 1994). We adopt

ks = 1.5 kNL, (6.21)
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which has been shown to give good agreement with N-body simulations for CDM

models (Melott et al. 1995).

The approximation employed in this way is known as the truncated Zel'dovich

approximation.

For the cosmological models we consider in this paper, ks ranges from about

2.3 Mpc - 1 for some CDM models to more than 10 Mpc - 1 for certain CHDM models.

We compare ks with kj, the Jeans wavenumber, and choose the smaller of the two

with which to smooth the initial power spectrum. The smoothed power spectrum is

used to generate the Zel'dovich displacement field and the overdensity that follows

from mass conservation is taken to be a good approximation to kb, at least on scales

of interest.

In practice, among all the cosmological models we examine, only for the Q, =

0.2 CHDM models in Sec. 6.8 are ks's larger than kj's, which is a reflection of the

fact that these CHDM models have comparatively little power on small scales. We

will argue further, in Sec. 6.8, that for these CHDM models, the precise smoothing

scale is not important for the column densities of interest. Hence, uncertainty in the

Jeans smoothing scale due to uncertainties in the temperature and equation of state

of the intergalactic medium is not a concern.

For all the other models considered in the present paper, we choose ks accord-

ing to the prescription of equation (6.21). One may reasonably question whether by

applying the truncated Zel'dovich approximation, one loses a significant amount of

small scale fluctuations that should exist in reality. We will show in Sec. 6.5, by com-

paring to an actual hydrodynamic simulation, that for the range of column densities

we are interested in, around 1012.5 -1014.5 cm - 2 , any loss of structure on scales smaller

than the truncation scale does not affect the column density distribution significantly,

if the standard prescription in equation (6.21) is followed. We will discuss the effects

of departure from it in Sec.6.6.

An implicit assumption underlying the whole procedure of using the Zel'dovich

approximation with a power spectrum smoothed on the length scale of ks 1 or k 1 , is

that the fluctuations on smaller scales do not contribute significantly to the number
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of absorption lines at our column densities of interest, about 1012.5 - 1014.5 cm- 2

In particular, we have ignored the orbit-crossing which can shock-heat the gas. A

way to justify our procedure is to make a plot of temperature versus density like

Fig. 2 in Weinberg et al. (1996), from which one can infer that shock-heating is

not important for regions of low overdensities or underdensities. It then remains to

show that our column densities of interest do correspond to this regime of mild or

negative overdensities, which we will do in Sec. 6.5. Alternatively, one can view the

agreement of our approximate computation with a full hydrodynamic simulation as

a justification of our assumption (Sec. 6.5).

From now on, we will refer to the overdensity predicted by the Zel'dovich

approximation using the smoothed power spectrum as Sb.

6.3.2 THE THERMAL AND IONIZATION STATE

The evolution of temperature is governed by:

dIT 2T dbb T d T2 dQdT - 2HT + 2T db T diqi + , (6.22)
dt 3(1 + Sb) dt i qi dt 3kBnb dt

where d/dit is the Lagrangian derivative following each fluid element, nb is the proper

number density of all gas particles and T is the temperature which depends on both

space and time. The symbol qi is defined by ni - (1 + Sb)qi Pb/mp, where ni is the

proper number density of the specie i, fib is the mean mass density of baryons at the

time of interest, mP is the mass of the proton and Sb is the overdensity as in equation

(6.8). For instance the mean number density of neutral hydrogen (fiH in equation

[6.8]) is qHIPb/mrp. The neutral fraction of hydrogen, XHI as in equation (6.9), is then

qHI/(qHI + qHII). Note that qi is a function of space and time in general.

The first two terms on the right hand side takes care of adiabatic cooling or

heating. The third accounts for the change of internal energy due to the change in the

number of particles. The last term dQ/dt is the heat gain (or negative heat loss) per

unit volume by the gas particles from the surrounding radiation field. At a redshift of

2 to 4 and for densities of our interest, the main source of heat gain is photoionization
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and the main source of heat loss is through the recombination of ionized hydrogen

and the free electron. At higher redshifts, other processes become important, such as

Compton cooling. More discussion on these processes will be presented in Hui and

Gnedin (1996).

The above equation has to be supplemented by one that determines the abun-

dance of each specie, which takes the form:

dqi
d = -qiP + Z qjqknbR. (6.23)

j,k

For instance, if qi = qHI, P is the the photoionization rate. It is given by:

P = 47 JvHI , (6.24)

'Ir hv

where h is the Planck constant, hvHI = 13.6 eV, CHI is the cross-section for pho-

toionization as a function of the frequency v and J, is the specific intensity. The

photoionization rate P depends on the normalization as well as spectrum of J,. The

specific intensity J, is generally taken to have a power law spectrum, v 1 to v-1.5, for

frequencies just above vHI. The spectrum at higher frequencies is less important for

the photoionization rate of hydrogen. A convenient way to hide our ignorance of the

spectrum is to define JHI (analogous to the definition in Miralda-Escud6 et al. (1995)

but differs by a factor of 10- 21 ergsHz-ls- 1 cm-2ster-1):

oo dv

JHI ~2 4rJ°uIH (10 - 21 ergsHz-'s-1 cm-2ster-1')-1 . (6.25)
,HI 47U"'HI

Then P - 4 x 10-12JHI s- 1. Note that JHI is dimensionless.

Observations indicate that JHI is between about 0.1 and 2.0 for z = 2 - 4

(Bechtold 1994; Batjlik et al. 1988; Lu et al. 1991b). A perhaps more common way

of characterizing the radiation intensity is to quote its value, often referred to asJ912,

at v = v, or at wavelength 912A, in units of ergsHz-s-' cm-2ster - 1. The relation

between J912 and JHI depends on the spectrum. A good approximation for reasonable

slopes of the spectrum (J, oc v-m for m between 1 and 1.5) is JHI = 0.7J 9 1 2/10 - 21.
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For qi = qHI, R is the recombination rate of ionized hydrogen and the free

electron (qj = q, and qk = qHII in equation [6.24]):

R 4 x 10- 13( -T0.7 cm3s- 1 . (6.26)
104 K

For JHI with the values noted above, the photoionization time-scale is much

shorter than the Hubble time. This means that hydrogen is essentially in ionization

equilibrium. The two terms on the right hand side of equation (6.23) almost balance

each other. Therefore,

XHI , 1.6 x 10-6 ( 0.012 (1 b) (, (6.27)104K 0.0125 -0.5 (+ 4)

where we have assumed primordial abundances and that both helium and hydrogen

are highly ionized. Both T and Sb can be position dependent.

We now have all the equations in place to compute the thermal and ionization

evolution. The overdensity 3 b is evolved using the Zel'dovich approximation. 2 Its rate

of growth is substituted into equation (6.22), which is solved together with equation

(6.23). The initial conditions are as follows. The gas temperature T is equal to

the cosmic microwave background temperature at z = 100 (maintained by Compton

scattering) and evolves adiabatically after that until the universe is reionized by the

UV background. Abundances are assumed to be primordial, which is consistent with

observations so far for column densities less than about 1014.5 cm - 2 (See Songaila and

Cowie (1996). Cooling processes due to metals are not important for our densities

of interest in any case). All species are neutral until reionization occurs. One can

integrate equations (6.22) and (6.23) forward starting from any time between z = 100

and the beginning of reionization.

Details of the computation are given in Hui and Gnedin (1996). We list the

relevant conclusions. First, ionization equilibrium (equation [6.27]) is maintained at

2 Note that there is no need to generate a full three-dimensional realization for this purpose. It

is simpler to generate a set of eigenvalues of the matrix &2
0/&qipqj according to the prescription of

Doroshkevich (1970). The density is then determined through equation (6.12).
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high accuracy except during the period of initial reionization. Second,

T = T0(1 + b)*Y- 1 , (6.28)

where To is not dependent on position, is an excellent approximation for overdensities

of interest, Sb < 5, with a little flattening at the low end (Sb close to 0.1) for some

reionization scenario. Third, both To and 7 depend on the reionization history, the

reasonable ranges being 1.2 < / < 1.7 and 3000 K < TO < 30000K at z = 3.

Note that the range of 7 includes the particular case when the last two terms on the

right hand side of equation (6.22) are neglected, in which case the exact solution is

T oc a-2(1 + b)2/ 3 , the result of adiabatic expansion or compression.

In conclusion to this section, we have outlined a procedure for obtaining 5 b,

vpec, T and XHI, all of which enter into the calculation of the optical depth r (equation

[6.1] or [6.5]). We can compute e-', called the transmission, which is the ratio of

the emitted to the observed intensities. Observationally, its measurement requires

knowledge of the quasar emission spectrum. Moreover, one must carefully choose

the range of frequencies to consider if one is to limit the source of absorption to

that due to the Lyman-a transition. For a discussion of these issues, the reader is

referred to Press, Rybicki and Schneider (1993). To produce a realistic spectrum,

one should also add noise and convolve the transmission with a window function to

mimic instrumental resolution. This is important for a detailed comparison between

theories and observations, which we will defer to latter work. Our x space grid cells,

depending on which particular simulation, have sizes ranging from 0.028 - 0.05 Mpc.

Note that the true resolution in velocity space is not uniform because peculiar velocity

varies from one place to another. Without peculiar velocity, the above grid cell sizes

correspond to velocity cells of 2.8 - 5 kms- 1, for h1oo00 = 0.5 at z = 3 (equation [6.3]).

The true velocity resolution is probably a little worse than that. As a comparison, high

quality Keck Telescope data have a Full-Width-Half-Maximum of about 7 km s- 1 and

signal to noise per pixel of the order of 30 or higher (Hu et al. 1995; Lu et al. 1991a).
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6.4 THE PECULIAR VELOCITY: ITS EFFECTS ON LINE

SHAPES AND THE COLUMN DENSITY DISTRIBUTION

We will show in this section that while the peculiar velocity plays an important role

in determining the absorption profiles, its effect on the column density distribution

is minimal. The procedures to obtain the column density distribution are discussed

first.

6.4.1 LINE IDENTIFICATION AND THE COLUMN DENSITY DISTRI-

BUTION

Fig. 6-1 and Fig. 6-2 show the velocity, density and transmission (e-T) along two

lines of sight for a Os = 0.7 CDM simulation, with hi 00 = 0.5. The significance of the

dashed transmission profile will be explained in the next sub-section. The thermal

and ionization parameters are described in the caption of Fig. 6-1. The nonlinear

truncation scale ks is 2.3 Mpc - 1. The transfer function is taken from Ma (1996).

We find that using the BBKS transfer function (Bardeen et al. 1986) makes almost

no difference to the resulting column density distribution, for the range of column

densities we study.

The first thing to note is that for the given parameters,

2kBT

b =- = 13 kms- (1 + b) 1/ 4 . (6.29)

This might seem to be too small because the observed lower limit of the b-value is

about 15 - 20 kms - 1 (Hu et al. 1995; Lu et al. 1991a). A distinction should be

made between the observed b-value and the b defined above. The observed b-value

is obtained by fitting the quasar spectrum with superpositions of the Voigt profiles.

Each Voigt profile yields a column density and a b-value. All the density peaks that

give rise to absorption troughs in Fig. 6-1 and Fig. 6-2 have velocity widths larger than

the small thermal width defined in equation (6.29). Therefore the narrow-maximum-
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Fig. 6-1.- A line of sight through a 8 = 0.7 CDM simulation (produced using the
truncated Zel'dovich approximation) at z = 3, with h = 0.5. The transfer function
is taken from Ma (1996) Box size is 12.8 Mpc with a grid spacing of 0.032 Mpc. The
parameters are Qbh 2 = 0.0125, JHI = 0.5, To = 104 K ,-y = 1.5 and ks = 2.3 Mpc - 1 .
All distances are comoving. See Sec. 6.3 for definitions of the symbols. The abscissas
for the lower two panels are the comoving distances along the line of sight in units
of Mpc. The lower of the two panels is the profile of overdensity 4b (eq. [6.8]) and
the upper one is the profile of velocity u (eq. [6.3]). The top two panels are both
transmission profiles where T is the Lyman-a optical depth and the abscissas represent
uo, which is related to the observed frequency through equation (6.4). The profile
with solid line is obtained using the full density and peculiar velocity fields. The
profile with dashed line is obtained using the density field but setting the peculiar
velocity to zero everywhere (in which case, u becomes linear in x).
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limit (equation [6.6]) does not apply and the absorption troughs do not exactly have

the Voigt profile shapes. One can still search for the best-fit Voigt profile, taking

into account the presence of noise, but the b-value obtained does not correspond to

the thermal width in equation (6.29). It should also be emphasized that the recent

hydrodynamic simulations of the Lyman-a forest, which have been so successful in

accounting for a lot of its observed properties, have similarly low temperatures (see

for instance Weinberg et al. 1996 3)

One might wonder if there exists an alternative spectrum reduction method

where the Voigt profile is not assumed to be the fundamental shape of absorption

troughs, and for such a method, how the column density is assigned to each trough.

