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Abstract

This thesis is concerned with the intrinsic structure of the De Concini-Procesi com-
pactification of semi-simple adjoint algebraic groups and some relations with other
topics of algebraic groups. In chapter 1, we study the closure of the totally positive
part of an adjoint group in the group compactification. One result that we obtain
is the positive property of the closure with respect to the canonical basis. In addi-
tion, we get an explicit description of the closure. As a consequence of the explicit
description, the closure admits a cellular decomposition, which was first conjectured
by Lusztig.

In chapter 2, we give a new proof of the parametrization of the totally positive
part of flag variety which was first proved by Marsh and Rietsch using the generalized
Chamber Ansatz. My proof is based on the theory of canonical basis.

The remaining chapters are related to the pieces of the group compactification
introduced by Lusztig in the paper “Parabolic character sheaves I1”. In chapter 3,
we study the closure of the unipotent variety in the group compactification, following
the previous work of Lusztig and Springer. We show that the closure of the unipo-
tent variety is the union of the unipotent variety itself together with finitely many
pieces. By the same method, we also prove a similar result for the closure of arbitrary
Steinberg fiber.

In chapter 4, we study the closure of any piece in the group compactification.
We show that the closure is a union of some other pieces. We will also discuss the
existence of cellular decomposition.

Chapter 1, 3 and 4 of this thesis are roughly based on the papers [H1|, [H2] and
[H3], in that order. Chapter 2 is based on an unpublished result. Each chapter can
be read independently of the others.
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Chapter 1

Total positivity in the De

Concini-Procesi Compactification

We study the nonnegative part G- of the De Concini-Procesi compactification of
a semisimple algebraic group G, as defined by Lusztig. Using positivity properties
of the canonical basis and parametrization of flag varieties, we will give an explicit
description of Gs¢. This answers the question of Lusztig in Total positivity and
canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ.
Press, 1997, pp. 281-295. We will also prove that G~ has a cell decomposition which

was conjectured by Lusztig.

1.0. Introduction

Let G be a connected split semisimple algebraic group of adjoint type over R. We
identify G with the group of its R-points. In [DP], De Concini and Procesi defined
a compactification G of G and decomposed it into strata indexed by the subsets of
a finite set /. We will denote these strata by {Z; | J C I}. Let G- be the set of
strictly totally positive elements of G and G'>( be the set of totally positive elements
of G (see [L1]). We denote by Gs¢ the closure of G+ in G. The main goal of this
paper is to give an explicit description of G (see 1.3.14). This answers the question

in [L4, 9.4]. As a consequence, I will prove in 1.3.17 that G~ has a cell decomposition
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which was conjectured by Lusztig.

To achieve our goal, it is enough to understand the intersection of G-, with
each stratum. We set Z;>0 = G-o N Z;. Note that Z; = G and Zrso = Gxo.
We define Z;-( as a certain subset of Z;>, analogous to G- for Gy (see 1.2.6).
When G is simply-laced, we will prove in 1.2.7 a criterion for Z;~, in terms of its
image in certain representations of GG, which is analogous to the criterion for G~q in
[L4, 5.4]. As Lusztig pointed out in [L2], although the definition of total positivity
was elementary, many of the properties were proved in a non-elementary way, using
canonical bases and their positivity properties. Our Theorem 1.2.7 is an example of
this phenomenon. As a consequence, we will see in 1.2.9 that Z ;> is the closure of
Zjsoin Zj.

Note that Z; is a fiber bundle over the product of two flag manifolds. Then
understanding Z;>o is equivalent to understanding the intersection of Z;>, with
each fiber. In 1.3.5, we will give a characterization of Z;>¢ which is analogous to the
elementary fact that Gso = Nyeg,g 'Gso. It allows us to reduce our problem to
the problem of understanding certain subsets of some unipotent groups. Using the
parametrization of the totally positive part of the flag varieties (see [MR]), we will
give an explicit description of the subsets of G (see 1.3.7). Thus our main theorem

can be proved.

1.1 Preliminaries

1.1.1 Let G be a connected semi-simple algebraic group defined over an algebraically
closed field k, with a fixed épinglage (T, BT, B, z;,y;;1 € I) (see [L1, 1.1]). Let
U*,U~ be the unipotent radicals of B*, B~. Let X (resp. Y) be the free abelian
group of all homomorphism of algebraic groups 7" — k* (resp. k* — T) and (,) :
Y x X — Z be the standard pairing. We write the operation in these groups as
addition. For i € I, let a; € X be the simple root such that tz;(a)t™! = z;(a)*®
for all @ € k,t € T and let o € Y be the simple coroot corresponding to «;. We

also denote by w; and w,;” the corresponding fundamental weight and fundamental
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coweight. For any root «, we denote by U, the root subgroup corresponding to a.

There is a unique isomorphism v : G = G°PP (the opposite group structure) such
that ¥ (zi(a)) = wila), ¢¥(vi(a)) = zi(a) for all i € I, a € k and
P(t)=t,forallteT.

If P is a subgroup of G and g € G, we write 9P instead of gPg~!.

For any algebraic group H, we denote the Lie algebra of H by Lie(H) and the
center of H by Z(H).

For any variety X and an automorphism o of X, we denote the fixed point set of
oon X by X7.

For any group, We will write 1 for the identity element of the group.

For any finite set X, we will write | X| for the cardinal of X.

1.1.2 Let N(T) be the normalizer of T in G and §; = x;(—1)y;(1)z;(—1) € N(T') for
i€l. Set W= N(T)/T and s; to be the image of s; in W. Then W together with
(8;)ier is a Coxeter group.

For w € W, let supp(w) be the set of simple roots whose associated simple reflec-
tions occur in a reduced expression of w.

Define an expression for w € W to be a sequence w = (w(gy, Wy, - - . , W(ny) in W,

such that w) =1, w,) = w and for any j =1,2,...,n, w;

l_l)w(j) =1 or s; for some
i € I. An expression w = (w(o), Wa), - - -, W) is called reduced if w(;_1y < w;) for all
j=1,2,...,n. In this case, we will set [(w) = n. It is known that [(w) is independent
of the choice of the reduced expression. Note that if w is a reduced expression of w,
then for all j =1,2,...,n, w(_jl_l)w(j) = s;; for some i; € I. Sometimes we will simply
say that s; s, ---s;, is a reduced expression of w.

For w € W, set w = s;,s;, - --si, where s;,8;,--s;, is a reduced expression of
w. It is well known that w is independent of the choice of the reduced expression
Siy Siy * -+ Si, of w.

Assume that w = (w(o), W), - -, Wr) is a reduced expression of w and wy =

w(—1)8;; for all 7 = 1,2,...,n. Suppose that v < w for the standard partial order

in W. Then there is a unique sequence vy = (v(0),v(1),---,Vm)) such that vy =
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Lvwmy = v,94) € {vg-1), v-1)8; ; and v_1) < vg_1)s, for all j = 1,2,... n (see

MR, 3.5]). v, is called the positive subexpression of w. We define

J\JfrJr = {J € {1727 s 7n} ‘ U-1) < U(j)}v

J%J,» - {] € {1’27 s ?n} ‘ V(-1 = U(j)}'

Then by the definition of v, we have {1,2,...,n} = J‘Z U Jy, .

1.1.3 Let B be the variety of all Borel subgroups of G. For B, B’ in B, there is a
unique w € W, such that (B, B’) is in the G-orbit on B x B (diagonal action) that
contains (BT,¥ BT). Then we write pos(B, B’') = w. The following properties follow
from the definition and the properties of the Bruhat decomposition.

(1) If pos(By, By) = w, then pos(9By,9B,) = w for all g € G.

(2) If pos(By, By) = w,pos(Bz, B3) = v and l(wv) = l(w) + [(v), then we have
pos(By, Bs) = wo.

(3) If pos(By, B2) = w, pos(Bs, B3) = s; for some i € I, then pos(By, B3) = w or
ws;.

For any subset J of I, let W be the subgroup of W generated by {s; | j € J}
and let wy be the unique element of maximal length in W;. (We will simply write
w} as wy.) Let W7 (resp. “W) be the set of minimal length coset representatives
of W/Wj (resp. W,\W). For J,K C I, we write "W for 7IWW N WX, We denote
by Pj the subgroup of G generated by Bt and by {y;(a) | j € J,a € R} and
denote by P’ the variety of all parabolic subgroups of G' conjugated to P;. It is
easy to see that for any parabolic subgroup P, P € P” if and only if {pos(Bi, Bs) |
By, By are Borel subgroups of P} = W.

For P € P/, Q € PX and u € 7WX | we write pos(P, Q) = u if there exists g € G,
such that 9P = P;,9Q = “Pkg.

1.1.4  For any parabolic subgroup P of GG, define Up to be the unipotent radical of
P and Hp to be the inverse image of the connected center of P/Up under P — P/Up.
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If B is a Borel subgroup of GG, then so is
PZ = (PN B)Up.

It is easy to see that for any g € Hp, we have 9(P?) = PB. Moreover, PP is the
unique Borel subgroup B’ in P such that pos(B, B") € W7 (see [L5, 3.2(a)]).

Let P,(@Q be parabolic subgroups of G. We say that P, () are opposed if their
intersection is a common Levi of P, Q). (We then write P <1 ).) It is easy to see that if
P 1 @, then for any Borel subgroup B of P and B’ of @), we have pos(B, B") € W jwy.

For any subset J of I, define J* C I by {Q | Q < P for some P € P/} = P/".
Then we have (J*)* = J. Let @; be the subgroup of G generated by B~ and by
{z;(a) | j € J,a € R}. We have Q; € P’/" and P; 1 Q;. Moreover, for any P € P7,
we have P =9 P; for some g € G. Thus ¢(P) =Y®" Q, e P7".

1.1.5 In the rest of chapter 1 and chapter 2, we assume that G be a connected
semi-simple adjoint algebraic group defined and split over R. We will also identify a
real algebraic variety with the set of its R-rational points.

Recall the following definitions from [L1].

For any w € W, assume that w = s;,5;, - - - 5;, is a reduced expression of w. Define

Cbi: n}oﬁUiby

¢+(G17 Az, .- an) = Tiy (@1)Ti,(a2) -+ - 24, (an),

¢ (a1, az, ..., an) = yi, (a1)yi,(a2) - - yi,, (an).

Let Uy 5o = ¢5(RY) C U*, Uy oo = ¢=(R2,) C U*. Then U 5, and U, -, are
independent of the choice of the reduced expression of w. We will simply write U, 1:50,20
as U;O and U$0,>0 as UZ,.

T-¢ is the submonoid of T generated by the elements y(a) for x € Y and a € R.

G'> is the submonoid U3 T50Us, = U T50US, of G.

(GG~9 is the submonoid U;FOT>0U>_0 = U;OT>0U;FO of G>o.

B is the subset {“B~ | u € UZ,} = {“B* | u € UZ,} of B and By, is the closure
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of By in the manifold B.
For any subset J of I, PJ, = {P € P’ | 3B € By, such that B C P} and
Py ={P € P’ | 3B € By, such that B C P} are subsets of P”.

Remark. The fact that {“B~ | v € UL} = {“B* | u € U} was first proved by
Lusztig in [L1] using the deep positivity properties of the canonical basis. In the

appendix of chapter 2, I will give an elementary proof of this fact.
1.1.6 For any w,w’ € W, define
Ruww ={B € B| pos(B*, B) = w,pos(B~, B) = wow}.

It is known that R, ., is nonempty if and only if w < w’ for the standard partial

order in W(see [KL]). Now set
7?’w,w’,>0 = B}O N Rw,w’-

Then Ry >0 is a connected component of R, ., and is a semi-algebraic cell (see
[R2, 2.8]). Furthermore, B = [ |, <,» Ruww and Bxo = |,<, Ruw.w >0 Moreover, for
any u € U;Zl,>0, we have "R, >0 C Riw >0 (see [R2, 2.2]).

Let J be a subset of I. Define 77/ : B — P’ to be the map which sends a Borel
subgroup to the unique parabolic subgroup in P7 that contains the Borel subgroup.
For any w,w’ € W such that w < w' and w' € W7, set P, = 7/ (Ruyw) and

J _ J _ J J
Pw,w’,>0 =T (Rw,w’,>0)- We have P}O - I_lwgw’,w’GWJ Pw,w’,>0 and 7 |Rw,w/, maps

>0

Ruww 0 bijectively onto P/ (see [R1, Chapter 4, 3.2]). Hence, for any u €

w,w’ ;>0

+ J _ J(pJ
Up1 590 We have “Py oo = T ("R >0) C 7 (P 50)-

1.1.7 Define 77 : B-BT — T by mp(utu') =t foru € U, t € T,v/ € U". Then
for by € B7,by € B~ B™,b3 € BT, we have mp(bibabs) = wr(by)wr(be)mr(bs).

Let J be a subset of I. We denote by ®F the set of roots that are a linear
combination of {c; | j € J} with nonnegative coefficients. We will simply write ®;

as @1 and we will call a root « positive if « € ®*. In this case, we will simply write
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a > 0. Define UJ to be the subgroup of U" generated by {U, | a € ®} and 'U} to
be the subgroup of U™ generated by {U, | a € & —®*+}. Then U~ x T x' US x UF
is isomorphic to B~ BY via (u, t, uy, ug) — utujus. Now define Tyt B~BT — Uj by
Tyt (utugug) = up for u € Ut € Tyuy € U; and uy € US. (We will simply write
T+ as my+.) Note that UT - U~T'U; = U™T'U;. Thus it is easy to see that for
any a,b € G such that a,ab € B~ B*, we have ﬂUj(ab) = Ty+ (mrr+(a)b). Since 'UF
is a normal subgroup of U™, Ty+ |+ is a homomorphism of Ut onto U;. Moreover,

we have
z;(a), it i e J;
Tuf (zi(a)) =

1 otherwise.

Y

Thus TUT<U;FO) =U"

w(‘)],>0

and WUj(U;O) =U"

w(‘)],ZO‘

Let U; be the subgroup of U~ generated by {U_,, | « € ®7} and 'U; to be the
subgroup of U~ generated by {U_, | « € ®* — ®F}. Then we define - U” = Uy
by Ty~ (wug) = uy for uy € Uy, uy € U;. (We will simply write Ty as my-.) We

have m,(Uzy) = U, o and 7, (Usg) = U,

wg ;>0 wy, 20"

1.1.8 For any vector space V' and a nonzero element v of V', we denote the image

of vin P(V) by [v].

If (V,p) is a representation of G, we denote by (V*, p*) the dual representation
of G. Then we have the standard isomorphism Sty : V ® V* = End(V) defined by
Sty (v @ v*)(v') = v*(v')v for all v,v" € V,v* € V*. Now we have the G x G action
on V@ V* by (g1,02) - (v ®@v*) = (g1v) ® (gov*) for all g1,92 € G,v € V,v* € V*
and the G x G action on End(V) by ((91,92) - f)(v) = g1(f(g5'v)) for all g1, 90 €
G,f € End(V),v € V. The standard isomorphism between V ® V* and End(V)
commutes with the G x G action. We will identify End(V) with V ® V* via the

standard isomorphism.
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1.2 The strata of the De Concini-Procesi Com-

pactification

1.2.1 Let Vg be the projective variety whose points are the dim(G)-dimensional

Lie subalgebras of Lie(G x G). For any subset J of I, define
ZJ = {(PaQ7’Y) ‘ P e PJ?Q € Pj*af)/ = HPgUQ7P p><? Q}

with the G x G action by (g1, 92) - (P, Q, HpgUg) = (91P,92 Q, Hglp(glggz_l)UgQQ).
For (P,Q,v) € Z; and g € v, we set

HRQ,’Y = {(l + ul,Ad(g_l)l + Ug) | [ e Lle(P N QQ),Ul S Lie(Up),u2 € Lle(UQ)}

Then Hpg ., is independent of the choice of g (see [L6, 12.2]) and is an element
of Ve (see [L6, 12.1]). Moreover, (P,Q,v) — Hpg.~ is an embedding of Z;, C Vg
(see [L6, 12.2]). We will identify Z; with the subvariety of Vg defined above. Then
we have G = | |;_; Z;, where G is the De Concini-Procesi compactification of G (see
[L6, 12.3]). We will call {Z; | J C I} the strata of G and Z; (resp. Zy) the highest
(resp. lowest) stratum of G. It is easy to see that Z; is isomorphic to G and Z is
isomorphic to B x B.

Set 25 = (P;,Qs,Hp,Ug,). Then 25 € Z; (see 1.4) and Z; = (G x G) - 25.

Since G is adjoint, we have an isomorphism y : T = (R*)! defined by x(t) =
(ai(t)_l)iel' We denote the closure of T in G by T. We have Hp, . mp,0q, =
{0+ u,l +up) | I € Lie(PyNQy),us € Up,,us € Ugy,}. Moreover, for any
t € Z(P;NQy), Hy is the subspace of Lie(G) x Lie(G) spanned by the elements
(1,1), (uy, Ad(t™ uy), (Ad(t)ug, uz), where I € Lie(P; N Qy),u1 € Up,,uz € Ug,.

Thus it is easy to see that 25 = lim,—1 vjes X_l((ti)ig) cT.
t;—0,Vj¢J

Proposition 1.2.2. The automorphism 1) of the variety G (see 1.1) can be extended
in a unique way to an automorphism ¢ of G. Moreover, (P, Q,7) = (¥(Q), ¥ (P),¥(y)) €
Zy for JC I and (P,Q,v) € Z;.
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Proof. The map ¢ : G — G induces a bijective map 1) : Lie(G)) — Lie(G). Moreover,
we have ¥(Ad(g)v) = Ad(¢(g) ") ¢(v) and (v+0') = Y(v) + (V') for g € G,v,0' €
Lie(G). Now define 6 : Lie(G) x Lie(G) — Lie(G) x Lie(G) by d(v,v") = (¢(v'), ¥ (v))
for v,v' € Lie(@). Then ¢ induces a bijection v : Vg — Vg.

Note that for any g € G, we have H, = {(v,Ad(g)v) | v € LieG} and ¢(H,) =
{(Ad(¥(9) v (v),¢(v)) | v € Lie(G)} = Hyy. Thus ¢ is an extension of the
automorphism ¢ of G into Vg.

Now for any (P,Q,v) € Z; and g € v, we have ¢»(P) € P’ 4(Q) € P/ and
Y(Q) ) (P) (see 1.4). Thus (¢¥(Q),v(P),¥(y)) € Z;. Moreover,

V(Hpgy) = {(Ad(¥(9)Y (1) + ¢(u2), ¥ (1) +1(w1)) | I € Lie(P N7Q),
up € Lie(Up),Uz < LlG(UQ)}

= {(l + u2, Ad(1p(9) ")l +u1) | | € Lie(y(Q) N¥@ y(P)),
uy € Lie(¢(Up)), us € Lie(1)(Ug))}

= Hy(@),p(P),u()-

Thus ) |g is an automorphism of G. Moreover, since G is the closure of G, 1 |
is the unique automorphism of G that extends the automorphism v of G.

The proposition is proved. [l

1.2.3 Forany A € X, set supp(A) ={i € | (o), \) # 0},

In the rest of the section, T will fix a subset J of I and Ay, Ay € X with supp(\;) =
I — J;supp(Ae) = J. Let (Vi,,p1) (resp. (Vi,,p2)) be the irreducible representation
of G with the highest weight Ay (resp. A3). Assume that dim V), = ny,dim V), = ny
and {v1,va,..., v, } (resp. {v,v5,..., v, }) is the canonical basis of (V,, p1) (resp.
(Vy, p2)), where v and v] are the highest weight vectors. Moreover, after reordering
{2,3,...,n2}, we could assume that there exists some integer ng € {1,2,...,ny} such
that for any i € {1,2,...,na}, the weight of v; is of the form Ay — . ; a;a; if and

only if 7 < ng.

Define i; : G — P(End(Vy,)) x P(End(V),)) by i,(g) = ([pl(g)], [pg(g)]>. Then
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since A1 + Ay is a dominant and regular weight, the closure of the image of 7; in
P(End(Vy,)) x P(End(Vy,)) is isomorphic to the De Concini-Procesi compactification
of G (See [DP, 4.1]). We will use i; as the embedding of G into P(End(Vj,)) x
P(End(V,)). We will also identify G with its image under i,.

1.2.4 Now with respect to the canonical basis of V), and V,,, we will identify
End(Vy,) with gl(ny) and End(V,) with gl(ny). Thus we will regard p1(g), pi(g) as
ny X ny matrices and pa(g), p5(g) as ng X ng matrices. It is easy to see that (in terms
of matrices) for any g € G, pi(g9) =" p1(g7") and p5(g) =' pa(g~'), where *M is the
transpose of the matrix M. Now for any g1,90 € G, My € gl(ny), My € gl(ns),
(91,92) - My = pi(g1)Mipi (g5 1) and (g1, g2) - Mo = pa(91) Mapa(g5 ™).

Set L = P;NQy;. Then L is a reductive algebraic group with the épinglage
(I,B*NL,B-NL,xj,y;;j €J). Now let V, be the subspace of V), spanned by
{vi, vy, ... v, } and I, = (a;j) € gl(n2), where

? Yng

1, ifi=j€{l,2,...,n0};
aij =
0, otherwise.

Then Vp is an irreducible representation of L with the highest weight Ay and

/

canonical basis {v},v5,..., v, }. Moreover, Ay is a dominant and regular weight for

L. Now set I} = diag(1,0,0,...,0) € gl(ny), I = diag(1,0,0,...,0) € gl(n2). Then

) =t i () = (I @ il e ]) = (1L 011).

tj=1vjeJ -
t;—0 g i=1
where {v1*,v2", ..., vn, "} (vesp. {v{", 05", ..., v;,,"}) is the dual basis in (Vy,)* (resp.

(Va,)")-

1.2.5 Recall that supp(\;) = I—J. Thus for any P € P”, there is a unique P-stable
line L,,(py in (Vi,,p1) and P +— L, (p) is an embedding of P into P(V),). Similarly,
for any Q € P/, there is a unique @)-stable line Ly in (VY p7) and Q — Lyx(q) is
an embedding of P’ into P(Vy). It is easy to see L,,(p,) = [v1], Lp:(q,) = [v1*] and
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Lpyop) = pr(9) Lpu(p) Lozo@) = pi(9) Ly for P € PT,Q € PT g€ G.

There are projections p; : P(End(Vy,)) x P(End(V),)) — P(End(Vy,)) and p, :
P(End(Vy,)) x P(End(Vy,)) — P(End(Vy,)). It is easy to see that pi |z,, p2 |z,
commute with the G x G action and p;(27) = [v1 @ v1*] = [L,,(p)) ® Lpi @] Now

for any ¢1, g2 € G, we have

p1((91,92) - 25) = [p1(91) Lpu(py) @ Pi(92) Lps @) = [Lpy(o1 ) ® Lpz(o2))-

In other words, p1(2) = [L,,(p) ® Lpx (@) for z = (P,Q,7) € Z;.

1.2.6  Let G- be the closure of G- in G. Then G is also the closure of G>o in
G. We have 25 € G+ (see 1.2.1). Now set

Zi>o = Z;NGso,

Zyso={(91,93") - 25 | 91,92 € G0}

Since 1(Gsg) = Gso, we have 1)(G<o) = G=o. Moreover, (Z;) = Z; (see 2.2).
Therefore ¥(Z;30) = Zj0. Similarly, (91,95 ") - Ziz0 C Zizo for any g1, go € Gso.
Thus Zj~o C Zj>0. Moreover, it is easy to see that ¥(Z;0) = Zs0.

Note that for any uy,us € UZy, ug,uz € Uy, t, ' € Tsg, we have

(urugt, uztug't) - 25 = (uyug, uz'uyt) - (P, Qy, Hp,tt'Ug,)

— (’U,l, 'u,gl) . (PJ, QJ, HPJ’YTUj- (Ug)tt/’ﬂ'U; (U4)UQJ)
Thus

ZJ,>0 == {(ulaugl) . (PJ7QJ7HPJZUQJ) | Uy S U>_07u2 € U;r()al S L>0}

= {(uit,uly™ ") - 25 | U € UZy,uly € Uty t € Tao}.

Moreover, for any wuy,u) € U™ us,ul, € U and ¢, € T, it is easy to see that

(uit,ug) - 25 = (ujt',uh) - 25 if and only if (ust)~*ujt’ € [Hp, N B~ C IZ(L) and
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uy'uhy € ITVHg, NUT C 1Z(L) for some | € L , that is, | € Z(L), uy = u},uy =
and ¢t € 'Z(L). Thus, Z;~o = U, x UZ, x T>0/(T>0 N Z(L)) ~ R2l(()wo)+\J\.

