
Control and Design of Multi-Use Induction Machines:

Traction, Generation, and Power Conversion

by

Al-Thaddeus Avestruz

S.B. in Physics, Massachusetts Institute of Technology (1994)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

@ Massh1.. ne++c Tr +if-iitp nf Tpnc',h-1nlnv §T006. All rights reserved.
BARKER

Author
Departmentef'Electrical Englneering and Computer Science

25 May 2006

Certified
Steven B. Leeb

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Hrtnur C. Smit

Chairman, Department Committee on Graduate Students

MASSACHUSEMS INSTITUTE
OF TECHNOLOGY

NOV 0 22006

LIBRARIES
EZE|

Control and Design of Multi-Use Induction Machines: Traction, Generation,

and Power Conversion

by

Al-Thaddeus Avestruz

Submitted to the Department of Electrical Engineering and Computer Science
on 25 May 2006, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

An electrical machine can be made to convert electrical power while performing in its primary
role of transforming electrical energy into mechanical energy. One way of doing this is to design
the machine with multiple stator windings where one winding acts as a primary for drive
and power, and the others as secondaries for electrical power. The challenge is to control the
mechanical outputs of torque and speed while independently regulating the electrical outputs of
voltage and current. This thesis analyzes and demonstrates an approach that takes advantage
of topological symmetries in multiphase systems to overcome this challenge. This method is
applied, but not relegated to induction machines.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to thank my advisor Professor Steven Leeb for his efforts, patience, encouragement,

and confidence in me, without which, all of this would not be possible.

To Meelee Kim, for her unwavering love and support.

To my parents, Suzanne and Fred, and my grandparents for their prayers and love: Lola

Beth, Lola Jeannette, and Lolo Nes, who started my interest in science and engineering. In

loving memory of my grandfather Alfonso Palencia.

To my brother Mark, without whose many discussions, I would have a lesser perspective of

my work. To my sister Camille, whose future I look forward to with great confidence.

To Robert Cox, Chris Laughman, and Warit Witchakool for the many technical discus-

sions that made work so much more interesting. To my office-mate Brandon Pierquet, for the

discussions and entertainment and for the solutions to the little annoyances in LaTex.

And to everyone else in LEES, especially Professors Kirtley and Perreault, and to Vivian

Mizuno.

I am sure to have forgotten to mention many who have helped me, but I am grateful despite

the short lapse in memory.

This work was supported by the Center for Materials Science and Engineering, a Materials

Research Science and Engineering Center funded by the National Science Foundation under

award number DMR 02-13282, and by the Grainger Foundation.

Contents

1 Introduction 17
1.1 Machines with Multi-Use Capability . 18
1.2 Design Challenges and Innovations . 19
1.3 Previous W ork . 20

2 Power Conversion Control By Zero Sequence Harmonics 21
2.1 Induction Machine Model . 21
2.2 A Transformer Model for a Stator with Multiple Windings 24
2.3 Zero Sequence Harmonic Control in Three Phase Systems 26

2.3.1 Voltage Output Control by Harmonic Amplitude Variation 29
2.3.2 Zero Sequence Circuit . 32

2.4 Toward a Machine Design . 34
2.4.1 Fundamental Design Limitations . 35
2.4.2 Zero Sequence Control of Three-Phase, Three-Legged Transformer 35
2.4.3 Scaling Law s . 35

3 Vector Drive Control 39
3.1 Constant Volts per Hertz Drive . 39
3.2 Indirect Field Oriented Control . 40
3.3 Cartesian Feedback in the Synchronous Current Regulator 41
3.4 Integrator Anti-Windup . 42
3.5 Sim ulation . 45
3.6 Im plem entation . 47

4 Inverter Design 49
4.1 Power Module and Digital Signal Processor . 49
4.2 Sine Wave Generation . 49

4.2.1 Synchronous PWM . 49
4.2.2 Table-Based Implementation . 51
4.2.3 Parabolic Approximations . 51

4.3 Three Phase Filters with Four Legs . 58
4.4 Minimal Implementations for Phase Current Measurement 63

r,.. 7J _

Table of Contents

4.4.1

4.4.2
4.4.3

Balanced Three Phase, Wye Grounded and Ungrounded

M ultiple Stator .
Estimation from Inverter Current Out of the DC Bus .

