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Abstract

The behavior of a resonant tunneling diode (RTD) whose electron transport is
dominated by scattering is explored. Measurements from 45 MIHz to 26 GHz of the
small-signal ac behavior of such a device, as well as a model to explain the static and
dynamic behavior, are presented. After the parasitics are extracted from the measured
results, the intrinsic RTD response is plotted for frequencies of 45 -MHz to 4 GHz at 16
biases. The real part of the admittance, the conductance, exhibits a rolloff at a bias-
dependent frequency. Since the imaginary part of the admittance, the susceptance,
is nearly that of a capacitor, the deviation from a purely capacitive susceptance is
shown. This deviation exhibits a peak at a frequency which corresponds to the rolloff
in the conductance. The dc and ac behavior are described theoretically with a rate-
equation model. In this model, the RTD is divided into three regions. The current
between two states in adjacent regions is proportional to the probability that the
initial state is occupied and the final state is empty. The transition coefficient for this
transport process is calculated using a semi-classical model for scattering. In order to
evaluate the agreement of the model with the data, a numerical analysis is performed
using three methods. The first method uses the specified growth parameters for the
RTD layers, which yields a predicted ac response that is qualitatively similar to the
actual response. It also yields a simulated current peak that is 2.3 times that of the
measured peak. In the second method, the barriers are adjusted so that the simulated
and measured peak current is the same. The simulated ac behavior in this case is
in better agreement with the measured behavior. The final method incorporates the
conductance at three frequencies, which yields values for several physical parameters
in the RTD as well as the the best agreement with the ac data.

Thesis Supervisor: Alan L. McWhorter
Title: Professor of Electrical Engineering
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Introduction

In this thesis, we explore the dynamic behavior of the resonant tunneling diode

(RTD) when the transport through the device is dominated by scattering. This

type of transport occurs in many practical RTDs, especially those that are operating

at room temperature. Many proposed applications [1, 2], such as millimeter-wave

oscillators [3], analog circuits [4], and binary [5, 6] or multiple-value [7, 8, 9] logic

circuits, will utilize the speed of the RTD. Therefore, it is important to have an

accurate dynamic model for scattering-dominated transport.

We present a rate-equation model for the RTD that is both accurate and compu-

tationally efficient, and provides insight into the operation of the device. The model

can be used to predict the dc and ac behavior of an RTD before its fabrication or

it can be used to extract physical parameters from an RTD after fabrication. We

demonstrate that it may also be used to predict the ac response from the measured

dc behavior, which is useful because measuring the static behavior requires much less

experimental effort. The predictions of the model were compared to the results of

an ac measurement, which used well-established admittance techniques to find the

intrinsic response of the RTD.

Our presentation will begin in this chapter with a review of some of the relevant

literature. We will first review some prior work on the static properties of the RTD

and then some of the work on the dynamic behavior. The literature has become
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quite large as the RTD field has matured, so this review is necessarily restricted to

an abbreviated list of papers that illustrate prior work.

In the second chapter, we describe our measurement of the ac response of the

RTD. Our devices were specifically designed to avoid deficiencies in previously pub-

lished work, and the manufacture of these devices is described in Section 2.1. The

next section discusses the apparatus used to measure the small-signal admittance at

frequencies from 45 MHz to 26 GHz. Section 2.3 describes the method used to remove

parasitics from the admittance, which allowed the intrinsic admittance of the RTD

to be found. The final section of Chapter 2 shows the intrinsic ac response at 16

different biases for a representative device.

Chapter 3 is devoted to the theoretical modeling of the RTD. In Section 3.1, we

present a model for transport in the scattering-dominated limit. In this limit, electron

transport occurs only with the aid of a scattering event. We derive expressions for the

current and charge for the static case and examine the variation in these quantities

for the sinusoidal steady state. Finally, a method is shown for calculating the time

dependence of the of an electron wavefunction in a scattering-dominated RTD.

In Chapter 4, we compare the data presented in Chapter 2 with the model pre-

sented in Chapter 3. We implemented a computer program to numerically solve

Poisson's and Schr6dinger's equations in a self-consistent manner. The details of

the numerical techniques are presented first. Next, we examine some of the simu-

lated properties of our manufactured RTD. The numerical analysis can be performed

using differing amounts of knowledge of the device, and we show three methods of

performing this analysis. The first method uses neither ac nor dc data and yields

qualitative agreement with the experiment. The second method, which incorporates

only dc data, gives reasonable agreement between the model and experiment. The

third incorporates both ac and dc data, and this method yields the best agreement

between the model and the experiment.

Finally, in Chapter 5, a summary of conclusions is presented as well as some rec-
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Figure 1-1. Potential profile of a typical RTD with an applied bias. (a) Actual
profile. (b) Staircase approximation to the actual profile, which simplifies analytical
calculations considerably.

ommendations for refinements to this work. We note that several detailed calculations

have been placed in the appendices, in order to not interrupt the flow of the main

text.

1.1 Review of Previous Work

In the simplest terms, an RTD is an electronic device with a potential profile that

has two closely spaced barriers, as shown schematically in Fig. 1-1. In this system,

there is an electronic state where much of the electron wavefunction is confined be-

tween the barriers. The energy of this state is denoted as the resonant energy. At

zero bias, the resonant energy is presumed to be above the conduction band edge of

the cathode Ecl. As the bias is increased, the resonant energy is lowered, and the

current increases. At still higher biases, the resonant energy drops below Ecl, and

the current decreases.*

*We will see in Chapter 4 that the current actually begins decreasing while the resonant energy
is still above E¢c.
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We will now review some of the literature pertaining to this device. We will first

discuss the static properties and then the dynamic properties.

Static RTD Models

A large number of publications have focused on the static properties of the RTD,

and most of this work is concerned with finding the I-V characteristic for a given

structure. The basic approach for calculating the I-V characteristic in the absence

of scattering was first presented by Tsu and Esaki [10]. The Tsu-Esaki approach

breaks the calculation of the I-V characteristic into two parts. The first part of

the calculation considers an incident electron wavepacket of energy E, for which

the quantum-mechanical transmission amplitude t(Ee) is calculated, where Ej is the

longitudinal part of E. Then the total current JRTD is calculated by integrating

the product of three factors: the velocity in the tunneling direction, the difference

between occupation factors fc and fa on the cathode and anode sides of the RTD,

respectively, and transmission probability at each value of Ee. Thus, the current is

written as

JRTD 0 dk dk E [fc(E) - fa(E)] t*t, (1.1)
JRTD = - 7 ho dkf OFkt

where ki is the longitudinal momentum, and d2kt is the differential element of the

two orthogonal transverse momenta, with the integral being taken over the entire

transverse momentum space. When using Eq. (1.1), the bulk of the computational

effort arises from finding the transmission probability.

A common method of computing Jtj 2 employs the transfer matrix, which is often

abbreviated as the T matrix. This approach for solving the RTD problem was de-

scribed by Ricco.and Azbel [11]. We will examine this technique in some detail, since

it was used extensively for calculations in this thesis.

The actual RTD potential profile, shown schematically in Fig. 1-1(a), is often
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Figure 1-2. Forward- and reverse-traveling wavefunctionS used with the T matrix.

approximated using the so-called "staircase approximation", shown schematically in

Fig. 1-1(b). This approximation is made in analytical calculations to simplify the

expressions. It is also made for numerical calculations, which use several hundred stair

steps. The numerical calculation of the wavefunctions may be refined by dividing the

potential profile into finer stair steps and then utilizing the T matrix at each boundary.

Consider forward- and reverse-traveling wavefunctions of and t5 on the left side

of the boundary shown in Fig. 1-2, as well as the corresponding wavefunctions ?4 and

2r on the right side of the boundary. The T matrix is defined so that the right- and

left-side wavefunctions can be related at the boundary by matrix multiplication,

I T o o T o , ,, 2( .L 1 1 1 (1.2)
I T10 T1  r i

The elements of the matrix are easily found by matching the wavefunction and the

particle current at the boundary.

Ricco and Azbel use their analysis to describe the transmission through the double-

barrier structure. The transmission amplitude t has a resonance, which may be

expanded into the Breit-Wigner formi

if/2
t c (E-E)iF/2 (1.3)(E - ER) + iZ/2
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This transmission amplitude has a peak at energy ER and a full width at half max-

imum (FWHM) in energy of F. They show that F is inversely proportional to the

escape time T0 of an electron placed in the well. Fundamentally, To = h/F.

In a more general fashion, Gerjuoy and Coon [12] noted that the transmission

properties and time delays of resonant tunneling are well-understood phenomena from

scattering theory, and they applied the S-matrix formalism. They also demonstrated

the relation of the transmission width and electron lifetime in the well. Their model

subdivided the process of tunneling through the double-barrier potential into two

parts: tunneling into the well from the cathode, and tunneling out of the well into

the anode. There is a lifetime associated with each of these two processes, which

combine to form the overall lifetime.

The I-V characteristics calculated from the above models often achieve a qualita-

tive agreement with experimentally obtained I-V characteristics. In order to obtain

quantitative agreement, more sophisticated modeling must be performed. For exam-

ple, scattering in the well must be included. In addition, an RTD under bias has

an accumulation laver between the cathode contact and the first barrier that elec-

trons encounter. It is not an easy task to add the effect of this layer to an analytical

model, which is one reason why the staircase approximation is often made. The

algebra in solving staircase problems yields closed-form solutions in terms of expo-

nential functions, but this approach is not practical when including the accumulation

layer. Two authors addressed this problem with numerical calculations [13, 14]. Their

calculations self-consistently solve both Schridinger's and Poisson's equations. The

results show that the staircase approximations change the shape of the calculated I-V

characteristic and tend to underestimate the applied bias at which the peak current

occurs.

Also, the accumulation layer forms a potential well, so it often has one or more

quantized states. It has been experimentally shown that such states.can cause a kink

in the I-V characteristic at lower biases [15]. These states have been probed by both
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photoluminescence (PL) [15] and magnetotunneling (16].

The methods for calculating It(2 discussed to this point yield results that are poor

approximations for the negative-differential resistance (NDR) region. Once the RTD

has been biased sufficiently, there is no way for an incident electron to conserve total

energy and transverse momentum while tunneling through the resonant level. Thus,

the conventional tunneling current becomes vanishingly small, and other mechanisms

become responsible for the "excess current." The figure of merit for the RTD is the

peak-to-valley-current ratio (PVCR), whose inverse roughly indicates the amount of

excess current relative to the conventional tunneling current.

One way of calculating the excess current is by introducing an optical-absorption-

like parameter. It has been shown [17, 18] that an absorption parameter enhances

current at biases higher than the peak. Obviously, the amount of absorption will

depend on the underlying physical mechanisms which are responsible for the current

flow, and we will briefly examine three such mechanisms: disorder-assisted tunneling,

alternate-valley tunneling and phonon-assisted tunneling.

Disorder-assisted tunneling [19] is an elastic-scattering mechanism due to inter-

face roughness in the sample. Transverse momentum need not be conserved in such

structures and can open channels to the resonant level. Reference [19] considered

structures with terraces, and showed that this tunneling mechanism both changes

the shape of the I-V characteristic and contributes to the valley current.

Alternate-valley tunneling is a process in which conduction band minima other

than the lowest minimum play a role. This mechanism occurs in a typical GaAs/A1As

double-barrier structure, where most of the incident electrons have k values near the

r point. Although the AlAs presents a large barrier at the r point, it does not

do so at the X point. The effective-mass approach to solving for the transmission

coefficient would only use the barrier presented at the r point, but a more complete

calculation [20] shows that there are transmission resonances associated with the X

valleys.
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Phonon-assisted tunneling has been treated by Wingreen et al. [21]. They began

with a Hamiltonian that included an electron-phonon interaction and calculated the

transmission function and current. For an Einstein band of phonons (a reasonable

model for optical phonons, the dominant scattering mechanism in III-V compounds)

the transmission function has sidebands separated by the phonon energy. These

sidebands create new tunneling channels for electrons to flow once the resonant energy

drops below the cathode conduction band edge.

Small-Signal Response of the RTD

The development of high-quality RTD structures has yielded impressive high-

speed results: Whitaker et al. [22] demonstrated a switching time of 2 ps, and Brown

et al. [3] demonstrated a maximum oscillation frequency of 712 GHz. As a conse-

quence, there has been a large amount of experimental and theoretical work aimed at

understanding the speed limitations of the RTD. We shall discuss only small-signal

ac measurements and modeling, since that is the focus of this thesis.

Several authors have published measurements of the ac response. Many work-

ers [23, 24, 25, 26, 27, 28] use standard microwave reflection techniques, and a few

use standard LCR bridges [29, 30, 31, 32]. There is also one publication [33] that used

a free-electron laser to probe the RTD at terahertz frequencies. Unfortunately, there

are several methods of presenting the data, and the above publications contain the

following plots: S11-w, Y-w, Z-w, C-V, and G-V, where S11 is the single-port scattering

parameter, and Y,Z,C,and G are admittance, impedance, capacitance and conduc-

tance, respectively. The differing forms of data presentation has made it difficult

to quantitatively compare the different measurements. Qualitatively, however, the

previously published measurements are consistent with our initial measurements [34].

We have chosen to present our data in terms of the admittance. This choice will

simplify the task of plotting since the admittance remains finite at the peak voltage

where the dc conductance goes to zero.
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Small-signal ac measurements on RTDs are often a difficult task because the in-

trinsic speed of the devices interferes with their characterization. Devices with high

PVCRs tend to oscillate or exhibit switching behavior in the NDR region, which

eliminates the possibility of a direct admittance measurement at those biases. Thus,

there is a tradeoff between the PVCR and the ease of measurement. Several pre-

viously reported admittance measurements have been performed either on devices

that had high PVCRs but exhibited switching or oscillatory behavior in the NDR

region [35, 36, 37], or on devices that were free of switching or oscillatory behavior,

but lacked an NDR region [38].

The literature on ac modeling of the RTD is extensive. Some authors [31] simply

feed their data into a CAD program and the program outputs an equivalent circuit

which closely matches the observed behavior. Other authors [23, 26, 27, 28] used an

equivalent circuit model from the Esaki diode. Such approaches lack an underlying

physical basis which is desirable for the purposes of this thesis.

Other publications build more physical models of the RTD dynamics using differ-

ing approaches. Frensley performed a numerical calculation that utilized the Wigner

function [39]. This approach incorporates the quantum statistics of the device. How-

ever, there is a large amount of the computation time associated with the Wigner

function, which makes it unsuitable for circuit-level simulation.

Brown et al. [40] presented a model which began with the following assumption:

when the bias applied to an RTD is changed abruptly in time, the RTD current does

not change instantaneously and approaches its new value exponentially in time. Such

behavior can be modeled by an inductance in series with a resistance. This approach

yields a simple dynamic model that yields qualitative agreement with measurements

of the microwave oscillation power. The admittance behavior is determined by the

transmission width of the RTD, which is roughly constant with bias. As we shall see,

the speed of scattering-dominated transport is in fact bias dependent, so this model

will not suit our purpose.
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Another approach, by Hu and Stapleton [41, 42], began by assuming that the

electrons in the well have a hot-electron distribution. They sdlved for the transmission

with an absorption parameter [17, 18], and assumed that "absorbed" electrons are left

in the well. They then assumed that the Fermi level and temperature of the electrons

in the well are uniquely determined by energy and particle conservation. The authors

used the result to predict how the charge storage will change with bias, but did not

compare their predictions with any experimental data.