>

Now I will prove a criterion for Z ;.

Theorem 1.2.7. Assume that G' is simply-laced. Let z € Zj>o. Then z € Zj~q if

and only if z satisfies the condition:

(*) is(2) = ([Ml], [MQ]) and i;(¢(2)) = ([Mg], [M4]) for some matrices My, M3 €
gl(ny) and My, My € gl(ne) with all the entries in Rsy.

Proof. If 2 € Zj~¢, then z = (91,95 ") - 25, for some g1,g, € Gsg. Assume that
g1 v =Yt aw; and gy ' - vf = SO0 b, Then for any i = 1,2,...,n4, a;,b; > 0.
Set a;; = a;b;. Then p1(2) = [p1(g1)L1p1(92)] = [(as;)] is a matrix with all the entries
in R~g.

We have py(2) = [p2(91)1Lp2(92)] = [p2(91)12p2(92) + p2(91) (1L — I2)p2(g2)]. Note
that po(g1)l2p2(g2) is a matrix with all the entries in R~ and p2(g1), p2(g2), (I — I2)
are matrices with all the entries in R>o. Thus pa(g1) (I — I2)p2(g2) is a matrix with
all its entries in Rxg. So p2(g1)I1p2(g2) is a matrix with all the entries in R~o.

Similarly, iy (¥ (z)) = <[M3], [M4]> for some matrices M3, M, with all their entries
in R+g.

On the other hand, assume that z satisfies the condition (*). Suppose that z =
(P,Q,v) and L, (py = D2 aivi], Ly = [Doity bivf]. We may also assume that
a;, = b;;, = 1 for some integers ig,i; € {1,2,...,n1}.

Set M = (a;j) € gL(n1), where a;; = a;b; for i,j € {1,2,...,n1}. Then p;(2) =
[Lpyp) @ Ly = [M]. By the condition (*) and since aii, = ai,b;, = 1, we
have that M is a matrix with all its entries in R~y. In particular, for any ¢ €
{1,2,...,n}, a4, = a; > 0. Therefore L, py = D_1, a;v;], where a; > 0 for all i €
{1,2,...,m1}. By [R1, 5.1] (see also [L3, 3.4]), P € PZ,. Similarly, ¢(Q) € PZ,. Thus
there exist u; € UZy,ug € ULy and | € L, such that z = (uy,u; ') - (P, Qy, Hp,lUg,).

We can express g, up in a unique way as uy; = ujuf, for some v} € U, u] € Uy

— o =10 Sy +
and uy = ujul, for some uy € Uy, uf € UT (see 1.1.7).
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Recall that V7 is the subspace of V), spanned by {v},vy,..., v, }. Let V} be the
subspace of Vy, spanned by {v;, 11,7}, 12, -+, Vp,}. Thenu-v—v € Vy and u-Vy C Vj,
forallv € Vi, « ¢ &% and u € U_,. Thus u-v —v € V} and w -V} C V}, for all
veV,and u € Uj.

Similarly, let V;* be the subspace of V3 spanned by {v{*,v5", ..., v}, *} and V"
be the subspace of VY spanned by {v), ", v}, 1o"5 ..., v}, }. Then for any v* € V;
and u €' US, we have u-v —v € V/" and uV}" C V]".

We define a map 7y, : gl(na) — gl(ng) by
WL((az‘j)i,je{m ..... nz}) = (aij)i,je{m ..... no}-

Then for any u € Uy ,u' € UJ and M € gl(n,), we have 71 ((u,w')-M) = m,(M).
Set My = po(uql)Ippa(us) and I = ulfluly € L. Then

7TL(M2) = 7TL<(U17u2_1) (pQ(l)IL)> =Ty <(U1,u/2 1) . ((ul,ug 1) (pQ(l)IL)>)
= WL((UYaUg_l) : (Pz(l)[L)> =71 (p2(I)1L) = pr(l').
Since po(z) = [Ms], My is a matrix with all its entries nonzero. Therefore py(I') =
7 (Ms) is a matrix with all its entries nonzero. Thus I’ = ljt1ly, for some [} €
U NLIl,eU"NLteT.
Set iy = ujly and Uy = uhly. Then " Py =ni W) p, =w p. Similarly, we have

Q=" Qg So 2= (@, @ ") - (P, Qs HphUg,).
Now for any ig, jo € {1,2,...,n1}, define a map 7, o 1 gl(n1) — R by

7T'3-07j0 <(a'ij)i’j€{172 7777 nl}) - aiOij

and for any ig, jo € {1,2,...,ny}, define a map 77, o 1 9l(nz) — R by
7r'i207j0 ((aij)i7j€{1’2 7777 nQ}) = aiOij'

Now z = (7,71251,712_1) - 25 and Y(z) = (w(ﬁg)tl,w(ﬁl)_l) - 29.
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Set
M, = pi(@t)) L1py (@), Mz = py (W(a)tr) Iipr (v(wy)),
My = potits)Ipa(tha), My = pa(t(t)ts) Ipa (¥(a7)).

ni 7.(2.1’1(]\%3)7]'
=1 ﬂ'}’l(MS) v

i (M ~
We have uy -v; = > “l(Ml)vi and ¥(ug) vy =

=1 7"%,1(]\7[1)

Moreover, let V; be the subspace of V,, spanned by {v},v%,... v/} and Vy* be

? U ng

/% !k

the subspace of V} spanned by {v5", v57,...,v,,"}. Then we have u -V, C V;, for all
we U andu - V5 CVy, foral v e U,

Thus for all i = 1,2,...,n9,

w2 (M) = w7y (po(tnty) Lopa () + w2y (pa(taty) (I — 12) pa(12))

21 (p2(tty) I2pa(132)).

~ 72 (Mz)
So uy - v) = > 2

72 (M
12 Dt and (i) - o) = 0% ZEE By (L2, 5.4], we
T

=1 7r%’1(]\44)

have w7, ¥ (uz) € US,. Therefore to prove that z € Z;-, it is enough to prove that
ty € Ts9Z (L), where Z(L) is the center of L.

For any g € (U~,U™)-T, g can be expressed in a unique way as g = (uy, up) -t, for
somew; € U™, up € UT, t € T. Now define ng : (U~,UT)-T — T by w5 (w1, us)-t) =
tfor all uy € U~,uy € Ut,t € T. Note that (U~,U") - T N Gsy is the closure of G+
in (U~,U*)-T. Then nz((U~,U") - T N Gxp) is contained in the closure of T in
T. In particular, ms(z) = t1t; is contained in the closure of T%o in T. Therefore for

any j € J, a;(t1) > 0. Now let ¢, be the unique element in 7" such that

&j(t1)7 lfj € J;

ajt)? i

a;(ty) =

Then t, € Tog and t,'t; € Z(L). The theorem is proved. ]

Remark. Theorem 1.2.7 is analogous to the following statement in [L4, 5.4]: Assume

that G is simply laced and V' is the irreducible representation of G' with the highest
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weight A, where A is a dominant and regular weight of G. For any g € G, let M(g)
be the matrix of g : V' — V with respect to the canonical basis of V. Then for any
g € G, g € G if and only if M(g) and M (¢(g)) are matrices with all the entries in
R.o.

1.2.8 Before proving Corollary 1.2.9, I will introduce some technical tools.

Since G is adjoint, there exists (in an essentially unique way) G with the épinglage
(T,B*,B~, &, i1 € I) and an automorphism ¢ : G — G (over R) such that the
following conditions are satisfied.

(a) G is connected semisimple adjoint algebraic group defined and split over R.

(b) G is simply laced.

(¢) o preserves the épinglage, that is, o(T) = T and there exists a permutation
i — o(i) of I, such that o(Z;(a)) = ig(g)(a),a(gj;(a)) = Y, (a) for all i € I and
a € R.

(d) If i #* iy are in the same orbit of o : T — 1:, then 51, iy do not form an edge of
the Coxeter graph.

(e) i and (i) are in the same connected component of the Coxeter graph, for any
iel

(f) There exists an isomorphism ¢ : G’ — G (as algebraic groups over R) which is
compatible with the épinglage of G and the épinglage (77, B*7, B~7, Tp, Up;p € I) of
G, where I is the set of orbit of o : [ — I and &,(a) = [ic, Ti(a), 9p(a) = [ [;¢, G:(a)
for all p € I and a € R.

Let A be a dominant and regular weight of G and (V, p) be the irreducible rep-
resentation of G with highest weight . Let G be the closure of {[p(®)] | § € G} in
P(End(V)) and G° be the closure of {lp(9)] | g € G°} in P(End(V)). Then since A
is a dominant and regular weight of G and \ |7 is a dominant and regular weight of
G?, we have that G is the De Concini-Procesi compactification of G and G is the
De Concini-Procesi compactification of G?. Since G is closed in P(End(V)), G is
the closure of {[p(§)] | § € G’} in G.

We have G = |7 Z; = [jei(G x G) - 25 and G7 = |51, 5(G” x G°) - 55,
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Moreover, o can be extended in a unique way to an automorphism & of G. Since 56 =
uici’aj:j(zj)‘_’ is a closed subset of G containing G, we have G C chiyaj:j(zj)‘_’.

By the condition (f), there exists a bijection ¢ between I and I, such that
gb(fp(a)) = 24 (a), for all p € I,a € R. Moreover, the isomorphism ¢ from Ge
to G can be extended in a unique way to an isomorphism ¢ : Go = G. Tt is easy to
see that for any J C I with oJ = J, we have qg((@" x G7) - 53) = Zjgon(j), Where
7 : 1 — I is the map sending element of I into the o-orbit that contains it.

Corollary 1.2.9. Zs20 = Mgy guecio (074 02) - Ziso is the closure of Zyzo in Z;. As

a consequence, Zjo and G~ are contractible.

Proof. 1will prove that Z;>0 C Ny, grec-0(91 " 92) - Zs>0-

First, assume that G is simply laced.

For any g € Gao. is(9) = ([o1(9)],[p2(9)]), where pi(g) and pa(g) are matrices
with all the entries in R-g. Then for any z € Z;>¢, we have i (z) = ([Ml], [M2]>

for some matrices with all the entries in Rxo. Similarly, i, (¢(z)) = <[M3], [M4]> for

some matrices with all their entries in Ry.

Note that for any M|, Mj, M € gl(n) such that M/, M} are matrices with all their
entries in R+ and M} is a nonzero matrix with all the entries in R, we have that
MMM} is a matrix with all the entries in R<¢. Thus for any g1, g2 € G, we have
that (g1, ') - z satisfies the condition (*) in 1.2.7. Moreover, (g1,95"') - 2 € Zs 0.
Therefore by 1.2.7, (g1,95"') - 2 € Zj for all g1, gs € Gso.

In the general case, we will keep the notation of 1.2.8. Since the isomorphism
¢ : G° — G is compatible with the épinglages, we have ¢((U§0)") =U%, ¢((T>0)") =
1. and ¢((C~¥>0)(’) = G~o. Now for any z € Z;>¢, # is contained in the closure of
Gso in G. Thus ¢~'(z) is contained in the closure of (G()? in E, hence contained
in the closure of (G's0)? in G. Therefore, ¢~1(z) € Zj,>07 where J =710 ¢~ 1(J).

For any g1, §s € (G=0)?, we have (g1, g2 ) - ¢~ 1(2) = (@uf, a3 ") - z¢ for some u; €

Uy, i € Uy, T € Tog. Since ¢71(2) € (G)7, we have (G, 5 1) - 671(2) € (Z520)".
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Then

o((@h @) - %) = (o@D, 0@ ™) - 0(25) = (o(@m)od.o(@m™) - 5
= @k ) 55,
Thus o(u;) = u; and o(iy) = . Moreover, (£,1) - z5 = (c(?),1) - 25, that is,
a;(o((1) = a,g (f) for all j € J, where {&; | i € I} is the set of simple roots

of G Let ' be the unique element in T such that

ax(f), ifjeJ;
1, otherwise .

Then ¢ € (T50)” and (£,1)-25 = (', 1)-25. Thus (g1, 6> )-¢~'(2) = (it 1z~ ")- 25
We have

(6@, 6(@) ") -2 = 0((@. 5 - 67 (2) = ((@mf, ") - 23)
— (B(@)o(E), 6 - 25 € Zuso.

Since ¢((@>0)U) = G~g, we have Z;50 C Ny, grecoo(91 5 92) + Zi0-

Note that (1,1) is contained in the closure of {(g1,95") | 91,92 € G=o}. Hence,
for any z € Ny, grec-o(g1", g2) - Zi>0, 2 is contained in the closure of Z;-o. On the
other hand, Z;> is a closed subset in Z;. Z;>, contains Z;~, hence contains the
closure of Z;~o in Z;. Therefore, Z;>o = ﬂgmegw(gl—l, g2) - Zj~o is the closure of
Zjsoin Zj.

Now set g, = exp(r Y., ;(e; + fi)), where e; and f; are the Chevalley generators
related to our épinglage by x;(1) = exp(e;) and y;(1) = exp(f;). Then g, € G+ for
r € Rsg (see [L1, 5.9]). Define f : Rso X Zy>0 — Zj>0 by f(r,2) = (9r,9,") - z for
r € Rspand z € Z;59. Then f(0,2) = z and f(1,2) € Z;~¢ for all z € Z;5y. Using
the fact that Z ;- is a cell (see 1.2.6), it follows that Z; ¢ is contractible.

Similarly, define f': Rxg X Gsg — G=g by f'(r,2) = (9,,9; %) - 2 for 7 € R and
z € Gso. Then f'(0,2) = z and f'(1,2) € ke Zr,>o0 for all z € G-o. Note that
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Urcr Zrs0 = (U>0, (Udo)” ) Ugcr(T50,1) 25 = Uy x Uy x Ugcr(T50,1) - 25 (see
1.2.6). Moreover, by [DP, 2.2], we have | |, (T50,1)-2% = RL,. Thus | |, Zx >0 =

R2l(w°) X R is contractible. Therefore G~ is contractible. [l

1.3 The cell decomposition of Z;-

1.3.1 For any P € P/,Q € P/",B € Band g € Hp,g9o € Ug,g € G, we
have pos(P? 91992 (QP)) = pos(gfl(PB),QQQ (@) = pos(P5,9(QP)). If moreover,
P ¢ @, then pos(P? 9 (QF)) = ww, for some w € W, (see 1.4). Therefore, for any
v, € W, w,w' € W’ and y,y € W, with v < w and v < w’, Lusztig introduced

N S Lo d e o .
the subset Z7" Y and Z7L7 Y of Z; which are defined as follows:

Zg,w,v/,w/;y,y/ — {(P7 Q,HPQUQ) S ZJ | Pe Piw7w<Q) € P{)] aw’s

pos(PB+,g (QB+)) = ywo,POS(PBiag (QBi)) = y'wo}

and

/ / /
v,w,v W'y, y v,W,v WYY
Z5 =27 N Z,>o.

Then

_ v,wv w'y,y
2 L] Z; )

v eWwaw' eW? yy' eW;
v<w, v’ <w'’

_ vwv'w'iyy'
230 = | | 250

v eWwaw' eW? yy' eW;
v<w, v’ <w'’

Lusztig conjectured that for any v,v € W,w,w’ € W7, y,y/ € W; such that

v<w, v <w, Zy ZOU W'Y’ ig either empty or a semi-algebraic cell. If it is nonempty,

/ /. /
then it is also a connected component of Z5*" ¥

In this section, we will prove this conjecture. Moreover, we will show exactly when

v,w,v’ w yy

Zy ZO” WY s nonempty and we will give an explicit description of Z% 70

First, I will prove some elementary facts about the total positivity of G.
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Proposition 1.3.2.

-1

“prt _ + _ At _ + -1 _ prt
Nuevz,u Usy = Nuevt, USou = Nyevx,u Uso = mueU>iOU>ou = Uy,

mgeG>og_1G>0 = mgeG>0G>09 = NgeG-09 G>0 ﬁgeG>oG>Og_1 = G>0~

Proof. 1 will only prove ﬂueU;Ou*1 ULy = U;O. The rest of the equalities could be
proved in the same way.

Note that uuy € Ud, for all uy € Uy, u € USy. Thus uy € ﬂueU;rOu_l - UZ,. On
the other hand, assume that u; € Nuevt, u' - UZ,. Then uuy € Uy for all u € U,
We have u; = lim weUt, U is contained in the closure of U>O in U*, that is, u; € U;O.

u—>1

SO mueU;FOu_l . U>0 — UZO D

! /
For any v,v" € W, w,w’ € W7 such that v < w,v" < W/, set Z7;""" =
’U7w7v/7w/;y7y/ ’U,’ll),’l/'l,w/ —_— /U’w7v/7wl7y’yl 3 M
Ly ew, Z5 and Z755 " = L, yew, 2750 . We will give a charac-

terization of z € Zf}’g(’)v/’w/ in 1.3.5.
Lemma 1.3.3. For any w € W, u € Uy, {my+(uwyu) | uy € US oo} = Uil -

Proof. The following identities hold (see [L1, 1.3]):
(a) tx;(a) = z;(ay(t)a)t, tyi(a) = yi(ai(t) ta)t foralli € I,t € T,a € R.
(b) yi, (@), (b) = 4, (b)yi, (a) for all a,b € R and iy # iy € 1.
(¢) zi(a)y;(b) = yi(lfab)a-v(ljab) i(1y) for all a,b € Rug,i € 1.
Thus U,

w,

soUso C U;0T>0U ~o for w € W. So we only need to prove that
U—I—

ws0 CAmu+ (uau) [ uy € Uy oo} Now I will prove the following statement:

{mu+ (uayi(a)) |ur € U oo} = Uty foriel,ae Ry

We argue by induction on [(w). It is easy to see that the statement holds for w = 1.
Now assume that w # 1. Then there exist j € I and w; € W such that w = s;w; and
l(wl) = l(w) — 1. For any u} € U} ., we have v} = ujuf for some uj € U "o and

Le Ut wy.>0- By induction hypothesis, there exists uz € U st €U andt €T

such that ugy;(a) = u/'tuy. Since Uy Uy oo C U ooTsoUy <o, we have v’ € U .
and t € TS.
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Now by (a), we have tuyt™" € U _,. So by (b) and (c), there exists us € U .,

7

such that mp+(ugu’) = tuht™'. Thus

T+ (uausy;(a)) = m+ ((ugu’) (u’_lugyi(a))) = Ty+ (7U+(u2u’)u’_1u3yi(a))

= my+ (tubt ™ tuy) = T+ (fuhuy) = u).

So uy € {my+(wryi(a)) | ur € UJ oo} The statement is proved.

Now assume that u € U, _,. I will prove the lemma by induction on I(w'). It
is easy to see that the lemma holds for w’ = 1. Now assume that w’ # 1. Then
there exist ¢ € I and w} € W such that {(w]) = l[(w') — 1 and w’' = s;w|. We have
S0

u = y;(a)u’ for some a € Rsgand v’ € U, _,.
1

{my+ (wru) | uy € U oo} = {mp+ (myi(a)u’) | vy € Uy oo}
= {7TU+ <7TU+ (ulyz(a))u> ’ Uy € U;r’>0}

= {my+ (urd) | uy € Uy oo}

By induction hypothesis, we have

{mu+(urw) |ur € U oo} = {mu+ (uie) [ u)y € Uy oo} = Uy <o

O
Lemma 1.3.4. Set Zj o ={(g91,9,") - 25 | 91 € UsyT>0, 92 € Uy }. Then
ZJ,>0 = mmEU';O,uQ_lGU;O (u;17 u2) ’ Z},>O‘ (a>
—1
Zjs0= |_| {(" Py Qr,urHp,lUqg,uz) | ur € Uy, 5o, (b)
w1y, weEWJ

Ug € U+2,>0,l € L)o}

w

={(P,Q,7) € Zs»0 | P =" P;,9(Q) =" P for some uy,uy € Uy}
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Proof. (a) By 1.2.9 and 1.3.2, we have

_ —1 _ —1
ZJ,20 - m91,92€G>0 (91 792) . ZJ,>O =N t1,t2€T50 (ul

—-1,-1
US tl ,U4U2t2) M ZJ7>O
u1,u2€U§0,U3,u4€U;O
_ —1 —1 —1
- ﬂuleU;'O,MeU;O (ul ,U4) ’ ﬂuQGU;'O,ugeU;O (u2 ,U3) ’ ﬁt1,252€T>0 (tl 7t2) ' ZJ:>0

_ -1 _ —1 _
_muleU u4€U70<u1 ,U4) ﬁu2€U uzelUZ, <U’2 ,Ug) ZJ»>0

>0 > >0
— -1 1\—1 o
= ﬂuleU;rO,u4eU;O(“1 Ug) - QUQeU;O,ugeU;O( U2 Ts0, (Uguz ')~ ) TR

= evtyyevy (0 u2) - (U Too, (U2) ) - 25).

(b) For any u € Uy, v € U>O,t € T., there exist wy, wy € W7, w3, wy € W, such
that v = uyus for some u; € U, w1500 Us € Uy, oo and v = uquy for some uy € U, 9,507
uy € Uy, oo Then (ut,v™') - 25 = (m Py Q. urHp ustusUg ,us). On the other
hand, assume that [ € Ly, then | = ustuy for some uz € Usy,ug € U;O,t e Tyo.

Thus for any u; € Uy, uy € U3, we have
(UIPJ,U2 Qu, urHp, lUqg us) = (uyugt, uy'uy') - 25 € Zj .

Therefore,

—1
Zyo= || {("P" QruHp,lUg,us) | € Uy, oo,

w1,w2€WJ
U € U, 2>0,l S L>0}

C{(P,Q,7) € Zsx0 | P =" P;,9(Q) =" P; for some uy,up € Uy}

Note that {"P; | u € Uy} = e {"Pr | u € U, <o} Now assume that
z = (ulPJ,w(W)f1 QJ,UlHPJlUQJ¢(U2)) for some wy, wy, € W7 and uy € U, 01,505 U2 €
Upy >0, | € L. To prove that z € Zj_, it is enough to prove that | € LxZ(L). By
part (a), for any ug, uy € UZ,

(us, ¥(ug)™") -2 = (ugulth’b(u“uz’)_1 Qs usur Hp, 1Uq b (ugus)) € Zj 0.
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Note that uzu; = witimy+(uzuy) for some vy € U, .o, t1 € Tso and uguy =
u’2t27rU+(u4u2) for some uy € Uy, o.t2 € Tsg. So we have that “**1P; =1 P,

) Q) =Y Q) and

usuy Hp, lUq v (usug) = uitymy+ (usuy) Hp, lUq 1) (7TU+ (U4U2))t2¢(ulz)

= uy Hp,t1my+ (ugun )19 (74 (wgus) ) t2Uq 4 ().

Then tlﬂUj (u3u1)l¢(7TUJ+ (u4u2))t2 € L>oZ(L). Since t1,ty € T-o, we have that
WUj(U3U1>l?/J(WUj(U4U2)) € L}OZ(L) for all Uz, Uyg € U;_O By 1.1.8 and 1.3.3,

7TUj(U;roul) = Tyt (”U+(U;0“1)) 7TU+(U 0) = U;ro,>o

Similarly, we have m+ (Ulgus) = Ul Thus

wb],>0'

le ﬁu3,1L4€U7L u3_1UI({7>0T>OZ(L)U,;({7>Ow<u4)_1

0>0

— U T>()Z(L)wa] - L}OZ(L)

wd, >0

The lemma is proved. O

Proposition 1.3.5. Let z € Z}”w’v/’w/, then z € Z}”;"(’)”/’wl if and only if for any
u €U, S0 U2 € U:Ll’>0, (wr,¥(uz")) -z € Z70-

Proof. Assume that z € N (ui', ¥(u2)) Zj<o. Then we have z =

u1€U UQGU/ 1 >0

v—1 >0

limy, yy—1 (1, 9 (us) ™) - 2 is contained in the closure of Zj<oin Z;. Note that Z;-o C
Z}7>0 C Zjso. Thus by 1.2.9, Z;>¢ is the closure of Z}7>0 in Z;. Therefore, z is

contained in Z;>g.