5 Firmware Design

5.1 Time Slicing Algorithm

5.2 Data Structures. .

5.3 Output Voltage Regulation Module
5.4 Synchronous PWM Module

5.5 Synchronous Current Controller

6 Conclusions and Future Work

A SPICE Deck for Multistator Transformer

A.1 PSPICE-Wye-Ungrounded .
A.2 PSPICE-Wye-Grounded . . .
A.3 PSPICE-Wye-Grounded with

B MATLAB Script for Parabolic
B .1 Script
B.2 Functions

B.2.1 h1fit()
B.2.2 h2fit()
B.2.3 hinffit)
B.2.4 mindistfit()
B.2.5 thdopt()
B.2.6 thdo
B.2.7 infnorm(.

. 77

. 80
Zero Sequence Transformer 83

Approximations of Sine Function 87
. 87
. 97
. 97
. 98
. 98
. 98
. 98
. 98
. 99

101
101
105

C Field Oriented Control Simulink Model

C.1 Block Models
C.2 Induction Motor S-Function

D Motor Control Embedded Firmware

D.1 Main Motor Control Module
D .1.1 m ot-cntl.c

D.1.2 umacros.h

D.2 Sine Inverter PWM Module
D.2.1 sin-pwm.c
D.2.2 Header Files

D.2.3 sin-pwm.h

D.3 Volts per Hertz Module
D.3.1 vfcontrol.c

113
. 113
. 113
. 123
. 126
. 126
. 132
. 133
. 135
. 135

63
65
66

69
69
70
71
71
71

75

77

Table of Contents

D.3.2 vfcontrol.h . 142
D.4 Serial Communications M odule . 143

D.4.1 serialcomm .c . 143
D.4.2 serialcomm .h . 150

D.5 Peripheral Driver M odule . 151
D.5.1 periphs.c . 151
D.5.2 periphs.h . 153

List of Figures

1.1 Photograph of Multi-Use Induction Motor Testbed 18
1.2 Multi-Stator Induction Machine . 19

2.1 Electrical Model of Three-Legged Transformer . 24
2.2 Transformer Model In-Circuit for Identical Stators Wound In-Hand 25
2.3 Effect of Series Inductance in the 3 rd Harmonic Control Function 26
2.4 Multiple Stator Connections Driving Three-Phase Rectifiers. 27
2.5 Drive Waveform with Third Harmonic . 28
2.6 3d Control Surface for Peak Amplitude Control 29
2.7 Third Harmonic Peak Amplitude Control Plotted Parametrically with Phase . . 30
2.8 PI Control of Dc Output Using 3 rd Harmonic . 31
2.9 T-Model for the Zero Sequence Circuit. 32
2.10 Zero sequence transformer. 33
2.11 Direct zero sequence transformer. 34
2.12 Exogenously driven zero sequence transformer. 34
2.13 Utilization and Scaling Using Triple Insulated Wire 37

3.1 DQ-Space Contour and Allowed Trajectory in Synchronous Current Regulator
Saturation . 44

3.2 Simulation of induction motor under field-oriented control with speed and torque
load steps. 46

3.3 Implementation of a Field-Oriented Speed Controller for a Multi-Use Induction
M achine . 48

4.1 International Rectifier's Integrated Power Module 50
4.2 Sine Reference from 108-element DLT . 52
4.3 THD and Maximum Error versus Table Length for Direct Lookup Table 52
4.4 Inverter Voltage Waveforms . 53
4.5 Inverter Current for Fundamental + 25% Third Harmonic 53
4.6 Error from Half-Wave Parabolic Sine Approximations 57
4.7 Errors from Quarter-Wave Parabolic Approximations to a Sine 59
4.8 Line-to-line Three Phase Filter . 61

~. 11 s-

List of Figures

4.9 Phase-to-Neutral Three Phase Filter . 62
4.10 Coupled Inductor Three Phase Filter . 64

4.11 Recovery of Rotor-Linked Current from Linear Combination of Stator Current

M easurem ents . 66
4.12 FFT of Stator Currents in Rotor-Linked Current Recovery 67

5.1 Activity Diagram for Closed-Loop Control of Dc Output 72
5.2 Activity Diagram for Synchronous Current Controller 73

A.1 PSPICE Schematic-Wye-Ungrounded . 78
A.2 PSPICE Schematic-Wye-Grounded . 81
A.3 PSPICE Schematic-Wye-Grounded with Zero Sequence Transformer 84