The Voigt-profile-fitting-technique is nonetheless very important because it is how all

existing observational data on the column density distribution are obtained.

An alternative line identification algorithm was proposed by Miralda-Escud6

et al. (1995) and was also used by Hernquist et al. (1995). A transmission threshold

is chosen, say 0.7. Any part of the spectrum that is continuously below the threshold

is identified as an absorption line. The column density associated with it is defined

by
1 duo

NHI ine7 (uo) , (6.30)
O'ca0 lne C

where Coo is defined after equation (6.5). The limits of integration are taken to

be over the absorption line, i.e. where the transmission is continuously below the

threshold. Note that if the narrow-maximum-limit or the thin cloud assumption were

to hold, equation (6.6) can be substituted into equation (6.30) to show that NHI does

correspond to f nHIdx/(1 + z), assuming the threshold is high enough so that most

of the Voigt profile is included in the definition of the absorption line.

Let us call the above procedure the Threshold-Algorithm. We show in Fig. 6-3

the column density distribution computed according to the algorithm. The symbol

3Their output is at redshift of 2 and so naturally they have a lower temperature. In general,
the temperature To is dependent on the reionization history of the universe: crudely speaking, the
closer the epoch of reionization is to the epoch of observation (i = 3 in our case), the higher the
temperature. Assuming reionization occurs before a redshift of 5, say, puts an upper bound on To
(Hui and Gnedin 1996).
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d2NLy,/dNHI/dz denotes the number of absorption lines per unit redshift per unit

column density. The reason for the chosen range of column densities will be given in

Sec. 6.5. Two different transmission thresholds are used, 0.7 and 0.89 (Open triangles

and crosses, ignoring the squares for the moment). The former is used by Hernquist

et al. (1995) while the latter is the mean transmission of the spectrum. Changing the

transmission threshold mainly affects the number of absorption lines with low column

densities. The number of lines increases with a raised threshold. There is almost no

effect, however, on the number of higher column density absorption lines.

As we will demonstrate later, the Threshold-Algorithm has the tendency to

underestimate the number of absorption lines compared to the Voigt-profile-fitting-

technique. One reason is that it does not deblend. In other words, a given absorption

line according to the Threshold-Algorithm may contain more than one minimum

in transmission. Such an absorption line would be broken up to a few lines if the

Voigt-profile-fitting-technique is employed. To demonstrate this effect, we modify

the Threshold-Algorithm: for each (parent) absorption line identified, we break it

up into individual components (children) where each component is bordered by local

maxima in the transmission within the confines of the parent. The column density

for each child component is defined similarly as in equation (6.30) and the limits of

integration are taken to be the boundaries of each component. We will call it the

Threshold-Deblending-Algorithm.

The resulting column density distribution is denoted by the square symbols

in Fig. 6-3 for the transmission threshold of 0.89. One can see that indeed the num-

ber of lines of low column densities go up. We should emphasize however that the

Threshold-Deblending-Algorithm cannot be used to analyze observational data with-

out modifications because in real life, noise creates local transmission maxima within

any parent absorption line.4 The question remains, though, how well the column

density distribution computed using the Threshold-Algorithm, with or without de-

4 1n fact, numerical noise can also have the same effect. We check it by defining local maxima in
two ways: local maxima over three cells and local maxima over five cells with the slope on either
side of the maxima not changing signs. It turns out the resulting column density distributions are
almost the same.
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blending, agrees with that obtained using the Voigt-profile-fitting-technique. This has

been partially addressed by Miralda-Escude et al. (1995). They applied the Threshold-

Algorithm to spectra composed of randomly superposed Voigt profiles drawn from a

known column density distribution and compared the measured distribution with the

seed. They found good agreement for column densities larger than about 1014 to

1015 cm - 2 (Fig. 15[a] in their paper). We will address this question for lower column

densities in Sec. 6.5.

For now, the Threshold-Algorithm is adopted as a simple way to identify lines

and assign column densities, which we will use to study the effects of the peculiar

velocity on the column density distribution.

6.4.2 THE ROLE OF PECULIAR VELOCITIES

The following experiment is performed to investigate the importance of peculiar veloc-

ities. We generate absorption spectra and compute the column density distribution

using the same density field as that used to produce the solid curves in Fig. 6-1,

Fig. 6-2 and the points in Fig. 6-3 but we set all peculiar velocities to zero.

Let us first examine some examples of the absorption spectra. The dashed

curves in Fig. 6-1, Fig. 6-2 are the resulting spectra after putting all peculiar velocities

to zero.

A comparison of the dashed absorption spectrum with its solid counterpart in

each figure shows that the peculiar velocities play an important role in determining

the shapes of absorption lines. Without peculiar velocities, the shapes of absorp-

tion troughs mirror closely those of the density peaks while with nonzero peculiar

velocities, the absorption troughs can have quite different shapes from the under-

lying density field. Peculiar velocities can add or erase structures. An example of

the former can be found in the pair of density peaks around x = 9 Mpc and their

corresponding absorption profiles in Fig. 6-1. An example of the latter can be found

in the density peak(s) around x = 7 Mpc and the corresponding absorption trough(s)

in Fig. 6-2.

Broadly speaking, the effects of peculiar velocities on absorption spectra fall

127



into three categories. They are distinguished by the value of du/dx. First, there are

regions in space where the peculiar velocity gradient is small so that du/dx is almost

equal to its Hubble value HI/(1 + 2) (equation [6.3]). An example is the density

peak around x = 2.2 Mpc in Fig. 6-2. The peculiar velocity shifts the position of the

associated absorption trough but does not affect its shape.

Second, there are places where the peculiar velocity gradient is opposite in

sign and comparable in magnitude to H/(1 + 2), in which case |du/dxI becomes very

small. Suppose also that Id2u/dx21 is small. The implication is then a small range in

u corresponds to a relatively large range in x. See for instance the density peak(s)

around x = 7 Mpc in Fig. 6-2, which is a really broad structure in x space but is

relatively narrow in u space. The small jdu/dxl or the converging peculiar velocity

flow around it helps produce a narrow absorption trough (second panel from the top

in Fig. 6-2). Contrast it with the corresponding absorption feature in the top panel

of the same figure, where peculiar velocities are set to zero. The limiting case where

Idu/dxl exactly vanishes is called a velocity caustic (McGill 1990).

Third, there are regions where the peculiar velocity gradient dominates in such

a way that du/dx is negative and Idu/dxl is not small. An example can be found

around the pair of density peaks at x = 9 Mpc in Fig. 6-1. This is where multiple-

streaming occurs. A given range in u corresponds to disjoint pieces in x space. As a

result, the shapes of the associated absorption troughs are significantly different from

those of the underlying density peaks.

The three categories can be shown to correspond to the three evolutionary

stages of a pancake collapsing along the line of sight. Restricting equations (6.11)

and (6.12) to one dimension and putting it into equation (6.3), one obtains:

d = 1 + 2a d 2 ) + a , (6.31)
dx dq2 d eq2

where we have assumed a universe of critical matter density so that D± = a. Re-
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stricting equation (6.12) to one dimension, it can also be shown that

( d2•) -1

I+SJDM= 1 + a d 2 , (6.32)dq2
where we have equated JDM with 8 b assuming the appropriate initial smoothing has

been carried out as indicated in Sec. 6.3.1. As a grows, it can be seen that du/dx

goes through the three different regimes outlined above. At the velocity caustic where

du/dx = 0, it can be shown that 5DM = 1 (McGill 1990). This conclusion does not

hold in general of course because pancakes can collapse in directions different from

the line of sight. But it is true that velocity caustics are often found in regions of

slight overdensities.

In principle, at a velocity caustic, an absorption line can arise without even

any variation in the density field at all (equation [6.5]). In practice, one expects

that converging peculiar velocity flows are accompanied by density peaks. This is

consistent with the few examples we have seen.

Next, we consider how the column density distribution changes when the same

density field is used but all the peculiar velocities are put to zero. This is shown in

Fig. 6-4.

The mean transmission of the analysis with zero peculiar velocities differ from

the mean transmission of the full analysis by less than a percent. It is used as the

transmission threshold in the line identification procedure for both analyzes. The

resulting column density distributions are very similar.

Hence, the peculiar velocity plays a relatively minor role in determining the

column density distribution. It changes the shapes of absorption troughs without

altering the overall number of lines and their column densities. This serves to motivate

an approximation we will introduce in the next section.

A final note on velocity caustics. The reader might worry that at a velocity

caustic, the optical depth may diverge while it is clear from equation (6.1) that for

a finite number density of neutral hydrogen, the optical depth should always be a

finite quantity. The resolution is that close to a velocity caustic at u = u,, du/dx

129



-12

N

0
'I

I ~)

13 14 15
log (NHI in cm 2)

Fig. 6-4.- Same parameters as in Fig. 6-1. The column density distributions are
computed using the Threshold-Algorithm. Crosses (the same as crosses in Fig. 6-
3): nonzero peculiar velocities. Open triangles: peculiar velocities set to zero. The
transmission threshold is 0.89.

130

1I



goes like (u - uc)'/ 2 (provided the second derivative of u with respect to x is nonzero,

otherwise it will be (u - u,)2/3 if the third derivative does not vanish and so on, by

simple Taylor series expansion; see Shandarin and Zel'dovich 1989). So under the

integration in equation (6.5), the optical depth remains finite. We note also that

because of the singular nature of (du/dx) -1 around u = uc, the derivation leading to

equation (6.7) breaks down at a velocity caustic.

6.5 THE STATISTICS OF DENSITY PEAKS

In this section we explore a simple approximation in which each density peak in x

space is identified with an absorption line. This is motivated by the fact that peculiar

velocities do not play a major role in determining the column density distribution and

that each maximum in density corresponds to a minimum in the absorption spectrum

if the peculiar velocities are set to zero and if the maximum in density are separated

by a distance larger than that given by the thermal broadening width.

To calculate d2 NLya/dNHI/dz, we relate dz and dx by ignoring peculiar veloc-

ities: dz = c- l Hdx. Hence

d2NLya d2 Npk C- C(6.33)
dNHIdz dNHIdX ( '

where dNpk/dx is the average comoving number density of density peaks along a

random line of sight, H is the Hubble constant at the redshift of interest.

For each density peak, we need a simple prescription for assigning a column

density. To that end, we do the following expansion around each density maximum:

S d2 ln[nHI] Xpk 2  (6.34)ln[nHI(X)] = ln[nHI(Xpk)] + - (X - . (6.34)
X=Xpk

It is a straightforward Taylor expansion around the position of the peak Xpk. The

second derivative in the last term is negative. The rationale behind expanding ln[nHI]

rather than nHI itself is that nHI is supposed to fall off quickly far away from the

peak (until, of course, another peak is encountered). In other words, the above
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expansion implies that nHI has a Gaussian fall-off (instead of a power-law one if nHI

itself were Taylor expanded). In a sense, this is close in spirit to the Voigt-profile-

fitting-technique. Suppose the broad-maximum-limit (eq. [6.7]) holds so that the

local optical depth is simply proportional to the number density of neutral hydrogen

if one ignores peculiar velocities. Then, fitting a minimum in optical depth with the

Voigt or thermal profile (eq. [6.5]) is equivalent to fitting the corresponding density

peak with a Gaussian.