On the other hand, assume that z = (P, Q, ) € Z;gov " By 1.3.4(a), for any u; €

U;r_17>0, uy € U, g We have (wr1,¥(uz")) 2 € Zj 0. Moreover, we have “ P =% P,
for some uj € Uy, (see 1.1.6). Similarly, we have (¥ () Q) = "24(Q) =" P, for
some uy € U, _o. By 1.3.4(b), (w, (uzt)) -z € Z3 2. O
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1.3.6  Now I will fix w € W7 and a reduced expression w = (W), W1y, - - - W)

of w. Assume that wg;) = wg_ps; for all j = 1,2,...,n. Let v < w and let
Vi = (V(0), V(1)s - - -, U(n)) be the positive subexpression of w.
Define

9; = vyi;(a;) for a; € R — {0}, if v;_1) = vy

Gv, w= {g =3g192" " 9k

95 = iy if v-1) < vg)

g; = Yi;(a;) for a; € Ryo, i vy = %’)}

Gv, . w>0= {9 =092 Gk . .
g; = Si if v(j-1) < vy

Marsh and Rietsch have proved that the morphism ¢ —¢ BT maps Gv, w into
Row (see [MR, 5.2]) and Gv, w o bijectively onto R, >0 (see [MR, 11.3]).

The following proposition is a technical tool needed in the proof of the main

theorem.

Proposition 1.3.7. For any g € Gv, w0, we have

+ : J.

o (ms(ug) v, = e SN
ueU:r—l >0 WUj ug w6]7>0 o

a, otherwise.

The proof will be given in 1.3.13.

Lemma 1.3.8. Suppose oy, is a simple root such that v;'ay, > 0 for v < vy < w.
Then for all g € Gv, w0 and a € R, we have x;,(a)g = gtg' for some t € T-y and
9" € [luerew) Vo - (07 2y (a)0), where R(v) = {a € ®* | va € —PT}.

Proof. Marsh and Rietsch proved in [MR, 11.8] that g is of the form
g = ( H yv(j,maij (tj))v
Jesy
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and vy, # oy, for all 7 =1,2,...,n. Thus g = g0 for some

g1 € H U_,.
acd+—{a,}
Set Ty = {t € T | a;,(t) = 1}, then T} Hae¢+_{ai0} U_, is a normal subgroup of
Y(Ppyy). Now set x = x4, (a), then g1~ € B~. We may assume that zgz~! = uity
for some u; € U~ and t; € T. Now g = g1 = (zg12™ )20 = wyo(0 " 0) (0~ 20).
Moreover, by [MR, 11.8], g € gBT. Thus xg = ¢19t2g293 = g1(Utagaty 0" )0tags, for
somety, €T, gy € HaeR(U) U, and g5 € Haeq)J_R(v) U,. Note that g (0tagoty oY), up €
U™, to, 0710 € T and g3, 0 'a0 € [Lco+ n@) U Thus g1 (Dtagoty 1071 = uy,
ty = 0110 and g3 = v 'av. Note that g~ 'z, (b)g € BT for b € R (see [MR, 11.8]).
We have that {mr(g " z;,(b)g) | b € R} is connected and contains 77 (g~ '2;,(0)g) = 1.
Hence m7(g ' 2;,(b)g) € Tso for b € R. In particular, np(g~'xg) = ty € T-o. There-

fore g = gtag’ with ty € Top and ¢’ = gags € [Loepq) Ua - (0720). O

Remark. In [MR, 11.9], Marsh and Rietsch pointed out that for any j € J‘J,r+, we have
—1 -1 -1

u g >0 for all VY <u< wHW.

1.3.9  Suppose that J{;+ = {j1,72,---,Jr}, where j; < jo < -+ < jx and g =

9192+ * * gn, Where

Yi;(a;) for aj € Rso, if j € Jy,;
9i =
Sijs it j € J{a.

For any m = 1,...,k, define v,, = v(_l Vs Gm) = Gjmt1Gjm+2 " In and f,(a) =

Jm

g(;i)a:ijm (—a)gm) € BT (see [MR, 11.8]). Now I will prove the following lemma.
Lemma 1.3.10. Keep the notation in 1.3.9. Then
(a) For any u € U:Cl’>0, ug = g'tu’ for some g' € Uy, _o,t € Tso and v’ € UT.

(b) 7TU+(UU+_1’>OQ) :{7TU+ (fk(ak>fk_1<ak_1> ce fl(a1>) | ay,ag,...,0a ER>0}.
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Proof. 1 will prove the lemma by induction on I(v). It is easy to see that the lemma

holds when v = 1. Now assume that v # 1.

For any u € U;C17>0, since IBT € Ry, .50, we have “ BT € Ry ~0. Thus ug =
g'tu’ for some ¢’ € U, .o, € T and v’ € UT. Set y = gi,gi, -~ gi;,_,- Note that y €
Uy, we have uy = y'tu’ for some 3y’ € U™, v’ € U;r_17>0 and t € T-o. Hence mp(ug) =
WT(uys{jlg(l)) = WT(y’tu’s{jlg(l)) € T>07TT(u’s{jlg(1)). To prove that 7TT(U:_17>OQ> C

T, it is enough to prove that WT(us{hg(l)) €T for all u € U;[l’>0.

For any u € U

w1 ogs We have u = uyzy; (a) for some u; € U,

sy, 50 and a € R+g.

It is easy to see that x;, (a)si; ga) = i (a)yi,, (@), (—a"")g@). Note that a; (a) €
T-o and by 1.3.8, g(l)_lxih(—a_l)g(l) € TuoU™. Hence by 1.1.7, we have

mr(usi; 9a)) = Tr <U1Oéivj1 (@)yi,, (a)ga) (90) 'y, (—G_l)gu)))

€ T oy (U;&sm >0Yij (a)g(l))T>o.

Set

—1 —1
w = (1, Wiy W) - - 7w(j1—1)w(n))’

/ f— . . . . .
Vi = (1,84, V(jy)s Sij, V(s +1)5 -« + 5 Sij, V() ) -

Then w' is a reduced expression of w(’j}_l)w(n) and v/, is a positive subexpression
of w'. For any a € R0, yi, (a)gqn) € Gv', . w’>0- Thus by induction hypothesis, for
any a € Ry, WT(U:—*lsij ~oYi;, (@)g)) C Tso. Therefore, mr(ug) € Tso. Part (a) is

1

proved.
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We have

7TU+<U;_—17>09) = 7TU+<U:—17>0?J51‘.]'1 9(1)) = 7TU+(7TU+ (U:_1,>oy)5i'jlg(1))

— 7TU+(U:717>0351-19(1)) = U U+ (U’:;lsijl,>0mijl (a_l)s{j1 g(l))

(IER>()

= U 7TU+(Uqﬁlsijl,waivh(a_l)yijl(a_l)gu)fl(a))

a€R>0

= U moe (mo (U7, 200, (@i, (7)) g @)

a€R>0

= U m (U, so9whia)

a€R>0

— U Ty+ <7TU+ (U,:_—lsij17>og(1))f]_(a)>.

a€R>0

By induction hypothesis,

7TU+(U::1sij S0d() = {mu+ (filan) fimi(an—1) - f2(a2)) | a2, as,. .., ax € Rog}.

Thus

7TU+(U;F—17>09> = U Tu+ <7TU+ (U;13¢j1,>09(1))f1(a)>

a€R>0

= {7TU+ (fk(ak)fk,l(ak,l) cee fl(al)) ’ ay,ag,...,a € R>0}.
[

Remark. The referee pointed out to me that the assertion t € T of 1.3.10(a) could

also be proved using generalized minors.

Lemma 1.3.11. Assume that « is a positive root and u € Uy, v’ € U' such that

uu' € Uy for alln € N. Then u = x;(a) for some i € I and a € Ry.

Proof. There exists t € Tk, such that o;(t) = 2 for alli € I. Then tut™' = u®® =™
for some m € N. By assumption, t"ut "u’ € U;O for all n € N. Thus u(t’”u/t") =

t" (t”ut_”u’)t" € U;ro. Moreover, it is easy to see that lim, ..t "u/t" = 1. Since
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U3, is a closed subset of UT, limy, .o ut™"u/t" = u € U3, Thus u = x;(a) for some

1€l and a € Ryy. O

Lemma 1.3.12. Assume that w € W and i,j € I such that wa; = a;. Then there

exists ¢ € Rxq, such that w™tz;(a)w = x;(ca) for all a € R.

Proof. There exist ¢, € R—{0}, such that y;(a)w = wy;(c’a) and z;(a)w = wz;(ca)

for a € R. Since “B~ € Bsg, we have (1) B+ =wu(¢) B+ ¢ B, By 3.6, ¢ > 0.

1

Thus ¢ > 0. Moreover, since wa; = «; > 0, we have ws;w™"' = s; and l[(ws;) =

l(siw) = l(w) + 1. Hence, setting w’ = ws; = s;w, we have W’ = ws; = s;w, that
is Wz, (—1)y;(Dai(—1) = z;(—c)y;()zi(—c)w = z;(—1)y;(1)z;(—1)w. Therefore,

c=c  >0. O

1.3.13. Proof of Proposition 1.3.7 If v € W’ then va > 0 for a« € ®7.
So WU}(HaeR(U) Us) = {1}. By 138, fn(a) € T(Ilacr,) Ua) - Upty,  for all

Im

m € {1,2,...,k}. Note that va € —®* for all a € R(vy,) and vv, oy, = v, €

—®*. So fu(a) € T]lsenw) Ua and frlar)fi-1(ar-1) - filar1) € T]l,epp) Ua
Hence by 1.3.10(b), Tyt (ug) = 1forallu e U Therefore N, .+ (7TU}— (ug))_1

“1>00 -1>0
+ _ 7t
Uwg,>o - Uw({,zo‘

If v ¢ W7, then there exists a € ®7 such that vae € —®7, that is, v,;'e;, € ®F
for some m € {1,2,...,k}. Set ko = max{m | v,'e;, € ®}. Then since
R(vg,) = {v,'eu, | m > ko}, we have that vy > 0 for @ € ®J. Hence by

3.8, my+ (fro(a)) = v;};o_lxijko(—a)vi@o. S » (WUj(ug))fl LUt then

wf, >0’

Tt (frlan) foo1(an—1) -~ fila))u' € Ur, ., forall ai,ay,...,a; € Rsg. Since U

5720 w6]7>o

is a closed subset of G, T+ (fk(ak)fk_l(ak_l) . fl(al))u’ ceU", _ forallay,as,...,a; €

w(‘)],ZO

Ro. Now take a,, =0 for m € {1,2,...,k} — {ko}, then Tyt (fro(a))w € UF

wd, >0
(=1)vi,. Then uiw' € U, _ for all n € N. Thus by
wy , 2>

for

all a € Ryg. Set u; = v}co_lxijk
°0

1.3.11, v,;olozijk = ay for some j' € J and vy € U;ﬁ, oo By 1.3.12, uy = xj(—c) for
0 (RES

some ¢ € R~y. That is a contradiction. The proposition is proved. [l

Let me recall that L = P; N Q (see 2.4). Now I will prove the main theorem.
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/

Theorem 1.3.14. For any v,w,v',w’ € W’ such that v < w,v’ < w', set

v,w,v W n-1 g e GV ,W,>0) g/ € GV’ W’ >0
225 = { P Qg Hp, Wo (9| ’ R
and l € Ly

Then

/

v,w,v w’ . / ! J / .
Zv if v,w, v w e W o <w, v <w's

vavw J,>0 ’

J,>0

a, otherwise.

Proof. Note that {(P,Q,7) € Z; | P € Py, (Q) € Py} is a closed subset contain-
ing Z;~o. Hence it contains Z; 9. Now fix g € Gv, w>0,¢ € Gv' w0 and L € L.
By 1.3.10 (a), for any u € U, _, ug = atmy+(ug) for some a € U, ., and t € Ty.

Similarly, for any u’ € U, 1o u'g' = a't'my+(u'g’) for some o' € U, .y and t' € T-y.

Set z = (“P; Y90 "Qy, gHp,lUq (g ’)). We have
(U, w(u/)il) TR = (OLPJ;LL](GI)_1 QJ7 atﬂ-U"’ (ug)HPJlUQJQ/}(TrU"' (U’/g/>)t/d}(a’/)>

( ijw(a Q;, aHthﬁU+ (ug)l (7TU+( ’g'))t’UQJ¢(a’)> )

Then (u,¢(u')™') -z € Z}_, if and only if tﬂ'Uj-(ug)lw(ﬂ'Uj (Wg))t' € LxoZ(L),
that is,

L€ myy (ug)_1L>oZ(L)1/J(7TU+ (u'g’))_l
= (ﬁUj(ug)’lU , >0)T>0Z<L)w(7TUj—<U/g) lUf, >0)

So by 1.3.5, z € Z; > if and only if

LE€N e, (WU;(UQ)_lU 1 50) o0 Z (L)Y (my+ (u'g) T U )

+
u'eU
o =10

= mueU;[l o (7TU;r (Ug)_lUJg,go)T>OZ(L)¢(ﬂu’eU:ﬁl Tut (u'g)” 1U+J ;0)

,>0

By 1.3.7, z € Z; > if and only if v,0" € W’ and | € L>¢Z(L). The theorem is
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proved. [l

1.3.15 It is known that G = [ |, ,ew ;7>0T>0U;“, -0, Where for any w,w’ € W,

w,>0

of BfwB™ N B~w' B~ (see [FZ]). Moreover, Rietsch proved in [R2, 2.8] that Bxo =

TsoU,y < is a semi-algebraic cell (see [L1, 2.11]) and is a connected component

ngw Ryw,>0, where for any v,w € W such that v < w, Ry, >0 i a semi-algebraic
cell and is a connected component of R, ,,.
The following result generalizes these facts.

— vw w'iyy
Corollary 1.3.16. G~o = ;o wrwews Uyyew, 2550 . Moreover, for
v<w, v <w'’

. ! /. /
any v,w, v, w € WY y,y € Wy with v < w, v/ < w', Zy% "9y

750 is a connected

vy

/ /
component of Z7*"" and is a semi-algebraic cell which is isomorphic to R%,,

where d = l(w) + (w') + 2 (w)+ | J | =l(v) —1(v") = l(y) — 1(¥).

Proof. P}, <o (vesp. P o) is a connected component of P/, (resp. Py ) (see
[L3]). Thus {(P,Q,y) € Zy“"¥ | P € PJ,.00(Q) € PJ -} is open
and closed in ij’w’”l’w,;y’y,. To prove that Zj’f(’)”l’w/;y’y/ is a connected component
of Zf}’w’”/’w/;y’y/, it is enough to prove that Zi’i’(’)vl’w/;y’y/ is a connected component of
{(P.QA) €27 | P € Py ¥(Q) € P o}

Assume that g € Gv, w,>0,9" € Gv, w0 and [ € L. We have that (9P;)B" is the
unique element B € R, ,, that is contained in 9 P;(see 1.4). Therefore (9P;)5" =9 B*.
Similarly, we have that (P,)B =99 B+ (¥ HQ,)B" =V B~ and
(Y@ Q,)B” =¥¢)"" B~ Thus pOS<(ng)B+’glw(g/) ((w(g“l)QJ)Eﬁ)) = pos(BT,1%6 B)
and pos((gPJ)Biaglw(g/) ((w(glil)QJ)Bf)> — pos(% B+ ! B~). Therefore we have that
(9P, P Qy gHp, WUg,(g)) € Z5™ %Y if and only if | € BtyuoB ety N
g Bty'wg Bty = BYyB g N By B~

J

Note that L N BT C% B~. Thus for any x € W;, (LN BY)z(L N BY) C

BTy B~y . Therefore,

/—1)wb]

LN B B iy = | | (LNBY)&(LnBY) N BB iy
zeWy

= (LN BY)ywd (LN B™).
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Similarly, L Ny BTy’ B~ = (L N B~ )iy (LN B7).

Then {(P,Q,v) € Z};’w’v/’w/;y’y/ | P € PJus0,¥(Q) € Py} is isomorphic to
G0 X Guwr =0 X (LN BH)gid (LN BY) N (LN B )igy (LN B7))/Z(L). Note
that ((L N B)guy (LN B*Y) N (LN B )iy (LNB7)) N Ly = Usg soT>0Uly
Therefore

U7w7U,7w/;yzy/ Y - JF
ZJ’>0 — Gv,w,>0 X Gv’,w’,>0 X Uyw({,>DT>OUw({y’,>O/

’ wd () =1(v")— T
gRl>(zJ)+l(w )F+2U(wg )+ |= 1) = 1) = Uy) =)

(Z(L) N T>0)

By 1.3.15, we have that Uy‘wb,7>0T>0qu6,y,7>O/ (Z(L)NT%y) is a connected component
of ((LNB*) g (LNBT)N(LNB~ )iy (LNB~))/Z(L). The corollary is proved. [
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Chapter 2

Total positivity of the flag varieties

In [MR], Marsh and Rietsch gave a parametrization of the totally nonnegative part
of the flag varieties. They proved the result using the theory of generalized Chamber
Ansatz. In this chapter, I will give a new proof of this result using the inductive
method in [R2]. In the appendix, T will also give an elementary proof of the symmetry
of the totally positive part of the flag varieties, which was first proved by Lusztig in

[L1] using the canonical basis.

2.1 Introduction

We keep the notations of section 1.1. and 1.3.6. Marsh and Rietsch proved the
following theorem about the totally nonnegative part of the flag varieties in [MR,

11.3].

Theorem. We have Rfugu, C Rw, w'. Moreover, the isomorphism Gw, w —

: : : - - e >0 ~. >0
Rw, wr restricts to an isomorphism of real semi-algebraic varieties GW+7W, — R

Note that Marsh and Rietsch’s proof of the theorem relies on a generalization
of Berenstein and Zelevinsky’s Chamber Ansatz. Although the theory of Chamber
Ansatz is more elementary than the theory of canonical basis, it is quite complicated.
In section 2.2 and section 2.3, we will give a new proof of this theorem without using

Chamber Ansatz and we will see that the theorem is a consequence of the inductive
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method in [R2]. The inductive method is based on the theory of canonical basis
and thus is a non-elementary statement. However, once we have got the inductive

method, we can easily prove the theorem.

2.2 Some technical tools

In the sequel, we will write ¢ - B instead of B = gBg~*.

2.2.1 Let w,v € W such that I(wv) = [(w) 4+ (v). Then we can define a morphism
Gww : BTwv - BT — BTw - BT which sends B € Btwuv - Bt to the unique element
B’ € Btw- BT that satisfies pos(B’, B) = v. Now I will prove an elementary property

of the morphism.

Lemma 2.2.2. Let u,v,w € W with l(vow) = l(u) + l(v) + l(w). Then l(uv) =
l(u) + 1(v) and l(vw) = l(v) + l(w). For any B € Btvw - B* and g € BTuB*, we
have g - B € Btuvw - Bt and g - ¢py1(B) = Puvw(g - B).

Proof. The fact that g - B € BTuvw - B follows from the properties of the Bruhat
decomposition. Moreover, pos(g - ¢v.w(B), g+ B) = pos(¢v.(B), B) = w, pos(B*, g -
BT)=u, pos(g- BT, g ¢uw(B)) =pos(BT, ¢yw(B)) = v. Since l(uv) = l(u) + I(v),
pos(BT, g+ ¢yw(B)) = wv. By the definition of ¢y, we have g+ ¢pw(B) = Gupw(g -
B). 0

The following property was first proved by Marsh and Rietsch and is also needed

in our proof.

Proposition 2.2.3. Let v < w in W and suppose « is a simple root such that

uta >0 for allv <u < w. Then for all x € U, and B € Royw, we have - B = B.

The original proof of this fact uses the theory of Chamber Ansatz. 1 will reprove
the fact here without using the theory of Chamber Ansatz.

Note that Rv, w is a dense subset of R, .. Therefore, it is enough to show that
for all z € U, and B € Ry, w, we have x - B = B. Hence, it suffices to prove the

following lemma.
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Lemma 2.2.4. We define N-R = {na |n € Nya € R} and N- Rt = {na | n €
N,a € RT}. Let v < w in W and suppose « is a simple root such that u™*a > 0
for all v <u < w. Let w = (w(y, way, ..., Wn)) be a reduced expression of w and
vy = (V(0), V1), - - -, Vm)) the positive subexpression of v. Let R(vy,w) be the subset

of N - R consisting of the elements of the form v='(noa — > n;v(j—1)Q,) such

i€l
that no € N,n; € NU{0} and for any k, v@(noa - ngk’je‘]\oq n;v-1)0,) € N-R.

Then we have R(v,,w) C N+ R" and g 'zg € HﬁeR(V+,W)ﬁR Us for all g € Gv . w

and x € U,.
Proof. Write v’ for v(,,—1y and w’ for wg,—1). Set v/, = (v(0),va),--.,Vn-1)), W =
(W), W1y, - - - Wn—-1)). Then v/ is the positive expression of v" in w'. Now assume

that w(;) = w(j—1s;, for all j = 1,2,...,n. I will show that ma;, ¢ R(v/,,w’) for any
m € N.

Suppose this is not true. Then ma;, = v@{l)(no& - Zjej%+7#n n;v(j—1)0y,) for
some m,ng € N,n; € NJ{0}. Since v, is a positive expression, v(;_1y < v(j—1)s;
for all j. Thus v;_1ya;, € R for all j. We have noa — Zjej%+7#n njv(-1)0, =
MV (n—-1),. Therefore, ngar = mu,_1)cy,. Since « is a simple root and v, is a
positive root, we must have o = v(,_1)a;,. However, Marsh and Rietsch proved that
o # V-1, (see [MR, 11.8]). That is a contradiction. The statement is proved.

Now I will prove the lemma by induction on [(w).

Note that if u' € W satisfies v < v/ < w’, then «'~'a > 0 (see [MR, 11.8]). Thus
by induction hypothesis, R(v/,,w') C N- R and ¢ 'zg' € H,BeR(v;,W)mR Up for all
9 € Gy, w and z € U,.

If n € Jy , then R(vyi,w) = s, - R(V\,w'). Since R(v/,w') C N-R" and
ma;, ¢ R(V',,w’) for all m € N, we have R(vy,w) C N-R". Note that Gy, w =

Gv;,W/ 5i,. o0 for any g € Gv, w, we have

gleges, ([ Us)si, = II v.s= 11 Us

BER(V.,W/)NR BER(V', ,W)NR BER(V 1, W)NR

If n € Jy,, then v = ¢' and for any g € Gv, w, there exists ¢’ € Gy, w

and 2’ € U_,, such that g = ¢’2/. Then g 'ag € xlil(HﬁeR(V;,W’)mR Ug)x’ =

41



HﬁeR(v;,W')mR x’flUﬁaz’. Note that § # +o;, for any 3 € R(V/,,w') N R". Then

by [S, 8.2.3], we have uy ' Usus C H'y:mﬁflainER, for some meN,ieN(J{0}
to see that {v € R|y = mg — lay, for some 8 € R(v,,w'),m € N,l € NJ{0}} =

U,. It is easy

R(vy,w). Sowe have g lxg € [Iserev, wynr Us- Moreover, since R(v/,, w') C N-R*
and ma;, ¢ R(v/,w’) for all m € N, we have R(vy,w) C N - R". The lemma is

proved. [l

2.2.5 Define the morphism 7y : U"BT — U~ by my-(ub) = u for u € U~ and
b € B". Then it is easy to see that for any u € U™,z € U B',b € B", we have
- (uxb) = umy- ().

We will recall the following properties of totally nonnegative part of the flag va-
rieties.

(1) Suppose v, w,w’" € W, such that l(w) = l[(wv) +(v) and I(w') = [(w'v) +1(v).
If wo < w'v, then w < w' and Gyrpp * R — Ruvwo 1S an isomorphism and its
restriction to R, is a bijection between R;°, and R0 ., (see [R2, 2.3]).

(2) Let w e W,y € U (w™!) and B € B-w - B, then B € By if and only if
y- B € Bxp. In this case, we have y - B € U™ - Bt. (see [R2, 2.2 & 2.6]).

(3) Let w,w’ € W and i € I, such that w < ws; and w < w's; < w'. Then for
any y € Ut (w™"), the map ¢, : R;°,, X Rso — R, defined by ¢,(g- BY,a) =
vy 'my-(yg)yi(a) - BT is a bijection (see [R2, 2.7]).

By property (2), we have yg € U~ B*. Thus my-(yg) is defined. It is easy to see
that ¢, (B, a) does not depend on the choice of g € G such that g- BT = B. Therefore
1, is well-defined.

Note that properties (1) and (3) allows us to study the totally nonnegative part

of the flag varieties in an inductive way. We will make use of these properties freely.

2.3 Proof of the theorem

Since g — ¢ - BT gives rise to an isomorphism G F SR /, 1t suffices to
W W W, W/,

show that R;?%W, ={g-B"|gc¢€ G;&,w’}- Note that 1 € Jg, if and only if
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w < wgo)w’ . Moreover, we have Ri 9 = {B*}. Therefore, it is enough to prove the

following theorem.