In another approach, Fu and Dudley [43] used linear, response theory [44] to pre-

dict the ac behavior, and derived an ac equivalent of the dc Landauer-Buttiker [45]

formula. They predict an inductive response, but do not compare their results with

experimental data. Jauho et al. [46, 47] use a nonequilibrium Green's function tech-

nique (the Keldysh formalism) to solve for the ac response. This technique includes

a method for coupling electrons and phonons. They predict that an RTD which is

biased in the NDR region will have a conductance which is negative at lower fre-

quencies and positive at higher frequencies. We will see experimental evidence for

this behavior in the following chapter, but this theoretical approach is unnecessarily

complicated to explain the results for the scattering-dominated case.

Comparing the models of Hu and Stapleton, Fu and Dudley, and Jauho et al. with

the RTD behavior measured here is not a simple matter. Such an undertaking has

not been addressed in the present work.
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Experimental Results

In this chapter, the results of a small-signal ac measurement on an RTD will be

presented. The goal of the experiment was to characterize the admittance of an RTD

using well-established microwave measurement techniques. By using these techniques,

we minimized the uncertainty in the interpretation of the data.

In Section 2.1, we will discuss the competing goals in the design of the RTD, and

we will describe the devices that were fabricated for the experiment. In Section 2.2,

we will describe the microwave scattering measurement as well as the typical data

that it yields. In Section 2.3, we will examine how the scattering data can be used to

separate the response of the RTD from that of the parasitics. Finally in Section 2.4,

we show the intrinsic RTD response for a representative device. We will also examine

the change in the intrinsic response with bias.

2.1 Device Design and Fabrication

In order to measure the response of the RTD, a fabrication process was designed

to produce devices that could be probed at high frequencies. The structure contained

an RTD as well as the mechanical support necessary for a coplanar probe. The center

wire was connected directly to the top of the RTD mesa, and the two ground strips

were bent slightly downward and connected to the RTD substrate. This approach

19



simplified the design, since no on-chip transmission lines were needed to connect the

probe to the device. Also, this approach simplified the task of modeling the parasitics.

The design of the RTD took a number of considerations into account. Ideally,

we would like the RTD to have three properties: excellent PVCR, high speed, and

stability in the NDR region. Unfortunately, devices with high PVCRs are hard to

stabilize in the NDR region. Also, faster devices are harder to measure since parasitics

play a larger role in the response. We addressed these issues by designing the devices

to have sufficiently low PVCR to be stable in the NDR region. We also designed the

devices so that they were slow enough to be easily measured. Both of these decisions

required an RTD with relatively thick barriers.

The design of the wafer is shown schematically in Fig. 2-1(a) and (b). The layers

were grown by gas-source molecular beam epitaxy on n+-InP substrates. A 500-

nm-thick heavily doped (n-type, ND = 2 x 1018 cm -3 Si) Ino. 53Gao.47As layer was

grown first, followed by a 100-nm-thick lightly doped (n-type, ND = 2 x 1016 cm - 3

Si) Ino~5 3Ga0.47 As spacer layer. The double-barrier structure was then grown and

consisted of nominally 4.5-nm-thick undoped AlAs barriers and a 5.5-nm-thick un-

doped In 0.53Gao.47As quantum well. Above the double-barrier structure, a 10-nm-

thick lightly doped (n-type, ND = 2 x 1016 cm -3 Si) Ino.53Ga 0.47As spacer layer was

deposited and a final 400-nm-thick layer of heavily doped (n-type, ND = 2 x 1018

cm - 3 Si) In 0.53Ga0.4 7As. We note that the layers shown in Fig. 2-1 are specified with

their nominal thicknesses. Because of strain, the AlAs barrier thicknesses are approx-

imately 4.1 nm [48]. We also note that the grading from heavy doping in the ohmic

regions to light doping in the spacer layers occurs over approximately 10 nm. These

graded-doping regions occur outside of the layers shown in Fig. 2-1(a), so that the

spacer layers are guaranteed to be lightly doped for at least the indicated width.

The lightly doped spacer layers are present to improve the electrical characteristics

of the device. Lighter doping reduces the number of dopants near the double-barrier

structure. Dopants in the proximity of the barrier would locally perturb the barrier

20 Experimental Results



2.1 Device Design and Fabrication

RTD STRUCTURE
InGaAs

(a)

(b)
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WELL, BARRIERS, AND SPACER LAYERS (SEE ABOVE)

500 nm InGaAs, Si DOPED TO 2 x 1018 cm-3

InP n+ SUBSTRATE

Figure 2-1. Schematic of layers grown for the RTD structure. (a) The double-barrier
structure and spacer layers, and (b) the ohmic regions.
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potential. It has been shown [19] these potential variations give rise to a larger valley

current.

The 100-nm spacer layer is lightly doped for a second purpose as well. For the

data shown in this work, we will bias the structure depicted in Fig. 2-1(b) so that

the top is grounded and the bottom is at a positive potential. For the biases that

will interest us, the 10-nm spacer layer will contain an accumulation layer and the

100-nm spacer layer will be depleted. By lightly doping this 100-nm spacer layer, we

lengthen the size of the depletion layer. Thus, the depletion capacitance is reduced.

We will find it useful when measuring the admittance of the RTD to have as small a

depletion-layer capacitance as possible.

Once the above layer structure was grown, the remainder of the fabrication process

was designed to provide contacts and mechanical support for the coplanar probes. The

support structure was designed to introduce as few parasitic electrical components as

was feasible.

Figure 2-2 shows a schematic cross section of the completed design. A layer of

Pd-Ge-Au was deposited to serve as a mask for the mesa definition and as an ohmic

contact to the completed mesa. The final height of the mesa was approximately

800 nm. After the mesa was defined, a commercial dielectric called Futurex was

deposited and wet etched until the underlying metal became exposed. Ti-Au-Ni

was deposited and patterned by a lift-off. A wet etch then defined the underlying

dielectric. Finally, Pd-Ge-Au was deposited and patterned to provide contact to the

bulk regions.

The mask set defined several hundred square mesas that had nominal sizes of 2,

4, 8, 16, and 24 pm on a side. The top metal pad had dimensions of 30x36 pm,

and the Pd-Ge-Au field metal was horizontally separated from the top metal pad by

approximately 2 pm.

The current-voltage (I-V) curve and the dc differential conductance of a typical

device at room temperature are shown in Fig. 2-3. The peak-to-valley current ratio
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Figure 2-2. Cross section of the finished RTD structure. The layer materials are
indicated as follows: A. Ino.53Gao.47As bulk and mesa; B. Pd-Ge-Au metal, which
served as mesa etch mask and the top contact; C. Futurex dielectric, which is the
mechanical suppport for the mesa probe pad; D. Ti-Ni-Au metal, which served as an
etch mask for the Futurex dielectric and as the microwave probe pad; E. Pd-Ge-Au,
which was the electrical contact to the bulk regions.

is 2.81. Since the I-V is smooth and continuous in the NDR region, the device is free

of oscillations and exhibits no switching behavior.

2.2 Reflection Measurement of the Mesa

We performed a reflection measurement in order to find the ac response. The

measurement used well-established wafer probing techniques that were suitable for

microwave frequencies. The apparatus for finding the microwave response is shown

schematically in Fig. 2-4. The ac signal and the dc bias were delivered to the RTD

structure by a coplanar microwave probe. The reflection coefficient S 11 [49] was mea-

sured using a network analyzer (an HP8510) at frequencies ranging from 45 MHz to

26 GHz. Once S11 was known, a transformation was applied to find the admittance,

which is the ac quantity we shall be considering throughout this thesis. The network
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Figure 2-3. I-V curve and dc differential conductance for a typical fabricated RTD.
The ground potential reference is the metal labeled B in Fig. 2-2. The device area
was 256 pm2

analyzer was calibrated using traditional coplanar probing techniques on a commer-

cial substrate. The small-signal ac measurements were performed with an incident

power of -30 dBm, which corresponds to an rf voltage of approximately 7 mV. A semi-

conductor parameter analyzer (SPA), the HP4145, provided the bias for the network

analyzer.

Since we chose an RTD with relatively thick barriers, the device presents a high

impedance termination to the transmission line. As a consequence, there is a large

amount of scatter in the data because the network analyzer is resolving reflection

coefficients that are close to 1. The data can be improved by choosing devices which

have a large area, and hence a lower mismatch. However, devices which are too large

will exhibit switching behavior in the NDR region. (Such switching behavior can be

deduced from a discontinuity in the I-V data.) In light of these considerations, most

of our admittance measurements were performed on devices which were nominally

16 /am on a side. The measurements on devices of this size showed no switching

24 Experimental Results



2.2 Reflection Measurement of the Mesa

Figure 2-4. Schematic of experimental apparatus used to measure the reflection co-
efficient S11. The semiconductor parameter analyzer (SPA) sets up a bias for the
network analyzer. Both the network analyzer and the SPA are computer controlled.

behavior, and they yielded some improvement in the amount of scatter in comparison

to the smaller size devices.

We employed averaging to further reduce the scatter in the data, which substan-

tially lengthened the time required to perform a measurement. It became necessary

to automate the entire measurement process, so that many frequency points and bi-

ases could be measured and recorded. At a minimum, each device was measured

at 30 bias points, and at least 3 scans of 200 frequencies were performed. For the

plots shown in this work, a minimum of 512 points were averaged at each measured

frequency. In order to measure this volume of data, each device required about two

hours to characterize.

The most reliable data were taken from a total of 10 devices which were in roughly

the same location on the wafer. These devices were quite similiar in their dc and ac
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Figure 2-5. Magnitude and phase of the admittance vs frequency for the representa-
tive RTD and its associated parasitics at a bias of 0.2 V. These data and the data
shown in Fig. 2-3 are from the same device.

electrical characteristics. For brevity and consistency, we will focus on only one

particular device throughout this work. The I-V curve for this representative device

was already shown in Fig. 2-3.

A plot of the admittance at a bias of 0.2 V for the representative device is shown

in Fig. 2-5. As can be seen from the figure, the magnitude varies roughly linearly

with frequency. Also the phase is close to 90 degrees for most of the frequencies

measured. For other biases, the behavior above 10 GHz was qualitatively similiar; we

will discuss this behavior in the next section. For frequencies less than 5 GHz, there

were significant differences; this behavior is the focus of the remainder of this thesis.
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2.3 Characterization of the Parasitics.

In order to extract the intrinsic RTD admittance from the measured reflection

coefficient, it was necessary to characterize the electrical parasitics. We began this

characterization by identifying the parasitic circuit topology associated with the mesa

structure. Next, we made reasonable assumptions about the low-bias, high-frequency

behavior of the RTD. We then used the admittance data under these conditions to ex-

tract the values of the parasitic elements. Finally, we assumed that the parasitics did

not change at higher biases, so that the intrinsic RTD admittance could be extracted.

In Fig. 2-6(a), we show a cross section of the RTD mesa structure, indicating

the physical origin of the parasitic elements. The conductance of the bend at the

bottom of the mesa is represented by Gmi and the conductance of the mesa by Gm2.

The Futurex dielectric is modeled by a distributed capacitance C', and the resistance

in the substrate is modeled by the distributed resistance R'. The dominant circuit

elements are shown in Fig. 2-6(b), where YR is the intrinsic admittance of the RTD,

and Gm = GmiGm2 /(Gml + Gm2). We have modeled the distributed resistance and

capacitance as a transmission line of length e. The characteristic admittance of this

line is Y, = jwC'/R'. Using this model, we expect a measurement of the mesa

structure to have the response

Y + I', tanh 'y
Ym = Yo , tanh (2.1)

Y, + 3/ tanh-/ '

where y = 'jfwC'R' is the complex propagation constant of the transmission line,

and YL = YRGm/(YR + Gm) is the load at the end of the transmission line. Using

estimates of the distributed elements, we found that the quantity yg is small enough

so that the hyperbolic function can be approximated by the first term of a Taylor

series expansion. This yields the result

S YRGm + jwCp(YIR + Gm)
M R(1 + GmRp) + Gm (2.2)

2.3 Characterization of the Parasitics. 27
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(b)

Yo

m

Figure 2-6. Parasitic circuit model for the fabricated structure. (a) Partial cross sec-
tion, which shows the distributed capacitance C' in the Futurex dielectric, distributed
resistance R' in the bulk semiconductor, conductance Gmi1 of the bend at the bottom
of the mesa, and the mesa conductance Gm2, and (b) simplified circulit diagram of the

RTD and distributed parasitics, where Gm = GmrGm2/(Gmi +Gm2 ), Yo = o jwC'/R',
and YR is the intrinsic admittance of the RTD.
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where Cp = C't and Rp = R'e. We note that Cp is physically the pad capacitance

from the Futurex dielectric and that R, is the resistance from the mesa to the field

metal. Estimates of the parasitics show that the product GmR, is much less than 1.

Therefore, the measured admittance will be approximated as

YRGm + jwCp(YR + Gm)Ym ~ (2.3)

Once the values of Cp and Gm are extracted, we solve this equation to find the intrinsic

admittance of the RTD, since YR is the only remaining unknown.

In order to find the values of C, and Gm from the admittance data, we made

some assumptions about the admittance of the RTD at low biases. The space-charge

capacitance Cd can be accurately calculated for biases greater than approximately

0.2 V, since at these biases the 100-nm spacer layer is com lletely depleted and the

depletion layer extends into the heavily doped layer. Under this condition, the posi-

tion of the depletion edge and therefore the value of Cd become insensitive to changes

in bias. (Since the capacitance associated with the barriers is large, Cd is dominated

by the depletion-layer capacitance.) From the data shown in Fig. 2-3, it can be de-

duced that the de conductance of the RTD is small compared with wCd for biases less

than 0.5 and frequencies greater than 100 MHz. We shall therefore assume that the

space-charge layer capacitance Cd dominates the RTD admittance at these biases and

frequencies. Thus, the RTD admittance is modeled as YR = jwCd, and the response

of the mesa structure is approximately

jw(Cd + Cp)Gm - W2CdCp jWCdGm
Gm + jwCd Gm + jiWCd

Since the measured angle shown in Fig. 2-5 is close to 90 degrees for all frequencies

less than 26 GHz, we surmise that terms involving w2C; may be neglected when

compared to G2. As we shall see, the extracted values of the parasitics are consistent

2.3 Characterization of the Parasitics. 29
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Figure 2-7. Extracted capacitance C, + Cd vs frequency for a bias of 0.2 V. The
sum of the space-charge layer capacitance Cd and the pad capacitance C, is found by
dividing the imaginary part of the measured admittance by the angular frequency.

with this approximation. The real and imaginary parts are then given by

w2C2
Ym Gm + jC(Cd + Cp) . (2.5)

The value of C, is extracted first. As can be seen from Eq. (2.5), the sum of Cd

and C, is found by dividing the imaginary part of the admittance by the angular

frequency, i.e., Im{Ym}/w. A plot of this function for the representative device at

0.2 V is shown in Fig. 2-7. The average value is approximately 340 fF, and most of

the data are within 2% of this value for frequencies greater than 4 GHz.