We then assign the following column density to the density peak:

dx (d2 In [rHI 1NHI = Jpk 1 r HI(X) = nHI(1 -+ )-1 27r dx2  (6.35)
X=Xpk

where equation (6.34) has been used and where fpk denotes integration around the

peak until it decays sufficiently. The above equation has been derived before by the

authors using the Stationary Phase Method (Gnedin and Hui 1996).

Using equations (6.27) and (6.28), the above can be rewritten as:

To )-0.7 bh2 00 2 (JHI -1 + 2)5 -02 07(7- 1) -0.5A
NHI = 1.63x 101cm -  A104K 0.0125 0-.5 4 1.65

(6.36)

where A is defined as 1
A= (1 + b) 2-0.7(y-1) (d 2 n[1 +b 2 (6.37)

X-Xpk

with x being measured in Mpc.

We will refer to our method as the Density-Peak-Ans ttz. It consists of two

parts: 1. associate each density peak in x space with an absorption line; 2. assign a

column density to each density peak according to equation (6.36). 5

Making use of equations (6.33) and (6.36), the column density distribution can

5 Strictly speaking, care should be taken not to count peaks that are separated in velocity space
by distance much less than the thermal width as contributing to more than one absorption line. We
will address this later in the section.
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be written as

d2 NLya _ (-M TO 0.7 (-bh00 2 (jHI ( 2 - 0.7(7 - 1)10. c d2 Npk
dNHjdz 104K 0.0125 0.5 4 1.65 H dAdx

(6.38)
where x is in units of Mpc. The computation of the last factor d2Npk/dA/dx involves

counting the number density of peaks in x space having the quantity A within the

range dA.

Let us define 6 - ln[1 + Sb]. Suppose one is given P(ý, ', 6")d~d6'd6" which is

the probability that 6 and its first and second derivatives with respect to x fall in the

specified ranges at a point. Then,

dNpk = Ld d " 0 11 i" P(6, 6' = 0, i"), (6.39)
dx -oo 0 oo

where dN is the integral of d
2  over all A (Bardeen et al. 1986).dx dAdx o

By a change of variable and a differentiation, one can obtain

d2 Npk 1 0 o 1P( = 0 )
dAdx [2 - 0.7(7 - 1)]A d""P(, = 0, d (6.40)

where 6 should be expressed in terms of 6" and A using equation (6.37).

Note that the above two equations are completely general and no assumption

about the Gaussianity of the underlying fields has been made. The hard part is of

course to come up with the probability function P. The one point probability dis-

tribution of just 6 or density has been calculated for the Zel'dovich approximation

(Kofman et al. 1994). We find the one point joint-probability distribution of density

and its first and second derivatives difficult to calculate analytically for the Zel'dovich

approximation, unless all particles are constrained to move in only one dimension,

namely along the line of sight. A numerical approach is adopted in this paper and

the number of peaks is counted along lines of sights in actual three-dimensional re-

alizations. We will also discuss some analytical results based on the restrictive one-

dimensional case. In a separate paper, we discuss an analytical calculation based

upon not the Zel'dovich but the lognormal approximation, where ( is assumed to be
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a Gaussian random field (Gnedin & Hui 1996).

We test the Density-Peak-Ansitz in two different ways. First, we make a scat-

ter plot of the column density obtained using the Threshold-Deblending-Algorithm

versus the column density obtained by searching for the maximum density peak that

contributes to each absorption line identified using the threshold method and then

applying equation (6.36). The result is shown in Fig. 6-5. It shows that while the

agreement is far from perfect, the column densities assigned using the Density-Peak-

Ansitz and using the Threshold-Algorithm are broadly consistent.

The important question, however, is whether the Density-Peak-Ansatz, cou-

pled with the Zel'dovich approximation, gives the correct number of absorption lines

as a function of column density. We compare the column density distribution obtained

using our approximate methods against that obtained by applying the Voigt-profile-

fitting-technique to synthetic spectra from a full hydrodynamic simulation (Zhang et

al. 1996). This is done in Fig. 6-6. We also put in the same figure the column density

distribution obtained using the Threshold-Algorithm, coupled with the Zel'dovich ap-

proximation. The predictions of one-dimensional Zel'dovich approximation and the

lognormal approximation are shown as well for comparison.

The level of agreement between the exact hydrodynamic computation and our

calculation based on the Density-Peak-Ansatz coupled with the Zel'dovich approxi-

mation is encouraging. Two sets of points are shown for our approximate calculation

using the Density-Peak-Ansatz, one (open triangles) with exactly the same box size

and grid spacing as the hydrodynamic simulation and the other (open squares) with

larger box size and smaller grid spacing. They both agree very well with the exact

computation. We will explore the effects of changing the resolution in the next sub-

section. A third set of points (crosses) shows that the Threshold-Algorithm described

in Sec. 6.4.2 underestimates the number of lines at low column densities.

We also show in Fig. 6-6 two sets of curves based on the lognormal approxi-

mation but using the same Density-Peak-Ansitz (see Gnedin and Hui 1996). One of

them has the same amount of initial smoothing as that of the truncated Zel'dovich

approximation and the other has less smoothing so as to match the final (not linear)
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Fig. 6-5.- Same parameters as in Fig. 6-1. The column densities computed using
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lines by the Threshold-Deblending-Algorithm using a transmission threshold of 0.89
and assign column densities according to equation (6.30), which are plotted as the ab-
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Algorithm and search for the corresponding maximum in 6 b and apply equation (6.36)
to assign a second set of column densities, which are plotted as the ordinates.

135

I I I I I I I I

I III



-12

O

zC\2

0

I I I I I I I

12 14 16
log (NHI in cm- 2)

Fig. 6-6.- The model is o8s = 0.7 CDM at z = 3 with h = 0.5, Qb = 0.06, JHI = 0.325,
To = 104K and 7 = 1.45. Solid triangles represent the distribution obtained by apply-
ing the Voigt-profile-fitting-technique to synthetic spectra from a full hydrodynamic
simulation (Zhang et al. 1996) with box size of 9.6 Mpc comoving and grid spac-
ing of 0.075 Mpc. Open triangles are the predictions of the Density-Peak-Ansitz
coupled with the truncated (ks = 2.3 Mpc-') Zel'dovich approximation using the
same box size and grid-spacing. Open squares and crosses are the results of apply-
ing the Density-Peak-Ansittz and the Threshold-Algorithm (transmission threshold
at 0.83, the mean transmission) respectively to the output of the same truncated
(ks = 2.3 Mpc-') Zel'dovich approximation with box size of 12.8 Mpc and grid spac-
ing of 0.05 Mpc. The short-dashed and long-dashed curves are the predictions of
the Density-Peak-Ansitz coupled with the lognormal approximation, the former with
ks = 2.3 Mpc - 1 and the latter with the smoothing scale chosen so that the final
(not linear) rms density fluctuation matches that of the Zel'dovich approximation
(ks = 3.6 Mpc-1).
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rms density fluctuation of the Zel'dovich computation. Both underestimates the num-

ber of lines at low column densities. The lognormal approximation tends to predict

too much flattening of the column density distribution at low column densities. (At

the very low column densities, the lognormal approximation seems to give more lines

than the Zel'dovich approximation but it is really a resolution effect: see the next

sub-section.)

The reader might have noticed that we have included in Fig. 6-6 a wider range

of column densities than is warranted by the nature of our approximations. For

instance, objects with column densities higher than 1016 cm - 2 are almost certainly

highly nonlinear and we do not expect the truncated Zel'dovich approximation to

work well in this regime. For the low column densities, the finite resolution should

cause us to underestimate the number of absorption lines. In the next sub-section, we

give quantitative estimates of the range of column densities within which the Density-

Peak-Ansatz, used in conjunction with the truncated Zel'dovich approximation, can

be counted on to give reliable column density distributions.

We will also discuss two different ways of defining a density peak in the next

sub-section: local maxima over three cells or local maxima over five cells with the

slope on either side of the maxima not changing signs. The three-cell criterion is

used in Fig. 6-6. One expects however that some of the three-cell peaks are not real

but merely artifacts of numerical noise, especially those with low column densities.

The five-cell criterion, on the other hand, probably fail to include some narrow peaks

which are real. We will see that the two different criteria give almost identical results

above a certain column density.

One aspect of the Density-Peak-Ansatz we have glossed over is that two density

peaks that are separated by a distance in velocity space much less than the thermal

width should not be counted as contributing to two but to one absorption lines. A

more sophisticated approach would be to group together such density peaks and use

the sum of their column densities as the column density of one single absorption line.

We find that for the the range of validity discussed in the following sub-section, it

makes little difference. It is conceivable, however, that this effect cannot be ignored
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for simulations with higher resolution than what we have.

6.5.1 THE RANGE OF VALIDITY

For the computation presented in Fig. 6-6, the column density (given by the Density-

Peak-AnsSitz) above which the mean 6 b exceeds 5 is about 1014.1 cm - 2 . For the pa-

rameters listed in the caption of Fig. 6-6, NHI - 3.6 x 1013 A cm - 2 (equation [6.36]).

We therefore take A = 3.5 as an upper limit beyond which we cannot expect our

approximations to be reliable.

Note that according to Fig. 6-6, comparing with the hydrodynamic simulation

data, the Density-Peak-AnsStz, together with the truncated Zel'dovich approxima-

tion, seems to give reliable number density of absorption lines for column densities

higher than 1014"1cm - 2 . The level of agreement at such high column densities (and

by extension, such high Sb) is surprising. We will take the conservative approach and

adopt the A = 3.5 upper limit.

To illustrate the relation between column density and 1+ b, we make a log-log

scatter plot of one versus the other in Fig. 6-7.

To determine the column density below which finite resolution results in an

underestimate of the number of absorption lines, we perform a simulation using the

truncated Zel'dovich approximation with the same parameters as in Fig. 6-6 but

higher resolution: 12.8 Mpc box size and grid spacing of 0.0284 Mpc. A comparison

of the resulting column density distributions is made in Fig. 6-8.

Note that we have included two definitions of density peaks (three-cell and five-

cell). For each simulation, the true column density distribution is probably somewhere

between the two in the places they differ.

We take the low column density cut-off to be 1012.8 cm - 2 for the lower reso-

lution simulation (box size of 12.8 Mpc , with grid spacing of 0.05 Mpc) using the

three-cell definition of peaks. It can be seen that the higher resolution simulation dif-

fers from the lower one only at column densities less than roughly this cur-off value.

Moreover, above this column density, the three-cell and five-cell criteria give almost

identical results.

138



2

o0

-1

TT7 III

12 13 14 16
log (NHI (m ))

Fig. 6-7.- A log-log scatter plot of 1 + Sb at density peaks versus their column
densities. The density field is obtained from the truncated Zel'dovich approximation
using the same parameters as the open squares in Fig. 6-6. The column density is
assigned using the Density-Peak-Anitz.
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Fig. 6-8.- The column density distributions obtained using the Density-Peak-Antitz
in conjunction with the truncated Zel'dovich approximation for two simulations of
different resolutions but the same cosmological, thermal and ionization parameters
as in Fig. 6-6. The open squares and open triangles represent the distributions of
a simulation with box size of 12.8 Mpc and grid spacing of 0.05 Mpc (all distances
quoted are comoving). The open squares here are the same as those in Fig. 6-6
where each maximum over three cells is identified as a peak. The open triangles
are the result of a different definition of peaks: a local maximum over five cells
with the density slope on each side of the maximum not changing signs. Similarly,
the crosses and open hexagons are the distributions for a simulation of box size
12.8 Mpc and grid spacing 0.0284 Mpc, using the three-cell and five-cell definition of
peaks respectively. The solid triangles are same as those in Fig. 6-6, representing the
column density distribution obtained by applying the Voigt-profile-fitting-technique
to synthetic spectra from a full hydrodynamic simulation.
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The parameters in the Zel'dovich simulations in Fig. 6-8 are such that NHI =

3.6 x 1013 A cm - 2 (equation [6.36]). Hence the above cut-off implies a lower limit of

0.18 for A. From now on, we will use the three-cell definition of density peaks.