Theorem 2.3.1. Let w < w' € W and s a simple reflection with sw’ < w'. Then we
have
- . 1>0 ; /.
0 _ U (s) Ry twr» i w < s

§-R>O otherwise .

sw,sw’?

Proof. Tt is easy to see that Ry = U~ (s) - B" and R7Y = §- B*. Therefore the
theorem holds if [(w") = 1. Now assume that [(w’) > 1. I will prove the theorem by
induction on [(w").

Fixing a reduced expression w' = (wEO), wEl), . ,wzn)) of w’ such that wﬁ) = s.
Then there exists a unique positive subexpression w = (w(), way, - .., W) of w in
w’. Set s’ = wzn_l)_lw’. Since n > 2, we have sw's’ < w's’ < w’. We need to check
the following two cases.

Case 1: ws' < w.

In this case, n € J‘J,rw. Hence ws' < w's" and ¢y s @ Ry — Ruws'w's 1S an

, is a bijection between R>° , and R>?

w,wW ws’ w's’*

isomorphism and its restriction to R>°

w,w

If w < sw', then 1 € Jg, and ws’ < sw's’. For any B € Ri’ow,, Gus s (B) €

R.Y e By induction hypothesis, we have ¢uy o (B) € U™ (s) - RyY - Since
Ry s = Gsws s (Ryy), there exist u € U~ (s) and B" € R, such that

Gws s (B) = U sy 5 (B') = purso(u- B'). Since B and u - B" are contained in
Ruww, we have B = u- B’. On the other hand, U~ (s) -RZ?SW CBooNRyw = R;gﬂ,.
Thus the theorem holds for R7°.

If w ;{ sw', then 1 € J‘J{V+. Hence ws’ % sw's" and sws’ < sw < sw’. For any
B € R, Pos(BT,§- BY) = s and pos(s - B*,$ - B) = pos(B*, B) = sw’. Thus
pos(B*,s- B) = w'. Moreover, pos(B~,5+ B™) = pos(wg - B, $wy - BT) = wgswy
and pos(s - B~,$ - B) = pos(B~, B) = wosw. Thus pos(B~,$ - B) = wpsw or wyw.
Therefore, 5 - B € Rgpu O Ryw. Note that ¢duy o(Rsww) = Rewsws- Since

¢w/s/,5/($ . B) =35 ¢sw/s/7s/(B) €S -R;Ss,’sw,s,. By induction hypothesis, ¢w/s,75,(5. B) c
Rig’w,s,. Therefore $ - B ¢ Ry and we have §- B € Rif)w"
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On the other hand, for any B € R, ¢uwss(B) € Ry e
hypothesis ¢, o(B) € §-R2° = 5 Qo s (R0

sws’ sw’s’ sw,sw’

B’ S R>O such that ¢w’s’,s’(B) =5- Qbsw’s’,s’(B/) = st’s’,s’('é : B/) Since B and

sw,sw’?

By induction

). Therefore, there exists

§- B" are contained in R, v, we have B = § - B’. Thus the theorem holds for R;gv,.
Case 2: w < ws'.
In this case, n € Jy,, and w < w's’. We assume that s = s; and s’ = s;.

If w < sw', then 1 € Jy, and w < sw's’. Take y € UM (w™"). For any B € R

w,w’?

there exists B’ € R>°

w,w’s

hypothesis, B’ = ug- BT for some u € U~ (s) and g- Bt € R° Then ¢, (B’ a) =

w,sw’s’*

, and a € Ry such that B = 9,(B’,a). By induction

ymy- (yug)yi(a) - BY. By [L1, 2.11], yu = uyyt for some u; € U~ (s),y; € Ut (w™)

and t € Tso. Then my-(yug) = my-(uyitg) = wimy-(yitg) and y~'my- (yug)y(a) -
Bt = ut™ 'y 'my- (ntg)yi(a) - BY. Since y; 'my- (nitg)yi(a) - BY € R;°,, and Ts -
R CRC., we have B € U™ (s) - R;%,,. On the other hand, U~ (s) - R, C

w,sw
B>o NRuyw =R, Thus the theorem holds for R, .
If w % sw', then 1 € J‘J{V+. Hence sw < w and sw < sw's’ < sw’. For any

B € RZY.., we have seen that § - B € Ry oF Ryw. Choosing y € Ut (w™s),

then there exists B’ = g- B* € RZ? .. and a € R, such that B = ¢, (B’,a). So

we have pos(s - B',s - B) = pos(B’, B) = pos(g - BT,y 'my-(yg)y;(a) - BT). Note
that ¢~y 'mp-(yg)y;(a) C g 'y tygBTy;(a) C Bts'B*. Thus pos($-B',5-B) = s'.

Moreover, we have pos(B~, §-B') = wow since §-B’ € R>° , , by induction hypothesis.

Therefore, pos(B~, $- B) = w or ws'. If pos(B~, $- B) # w, then pos(B~, $-B) = ws’
and pos(B~,$ - B) = sw. However, sw < w < ws’. That is a contradiction and we
must have pos(B~,5-B) = w and §- B € Ry.. Now for any a € R, we have

zi(a)s = yi(a ")y (a)xi(—a™"). Then yri(a)s - B = yyi(a™")a (a)zi(—a™") - B. By
2.2.3, z;(—a™') - B= B € Bxy. So yz;(a)s - B =yy;(a ')} (a) - B € Bsg. Note that
yxi(a) € Ut (w™"). Then we have § - B € Bxo. Hence §- B€ R,

On the other hand, for any B € R’ and y € U™ (w™"), there exists B’ € R’

and a € Ry, such that B = ¢,(B’,a). By induction hypothesis, B’ = $g - Bt
for some ¢ € G with g- Bt ¢ R>?

sw,sw’s’"

UT(w™ts) and b € Rwg. Then ysg = y12:(b)$g = y1y: (b)) (b)z:(—=b)g. By 2.2.3,

We have that y = y;2;(b) for some y; €
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zi(=bYg- BT =g-BT. So z;(—b"')g € gBT. We have that y,y;(b~") = uyst for

some u € U™ (s),y2 € UT(w™") and t € Tsg. Therefore,

B =y 'my-(yg)y;(a) - BY =y~ 'my- (uyatay (b)g)y;(a) - B
= zi(=0)yi (b~ )ty - (yatad (0)g)y;(

9)y;(a) - BY
= $2; (b)) (bt yy Ty (yater (b)g)y;(a) - BT

%

We have tay(b)g - Bt € R}, and Yy 'y (yata (b)g)y;(a) - BY € RZY

sw,sw’ "

Hence, B € sx;(b)a) (0™t 1R =5-R2° The theorem is proved. O

sSw,sw sw,sw’*

2.4 Appendix

We will give a new proof of the following property.
Proposition. We have that US,- B~ =UZ, - BT.

Proof. At first, [ will prove the following statement:

if s;w > w for i € I, then UM (w™ts;)sa0 - BY C U™ (s)UT (w™)w - BT,

For any v € Ut (w™'s;), we have u = wyx;(a) for some u; € Ut(w™") and
a € Rsg. Then usyw = uyz;(a)sii = wyy;(a )oY (a)z;(—a™)w. We have uyy;(a?) €
U=(s)UT(w™)T (see [L, 2.11]). Since s;w > w, we have w™'a; > 0 and v ™' Tx;(—a')w C
TUy-1q, C BT. Thus us;w - BY € U (s;) U (w™")w - BT. The statement is proved.

As a consequence of the statement, we can see easily that U™ (w™')w-BT C U™ (w)-
BT, In particular, U, - B~ = Uy, - Bt C UZ,- B*. Similarly, US,- BT C U,-B~.

The proposition is proved. O] [
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Chapter 3

Unipotent variety in the group

compactification

The unipotent variety of a reductive algebraic group G plays an important role in the
representation theory. In this paper, we will consider the closure U of the unipotent
variety in the De Concini-Procesi compactification G of a quasi-simple, adjoint group
G. We will prove that &/ — U is a union of some G-stable pieces introduced by Lusztig
in [L.8]. This was first conjectured by Lusztig. We will also give an explicit description

of Y. It turns out that similar results hold for the closure of any Steinberg fiber in G.

3.0. Introduction

A connected simple algebraic group G has a “wonderful” compactification G, intro-
duced by De Concini and Procesi. The variety G is a smooth, projective variety with
G x G action on it. The G x G-orbits of G are indexed by the subsets of the simple
roots.

The group G acts diagonally on G. Lusztig introduced a partition of G into finitely
many G-stable pieces. The G-orbits on each piece are in one-to-one correspondence
to the conjugacy classes of a certain reductive group. Based on the partition, he
developed the theory of “Parabolic Character Sheaves” on G.

In this chapter, we study the closure & of the unipotent variety ¢ of G in G,
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partially based on the previous work of [Spr3]. The main result is that the boundary
of the closure is a union of some G-stable pieces. (see Theorem 4.3.)

The unipotent variety plays an important role in the representation theory. One
would expect that ¢/, the subvariety of G, which is analogous to the subvariety U of
(G, also plays an important role in the theory of “Parabolic Character Sheaves”. Our
result is a step toward this direction.

The arrangement of this chapter is as follows. In section 3.1, we briefly recall some
results on the B x B-orbits of G (where B is a Borel subgroup of G) and results on
U, which were proved by Springer in [Spr2] and [Spr3]. In section 3.2, we first recall
the definition of the G-stable pieces and then in 3.2.6, we show that any G-stable
piece is the minimal G-stable subset of G that contains a particular B x B-orbit. In
the remaining part of section 3.2, we establish some basic facts about the Coxeter
elements, which will be used in section 3.4 to prove our main theorem. In section 3.3,
we show case-by-case that certain G-stable pieces are contained in /. Hence a lower
bound of I is established.

A naive thought about Z/ is that the boundary of the “unipotent elements” are
“nilpotent cone”. In fact, it is true. A precise statement is given and proved in 4.3.
Thus we obtain an upper bound of /. We also show in 4.3 that the lower bound is
actually equal to the upper bound. Therefore, our main theorem is proved. In section
4, we also consider the closure of arbitrary Steinberg fiber of G in G. (An example
of Steinberg fiber is #.) The results are similar. In the end of section 4, we calculate
the number of points of U over a finite field. The formula bears some resemblance to

the formula for G.

3.1 Preliminaries

3.1.1 We keep the notation of 1.1.1-1.1.4. In this chapter, we assume that G is a
simple group.

For J C I, let P; D B~ be the opposite of P;. Set L; = P; N P;. Then Lj is
a Levi subgroup of P; and P;. Let Z; be the center of L; and G; = L;/Z; be its
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adjoint group. We denote by 7p, (resp. WP;) the projection of P; (resp. P;) onto
Gy.

Let G be the wonderful compactification of G' ([DP] deals with the case k = C.
The generalization to arbitrary k was given in [Str]). It is an irreducible, projective
smooth G x G-variety. The G x G-orbits Z; of G are indexed by the subsets J of I.
Moreover, Z; = (G x G) X p-xp, G, Where Py x Py acts on the right on & x G and
on the left on Gy by (¢,p) - z = ij(q)ZWR](p)*l. Let h; be the image of (1,1,1) in
Z;.

We will identify Z; with G and the G x G-action on it is given by (g, h)-z = grh™'.

For any subvariety X of G, we denote by X the closure of X in G.

3.1.2 For any closed subgroup H of G, we denote by H 4,4 the image of the diagonal
embedding of H in G x G.
We will simply write U for Ut. For J C I,set Uy=UNLyand U; =U" N Ly,.

For parabolic subgroups P and @), define
PY=(PNQ)Up.

It is easy to see that for J, K C I and u € "W¥, PfPK) = Pjradw)k -

Let U be the unipotent variety of G. Then U is stable under the action of G e
and U is stable under the action of U x U and Ty;,,. Moreover, U = Ggiqg - U.
Similarly, U = Ggiay - U (see [Spr3, 1.4]).

3.1.3 Now consider the B x B-orbits on . We use the same notation as in [Spr2].
For any J C I, u,v € W, set [J,u,v] = (B x B)(4,0) - hy. It is easy to see that

[J,u,v] = [J,2,v27], where u = xz with x € W7 and z € W,;. Moreover, G =

L] || [/, z,w]. Springer proved the following result in [Spr2, 2.4].
JCI zeW/J wew

Theorem 3.1.4. Let x € W/, 2/ € WE w,w' € W. Then [K,2',w'] is contained in

[J, 2, w] if and only if K C J and there exists u € Wi, v € WyNWE with xou=t < 2,

w'u < wv and (wv) = l(w) + 1(v).
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As a consequence of the theorem, we have the following properties which will be

used later.

(1) For any K C J, w € W/ and v € Wy, [K,wv,v] C [J,w, 1].

(2) For any J C I, w,w’ € WY with w < w’, then [J,w', 1] C [J,w, 1].

3.1.5 In this subsection, we recall some results of [Spr3].

Let € be an indeterminate. Put o = k[[¢]] and K = k((€)). An o-valued point
of a k-variety Z is a k-morphism v : Spec(o) — Z. We write Z (o) for the set of all
o-valued points of Z. Similarly, we write Z(K) for the set of all K-valued points of
Z. For v € Z(0), we have that v(0) € Z, where 0 is the closed point of Spec(o).

By the valuative criterion of completeness (see [EGA, Chll, 7.3.8, 7.3.9]), for the
complete k-variety G, the inclusion 0o — K induces a bijective from G(0) onto G(K).
Therefore, any v € G(K) defines a point ¥(0) € G. In particular, any v € U(K)
defines a point (0) € G. Here we regard U(K) as a subset of G(K) in the natural

way.

We have that = € U if and only if there exists v € U(K) such that v(0) = z (see
[Spr3, 2.2]).

Let Y be the cocharacter group of T. An element A € Y defines a point in
T (k[e,e71]), hence a point py of T(K). Let H C G(0) be the subgroup consisting of
elements v with v(0) € B. Then for v € U(K), there exists 71,72 € H, w € W and
A € Y, such that v = y1wpyrvye. Moreover, w and A are uniquely determined by -~
(see [Spr3, 2.6]). In this case, we will call (w, A) admissible. Springer showed that

(w, A —w™'X) is admissible for any dominant regular coweight A (see [Spr3, 3.1]).

For A € Y and x € W with 27! - X dominant, we have that p(0) = (&, 2) - hy-1x),
where I(z'\) is the set of simple roots orthogonal to ™'\ (see [Spr3, 2.5]). If
moreover, (w, \) is admissible, then there exists some ¢ € T such that (U xU)(wit, Z)-

h](x—l/\) cU.
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3.2 the partition of Z;

3.2.1 We will follow the set-up of [L8, 8.18].

For .J,.J' C I and y € "W with Ad(y).J = J', define
74 ={(P,P',7) | PP’ P c€P” ~=UpgUp,pos(P,IP) =y}

with the G x G action given by (g1, ¢2) - (P, Q,7) = (9*P,%2P', gyvg; *).

To z = (P,P,v) € Z~§, we associate a sequence (Jy, Ji, Uk, Yr, P, Py, Vi) k>0 with
Iy Jp C 1, ug € W, yp € W7 Ad(yr)Jx = Ji, Pe € Py, B, € Py, = UprgUp,

for some g € G satisfies pos(Py, 9P;) = ug. The sequence is defined as follows.
PO :P7P(; :P/a’YO :77‘]0 = ij(/) - J/au(] :pOS(P(;ap())JyO:y‘

Assume that k > 1, that P, P., Y, Jm, Jhs Um, Ym are already defined for m < k
and that u,, = pos(P,,, Py,), P € Py,,, P}, € Py for m < k. Let
e = Jeo1 NAA(y; yun—1) o1, T = T N Ad(uye—1) Tt

/ P _ Pl
P, = g’;E1<gk—1Pk_1)(Pk—1 k 1)gk_1 ePy,Pl=P' "€ PJ;Q

where
Gk—1 € Yk—1 is such that -1 P;_; contains some Levi of P,_y N P;_,
u = pos(PL, Pr), Yr = iy yk—1, Y = Uprgr1Up,.

It is known that the sequence is well defined. Moreover, for sufficient large n, we
have that J, = J, = Jyp1 = J,y = --- and 4, = Upp = --- = 1. Now we set
B(2) = uguy - - - tp, n > 0. Then we have that 3(z) € 7W. By [L8, 8.18] and [L7,

2.5], the sequence (Ji, J}., uk, Yx )k>0 is uniquely determined by (J, 5(z),y).
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The map w — yw™! is a bijection between W7 and /'W. For w € W7, set
Ziw ={z¢€ Z}j | B(2) = yw™'}.

Then (Zg,w)lUEW‘I is a partition of Z}; into locally closed G-stable subvarieties. For
w e W’ let (Jx, Ji, uk, yx)r>o0 be the sequence uniquely determined by (J, yw™", y).
Then (P, P',7) — (Py, P{,) define a G-equivariant map ¢ : Z?j,w — "

—1 .
J1,u0 w

3.2.2 Let J C I. Set Z; = Z}UOUJ({ and J* = Ad(wowy)J. For w € WY, set

wy = wowgw ™. The map w +— wy is a bijection between W7 and 7"W. For any
we W, let

Ziw=1{2€2Z;|B(2) =wy}.

Then (Z Jaw)wew? 18 & partition of Z s into locally closed G-stable subvarieties. Let
(Jx, Ji, Uk, Ui )kso be the sequence determined by (J,ws, wowy) (see 3.2.1). Assume
that J, = J, = Jop1 = Jpy = -+ and up = Upqp = --- = 1. Set vy = w; and
v = uyt vy for k € N. By [L8, 8.18] and [L7, 2.3], we have u; € “«W”/ and
ug+1 € Wy, for all k£ > 0. Hence vy € W, for all £ > 0. Moreover, it is easy to see
by induction on k that y, = vpw. In particular, w = y,, € W7’ Ad(w)J, = J, and

w normalizes BN Lj,. We have the following result.

Lemma 3.2.3. Keep the notation of 3.2.2. Let z = (PJ,“"»71 Py Up,. 1 ibUp, ),

in—1;—1

where b € (Up, r\|UJn_l)u.’ni%’il(Up‘], NU;,_,)-- ot (Up, NU,,)T orb e B.
n n—1 1

Then z € Zj,w.
Proof. For any k, set P, = P, Pl =% Pjy. Then

PN Pl =Py Nt Py =% (Py, % Py).
Note that w;' €’ WY Then Ly N%" Ly = Ly agu )y = Lo, Thus
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.—1 .—1 L —1 . .
Ukt1 Ly, ="+1 (L, N Ly ) is a Levi factor of P, N P. Moreover, we have

1 L1
v u
P! (k PJ’) - —1 ("k PJ’) s —1
k __ k- _V k Uy,
bt =r, = k1 (PJk ) ="kt PkaAd(ugl)J' = PJ,;+1

P o=t p(RPr)y ot (kPR )y gt
P/ k __Uy (PJ,’C Jk):k (PJ]’C Jk):k PJ;;ﬂAd(ﬂk)Jk

_1')_1 _1-)—1
=" Pt nadey i) = © PAd@) i

If b € B, then set gr = wb, v, = Up;grUp, and zj, = (Py, P}, i) for all k. In this

. —1 .o —1 . . . .
case, ’”’HILJI/C+1 ="Yk+1 LJ];+1 =YLy, C¥ P, =% Py. Thus %P} contains some Levi

of P, N P/. Moreover,

p—Llyp—1g
(

1
gk—l(gkpk)( k PAd(yk)Jk+1)gk _ Pk

. 1
“k PAd(yk)Jk+l) _ b1 (Pyk PAd(@k)Jk+1)
- k

_bt _bt _
- PJ,mAd(y,;l)Ad(g)k)Jk+1 - PJkJrl - PJk+1'

Therefore, 9(z;) = z41.
Ifb = (" 0, b, 0, ") (0" 20, L by O 1 F2) - - (0] by ) (Wt "), where

bjEUpJ,_ﬂUJ for1<j<nandteT, then set
J

a = (wn—kbglbni}nw—k)(wn k— 1 b O n+k:+1) (U bkvk)( n+1— ktw_n 1+k:>‘

In this case, set gr, = wakt1, & = Up gxUp, and zj, = (Py, P, k).
FOFj 2 O, Jj+1 = Jj N Ad(yj_jl)l]] and Vj+1 € WJj. Thus wLJj+1 :ﬁ;fly'prl
Ly,., C¥%% Ly = Ly. Then Y%, % L, C Ly. So ap € P Thus

9 P, =% P, contains some Levi of Py, ﬂvk PJ/ Moreover,

—1
=19 ("% Paag)a.q) . _agt
9k ( kPk) @rMTer1’ gp =41 PJk+1'

Thus 9(z) = (Q,Q',7), where Q =%+ Py, Q' ="+ Py and +' = UggUq.

Note that ”k+1Up, C @ and T C Q. Moreover, for j > 1, ¥’ ”HJHUJ v
kJrl

- —1
Ly, cw Ly, —Ot1dkt Ly, ="+ LJ;C+1 C @'. Thus apr; € Q. Hence, 2,41 =
(ak+17 ak+1> : 19(Zk)-
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In both cases, J(z;) is in the same G orbit as zj4,. Thus

B(2) = B(z0) = wifB(z1) = -+ = wuy -+ up, = wy.

Remark. 1. From the proof of the case where b € B, we can see that
O (P, "7 Pye, ;' Up, b jibUp,) = (Py,, Py, Up, wbUp, ).

This result will be used to establish a relation between the G-stable pieces and the
B x B-orbits.

2. The fact that (PJ,“’;lPJ*,u'J}lUpJ* wbUp,) is contained in Zj,, for any b €
S Up, N Uy, )" o (UpJT,l_1 nUy, ) (UPJ{ NU,,)T plays an important

role in section 3.3. We will discuss about it in more detail in 3.3.1.

3.2.4 Let (Jn, ), Un, Yn)nso be the sequence that is determined by w; and wowy .
Assume that J, = J, = Jopu = J;; = - and 4, = Upy1 = --- = 1. Then
2+ 9"(2) is a G-equivariant morphism from Z;,, to Z}"ml and induces a bijection
from the set of G-orbits on Zj,w to the set of G-orbits on Z}"ml.

Set [:Jﬂﬂ = Ly, and C’lw = w/ij,w. Let NG(f/j’w) be the normalizer of [~/J7w in
G. Then C 7w 18 @ connected component of Ng(z Jw) and Zﬁ”ml is a fibre bundle over
P’ with fibres isomorphic to Cj,,. There is a natural bijection between C',, and
F={z2=(P),,Ps,,mw) | z € Z}"ml} under which the action of Ly, on Cj, by
conjugation corresponds to the action of P;, /Up, on F by conjugation. Therefore,
we obtain a canonical bijection the set of GG-stable subvarieties of A 7w and the set
of Lj,-stable subvarieties of C,, (see [L8, 8.21]). Moreover, a G-stable subvariety
of Z Jw 15 closed if and only if the corresponding L Jw-Stable subvariety of C Jw 18
closed. By the remark 1 of 3.2.3, for any b € BN L Jw, the G-orbit that contains

(Py, wflPJ*,u'Jb) corresponds to the ZN}JM—orbit that contains wb via the bijection.
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3.2.5 Since G is adjoint, the center of P/Up is connected for any parabolic subgroup
P. Let Hp be the inverse image of the (connected) center of P/Up under P — P/Up.
We can regard Hp/Up as a single torus A, independent of P. Now A acts (freely)
on Z; by 6 : (P,P',y) — (P,P',vz) where z € Hp represents § € A;. The action
of G on Z; commutes with the action of A; and induces an action of G on A \ Z;.
There exists a G-equivariant isomorphism from Z; to A\ Z; which sends (91,92) - hy
to (2P, 9 Py, Uglpfgng_ngQR,). We will identify Z; with A\ Z;.
It is easy to see that AJ(ZJ,UJ) = ZLw. Set Zyw = Ay \ ijw. Then

Moreover, we may identify A, with a closed subgroup of the center of L Jaw- et
Ly, = Z-/J’w/AJ and Cj, = éJ7w/AJ. Thus we obtain a bijection between the set
of G-stable subvarieties of Z;,, and the set of L;,-stable subvarieties of C},, (see
[L8, 11.19]). Moreover, a G-stable subvariety of Z,,, is closed if and only if the
corresponding L j,,-stable subvariety of C,, is closed and for any b € BN L, the
G-orbit that contains (PJ,wjl_PJ*,wb) corresponds to the Lj,-orbit that contains

wbA ; via the bijection.
Proposition 3.2.6. For any w € W/, Zyw = Gaiag - [J,w, 1].