We measured the capacitance from several devices in this manner, and the results

are shown in Fig. 2-8. The error bars shown in the plot represent the variation in

the measured capacitance from a set of 25 devices: 10 devices with mesas nominally

16 pm on a side, and 5 devices each with mesas of 8, 4 and 2 pm on a side. (The actual

sizes are slightly smaller because of processing considerations.) The size of the metal

pad on top of the RTD mesa was the same in all cases. As can be seen from the figure,

the measured capacitance of the 2- and 4-pm devices is approximately the same. For

~~C·
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Figure 2-8. Extracted low-bias capacitance C, + Cd from several device sizes. The
smallest devices have a negligible contribution from the space-charge layer capacitance
Cd and are therefore dominated by the pad capacitance Cp.

devices of this size, the space-charge layer capacitance Cd is a very small contribution

to the overall capacitance, so the measured capacitance is composed almost entirely

of the pad capacitance C,. We used the value Cp from the smallest devices, and

scaled it by the ratio of Futurex areas for the larger devices, which resulted in a value

of C, =66 fF for the 16-tim devices.

Once the value of Cp was determined, we used the real part of the admittance

to extract Gm. This conductance is given by Gm = w2C2/Re{ Ym}. A plot of this

calculation for the representative device appears in Fig. 2-9. From the plot, we see

that most of the data above 4 GHz lies within 8% of the value 0.22 S. The variation

among the 16 ,/m devices was less than 10%.

It is now seen that the terms involving G2 are approximately 50 times larger

than those involving w2C at 26 GHz. Thus, the approximation w2Cd <« G2 used

to obtain Eq. (2.5) from Eq. (2.3) is justified. We tested the accuracy of the low-

bias modeling by plotting the difference between the expected and actual values of

the admittance, as shown in Fig. 2-10. The actual value of the admittance was taken

from the data shown in Fig. 2-5, and the expected value was calculated from Eq. (2.5).
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Figure 2-9. Extracted parasitic conductance Gm vs frequency for a bias of 0.2 V. The
parasitic conductance is found from the real part of the admittance and the extracted
capacitance.

The small difference indicates good agreement, although there is some disagreement

at the lowest and highest frequencies. The small disagreement at low frequencies is

most likely due to the fact that we have completely neglected to include a low-bias

conductance for the RTD. Although this conductance is small, it is not zero. There

is a small disagreement at higher frequencies; we will examine only frequencies less

than 4 GHz for the remainder of this experimental work so that we are assured to be

within the range of validity of the parasitic model.

Now that the parasitics are characterized, Eq. (2.3) can be solved for the RTD

admittance to yield

Gm(jwCp - Ym)
YR = (2.6)

Ym - Gm - jwCP

At this point, the separation of the intrinsic RTD admittance from the parasitics is

complete.
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Figure 2-10. Comparison of calculated parasitic model with data. The dotted lines
are the measured response. The solid lines are the difference between the measured
and calculated responses.

2.4 Intrinsic Admittance of the RTD.

This section will examine the dependence of the intrinsic admittance of the RTD

YR on frequency. This admittance was extracted using Eq. (2.6). When plotting the

admittance, we will decompose YR into its real part, the conductance GR, and its

imaginary part, the susceptance BR. In principle, it is redundant to examine both

the real and imaginary parts, since they are related by the Kramers-Kronig relations.

However, examining both parts increases intuitive understanding of the behavior of

the device.

The extracted RTD conductance GR for the biases 0.75, 1.0, 1.2, and 1.4 V is

****

-.3·
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shown in Fig. 2-11 on page 36. This group of conductance plots have the same qual-

itative behavior. Both the low- and high-frequency conductances are monotonically

increasing with bias. Each plot has a rolloff at about 800 MHz, although the rolloff

is seen to occur at higher frequencies for the higher biases.

The extracted susceptance BR for a bias of 0.75 V is shown in Fig. 2-12 on page 37.

The susceptance appears to be linear in frequency, which would indicate that it is

dominated by a capacitance. In fact, the susceptance is not perfectly linear. We

shall define the capacitance C, as the average of the quantity BR(w)/w for 10 angular

frequencies between 2wr x 3.9 GHz and 27r x 4.0 GHz. This average would be the value

of the capacitance if the susceptance were perfectly linear in frequency. Table 2.1

(also on page 37) shows the tabulated values of C, for several biases. We then define

the "excess" susceptance B; as B. = BR - wCC, which is the deviation from a linear

susceptance.

The excess susceptances are plotted in Fig. 2-13 on page 38 for the biases 0.75, 1.0,

1.2, and 1.4 V. Since C, was calculated using the susceptance around 4 GHz, Bx drops

to zero near that frequency. The data in Fig. 2-13 show that there is a small deviation

from a purely capacitive susceptance. For these biases, the deviation is negative, and

the minimum susceptance occurs at a frequency which is slowly increasing with bias.

In the next group of biases, 1.60, 1.65, 1.67 and 1.69 V, shown in Fig. 2-14 on

page 39, the extracted low-frequency conductance drops off dramatically. This be-

havior is expected, since the device is biased closer to the current peak, where the dc

conductance drops to zero. The rolloff frequency stays roughly constant for the biases

1.60, 1.65, and 1.67 V. At 1.69 V the extracted conductance is roughly constant with

frequency. The excess susceptances for these biases are shown in Fig. 2-15 on page 40.

The biases 1.60, 1.65, and 1.67 V have an excess negative susceptance, and the bias

1.69 V has no significant deviation from a capacitive susceptance.

In the third set of plots, for biases of 1.70, 1.71, 1.72, and 1.73 V, shown in Fig. 2-

16 on page 41, the dc conductance moves fromin the positive-differential resistance
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(PDR) to the NDR region. The rolloffs occur at significantly lower frequencies at

these biases than at lower biases. Also noteworthy is the fact that the high-frequency

conductance is still positive. The excess susceptances for these biases have become

positive, as can be seen in Fig. 2-17 on page 42.

For the final set of plots, for biases of 1.76, 1.78, 1.80, and 1.84 V, shown in Fig. 2-

18 on page 43, the dc conductance is also in the NDR region. Like the previous set

of biases, the rolloff frequencies are significantly less than in the PDR region, as is

shown on these expanded frequency scales. The rolloff begins at a frequency lower

than 45 MHz, which is the low-frequency limit of the network analyzer. The excess

susceptance, shown in Fig. 2-19 on page 44, has a decreasing peak value with bias.

The peak frequency is increasing slightly with bias.

~pU--~D--~-----~-
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Figure 2-11. Extracted conductance GR for the RTD at biases of 0.75, 1.0, 1.2, and
1.4 V as indicated.
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Figure 2-12. Extracted susceptance BR for the RTD at a bias of 0.75 V.

BIAS C, BIAS C,
(V) (fF) (V) (fF)
0.75 213 1.70 202
1.00 208 1.71 202
1.20 205 1.72 202

1.40 203 1.73 203

1.60 201 1.76 204

1.65 201 1.78 203

1.67 202 1.80 203
1.69 202 1.84 203

Table 2.1. Calculated values for C,, the dominant capacitance in the RTD susceptance
BR. The capacitance C, is calculated by averaging BRIW for 10 frequencies between
3.9 and 4.0 GHz.

---------------------
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Figure 2-13. Excess susceptance Bx = BR-wCs for the RTD at biases of 0.75, 1.0, 1.2,
and 1.4 V. The excess susceptance represents the deviation of the RTD susceptance
BR from that of the capacitor C, calculated by averaging BRIW in the 3.9 to 4.0 GHz
range. The values used for C, are shown in Table 2.1.
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Figure 2-15. Excess susceptance Bx = BR - wC, for the RTD at biases of 1.60,
1.65, 1.67, and 1.69 V. The excess susceptance represents the deviation of the RTD
susceptance BR from that of the capacitor Cs calculated by averaging BR/W in the
3.9 to 4.0 GHz range. The values used for C, are shown in Table 2.1.
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Figure 2-16. Extracted conductance GR for the RTD
1.73 V as indicated.
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Figure 2-17. Excess susceptance Bx = BR - wCs for the RTD at biases of 1.70,
1.71, 1.72, and 1.73 V. The excess susceptance represents the deviation of the RTD
susceptance BR from that of the capacitor C, calculated by averaging BRIW in the
3.9 to 4.0 GHz range. The values used for C, are shown in Table 2.1.
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Figure 2-18. Extracted conductance GR for the RTD at biases of 1.76, 1.78, 1.80, and
1.84 V as indicated. Note that the scale of the frequency axis is different from the
previous plots.
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Figure 2-19. Excess susceptance B, = BR - wCs for the RTD at biases of 1.76,
1.78, 1.80, and 1.84 V. The excess susceptance represents the deviation of the RTD
susceptance BR from that of the capacitor C, calculated by averaging BRIW in the
3.9 to 4.0 GHz range. The values used for C, are shown in Table 2.1. Note that the
scale of the frequency axis is different from the previous plots.
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Rate-Equation Model of the RTD

In this chapter, we describe a method of modeling the RTD transport with rate

equations. This method will enable us to explain the measured RTD behavior pre-

sented in Chapter 2, as will be shown in Chapter 4.

We will begin by formulating the rate equations for an RTD. Once the rate equa-

tions are established, expressions for the RTD current and charge in the well will be

derived. By examining the small-signal change in the current and charge, we will

arrive at a equivalent circuit for small-signal excitation. In order to complete the de-

scription of the RTD, we will describe a method for calculating the electron-transfer

rates using the Fourier response of the Schr6dinger solution to the RTD.

3.1 Formulation of the Rate Equations

In this section, we will derive expressions for the charge flow and storage in the

RTD. Under a small bias, the RTD has a band bending like that shown schematically

in Fig. 3-1. We have defined the regions so that region 1 is the cathode, region 2 is

the well, and region 3 is the anode. The x direction is perpendicular to the plane of

the well, while the y and z directions are in the plane of the well. For simplicity, we

will be considering bias conditions such that only the lowest quasibound level plays

a significant role in conduction through the double-barrier structure.

;t~-~~--------L·-----I-
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REGION REGION REGION

1 2 3

Figure 3-1. Schematic of the RTD band structure. The cathode, well, and anode are
defined to be regions 1, 2, and 3, respectively. The x direction is perpendicular to
the plane of the well, and the y and z directions are in the plane of the well.

First, we will formulate electron-transport rates between two states in different

regions. This approach will yield undetermined coefficients, and the relation of these

coefficients will be examined in the second part.

Formulation of the Transfer Rates

It will be assumed that the RTD barriers are thick enough so that the quasibound

lifetime in the well is much greater than the mean scattering time. It will further

be assumed that the scattering time is fast enough to create a thermalized energy

distribution in the well, so that the carriers in the well are described by a separate

quasi-Fermi level. Since the tunneling time through the device is much greater than

the scattering time, a negligible number of electrons traverse coherently from region

1 to region 3. All electron transport proceeds by first traversing from region 1 to 2,

and then from region 2 to 3. This type of transport is often referred to as sequential

tunneling [50].

The basic method of calculating the rates in our model is as follows:

The mean rate of electron transfer from an initial to final state is propor-

tional to the probability that an initial state is occupied, as well as the
probability that a final state is empty.

This bilinear approach is analogous to the Shockley-Read-Hall model for electron

I I



3.1 Formulation of the Rate Equations

traps [51, 52], which is used to describe the behavior of bulk and surface traps [49].

However, this approach will yield results for the RTD which are substantially different

from those of bulk and surface traps.

We first write the rate between a state in region 1 and a state in region 2. Consider

an eigenstate which is primarily localized inside of region 1. There is a wavefunction

associated with this eigenstate with a uniquely defined wavevector kl in a region far

away from the double-barrier structure, where the conduction band does not vary

in space. The wavefunction can be decomposed into forward- and reverse-traveling

waves, which are denoted kl and -kl, respectively. For the purpose of calculations

involving the density of states, we will assume that these traveling-wave states are

normalized in a large box of length LR in the x direction and area AR in the y

and z directions. There is also a quasibound state that is primarily localized in the

well, which will be denoted by its transverse wavevector k2. The well state with

momentum -k 2 is degenerate with k2 . These states are normalized in the volume

with large area AR and the entire x direction in length (since the state is bounded

in x). In accordance with our basic method, the rate rk,~k2 at which electrons make

the transition from the traveling-wave state ki to the state k2 is then written as

rki-.k 2 = c12 (kl, k2)fl (1 - f2) , (3.1)

where fi and f2 are the mean occupation factors of the states kl and k2, respectively,

and c12 (ki, k2) is the transition coefficient for a particular k, and k2. We shall write

the reverse rate r-k 2B--kl similarly as

r-k2-c-kl = 21(-kl, -k 2 )f 2 (1 - f) , (3.2)

where c21 (-kl, -k 2) is the transition coefficient for the reverse process.

The bilinear expressions for the transition rates between regions 2 and 3 is entirely

analogous to those for regions 1 and 2. There is a transition rate between the state

---



primarily localized in region 2, k2, and an eigenstate which is primarily localized

inside of region 3. We denote the latter eigenstate by a uniquely defined wavevector

k3 in a region far away from the double-barrier structure. Again, we decompose

the wavefunction into forward- and reverse-traveling waves, denoted by k3 and -k 3 ,

respectively. Like kl, k3 is considered to be normalized in a large box of length LR in

the x direction and area AR in the y and z. We write the rate of transition from k2 to

k3 , rk2-+k 3 , and from -k 3 to -k 2 , r-k 3 -+-k2 , by mapping 1-+2 and 2-+3 in Eqs. (3.1)

and (3.2). This mapping yields the results

rk2-kk3 = C23(k2 , k3 )f2 (1- f3) (3.3)

r-k3--k 2 = c32 (-k 2 , -k 3 )f3 (1 - f2) , (3.4)

where fa is the mean occupation number of the state k3 , and c23(k2, k3 ) and c32(-k 2 , -k 3 )

are the transition coefficients for the forward and reverse processes, respectively.

Relationship of the coefficients of proportionality.

The proportionality constants that we have introduced are not independent of

each other. We now derive the relation that c12 (k1, k2) = c21(-kl, -k 2) when the

energies of the states kl and k2 are the same [53].