In the following section, we will systematically investigate how the column

density distribution depends on the cosmological parameters and properties of the

intergalactic medium. All the simulations presented in the next two sections have the

same resolution and box size, 2563 grid points with grid spacing of 0.05 Mpc. For

each of them, we will only plot the part of the column density distribution that falls

within the limits of 0.18 < A < 3.5. The column densities these limits correspond

to depend on the properties of the intergalactic medium and the redshift (equation

[6.36]). Note how our conservative limits for A greatly reduce the range of column

densities we can examine but within these limits, we can be reasonably confident

that the truncated Zel'dovich approximation together with the Density-Peak-Ansiitz

should yield accurate predictions for the column density distribution.

6.6 THE COLUMN DENSITY DISTRIBUTION OF THE CDM

MODELS: DEPENDENCE ON THE IONIZATION FLUX,

TEMPERATURE, EQUATION OF STATE AND COSMO-

LOGICAL PARAMETERS

The Cold Dark Matter (CDM) models are used to study the influence of the cosmo-
logical parameters and properties of the intergalactic medium on the column density

distribution. The tools we use to calculate the column density distributions are the

truncated Zel'dovich approximation and the Density-Peak-Ansitz.

All CDM models discussed here have Qo = 1, h100 = 0.5 and are dark matter

dominated. We use the Ma (1996) CDM transfer function. More detailed discussions

of the simulations and the low and high column density cut-offs can be found at the

end of Sec. 6.5.1. Table 6-1 contains a summary of all the CDM models discussed in

this paper.

141



6.6.1 DEPENDENCE ON OVERALL TEMPERATURE, IONIZATION FLUX

AND BARYON DENSITY

Let us first consider the CDM model with o8 and the spectral index n being fixed

at 0.7 and 1 respectively. Let us also hold the equation of state at T oc (1 + Sb) 0 5 .

As is shown in equation (6.36), the column density of a density peak with a given Sb

(overdensity) is proportional to the following combination of parameters:

F T -0.7 ( bh 2j  JHI )-1 (6.41)
104K 0.0125 0.5 (6.41)

Hence, by equation (6.38), if F is rescaled by a certain factor (by changing To, Qb

or JHI or their combinations), the number of absorption lines is also changed by the

same factor at an appropriately rescaled column density.

Suppose F is rescaled to F' such that F' = rF, then

d2 L~y 1 d2 NL•d2NLya d2NLye (6.42)
dNiidz N'=NHI r dNHmdz NHI

It implies that if the column density distribution is a pure power law, then in a log-

log plot of the number of absorption lines per unit column density per unit redshift

versus column density, the straight line would simply be shifted to the right or left (or

up/down) by rescaling. In reality, the column density distribution only approximately

obeys a power law and so there should be a slight change of slope at any given column

Label oU8  n ks/Mpc- 1  Qb •0 0

CDM1 0.7 1.0 2.3 0.05 1.12
CDM2 0.7 1.0 2.3 0.06 1.12
CDM3 0.4 1.0 5.86 0.05 0.93
CDM4 0.7 0.7 3.58 0.05 0.93

Table 6-1: A list of all the CDM models discussed in this paper. All have h100 = 0.5.
The spectral index of the power spectrum is n. Every model has Qb = 0.05 except for
CDM2, which has a higher baryon content and is shown in Fig. 6-6. The truncation
scale ks is defined by ks = 1.5 kNL (equation [6.20]). ao is defined in equation (6.43).
z = 3 is assumed.
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Fig. 6-9.- The column density distribution of the 9s = 0.7 CDM model with no
tilt (CDM1 in Table 6-1), obtained using the Density-Peak-Ansiitz and the truncated
Zel'dovich approximation (ks = 2.3Mpc-1). The redshift is z = 3. Box size is
12.8 Mpc with grid spacing of 0.05 Mpc. Open squares: F = 0.25 (equation [6.41]).
Crosses: F = 1. Open triangles: F = 5. All of them have the equation of state
described by -y = 1.5 (eq. [6.28]). The points with error bars are the observational
data at about z = 3 which have been corrected for incompleteness, taken from Hu et
al. (1995).
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density as a result of rescaling.

The effects of rescaling can be seen clearly in Fig. 6-9, where F is allowed to

take the values 0.25, 1 and 5. Keeping Qbhoo = 0.0125 and JHI = 0.5, it corresponds

to changing To from about 72000 K to 1000 K. Alternatively, keeping To and Qbh 00

fixed at their canonical values (as shown in equation [6.41]), it corresponds to allowing

JHI to vary between 2 and 0.1. See Hui and Gnedin (1996) for a discussion of the

dependence of To on reionization history. To is expected to fall within the range

quoted above.

The conventional value of Qbho00 = 0.0125 has been challenged by recent

measurements of light element abundance in high redshift absorption systems. Tytler

and Burles (1996) obtain a value of 0.024, which for To = 104 K and JHI = 0.5, implies

F = 3.686, well within the range of F plotted in Fig. 6-9. The analysis of Hogan and

Rugers (1996), on the other hand, favors the value 0.006, which means F = 0.23 for

the same values of T and JHI. The lowest set of points in Fig. 6-9 has to be lowered

further to accommodate this value of the baryon density.

The observational data are taken from Hu et al. (1995), measured at about

redshift of about 3 and corrected for incompleteness. The error bar in the vertical

direction is about the size of the solid square.

We note in passing that strictly speaking, altering Qb, in addition to rescaling

the number of absorption lines as discussed above, also changes the transfer function

in a non-trivial way. But the effect is very small for models in which the dark mat-

ter (non-baryons) dominate. In fact, using the BBKS (Bardeen et al. 1986) transfer

function, which does not take into account the effect of baryons at all, instead of the

Ma (1996) transfer function, which does take it into account for Qbh00oo = 0.0125 with

hioo = 0.5, gives essentially the same column density distribution for the range of

column densities discussed here. For models where the baryon content is proportion-

ally higher, Low-density Cold Dark Matter Models for instance, changing Qbh 200 has

a more pronounced effect on the transfer function.

6.6.2 DEPENDENCE ON THE EQUATION OF STATE
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Fig. 6-10.- Column density distributions of the CDM1 model (Table 6-1) for three
different equations of state (equation [6.28]). Open squares: 7 = 1.2; crosses (same as
crosses in Fig. 6-9): -/ = 1.5; open triangles: -y = 1.7. F = 1 (defined in eq. [6.41])
for all three. Points with error-bars are the same observational data as in Fig. 6-9.
Long-dashed and short-dashed lines give the approximate slopes (-1.69 and -1.38)
as given in equation (6.47) for the open triangles and open squares respectively.
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Let us hold fixed To, Qbho00 and JHI at their canonical values as in equation (6.41)

but allow the equation of state to change, for the same CDM model as above. As is

pointed out in Sec. 6.3.2, the temperature-density relation for low enough overdensity

is well-approximated by a power law where the power index is around 0.5, but can

change slightly depending on the reionization history. We plot in Fig. 6-10 the column

density distributions for 7y = 1.2,1.5,1.7 where 7y is defined by T oc (1 + Sb) - '. It

should adequately cover the possible range of 7y (Hui & Gnedin 1996).

The first thing to notice is that the column density distribution remains almost

the same for the three different values of 7. This is because 7 affects column density

through the power index of (1+Sb), which is 2-0.7(y-1) (equation [6.37]). The index

does not change significantly for the range of 7 considered. A larger index (smaller 7)

means for a density peak with a given 1 + 4b (and its second derivative), the column

density is larger or smaller depending on whether 1 + 4b is bigger or smaller than one.

The net effect is to decrease the slope of the column density distribution. The effect,

though very small for the values of 7 plotted, can still be seen in Fig. 6-10. We also

show the approximate slopes given by an analytical formula (equation 6.47) which

will be discussed later. Note how the column density distribution does not exactly

follow a power law but can be approximated by one.

Hence as a crude approximation, we conclude that the mean temperature,

radiation intensity and baryon density mainly determine the overall normalization of

the column density distribution. The equation of state, on the other hand, mostly

affects the slope of the column density distribution but its effect is small for reasonable

range of y7.

6.6.3 DEPENDENCE ON U 8

Putting y = 1.5 and F = 1 (equation [6.41]), we now consider CDM models with

different 9 8 , in other words, different normalizations of the power spectrum. Plotted

in Fig. 6-11 are two CDM models, one with Us = 0.7, the other with 98 = 0.4, both

without any tilt. Both have the same thermal and ionization parameters (To = 104 K,

JHI = 0.5 and 'Y = 1.5). The •s = 0.4 model is not meant to be realistic but it serves
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Fig. 6-11.- Solid squares are the same observational data as in Fig. 6-9. Open
squares: the CDM1 model with us = 0.7 (see Table 6-1). Open triangles: the CDM3
model with o8 = 0.4. For both models, F = 1 (equation [6.41]) and 7y = 1.5 (equation
[6.28]) are adopted. The long-dashed and short-dashed lines give the approximate
slopes (-1.69 and -1.55) as given in equation (6.47) for the open triangles and
crosses respectively.
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to illustrate the effect of choosing a different normalization.

It interesting to see that changing the normalization of the power spectrum

alters the slope of the column density distribution. For column densities greater than

about 1012.5 cm - 2, the lower as model has a steeper distribution. It indicates that the

model is in a more "linear" state of evolution compared with the higher ars model at

a redshift of 3. There are proportionally more low density peaks compared to high

density ones, hence the steeper distribution. For sufficiently low column densities,

however, the absorption lines arise from very underdense regions which should be

more common in the high a s model. Hence at very low column densities, the high as

model should win: it has more very low density peaks. Where this might occur we

cannot tell from our simulations because of the limited resolution. For the range of

column densities we can measure reliably, the slope of the column density distribution

simply steepens as as is lowered.

6.6.4 DEPENDENCE ON THE SHAPE OF THE POWER SPECTRUM

We investigate here the effect of changing the slope of the power spectrum while

keeping g8s fixed. Fig. 6-12 shows two CDM models, both with as = 0.7, one without

tilt and the other with the spectral index n = 0.7. Small scale power is suppressed in

the n = 0.7 model. The effect on the column density distribution is very similar to

lowering 8s.

Another way to alter the shape of the power spectrum is to apply different

amounts of smoothing to the same initial power spectrum.

In Fig. 6-13, we plot for the U8s = 0.7 CDM1 model (Table. 6-1) the results of

three different smoothing scales. The crosses represent the result of using the smooth-

ing scale according to the standard prescription (equation [6.21]). More smoothing

(open triangles) has qualitatively the same effect as lowering U8 (Fig. 6-11). This

should come as no surprise because smoothing means decreasing small scale power.

Again, one ends up decreasing the number of high density peaks compared to low

density peaks, hence resulting in a steeper column density distribution. Smoothing

by ks = 1.15 Mpc - 1 (open triangles) removes more structure than is necessary from
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Fig. 6-12.- Points with error-bars are the same observational data as in Fig. 6-9.
Crosses represent the as8 = 0.7 and no tilt CDM1 model as before (same as crosses in
Fig. 6-9; see Table 6-1). Open triangles represent the column density distribution of
the CDM4 model: as = 0.7 with tilt, the spectral index being 0.7. For both models,
F = 1 (eq. [6.41]) and -y = 1.5 (equation [6.28]) are adopted.
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Fig. 6-13.- Column density distributions of the CDM1 model (Table 6-1) for
three different initial smoothing scales. Crosses (same as crosses in Fig. 6-9):
ks = 2.3 Mpc - 1, which is the smoothing scale according to the standard prescription
(equation [6.21]). Open triangles: ks = 1.15 Mpc-1. Open squares: ks = 8.4 Mpc - ',
which is the Jeans scale for To = 1 and ' = 1.5. We adopt F = 1 (eq. [6.41]) and
- = 1.5 (eq. [6.28]) for all three cases.
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the point of view of optimizing the truncated Zel'dovich approximation. Smoothing

by ks = 8.4 Mpc - 1 has the opposite effect of making the column density distribution

flatter, but it should be kept in mind that severe orbit-crossing occurs because not

enough smoothing is performed in this case. The comparison with a full hydrody-

namic simulation in Fig. 6-6 lends support to the standard prescription for choosing

ks (equation [6.21]).