Proof. By 3.2.3, (w,b)-h; € Z;,, for all b € B. Since Z;,, is G-stable, Ggiqy[J, w.1] C
Zjw-

For any z € Z;,, let C be the L,-stable subvariety corresponding to Ggiqg - 2
and let ¢ be an element in Ci],w such that cA; € C. By 3.2.2, w normalizes B N [Z],w.
Thus c is [N/J,w—conjugate to an element of w(B N E(Lw). Therefore, z is G-conjugate

to (w,b) - hy for some b € BN Z~}J7w. The proposition is proved. [

Proposition 3.2.7. For any w € W7, Z;,, = Giag(WwT,1) - hy.

Proof. Since (wT,1)-hy C Z;,, and Z,,, is a G-stable closed variety, we have that
Gdiag<wT7 1) ~hy C ZJ’w.
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Set X = {(t,u) -hy |t € T,u € U}. Forany u € “U;y and t € T, we have that
Ad(wt)™'u € Uy and u € “Uy C U. Consider the map ¢ :* Uy x T — X defined by
d(u,t) = (u,u)(t, 1) - hy = (wt, (wt) tuitu=t) - hy, for u € Uyt € T.

It is easy to see that there is an open subset T’ of T', such that the restriction of
¢ to “U; x T" is injective. Note that dim(X) = dim(T) + dim(U/Up,) = dim(T) +
dim(U;) = dim(*U; x T). Then the image of ¢ is dense in X. The proposition is
proved. [l

3.2.8 For w € W, recall that supp(w) is the set of simple roots whose associated
simple reflections occur in a reduced expression of w. An element w € W is called a
Coxeter element if it is a product of the simple reflections, in some order, or in other

words, |supp(w)| = [(w) = |I|. We have the following properties.

Proposition 3.2.9. Fiz i € I. Then all the Coxeter elements are conjugate under

elements of Wi_;.

Proof. Let ¢, be Coxeter elements. We say that ¢’ can be obtained from ¢ via a

cyclic shift if ¢ = s;,8;, -+ ;, is a reduced expression and ¢ = s;,¢s;,. It is known

that for any Coxeter elements ¢, ¢/, there exists a finite sequences of Coxeter elements
¢ = Co,C1y...,Cn = ¢ such that ¢x41 can be obtained from ¢ via a cyclic shift (see
[Bo, p. 116, Prop. 1]).

Now assume that ¢ = s;,5;, - -+ s;, is a reduced expression of a Coxeter element.
If i1 # i, then s; cs;; and c are conjugated by s;, € Wi_g;. If 41 = i, then s; cs;, =
SiySis*** Si, C(SiySis -+ 8, )L, Therefore, if a Coxeter element can be obtained from
another Coxeter element via a cyclic shift, then they are conjugated by elements of

Wi_iiy. The proposition is proved. [l
Remark. The proof of [loc. cit] also can be used to prove this proposition.

Proposition 3.2.10. Let J C I and w € W with supp(w) = I. Then there ezist a

Cozeter element w', such that w' € W7 and w' < w.

Proof. We prove the statement by induction on [(w).
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Let i € I with s;w < w. Then s;w € WY, If supp(s;w) = I, then the statement
holds by induction hypothesis on s;w. Now assume that supp(s;w) = I — {i}. By
induction, there exists a Coxeter element w’ of W;_g;, such that w' € W7} and
w' < s;w. Then s;w’ is a Coxeter element of w and s;w’ < w.

Since w' € Wi_g;y, (w')"'ay is either o; or a non-simple positive root. We also have
that w’ is a Coxeter element of Wi_g;. Thus if (w')te; = «, then < a, Oz}/ >= 0
for all j # i. It contradicts the assumption that G is simple. Hence (w')'a; is a
non-simple positive root. Note that if s;w’ ¢ W7, then s;u’ = w's; for some j € J,

that is, (w')"'a; = a;. Therefore, s;uw’ € W7. The proposition is proved. O

Corollary 3.2.11. Leti € I, J =1 —{i} and w be a Cozeter element of W with

J
we W Then [gc s Uwews supp(uw=r Zxw C Ziw.

Proof. By 3.1.4, [K,wv,v] C [J,w, 1] for K C J and v € W,. Since Zy,, is G-stable,
(0~Mi0T, 1) - hgx C Zju. By 3.2.9, (W'T,1) - hg C Zj,, for all Coxeter element w'.
By 3.2.7, Zk . C % for all Coxeter element w’ with w’ € WX. For any u € WX
with supp(u) = I, there exists a Coxeter element w’, such that w' € W& and w' < u.
Thus by 3.1.4, we have that [K,u,1] C Z,,. By 3.2.6, Zx., C Z;,. The corollary is

proved. [l

Remark. In 3.4.4, we will show that the equality holds.

3.3 Some combinatorial results

3.3.1 Fix ¢ € I. Define subsets I of I for all £ € N in the following way. Set
I, = {i}. Assume that [} is already defined. Set

Lipi ={ay | j € I = U I, < o),y > 0 for some m € I}

It is easy to see that if ji,jo € I with j; # jo, then < ozjl,a]V2 >= (0. Thus

= Hje[k s; is well-defined. For sufficiently large n, we have I,, = I,41 = -+ = &

k

and s;, = s;,,, = --- = 1. Now set wy, = sy,s1,_, --- s, for & € N. We will write
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w’ for wy. Set J_; = I and Jy = J = I — {i}. Then w’ is a Coxeter element and
w’ € WY. Let (J, J!, un, yn) be the sequence determined by w” and wywg . Then we

Jk Jk

Jr—1 Jrer1
Wy S, Wy Wy~

can show by induction that for & > 0, Ji = Jy—1 — 41, up = wy
Y = wgk‘lwg)]’“sfks[k_l sy, and J; = Ad(yx)Jr. In particular, J, = @. Thus
L Jw’ = T and C Jwr = w'T. Since w is a Coxeter element, the homomorphism
T — T sending t € T to (w”) " 't’t~" is surjective. Thus L, acts transitively on
C~'J7wj. By 3.2.5, G acts transitively on Z;,,s.

For k € N, we set vy = wg’“’lwbj’“w,;il. Then it is easy to see that @EI(UPJ]; N
Us,,) ="+ (Up; NU, ). Therefore by 3.2.3, (17, 1):h; € Zy,,» for all b e
(Up, NU, _l)w”‘zwﬂ(UPJ;il NU;,_ )2 (Up, NULT.

In the remaining part of 3.3.1, we will keep the notations of J, Jj, w’ and wy, as
above. Let X be a subset of G such that for any admissible pair (w, \) and z € W
with 7' X is dominant, there exist ¢ € T', such that Ggiag(U xU)(wit, &)-hy-1x) C X.
(An example is U.) We will show that Z Jw’ C X for all i € I. The proof is based on

case-by-case checking.

Remark. The outline of the case-by-case checking is as follows.

For A e Y, we write A\ > 0if A € >~ ., R0y

We start with the fundamental coweight w;. Find x € W that satisfies the
conditions (1) zw; > 0 and (2) for [ € I, either (s; — 1)zw;” > 0 or s;zw, # 0. Such
x always exists, as we will see by case-by-case checking. The elements zw,” that we
obtain in this way are not unique, in general. Fortunately, there always exists some
x € W that satisfies the conditions (1) and (2) and allows us to do the procedures
that we will discuss below.

In the rest of the remark, we fix such z. Since zw,” € Y, there exists n € N, such
that nzw,” is contained in the coroot lattice. Set A = nzw,’. Now we can find v € W
such that (v, \) is admissible. (In practice, we find v € W with [(v) = [supp(v)| and
—vA = 0. Then we can use lemma 3.3.2 to check that if (v, \) is admissible.) By the
assumption on X, Guiqe(U x U)(0dt,2) - hy C X for some t € T'.

In some cases, z vz = wy. Since wy is a Coxeter element, (w;T,1) - h; =

Tdmg(wjt, 1) -hyC X. By 3.2.7, ZJ’wJ c X.
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In other cases, the situation is more complicated. We need to choose some u € U,
such that (uoit,z) - hy € Z;,,. This is the most difficult part of the case-by-case

checking. The lemma 3.3.3 and lemma 3.2.3 will be used to overcome the difficulties.

Throughout this section, we will use the same labelling of Dynkin diagram as in
[Bo]. For a,b € I, we denote by s, the element sps5_1 - - - s, of the Weyl group W

and.éhb]ZZSbéh_l---éa.(Ifb‘< a,then_shﬁ]::l and_éhb]::l)

. with |supp(x)| = n. Then (1 —z Hw! =0 if

k & {iy,ig,...,i,} and (1 — x_l)w;; = Si,Sin_y iy Q- Thus (x,A) is admissible

n
forall X € Y70 Nsi si, - si,,0)

15"

Lemma 3.3.2. Let x = 54,8, 5;

The lemma is a direct consequence of [Bo, p. 226, Ex. 22a].

Lemma 3.3.3. Let w,z,y1,y2 € W and t € T. Assume that y1 = 8i,Si, " Si,

Vv
ill’

Yo = Sip1Sips Siy, With k + 1 = |supp(yiy2)|.  If moreover, < « @, >= 0

for all 1 <1y <y <1 and (1 — yrye)zw,’, (1 — y1)ww, € Zle R>()Oé;;, then there
U_,—1

1. 1,
gy Wy, g

U) (UJt, y1y2x) ’ hJ-

exists u € U_,, ---U_w—lain such that (2~ but, 1) - hy € Gaiag(U X

Proof. We have that (1 — yyyp)aw) = SFH1 — 5i,)8i,41 zw,’. Note that

PR Sll+k.

i1,12, ...,k are distinet and (1 — s;)s;,,, - rw, € Ra;/j for all j. Hence (1 —

" Sk

\% V ros V
8i; )iy 1 " Sip, TwWy € R>0aij forall j,i. e., < s, -+ sj 2w, a;;, >€ Rsg. Therefore

a8 804, Uay $igyy - S0, @ C Up,. Similatly, we have that w™'U_a, 0 € Up-
for 7 < L.
There exists u; € Ual.j and u; € U_aij such that w;s;;u; = u; Note that

I, / .1 .
Uy - U € Lrogi ), gk € Uplf{i“rk} and 7 w4, C Up,. Thus

/! / s / ;. . ! . / S
u1u2 A ul+kZE — u1u2 R ul+k_1ul+kszkul+kw E Upli{ik}u1u2 ul_‘_k_lszkaPJ

! / . .
C UU1UQ R Ul+k7182k$UpJ

We can show in the same way that wjuj-- -y, @ € Ujn922Up,. Therefore,

(wt, wyuh - up @) - hy € (U x U)(wt, §192&) - hy. Set u = W uj qu), o uj, W
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and v’ = ¢t~ (uyuy - w) Tt € Up-. Then

(& Mut, 1) - hy = (& wutd, 1) - hy = (&7 (Wjuly - up,) " ot 1) - hy

€ Gaiag(U x U)(wt, §1322) - .

3.3.4 In 3.3.4 to 3.3.7, we assume that G is PGL, (k). Without loss of generality,
we assume that i < n/2. In this case, w’! = s[iﬂ,n_l]s[_lli]. For any a € R, we denote

by [a] the maximal integer that is less than or equal to a.

For 1 < j <, set a; = [(j — 1)n/i]. For convenience, we will set a;+1 = n — 1.
Note that for j <i—1, aj41 —a; = [jn/i] — [(j — 1)n/i] = [n/i] > 2. Therefore, we
havethat 0 = a1 < a1+ 1<as<ay+1<---<a; <a;+1< a1 =n—1. Now set
bop=0. For k € {1,2,...,n— 1} — {ag,as3,...,a;} —{as + 1,a3+1,...,a; + 1}, set
by =1i. For j € {2,3,... i}, set by, = (j — 1)n —iay, and by, 11 =i — by, .

J

Now set v = Slar+1,a2 8, 0] Slazt1,as ey o] """ SlactLaii1—dbg, ol where 0, is the

Kronecker delta. Set v; = S(u; 11041150514+ 1aj42] " Slai+laipq) 08 1 < J < 4. Set
_ i aj41—aj —1 .V .

A= Zj:1 Yot bayk(Sfaj41,0,4k-1)V541) 41, 1t is easy to see that for 1 < a <

b<n—land 1 <k<n—1,

(
b % ; _ .
Zl:a—lal ) if k=a—1;
b % ; _ .
_Zl:aal ) 1fk:—a,
vV o_ v .
Slabl O = § a)_y, if a <k <b
v v el )
ay +ay g, itk=0+1,
), otherwise .
\
-1,V
If baj"’k # 0, then (8[aj+17aj+k*1]S[aj+1+1,aj+2*5baj+2,0} T S[ai+17ai+1*5bai+1,0]) Qojpk =

(s[aﬁl,aﬁk_l]ij)_laZﬁk. By 3.2, (v, \) is admissible.
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We have that

i ajr1—aj—1 i
A= VS +>» b st o)
a +k ]+1 [a]+1 a;+k— 1] a; +k aj+1 J+1 l[aj+1,a;41—1] " aj+1
J=1 Jj=1
i Qj+1— aj—l k ajr1—aj+1 a;41—a;
§ E E § E Vv E \%
- baJ+kaa +1 + ba]+1 O[aj-‘rl + baz‘+1 Oéarf—l
k=1 =1 =1 =1

1 Gj4+1—05
= E E § ba]+kaa 41t E :ba]ﬂ Qg +1
j=1 k=1 I=1

i Gj+1—0a5 Aj4+1—0a5
=2 2 2 buna +z+Zbam a1
j=1 i=1

1 Gj4+1aj
=>. (@41 —aj = D)i+baypy )y g+ ((az = 1)i + by ) of
j=1 (=2
+ (b“J + <a]+1 a; )Z + baJ+1 + ba3+1) a +1
=2
i ajy1—aj

((aj41 —a; — i+ baHl)oszH = nrw, .

<
Il
—_
o~
Il
-

Note that a; > j for j > 2. Set z; = 1 and x; = S[j11,a;,1]5[+2,a;42] * " Slisa;] OT

1<j<i—1 If j =1, we will simply write x for z;.

Lemma 3.3.5. For 1 < j < i, we have that

nTjw Zln—zal—kaﬂ n—zl

1 A1 —0ak

+ Z Z ak+1 — Qg — l>i + bak+1)a;/k+l‘

k=j+1 =
In particular, nzw,’ ZJ ST ((agen —ag — Ui+ bajﬂ)(xgﬁl.

Proof. We will prove the lemma by induction on j. Note that nw; = Z;;} l(n —
Doy +S°7-"i(n — 1)y, Thus the lemma holds for j = 1.

Note that jn —i(a; +1) = jn —iaj11 +i(aj1 — a; — 1) = ba,,, +i(aj1 —a; —1).
Assume that the lemma holds for j. Then
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aj41 7 Ap+1—0ak

7j—1
nT;_1w; = Sjja,] (Zl n—i)o) + Z n —il)ay + Z Z (arr —ap — )i+ bak+1)04¢\z/k+z)
=1

k=j+1 I=
Jj—2 a; aj
=Y ln—i)a) +(j—1)(n—1) ZO‘Z n—z)Zozlv—l— Z(jn—il)a;/_l
I=1 I=j—1 I=j I=j+1
aj41 7 Ap+1—0ak
+ (Jn —ila; + 1)) (o, + oy, ) + Z (jn —il)oy + Z Z ((aksr — arp = 1)i + bay,, ) ovy, 4
I=a;+2 k=j+1 1=l
Jj—2 aj aj aj
=S dn iy + G- D =) Y af — i)Y af + Y (n—il)ai.
=1 I=j—1 I=j I=j+1

1 Qk41—0af

+ (jn —ila; +1))ay + Z Z ((ars1 — ax — 1)i + by, ) oy,
J

= ln—i)oy + (= (n—i)a) ; + Y _((F = )(n—i)—j(n—i)+jn—i(l + 1))
=1 =y

i Gg41—0ag
+ Z Z (<ak+1 —ap — )i+ bak+1)a:k+l
k=j =

i Qp41—0ag

j—2
:Z n—z ozl + Z j—ln—ll Q —1—2 Z ak+1_ak_l)i+bak+1)al\z/k+l-
I=1 k=j I=1

l=j—1
Thus the lemma holds for j. m
Lemma 3.3.6. We have that x ‘vz = w”.

Proof. If a; > j+1, then st 0y 2] SlasHlag41] = Sg-l‘rl o Jj>2anda; <j+1, then

Jj=2,a; =2 and s[’3 ag] Slazt1ag) = 1 = - In conclusion, 51

5[3 a ]—l—l ajy1] Slaj+l,a41] =

s&ilﬂ ] for j > 2. Moreover, Sp2, aQ]S[a1+1a2] = s1. Thus

-1 -1

512,a2)V15[2,02] = S[2,45)5la1+1,a2]V25[2,a2] = S1V25[2,a5] = V2515[2,a0] = V25(3,a2]5152

st ViS5 soLosp =5 ! S Viq18[; sobosp
j+1,a511] V32l Las1°[1,5)°+Las1] = °[i4+1,a;41]7 @5+ 1Lai41] Yi+1°90+1a5]1°[1,4]° i+ La; 1]

—1 -1 — . -1 . . — V. . ~1
Sli+1,a; Vi+H1Sl+1L,a;]51 51U+ Laj 1] = Yi+1Sp 51S0+2.a501]S5+1 = Vit1S[j4+2,a541]50,541)-

Thus, we can prove by induction on j that x tvyz = z;lvjs[j+17aj]sﬁ}j]$j for 1 <

j <. In particular, 7 tv .z = S[i+1,n—1]3[;}i]' The lemma is proved.
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3.3.7 By 3.3.4 and 3.3.5, there exists t € T, such that (U x U)(vit,z) - hy C X.
Consider K = {a; | b,; = 0}. Then for any j,j' € K with j # j’, we have that
j—J'[ =2 2and <o),y >=0. Set y = [[;c5 sj- Then y is well-defined. Note that
(I —y)yrwy, (1 —yvzw € 3. Rooa). By 3.3.3, (¢~ 'goit, 1)-h; € X. Therefore,
(27 'goit, 1) - hy € X. By 3.3.6, 2 'yvx = 7 v1z = w’. Therefore, Z;, N X # 2.
By 3.3.1, G acts transitively on Z,,. Therefore Z,,, C X.

3.3.8 We assume that G is of type C),, and set

1, if2]74
€ =
0, otherwise.
N t oy = . . 1 -1 -1 d _
-1 -1 -1 v
Sinte—tn]Spte—3m] * Sh—it2n]" Set A = ay/_ z+1+an i3t +Ozn_€. Then we have

that (v, \) is admissible.

—1 51 )
[i—i+1,4]7[i—i.5-1] 12]

i—1<j<n-—1,s. Then we can show by induction that z; ;)\ = Zk vkay i+

Now set ' = > .., min(i,j)a; € Nw;/. Set z;; = s for
jer J

. n
i) =00y - In particular, z1w;” = Zk:l kool iy

S ~1 ~1 —1
For0 < j < (i+e—1)/2,set @25 =S, 0 01Sin iyajon] """ Spit2n- LhEN We can
show by induction that @y a1 N = 32070 aY 01 or + Sy Lo i+2541- In particular,

we have that zox1 A = A. Therefore, there exists t € T', such that (U, U)(0&od1t, Tod1)-
hy C X.

Now set y1 = Spte—15n4e-3 "+ Sn—i and Yo = S p—j—y). For 1 < j<n—¢—1, set
Br = —(vrewi)'ay, = —aypi. Thus by 3.3, there exists u € Us U, -+ U, _,, such
that (] @y §1ptdediut, 1) - hy € X.

For 0 <j < (i+e—1)/2, set

-1
Vg,5 = 5[1,n—i]<5n7i+25n7i+4 T 5n7i+2j)<5n72'+15n7i+3 T 5n7i+2j71>5[n_i+2j+17n]-

It is easy to see that sp,_jjojn 2 Therefore, we can show by

1 . 4
JSm—it2im] = V24-1-

induction that x, 'yiysvrs = xi;vljxg,j for 0 < j < (i +€—1)/2. In particular,
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-1 _ —1
Ly Y1Y2VT2 = S[1,n—iSpp_it1 0]

Fori—1<j<n—1,setv; = s[l,j,i+1]s[j+27n]sglﬂ.ﬁ’jﬂ]. Then we have that

-1

-1 o ) . . -1 )
Slj—it1.41 V155 i1, = VLj—1- Therefore, we can show by induction that x; S[Ln—ilS[n—i+1,n

zy vy 1y for i —1 < j < n— 1. In particular, x5 y1y2vz2 = Sli+1n]S[p ) = W
~1 —ntitk+lg o 1 _ N : —
Moreover, w,,~, ,  w Be = w, i gy (—an_1) = =D, . Since n
an—i—k—1,:

ke Jy_i—p_1— ik, Uﬁk cv Wn—i—k+1 (UP; mUJ_nfifkfl). By 3.3.1, we have

n—i—k

that (i1 'dy g19e0iaiiut, 1) - hy € Z;,0. Therefore, Z;,0 C X.

For type B,,, we have the similar results.

3.3.9 In 3.3.9 and 3.3.10, we assume that G is of type D,. In 3.3.9, assume that
1< n—2.

; — — Y \ Y
If 2 | ¢, then set v = Sp_iSp—it2 " Sp—2, A = Qy_; + ) ;. 9+ -+ a,y_, and

-1 -1 1 -1 -1 -1
r = <S[n71,n}5[n73,n] T S[nfiJrl,n})(S[nfifl,an]8[n7i72,n73] e S[l,i])‘

If 2 14, then set v = (Sp—iSn—it2 - Sn—1)Sns A =, + ) o+ -+ a) 3+
-1 -1 -1 -1 -1 -1
1/2(0p_y + o) and @ = (S[n—2,n]5[n—4,n] e S[n—i—i—l,n])<S[n—i—l,n—2]S[n—i—2,n—3] e S[l,i]>‘
By the similar calculation to what we did for type C,,_1, we have that in both
cases (v, \) is admissible and z7!\ = w)”. Moreover, by the similar argument to what

we did for type C),_;, we can show that Z,,, C X.

3.3.10 Assume that i = n. Set

1, if2][n/2];

0, otherwise.

— _ 1 1 1
If 214n, set v = Sppe1(5183"*Sn_2)Sn—c, T = Sn+5*1(8[n—3,n]s[n—5,n] . S[Q’R})Sn,1

and A =3ay_ + 1oy, |+ 251_03)/2 gy, Then A = 2zw,” and (v, \) is admissible.

Set y = $984 -+ Sp_3. Then (vit,y ') -h; € X for some t € T. By 3.3, (x " yoit,1)-
-1

hy € X. Since 2~ tyvx = Sn—18[ 950 = w’, Zj,,0 C X.
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— — AV n/2=2 v
I£2]n, set v=_s1838p-3)Sn—e; A=+ D ;7 " ai;y; and

S984, if n =4,

-1 -1 -1 .
Sn*QSnJFG*l(s[n747n]8[n76,n} _ 3[2771])5”,1, otherwise.

Then A\ = 2zw,’ and (v, A) is admissible. Therefore, there exists ¢ € T, such that
(U, U)(0xt,z)-hy C X. Set y1 = 8954+ Sn_2, Y2 = Spye_1 and = —(vx) a1 =
—y, 9. By 3.3.3, there exists u € Ug and t € T, such that (2~ 'g19p02ut, 1) - hy € X.

-1

— o
Hn—25n = W and

It is easy to see that z 'y yovr = 5,15

3 .
. — >, if n = 4;
WQ /6 -

n—2 .
- Zz:n/Q,l «y, otherwise.

Note that Jy =1 — {n} and J; = I — {n —2,n}. Thus Ug C*? (UP; NnU;,)- By
1
3.3.1, Zj0 C X.
Similarly, ZI_{i_1}75n8_1 c X.

1,n—2]57—1

3.3.11. Type Gy Setv =s;, z =w’ and A = ) = zw). Then (v, \) is admissible.
Set y = s3_;, then (27 1goat,1) - hy € X for some t € T. Note that z~'yvzr = w’.
Therefore, Z;,,, C X.

3.3.12. Type F, If i = 1, then set v = sy, ¥ = sy5,w? and A\ = ay = 7wy.

1044 = —(Oég -+ 063).

Thus (v, \) is admissible. Set y; = s153, o = s4 and f = —(vz)~
Then there exists u € Uz and t € T, such that (2 ¢ 920dut, 1) - hy € X. Note that
v = w? and wy ' B = —(ag + 2a3 + a4). By 3.3.1, Z;,0 C X.