Since transition rates are proportional to the squared magnitude of the scattering

matrix element [54], it will suffice to examine the scattering matrix amplitude. The

matrix element S21 describes the transition from k, to k2 ,

S21 = (k2 S kl) , (3.5)

where S is the scattering matrix operator. The time-reversal operator T, which is
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anti-linear and unitary, can be inserted into the above definition to obtain

S21 =< k2 TitTSTtTIjk >

=< k2 ITtSttilk >

=< k2lTtStjklR >

= (<k 2RIStklR >)*

=< klR|Slk 2R >

= S1R2R , (3.6)

where the superscript dagger indicates the adjoint operator, Ik R > and Ik2R > are

the time-reversed states of Ikl > and jk2 >, respectively, and S1R2R is the scattering

matrix element between IklR > and Ik2R >. In the above manipulation, we have
assumed that there are no spin-dependent effects. This assumption allowed us to use
the relation TSTt = St since the Hamiltonian that connects the states kl and k2 is
then symmetric under time reversal. Comparing the first and last lines of Eq. (3.6)

shows that the scattering amplitude between the states Ikl > and jk2 > is the same
as that for 1klR > and Ik2 R >. However, the time-reversed states Ik lR > and Ik 2R >

are simply the states with reversed momenta, i.e., I - kl > and I - k2 >, as well

as time-reversed spins. As long as there are no spin-dependent effects present, the
spin states are degenerate, and the Hamiltonian does not mix states of different spin.
Thus, after summing over the spin states, we find that the transition rates between

the states jkl > and jk2 > is the same as that for I-ki > and I -k 2 >, from which we
conclude c12(kl, k2 ) = C21(-kl, -k 2 ). Furthermore, a similar derivation shows that

c23(k2, k3 ) = c32 (-k 2 , -k 3).t

SFor states of unequal energies, more general relations may be proved:

C1 2 (kl,k 2 ) (E 1-E 2)/kT

C21 (kl, k2 )

c2 3 (k 2 ,k 3 ) - (E 2-E 3 )/kT

C32(k2,k3)

where En is the energy of state kn. The derivations in the remainder of this chapter deliberately
delay the use of the equality of the E,.
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3.2 Derivation of the RTD Current and Charge in

the Well

The rates in Eqs. (3.1) and (3.2) and the equality of the forward and reverse

coefficients are combined to find the net transition rate between the states k, and k2 ,

which is

rkl-+k2 - T-k2--+-kl C1 2 [f(1 - f2) - e(E2-E1)/kTf 2 (1 fl)]
(3.7)

= c1 2 f1(1 - f2) [1 - e(F2-Fl)/kT

where El and E2 are the energies of the states kl and k2, respectively, and F1 and F2

are the quasi-Fermi energies of the regions 1 and 2, respectively. Similarly, the net

transition rate between the states k2 and k3 is given by

Tk2 k-k3 - rk 3 -+-k 2 - c23 f 2 (1 - f3) [1 - e(F3- F2)/kT] , (3.8)

where E3 is the energy of the state k 3, and F 3 is the quasi-Fermi energy of region 3.

We note that the net transition rates between two regions are zero when their quasi-

Fermi energies are equal, and this result is physically sensible since the quasi-Fermi

energies are equal only when the two states have achieved equilibrium with each other.

Equations (3.7) and (3.8) are the rates between two states, so we sum over all pairs

of states in order to find the current between the two regions. For the current density

between regions 1 and 2, J12, this yields

3 Lk d 2k2
J12 = -2qVR f 3 

4  k2 (Tki-+k2 - T-k2-+-ki)

(3.9)

= -2qVR d 3  clk d2k 2 1 f 1(1 f 2 )1- e(F2 - F1)/kT (39)
87r3 47 2



3.2 Derivation of the RTD Current and Charge in the Well

and similarly for the current density between regions 2 and 3, J23,

J23= -2qVR d k 3 d c2 3  (1 1 - (F3- F2)/kT , (3.10)

where VR = LRAR is the volume of normalization. The integration is performed over

all values of tranverse k's, i.e., -oo to oo and positive values of longitudinal k, but

the limits have been omitted from Eqs. (3.9) and (3.10) for simplicity. The factor of

2 in front of the integrals accounts for the fact that there are two spin states for each

value of k2, and we have assumed that there is no coupling between states of different

spin in different regions because there are no spin-dependent effects present.

We will make a number of definitions in order to convert Eqs. (3.9) and (3.10)

to integrals over energies. For parabolic bands, the energy of an electron in the

cathode E1 can be decomposed into its longitudinal and transverse parts, Een and

Etl, respectively, so that El = Ele + Etl. The components are given by

Wk2 k
E -= x2 + Ec1 (3.11)

2m*

Et = k (k+ k2) , (3.12)

where Ecl (x) is the energy of the conduction band edge in the cathode, and m* is

the effective mass, which is assumed to be isotropic. Also, the energy of an electron

in the anode E3 can be decomposed into its longitudinal and transverse parts, Et3

and Et3 , respectively, so that E3 = E3 + Et3 . These components are given by

h2k 2

Et3 = 2m* Ec3 (3.13)
2m*

Eta =2m* (k +k3), (3.14)

where Ec3 (x) is the energy of the conduction band edge in the anode. The energy

of an electron in the well E2 can be decomposed into its transverse component Et2
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and longitudinal component ER so that E2 = Et2 + ER. The transverse component

is defined by

Et 2 = h (k2 + k 2 ) . (3.15)

The longitudinal component ER is the resonant energy in the well. Since the electron

is not completely confined to the well, there is some width in energy associated with

this resonance, which will be discussed in later sections. In the scattering-dominated

regime, the width is an insignificant fraction of the thermal energy kT, so we have

neglected it in the calculation of E2. We also define the energy of the conduction band

edge in this region to be EC2(x). Using these energy definitions, the mean occupation

numbers are written as

1
1 + exp [(Eil + Et1 - Fi)/kT] (3.16)

1
f2= 1e [17)

f 1 + exp [(ER + Et2 - F2)/kT] (3.17)

1
f3 = 1 (3.18)1 + exp [(Ee3 + Et3 - F3 )/kT] (3.18)

We now consider the form of the coefficients C12 and c23 . We expect that there will

be a sharply peaked resonance in the well with longitudinal energy ER. For our model,

we shall assume that the transitions into the well are within an energy width of this

resonance. In making this restriction, we are neglecting optical-phonon processes.

When such processes are significant, the I-V curve has a secondary peak [21]; we

conclude that these processes can be neglected since we do not see such a peak in

Fig. 2-3. Also, we will insist that the transverse wavevector is conserved. With these
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3.2 Derivation of the RTD Current and Charge in the Well

restrictions, the coefficients c12 and c23 then take the form

c12 = w 12 (Ell, ER) 41r 2 AR' 6(ktl - kt2) (3.19)

c23 = w23(Ee3, ER) 4r 2 AR1 6(kt 2 - ks) , (3.20)

where the transverse wavevector is ktn = ky,, + +kn,, and 6 is the Dirac 6 function.

The quantities w12(Ell, ER) and w23(EM3 , ER) are functions only of the longitudinal

energies.

We use Eqs. (3.19) and (3.20) to integrate out ktl and kt3, and then convert the

integral over wavevectors to an integral over energy, which leaves

o0 00

J12 = - dEt21 2) 1 -(F 2-F )/kT dE W12(Ei ER)fi12 r JI tI 27Ehv E E
0 Eci (3.21)

J23= 2  dE 2 f2 [- tf (F-F2)/T]3 w23(Ee3 , ER)(1- f3) ,
o EC3 (3.22)

where v n = 2(Een - Ecn)/m* is the longitudinal velocity in region n.

For thick-barrier RTDs, the width in energy of the quasibound state is very nar-

row compared to kT. Since we expect that electron transfer will occur only within

a few widths of the energy peak, the functions Wl2(Eel, ER) and w23(EI3, ER) are

highly peaked and are changing much more rapidly than the Fermi factors for the

temperatures in which we are interested. Therefore, we shall evaluate fl at Een = ER

and f3 at Ell = ER, and then remove them from the integrals. We will denote the

Fermi factors so evaluated as fl = fl (Eei = ER, Et) and f3 = f3(Ee3 = ER, Et). The



current densities then become

12 qm*i1  dE 2 (1 f2)fl - e(F2-F1)/kT (3.23)
0

J23 - v3  dEt2 f2 (i - 3)1 - e(F-F2)/kT] ,(3.24)

0

where

1 = LR 2 l2(Ei, ER) (3.25)
Ec1

00

3 = LR w3 w23 (Ee3, ER) (3.26)
EC3 •

The quantities v, and v3 have units of inverse time, and they are a rough indication of

the speed of the device, as will be seen later. We will refer to them as transfer rates.

A straightforward calculation shows that the integrands in Eqs. (3.23) and (3.24) can

be expressed as*

(1 - f2)f [- e(F2- F )/kT] = - f2 (3.27)

(1 - )f2 [1 - e(F3- F2)/kT] = f - f3. (3.28)

These simplified integrands may be integrated analytically over Et2, using the integral

shown in Appendix B. The expressions for the current densities then become

J12 qm*kT In 1 - f2In (3.29)
r= ir 2  1- fiR

qm*kTv3  I 1- f3R
J23 rh2  In - (3.30)

*Note that this manipulation would not be needed if the exponentials of differences in energy
had been left in Eqs. (3.7) and (3.8).
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3.3 Small-Signal Variation about Steady State 55

where we have defined

1

1 + e(ER- F n)/kT 
(3.31)

Equations (3.29) and (3.30) are the final expressions for the current densities. These

equations have a necessary physical property. When F1 > F2 > F3 , the current is

always negative, so the electron current is flowing from left to right in Fig. 3-1. This

property ensures that power is being dissipated.

The calculation of the charge per unit area in the well proceeds by integrating the

occupied states in the well,

Sd2k2  qm* 0Q=-2q 4 2 2 2 dEt2f 2 . (3.32)
0

Again using the results in Appendix B, this integral evaluates to

qm*kT 1
Q In - f(3.33)irh2  1- f2R

Since the Fermi factor f2R is always between 0 and 1, the quantity Q, is always

negative.

3.3 Small-Signal Variation about Steady State

We will now examine the behavior of the device when a small-signal sinusoid is"

superimposed on the bias. Our goal is to derive an equivalent-circuit model which will

describe the response to this small-signal excitation. The excitation must be small

enough so that the RTD response is linear in the input.

The derivation begins from the current continuity condition, in order to ensure



charge conservation,

8Q,Q = J12 - 23. (3.34)

Each quantity can be decomposed into a steady-state component that is independent

of time, and a time-dependent component that contains the small-signal variation.

The quantities in Eq. (3.34) are decomposed as

J12 = J+2 + 6J 12  (3.35)

J23 = J23 + J23  (3.36)

QW = Qo, + JQ , (3.37)

where the superscript o denotes the steady-state value and the 6 prefix denotes the

small-signal variation. By setting the small-signal variation to zero, the current conti-

nuity condition yields J12 = J13. This equation reflects the physical requirement that

the current crossing the left barrier must cross the right barrier in steady state, in

order that the charge in the well remains constant. Since the steady-state quantities

cancel, the small-signal quantities must obey

-9QW = 6J 12 - 6J 23. (3.38)at

Thus, there must be strict conservation of the incremental charge as well as the

large-signal charge.

By linearizing Eqs. (3.29), (3.30), and (3.33), we find analytical expressions for the
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qWM1

q43

qw2

Sqv3

Figure 3-2. Location of the potentials used in the equivalent circuit, shown on an
energy diagram. The quantities I1 and $3 represent the electron potential in the
quasineutral region of the cathode and anode, respectively. The quantity 2 is defined
to be the electron potential at the point in the well where ER - EC2 equals its
equilibrium value; this point is roughly at the center of the well. The quantities 01,
0 2, and 03 are the quasi-Fermi potentials in regions 1, 2, and 3, respectively.

incremental quantities 6J 12, 6J23 and SQ,. This manipulation yields the expressions

J12 mkT -V1 + 11 In (3.39)rh2 1R f2R 1fR

qm *kT M f2R 6f3R 1-J m*T2 _31 -- f2R - V3 12 v3 In (3.40)
rh[-2 f 2  f3R [ +2RJ

qm*kT 6 f2R
6Q. = 2  1 (3.41)rh12  1 -f2R

where 6v, and 6v 3 represent the small-signal variation in the transfer rates associated

with regions 1 and 3, respectively, and 6fR is the small-signal variation in the mean

occupation number in region n.

Before calculating 6fAR for the three regions, we will convert the independent

variables in the Fermi factors fnR from energies to potentials. Later, this will allow

us to relate the results to an equivalent circuit in a more straightforward manner.

The potentials are schematically shown on the energy band diagram in Fig. 3-2. We

define V 1 and 03 as the electron potentials in the quasineutral region of the cathode

1 l

r*ý-
I

q02

r*-

-· ·
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and anode, respectively, and 0, = -Fn/q as the quasi-Fermi potential in region n.

The electron potential of the quasibound state is denoted 'OR = -ER/q. Let x, be

the point in the well where ER - EC2 remains equal to its equilibrium value. We then

define 0 2 = 2(xw) to be the electron potential in region 2. This definition of x,, will

prove useful later, since it will force the two incremental quantities 6'k2 (xzw) and 6 4 R

to be equal. The point at which this condition is met is close to the center of the

well; we could simply define 0 2(x,) to be the electron potential at the center of the

well without introducing much error into later calculations.

These definitions transform the Fermi factors into

1
fnR = + eq(- ,- R)/kT (3.42)

As detailed in Appendix B, the linearized variation in fnR is then

6faR = fA(1 -' fnR) (60S - 60n)k T (3.43)

= f--R(1 - fAR)(642 - 60n) -kT

The incremental variation in v, and v3 involve taking the derivative of the transition

probability rates w12 and w23 . The expressions for the these rates will turn out to be

algebraically messy, and the derivatives will be more so. For now, we will work with

the symbolic derivatives. Then, the incremental quantities become

6V1 = (6¢2 - ) (3.44)
S9021

3 = ( _603 - 602), (3.45)
9 032

where 'nm is a shorthand for 1n -'OI. In writing these expressions for bvl and 6v3,

we have used the fact that the transfer rates are a function only of the band structure.

In so doing, we have neglected any effect that changes in the quasi-Fermi level might

have on the transfer rates. Physically, this approximation consists of neglecting the
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direct influence of electron-electron scattering in the well on the transfer rates, which

is suitably accurate for our purpose. This approximation will again be used when we

calculate the transfer rates.

After substituting the above expressions into Eqs. (3.39)

cremental variations become

q2m*v 1

J12 7r2 [fR( 642 - 601) - f2R( ¢2

J23 = qm 3 [f2R(2 - 602) - f3R(5v27irh 2

through (3.41), the in-

- J0 2) + 771 (002 - 61)

- J03) + 73 •J3 c 02)]

q2 *Q = -- f22R(h f R -(2),

where the dimensionless quantities j7i and 73 have been defined as

kT ( v 1 \

qv1 \V21 /
773 T v
qv3 \0'32

1 - f2R
In

1- fiR

1 - f3R
In f

S- f2R

In the quasineutral cathode and anode regions, there is a large electron population

and a great deal of scattering. As a consequence, the relaxation time is much smaller

than the time scale of the applied variation for frequencies used in Chapter 2. The

variations 601 and 6,01 are therefore approximately equal, as are the variations 603

and 60 3. These equalities allow us to manipulate the incremental quantity 6J 12 to

yield an equivalent circuit for the charge flowing across the left barrier:

q2m*V
6J1 - qrh2 [flR(6'02 - 601) - f2R( 6 VP2 - 6 1 + 561 - 62) + 71( 6 2 1- 601)]

q2 m*,V1
=- •rh [fR(602 - 66V1) - f2R( 602 - 160 + 6 - 602) + 71 (642 - 0)]

= G1(60 1 - 602) + Ga(6V,1 - 60 2) (3.51)

(3.46)

(3.47)

(3.48)

(3,49)

(3.50)
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Figure 3-3. Equivalent circuit models for small-signal excitation for (a) the current
across the left barrier, (b) the current across the right barrier, and (c) the charge
being stored in the well.

where

q2m*/lG1 = h2  f2R

q2m*VlGo = •rh2 1& -f2R r1) .