C.1 Top Level M odel . 102
C .2 Speed Controller . 103
C.3 Field Oriented Controller . 104
C.4 Induction Motor Model . 105

r~ 12 .-'

List of Tables

3.1 Aardvark Machine Parameters . 45

4.1 THD and Maximum For a DLT Sine Reference Using Different Interpolating
Functions . 51

4.2 Coefficients for Half-Wave Sine Approximations 58
4.3 Coefficients for Quarter-Wave Sine Approximations 60

5.1 Examples of Task Timing . 70

~ 15 m

Chapter 1

Introduction

Jjicierncy, economy arid elegance are hallmarks of good design. The idea of multi-

use machines is an attempt to mitigate the waste and superfluity that is needlessly

epidemic in a contemporary world starved of energy.

Motor and generator drives have been and continue to be crucial to a wide range of industrial

and commercial products and manufacturing processes; among these, variable speed drives

(VSDs) that operate over a range of mechanical shaft speeds are invaluable. Since the beginning,
folks have found ways to vary the shaft speed of a motor; many exist, but circuit design and

components in power electronics have advanced to a point were it is more appealing, both in

performance and economics, for motors to be combined with power electronics in commercial

and industrial VSDs.[1]

Many products use VSDs, including modern air handling and ventilation systems that run

fans at speeds and power that are optimal, ensuring occupant comfort while keeping energy

consumption to a minimum. Other examples include computer-controlled machine tools such

as mill machines and lathes that need continuously variable speeds for different materials and

tasks; hybrid and electric vehicles (EVs) use variable speed drives for traction or propulsion.

These systems typically use power electronics to control the flow of power to the motor in

controlling the speed. In addition to needing power for their drives, these systems often include

other power supplies that typically includes distribution through a network of power buses

through different parts of the system.

'- 17 -'

Chapter 1 : Introduction

Figure 1.1: Photograph of what we have fondly called the Aardvark machine.

1.1 Machines with Multi-Use Capability

An electrical machine can be made to convert electrical power while performing in its primary

role of transforming electrical energy into mechanical energy. One way of doing this is to design

the machine with multiple stator windings where one winding acts as a primary for drive and

power, and the others as secondaries for electrical power. The challenge is to control the

mechanical outputs of torque and speed while independently regulating the electrical outputs

of voltage and current.

The salient feature in these multi-use machines is the integration of magnetics for traction,

generation and power conversion. While it is not eminently clear whether there is a convincing

scaling law advantage in size and weight with this type of integration, it is evident that there

is an economy to using the same control and power electronics for multiple purposes. Beyond

rudimentary calculations for simple integrated pole face geometries, detailed studies of scaling

laws for a variety of structures and magnetic circuit configurations is largely outside the scope

of this work and is an obvious topic for follow-on research in machine design.

This thesis report analyzes and demonstrates an approach that takes advantage of topo-

logical symmetries in multi-phase systems to overcome this challenge. This method has been

applied, but not relegated to induction machines.

~ 18 m

Section 1.2 : Design Challenges and Innovations

STATOR ROTOR

Va

Vb=
N ==N ===N ==

Figure 1.2: Simplified Depiction of a Multi-Stator Induction Machine.

1.2 Design Challenges and Innovations

There are a number of design challenges that must be addressed before one can assert whether

this technology is viable for commercial and industrial applications. Overcoming the first

challenge of proof of concept in a previous thesis [2] opened an avenue for continued research.

The first of the questions asks how one provides a wide range and monotonic control of the

dc secondary output. It is answered by the use of the 3 rd harmonic amplitude at a phase of 7r

radians for closed-loop control of the output; in general, the control-to-output function for dc

output voltage is non-monotonic for other values of phase. Also, a look in [2] shows that the

control of dc output using zero sequence phase, while effective, only provides a narrow range of

variation.

The next addresses an issue that is endemic in most contraptions that we would like to

use for multi-use machines: it is that of vanishingly small zero sequence reactance. A good

solution, while not universal, is a variety of topologies that use a zero sequence transformer to

improve the magnetizing inductance in the zero sequence circuit. Another solution, of course,
is to redesign the machines, but that is the topic for another thesis.

Then, we must talk about the inverter. Not only must it be very good sinusoidal current

source, but it must also be a very good voltage source of 3 rd or other zero sequence harmonics;

it is the way you integrate the idea of zero sequence voltage with a field-oriented controller that

is based on stator currents, which is the established means for variable speed drive.