If i = 2, then set v = s183, ¥ = syw? and A = af + ay = zwy. Thus (v, ) is
admissible. Set y = sys4, then (27 'g0it,1) - hy € X for some t € T. Note that
zyvr = w’. Thus Z;,0 C X.

If ¢ = 3, then set v = sp54, * = szw? and A = 2o + o = zwy. Thus (v, )
is admissible. Set y = sys3, then (27 'goat,1) - hy € X for some t € T. Note that

zyvr = w’. Thus Z;,0 C X.
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If i = 4, then set v = s3, © = sy5,w? and A = ay = zwy. Thus (v, \) is admissible.
Set y1 = s984, Y2 = 51 and = —(vz)'ay = —(ag + 2a3). Then there exists u € Ug
and t € T, such that (2 'g904ut,1) - hy € X. Note that z 'y yovr = w’ and
wy ' B = —(a1 + 202 + 2a3). By 3.3.1, Z;,0 C X.

3.3.13. Type Es If i = 1, then set v = 51555355, T = 515453515¢w”’ and \ =
af +2ay + af + 2o = 3zwy. Thus (v, \) is admissible. Set y; = s4, y2 = s and
B = —(vr)lag = —(a3 + as + as). Then there exists u € U and ¢ € T, such that
(2 g ipidut, 1) -hy € X. Note that 7'y ypvr = w’ and wy '3 = — (o + a3+ 204 +
o5 + ag). By 3.3.1, Zyus C X.

Similarly, Z7_ (6} sps1 53505556 C X-

If i = 2, then set v = 84, T = Sy83855480w’ and A = ay = 2w). Thus (v, \)
is admissible. Set y; = s98385, y2 = 8186, 1 = —(vr)lay = —(ay + az) and
By = —(vz)tag = —(az + ay). Then there exists u € U U, and ¢t € T, such
that (i~ '91g00dut, 1) - hy € X. Note that z~y1yove = w’, wy' 6 = — 35 5 a; and
wy ' By = —(a1 + a3+ ag + a5). By 3.3.1, Z;,0 C X.

If i = 3, then set v = 5356515455, T = S283545153w”7 and A = 2ay + oy + 3oy +
S5ay + af = 3zwy. Thus (v, ) is admissible. Set y = sy, then (7 'goat,1) - hy € X
for some ¢ € T. Note that = 'yve = w’. Thus Z;,s C X.

Similarly, Z;_ (5} sys1 53505655 C X

If i = 4, then set v = s38385, ¥ = s4(w”’)? and A = o + ay + 5aY = rwy. Thus
(v, \) is admissible. Set y = s18456, then (2~ 'gvit,1) - hy € X for some t € T. Note
that z~'yve = w’. Thus Z;,s C X.

3.3.14. Type E; Ifi =1, thenset v = s4, ¥ = $351895554835157(w”’)? and \ = ) =
zwy. Thus (v,)) is admissible. Set y; = $35285 , Y2 = 815657, f1 = —(vz) oy =
— S gan Bo = —(vr)lag = —(ay + as) and B3 = —(va)lay = —(ag + az +
ay). Then there exists u € U, Us,Ups, and ¢t € T, such that (2~ 'g19e02ut, 1) - hy €
X. Note that 27 'yppve = w’, wy'f = —ay — 217:2 o, wy By = —2?22 oy and

wy (w!) 1B = —(az + a4 + a5 + ag). By 3.3.1, Z;,0 C X.

66



If i = 2, then set v = s9835557, T = s48087(w’)> and A\ = ay + 20 + ) +af =
2zwy. Thus (v, \) is admissible. Set y = s1s486. Then (i~ 'yoit,1)-h; € X for some
t € T. Note that 2~ 'yvr = w’. Thus Z;,s C X.

If i = 3, then set v = sy8385, © = sy545357(w’)? and A = ay + ay + ) = 2wy,

1Oé7 = —(Oé4 -+ 065).

Thus (v, A) is admissible. Set y; = s15456, y2 = s7 and § = —(vz)~
Then there exists u € Ug,Up,Up, and t € T, such that (i 'gy9208ut,1) - hy € X.
Note that ' y1y20r = w’ and wy '8 = —(ao + a4 + a5 + ag). By 3.3.1, Z;,0 C X.

If i = 4, then set v = 515486, T = S9535584(w”)? and A = o) + 2ay + af = 2wy.
Thus (v, \) is admissible. Set y = s9538557. Then (i 'yvit,1) - hy € X for some
t € T. Note that 2~ 'yvx = w’. Thus Z;,s C X.

If i = 5, then set v = s9535557, T = s45655(w”)? and A\ = a + 2o + 30 + ay =
2zwy. Thus (v, A) is admissible. Set y = s;548¢. Then (2~ 'yvit,1)-hy; € X for some
t € T. Note that 2~ 'yvr = w’. Thus Z;,s C X.

If i = 6, then set v = 8486, © = s1858786(w”?)® and A = af + af = rwy. Thus
(v, \) is admissible. Set y; = $9838557, ¥2 = 51 and 3 = —(vz) tay = —(az+as+as).
Then there exists u € Ug and t € T, such that (¢~ 'g19902ut, 1) - hy € X. Note that
 yypvr = w’ and wy'B = —ay — 3, . By 3.3.1, Z;,,0 C X.

If i = 7, then set v = S98557, T = 578455565751 (w')? and A = ay + af + o =
2zwy. Thus (v,)) is admissible. Set y; = s486, Yo = 8351, B1 = —(vr)laz =
—(az + a4 + as) and By = —(vz)ta; = —(ag + a4 + a5 + ag). Then there exists
u € Up,Up, and t € T, such that (279, 9902ut, 1)-h; € X. Note that 27 y yovr = w?’,
wylf =~y — S0 ap, wit(w!) By = —ay — 3, ou. By 3.3.1, Z;,0 C X.
3.3.15. Type Eg If i = 1, then set v = 8485, ¥ = 8351528554535188(w”)® and
A=) +af =zw. Thus (v,\) is admissible. Set y; = $2535557, Y2 = 5188, [1 =
—(vz)ray = —aq — S0 ,ap and By = —(va)tag = — 3, q. Then there exists
u € Ug,Up, and t € T, such that (i~ 'g,9904ut, 1)-hy € X. Note that ™y, yovz = w’,
wy B = —ay — s — 217:2 o and wy ' By = —ay — 2?22 . By 331, Z;,, CX.

Ifi = 2, then set v = 59838557, T = 5482875g(w”’ )% and \ = o +ay +af +ay = zwy.

Thus (v, \) is admissible. Set y = s1548¢5s. Then (27 1goat,1)-h; € X for somet € T.
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Note that z~'yve = w’. Thus Z;,s C X.

If i = 3, then set v = $9538587, T = s184535758(w”)8 and X\ = ay +ay + 20 +ay =
zwy. Thus (v,)) is admissible. Set y = s1s486s3. Then (27 'goat,1) - h; € X for

some t € T. Note that 2~ 'yve = w’. Thus Z;,s C X.

If i = 4, then set v = 51548658, T = 5285535453(w”) and X\ = o) +3a) +2a +af =
zwy. Thus (v,)) is admissible. Set y = s3838557. Then (27 'goit,1) - hy; € X for
some t € T. Note that z~'yvz = w”’. Thus Z;,s C X.

If i = 5, then set v = s9835557, T = s45655(w”)% and A\ = a + 2o + 2a¥ + ay =
zwy. Thus (v,)) is admissible. Set y = s1848653. Then (z7'goat,1) - h; € X for

some t € T. Note that z 'yvx = w’. Thus Z,,s C X.

If i = 6, then set v = s15486, T = $1555786(w”)® and A = ) + 2ay + af = 2wy.
Thus (v,)) is admissible. Set y; = s9838557, y2 = sg and 3 = —(vz) lag. Then
there exists u € Uz and ¢t € T, such that (27 'g,9902ut, 1) - h; € X. Note that

'y v = w’ and wy B = —ay — Z?:1 o. By 3.3.1, Z;,5 C X.

If i = 7, then set v = S95385, T = S575354555657(w’)® and A = ay + o + o =
zwy. Thus (v,)) is admissible. Set y; = 15486, Y2 = S78s, B1 = —(vz) oy =
—(a3 + a4 + as) and By = —(ve)tag = —(ag + ay + a5 + ag). Then there exists
u € Up,Up, and t € T, such that (279, 9902ut, 1)-h; € X. Note that 27 y,ypvr = w?’,
wy B = —oy — Z?Zl a; and wy ' (w?) 1By = —ay — Y, v By 3.3.1, Z;,5 C X.

If i = 8, then set v = s4, ¥ = s185565758(w’)® and A = o = zwy. Thus (v, \)
is admissible. Set y; = 55283, Y2 = S18¢5788, 1 = —(vxr) tay = —ay — 217:2 oy,
By = —(vr)Lag = —(az + ag +as), 3 = —(vz) tay = w! By and By = —(vr) lag =
(w”)?B,. Then there exists u € Ug, U, Us,Ups, and t € T, such that (i~ ‘g, 9.05ut, 1) -
hy € X. Note that 2~ yypvr = w’, wy' B = — Z?:?) a; — 27:1 o, wy By = —ay —
Sy wy (W) By = —ay =37, g and wy(w!) 26y = —au— 30, cu. By 3.3.1,
Zyr C X,
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3.4 The explicit description of U

3.4.1 We assume that G! is a disconnected algebraic group such that its identity
component G° is reductive. Following [St, 9], an element g € G! is called quasi-

V'= B,gTg' = T for some Borel subgroup B of G° and some

semisimple if gBg~
maximal torus 7' of B. We have the following properties.

(a) if g is semisimple, then it is quasi-semisimple. See [St, 7.5, 7.6].

(b) g is quasi-semisimple if and only if the G°-conjugacy class of g is closed in
G'. See [Spa, 1.15].

(c) Let g € G is a quasi-semisimple element and Ty be a maximal torus of Zqo(g)°,
where Zgo(g)° is the identity component of {x € G° | g = gz}. Then any quasi-

semisimple element in gG° is G°-conjugate to some element of gTy. See [L8, 1.14].

3.4.2 Let p; : G — GL(V;) be the irreducible representation of G with lowest
weight —w; and p; : G— P (End(%)) be the morphism induced from p;. Let N be
the subvariety of G consisting of elements such that for all i € I, the images under

p; are represented by nilpotent endomorphisms of V;. We have the following result.

Theorem 3.4.3. We have that

u-u=~N=\1 1| Zw

J;I weWJ supp(w)=I

Proof. By 3.2.11 and the results in section 3.3, we have that

] || “Zwcu-u

J;I weWJ supp(w)=I
For i € I, let X; be the subvariety of P(End(Vi)) consisting of the elements that
can be represented by unipotent or nilpotent endomorphisms of V;. Then X is closed
in P(End(V;)). Thus, pi(z) € X, for z € U. Moreover, since G is simple, for any

g € G, pi(g) is represented by an automorphism of V; if and only if g € G. Thus if
2z €U — U, then p;(z) is represented by an nilpotent endomorphism of V;. Therefore
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U-UCN.

Assume that w € WY with supp(w) # I and N'N Z;,, # &. Let C be the
closed L ,-stable subvariety that corresponds to N'N Z;,,. We have seen that w is a
quasi-semisimple element of Ng(L;,). Moreover, there exists a maximal torus 7} in
ZLyw (w)? such that Ty C T. Since C'is an L ,-stable nonempty closed subvariety of
Cjw, wt € C for some t € Ty. Set z = (wt,1) - hy. Then z € N.

Since supp(w) # I, there exists i € I with ¢ ¢ supp(w). Then —ww; = —w;. Let v
be a lowest weight vector in V;. Assume that p;(z) is represented by an endomorphism
A of V. Then Av € k*v. Thus z ¢ N. That is a contradiction. Therefore N' C

|_|Jg[ uwew.l75upp(w):1 Z jw- The theorem is proved. O

Corollary 3.4.4. Leti € I and J =1 — {i} and w be a Coxeter element of W with

J —
we WY, Then Zj7w = UKcJ Llw’eWK,supp(w’):I ZK,w"

Proof. Note that Z;,, C U N (Ugcy Zk). Since U and | |, Zx are closed, Z,,, C
UN Ures Zr) = Ugey L ew s supp(ury=r Zr,u- Therefore by 3.2.11,

Zo=l U 7

KCJ w'eWX supp(w’)=I

3.4.5 Let o: G — T/W be the morphism which sends g € G to the W-orbit in T’
that contains an element in the G-conjugacy class of the semisimple part g,. The map
o is called Steinberg map. The fibers of o are called Steinberg fibers. The unipotent
variety is an example of Steinberg fiber. Some other interesting examples are the
regular semisimple conjugacy classes of G.

Let F be a fiber of 0. It is known that F' is a union of finitely many G-conjugacy
classes. Let t be a representative of o(F') in T, then F' = G g4, - tU and F = Gldiag tU
(see [Spr3, 1.4]). It is easy to see that t(U—U) C N. Thus F —F = G, t(U—-U) C
N. Therefore, if (w, ) is admissible and z=! - A dominant, then there exists some

t' € T such that (U x U)(wit', &) - hy-1x C tU. Thus by 3.2.11 and the results in
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section 3.3, |_|ng Uwew s supp(uwy=r Zaw C F — F. Therefore, we have

F—F:N:u I—l ZJ7w.

Jg[ weWJ supp(w)=1
Thus F—F is independent of the choice of the Steinberg fiber F. As a consequence,

in general, F' contains infinitely many G-orbits (answering a question that Springer

asked in [Spr3]).

3.4.6 For any variety X that is defined over the finite field F,, we write | X|, for
the number of F,-rational points in X.

If G is defined and split over the finite field F,, then for any w € W7, | Z,|, =
|Gl,q7' ™) (see [L8, 8.20]). Thus

‘ZJ'LU|(1 |G’qq ( —H= Jl = Z ql(’w |J|ql(w0w)
weWw

Set L(w) = {i € I | ws; < w}. Then w € WY if and only if J C L(wyw).
Moreover, if w # 1, then L(wow) # I. Therefore

U —ul, =" 3 Zyalo = (3 ¢S S (g 1)Igteon)

J#I weW supp(w)=I wew J#I weW supp(w)=I
- (Z ¢™) Z Z ¢ (g — V!

weWw supp(w)=I JCL(wow)
_ (Z ql(w Z q (wow)+|L( wow)|

weW supp(w)=1I

Remark. Note that |G|, = > o ¢/ 2 e @0 HE@owl (see [DP, 7.7]). Our

formula for [ — U], bears some resemblance to the formula for |G|,.
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Chapter 4

The (G-stable pieces of the

wonderful compactification

Let GG be a connected, simple algebraic group over an algebraically closed field. There
is a partition of the wonderful compactification G of G into finite many G-stable
pieces, which were introduced by Lusztig. In this chapter, we will investigate the
closure of any G-stable piece in G. We will show that the closure is a disjoint union
of some G-stable pieces, which was first conjectured by Lusztig. We will also prove

the existence of cellular decomposition if the closure contains finitely many G-orbits.

4.0. Introduction

An adjoint semi-simple group G has a “wonderful” compactification G, introduced
by De Concini and Procesi in [DP]. The variety G is a smooth variety with G x G
action. Denote by Giqg, the image of the diagonal embedding of G into G x G. The
G diag Orbits of G were studied by Lusztig in [L8]. He introduced a partition of G into
finitely many G-stable pieces. The GG orbits on each piece can be described explicitly.
Based on the partition, he established the theory of “parabolic character sheaves” on
G.

The main results of this chapter concern the closure of the G-stable pieces. The

closure of each piece is a union of some other pieces and if the closure contains finitely
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many G-orbits, then it admits a cellular decomposition.

We now review the content of this chapter in more detail.

In section 4.1, we recall the definition of G-stable pieces in [L8] and establish some
basic results. The pieces are indexed by the pairs Z = {(J,w)}, where J is a subset
of the simple roots and w is an element of the Weyl group W, which has minimal
length in the coset wW;. One interesting result is that any G-stable piece is the
minimal GG-stable subset that contains a particular B x B-orbit, where B is the Borel
subgroup. The closure of any B x B-orbit in G was studied by Springer in [Spr2].
Based on his result and the relations between G-stable pieces and B x B-orbits, we
are able to investigate the closure of the G-stable pieces.

In section 4.2, we recall the definition of the “wonderful” compactification and
introduce “compactification through the fibres”, a technique tool that will be used
to prove the existence of cellular decomposition. In section 4.3, we describe a partial
order on Z, which is the partial order that corresponds to the closure relation of the
G-stable piece, as we will see in section 4.4. In section 4.4, we also discuss the closure
of any G-stable piece that appears in [L7].

In section 4.5, we discuss the existence of cellular decomposition. Each piece does
not have a cellular decomposition. However, a union of certain pieces has a cellular
decomposition. (This is motivated by Springer in [Spr2], in which he showed that a
union of certain B x B-orbits is isomorphic to an affine space.) In fact, if the closure
contains finitely many G-orbits, then it has a cellular decomposition.

The methods work for arbitrary connected component of a disconnected algebraic
group with identity component GG. The results for that component is just a “twisted”

version of the results for G itself.

4.1 The (G-stable pieces

4.1.1 We keep the notation of 1.1.1-1.1.4.
In the sequel, we assume that G is adjoint. Let G be a possibly disconnected

reductive algebraic group over an algebraically closed field with identity component
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G. Let G* be a fixed connected component of (. There exists an isomorphism
§: W — W such that §(I) = I and 9P € P°) for g € G* and P € P”. There exists
go € G such that gy normalizes T' and B. Moreover, gy can be chosen in such a way

that %L ; = Ls(s) for J C I. We will fix such go in the rest of this chapter.

In particular, if G! = G, then § = id, where id is the identity map. In this case,

we will choose gy to be the unit element 1 of G.

4.1.2 We will follow the set-up of [L8§].
Let J,J' C I and y € 7 W be such that Ad(y)d(J) = J'. For P € P/, P' € P’
define A, (P, P') = {g € G | pos(P’,9P) = y}. Define

Ziys ={(P,P' )| PeP! P e P’ ~ecUp\A,/(P,P)/Up}

with G x G action defined by (g1, g2)(P, P',v) = (2P, P, g17g5 ).
By [L8, 8.9], A,(P, P’) is a single P’, P double coset. Thus G x G acts transitively
on ZJ’y75.

Let z = (P,P,y) € ZJ,%(S. Then there exists g € v such that 9P contains
some Levi of PN P'. Now set P, = gil(gp)(lwp)g7 P = P, Define aP, P',7) =
(Pr, P[,UprgUp,). By [L8, 8.11], The map a doesn’t depend on the choice of g.

To z = (P,P',y) € Z;,5, we associate a sequence (Jp, J., tn, Yn, Po, P, ¥n)ns0
with J,, J. C I, u, € W, yn € 2W3U) Ad(y,)6(J,) = J', P, € P P € P, =
Up,gUp, for some g € G satisfies pos(P,,9P,) = y,. The sequence is defined as

follows.
P0:P7P(;:P/7/70:’77J0:J7J6:J/au0:pOS(PéaP0)ay0:y'

Assume that n > 1, that Py, P, Ym, Jm, J}, Um, Ym are already defined for m < n
and that u,, = pos(P.,, Py), P, € P/ P! € P'm for m < n. Let

Jn = Jnfl N 571Ad(y;711un71)t]n71) J, = n—10 Ad<u;£1ynfl)6(t]nfl>7

n
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(P, Ppyyn) = (Pu1, Py, 1) € Zjn,yma(see [L8, 8.10]),

Up = pOS(P,’,w Pn)7 Yn = u;ilyn—lv Tn = UP,’Lgn—lUPn~

It is known that the sequence is well defined. Moreover, for sufficient large n, we
have that J, = J, = Jup1 = Jj 1 = - = Jooy Up = Ung1 = =+ = L, Ypp = Ypp1 =
=Yooy Pa=Pojr = =P, Py =P, = =P and 7 = Yy = 0 = Yoo
Now we set 3(2) = yoo. Then we have that 3(z) € W°). By [L8, 8.18] and [L7, 2.5],
the sequence (J,,, J),, Un, Yn)n>o0 is uniquely determined by ((z) and y.

For w € W) set

Z}’fyﬁ ={z € ZJ,W; | B(z) = w}.

Then (Zf,”y s)wews(n 1s a partition of 7 7.6 into locally closed G-stable subvarieties.
For w € W°W et (J,, J!, Un, Yn)ns0 e the sequence determined by w and y. The
restriction of the map « on Z}‘jyﬁ is a G-equivariant morphism from Z}’j% s onto Z}”Lyl’g.
We also denote this morphism by «. It is known that « induces a bijection from the
set of G-orbits on Zf]”,yﬁ to the set of G-orbits on Z}”l’ylﬁ.

For sufficiently large n, ¥ = a™ : Z}‘fyﬁ — N}UWWJ is independent of the choice of
n and is a G-equivariant morphism. Moreover, ¥/ induces a bijection from the set of

G-orbits on Z}‘fy,(; to the set of G-orbits on Z}“m’wya.

4.1.3 In the rest of this section, we will fix J,y,d, w and J. First, we will give an

explicit description of J,, in terms of J, 0 and w.

Lemma 4.1.4. Keep the notion of 4.1.2. Then
Joo =max{K C J | Ad(w)d(K) = K}.

Proof. Set v = yyw™. By [H2, 2.2], v € W,;. Now J; = JNd'Ad(y;')J. Thus
Dy C Ad(y; NPy = Ad(w H)Ad(v™1)P; = Ad(w )P,

Let i € J. Assume that asi;) € Ad(y; ' )®;. Then asqy = Ad(y; a = Ad(y~1)Ad(up)
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for some a € ®;. Then aaqg)se) = Ad(ug)a. Note that aaar)se) is a simple root
and ug € W7. Then a = «; for some j € J. Hence i = §~tAd(y;')j. Therefore,
i€ JN§tAd(y;Y)J = Ji. So

J = maX{K cJ | CI)(;(K) C Ad(w_l)CI)J}

Set J), = max{K C J | Ad(w)d(K) = K}. Then J., C J. Moreover, ®5.; ) =
Ad(w 1)@, C Ad(w™)®,. Thus J., C J;. We can show by induction that J., C J,
for all n. Thus J!, C Jy. By the definition, J, = Jo N6 'Ad(w™!)J . Thus
Ad(w)d(J) = Joo- S0 Joo = J... The lemma is proved. O

4.1.5 Now set hyys = (Pr," Pp,Upip goUp,) € Zyys. For w € WO and

—~—

v e W, set [Jw,v], 5= (Bx B)(w,0) - hy.s- Then we have the following result.

Lemma 4.1.6. Keep the notion of 4.1.2. Let g € Py,. Set z = (w,g) - iLJ’y75 and

2= (w,g) - Ejl7y17§. Then a(z) = 2'.

Proof. Set P = Py, P/ =%""P}, g, = gog and v = yyw. Then v € W).
By the proof of [H2, 2.3], i’flLJ{ is a Levi factor of P N P and PY = fflPJ{,

(P')? =" Pyags(sr)- Moreover,
i}—lLJi — wyl_lLJ{ - de(Jl) _ wgole C zi/goPJ _ nggPJ.

So 9t P contains some Levi of PN P’. We have that

1 —1.-1
-1 by~ p -1 (9% ¥ " p -1
gt p)( Ad(yl)é(Jl))gl — 9 pl Ad(1)5(J1)) — 9 Prns-1ad(y-1)Ad(m)s(1)

—1
— 9Py, = Py,

Thus «(z) = z’. The lemma is proved. O

Proposition 4.1.7. We have that

—~—

Zj;jyﬁ = Gdiag ’ [J,U), 1]%5 = Gdiag : (PJawyilpJU Uwy'—lpJ,wQO(B N LJOO)UPJ)'
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Proof. 1t is easy to see that Z}”w’w’é = Giag(W, L) - iuoo’w’(;. Thus for any b € B,
o ((w,b) - }sz,y@) € Zf;’ww’(; for sufficiently large n. Therefore, Gyiag(1, B) - hyys C
A

Note that wgy normalizes (L;,_) and (L;_) N B. Thus wgoL,,, = {ligebl ™ |1 €
L, ,be L;_ N B}. Hence any element in me,w,é is G-conjugate to (), 1) - hy_ s for
some [l € L;_NB. Now let z € ijfyvé. Then ¥(z) is G-conjugate to (1, 1) - hy_ 5 for
some | € Ly N B. Set 2/ = (w,1) - hyys € Z};jyﬁ. Then ¥(z’) lies in the same G-orbit
as ¥(z). Since ¥ induces a bijection from the set of G-orbits on ny,a to the set of
G-orbits on Z?oo’w’é. Thus z is G-conjugate to z’. So Z}’jw = Gliag(, BNL;_)) hyys.