(3.52)

(3.53)

The first component of the current flowing between the cathode and well is propor-

tional to the difference in their quasi-Fermi potentials. This component is physically

behaving as a conductance (or equivalently, a resistor) would. The second component

of the current is proportional to two other potentials in the circuit, so it is behaving

like a transconductance. This transconductance arises because the current tunneling

through the left barrier changes when the potential profile changes. Since the poten-

tial profile is directly controlled by the electron potentials and not the quasi-Fermi

potentials, the additional current occurs as a transconductance in the equivalent cir-

cuit. This circuit is shown schematically in Fig. 3-3(a).

60 Rate-Equation Model of the RTD
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Similarly, the equivalent circuit for the current across the right barrier becomes

6J23 = G3(652 - 63) + Gp(6J2 - 643), (3.54)

where

q m*v3G3S= 2  f2R (3.55)

q2m*v3
G, 2 (f3R - f2R + r3) . (3.56)

Again, the first component of the current is proportional to the difference in their

quasi-Fermi potentials, which is behaving as a conductance. The second component

is behaving as a transconductance, and is analogous to the transconductance which

arose for the left barrier. The equivalent circuit for this current is shown schematically

in Fig. 3-3(b).

In sinusoidal steady state, the change in the incremental well charge becomes

-6QW = jwC2(6q 2 - 642) (3.57)

where

q2m*
C2 = rh 2R . (3.58)

Any change between the electron potential and quasi-Fermi potential in the well

results in a change in the charge storage. The charge storage in the well is modeled

by a capacitor in Fig. 3-3(c), which is physically sensible.

We now use the incremental-current-continuity equation, Eq. (3.38), to complete

the RTD equivalent circuit. Using the expressions in Eqs. (3.51), (3.54) and (3.57) to
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eliminate 6J 12, 6J23, and 6Q,, we find

jwC 2(J 2 - 6 ='2)

[G1(J0 1 - 6J 2) + Go(61l - &62)] - [G3(65 2 - 563) + G,(6? 2 - 3)] . (3.59)

This equation is actually enforcing Kirchoff's current law at the node labeled 65 2

in Fig. 3-4(a). Therefore, the equivalent circuit shown in Fig. 3-4(a) is the small-signal

equivalent circuit model of the RTD. To complete the model, we add two capacitances.

The first capacitance C1 is the capacitance across the left barrier and represents field

storage in that region. The second capacitance C3 represents the right barrier as well

as the depletion region. This complete equivalent circuit is shown in Fig. 3-4(b).

When actually performing calculations of the RTD admittance, it should be noted

that there is a useful transformation for the equivalent circuit shown in Fig. 3-4(b). If

the current sources were not present, the subcircuit consisting of the nodes 601, 6¢2,

50 3, and 602 could be simplified using a Y-A transformation. A modified version of

this transformation must be used in order to incorporate the current sources. We have

derived the modified Y-A transformation and have described its use in Appendix C.

3.4 Calculation of the Transfer Rates

In this section, a method to calculate the transfer rates vl and v3 is presented.

The calculation will be broken into two parts. First, a technique for finding the

time evolution of a wavefunction is presented. This method is useful for determining

the time response of the wavefunction at a spatial point given the time behavior at

another spatial point. In the second part of this section, a phenomenological method

to account for phonon scattering will be introduced. This will allow us to calculate

expressions for the transfer rate between two regions.

For brevity, we will present detailed derivations for the transfer only between

regions I and 2 in this section, which will yield an expression for vj. Of course,
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Ga (OW1 - 8W2)

58p, F
(a)

GO (5W2 - 593)

8(po F1 80
3
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0o3 C1 C3 65W3

Figure 3-4. Equivalent-circuit model of the RTD for small-signal excitation. (a) The
RTD equivalent-circuit model and (b) the RTD equivalent-circuit model with barrier
and depletion region capacitances.

similar reasoning applies to the transfer of electrons between regions 2 and 3, and we

will simply write out important results where appropriate.

3.4.1 Solution of a Resonant Wavefunction Using the Fourier-

Transformed Schridinger Equation

Solutions for the quantum-mechanical behavior of electrons in double-barrier struc-

tures have been published elsewhere [11, 12, 55], and those results will not be repli-
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cated here. These methods of solving Schr6dinger's equation do not explicitly model

the transient properties of the wavefunction that are needed to solve for the trans-

fer rate v1. In order to find these properties, we will solve the Fourier transform

of Schr6dinger's equation, which will provide insight into the time behavior of the

wavefunction.

First, we will outline the traditional solution of the Schr6dinger equation for the

double-barrier problem. Next, we will examine the general properties of the Fourier

transform of the Schr6dinger equation. It will be seen that the traditional solutions

can be used to find explicit solutions of the time evolution of the wavefunction. We

will then solve the specific problem of finding the time evolution of an electron placed

in the cathode.

Outline of the Traditional Quantum-Mechanical Solution to the RTD

The traditional solution begins with the time-dependent Schr6dinger equation*

p2 0
2mT(X, t) + VR(X)'T(x, t) = ih-XI (x, t) , (3.60)

where VR(X) is the potential energy profile of the RTD and appears schematically in

Fig. 3-5. For potential profiles that are independent of time, the wavefunction solution

is assumed to be of the form I' T(X, t) = T(x)T(t) so that the Schridinger equation

is separable. It is then found that the time-dependent part is T(t) = exp(-iEt/h),

where E is now the energy of the eigenstate. This solution is the sinusoidal steady

state of the wavefunction. The corresponding spatial part obeys the time-independent

Schr6dinger equation,

p2

P2m (x, E) + [VR(x, E) - E] 1(x, E) = 0. (3.61)2m*

*In this work, quantum-mechanical quantities are used in conjunction with i and exp(-iwt), but
admittances are used in conjunction with j and exp(jwt). This unfortunate clash of notation arises
from the differing conventions in the literature.
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Mathematically, since the solution IF depends on the parameter E in the differential

equation, we shall regard I as a function of E as well as x. Once the equation is

solved, the transmission amplitude is found by dividing the outgoing wave in the

anode by the incident wave in the cathode.

Let the components of T be designated as T1 in the cathode, 92 in the well, and '3

in the anode. We will use the superscripts f and r to denote the forward- and reverse-

traveling components, as shown in Fig. 3-5. Thus, the individual wavefunction in a

region n is given by ' = n + +'I. With this notation, the transmission amplitude

t is

t = 'f (X, E) (3.62)

where xl and x3 are points located in the cathode and anode, respectively. For sys-

tems with a resonance, the transmission amplitude is often cast into the Breit-Wigner

form,

if/2t= T= to (E- i/2 (3.63)q, f (E - ER) + ir/2

This form of t is valid for energies near the resonance. Mathematically, the Breit-

Wigner form is equivalent to expanding the transmission amplitude in a Laurent series

about a pole [12]. This leads to a transmission amplitude that is a highly peaked

function at energy ER, with a FWHM in energy of F. The to factor is sometimes

written as a weak function of energy or is often approximated as a constant over the

range of the energy peak. We shall treat to as a constant.

Fourier Approach to the Solution of Schrddinger's Equation

As with the traditional solution, we start with the time-dependent Schridinger

equation, Eq. (3.60). In this case however, we first apply a Fourier transform, which
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Figure 3-5. Definitions of the
ture.

wavefunction components for the double-barrier struc-

yields a frequency-dependent Schridinger equation,

(3.64)2 9 (x, W) + [VR(x) - hW] (x, W) = 0,2m*

where w is the Fourier-transformed time variable. In a purely mathematical sense,

this equation is equivalent to the time-independent Schridinger equation, which is

seen by mapping E -+ hw in Eq. (3.61). As a consequence, we can find solutions to

Eq. (3.64) by mapping E --+ hw in the solutions of Eq. (3.61). Taking advantage of

this useful property, we simply perform the mapping in the Breit-Wigner solution to

find

(3.65)S 1(x3,w) = t)ir/2t -( to )
1x (X, W) h(W - WR) + ir/2 '

where hWR = ER. It is worth emphasizing the physical difference between this equa-

tion and the previous Breit-Wigner solution. The previous solution in Eq. (3.63)

is the ratio of the incident and outgoing waves in sinusoidal steady state, while the

F

N1
r

X2

f
XV2
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present solution in Eq. (3.65) is the ratio of the Fourier-transformed waves, which can

be used to obtain information about the time evolution. In the Fourier scheme, the

meaning of the transmission amplitude is much like a response function of a circuit.

The incident wave at one point plays the role of the circuit excitation, and the outgo-

ing wave at another plays the role of the circuit output. The transmission coefficient

between these two points in space is playing the role of the Fourier transform of the

impulse response.

We again consider the case of sinusoidal excitation, in order to relate this Fourier-

transform approach to the traditional RTD tunneling. The incident-excitation func-

tion in region 1 is varying sinusoidally in time, so there is a frequency-dependent

factor* which is given by 21r6(w - wi), where wl is the frequency of oscillation. The

excitation function (which is the incident wave) is then

'I1{(xi,w) = It+(xi,w) 27"J(w - w1), (3.66)

where T' (x, w) describes the spatial dependence of the wavefunction in the cathode,

which is normalized in the box LR. The output function (which is the transmitted

wave) is the multiplication of the excitation (which is the incident wave) with the

frequency response function (which is the transmission amplitude) given in Eq. (3.65).

This multiplication yields

ifr/2
h(w - ) + i/267)

for the output function. The 6 function makes the inverse transform of this equation

*We are using the Fourier-transform convention

F(w) = f(t)eiwtdt.
-00
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easy to perform, and it is given by

- iF/2 eWi,,• "  (3.68)
q3 (x3, t) = (X, W) to e-r) (3+68)0 F(U ;- WR) + ir/2

This expression is precisely what we would have found if we had calculated the re-

sponse in the sinusoidal steady state from the outset.

Calculation of the Wavefunction Evolution in the RTD Well

The Fourier technique is well suited to calculating how an electron in the cathode

evolves into a one-dimensional RTD well over time. We must first find the frequency

response function, which is done by finding the solutions of the time-independent

Schr6dinger equation in the three regions and then mapping E --+ hw as before. Since

the wavefunction in the well has both forward and reverse traveling wave components,

there are both forward and reverse frequency response functions. They are defined

as follows:

A = (x2 , w) forward frequency response function

B = 2 (X2, w) reverse frequency response function.

The nature of the double-barrier structure is such that only a narrow range of energies

has any significant probability amplitude in the well, so it is expected that A and B

are highly peaked functions. Unfortunately, the analytical solutions for A and B are

intractable when using realistic potential profiles that include the accumulation and

depletion layers. We will instead examine numerical solutions.

A potential profile appears in Fig. 3-6 for the representative device presented in

Chapter 2. (The I-V characteristic of this device appears in Fig. 2-3.) The profile

was found by solving Poisson's equation for an applied bias of 1.0 V. The solutions to

the Schr6dinger equation were found using T-matrices [11], which is a conventional

68 Rate-Equation Model of the RTD
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Figure 3-6. Band structure for the representative device at a bias of 1.0 V. The barrier
heights have been shortened for clarity.

numerical technique for this problem. Briefly, the potential profile is approximated

by many small regions of width A/x, each having a constant potential. For each region

of size Ax, the constant potential is given by the average value of the true potential

over that region. This is often called a staircase approximation. The procedure to

calculate the transmission of the wavefunction between any two adjacent regions is

then straightforward and can easily be iterated for all the regions.

Using this technique, we have solved the time-independent Schr6dinger equation

and have plotted the magnitude for A(E) for x2 in the center of the well in Fig. 3-

7(a). We have chosen x1 far enough away from the double-barrier structure that a

change in xz results only in a phase change for A(E). The peak magnitude has been

normalized to one from its original value of approximately 210; a wai'efunction which

is more confined to the well will have a higher peak value. *The abscissa has been

plotted in units of the FHWM rl. As we now demonstrate, a Breit-Wigner function

is an excellent approximation to data in Fig. 3-7(a). A plot of the difference between

the true magnitude and the Breit-Wigner magnitude over a range of 10 rF appears in

Fig. 3-7(b). As can be seen from the figure, the Breit-Wigner approximation slightly

__________·C··QP___WUI_____I__
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Figure 3-7. (a) Calculated value of the magnitude of A(E) = 'q'(x2, E)/'{(xI, E)
using T-matrices, and (b) difference between a Breit-Wigner function and the data
shown in (a). The solid and dashed lines indicate energies where the Breit-Wigner
function overestimates and underestimates the true function, respectively. Tradition-
ally, A(E) would be related to the transmission amplitude from cathode to well. In
this work, we show that A(E) yields the frequency response of a forward-traveling
wave in the well to an impulse in the cathode.

overestimates the true value for energies between -10 and 5.7 F1, and then it un-

derestimates the true value for energies above 5.7 F1. These trends continue for the

range not shown in the figure: The Breit-Wigner approximation overestimates the

true value between -10,000 and -10 F1 with an error of less than 10-5; it underesti-

mates the true value between 10 and 10,000 F1, also with an error of less 10-5.Later,

we will be concerned with only the square magnitude of this function, so the amount

of error over this range will be quite insignificant.

The calculated value for B(E) at the center of the well is plotted Fig. 3-8(a).

The peak value is approximately the same as that for A(E), which occurs because

the quasibound level is almost a stationary state. We have chosen to normalize this

curve using exactly the peak value for A(E). Again, the Breit-Wigner function is an

excellent approximation to the true function, and the error is seen in Fig. 3-8(b). As

shown in the figure, there is a larger amount of error at the peak. The larger error

no0 .- 3
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10 - 4  (b)
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Figure 3-8, (a) Calculated value of the magnitude of B(E) = 'I(x2, E)/I/ {(x1 , E)
using T-matrices, and (b) difference between a Breit-Wigner function and the data
shown in (a). The solid and dashed lines indicate energies where the Breit-Wigner
function overestimates and underestimates the true function, respectively.

arises from our choice of normalization and is a measure of the equality in magnitudes

between the forward and reverse traveling waves. Still, the error is always less than

10- 4 , and is less than 10- 5 for less than -7 rl or greater than 2 Fr. As before, these

trends continue outside the range of the figure, to energies of ±10,000 Po .

In order to further enhance the confidence in the Breit-Wigner approximation, we

will examine the phase associated with A(E) and B(E). Figures 3-9(a) and 3-10(a)

on pages 77 and 78, respectively, show the phase calculated from the T-matrices for

a range of 20 or for A(E) and B(E), respectively. This range is where the phase

is changing most rapidly. The differences between the phase calculated by the T-

matrices and by the Breit-Wigner function is shown in Figs. 3-9(b) and 3-10(b), from

which it is seen that the errors are quite small. (Note the ordinate scale change

between the latter two figures.) The errors in the phase.over a range of 20,000 1r are

shown in 3-9(c) and 3-10(c). Even over this large range, the worst error in the phase

is less than 5 degrees.