This begs the question of generality. We talk for example about cars having two independent

dc buses for power: the new one is 42 volts and the legacy is 12V. We can perhaps increase

the number of phases in the machine so that there is more than one set of "independent" zero

sequence harmonics. There are a number of ways to handle this: one can have a machine that

physically has a greater number of inherent phases; the other, is to create these additional

phases with linear combinations of the inherent phases. So, we start take a look at general

~'- 19 .

Chapter 1 : Introduction

n-phase circuits that provide supernumerary zero sequence harmonic sets, and heterophasic

transformer circuits.

How far can we go? As always, it depends on the compromises that one is willing to accept.

It also matters how well we can design the machine, and this depends on at least an initial

understanding of the design limitations and scaling laws. The complement to "how far" is

"where else" and this is a question about machines other than induction ones. A glance at the

ubiquity of the Lundell alternator adds not only to the intellectual, but also to the economic

appeal.

This work provides some of the foundations and proof-of-concepts.

1.3 Previous Work

Initial work and construction of the induction machine testbed had been performed by Jack W.

Holloway in a previous thesis project [2]. This work included the demonstration of dc output

control of a wye-grounded winding by varying the phase of the added 3 rd harmonic in the

inverter and the independence to zero sequence harmonics of an identical winding with the wye

ungrounded.

~ 20 m

Chapter 2

Power Conversion Control By Zero

Sequence Harmonics

Zero sequence current in a multi-phase system is the portion of current that runs in the same

direction through all the connection phases at the same time. This means that this component

of the current has the same amplitude and angular phase in every connection phase.1 It is the

part that we can consider "common-mode" to all phase connections: the vector sum of the

currents in these phases. 2

One can also speak of a zero sequence voltage. If the circuit has a balanced terminal

impedance and a zero sequence path, then it is that portion of the voltage at each phase that

creates a zero sequence current. Often, we describe a zero sequence voltage in a way that

is similar to a zero sequence current: having the same amplitude and angular phase in every

connection, but it is not necessarily the case that a zero sequence voltage results in zero sequence

current, as it is also the case that a positive or negative sequence voltage can result in a zero

sequence current.

2.1 Induction Machine Model

A three phase induction machine can be described by the magnetic flux linkages among three

stationary windings (stator) and three moving windings (rotor). Equation 2.1a describes every

permutation of how the flux through every winding is linked to a current in its own and every

'To avoid ambiguity, we make a distinction in this paragraph between connection phase, which is the actual
physical connection to the circuit, and angular phase, which is the constant parameter in the argument of a
periodic function that for the moment we assume to be unmodulated.

2Though a Fourier transform, periodic signals can be represented as a sum of sinusoids. These sinusoids in
turn can be represented as phasors.

~-' 21 -'

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

others' winding. [3]

[S __ [Ls LSR] iS 1
AR] LSR LR iR

where the stator flux in the stationary reference frame

the rotor flux

Aas

\s = Abs

Aar

-\R= Abr

.Acr.

and the mutual inductance matrix between the stator and the rotor

Lc cos 0 r

LSR Lc cos(Or - 27r/3)

Le cos(Or + 27r/3)

Lc cos(Or + 27r/3)

Lc cos 0,

Lc cos(Or - 27r/3)

L, cos(Or - 27r/3)1

L, cos(Or + 27r/3)

L, cos Or _

When one applies the well-known Park's transform [4]

cos 0

- sin 0

1

27r
cos (0~ 3

- sin 0- 1
1

and for completeness delineating its inverse

cos 0

COS
(

-Io 6+

27r

3
27r
3/

(2. 1a)

L[
= Lab

Lab

Lr

- Lab

.Lab

Lab

Ls

Lab

Lab

Lr

Lab

(2.1b)

Lab Fas
Lab ibs

L8 _ LiS,

Lab tar

Lab tbr

Lr _ icrJ

(2.1c)

(2. 1d)

T = 2
3

cos (0

- sin (

27r

1+

2-

(2.2a)

- sin 0

-sin (o-

-sin (0+

11

1.