The proposition is proved. [l

4.1.8 In[L8, 8.20], Lusztig showed that Z}f% s s an iterated affine space bundle over a
fibre bundle over P7> with fibres isomorphic to Lj_. In 4.1.10, we will prove a similar
(but more explicit) result, which will be used to establish the cellular decomposition.

Before doing that, some simple results about fibre products will be discussed.

Lemma 4.1.9. Let X be a variety with G-action and Y be a subvariety such that
X =G Y. Let H be a closed subgroup of G such that if gy =y’ for some y,y' €Y,
then g € H. Consider the morphism © : G x (H -Y) — X sending (g,y) to g -y
forge G andy € H-Y. Then the morphism is invariant under the H-action given
by h(g,y) = (gh™,h-y). Denote by G xg (H -Y) the quotient, then m induces an
isomorphism G xg (H-Y) = X.

Proof. Let x € X. Then there exists g € G and y € Y such that z = ¢ - v.
The subvariety 7~1(z) of G x (H -Y) is stable under the action of H. Moreover, if
(g1, hiy1), (g2, hoye) € 74 (x) with hy, hy € H and y1,y2 € Y, then (hy gy 'gohs) Yo =
y1. Thus hy'g  gehe € H. So g € g1 H. So H acts simply transitively on 7' (z) for

each z € X. Hence, 7 induces an isomorphism G xg (H -Y) = X. O

Proposition 4.1.10. Fora € W, set U, = U NU~. Set Ef,”,%d = (Ly ,L; )(w,1)-
i:L]7y75. Then we have the following results.

(1) Z}}jm is isomorphic to G xp, ((Py.) - i?}},y,d)'
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—1,:J/

(2) (Py.) - f)’jiw = (B x B)- Lf‘,’yé o (Uﬂ“’o Wiy ) x E}‘iyﬁ, where Ef}’,yﬁ 18
1somorphic to L;_.

(3) deg(qj)T7 1)- BJ’y,(; 1s dense in Z}‘jy,(;.

Proof. 1t is easy to see that INfJU,y’(; — (), L) - hyys is isomorphic to L;_. By 4.1.7,
Z}'jy’é = Giag Diyﬁ' Consider the G-equivariant map p : Z}”oo’w’(; — P’ defined by
p(P, P,~y) = P for (P, P,7) € ZJ ws Forl € Ly and g € G, ifpoﬁ((g,g)(u'),l) .
hiys) = P, then g € Py_. Thus (Ps_)aiag - LY, 5 = (po9) " (Py).

Assume that (g, g)(w,11) - h%, s = (i, 1s) - h%, s for g € G and I3,y € L;_. Then
IP;. =pod((g,9)(w, 1) Bljy’(;) =pod((w, 1) - iL"“fM) =P;_. Soge Py_. Part (1)
is proved.

We have that (B x B)- LY, s = (B)aig(1, B)- LY, s and pod((1,B)-LY ;) = P;_.
Thus (B x B) - LY 5 C (B)aiag(Pr..)diagLy.s = (Pr.)diagL¥, 5. On the other hand,
(Pr)diagL¥, s C (Pro,Pr.) - LY, s = (B x B) LY, s Hence (Py.)- LY, ;= (B x

—1

B) - E?,y,a- Now consider 7 : (U N gyt 7= ) X ffj”y’é — (B x B) - LJ,y,g defined
by 7(u,l) = (u, 1)l for u € U N gy od 7= and | € D;,y,&'

Note that (]_,BLJOO)'HJJ%& = (1, URILJOOUJ)'B(Lyﬁ = (Us(y, LJM)‘iLJ7y75. Since w €
W), BwUs(jy = Buw = Up, L. Hence (B, BLJOO)'iL],yﬁ = (Up, _wLs(s.), L)

hyys = (Up, t,Lj.) hyys. Since wy™' € W7 and Ad(yw™!)Jo C J', then

1

Up,. = (Up, N9 U™)(Up,_ N Up,)

1

= (U A= oy (U, A ),
Therefore, (Biy, BL,.) - hyys = (U N 9= 0075 U= Y L, ) - hyys. So 7 is
surjective.
Let u € U N @=wi e 7= and li,ly € Ly_. Assume that (u,1)(w, ) - hyys =
(w,ls) - ;Lj7y75. Note that the isotropy subgroup of G x G at the point (w,1) - Bj,yﬁ
is {(U~-1 " Up,go "~ "ige) | I € “Lspy}. Thus u € Usi=1p I and L' €

Up, gy - 1l wyo for some I € “ L. Then I’ € Ly and u = 1. Thus 7 is injective.

In fact, we can show that the bijective morphism 7 is an isomorphism. The
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verification is omitted.

Part (3) can be proved in the same way as in [H2, 2.7]. O

4.1.11 For P € P’ let Hp be the inverse image of the connected center of P/Up
under P — P/Up. We can regard Hp/Up as a single torus A; independent of P.
Then A acts (freely) in the natural way on Z 76 and the action commutes with the

action of G. Moreover, each piece ZJ, ; is A-stable.

Define

Zyys ={(P,P',7)| P e P’ P eP’ ~eHp\A, (P, P)/Up}
= {(P,P',y) | PeP! P cP/ ~ecUp\A,/(P, P)/Hp}

with G x G action defined by (g1, g2)(P, P',7) = (2P, 9 P', g17g5 ).

Then Z;,s and A J\Z Jy.0 can be identified in the natural way as varieties with

1 w — ~7,U
G-action. Set Z§, 5 = Aj\Z§, 5. Then
Ziys = Upewsn L1y 5-

Set hyys = (PJ’QAPJ’,HQAPJ,QOUPJ) € Ziys, LYys = (Liws Ly )(W,1) - hyys.
For w € W) and v € W, set [J,w,v],s = (B x B)(1,?) - hj,s. Then as a

consequence of 4.1.7 and 4.1.10, we have the following result.

Proposition 4.1.12. For w € W) we have that
(1) Z%, 5 = Gaiag - [J,w, 1] 5.
(2) ZY, 5 is isomorphic to G xp,  ((Pr.)- LY, 5)-
-Joou-)-—l
(3) (Pr.)- L3, s=(BxB)-Lj, ;= UN"""
isomorphic to Ly, /Z(Ly).

od 77 .
Yo U™) x LY, 5, where LY, s is

(4) deg(wT, 1)- hjys is dense in Z‘j”yﬁ.
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4.2 Compactification through the fibres

4.2.1 For any connected, semi-simple algebraic group of adjoint type, De Concini
and Procesi introduced its wonderful compactification G(see [DP]). It is an irre-
ducible, projective smooth G' x G-variety. The G x G-orbits Z; of G are indexed by
the subsets J of I. Moreover, Z; = (G x G) X pxpy Gy, where P; x Py acts on the
right on G x G and on the left on Gy by (q,p) - z = ij(q)zﬂpJ(p). Denote by h;
the image of (1,1,1) in Z;. We will identify Z; with Z; .y ia and by With 000 i,
where id is the identity map on I (see [H2, 2.5]).

Let us consider the B x B-orbits on G. For any J C I, w € W’ and v € W, set
[J,u,v] = (B x B)(t,0) - hy. Then G = || L] [J,z,w]. The following result is

JCI zeWJ weWw
due to Springer (see [Spr2, 2.4]).

Theorem. Let x € W/, o' € WE w,w' € W. Then [K,z',w'] is contained in the
closure of [J,z,w] if and only if K C J and there exists u € Wi, v € W; N WE with
rou~t <2/, w'u < wv and l(wv) = l(w)+1(v). In particular, for J C I andw € W7,

the closure of [J,w,1] in G is Ugcy L K, x, ul.

eeWK ueW,, and z>wu [
4.2.2 We have defined Z;, 5 in 4.1.11. As we have seen, Z;, is a locally trivial
fibre bundle over P’ x P7" with fibres isomorphic to Lj/Z(Lj). Note that L;/Z (L)
is a connected, semi-simple algebraic group of adjoint type. Thus we can define the
wonderful compactification L;/Z(L;) of L;/Z(Ly). In this section, we will define
@, which is a locally trivial fibre bundle over P’ x P7" with fibres isomorphic to

L;/Z(Ly).

4.2.3 We keep the notation of 4.1.2. Fix g € A,(P, P"). Then A,(P,P")g~' = P'Usp
(see [L8, 8.9]). Now define Lpp , =9P N P'/Hoprp and @, : Hp\A, (P, P')/Hp —
Lpp, defined by Hp\A, (P, P')/Hp o Hp\A,(P,P")g~'/Hsp & Lppr 4, where i
is the obvious isomorphism. The P x P action on Hp/\ A, (P, P')/Hp induces a P x P’
action on Lppr 4. Now for g,g' € Ay(P,P'), set ®g g = Oy @, : Lpprg — Lppry.

Then @, is compatible with the P x P’ action. Moreover, (Lppr 4, @4 ,) forms an
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inverse system and

HP’\Ay(P7 Pl>/HP = lim LP7PI’g.

Note that Lpps 4 is a semi-simple group of adjoint type. Then we can define the
De Concini-Procesi compactification Lpps, of Lppr,. The P x P’ action on Lppr,
can be extended in the unique way to a P x P’ action on m. The isomorphism
S, Lppg = Lpp g can be extended in the unique way to an isomorphism from
Lppry onto Lppr . We will also denote this isomorphism by ®, . It is easy to see
that this isomorphism is compatible with the P x P’ action. Now m, ®, ) forms

an inverse system. Define

}Ip/\fly(P7 P/)/HP = hm LP7P’,g-

We also obtain a P x P’ action on Hp\A,(P, P')/Hp. Thus we can identify
Hp\A,(P,P")/Hp with Lpp: 49 as varieties with P x P’ action.

Remark. Hp\A, (P, P')/Hp is isomorphic to Lppr, as a variety. However, we are

also concerned with the P’ x P action. In this case, Hp\A,(P, P')/Hp is regarded

as Lpp g9 with “twisted” P’ x P action.

4.2.4 In this section, we will consider a special case, namely, P = P’ = G. In this
case, A, (P, P') = G and we will identify Hg\A,(G, G)/Hg with G*.

Let Vs be the projective variety whose points are the dim(G)-dimensional Lie
subalgebras of Lie(G x G). The G x G action on Lie(G x G) which is defined by
(91,92) - (a,b) = (Ad(g2)a, Ad(g1)b) for g1, g2 € G and a,b € Lie(@) induces a GxG
action on Vg. To each g € G, we associate a dim(G)-dimensional subspace V, =
{(a,Ad(g)a) | a € Lie(G)} of Lie(G x G). Then V, -1 = (g1,92) -V, for g1, 9,92 € G
and g — V, is an embedding G' C V5. We denote the image by i(G*).

If G* = G, then the closure of i(G) in Vg is G (see [DP]). Note that V,,, =

(1,95 ")V, for all g € G. Thus i(G*) = (1,g5")i(G). Hence the closure of i(G!) in Vg
is (1, g5 ")G, which is just G* defined above.

Remark. In [L8, 12.3], Lusztig defined the compactification of G* to be the closure of
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i(G') in Vg. As we have seen, our definition coincides with his definition.

4.2.5 1In [L8, 12.3], Lusztig showed that G = LlchZJwOw(S(J) 5» Where the base point
) 0 i

hJ,wowg(J),é = (Ps, Py 5y, Hpéf(J)goHp‘,) is identified with the dim(G)-dimensional sub-

algebra {(lu, golgy *u') | 1 € Lyj,u € Up,,u’ € UP{(U} of Lie(G x G). We will simply

write hJ,wow3<J>,5 as hygs, [J,w, U]wowg(J)75 as [J,w,v]s and ijowg(“’%& as Zy5. If G! =G,

then hy;q = hy and [J,w,v];q = [J,w, ).

Note that h; corresponds to the dim(G)-dimensional subalgebra {(lu,lu’) | [ €
Ly,ueUp,,u € UP;} of Lie(G' x G). Thus hys = (1,95 " )hs(sy. Hence [J,w,v]s =
(B x B)(t,0) - has = (B x B)(i, 0)(1L,g5") - hy = (1,5} (B x B)(1b, 6(0)) - hatsy =
(1,95 ))[0(J),w,6(v)]. Thus we have the following result.

Proposition. Let J C I and w € W), Then the closure of [J,w,1]s in G is

Ugcs U K, z,uls.

Tz€WS(K) yeWy, and x2wd(u)

4.2.6 Define

Zyys ={(P,P',7)| P e P’ P e P ~e Hp\A, (P, P")/Hp}

with G x G action defined by (g1, g2)(P, P',v) = (2P, P, g17g5 ).
Set P = Py and P’ =¥ ' Pjy. Then A,(P, P") can be identified with Lp pr 4, go as

varieties with P’ x P action. Moreover, we have a canonical isomorphism between

Lppr g, and Lsy. For K C J, I will identify hsx)go with the corresponding element
in A, (P, P").

Then the G x G-orbits in Z;, s are one-to-one correspondence with the subsets of
J' i e,

Zyys =Ukcs(G x G) - (P, P, hsx)90)-

Set Y = ng(J)wg(K). Note that UPJ (LJ N UPK) = UPK and

Up: (zflLJ, N Upf ) — (11;(1 UyKP/)yf?l (ZJK?/*lLJ, N YK Upf )

5(K) 5(K)

.—1 < —1
) T
=K <UPJ’(LJI A UPAd(ymrS(K))) = UPAd(yK>6<K>'
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The isotropic subgroup of G x G at (P, P, hsxygo) is {(liug, gg Hagous) | I, 1y €

Lg(K),lllgl € Z(L(;(K)),ul S Uy—l ,Ug € UPK}- Now set Q = PK,Q/ =
K Pad(y)s(r)

i Prayg)sx)y and v = HgrgoHg. Then pos(Q', Q) = yx and (Q,Q",7) € Zkyy.s-

The isotropic subgroup of G x G at (P, P, hs(k)go) is the same as the isotropic sub-

group of G x G at (Q,Q",7) € Zky,s- Thus we can identify (P, P’, hsx)go) with

(Q,Q',7y) and (G x G) - (P, P', hsx)go) with Zg . s as varieties with G x G action.

In other words,

Zyys = l—lKCJZKyng(J)wg(K)’é.

4.3 Partial order on Z;

In this section, we will only consider subvarieties of G and for any subvariety X of

G, we denote by X the closure of X in G.

4.3.1 Let y,w € W. Then y < w if and only if for any reduced expression w =
8182+ 84, there exists a subsequence i; < i3 < --- < 4, of 1,2,...,¢ such that
Y = SiySiy - Si,. (see [L4, 2.4])

The following assertion follows from the above property.

(1) If l(wu) = l(w) + (u), then for any w; < w and u; < u, wiu; < wu.

(2) Let u,v € W and i € I. Assume that s;v < v, then u < v < su < v.

(3) Let u,v € W and i € I. Assume that u < s;u, then u < v < u < s;v.
The assertion (1) follows directly from the above property. The proofs of assertions

(2) and (3) can be found in [L4, 2.5].

4.3.2 It is known that G = Uy,ew BwB and for w,w’ € W, BwB C Buw'B if and

only if w < w'. Moreover,

BuwB, if s;w < w;
Bs;BwB =
Bs,wB, if s;w > w.

Similarly, G = Uy,ew BwB~ and for w,w’ € W, BwB~ C Bw'B~ if and only if
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w > w'. Moreover,

BwB—, if s;w > w;
Bs;BuwB~ =

Bs,wB—, if s;w < w.

Lemma 4.3.3. Let u,w € W. Then
(1) The subset {vw | v < u} of W contains a unique minimal element y. Moreover,

I(y) = l(w) — l(yw™') and BuBwB~ = ByB~.

(2) The subset {vw | v < u} of W contains a unique mazximal element y'. More-

over, I(y') = l(w) + I(yw™) and BuBwB = By B.

Proof. We will only prove part (1). Part (2) can be proved in the same way.
For any v < uw, Bv C BuB. Thus BovwB~- C BuBwB~ C BuBwB~. On

the other hand, BuBwB~ is an irreducible, closed, B x B~ -stable subvariety of G.
Thus there exists y € W, such that BuBwB~ = ByB~. Since BowB~ C ByB~,

we have that vw > y. Now it suffices to prove that y = vw for some v < u with
l(vw) = l(w) — (v).

We argue by induction on I(u). If [(u) = 0, then u = 1 and statement is clear.
Assume now that [(u) > 0. Then there exists ¢ € I, such that s;u < u. We denote

s;u by u/. Now

BuBwB~ = Bs;Buw/BwB~ = Bs;BiWBwB~.

By induction hypothesis, there exists v' < «’, such that [(v'w) = l[(w) — I(v') and
BWBwB~ = By'wB~. Thus

Bv'wB~—, if s;0"w > v'w;

Bs;Bu'BwB~ = Bs;BUu'wB~ = Bs; BvwB~ =
Bs;o'wB—, if s;o’'w < v'w.

Note that s;u < u and v' < s;u < u. Thus s;v" < u. Moreover, if s;v'w < v'w,
then [(s;v'w) = l(v'w) — 1 = l(w) — I(v") — 1. Thus we have that I(s;v") = I(v) + 1
and I(s;v'w) = l(w) — l(s;v"). Therefore, the statement holds for w. O

Corollary 4.3.4. Let u,w,w’ € W with w' < w. Then
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(1) There ezists v < u, such that vw' < vw.

(2) There exists v < u, such that uw' < v'w.

Proof. Let v < u be the element of W such that vw’ is the unique minimal element

in {vw' | v < u}. Then BuBuw'B~ = Bow'B~. Since w’ < w, we have that

BwB~ C Buw'B~. Thus

BuwB™ C BuBwB™ C BuBw' B~ C BuBW'B~ = Buow'B~.

!/

So vw > vw’. Thus Part (1) is proved. Part (2) can be proved in the same

way. ]

4.3.5 We will recall some known results about W+.
(1) If w € W7 and i € I, then there are three possibilities.
(a) s;w > w and s;w € W5
(b) s;w > w and s;w = ws; for some j € J;
(¢) s;w < w in which case s;w € W7,
(2) Ifwe W’ veW;and K C J, then v € WX if and only if wv € WX,
(3) If w € "W’ and u € Wy, then uw € W if and only if u € WX where
K = J'nAd(w)J.

Lemma 4.3.6. Let w € VW7, u € Wy and K = J' N Ad(w)J, then uw = vwu’ for

somev € Wy NWE and v € Wadw-1)k -

Proof. We argue by induction on [(u). If u = 1, then the statement is clear. Now
assume that u = s;u; for some ¢ € J" and {(u1) < [(u). Then by induction hypothesis,
uw = vywu for some v; € Wy NWE and v} € Wadw-1)k-

If s;v;w € W7, then the statement holds for u. Now assume that s;v;w ¢ W7,
Then s;v;w > vyw. Hence s;v; > v1. Moreover, s;v; ¢ WX, Thus s;v; = vysy for
some k € K. Note that s,w = ws; for some | € Ad(w™')K. Thus the statement

holds for u. The lemma is proved. [l
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4.3.7 Let JC I and w,w’ € W with [(w) = [(w"). We say that w' can be obtained
from w via a (J,0)-cyclic shift if w = s;,8;, -+ ;, is a reduced expression and either

n

(1) 41 € J and w' = s;;wssi,) or (2) i, € §(J) and w' = s5-1(;, yws;,. We say
that w and w’ are equivalent in J if there exists a finite sequences of elements w =
Wo, W1, . . ., Wy, = w’ such that wg,; can be obtained from wy, via a (J,d)-cyclic shift.

(We then write w ~ ;5 w'.)

4.3.8 Let (J,w) € Zs. For x € W, we say that x > ;5 wif x > w' for some w' ~ ;5 w.
It is easy to see that x > w =z =5 w = l(x) = l(w).

Now for (Jy,wy), (Jo,ws) € Zs, we say that (Jy,w;) <s (Jo,wo) if J; C Jy and
wy =75 we. In the end of this section, we will show that < is a partial order on Zs.
(The definition of partial order can be found in 4.3.12). Before doing that, we will

investigate some properties of > ;.

Proposition 4.3.9. Let (J,w) € Zs. Then for any u € Wy and v € Wy with

d(u) < v, we have that v wv > ;5 w.

Proof. 1 will prove the proposition by induction on |J|. Assume that the statement
holds for all J" C I with |J'| < |J|. Then I will prove that the statement holds for J
by induction on [(v).

Set w = w'y with w’ € W; and y € "W). Set K = §(J)NAd(y~")J, v = vy
with v; € Wi,vy € W and v = wjus with §(uy) < vy, 6(uz) < vp and l(u) =
[(u1) + l(uz). There are two cases.

Case 1. ug = vy = 1.

In this case, u € wg, v € Wiy and w € WOE)If |K| < |J|, then by induction
hypothesis we have that u~lwv >rs w. Thus uwv >,5 w. If K = J, then since
w = w'y € W) we have that w’ = 1. Thus v 'wv > w. The statement is proved
in this case.

Case 2. vy # 1.

In this case, [(vy) < [(v). By induction hypothesis, there exists wy ~ ;5 w, such
that w; < ul_lwvl. Let us < ug be the element in W such that uglwl is the unique

minimal element in {(u/) " w; | v/ < up}. Then I(uz'wi) = l(wy) —I(u3) and uz'w; <
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uy 'uy twvy, = wlwwy. By 4.3.6, ulw = ab for some a € W) and b € Wg. Thus
l(utwoive) = l(abvyvy) = I(a) + L(bvive) = 1(a) + 1(bvy) + U(ve) = l(abvy) + l(vs) =
I(u= woy) +1(vy). By 4.3.1, uz w1 0(u3) < u~lwv. Now assume that uz = s;,8;, - - - 5

k

and uz'w, = s;,8;, +sj, are reduced expressions. Now for m = 1,2,...,k + 1,
set Ty = (i Sippr = Sin ) (81550 =+ 55,) (86(11)58(i2) = * * So(im_1))- Lhen l(z,,) < k+1 =
[(wy) for all m. On the other hand, for any m, there exists x € W), such that
Ty = 2 'wd(x). Note that w € WY, we have that I(x " wd(z)) > l(wd(x)) —(z7) =
l(w) = l(w) for all x € W;. Therefore, I(z,,) = {(w1) and z,, ~5 w; for all m. In

particular, uglwlug = Tp41 ~js wi. The statement is proved in this case. O

Remark. 1. As a consequence of the proposition, w’ >,5; w if and only if w' >
r~lwé(x) for some x € Wj.
2. We can see from the proof that v twv > x~'wd(z) for some z < u. This result

will be used in the proof of 4.5.2.

Lemma 4.3.10. Let J C I, w € W/, u € W with [(uw) = l(u) + [(w). Assume that
ww = zv with x € W’ and v € W;. Then for any v' < v, there exists v’ < u, such

that v'w = zv'.

Proof. We argue by induction on (u). If [(u) = 0, then u = 1 and statement is clear.
Assume now that [(u) > 0. Then there exists ¢ € I, such that s;u < u. We denote
s;u by u;. Let uyw = xyv, with z; € WY and v, € W;. Then s;z; > ;.

If s;z; € W7, then the lemma holds by induction hypothesis. If s;z; ¢ W, then
there exists j € J, such that s;z; = x1s;. In this case, s;u; > vy. Let v/ < s5vy. If
v" < vy, then the lemma holds by induction hypothesis. If v/ £ vy, then v’ = s;v] for
some v] < v;. By induction hypothesis, there exists u}] < uy, such that vjw = z1v].

Thus s;ujw = z1s;v]. The lemma holds in this case. O

Lemma 4.3.11. Fiz J C I and w € W), For any K C J, w' € WK with
w' =55 w, there evists v € WU oy € W, and uy € W, such that x > wé(u) and

w = uytu" oo (uy).

Proof. Since w' > 5 w, there exists v; € Wy, such that w' > v, 'wé(v;). By 4.3.4,

there exists v < vy, such that v'w’ > wd(v1) = wd(v'). Let v be a minimal element
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in the set {v € W; | vw' > wdé(v)}. Then l(vw') = I(v) + l(w'). Now assume
that vw' = z8(v') for some x € W°E) and v € Wy. Then there exists v} < v/,
such that =z > wd(v)d(vy)~'. By 4.3.10, zd(v]) = vow' for some vy, < v. Since
l(xd(v])) = Uz) + U(v]), vuw' = xd(v]) = wo(v) = wi(ve). Therefore, vy = v
and v{ = v. So x = wd(v)d(v)"!. Now set u = v(v/)"! and u; = v'. Then
w = v 28V = u uT e (ug). O
4.3.12 A relation < is a partial order on a set S if it has:

1. Reflexivity: a < a for all a € S.

2. Antisymmetry: a < b and b < a implies a = b.

3. Transitivity: a < b and b < ¢ implies a < c.
Proposition 4.3.13. The relation <5 on the set Zs is a partial order.

Proof. Reflexivity is clear from the definition.