Since we are expecting only a narrow range of energies to have significant proba-

(a)
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10- s
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bility amplitude in the well, it is not too surprising that the Breit-Wigner function is

a good approximation. Mathematically, the approximation is again tantamount to

writing a Laurent series about the pole nearest to the excitation. Thus, we use the

form shown in Eq. 3.63, and map the energies to frequencies to write

iF1/2B(x2 ,wI) A B,(x 2) h(wl - WR) + irF/2' (3.70)

B(X2, W1) B,(oX2) , (3.70)h(wl - WR) + irl/2

where hwl = E is the frequency of excitation, WR is the frequency of the peak, x 2 is

the x coordinate in the well, Ao and Bo are the calculated peak values of A and B,

respectively, and are approximated as constants. We have suppressed the dependence

on xl since its value only contributes a phase when xz is chosen far enough away from

the double-barrier structure. Taking the inverse Fourier transforms of A and B is a

straightforward task and yields

A(x 2 , t) = Ao(x 2) L rlt/2h -iWRt (t) (3.71)
2ht

B(x 2, t) = Bo(x 2) t/2A e-iwR (t) (3.72)
2h

where 0(t) is the Heaviside unit-step function

0 t<0
O(t) = (3.73)

1 t>0.

Equations (3.71) and (3.72) are equivalent to the impulse response of the traveling

waves in the well.*

To calculate the transition rate between region 1 and 2, we must find the response

*This result was derived from the approximation of a one-pole frequency response. Such an
approach implicitly neglects the barrier penetration time and the transit time across the well.
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in the well once an excitation in the cathode has been "turned on" at t = 0. This

excitation is written as

Tf (xi,t) = @1(xf,wi)e-s•wlt(t) , (3.74)

where Tf(xi, w1 ) contains the spatial information about the wavefunction, To com-

pute (ffx 2, w), we would multiply the frequency response function, Eq. (3.69), by

the Fourier transform of the excitation. This computation is equivalent to convolving

the impulse response, Eq. (3.71), with the time-domain excitation, Eq. (3.74). The

convolution results in the expression

SA( 2 ) /2 1 - e-rt/2n - i(WR-u)t - it)
AL(w R - WR) + iiF/2

(3.75)

where again we have suppressed the dependence on xl since its value contributes

only a phase when xz is chosen far enough away from the double-barrier structure.

Similarly for the reverse-traveling wave, the time evolution is

= Bo(X2 ) ir 1/2 1 -e-rt/2he-i(wR-wI)t -i]t(t .
h(w2 - WR) + iri/2 -e

(3.76)

Thus, when an electron is prepared in the cathode state, its wavefunction gradually

leaks into the well as a ringing exponential. The time scale of the exponential varies

inversely with the width of the transmission. This result is similar to that in Ref. [12].

The reasoning which lead to Eqs. (3.75) and (3.76) can also be applied to the

transition from anode to well. For this case, the transmission from the incident anode

state to the forward and reverse well states will also be described by Breit-Wigner

functions. These functions will have the same resonant frequency and FWHM. We
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convolve the impulse response functions with a step excitation in an anode state,

I~(x3 , t) = q' 3(x3, ws)e-iw3tO(t), (3.77)

where Ir3(x 3, w3) describes the spatial extent of the wavefunction in the anode, w3 is

the frequency of excitation, and s3 is a point located in the anode. Convolving this

excitation with the impulse response results in the time evolution

r = C.(X2) 1/2- ert/2he (R W3)t] e-iW0(t)
= C 2) h( - WR) + ir1/2

(3.78)

F = D(2) /2 [1 - e-rt"/2he - i
(W" - 3) ] 

ie- ) ,
f2 D( 2)h(w 3 - U/) + iF1/2

(3.79)

where Co(x 2) and Do(x 2) are the maximum values of the forward and reverse traveling

waves. Like the case for xl, we have suppressed the dependence on x3 since its value

contributes only a phase when x3 is sufficiently far from the double-barrier structure.

3.4.2 Calculation of the Transfer Rates vl and v3 in the Presence

of Phonon Collisions

When calculating the transfer rates vi and v3, we will use a phenomenological

approach to account for the scattering. We regard phonon collisions as a Poisson

process, with a mean collision time 7. From the time t = 0 that an electron is

placed in the cathode, the probability that it suffers a collision in the time interval

between t and t + dt is exp(-t/T) dt/l. Then, for electrons in a given initial state,

exp(-t/T) dt/T 2 is the average rate of collisions that occur between t and t + dt if the

state is refilled instantaneously after each collision. Phenomenologically, we regard

the collision as a measurement; the phase information about the wavefunction is

lost, and we determine the position of the electron. The probability that an electron



is measured between x2 and x2 + dx 2 when this collision occurs is 1 F 2 (x 2 , t)j 2 dx 2 ,

where ' 2(x2, t) -• f(x2, t)+2 (x 2 , t), with the latter given by Eqs. (3.75) and (3.76).

Therefore, the probability per second of a collision having occurred within the bounds

of the well is

(3.80)W12 = JjI(x 2 t)12 d 2 dt.
0 well

This approach enables 1

From Eqs. (3.75) an

well is

IT~2(Xz i t) 1

us

ad

to calculate the longitudinal transfer rate.*

(3.76), the squared magnitude of the wavefunction in the

2r2/4= jAo(Z2) + Bo(x2)12 2  yh21 - WR) 2 + -/4

where

^1 (t) = 1 + e- r t/1 - 2e- r lt / 2h cos [(w1 - WR)t] . (3.82)

Using this expression in the scattering integral, Eq. (3.80), we find that the integral

over time can be performed analytically and yields

FiA F8sF7 2Fr, + F
4h h2 (w1 - R) 2 + ( r, + r/2)2  Fs+FI

A1 = J JAo(x 2)+ Bo(X0 2)1d 2 d,
well

(3.83)

(3.84)

*We note that the scattering and coherent tunneling are being treated on unequal footing. The
coherent tunneling is solved assuming no interference from a scattering event, but the scattering
event terminates the tunneling.

(3.81)

where

~Bi~·-------------
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and the scattering width F, is defined to be h/7-. The longitudinal transfer rate now

incorporates scattering, with a form similiar to that of Stone and Lee [17].

The above expression for w12 enables us to calculate the rate from the definition

of vi. Substituting Eq. (3.83) into Eq. (3.25), we find

2r,I + I'
2FS + 1 fo
-" s +F1 Ect

dE1Az j i RF, 2

87Wý2/2(E1- Ec) (El- ER)
2 + (s-, + 1 /2)2 ,

have mapped the frequency to energy E1 = hwl. The integral over E1 can

analytically to yield

16h2
rSr, 2r, + rl

Er, [Erl- (ER - Ec*)]1/2P +*1F

Er, = /(ER- Ec) 2 + ( 1r + i/2)2.

(3.86)

(3.87)

We will examine the properties of this expression for vi when we are comparing the

theory with the experimental results in the next chapter.

As a final note, we write down the transfer rate from well to anode as

A3 Vi
16h2

rrs 2r, + F

Er3 [Er3 - (ER - Ec3)]1/ 2 r, + rl

Er3 = V(ER - Ec3)2 + 1(Fs + /2)2

A3 = f ICo(x 2) + Do(X2) 2 dx2 .
well

(3.88)

(3.89)

(3.90)

where we

be solved

(3.85)

where

where
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Figure 3-10.
function and
of 20,000 Fr.

(a) Phase of B(E) = Tr/(. (b) Difference between a Breit-Wigner
the data shown in (a) for a range of 20 F1, and (c) difference for a range
The error introduced by the Breit-Wigner approximation is again small.
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Comparison of Theory and

Experiment

In this chapter, we will evaluate the agreement between the experimental data

in Chapter 2 and the theoretical model in Chapter 3. In order to perform the com-

parison, a computer program was written to calculate the theoretical behavior. The

program self-consistently calculates the band structure and quantum-mechanical be-

havior with greater accuracy than would be feasible analytically.

The numerical solutions in this chapter will be used to explain the observed be-

havior of the RTD. However, it will be shown that for some purposes, the results are

accurate enough that the program could be used as a device simulation tool during

the design phase of a fabrication process. Alternatively, the program could be used

to predict ac behavior for fabricated devices, using only the I-V curve and knowledge

of the fabrication, which is useful since the experimental effort involved in obtaining

an I-V characteristic is much less than that of the high-frequency ac behavior.

We will begin by describing the components of the simulator. We will then com-

pare the theoretical and measured results for both the static and dynamic behavior.

By fitting the conductance at three frequencies, we will show that values for the

physical parameters introduced in the previous chapter can be extracted.

'arpB*lprrr~l~·lra~w*I3~·l~rUr~-~-··l~·r
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4.1 Brief Description of Numerical Techniques

The numerical calculation has three components to solve the distinct parts of

the problem. One component solves Poisson's equation, another solves Schridinger's

equation, and the third calculates the expressions from the RTD model in the previous

chapter. The program uses well-established numerical methods to simplify the task

of programming, so we will give only a rough description of the numerical techniques

here. (A detailed and lucid discussion of these techniques may be found in Press, et

al. [56].)

The first part of the program is the Poisson solver. The electrostatic potential is

solved throughout the RTD using Poisson's equation

V2 X= (4.1)

where E is the permittivity, and p is the charge, which is a function of the potential

(and implicitly the quasi-Fermi level). The doping level is high enough that the charge

must be calculated using degenerate statistics. The numerical solution to Poisson's

equation was accomplished using a finite difference scheme. This involves choosing a

set of discrete points in space xm that are separated by a distance Ax. The potential

at each discrete point is then related to the potential at the two adjacent points by

')(xm+l) - 2,0(Xm) + )(Xm-1) - q(n -ND (4.2)

AX
2  f

where n and N+ are the density of electrons and ionized donors, respectively. For

a grid of M points, there are M - 2 equations based on Eq. (4.2), which involve M

unknown potentials. The 2 remaining unknowns are given by the potentials at the

end of the grid, where the potential is presumably easy to calculate since it is far away

from the double-barrier structure. The M equations are solved using a Newtonian
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iteration algorithm [56]. For the solutions shown in this chapter, Ax is 0.1 nm and Ml

is greater than 2500, which provide an excellent approximation to the band structure.

After Poisson's equation is solved, the potential solution is used to find the so-

lutions to Schr6dinger's equation. To calculate the wavefunction, we employed the

T-matrix approach, which was described on page 13. For a particular energy, the

program calculates the wavefunction which is incident from the cathode and another

from the anode. Once this wavefunction is known throughout the structure, the pro-

gram calculates the forward and reverse frequency response functions. At this point,

it iterates until it finds the resonant energy in the response functions. Once the re-

sponse function at the peak is found, the program solves for the FWHM by explicity

searching for an energy which has a response of half the peak. The FWHM is used

to calculate the rates v, and v3 , which in turn determine the quasi-Fermi level in

the well from the condition that J12 = J23 . The charge densities associated with the

quasibound state and any accumulation-layer states are added into p and Poisson's

equation is solved again. This process continues until the potential and wavefunctions

converge to their final values.

In calculating the wavefunctions, there is a difficult issue regarding the potential

energy and effective mass in the barriers. The conduction band minimum occurs at

the X point in the AlAs barriers, but at the P point in the Ino.53Ga 0.47As cathode,

well and anode. Experimentally, it has been shown [20] that tunneling through a

barrier is best described by the X-point barrier height for thick layers and by the

P-point barrier height for thinner layers. Also, there has been a large amount of work

dedicated to the issue of heterojunctions with materials of differing mass (see [57, 58],

for example). We have found that using the F-point barrier height and the effective

mass of the In0.53 Ga0.47 As throughout the structure will yield suitably accurate results

for the purposes of this thesis.

The third component of the numerical solution begins by computing the rates v,

and v3 from Eqs. (3.86) and (3.88) in Section 3.4. The rates were calculated with

~Lt. II II -
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an assumed scattering time of 0.1 ps, which corresponds to a scattering width r, of

6.5 meV. At applied voltages near the current peak, the calculated rates depend only

on the square root of F,, which means that they are not strongly dependent on this

assumption.

Once the rates are known, the dc current and charge may be calculated according

to the method in Section 3.2 and the ac response may be calculated from the ex-

pressions presented in Section 3.3. Since our calculation accounted for only a single

resonance and elastic tunneling, the valley current will not be modeled well. However,

enough of this region will be simulated to provide insight into the ac behavior for the

NDR region.

4.2 Comparison of the Theoretical and Measured

Current

In this section, we present three calculations of the dc current. The.first calculation

was performed using the values for the RTD structure given in Section 2.1. Comparing

the calculated and actual current for these values will aid us in evaluating the program

as a predictive simulation tool. In the second calculation, the barrier thicknesses were

adjusted so that the simulated peak current matched the measured value. The third

calculation was the same in all respects to the second, except that the well width was

reduced by 0.1 nm in order to further test the sensitivity of the I-V to the structure

parameters.

The first calculation using the structure parameters specified in the growth of the

RTD would be the approach of a designer in the initial phases of device design. At

that stage, a designer would be finalizing a fabrication process and would want a

CAD tool that could simulate the electrical behavior of a device for a given set of

growth parameters.
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Figure 4-1. Comparison.of the calculated (solid line) and measured (dotted line) I-V
characteristic. The calculation used device parameters specified in Fig. 2-1, except
for those listed in Table 4.1. Due to strain, the barrier thicknesses listed in the table
are thinner than those in Fig. 2-1. Also the doping of the 10-nm spacer layer was
changed to reflect the small length of this region.

The parameters for this simulation are taken from Fig. 2-1, with the exception

of those summarized in Table 4.1. The final two parameters in this table differ from

those given in Fig. 2-1. The value of the barrier thicknesses was chosen to reflect the

strain, which was briefly discussed on page 20. Also, the doping of the 10-nm spacer

layer was changed from its nominal value of 2 x 1016 cm-3 . For this doping, we would

expect to find an average of only one dopant atom in a cube that is 37 nm on a side.

Thus, it is clear that specifying a continuous doping is a poor approximation for this

10 nm region. We have instead modified the value of continuous doping by using the

following crude approximation: Consider the expected location of the dopant that

is nearest to the first RTD barrier on the cathode side. Since it is improbable to

find any dopants in the 10-nm spacer layer, we approximate it as being devoid of

dopants. Then the dopant nearest to the first barrier is in .the region with a doping

of 2 x 1018 cm- 3 . The expectation value for the location of the nearest dopant atom is

approximately 4 nm from the boundary between the high- and low-doped regions. A

annA
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Relative effective mass 0.037
Relative permittivity 13.7
Barrier height (P-band offset) 2.24 eV
Barrier thicknesses 4.1 nm
10-nm spacer layer doping 3.6x1017 cm- 3

Table 4.1. Parameters for the calculated current shown in Fig. 4-1; parameters not
listed are given in Fig. 2-1. The parameters for the simulation results in Fig. 4-2 are
the same, except that the barrier thicknesses were changed to 4.5 nm.

cube which is 10 + 4 = 14 nm on a side containing only one dopant would correspond

to a doping level of 3.6x1017 cm -3 . This is the doping used for the 10-nm spacer

layer.