To understand the overall effect of changing the power spectrum (both its

shape and normalization), we plot in Fig. 6-14 the smoothing scale ks versus the

following quantity:

go = D+ (t)j 47rk 2P(k)e-(k/ks) 2dk. (6.43)

which is the linear rms fluctuation of a density field smoothed with a spherically

symmetric Gaussian window with radius 1/ks. The linear growth factor D+(t) is

equal to (1 + -)- 1 if D+ = 1 today is assumed. It is one way to represent the amount

of fluctuation around comoving scale 1/ks. Three power spectra are shown: CDM1,

CDM3 and CDM4 (see Table 6-1), all at i = 3. The Jeans scale is around 8 Mpc - 1

(Sec.6.3.1), below which we expect the intergalactic medium to be smooth (except for

very small scales which have collapsed to form stars, etc) and so does not contribute

significantly to absorption lines. For scales large enough such that g0 is smaller than,

say 0.1, the density fluctuations are essentially linear. These are scales that would

collapse later to form the larger scale structure we see today. The average amplitude

of fluctuations associated with them is so small at z = 3 that the intergalactic medium

is also smooth on those scales. This leaves around one to two decades of length scales

below 8 Mpc - 1, on which the density fluctuations contribute to the absorption lines

of column densities of interest in this paper. Models with similar g0 on these scales

are therefore expected to have similar column density distributions. (Gnedin and Hui

1996 reached similar conclusions using the lognormal approximation). From Fig. 6-

14, one can then understand why the as = 0.4 model and the n = 0.7, 8as = 0.7 have

qualitatively similar column density distribution. Namely, both have smaller go on
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the relevant scales compared with the os = 0.7 no-tilt-model and hence both have

steeper column density distribution for column densities higher than 1012.5 cm-2

6.7 THE SLOPE OF THE COLUMN DENSITY DISTRIBU-

TION

It has been shown that while the normalization of the column density distribution

is influenced by the thermal and ionization states of the intergalactic medium which

are not well-constrained, the slope is sensitive to the amount of small scale power

and depends weakly on the effective equation of state. We develop a quantitative

expression for the later relation here.

From equations (6.36) and (6.37), it can be seen that the column density NHI

is proportional to (1 + Jb) 2 -0.7 (y-1) times 1/1V , which basically defines a length

scale. Taking into account the correlation between this length scale and the overden-

sity, we find from our simulations (which use the Zel'dovich approximation) a useful

approximate relation for column densities between about 1012.5 and 1014.5 cm-2

NHI O( 1 + b 1 05- 0 7( - 1), (6.44)

which means the length scale 1/V/U is approximately proportional 6 to (1 + Jb )-0. 95.

Now, since we are interested in the slope of the column density distribution,

the relevant quantity to consider is:

dln d
2 NLY m dln fo d"|"IP(, ' = , ")dNHdz 1+ = m = -1+______

dln NHI 1.05 - 0 .7 (7- 1) ' d
(6.45)

The equality follows from equations (6.44), (6.36), (6.38) and (6.40) and noting that

- 1+ Sb. The column density distribution can be approximated by NH- if 3 defined

above is only weakly dependent on NHI.

6 A log-log plot of 1/V' versus (1 +Sb) actually shows a lot of scatter but equation (6.44) appears
to capture the overall dependence of NHI on 1 + Jb-
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Now, lacking an analytical expression for P under the Zel'dovich approx-

imation, we can nonetheless guess what the general properties of the derivative

din f_ d"jý"I|P/dý are. First of all, the derivative depends on ý because the in-

tegral fo d "I "|P cannot be a simple power law in ý. This is because we expect

the integral (and P itself) to vanish for very large and very small ( and peak at some

intermediate ý. Suppose (pk is the value of ý where the integral fo. d",ý,",P reaches

its maximum value, then the column densities we are interested in must correspond to

ý > pk where dIn f_, d"ý" I P/dý is negative. This is based on the knowledge that

the computed (as well as observed) slope in equation (6.45) is less than -1 (the factor

1.05 - 0.7(7 - 1) is positive). Furthermore, as we have noted before, we expect the

relative number of high density to intermediate density (for ý larger than ,rmpk) peaks

to be lower for models with less power, which means din f_. d<"1""P(j, 6' = 0, 6")/d6

is more negative. Lastly, since the Zel'dovich displacement field is Gaussian in La-

grangian space, we expect on quite general grounds that P depends on the power

spectrum through the 3 parameters: a0 as defined in equation (6.43) and ol and 0 2

as defined as follows (see Bardeen et al. 1986):

c 1 = D+(t) 4wk4P(k)e-(k/ks)2dk, and U2 = D+(t) 4k6P(k)e-(k/ks)2 dk,O 0
(6.46)

where D+ is the linear growth factor which is equal to (1 + z) - ' for a universe at

critical matter density.

In the last section, we have tested two CDM models that have the same shape

of the power spectrum but different normalizations (see Fig. 6-11). These models

have the same values of ux/ao and u2/ 0, but different uo. One can then try to find

the uo dependence of din foo d<"J"|P(ý, ý' = 0, 6")/d6 for these models (al/cao and

0r2/ro being fixed). We find the following form fits the slope of the computed column

density distribution reasonably well (Fig. 6-11):

1
/3= 1 + -0.7 - 1)(1 - 0.55co)). (6.47)1.05 - 0.7(-y - 1)
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where 3 satisfies equation (6.45). An example of how well it describes the variation

of the slope with a change in the equation of state can be found in Fig. 6-10.

The above form for 3 displays the expected dependence of the slope on 0o,

namely steeper slope with lower c0 . However, we don't expect it to hold in general

because the dependence on al and U2 is ignored. In fact, it fails to describe accurately

the slope of the column density distributions of the CHDM models we are going

to study.7 Nonetheless, equation (6.45) should give a good description of how the

slope of the column density distribution varies with 7. We can also see that it is

the combination of 7- around 1.5 and m around 0.35 in equation (6.45) that gives

/3 - 1.5. It should be kept in mind, however, that the column density distribution is

not expected to obey an exact power law, based on the general considerations stated

before.

6.8 THE COLUMN DENSITY DISTRIBUTION FOR CHDM

MODELS

In Sec. 6.6, we learn that while To, JHn and Qbh100oo play a major role in determining the

normalization of the column density distribution, the amount of power on comoving

scales between around 1 Mpc - 1 and 10 Mpc -1 is primarily responsible for its shape

or slope. The equation of state also has a small effect on the slope of the column

density distribution.

We apply these insights to study a group of CHDM models. They are all

o0 = 1 models with Ob = 0.05. Both the Q, = 0.2 and Q, = 0.1 versions are

considered. They have been shown to give good agreement with the observational

data on large scales (k around 0.02 - 0.4 Mpc - 1) (see Fig. 6 and 7 of Ma 1996 ).

The Q, = 0.3 models seem to conflict with observed abundance of damped Lyman-

a systems, which correspond to roughly k around 0.1 - 1.0 Mpc -1 comoving in the

linear power spectrum. (Mo & Miralda-Escud6 1994; Kauffmann & Charlot 1994;

7 An alternative analytic expression for 0 is being developed. See Hui and Gnedin 1996 for further
discussion / improved treatment.
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Table 6-2: A list of all the CHDM models discussed in this paper. All have Qb = 0.05.
The parameters are defined as follows: Q is the density parameter in neutrino, a is
the spectral index of the power spectrum, Qrms is the COBE quadrupole in ,K and
T/S is the tensor to scalar ratio. The smoothing wavenumber ks for each Q, = 0.1
model is 1.5 kNL (equation [6.20]) and ks for each Q, = 0.2 model is the Jeans scale
for 7y = 1.5, To = 104 K and the corresponding hioo00 (see Sec. 6.3.2). No simulation is
run for A3, so no ks is listed. All parameters and power spectra are taken from Ma
(1996).

Ma & Bertschinger 1994). We list in Table 6-2 the CHDM models considered in

this paper. We include one Q, = 0.3 CHDM model for the sake of comparison. As

is shown convincingly by Ma (1996), all models need some amount of tilt to match

observations.

We compute as before the column density distribution for each model using the

Density-Peak-Ans itz and the Zel'dovich approximation with appropriate smoothing.

The power spectrum for each CHDM model is taken from Ma (1996).

As we have discussed before in the context of the CDM models, a plot of rms

smoothed linear density fluctuation c0 versus smoothing scale ks (equation [6.43]) is

a very good indicator of what column density distribution to expect. This is done in

Fig. 6-15 for the CHDM models tabulated in Table 6-2. The no-tilt U8 = 0.7 CDM

model is also plotted for comparison.

Because of neutrino free streaming, all CHDM models have less power than

the CDM model on small scales. Those with more neutrino content (,, = 0.2) have

even less power than the others. In fact, the Q, = 0.2 models have co < 1 on all scales
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Label Q, hi00 n Qrms/ yK T/S ks/Mpc 1

Al 0.1 0.5 0.95 18.5 7(1 - n) 3.8
A2 0.2 0.5 0.95 18.5 7(1 - n) 8.4
A3 0.3 0.5 0.95 18.5 7(1 - n) not apply
B1 0.1 0.5 0.9 19.2 0 3.3
B2 0.2 0.5 0.9 19.2 0 8.4
C1 0.1 0.65 0.9 19.2 7(1 - n) 3.1
C2 0.2 0.65 0.9 19.2 7(1 - n) 10.9
D1 0.1 0.65 0.8 20.5 0 2.8
D2 0.2 0.65 0.8 20.5 0 10.9
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Fig. 6-15.- Going from the top, the solid line is the same O8s = 0.7, h1oo00 = 0.5 CDM
model with no tilt as in Fig. 6-9; the next four sets of points/lines close together are
all Q, = 0.1 CHDM models, Al, B1, C1 and D1 in Table 6-2 ; the next four sets are
all Q. = 0.2 CHDM models, A2, B2, C2 and D2; the last set, open squares, is an
QV = 0.3 CHDM model, A3. All are shown at z = 3.
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larger than the Jeans scale (ks < kj). One expects the Zel'dovich approximation to

work particularly well for these models because the amount of orbit-crossing will not

be significant, even without initial truncation.

This is borne out by the next test: we compute the column density distribution

for one CHDM model B2 and examine the effect of choosing different smoothing

scales. The result is plotted in Fig. 6-16. The column density distribution in the

range plotted does not change much at all for the three different smoothing scales

plotted. Contrast this with the case of ars = 0.7 CDM (Fig. 6-13) where the column

density distribution is more sensitive to changes in the smoothing scale. That's why

the truncation scale has to be chosen with some care: not too small (ks too big) so

that too much orbit crossing has occurred and not too large so that too much small

scale structure is erased. We have shown the standard prescription (Sec. 6.3.1) to be

a good one in Sec. 6.5.

For the CHDM model considered (in fact, it holds true for all other Q, = 0.2

models here), the amount of small scale power is so insignificant that excluding them

by smoothing does not affect the overall column density distribution at all (except

possibly that one loses the small scale fluctuations that can give rise to very low

column density absorption i.e. lower than our resolution limit). We have also done

similar tests for the R, = 0.1 models, their response to changes in the truncation scale

is somewhere between the os = 0.7 CDM model and the Q, = 0.2 CHDM models, as

can be expected based on their difference in Fig. 6-15.

We adopt the following truncation scales for the CHDM models. For the

V, = 0.1 models, the standard prescription described in Sec. 6.3.1 is used (i.e. ks =

1.5 kNL). The Q, = 0.2 models, according to the above prescription, would have

truncation scales less than the Jeans length (ks > k3 ) and so by the arguments

presented in Sec. 6.3.1, ks = kj is adopted. Again, we emphasize that for this class of

models that have relatively little power on small scales, the precise truncation scale

is not important. A summary of the truncation scales for all models can be found in

Table 6-2.