For (Ji,w1), (Ja,ws) € Is with (Jy,wy) <s (Jo,ws) and (Jo, we) <5 (J1,wq), we
have that J; = Jy and l(wy) = [(wy). Since wy > w) for some wh ~ ;s wy and
l(wy) = l(wy) = l(wh), wi = wy € W32 Hence w; = wh = wy. Therefore
(Ji,wy) = (Jo, wy). Antisymmetry is proved.

Let (J1,w1), (Jo,wy) and (J3,w3) € Zs. Assume that (Ji,w;) <5 (Jo,wz) and
(Jo, w) <s (J3,ws3). Then J; C Jo C Js3. Moreover, there exists x € W2y € W,
and u; € Wy,, such that z > w3d(u) and wy = uy 'u='zd(u;). Since wy >, 5 wy, there
w2z (ug). Note that [(x6(us)) = 1(z) + I(us)
and z > w3d(u). Thus z6(uz) > wsd(uug). By 4.3.4, there exists v < uug, such that

exists up € Wy,, such that wy > uy

wy = v wad(uug). By 4.3.7, wy >, 5 wz. Transitivity is proved. O

4.4 The closure of any (G-stable piece

4.4.1 We have that

G = Upew BuU 1) gy = Upew Bioird " Up— Usi1 0.

5(J)
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Moreover, BwlU~ = U 1U_BwUP;b. Thus

beU,; N~

. o s Jrr— o J .o g . J
BwUPJ— Uj; = BuwyU wy = ubeU;m<wwoJ)’1U—wa0 UPJ—wa

beU N~

Note that if w = w'u with w’ € W7 and v € W, then
PR . SN—1 . P _ Co1
Uyn® U =" (U0 ) = (U,nU;) =U; N U

Lemma 4.4.2. Let (J,w) € Zs. For anyuw € W and b € B, there exists v < u, such

that ubw € B@IDUP(;—(J) Ug(]).

Proof. We will prove the statement by induction on I(u).

If w = 1, then the statement holds. If u = s;u; with l(u;) = l(u) — 1, then
by induction hypothesis, there exists v; < uq, such that u,bw € b'0;wU P, Us(y for
some b € B. Write ' = b;by, where b; € Up,, and by € Ugy. Then $b'010 =
(85018, 1) 8sbo01 with §;015, € B.

If (0y0) thytyw € UP(;(J)U(S(J), then $;bo0,w € ,émlePg(J) Us(y). Otherwise, by #
1 and (blw)—lU{‘i}ile C UP(;(J)U(S(J). Note that $;b, € BU{;}. Thus $;bo0;0 €
B@lepé—(J) Us(s). The statement holds in both cases. O

4.4.3 Let z € (G,1) - hys. Then z can be written as z = (bwub,1) - hys with
beB,we W ye Wiy and V' € Us(y) ﬂ“ilU(s_(J). Moreover, w, u, b’ are uniquely
determined by z.

Set Jo = J. To z € (G,1) - hys, we associate a sequence (J;, w;, v;, V), ¢, %)i>1
with J; € J, w; € WU, v, € Wy, 05W, v € Wi, ¢ € Usgy,_y 020Uy, ) and
z; € (Bw¢5(v§)U5(J)5(Ui)ci, 1) - hjs and in the same Gyjqq-orbit as z. The sequence is
defined as follows.

Assume that z € (Bwd(u)Us.yy, 1) - hys with w € W) and u € W;(;). Then set
n=zJi=J,wy=wv=1v]=uand ¢; = 1.

Assume that & > 1, that Jy, wg, vg, vy, ¢k, 2 are already defined and that Jj, C
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Jk’—17 W € Wé(‘]), ijflwk C Wé(J)W(;(Jk), Vv € ij71 N JkW, U;g c ij’ Cr €

U(S(jk_l) N S(UIZI)U{(JICA) and z, € (Bu')ké‘(vfg)Ug(J)(;(Uk)Ck, 1) “hys.

Set zpi1 = (9515(vk)ckgo,go_l(;(vk)ckgg)zk. Then 2,41 € (G,1) - hys. Moreover,
by 4.4.2, there exists x; < v, such that z,,, € (Bj:kwkS(v;)Ug(J),l) - hys. Let
Yr4+1 be the unique element of the minimal length in W, xpwid(vy,) Wi sy. Set Jypi1 =
JeN6 ' Ad(y; ) Ji. Since Wy, wp C WO Wy, then zpwid(v),) = wis10(v) 1 Vks1)
for some wy1 € W), V4 € Wi and vp € Wy, N7 . Note that W wi1 C
W5<J>W5(J)0Ad(y;il)Jk. On the other hand, Wy, wiy1 C Wi, wixWiis,) C WOD W,
Thus Wy, wiy1 C (W“J)W&(J)Md(y;ilﬂk) N (W Ws 1) = WD Wy, ). Moreover
21 € (B 16 (V) Usy0 (Uhs1)Chpn, 1) - hys for a unique cpyq € Uy, N S(V’“_il)UL

This completes the inductive definition. Moreover, for sufficient large n, we have

/ /
that J, = Jppp =, Wp =Wpp1 =+, 0, =0, =+ and v, = Vpq1 =--- = L.

4.4.4 Let K C J,ye€ KW and K = Ad(y)§(K). Then for any u € W, we have
that (Byd(w)Usxy, 1) - hys C Gaiag(YLsx), B) - hrs = Gaiag(ULs(rcy, Upy ) - hys. Note
that for any | € L, there exists I’ € Ly, such that I'ggol(I')™" € ygo(Lx N B). Thus
(LK) diag(9(Lsy N B), Upy) - hys = (9Ls (i), Upge ) - hys. Hence (Byd(u)Us(xy, 1) -hys C
Gaiag(Y(Lscy N B),Upy ) - hys = Gaiag(9, B) - hys = Z3 5.

Now for any z € (G, 1) - hyg, let (2, Ji, wi, v;, V), ¢;)i>1 be the sequence associated
to z. Assume that J, = Jp1 = -, Wy = Wy = -+, U, = v, = -+ and
Up = Upy1 = +-- = 1. Then we have showed that z, € Z}’fg. Thus z € Z}’fg.

Note that for any z € Z;s, 2z is in the same G-orbit as an element of the form

(G,1) - hys. Therefore, given z € Z;5, our procedure determines the G-stable piece

Zjs that contains z.

Now we are able to describe the closure of Z75. In 4.5, we will only consider
subvarieties of G! and for any subvariety X of G, we denote by X the closure of X
in G1.
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Theorem 4.4.5. For any (J,w) € Zs, we have that

wl

ngé = Uk w)<s(hw) 2K 6

Proof. Define n' : Gx[I,1,1]s — G' by n(g, 2) = (g, 9)-z. The morphism is invariant
under the B-action defined by b(g, z) = (gb~", 7'(b, 2)). Denote by G x5 [I,1,1] the
quotient, we obtain a morphism 7 : G X m — G. Because G /B is projective,
7 is proper and hence surjective.

Note that [Jw,1]s = Ugcy U (K, uls. Since Zj; =

2eWOE) yew;, and z>wd(v)
(G X g [J,w, 1]s), we have that

7w _ Lo
ZJ,5 = Ukcy Um€W5(K),u€WJ, and 2w (u) deg [K’ Z, U]g.

For any z € [K,z,u]s with 2 € W) o € W; and x > wd(u), we have that
2 € (Bi, Bu) - hics = Guaiag(i Bir, 1) - hics © Upcut Gaiag(BUiUsiicy, 1) - hics.

Fix v < ™ and 2 € (BuiUsk), 1) - his. Let (2, Ji,wi, 05,0, ¢;)i>1 be the
sequence associated to z’. Then for any 4, there exists x; < v;, such that x;w;0(v}) =
Wit16(Vi 1 vi41). Assume that J, = Jop1 = -+, Wy = Wpy1 = -+, V), = Uy =
and v, = Upyqg = -+ = 1. Set Too = TpTp_1-- T2 and vy = U, (VU1 -+ V).
Note that 1 = v; = 1. Then z,v2 = Toow1d(v]) = wpd(vs). Since v), € W |
and v; € Wy, N7t W, we have that [(ve) = (V) + 1(vy) + W(va_1) + -+ + I(vo).
Thus Too < Voo By 444, 2" € Zy, .50z Note that v < w and l(wu) =
l(w) + {(u). Thus wé(v™) < wd(u) < x. Similarly, wo(vrz}) < zd(vy!). By 4.34,
there exist v/ < v~ 'z}, such that (v/) 'wd(v'z}) < zoovad(vy!). Thus by 4.3.9,
TooVZ(v) =55 w.

Now for any K C J and w' € W) with w’ >, w, there exists x+ € W),
u € Wy and u; € W, such that z > wd(u) and w’ = u; 'u='26(uy). Since [K,,u]s C

[J,w,1]5. We have that (¢7,4) - hgs C Z_}’f(;. Therefore (42T, 1) hys C Z_}‘j(;. Note
that u™'2 = uw'(us) ™" Then (i11'0(u1) 7 T, 1) - hics C Z5;. Thus

(07, a7 ) (0’0 (uy ) ML) - hes = (W'T, 1) - hys C Z%;.
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By 4.1.12, Z}’éié C Z_}‘j&. The theorem is proved. [
Our method also works in another situation.

o, . . /
Proposition 4.4.6. The closure of Z7, s in Zj15 15 Uyews) w>,uw 2516

Proof. In the proof, we will only consider subvarieties of Z;; 5 and for any subvariety
X of Z;,5, we denote by X its closure in Z 5.

Note that the morphism 7 : Z;; 5 — P7 defined by 7(P,Q,~) = P for (P,Q,~) €
Zj1s is a locally trivial fibration with isomorphic fibers. Moreover, ¢ : 77 1(P;) —
G'/Hp, defined by i(P,Q,v) = v for (P,Q,v) € 7 (Py) is an isomorphism. Now
[J,w,1]15 C 7Y (Py) and i([J,w, 1]1.5) = B Bgo/Hp,. Thus [J,w, 1|15 = Uw<w]J, 0, 1]15.
For any w’ € WY with w > ;5 w’, there exists u € Wy, such that w > u~'w’d(u). Thus
(40’6 (u)T, 1)-hy1 5 C [J,w,1]1s. Hence Gaiag (i 0" 0(w)T, 1) -hy15 = Gaiag(w'T, 1)-
hivs C 2% 4. S0 Z%1 5 C ZY .

On the other hand, for any z € [J,w’,1];5, by the similar argument as we did
in 4.4.3 and 4.4.4, there exists u < v € Wy, such that vw'd(v™"') € W) and
z € Zu'v". If moreover, w' < w, then w > u™ ! (uw'd(v™1))5(v). Thus w 5 uw'v™.

/ o . .
Therefore 2 € Uews() w>, 5002715 Lhe proposition is proved. O

J,6W

4.5 The cellular decomposition

4.5.1 A finite partition of a variety X into subsets is said to be an a-partition
if the subsets in the partition can be indexed X7, Xs,..., X, in such a way that
XiUXoU---UJX;is closed in X for ¢ = 1,2,...,n. We say that a variety has a
cellular decomposition if it admits an a-partition into subvarieties which are affine
spaces. It is easy to see that if a variety X admits an a-partition into subvarieties and

each subvariety has a cellular decomposition, then X has a cellular decomposition.

Lemma 4.5.2. Let (J,w) € Z5, K C J and w' € W with Ad(w")d(K) = K. If

w'v =55 w for some v € Wy, then w' > 55 w.

Proof. Fix w’ and (J,w). It suffices to prove the following statement:

93



Let u € Wy and v € Wy, If w'v > u'wd(u), then w' > ;5 w.

We argue by induction on I[(u). Assume that the statement holds for all v’ < w.
Then I will prove that the statement holds for u by induction on I(v). If I(v) = 0,
then v = 1 and the statement holds in this case. Now assume that [(v) > 0.

Set ©u = ujuy with u; € W¥ and uy € Wg. If us = 1, then v € W¥ and
wé(u) € WK By 4.3.4, there exists u' < u, such that v'w'v > wé(u). Assume that
v="1'sy for v < v and k € §(K). Then wdo(u) < wd(u)sg. By 4.3.1, wo(u) < v'w'v'.
By 4.3.4, there exists v} < v’ < u, such that w'v’ > (u})'wd(u). By the remark
of 4.3.9, w'v' > (uh)'wd(ufy) for some u) < wj. Thus by induction hypothesis,
w' =5 w.

If uy # 1. Then I(u;) < I(u). By 4.3.4, there exists uz < ug and uy < uy ', such
that uzw'vé(us) = uy wd(uy). Note that uzw'vuy = w'((w') tuzw’)vd(us) € w'Wir).

By induction hypothesis on [(u;), w' >;5 w. O

4.5.3 Let JCI. Forw e W, set

L(J,w,8) = max{K C J | we W)},
L(J,w,8) = max{K C J | Ad(w)®sx) = Pk}

Now let (J,w) € Zs. Set
Ws(J,w) ={ue W |u=;s5w, I(Jud) CL(Jud)}

For any u € Ws(J,w), set

(Jyw,d) __ uv
Xu - I—]KCII(J/M,(S) quWg(IQ(J7u7(;))ﬁW5(K) ZK,5

R uv
- l_lvGWJ(IQ(J,u,é)) Urcn(Juv,6) ZK,(S-

For w' > ;5 w, we have that w' = uv for some u € W) and v € Wi(ta(gu))-
Then Iy(J,u,0) = Iy(J,w',6) C I;(J,u,d). By 4.5.2, u >;5 w. Thus v € Ws(J, w)

/ Jw,é
and l—lKCh(J,w’,é)Z[u(}j C qu v )
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For uy,us € W(J,w) and vi € Wi,(u)), V2 € Wona(su)) With uivr = ugvs,
we have that Ir(J,uy,d) = Iso(J,ugv1,9) = Io(J,ugve,0) = Iy(J,uz,d). Note that

U, Uy € W&(IQ(J,M))‘ Thus Uy = Uy and V] = Vs.

Therefore Z_}]'f& — uUGWg(J,w)X£J7w76),

Lemma 4.5.4. Let (J,w) € Zs. Set Iy = I1(J,w,§). For K C J, we have that

|—|v€W5(12)ﬂW5(K)(LI2)dia9(w®’ BN LI2) ’ hK,(S = (sza L[2)(’lb, 1) ’ hKﬁ'

Proof. At first, we will prove the case when K C I. In this case, set g; = gow. Then

glL(;(Iz)gl_l = Ls(1,) and gl(L(;(IQ)ﬂB)gl_l = Ls(1,yNB. Now consider Lg1,)/Z(Ls(1,)) 01

(a variety that is isomorphic to Lgs,)/Z(Ls(ry)), but with “twisted” Ls,) X Ls(,)
action, see 4.2.3). We have that

Uyews s, o) (Ls(1) Jaiag (0, B N Le(1y)) - (heyg1) = (Le(ro): La(rz)) - (hs()91)-

(In the case when gf € Lj,) for some n € N, Ls,)g1 is a connected component
of the group generated by Ls,) and g;. In this case, the left hand side is the union
of some Lj(p,)-stable pieces and the equality follows from [L8, 12.3]. The general case
can be shown in the same way.)

Therefore

quW&(IQ)ﬂW‘S(K) (w_lv gO)(LIQ)diag(wy g()_l)(v7 BN L5(12)) ) hé(K)
= uv€W5(12)0W5(K) (17 gl)(L(S(Iz))diag(]-’ gl_l)(v7 BN L(SUQ)) ’ hé(K)
= (Lo(ra), L)) (w0, 1) - hsrcy.

Note that hK75 = h(g(K)go. Then |_|v€W5<I2)thS(K)<U'}71, 1)(L12)dmg(w1‘),B N LIQ) .
hK75 = (L5(12), ng)'hK,g. Hence uveW6(12)0W5<K)(LIQ)dmg(u'J{), BﬂLIQ)-hKﬁ = (LIQ, L[z)-

hK’(;.

In the general case, Consider 7 : (L5, Lr,) - hxs — L)/ Z(Ls1,))g0 defined
by 7((l, l2)his) = (I, 1) - (he(x)ns(r)90) for L € Ls(ry), la € Ly, Here hs(ryns(r,) on
the right side is the base point in Ls,)/Z(Ls(1,)) that corresponds to §(K) N o([z).
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It is easy to see that the morphism is well-defined. Now define the T-action on
(L5(12)7L12> . hK75 by t- ((ll,l2>hK75) = (ill, lQ)hKﬁ for t € T and I, € L5([2), I, € LIQ.
Then T acts transitively on 77 '(a) for any a € (Ls(r,), L1,) - (hs(r)ns(12)90)- Now

Uoews 1, nwo) m (0™ 1)(L1y)diag - (W0, BN Ly,) - hic5)
= Uyew, w0 (0" D)(Liy )diag (W0, BN Ly, ) - (ha(r)ns(rz)90)

= (Ls(1,), L1) - (he(x)ns(12)90)-

Moreover U, ey, awa(x) (W™, 1) (L1, ) diag - (w0, BN Ly,) - his is stable under T-
action. Thus UUGW&(IQ)QW‘;(K) (’d]il, 1)(L12)diag . (’LUU, BN le) . hK,(S = (L(;(IQ), LI2) : hK75.

The lemma is proved. O

Lemma 4.5.5. Let (J,w) € Zs and u € Ws(J,w). Set Iy = I,(J,u,d), Iy = I(J,u,0)
and L™ = Ugcrn (Lry, L) (4, 1) - hgs. Then we have that

(1) LY is a fibre bundle over L;,/Z(Ly,) with fibres isomorphic to an affine

space of dimension |I,| — |I2|.
(2) X&J,w,&) = Giag - Lq(;]’w’é) s isomorphic to G X py, ((PIQ)diag . Lq(i]’w’a))-

(3) (PIQ)diag . LI(LJw 0) (B X B) L(J’LU5 (U mwo uon ) % L’ELJ,ZU,&).

Proof. For part (1), note that L = = Ugcr (@, 1)(Lsry), L) - h,s = (WLs(ry), Li,) -

(l—lKCh (T, 1)}”{’5) is a variety. Consider 7’ : Ukcrn (L6(12)7 LIQ)-hK75 — L5(12)/Z(L5(12))g0
defined by 7' ((I1,l2)his) = (I, 1) - (hs(r)ns()90) for It € Lsry), la € Ly,. 1t is easy
to see that 7’ is well defined and is a locally trivial fibration with fibers isomorphic

to an affine space of dimension |I7| — |I5].

Let v € Wy, For K C J,if Ad(uv)d(K) = K, then Ad(u)Psx) = Ad(uv ™ u™") P
Since wv'u! € Wy, we have that Ad(u)®sk) C Prur,. Thus Ad(u)Psxurn) C
®xur,. By the maximal property of I, K U Iy C I,. Thus Ir(J,uv,d) C I,. There-
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Gaiag - L") = G giag (Uken (Li, L) (@,1) - hi )
- Gdiag (l—lKCh Uv€W5(I2)ﬁW‘5(K) (Lb)dz’ag(q.“}; Bn LIQ(J,U,(S)) : hK,§)

= |_|Kcl1 |_|U€W§(12)QW6<K> Gdiag<u'l‘], B ﬂ LI2> . hK75

= |—|KCI1 |—|veW5(12) Z};,% = Xq(tj’w’é)'
Assume that (g, g)a = b for some g € G and a,b € L™ Then a,b are in the
same G orbit. Note that any element in LY g conjugate by Ly, to an element of

the form (uv,l)hgs with v € Wy, K C I,(J,uv,6) and | € Ly, N B. Moreover,
(4o, L, N B) - hgs C Zis. Thus if vy # vy or Ky # Ky, then for any [, e L, N B,
(din,1)-hi, s and (49, l')-hg, s are not in the same G orbit. Thus (g, ¢)(40,11)-hixs =
(40,13) - hi,s for some v € Wy,), K C Ii(J,uv,6) and l,l, € Ly, N B. By 4.1.12,
9 € Pr(kuws)- Since Ir(K,uv,d) C I(J,uv,d) C I, we have that g € Pp,. By 4.1.9,
x> g X py, ((Pr,)diag - Lq(;]’w’é)). Part (2) is proved.

For part (3), it is easy to see that (Pr,(u,s))diag - L) ¢ (B x B) - LY On
the other hand,

(B x B) - L") = (Upy, s Upy, (L1, ) diag (Uvewé(,z) Uk o(Juve) (W0, B) - hics)

= (L1,)aiag(Upy, Upy,) (Woews s,y UKco(raws) (00, B) - hics).

By 4.1.12, (UPIQ,Upb)(l.J,?'),B) : hK’g = (B X B)(UU, 1) . hK7§ C (PIQ(K,ufu,cS))dz‘ag .
(L 1y (K uv,0)s Lia (i uv,s)) (00, 1) hg 5. We have showed that Ir(K,uv,d) C I,. Hence
(Up,, . Up,, ) (10, B) - hics © (Pry(sus))diag - LW Therefore, (Pr,)giaq - LV =
(B x B)- L™,

Consider the morphism 7 : (U N %0 7~) x L") — (B x B) - LY defined
by 7(b,1) = (b,1) -l for b€ UN o7~ and | € LY, By the similar argument as

we did in 4.1.10, we can show that 7 is an isomorphism. [l

Corollary 4.5.6. We keep the notation of 4.5.5. If moreover, Is = @, then Xq(j]’w’é)

admits a cellular decomposition.
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Proof. If I, = @, then L™ is an affine space. Thus X" is a fibre bundle over
P~ with fibres isomorphic to an affine space of fixed dimension. Thus X admits

a cellular decomposition. O]

4.5.7 Forwy,wy € Ws(J,w), we say that we <’ wy if there exists wy = xg, 1, , 2, =
wa, v; € 0(L2(J, xiq1,0)) for all 4, such that i 11v; 21, (1066 Ti- By 4.5, Wﬂ
Xﬁi’w’é) = & if up £ uy. hence if <’ is a partial order on Wy(J, w), then Z_f& =
Lluews( J}w)XYSJ’w"S) is an a-partition. We will show that <’ is a partial order if Z_’j”é

contains finitely many G-orbits.

Lemma 4.5.8. Let J CI,ue W, w € W’ and v € W;. Assume that vwv = w'v’
for some w' € W and v' € Wj. If l(uwv) = l(wv) — I(u), then w' < w. If moreover,

w' = w, then Ad(w™")supp(u) C J.

Proof. If u = s; for some ¢ € J and [(sjwv) = [(wv) — 1, then either s;w < w and
s;w € WY or s;w = ws; for some j € J. It is easy to check that the statement holds
in both cases.

The general case can be proved by induction on I(u). O

Lemma 4.5.9. If wy,wy € Ws(J,w) with wy <" we and wy < wy and Iy(J,wy,0) =

I(J,we,0) = @, then wy = ws.

Proof. We will prove the case: if w1 21, (juws.6)6 W2, W2 =1, (Jun,0),0 W1 and Io(J,wy,d) =
&, then w; = wy. The general case can be proved in the similar way.

We argue by induction on |J|. Since I(w;) > l(ws) and {(ws) > I(w;), we have that
[(wy) = (wg). Thus wy = uy 'wed(uz) and we = uy 'wid(uy) for some uy € Wr, (1w, .5)
and uz € Wi (juw,s)- By induction hypothesis, it suffices to prove the case when
J = supp(u1) U supp(us).

We have that w; = w}d(v;) and wy = whd(vy) for some w),w) € W°) and
v1,v9 € Wy, Note that w|8(vi) = uy "whd(vaug) and I{uy  whd (vaus)) = [(whd (vaus)) —
l(ug). By 4.5.8, w| < w). Similarly w) < w]. Therefore w] = w). By 4.5.8,
Ad(wh) " tsupp(uz) C §(J) and Ad(w}) *supp(ui) C 6(J). Therefore Ad(wy)~'J C
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6(J). Hence Ad(wy)™'®; = ®syy. Since Ir(J,wy,d) = &, we have that J = &.

Therefore w; > wy and we > wy. Thus wy = w,. The case is proved. O

As a summary, we have the following result.

Theorem 4.5.10. If ZF; contains only finitely many G-orbits, then it has a cellular

decomposition.
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