The calculated I-V characteristic for the above parameters appears as a solid line

in Fig. 4-1. The I-V from the actual device (originally shown in Fig. 2-3) is shown as

a dotted line for comparison. As can be seen from the figure, the simulated current is

approximately 2.3 times the measured current, and the simulated peak voltage occurs

0.1 V higher than the measured peak voltage. We note that the overall shape of the

curve is similar except for the valley region, which is to be expected. This degree of

prediction is quite reasonable for our RTD since the thicknesses of the strained layers

are difficult to predict with great accuracy.

In the second simulation, we adjusted the barrier thicknesses so that the calculated

and actual peak currents were the same. This yielded barrier thicknesses of 4.5 nm.

In all other respects, the parameters for this simulation and the previous one are

the same. Unfortunately, for these size barriers, we are at the limit of the numerical

accuracy of the computer. For some biases, it was found that the quantum-mechanical

currents for the forward and reverse directions were not equal and could differ by 10%.

However, this level of numerical inaccuracy does not introduce a large amount of error,

so we will examine the behavior of the si'mulation.

The result, shown in Fig. 4-2, is that the shape of the simulated I-V is quite
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Figure 4-2. Comparison of the calculated (solid line) and measured (dotted line)
I-V characteristic. The barriers for this simulation have been adjusted so that the
calculated and measured peak current agree. All other structure parameters are the
same as those in Fig. 4-1. Note that the peak voltage agrees quite well by fitting only
the current.

similar to the measured I-V and that the peak value occurs at a applied potential

20 mV less than the actual potential. The largest disagreement between the two

curves (excluding the valley current, which has not been included in the model)

occurs at biases near 0.7 V. Further simulations suggest that the I-V for these biases

are sensitive to differing values of the doping in the 10-nm spacer layer.

In order to test the sensitivity of the fit to the well width, we have performed a

third calculation. This simulated current is calculated from the same parameters as

the second simulation except for the well width. The well width was decreased by

0.1 nm, which is much less than thickness of a monolayer. The results are shown

in Fig. 4-3. The I-V characteristic is noticeably off from the value of the peak,

demonstrating that the fit is sensitive to the values of the well width.

We now examine some of the quantities that were calculated in the simulation

shown in Fig. 4-2. The calculated rates vl and v3 are shown by the solid lines in

Fig. 4-4(a) and (b), respectively. (The points with error bars were extracted from

................~ ·r I-· L
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Figure 4-3. Effect on the calculated I-V characteristic of a small change in the well
width. Solid line is the simulated I-V for a well width of 5.5 nm (from Fig. 4-2), and
dashed line is for a well width of 5.4 nm.

the ac data and will be discussed in the following section.) The rate vl is seen to be

decreasing, with a slight local maximum centered at the peak voltage Vp. The rate v3

is monotonically increasing. The calculated difference between the quasi-Fermi levels

in the cathode and well, F, - F2, is shown by the solid line in Fig. 4-5. (Again, the

points with error bars were extracted from the ac data and will be discussed later.)

The quasi-Fermi level in the well drops precipitously near the peak voltage. This

behavior is sensible; the rate at which electrons are transfered from the cathode also

drops precipitously, so F2 will be closer to F3 .

4.3 Comparison of Theoretical and Experimental

AC Behavior

In this section, we examine the ac behavior of the RTD. We will first examine

the predicted ac behavior using only the as-specified growth parameters, and we will

86 Comparison of Theory and Experiment
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Figure 4-5. Difference between the quasi-Fermi levels in the cathode and well. Solid
line was calculated for the simulation shown in Fig. 4-2, and the points with error
bars were extracted from the ac data.

then examine the ac behavior that is predicted by fitting the calculated peak value

of the dc current with the measured value. The latter approach could potentially

save considerable experimental effort by predicting the ac response using only a dc

measurement, which is extremely easy to perform in a laboratory.

We will first examine the ac response associated with the simulation shown in

Fig. 4-1. In Fig. 4-6 and 4-7, we have plotted the conductance GR vs frequency for

biases of 0.75, 1.40, 1.80, and 1.88 V. These plots show several similar features to the

measured plots presented in Section 2.4. In the PDR region, the conductance exhibits

a rolloff to a nonzero value. Also, the rolloff frequency is lower at higher biases. In

the NDR region, the conductance is negative at low frequencies and becomes positive

at higher frequencies.

Figure 4-7 shows the "excess" susceptance vs frequency. (As detailed on page 34,

the excess susceptance BR - wC, represents the deviation of the RTD susceptance

BR from that of the capacitor C, calculated by averaging BRIW in the 3.9 to 4.0 GHz

range.) These plots also behave much like those presented in Section 2.4. The excess

susceptance is negative in the PDR region but becomes positive in.the NDR region.

88 Comparison of Theory and Experiment
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Figure 4-6. Simulated conductance GR for the RTD at biases of 0.75, 1.40, 1.80, and
1.88 V as indicated. This ac response corresponds to the simulation shown in Fig. 4-1.
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Figure 4-7. Simulated excess susceptance Bx = BR - wC, for the RTD at biases
of 0.75, 1.40, 1.80, and 1.88 V as indicated. The excess susceptance represents the
deviation of the RTD susceptance BR from that of the capacitor C, calculated by
averaging BRIW in the 3.9 to 4.0 GHz range. This ac response corresponds to the
simulation shown in Fig. 4-1.
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The frequency of the extremum is lower at higher biases.

Next we examine the ac response associated with the simulation shown in Fig. 4-

2. This simulated response is in better quantitative agreement with the data, as will

be seen in Figs. 4-8 through 4-13. Figures 4-8, 4-10, and 4-12 show conductance vs

frequency, and Figs. 4-9, 4-11, and 4-13 show the excess susceptance vs frequency.

Each one of these plots has three curves. The first is the intrinsic-admittance data

and is shown as thin solid lines. These data were taken from the representative device,

and were already presented at the end of Section 2.4. The second set of curves, which

appears as dotted lines, is the calculated ac response corresponding to the simulation

shown in Fig. 4-2. We denote it as the ac simulation. (As mentioned in the last

section, this simulation encountered numerical accuracy problems for some biases.)

The third set of data will be denoted as the "extracted" response and appears as a

dashed line.

The extracted response is essentially a fitted curve. The fit was achieved at each

bias by using the measured de current as well as the measured conductance at three

frequencies: dc, one point in the conductance rolloff, and high frequency (averaged in

the neighborhood of 4 GHz). As always, the dc conductance is the same as the slope

of the I-V characteristic. From these measured points, we can extract values for the

unknown parameters in the ac model presented in Chapter 3.

For a single bias, the model has six unknown values: the quasi-Fermi level F2 in

the well, the rates vl and v3, and the derivative of these three quantities with respect

to bias. In this case, the derivatives are treated as unknowns since we are extracting

F2, vl, and v3 at only one bias. In order to solve for these six parameters, we need

six conditions:

1. J12 must equal the measured dc current density.

2. J12 = J23, which relates F2 to the rates vl and v3.
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Figure 4-8. Measured and simulated conductance GR for the RTD at biases of 0.75,
1.00, 1.20, and 1.40 V as indicated. The lines are drawn as follows: solid is measured
data from Fig. 2-11, dotted is the ac response for the simulation shown in Fig. 4-2,
and dashed is fitted using measured conductance at three frequencies (see text) as
well as the measured de current.
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RTD at biases of 0.75, 1.00, 1.20, and 1.40 V as indicated. The excess susceptance
represents the deviation of the RTD susceptance BR from that of the capacitor C,
calculated by averaging BRIW in the 3.9 to 4.0 GHz range. The lines are drawn
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simulation shown in Fig. 4-2, and dashed is fitted using measured conductance at
three frequencies (see text) as well as the measured dc current.

0 1 2 3 4
-50

0

-25

-50
0 -50
c)Ch

-75

____



Comparison of Theory and Experiment

300

200

100

0 1 2 3 4

200

150

100

50

0 1 2
FREQUENCY

3 4
(GHz)

300

200

100

0

200

150

100

50

0

-50

-100

0 1 2 3 4

0 1 2
FREQUENCY

3 4
(GHz)

Figure 4-10. Measured and simulated conductance GR for the RTD at biases of 1.60,
1.65, 1.67, and 1.69 V as indicated. The lines are drawn as follows: solid is measured
data from Fig. 2-14, dotted is the ac response for the simulation shown in Fig. 4-2,
and dashed is fitted using measured conductance at three frequencies (see text) as
well as the measured dc current.
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Figure 4-11. Measured and simulated excess susceptance B. = BR - wC, for the
RTD at biases of 1.60, 1.65, 1.67, and 1.69 V as indicated. The excess susceptance
represents the deviation of the RTD susceptance BR from that of the capacitor C,
calculated by averaging BRI/, in the 3.9 to 4.0 GHz range. The lines are drawn
as follows: solid is measured data from Fig. 2-15, dotted is the ac response for the
simulation shown in Fig. 4-2, and dashed is fitted using measured conductance at
three frequencies (see text) as well as the measured dc current:
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Figure 4-12. Measured and simulated conductance GR for the RTD at biases of 1.70,
1.71, 1.72, and 1.73 V as indicated. The lines are drawn as follows: solid is measured

data from Fig. 2-16, dotted is the ac response for the simulation shown in Fig. 4-2,
and dashed is fitted using measured conductance at three frequencies (see text) as

well as the measured dc current.

0 1 2 3 4

75

50

25

0

100

0

-100

n_0n
00



4.3 Comparison of Theoretical and Experimental AC Behavior

400

300

200

100

0

150

125

100

75

50

25

0

-25

200

0 1 2
FREQUENCY

3
(GHz)

400

300

200

100

0

0 1 2 3 4

0 1 2
FREQUENCY

3 4
(GHz)

Figure 4-13. Measured and simulated excess susceptance Bx = BR -. wC, for the
RTD at biases of 1.70, 1.71, 1.72, and 1.73 V as indicated. The excess susceptance
represents the deviation of the RTD susceptance BR from that of the capacitor Cs
calculated by averaging BR/W in the 3.9 to 4.0 GHz range. The lines are drawn
as follows: solid is measured data from Fig. 2-17, dotted is the ac response for the
simulation shown in Fig. 4-2, and dashed is fitted using measured conductance at
three frequencies (see text) as well as the measured dc current.
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3. 6J12/6V must equal the dc value of the conductance, where 6J 12 and 6V are

the incremental change in the current J12 and applied voltage, respectively.

4. 6J23/SV must also equal the dc value of the conductance, where 6J 23 is the

incremental change in the current J23.

5. The measured value of the conductance at high frequency must equal the value

calculated from the circuit shown in Fig. 3-4(b).

6. The measured value of the conductance at one frequency in the rolloff must

equal the value calculated from the circuit shown in Fig. 3-4(b).

These six conditions allow us to find the six unknown parameters. Once the pa-

rameters are known, the ac behavior is calculated and is drawn on the plots using a

dashed line. We note that the extraction uses information only from the real part of

the admittance over the range of 0 to 4 GHz, which does not guarantee a good fit to

the imaginary part.*

Figure 4-8 contains plots of conductance GR vs frequency for the biases 0.75,

1.00, 1.20, and 1.40 V. The simulated behavior is qualitatively similar to the mea-

sured behavior and predicts the rolloff quite reasonably. However, the simulation

underestimates the actual value of the conductance. The reason for the discrepancy

is evident if we compare the simulated and actual I-V characteristic in Fig. 4-2. Al-

though the simulated and actual I-V characteristics are close, they do not match

exactly, so there is a small offset in the dc value of the conductance. The extracted

response achieves a better fit than the simulated response. The excess susceptance

BX vs frequency for these biases appears in Fig. 4-9. As with the conductance, the

simulated response has the same qualitative behavior, but is not an exact match.

*The real and imaginary parts are linked by the Kramers-Kronig relations. However, since the
relations require knowledge of the response over all frequencies (and not just a range of frequencies),
it is reassuring to see the good fit.
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The extracted behavior of the excess susceptance is well matched to the measured

response even though only the conductance was used for the fitting.

Figure 4-10 shows the conductance vs bias for the next set of biases, which are 1.60,

1.65, 1.67, and 1.69 V. In this set of plots, the simulated low-frequency conductance

makes the transition from an initially positive value to a negative one. This behavior

is sensible since the simulated voltage peak Vp occurs at a bias that is approximately

20 mV lower than the actual peak. In order to improve the fit between simulated

and actual behavior for these biases, we would have to fit V, as well as the peak

current. One way in which this could be accomplished is by changing the doping in

the 10-nm spacer layer. The extracted parameters again produce a good fit between

the theoretical and measured responses.

The excess susceptance for these biases appears in Fig. 4-11. The behavior in this

figure is similar to that seen in the previous one. The simulated behavior goes from

that of the PDR region to that of the NDR region, which is evident from a change

in sign of the excess susceptance. Again, an improved fit of the position of V, would

improve the fit of the calculated behavior. The extracted parameters produce an ac

response that is well matched to the actual response.

The final group of biases that will be examined are 1.70, 1.71, 1.72, and 1.73 V.

The conductance appears in Fig. 4-12. Unfortunately, as can be seen by the measured

and simulated I-V characteristics in Fig. 4-2, there is a large mismatch in the dc

conductance. As a consequence, there is also a large mismatch between the values of

the calculated and measured responses, and we have not expanded the scale to see

the low-frequency calculated response for all of the plots. The behavior of the two

is still qualitatively similar, and we note that the rolloff occurs at lower frequencies

for higher biases. We also note the conductance is negative at lower frequencies, but

turns positive at higher frequencies. The excess susceptance is shown in Fig. 4-13,

and the large mismatch between simulated and actual behavior is evident for these

plots as well. For both Figs. 4-12 and 4-13, the extracted parameters provide a good
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fit to the measured response.

The extrema of the excess susceptance provides a indicator of the speed of the

response. The extrema are the minima and maxima in the plot of B. vs frequency

for the PDR and NDR regions, respectively. In Fig. 4-14, we see that the measured

extremum frequency grows with increasing bias and then sharply cuts off. The cal-

culated extrema behave similarly.

When solving the six conditions listed on page 91 and 98 for each bias, we found

values for some of the physical parameters of our models. These values appear as

points with error bars in Figs. 4-4 and 4-5. Fig. 4-4(a) and (b) show the extracted

values for v1 and v3 , respectively. There is not perfect agreement between the cal-

culated and extracted values, but there is some level of agreement. The extracted

values for the quantity F1 - F2 are shown in Fig. 4-5. The error bars for Figs. 4-4 and

4-5 were crudely determined by trying different values of the parameter and checking

the degree of agreement between theory and experiment.

In summary, the ac behavior calculated from the simulation in Fig. 4-2 is not

a perfect match to the measured data, but does replicate the qualitative features.

The transition from the PDR to NDR regions in the ac behavior is evident from

the calculated low frequency conductance. The conductance of the NDR region is

calculated to be negative at low frequencies, but turns positive at higher frequencies.

Both the calculated and measured extrema of the excess susceptances increase with

bias but then cut off sharply.

Comparison of Theory and Experiment100
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5

Conclusion

In this final chapter, we summarize the work presented in this document. We will

also suggest future avenues for related riesearch.