The CHDM models with Q, = 0.1 are plotted in Fig. 6-17. Values of F that
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Fig. 6-16.- Column density distributions of the B2 CHDM model (see Table 6-2)
for three initial smoothing scales. Crosses: ks = 19.2Mpc - 1 (standard truncation
prescription, ks = 1.5 kNL according to eq. [6.20]). Open triangles: ks = 8.4Mpc - 1

(Jeans scale for To = 104 and -' = 1.5). Open squares: no smoothing at all. Points
with error-bars are the observational data as in Fig. 6-9. For all models, F = 1
(equation [6.41]) and 7y = 1.5 (equation [6.28]) are used.
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Fig. 6-17.- Column density distributions for four •, = 0.1 CHDM models. Points
with error-bars are the observational data as in Fig. 6-9. All models have Q, = 0.1.
We use - = 1.5 in the equation of state for all of them (equation [6.28]). Table 6-2
contains descriptions of each of the following model. Open hexagons: BI, F = 3.33.
Open triangles: Al, F = 3.33. Crosses: Dl, F = 5.7. Open squares: C1, F = 5.7. F
is defined in equation (6.41).
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give reasonable match to the observational data are chosen for each model. Note how

the low-Hubble-constant-models (h1 oo00 = 0.5) requires a slightly lower F (equation

[6.41]) than the higher-Hubble-constant-models. The equation of state is chosen to

be the same for all models (7 = 1.5, see equation [6.28]). The level of agreement with

the observational data, for the given choices of parameters, is satisfactory. Notice

how the low Hubble-constant (hioo00 = 0.5)models tend to have steeper column density

distributions, because they have less power on the relevant scales (see Fig. 6-15).

Their slopes can be brought into better agreement with that of the observational

data if a smaller 7 is used.

For the •, = 0.2 models, we cannot find values of F that gives the same level

of agreement with observations for '( = 1.5. Two examples are shown in Fig. 6-19

and Fig. 6-18. Both have hioo00 = 0.5 and small amounts of tilt. For each, three

sets of theoretical predictions are plotted, one for each value of F, 1, 2.5 or 5. For

Qbh 2oo = 0.0125, the conventional Big-bang nucleosynthesis value, and To = 104K,

they correspond to radiation intensity JHI of 0.5, 0.2 and 0.1 (equation [6.41]). As we

have shown before, changing F mainly shifts the sets of points without altering the

slope significantly. For the column density between about 1012"5 and 1014.5 cml- 2, the

slope of the predicted distribution seems to be too steep compared to the observational

data.

Two other , = 0.2 CHDM models, which share a higher Hubble constant

(h = 0.65), are shown in Fig. 6-20 and Fig. 6-21. The slope of their column density

distribution is not as steep as the previous ones. This is expected because the higher

Hubble constant models have slightly more power on relevant scales, as is evident in

Fig. 6-15. In fact, one might argue that the middle set of points in each figure, the one

having F = 3.57, match the observational data reasonably well if both observational

and theoretically errors are taken into account. However, it is still true these two

models predict a steeper column density distribution for NHI between about 1012.5

and 1014.5cm - 2 , compared to the Q, = 0.1 CHDM models (Fig. 6-17).

It is not hard to understand the column density distributions of the CHDM

models presented if one goes back to Fig. 6-15. The •, = 0.2 models have less power
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Fig. 6-18.- The column density distribution for the A2 CHDM model (Table 6-
2). Three values of F (equation [6.41]) are shown: F = 1 (open squares), F = 2.5
(crosses) and F = 5 (open triangles). We choose -y = 1.5 for all three (equation
[6.28]). Points with error-bars are the observational data as in Fig. 6-9. The dashed
line has a slope of -2.
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Fig. 6-19.- The column density distribution for the B2 CHDM model (Table 6-
2). Three values of F are shown (equation [6.41]): F = 1 (open squares), F = 2.5
(crosses) and F = 5 (open triangles). -y = 1.5 for all three (equation [6.28]). Points
with error-bars are the observational data as in Fig. 6-9. The dashed line has a slope
of -2.
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Fig. 6-20.- The column density distribution for the D2 (Table 6-2) CHDM
Three values of F are shown (equation [6.41]): F = 7.14 (open triangles), F
(crosses) and F = 1.79 (open squares). y = 1.5 for all three (equation [6.28]).
with error-bars are the observational data as in Fig. 6-9.
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Fig. 6-21.- The column density distribution for the C2 CHDM model (Table 6-2).
Three values of F (equation [6.41]) are shown: F = 7.14 (open squares), F = 3.57
(crosses) and F = 1.79 (open triangles). 'y = 1.5 for all three (equation [6.28]). Points
with error-bars are the same observational data as in Fig. 6-9.
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than those with •, = 0.1 on scales 1Mpc - 1 < ks < O10Mpc - 1 , which are relevant for

the range of column densities we are interested in. As we have explained before, the

column density distributions are therefore steeper for the Q, = 0.2 models at this

range of column densities because they have relatively higher number of low density

peaks compared to high density peaks. Among the •, = 0.2 models, those with a

lower Hubble constant produce comparatively steeper column density distributions

because they have even less small scale power than the ones with a higher Hubble

constant.

In Sec. 6.6, we have discussed how the equation of state can change the slope of

the column density distribution although the effect is very small. To demonstrate the

robustness of our conclusion, we show in Fig. 6-22 the effects of altering the equation

of state on the column density distribution for one particular CHDM model (A2). F

is fixed at 2.5, the value that seems to give a column density distribution closest to

the observational data. Smaller 7, as we have noted before, helps flatten the column

density distribution but the flattening seems to be not quite enough even for -y = 1.2.

We show in the same figure a dashed line with a slope of -1.77 (which follows from

equation (6.45) if one fixes m using the case of 7 = 1.5 and 3 = 2 in Fig. 6-18). It

seems 7y < 1.2 is needed for this model to give the right slope of the distribution, at

least the right slope to within the 95% confidence limits of the observed value (-1.37,-

1.51). The same conclusion holds for the other low Hubble constant Q, = 0.2 model

(B2). We should emphasize, however, that a more detailed comparison between the

predictions of the models and observations, taking into account noise and biases of

the line identification techniques, is necessary before any model can be considered

ruled out.

The high Hubble constant (hioo00 = 0.65) Qv = 0.2 models C2 and D2, on the

other hand, have intrinsically flatter distributions and a reasonable match between

theory and observations can be made by choosing 7 in the range 1.2 - 1.7. It remains

true that this class of models have steeper column density distributions compared to

the CDM models previously considered for the same value of 7.
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Fig. 6-22.- The column density distribution of the A2 CHDM model (Table 6-2)
for three different values of 7 (equation [6.28]). F = 2.5 (equation [6.41]) is adopted.
Three values of ' are shown: -y = 1.2 (open squares), y = 1.5 (crosses) and -Y = 1.7
(open triangles). Points with error-bars are the observational data as in Fig. 6-9. The
dashed line has a slope of -1.77 .
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6.9 CONCLUSION

We have systematically developed a set of tools to compute in an efficient manner

the column density distribution given a cosmological model. One fundamental as-

sumption of the approximations involved is that most of the Lyman-a forest with

column densities in the range 1012.5 - 1014.5 cm - 2 originate from regions of low over-

densities or even underdensities which have not undergone orbit-crossing. The result

of a comparison with a hydrodynamic simulation lends support to it.

One major conclusion we reach, in the process of developing the tools, is

that the peculiar velocities play almost no role in determining the column density

distribution at our column densities of interest, even though they are very important

in determining the shapes of individual absorption line profiles. We take advantage of

this fact and develop a method we call the Density-Peak-Anscitz in which each density

peak is assigned a column density. The column density distribution then becomes a

statistic of density peaks.

The main insight we gain in the two sections on the CDM and CHDM models

is that the factors controlling the column density distribution can be divided into two

categories. One mostly affects its normalization while the other mostly influences

its slope. Those that fall into the former category include the ionizing radiation

intensity, the mean temperature of the intergalactic medium and the mean baryon

density. Uncertainties in their values are such that almost any viable cosmological

model which have the correct slope of the column density distribution can be made

to match observations by a judicious choice of parameters.

The factors that mostly affect the slope of the distribution include the equation

of state and more strongly so, the amount of (linear) power on scales 1 Mpc -1 SkS 10 Mpc.

Models that have less power on these scales tend to have comparatively more low

density peaks to high density ones and hence have relatively steeper column density

distributions. Equations of state which are closer to isothermal (smaller 3Y where Y

satisfies T oc (1 + Sb) *- 1 ) tend to produce flatter column density distributions. How-

ever, within the reasonable range of -y (see Hui and Gnedin 1996), its precise value
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depending upon the reionization history, the effect of changing the equation of state

is small. We put forward approximation expressions relating the slope of the column

density distribution to 7 and the power on small scales (equation [6.45] is the more

general expression and equation [6.47] holds for a class of CDM models.)

Therefore, the slope of the column density distribution provides a rather robust

measure of the amount of power on small scales for a given cosmological model. We

apply our techniques to study a class of CHDM models which are known to have less

power on small scales compared to other popular CDM models. We conclude that the

CHDM models indeed produce steeper column density distributions compared to the

CDM models. In particular, the low Hubble constant (hioo00 = 0.5) Q, = 0.2 CHDM

models, which have the least amount of power on small scales among the models we

study, have column density distributions which can be made consistent with observa-

tions only for 7y less than the values we consider reasonable. We emphasize however

that only after a more detailed comparison between theories and observations, in-

cluding all the effects of noise and biases of the line-identification methods, can any

model be considered ruled out, based on the observed column density distribution.

We therefore conclude that a lot of work still needs to be done both on the

observational and theoretical fronts. The biases of the line-identification techniques

used for data reduction deserve close study so that the error bars in the observed

column density distributions can be better understood and perhaps reduced. Numer-

ical simulations on the CHDM models should be carried out to test the accuracy of

the approximations made in the present work. The effect of a fluctuating radiation

field, instead of a uniform one as is assumed here, has to be investigated. Moreover, in

terms of constraining models, it is also important to examine other possible statistics.

We have shown, for instance, that the column density distribution is relatively inde-

pendent of peculiar velocities. Are there other statistics that can take advantage of

the different peculiar velocity structures predicted by different cosmological models?

One question to consider is how the peculiar velocity affects the observed NHI - b

relation.

In short, the study of the Lyman-a forest has entered an exciting stage. There
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is a gold mine of information contained in the quasar absorption spectra waiting to

be discovered.
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Chapter 7

Final Conclusion

A brief summary of all the main results are presented here. For more detailed dis-

cussions, the reader is referred to the separate conclusion to each of the three parts

of the thesis in Chapters 3, 5 and 6.

The evolution of density fluctuations in the inflationary universe is re-examined

in Chapters 2 and 3. The transition between the inflaton-dominated and the radiation-

dominated stages is approximated as instantaneous. If the transition occurs during

the slow-roll phase of inflation, the widely used formula for the amplitude of density

fluctuations at second Hubble-radius-crossing, Sp(k)/po o HSJp(k)/lo, is recovered.

However, if the transition takes place very close to the instant of turn-around, when

the inflaton has rolled past the minimum of the potential, decelerated and comes to a

halt momentarily, the above formula breaks down. The amplitude of density fluctu-

ations is greatly enhanced. This is true even for fluctuations with wavelengths much

longer than the Hubble radius at the time of the transition. This demonstrates an

exception to the conventional wisdom that the details of the transition or reheating

process cannot affect the amplitude of large scale density fluctuations.

Conventional wisdom has it that one can choose appropriate gauge invariant

quantities, such as ( defined in equations (2.14b) and (2.15), which remain constant

as long as the wavelength of the fluctuation exceeds the Hubble radius. This leads to

the commonly accepted picture is that once the wavelength of a given fluctuation is

stretched beyond the Hubble radius by inflation, it (or the quantity describing it) is
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frozen until at some point during the radiation-dominated or matter-dominated era,

it enters the Hubble radius again.

The standard lore breaks down because C, or other analogous quantities, does

change close to the point of turn-around. In fact, it diverges at exactly that point.