5.1 Summary

In Chapter 2, we described the manufacture of a device that was specifically

designed for ac characterization, which yielded a device with an NDR region that

was devoid of switching or oscillatory behavior. The experimental apparatus was

able to measure the small-signal admittance behavior from 45 MHz to 26 GHz, and

the measurement process was automated to allow for large amounts of averaging.

Once the data were obtained, we were able to characterize the parasitic elements and

remove their effects from the admittance data. We then examined the intrinsic RTD

admittance. In the PDR region, the conductance exhibited a rolloff and remained

positive at all frequencies. In the NDR region, the conductance was negative at low

frequency and became positve at higher frequencies. The intrinsic susceptance was

close to that of a capacitor; the deviation from a capacitive susceptance was negative

in the PDR region and positive in the NDR region.

A rate-equation model for the dynamic response of the RTD was presented in

Chapter 3. The model is based on the assumption that the rate of electron trans-
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fer between regions is bilinear in the number of available states and the number of

electrons attempting to make the transition. From this assumption, we were able to

calculate the charge in the well and the current across the right and left barriers. The

incremental changes in these quantities led to a circuit model for small-signal excita-

tion. In order to calculate the electron transfer rates across the barriers, we derived

the impulse response of a quantum-mechanical resonant system. The transfer rate of

electrons into the well was then derived from the excitation of the resonant system

by an electron in the cathode (or alternatively, the anode). The process of scattering

was incorporated semi-classically.

In Chapter 4, we compared the measured data of Chapter 2 to the theoretical

model of Chapter 3. To evaluate the model, a computer program was written to self-

consistently solve both Poisson's and Schr6dinger's equations. We used the program

to simulate three structures. The first structure used the anticipated values for the

RTD, as a device designer would do before manufacturing a device. This simulation

yielded the correct qualitative behavior and a simulated peak current that was a

factor of 2.3 times the actual peak current. In the second simulation, we adjusted

the barriers so that the simulated and actual peak current were the same. The ac

behavior predicted by second simulation was similar to the measured response. The

third simulation varied the well width by 0.1 nm, we demonstrated the sensitivity of

the solution to the structure parameters.

In addition to the predicted ac response from the second simulation, we also

described an algorithm to fit the measured ac response. This algorithm extracted

values for the transition rates across the barriers and the quasi-Fermi level in the well

plus the derivatives of those three quantities with bias. The extracted values gave

good agreement with the measured ac response and were in reasonable accord with

the calculated values.
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5.2 Future Work

Since only a finite amount of time can be invested in a thesis, several ideas for

further investigation had to be laid aside. Also, there are several refinements to the

current work that were not pursued. We will mention some of these ideas here.

This work has been concerned with the small-signal dynamic behavior, but the

rate-equation approach of Chapter 3 might also be a starting point for the large-signal

response. Our preliminary large-signal data [59] demonstrated that the switching

time slows down at lower temperature. Hence, one expects that the switching time

is dependent on the scattering time.

The scattering time might also be explored by the static behavior as well. Mea-

surements of the I-V vs temperature [59] might well be used to better characterize

the scattering time, which was only estimated in Chapter 4.

Now that this work has demonstrated good agreement for the rate-equation of

a one-level RTD, a logical extension would be to incorporate higher levels. This

extension would have to include interlevel transitions as well as transitions from the

well to the cathode and anode. In order to further improve the behavior of the valley

current, one would probably need to include inelastic transitions as well.

Finally, the 10-nm spacer layer raised a difficult issue. The continuous doping

model is not accurate for extremely small regions which have low doping. Further

work that might incorporate stochastic doping models would be needed to improve

the approximation used in this work.

5.2 Future Work 105
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A

Bardeen Tunneling Hamiltonian

Calculation of the Rates

The transition-rate problem considered in Section 3.4 can be solved using the

Bardeen tunneling Hamiltonian [60]. Bardeen's method is useful for calculating the

quantum-mechanical current flow between regions that are separated by a significant

barrier. The full three-region problem of tunneling through an RTD has been de-

scribed using Bardeen's method [61, 62]. We present the simpler two-region problem

here.

In order to solve the transition-rate problem analytically,* we will make some

simplifying assumptions about the potential profile of the RTD. We will use the

potential V(x) shown schematically in Fig. A-1(a). Since we are concerned here only

with the transition between regions 1 and 2, we have extended the right barrier into

region 3. We have ignored the accumulation layer for simplicity, but have retained the

electric field in the well and barrier. According to Bardeen's method, we separate this

potential into the two potentials, Vj and V2, also shown schematically in Fig. A-1(b)

and (c), respectively. Using these potentials, we then solve Schridinger's equation

in each region. The current flow is related to the overlap between the wavefunctions

*I am grateful to my advisor Prof. Alan McWhorter, who provided me with the original copy of
the solution used in this appendix.
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Figure A-1. Schematics of the (a) actual potential profile V(x), and the potential
profiles (b) V,(x) and (c) V (x) used to obtain the tunneling Hamilitonian for the
two-region problem, as indicated.
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from the different regions.

In this appendix, we will first solve for the rate of growth of a state in the well given

an electron in some initial state in region 1 and then will calculate an approximate

value of the relevant matrix element.

Rate of Growth of the Electron Wavefunction in the Well

The Hamilitonian for the RTD is written as

H = H= =-(h 2/2m*)V 2 + I,"

H2= -(h 2/2m*)V 2 + I'2

x<0

x>0,
(A.1)

where for simplicity, we have taken m* to be the same throughout the structure. We

note that the sum of the potentials of the two subregions, V1 + VT2, is not equal to the

original potential V(x). Assume that only one longitudinal state 0,(x) exists in the

well. Then the solution to Schrbdinger's equation

ih = H4'
at

can be written in the form

V' = ak (t>/,,(Z)e ikt r-iEk1 + 1 bkt,(t) (X)eiktZr-i(Er+Ekt2 )tWh
ki kt2

(A.2)

(A.3)
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where Ok, (x)eiktlr is a solution to H 1 and 0r(x)eikt2"r to H2 . After substituting

Eq. (A.3) into Schr6dinger's equation, we find

Z (ih&kl + Ekl aki)Ok$,(x)eikt
l -r - iEk l t i/

ki

+ Z [ihbkt2 + (Er + Ekt2 )bkt 2] ~ (x)e ik t2-r - i(Er+Ek2 )t/h
kt2

= + ak -iEl ^Hke iktlr + E bkt2e-i(Er+Ekt2) thHqr(x)eikt2r . (A.4)
ki kt2

In the above equations, Ek, = Ek, + Ektl. Multiplying by O*e
- ikt2'r' and integrating,

then dropping the prime, yields

ihbkt2 = ak, (rjHelkll) Sktl,kt2 e i ( E ,-Ekt ) t / h + bkt 2 (riHelr)
ki

- > akEk,, (r ktl) 6ktl,kt2e i (Er - E k l ) t l/ - bkt 2Er , (A.5)
ki

where we have neglected the higher coupling terms with dk, and have defined

H , h2 2 
2

He = HeI - 2 + V1 x < O (A.6)

H 2- • +V2 x>0.

Assume at t = 0 that an electron is in state klo, so that ak#(t = 0) = 6 kl,klo and

bkt2(t = 0) = 0. Let kto and kto be the longitudinal and transverse components of k1o,

respectively. Since all ak, and bkt2 for which kt =A kto will remain zero, we can restrict

ourselves to kt = kto and drop the subscripts 1 and 2, which are no longer needed.

Also, since (rIHelr) 0 (rjH121r) = Er to first order in the tunneling coefficient, we

obtain to first order

ihbto = (rIHe - H1 lko) ei(Er- E k1o)t/ A

110
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Approximate Solution of the Matrix Element

We define Mrkto (rIHE - Hl Ikeo). To evaluate Mrkto we observe that

He - He- =
10

between the barriers

elsewhere

If the cathode is of width LR with infinite barrier at x = -LR, then in the quasi-

classical approximation

A sin [kto(LR + x)]

Okto (X) = o

B O(X) exp- f aea (x) )dxi

-LR < x < O

(A.9)

k1,,o() = [2m*(Vo - Fx - Ek,)/hl2]1/ 2

J oaeo(x')dx'
0

3 hF
[(V, - Eko)3/2 - (Vo - Fx - Ekto)3/2]

Continuity of V and iV/8ax at x = 0 requires

B = A sin keoLR

kIoLR
tan kjoLR - k

ato(O)LR

neglecting dateo/dxJo. Here keoLR is in either the second or fourth quadrant. The

density of allowed values of kjo is therefore LR/7r, and for large LR the normalization

(A.8)

where

(A.10)

(A.11)

(A.12)

(A.13)
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of ckto yields

2
LR

(A.14)

2

LR

2 kto 1

L [ke2 ,0+ o(O)]1/2Ikton + ajo(O I

|tan ktoLRI
(1 + tan2 keoLR) 1/2

F2 kto

R (2m*Vo/h 2)1/2

For the quasi-classical approximation to be valid we must have

d(k 1-)
dx

or here

m*F'
< 1

h21k13

for k real or imaginary. The condition seems to be adequately met..

For r, we have in the quasi-classical approximation

f rh2k,(dl) r(dl) 
di

S 2m2Vokr (X) exp -f

Or C= c sin Jkr(x')dx' + 19

C h2kr(d +w)ar(di+w) exp2m*Vbcr,(aX) e

r,,(x')dx'

I.
- fdj+w

x < dl

dl < < dl + w

(A.18)
x > dl +w,

S sinoLJ I - sin ktoLR =RL

(A.15)

(A.16)

(A.17)
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where

kr(z) = [2m*(E + Fx)/h2]1/ 2

cr(x) = [2m*(1o - Er - Fx)/h21/2

i = tan-' 1 (di)]

The allowed values of Er are given by the condition that

dl +w

J kr(x)dx+t9i + 92

{[E + F(dl + w)]3 / 2 - [E + Fd1 ]3/ 2} + 1 + 092 = 7,

(A.22)

where

(A.23)tI [kr(di + lW)]
Nf2 = tan-  e [gt(d, w) o

Note that if da/dxld, and da/dXzjd+ w are neglected, we obtain

C(2m 1/(d)1/2
( 2m*•Vo / h2 )1/2

C sin 91kr(d(d) )

r (dl + w)
C sin 92  _C k(di W)

r(di + w) (2m*V/h)/ 2

(A.19)

(A.20)

(A.21)

2 V2n
3 hF

(A.24)

(A.25)
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and

dck

dx x=dl

(A.26)Ck(d) cos 91 = C 2 ) ra(dl)
(2m*Vo/h2)1/2

ar(di + w)-- C kr(di + w) cos9 2 = -CVkr(d + w) (2mV/h)l/
(A.27)

so that 4 is continuous and dol/dx

x = dl + w.

is approximately continuous at x = dl and

Now using Eqs. (A.8), (A.9), (A.15), and (A.18)-(A.20), we have

dl +w

IMrkto-VO f Or .(X))k.o(x)dx
di

F2 2 12 meo(0)
= VokeoC* I 2_

(A.28)
d, +w

x 1 sin
di kr(x) ao(x)W

kr(x')dx' + 1i exp - ato()x')d' dx.
d 0

Since the exponential cuts off fairly rapidly, we crudely approximate the integral

by setting k,.(x) = kr,(dl) and cato(X) = atoe(dl) for dl < x < dl + w and letting w

become infinite, giving

IMrkol Vo~ko LFI

di
h C* exp -f Oalto(x')dx'

m*Vo kr(d>)ar(di)

x Jsin [kr(dl)(x - dl) + d11 e- O' (d, ) (x- dl )dX

di

d =d+

d =di+w

(A.29)
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The latter integral may be evaluated to yield

Jsin [kr(di)(x - di) + 0i] e-a•L(d1)(x-dl)d =
dl

ato(di) sin V, + k,r(dl) cos 19
c•o(di) + k2(dl)

(A.30)

We take C to be the value it would have for kr(x) = k,(di) and ar,(x) = a,(dl),

namely

= k ,(dl) 1/2
ra.l(di) + w/2

(A.31)

Since Ek,o , Er for the elastic transition, we set ato = a, to obtain

oI 2kr(d)keo ato(O)ar(dl) exp - f ar(x)dzx

o FI R (2m*Vo/h 2 )2 [a-I(dl) + w/2]1/2

4

LR [w + 2a-l(di)]1/2

di
x exp - ar(x)dx

o

E1/2 (E, + Fd)l/2(Vo - E,)1/4(Vo - Er - Fd 1)1!4

(2m*l/h2)1/2,Vo

(A.32)

We note that this expression for the matrix element goes to zero when the resonant

energy goes to zero, i.e., when the resonant energy goes to the energy of the conduction

band edge in region 1.
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B

Integrating and Differentiating the

Fermi Factors

In this appendix, we give some details about Fermi occupation function that are

omitted from the main part of the text. We will use the following notation: the Fermi

factor f, as a function of the potentials will be written as

1
f• 1 +"eq(O- )/kT'

where 0 and V are the quasi-Fermi and electron potentials, respectively. The Fermi

factor fE as a function of the quasi-Fermi and electron energies is

1
fE= (B.2)

1 + e(E- F )/kT' (B.2)

where E is the energy, and F is the quasi-Fermi energy.

By differentiating fp, we find

q eq (_
-

__
)/k T

kT (1 + eq(o.-V)/kT)2

q f(1f- fe). (B.3)kT
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Integrating and Differentiating the Fermi Factors

The incremental change in the Fermi occupation factor 6f,, which was used for lin-

earizing the current in Section 3.3, is then given by

s+= +oo f

= q-T f4(1 - fp)(65 - 6) (B.4)

where J5 and 65 are the incremental changes in the electron and quasi-Fermi poten-

tials, respectively.

Integration of the Fermi Function

The result in Eq. (B.3) makes integration of the Fermi function an easy matter.

Since the results in Chapter 3 require the integral of the Fermi function over energy,

we recast Eq. (B.3) as

OfE 1
fE(1 - fE) (B.5)

We can then perform the integration of fE as follows:

fEdE = kTJT A (1 -fdfE = kTln(1- fE).
kT(1- fE) B.6)E)

(B.6)
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C

Modified Y-A transformation

In order to calculate the admittance, we transform the topology shown in Fig. C-

1(a) to that of Fig. C-1(b). The latter topology simplifies the algebra associated

with deriving the linear response. If the current sources were not present in Fig. C-

1(a), this would be a Y-A (also called a T-7r) transformation. However, since current

sources do exist, we need to find a modified version of the Y-A transformation.

The circuit transformation is found by demanding that the terminal currents for

the transformed circuit be equal to those of the original circuit when the same po-

tential is applied to the terminals. It can be proven after some algebra that this

(a) (b)

VA

Figure C-1. Modified Y-A transformation.
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120 Modified Y-A transformation

condition is met if we make the following equivalences:

YA Y(Y + G(C.1)
Yi + Y2 + Y3
Y 1(Y3 + GO)

YB = (C.2)
Y1 + Y2 + Y3

Yc = (Y3G - Y ) (C.3)Y1 + Y2 + Y3
(YG3u - YGBG)

Gg = (C.4)

Finally, we note that the topology chosen in Fig. C-1(b) is not unique. In par-

ticular, the current source can be placed across YA or Yc, but its value will then be

different.
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