However, this does not imply any physical divergence unless inflation ends right at the

moment of turn-around. We have shown in Section 3.3 that D, which is proportional

to a gauge invariant density fluctuation, remains finite throughout the turn-around.

It is the divergence of ( at that particular moment, together with the role it plays in

the junction conditions, that causes the physical divergence of density fluctuations at

second Hubble-radius crossing, if one forces inflation to end precisely at the moment

of turn-around.

A highly idealized model of instantaneous transition is employed in the cal-

culation presented in this thesis. In reality, the transition probably takes at least a

few oscillations of the inflaton around the true minimum of the potential to com-

plete. Since the departure from standard results is found to occur only if inflation is

abruptly ended extremely close to the point of turn-around, it is quite possible that

the effect we discover is not important in a more realistic calculation. Moreover, since

divergence of ( at precisely the turn-around occurs because the sum of energy density

and pressure is strictly zero at that point, any small amount of matter or radiation

that is present during the point of turn-around can kill the divergence. Neverthe-

less, it remains to be shown under what circumstances reheating does/does not affect

the large scale density fluctuations. The calculation presented provides an intriguing

example of what can happen.

In Chapters 4 and 5, the concept of local approximations is introduced and

three examples are discussed. It is shown how the celebrated Zel'dovich approxima-

tion can be viewed as a member of a larger class of approximations which involve the

truncation of a hierarchy of Lagrangian fluid equations. The purpose of the trunca-

tion is to produce a closed set of equations describing the evolution of the density,

velocity gradients and tidal field at a mass element without coupling to other mass

elements.
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Two approximations based on ignoring certain terms in the tidal evolution

equation are discussed. It is shown that one of them, the Local Tidal approximation

(LTA), is exact for cases of planar, cylindrical and spherical symmetries. This is a

significant improvement over the Zel'dovich approximation which is exact only in the

case of planar symmetry. The draw-back is that we have a more complicated set of

equations to solve which have to be handled numerically except under special circum-

stances. The local approximations are compared in the case of ellipsoidal collapse.

It is shown that the Local Tidal approximation gives a reasonably accurate estimate

of the time of pancake collapse while the Zel'dovich approximation overestimates it.

The third local approximation, known as the Non-magnetic approximation (NMA),

gives rise to collapse into the spindle configuration, contrary to what actually hap-

pens. It shows that local approximations in the language of truncated Lagrangian

fluid equations have to be formulated with care. We show which terms in the tidal

evolution equation are responsible for encouraging pancake versus spindle collapse.

The successful local approximations can be applied in the mildly nonlinear

regime (overdensity less than about 5) before trajectory crossing takes place. An

application of the Zel'dovich approximation to the study of the Lyman-a forest is

presented in Chapter 6.

The focus of the last chapter is on understanding the factors that influence

the column density distribution of the Lyman-a forest. To that end, we first show

how the Zel'dovich approximation, with appropriate smoothing and coupled with

the thermal and ionization evolution equations, can be employed to compute the

neutral hydrogen density distribution as well as the peculiar velocity field, for any

cosmological model. This is proposed as an efficient and accurate alternative to

full hydrodynamic simulations for the part of the Lyman-a forest that has column

density in the range 1012.5 - 1014. 5 cm- 2. The point of view is that this part of the

forest originates from fluctuations of mild overdensities or even underdensities which

arise naturally in hierarchical clustering models.

Then we develop a method we call the Density-Peak-Ansatz to evaluate the

column density distribution. It consists of two parts: first, each density peak in real
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space is assumed to give rise to an absorption line; second, each peak is then assigned

a column density based its height and its second derivative along the line of sight.

The first step is justified by the fact the peculiar velocities play a relatively minor

role in determining the column density distribution even though it is important in

shaping absorption profiles. The Density-Peak-AnsSitz is tested against the result of

a full hydrodynamic simulation where the column density distribution is obtained by

analyzing the simulated spectra in a way similar to what observers do. The level of

agreement is excellent. Using the ansitz, the column density distribution becomes a

statistic of density peaks in real space that involves its height and second derivative.

The method is systematically applied to study how the column density dis-

tribution varies with the power spectrum and various properties of the intergalactic

medium. It is found that the column density distribution can indeed be approximated

as a power law in our limited range of investigation, for the cosmological models we

study. It is shown that the baryon density, ionization flux and temperature of the

medium largely affects the normalization of the column density distribution. The

equation of state, on the other hand, mostly affects its slope although the effect is

found to be small for a reasonable range of equations of state. Lastly, it is found

that the column density distribution is sensitive to the amount of power on scales

1 Mpc- 1 ' k < 10 Mpc - 1. Models that have less power on those scale tend to have

more density peaks of intermediate densities compared to high densities. The im-

plication is that the column density distributions of the models with less power are

steeper. At sufficiently low column densities however, the reverse should be true be-

cause the very low column density objects are dominated by very low density peaks

which are rare in models with less power. For the range of column densities that

we can reliably compute the distribution, 1012.5 - 1014" 5cm - 2, we can see the former

effect but not the later. Presumably, the latter holds at column densities below our

resolution limit. The steepening effect is demonstrated by varying the normalization

and the spectral index of the Cold Dark Matter (CDM) model. An analytical ex-

pression is developed to describe the dependence of the slope of the column density

distribution on the equation of state as well as the amount of power on small scales.
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We study a class of Cold plus Hot Dark Matter (CHDM) models with vary-

ing neutrino content and Hubble constant and confirm the above trend. Our com-

parison with the observational data show that the low Hubble constant (H0 =

50 kms -1 Mpc -1 ) Q, = 0.2 CHDM models produce column density distributions that

are too steep unless the equation of state is chosen to be close to isothermal (7 < 2

where 7 satisfies T oc (1 + Sb)-'-1; T is the temperature and Sb is the overdensity).

It is emphasized that no cosmological model should be considered ruled out until a

more detailed comparison with the observational data is carried out, which should

take into account the effects of noise and biases of line-identification methods in ana-

lyzing both the observed and simulated data. Preferably the two should be analyzed

in exactly the same way but the approximate methods we introduce to compute the

theoretical column density distribution are useful for gaining insights into the factors

that determine it. Its quantitative success when compared to one hydrodynamic sim-

ulation encourages us to apply it to study the CHDM models. The general trend of

steeper a column density distribution in the range 1012.5-10 14"5cm - 2 with higher neu-

trino content and smaller Hubble constant has important implications for the CHDM

models.
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Appendix A

Relativistic Perturbation Theory

Our treatment of gauge invariant metric variables and their evolution follows closely

that of Bardeen (1980). The symbols for metric and energy-momentum-tensor pertur-

bations are defined in equations (2.11) and (2.12). Assume the following coordinate

transformation:

= r + N(q)Q(x) (A.la)
SQ,~ (x) (A.lb)

i = x + L ( I) k (A.1b)

where Q is defined in equation (2.10).

Then the metric variables transform as follows:

A= - N' - -N (A.2a)
a

3 = B + L' + kN (A.2b)

k a'
HL = HL - _ L --- N (A.2c)

3 a
HI = HT + kL (A.2d)

The components of the energy-momentum tensor transform as:

v = v + L' (A.3a)
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Sp = Sp - p'N (A.3b)
Sp = Sp - p'N (A.3c)

The anisotropic stress, which is the traceless part of Tj, is gauge invariant to

first order. Hence if it vanishes in one coordinate system, it vanishes in all the others.

It is simple to show from the above transformations that the quantities SpGI

and SPGI (equation [2.13]) are gauge invariant. The gauge invariance of 0, OP and

then follows straight from their definitions. Since Sb transforms like

SJ = Spo - ('N, (A.4)

3 GI (equation [2.26]) is also gauge invariant.

Next we derive the key equation used in Chapters 2 and 3, (2.17). The first

order Einstein Equations are:

3 a' 2k2 1 2ka'a2
6p = 3 2aHL + 2k2 (HL + -HT) + 2ka'B - 2 (- A (A.5a)a2 a 3 3 3 a a

(po + po)(v - B) = 2k ( H' + a A (A.5b)
2a' ( ' H1H

HT" + 2aHI - k B'+2 B) - k2 HL + -HT + A =0 (A.5c)a a 3

The first two equations follow from the time-time and time-space components of

the Einstein Equations. The last equation is an expression of the no-anisotropic-

stress assumption. We do not list the equation associated with the trace of T? or the

pressure. It is not needed in the following derivation. However, we need the energy

and momentum conservation equations, which can be derived either from the above

equations together with the pressure equation, or more simply, from T;, = 0.

(a2 p)'= (a2p) - a2(po + po)(kv + 3H2') - 3-(a 2p) (A.6a)
a a
a/ k

(v- B)'= -- (v- B) + kA + k S PGI. (A.6b)
a Po + Po
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6 PGI is defined in equation (2.13).

Putting equations (A.5a) and (A.5b) into equation (2.13a) and using the def-

inition of 0 in equation (2.14a), we obtain:

k 2 D a PG1 (A.7)2k'# = -- SpGI (A.7)

This resembles the Poisson equation.

Combining the two conservation equations and using the above expression, it

can be shown that:

a/ a 2 m
',= aa +  ( Po + Po) v- . (A.8)a 2k k

Equation (A.5b) is also used in the derivation.

The above expression is differentiated once. It can be shown that, using equa-

tions (A.6b) and (2.6) to simplify,

,,_ (Po + Po)' , a' (Po + Po)'D = a2(po + Po) + a2 Sp (A.9)
# -# - 4 = a2PO 90 -8 PGI (A9

po+po a Po+po 2

Equation (2.17) follows if we replace SPGI using equation (2.18) and change the in-

dependent variable from conformal to proper time. The key equation of Chapters 2

and 3 is verified.

Let us turn to the two definitions of ( in equations (2.14b) and (2.15). The

quantity Hiocal is defined as VU', where UO is the fluid velocity. The components

are Uo = (1 - AQ)/a and U' = -vQ' t /(ak). The covariant divergence of Uc divided

by 3 is:
a' a' k

Hlocal = 2 2 AQ + -vQ + -Q (A.10)
a a 3a a

The term p/3 in equation (2.15) can be broken into two parts po/ 3 + SpQ/3.

The first part cancels the first term on the right hand side of equation (A.10). The

second part (rewritten using equation [A.5a]), together with the expression for Hioca,
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above, can be substituted into the definition for ( in equation (2.15) to give:

1( = -(H- + -Hr))3
1 1

+ (-Hn -
~yaH 3

where we have dropped the spatial harmonics Q. This expression can be shown to be

consistent with the other definition for ( (equation [2.14b]) by making use of equation

(2.14a).

Finally we derive equation (2.27), which relates 6PGI to the variable C. Com-

bining equations (2.25) and (A.5b), we obtain

13HT (A.12)

Substituting this into equation (2.26) and putting (2.14a) and (A.8) into equation

(2.14b), ( = aHSGII/p0o can be verified.
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Appendix B

The Peculiar Behavior of

We have argued in the Chapter 2 that C is like a curvature fluctuation. We can make

this precise by taking the small k limit of equation (2.17). The result should be that

( is simply a constant because it is proportional to the curvature. It describes a

homogeneous perturbation of a flat background. Putting k = 0 in equation (2.17)

and using the definition of C in equation (2.14a), it can be shown that

d(d= 0 (B.1)
dt

Note that in the above derivation, no assumption about the equation of state has

been made.

Here is the puzzle: if the k = 0 limit of ( does correspond to a homogeneous

curvature fluctuation and hence is a constant, how can it possibly vary close to the

point of turn-around, not to mention changing sign in the process (equation [3.9a])?

The answer is that by taking the k = 0 limit in the manner described above,

one inevitably misses the second mode of (. For concreteness, let us think about

the behavior of D and C in the radiation-dominated stage (because everything can be

solved analytically).

Equation (2.33) is the counter-part of equation (2.17) in the case of the

radiation-dominated universe. It can be seen that indeed, if one puts k = 0 in

the equation, equation (B.1) can be obtained (see also equation [2.34]).
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Let us follow a different strategy. Suppose k is non-zero, we can solve equation

(2.33) and obtain the solution in equation (2.37). Then, take the small k limit of the

solution. To be precise, we take the limit of kr approaching zero. kr is equal to

k/aH which is the ratio of the proper wavelength to the Hubble radius. The lowest

order term involving Krj (equation [2.37]) is 2kKri/(3v/3). The lowest order term

involving Kr2 is 6kKr2/(kT) 3 . Putting these into the definition of C in terms of 4

(equation [2.14b]), one obtains kKWi/V. This is the curvature mode we have been

talking about. It is simply a constant. The mode involving the constant KI2 somehow

cancels itself out of existence.

However, there is a higher order term involving Kr2 in equation (2.37), which

cannot be ignored if one takes the vanishing kr limit. It is kKr2/(kr). Putting this

into the definition of C in equation (2.14b), one obtains the other mode of C in the

small kr limit: kKr2/(kr). Putting the two modes of C together, we have

kK K r2  (B.2)
½ + (B.2)

The first mode on the right is the curvature mode whereas the second mode is the one

we missed by simply putting k = 0 in the differential equation obeyed by D. Notice

that it is not a constant. Alternatively, the same two modes can be obtained by

putting k = 0 in the second order differential equation obeyed by ( (equation [2.35],

not the first order differential equation [2.34]).

The same reasoning can be carried over to the inflaton-dominated stage. The

relevant equations in this case (equations [2.28] and [2.32]) cannot be solved explicitly

except for special cases (for instance, if 7 = constant which holds for power-law

inflation). However, as in the case of the radiation-dominated stage, if one puts k = 0

in the second order differential equation [2.32]) (not the first order equation [2.29]),

both modes of ( are recovered, as in equation (3.2). One of them is the constant

curvature mode, which is often used to argue for the freezing-out of the amplitude of

density fluctuations at super-Hubble-radius scales. The other is responsible for the

divergence at turn-around.
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It is perhaps still a little puzzling why taking the small wavelength limit in

the two different ways mentioned above should give us different results. Here is an

alternative way to put it. Consider two different limits in the radiation dominated

regime: one where k approaches zero at a fixed time 7 while keeping D(k) fixed; the

other where T approaches zero at a fixed k (without keeping D(k) fixed by hand,

but allowing it to evolve according to the evolution equation it obeys). The former

corresponds to taking a fluctuation of a fixed amplitude and mentally placing it

at bigger and bigger scale until the universe locally looks just like a homogeneous

universe. The latter corresponds to focusing one's attention on a fluctuation of a

fixed comoving wave number k and following its physical behavior backward in time.

The relevant equation for our discussion is equation (2.34), which can be

rewritten as:
d( 1 D( 3- = -k2 (B.3)dT 6

where we have used aH = 1/T and Po = po/ 3 , appropriate for the radiation dominated

universe.

If one keeps D and T fixed and take the vanishing k limit, it is obvious from

the above equation that ( approaches a constant i.e. the curvature mode.

However, let us examine again the following expansion of the solution for 4

from equation (2.37):
S2 Kr2  K r 2  (B.4)I) = Krik + 6 + (B.4)

3 k27 3  7

where I have set a = T. All the terms that are ignored vanish in both of the limits

under consideration.

For the first limit, keeping (D and T fixed and letting k go to zero means

keeping Krik and Kr 2 /k 2 constant (note that Kr, and IK2 are in general functions of

k). Notice how in this limit the last term on the right hand side does not contribute

to D at all. In any case, none of these terms survive on the right hand side of equation

(B.3) once the factor of k2 is taken to zero.

All these agree very well with what one would expect for a homogeneous

perturbation. ( has only one mode: a constant.
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Consider the second limit. Putting equation (B.4) into equation (B.3), one

obtains
d(1 __Kr 2 1d - K= -- k1  Kr 2 Kr2k2  (B.5)

d7 9V/3 l  72  6

Fix k and let T approach zero. One can see that the derivative of ( does not

vanish anymore unless Kr2 is chosen to vanish. In fact, (' diverges in the limit! This

should really come as no surprise, it is simply the decaying mode in the radiation

dominated universe, which blows up when it is extrapolated back in time.

The second limit is the appropriate one to consider for our application. After

all, we are interested in the physical evolution of each wave mode in our calculation.

The analog of the second limit for the inflationary era is taken when we derive the

approximate solution for ( in equation (3.2). It is obtained by ignoring k 2 in equation

(2.32). This might sound dangerously close to the first limit discussed above. How-

ever, what we are ignoring is really k2 compared to (av)"/a. in equation (2.32).

We have shown in Section 3.2 that this corresponds to taking the limit where the

wavelength of interest is long compared to the Hubble radius in the slow-roll phase.

Hence, the limit used in obtaining equation (3.2) does correspond to focusing on a

wave mode of a particular k and watching how the fluctuation evolves as it exits the

Hubble radius, only now as time going forward instead of going backward like in the

radiation dominated case.
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Appendix C

Second Order Calculation of M.

We write the Eulerian density fluctuation field S = S(1) + S(2) + ... where 5(n) is

treated as being of nth order in perturbation theory. Similar expansions are used for

the velocity field and the scaled gravitational potential

4_ - 1 d3 ' (C.1)
47GaG2j 47 J -X

For simplicity we shall assume an Einstein-de Sitter universe as in the numerical

examples presented. In this case the perturbation series is a series in a(T).

Peebles (1980) presents the result for 5(2), which we rewrite using our variables

as

52
S(2) [s(1)]2 (1)] [Vq(1)l + -F 2  , (C.2)

where F2 - F i Fi and

Fij • ViV (C.3)

note that F'i = -(1). From the Euler equation (4.2) we get the first and second order

terms of the peculiar velocity,

_ (1) -A (1) (2) 2 a' [ )' ] - ( C .4)
(1) - 2a -$1 3 ' )a V 5a V5a (C.4)

where <^(2) is obtained using equation (C.1) with S(2)
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We get JMij and -Vk Ck1 (Hj)j from equation (4.23). They vanish in first order;

the second order results are

Mi = 4rGpaa' )Fi - 7VV .
1(2) +7 ) - I Fi + •Fk(Fj)k } , (C.5)

- Vk Ckl (iH) = M + 47rGpaa' 36(1)F - 3Fk( Fj)k + ij (F2 - [(1)] 2) (C.6)

It can be verified that these quantities are traceless as expected using equations (C.2)

and (C.3). In general, neither vanishes in second order perturbation theory.
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Appendix D

A List of Symbols

Tabulated below is a list of symbols used in the thesis. We try to identify equations

in which or around which they are defined. In cases where it is impossible to do so,

We list the equations where the meanings of the relevant symbols should be relatively

clear. Their interpretation can also be found in the second column of the table below.

A word on the notation. Greek indices denote spacetime components and

Latin indices are reserved for space components. c, the speed of light, is always set to

one, unless stated otherwise (in Chapter 6). Factors of G are kept in Chapters 4 and

5 where the physics is Newtonian while 87rG, as well as c, are set to one in Chapters

2 and 3.

There are a few cases where the same variables are used with different meanings

in different places. For example, in Chapters 2 and 3 and Appendix A, the symbols a,

/3, a and so on denote space-time indices while the same symbols represent quantities

related to shear and tide in Chapter 5. We rely on the context to distinguish between

the different meanings.
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Table D-1: List of Symbols

Symbol Meaning Equation

Hubble scale factor
proper time

conformal time/ optical depth
average energy/mass density

average pressure
curvature

derivative with respect to proper time
derivative with respect to conformal time

Hubble constant during inflation
starting proper time of inflation

inflaton field
inflaton potential

gauge invariant curvature perturbation
gauge invariant potential perturbation

gauge invariant pressure potential
local Hubble parameter
Hubble parameter &/a
comoving wave-number

comoving spatial coordinate
Lagrangian coordinate

peculiar velocity
overdensity

Lagrangian derivative
Newton's constant
density fluctuation
pressure fluctuation

gauge invariant inflaton fluctuation
gauge invariant pressure fluctuation

inflaton fluctuation

2.4
2.4

2.4 /6.1
2.5
2.5
1.1
2.4
2.4
1.6
1.6

2.20
2.21

2.14b and 2.15
2.14a
2.18
2.15

2.10

4.4
1.11 & 2.12

1.10
1.13
1.1

2.12
2.12
2.26
2.13
2.20
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Hinfl
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•o

V

OP

Hiocal
H
k
x
q
v

d/dT
G

Sp
Sp

5 GI
6 PGI

Spa



Table D-1: List of Symbols (cont'd)

Symbol Meaning Equation

72
Cs

Q
A

B
HL
HT

h, he
Krl , Kr2
IKq1 , Kq2
K1 ,K 2

subscripttr
subscriptcr
subscript v

(s5
subscriptinfl
subscriptrad

Xtr

C(t),D(t)
X(t), Y(t)

F,G

(inf
4Iinf I

A(1/'7)
SPPo lasymv

energy-momentum tensor
metric tensor

-H/H 2 or temperature-density index

po/Po
spatial harmonics

metric perturbation (time-time)
metric perturbation (time-sapce)
metric perturbation (space-sapce)
metric perturbation (space-sapce)

metric perturbations (synchr. gauge)
intiegration constants (rad. dom.)

integration constants (early inflation)
integration constants (late inflation)

evaluation at transition: infl. to rad. dom.
evaluation at 1st Hubble radius crossing

evaluation when valley phase starts
asymptotic value of ( during slow-roll

evaluation on inflation side of transition
evaluation on rad. dom. side of transition

ke Tr / Vi
coefficients of equation for
coefficients of equation for 4)

constants at the end of inflation
( at the end of inflation
(I at the end of inflation

Change in 1/7 across transition
amplitude of oscillation (rad. dom.)

2.12
2.11

2.8 / 6.28
2.9
2.10
2.11
2.11
2.11
2.11
2.40
2.36
3.1
3.2

2.43
3.2
3.3
3.4
2.43
2.43
2.43
3.5
3.7

2.43
2.43
2.43
2.41
2.45
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Table D-1: List of Symbols (cont'd)

Symbol Meaning Equation

Si-th component of displacement 4.4
Sgravitational potential 4.3

p full mass/energy density 4.6
DI linear growing and decaying modes 4.7
f dlnD+/dlna 4.9

QO ratio of density today to critical density 4.9
HO Hubble parameter today 4.9
0 expansion 4.10

Oij shear tensor 4.10
Wij vorticity tensor 4.10
bij Kronecker delta 4.10

wk vorticity vector 4.10
w2  dot product of vorticity with itself 4.12
Eij gravitational tidal field 4.14
Hij magnetic part of the Weyl tensor (fluid threading) 4.19

H magnetic vector 4.20
f, fil transverse and longitudinal parts of mass current 4.21
Mi combination of Hij and Eij 4.23
Hij  magnetic part of the Weyl tensor (comoving threading) 4.27
Ri length of the i-th axis of ellipsoid 5.1

Pb average density of background universe 5.1
Pe density of ellipsoid 5.1
a• i-thelliptic coefficient 5.2
Xi initial axis ratio of ellipsoid 5.4
cio intial i-th elliptic coefficient 5.4
So linear extrapolated overdensity at a = 1 5.4

Pc density of cylinder 5.11
Qij tidal angular matrix 5.13
a , tidal angular variables 5.12
a, tidal scalars 5.12

•o0 , o initial value of a and c 5.16
ac Hubble scale factor at which collapse occurs 5.16
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Table D-1: List of Symbols (cont'd)

190

Symbol Meaning Equation

Or Lyman-a absorption cross-section 6.5
u velocity coordinate 6.3

v , , Va frequencies 6.3 and 6.4
b b-value or thermal width 6.5

nH , nHI total and neutral hydrogen density 6.8
XHI neutral hydrogen fraction 6.9
kj Jeans wavenumber 6.18

kNL nonlinear scale 6.20
ks truncation scale 6.21
JHI radiation parameter 6.25

Jb , DM overdensity in baryons and dark matter 6.8 and 6.10
logarithm of 1 + 6 b 6.39

F normalization factor of column density 6.41
U0  linear rms density fluctuation 6.43
S- slope of column density distribution 6.45
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