27r

3)
27r

3)

(2.2b)

~s.. 22 n

T-1 _

Section 2.1 : Induction Machine Model

to 2.1a, the flux linkages become block matrices, each of which are diagonal and time-invariant,

Adqs Ls M [iq(
A~iqI [~]' I(2.3a)Adgr M LR idqr

where

[Las ol
LS = , (2.3b)

0 Las

(2.3c)

LR = Lar 0 (2.3d)
0 Lar]

(2.3e)

M = 0 (2.3f)
10 M

(2.3g)
3

M = 3Lc. (2.3h)
2

The state equations for the induction motor using flux are given by

-Ads = rsids - wAqs - Vds (2.4a)

-Aqs = rsiqs + WAds - Vqs (2.4b)

-Adr = rridr - wsAqr (2.4c)

-Aqr = rriqr + wsAdr, (2.4d)

and torque of electrical origin by

Tm = 3P(Aqridr - Adrzqr), (2.5)

and the equations of motion by

where(Tm - ti) , (2.6)

where p is the number of pole pairs, J is the moment of inertia, and TI is the load torque.

~-' 23 n

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

2.2 A Transformer Model for a Stator with Multiple

Windings

Each phase in the stator windings is shifted by 120 electrical degrees; e.g. the flux linked

between phase a and phase b is given by

Lab = L, cos(12 0 0) = Lc.
2

(2.7)

Usually, the coupling is symmetric as well as equal among the phases, i.e., Lab = Lac = Lba =

In a machine with multiple stators, additional flux linkages exist between the stator wind-

ings. Between two stators,
As,] [Ls1 M12 is:] (2.8)
As 2] M21 Ls is 2

In the next section, one will see how this bears more than just a casual similarity to a three-

legged, three-phase transformer. In fact, the multiple stators of an induction by themselves

behave the same way as the transformer illustrated in Figure 2.1, despite being wrapped around

a circle.

ia ib ic

----------- 1

Lc/2 Lc/2

- -- - - - - - -* - - -

Lc/2 Lc/2 2

-) ----- --- 1

I Lc/2 Lc/2

(a)

kp

kp

kp

(b)

Figure 2.1: Electrical model for the primary of a Three-Legged Transformer. kp is the phase-

to-phase coupling coefficient.

The coupling coefficient between windings of a transformer is the fraction of the flux coupled

~ 24 m

Section 2.2 : A Transformer Model for a Stator with Multiple Windings

between the primary and the secondary and is given by

kz M

L 1 L 2
(2.9a)

which generalizes to a matrix element

kman Mmn

LmLn
(2.9b)

that relates an arbitrary winding to another, where L1 and L 2 are the primary and secondary

side open-circuit inductances, respectively, and M is the mutual inductance between windings.

The inductance matrix given by Equation 2.8 has been implemented in PSPICE as illus-
trated in Figure 2.2.

Rs Lik ia X - -

LUk Rs

Va

"-b LUk Rs

Vn r\,, Vc Vb

Rs LUk ic LUk Rs ---

Inductance Lc/2 Lc/2 L/2 L2
M atrix ---- - ---- - -- / -- -- - - -- -- - - -

Lzke Z ro ---- n---r-ns-rm-

Lc2 Lzm Lzm L/

C T RL

C RL

Figure 2.2: In-circuit transformer model of the flux linkage between two identical stator windings
wound in-hand. A zero sequence transformer is described in §2.3.2.

This coupling between phases can be implemented in SPICE by coupled inductor statements;

Appendix A contains the SPICE deck as well as the schematic file for PSPICE. Note that in

Figure 2.2, the negative coupling coefficients and subsequent negative inductances are captured

in the winding polarity of the coupled inductors, which helps to illustrate a better physical

~-J 25 k-n

Chapter 2: Power Conversion Control By Zero Sequence Harmonics

sense of what the

parameter effects

140

120-

1

03
CL

0

00 [

80

60

40

20

flux is doing. Figure 2.3 illustrates

on the system design.

20 40
V /V

how the model can be used to determine

60 80 100

Figure 2.3: Simulation result
harmonic control function.

of the effect of a change on the series inductance in the 3 rd

2.3 Zero Sequence Harmonic Control in Three Phase

Systems

By introducing one or more triple-n harmonics into the drive voltage of a three-phase machine,

the rectified output voltage from grounded-wye windings can be controlled and subsequently

regulated. To first-order, these triple-n harmonic voltages produce triple-n harmonic currents,

and introduce negligible net torque on the rotor, effectively decoupling voltage regulation from

drive.

The rectifiers in Figure 1.1 are designed to operate in the discontinuous conduction mode.

In this case, rectifiers in winding 2 behave as peak detectors of the line-to-neutral voltages, with

~, 26 m

-/

/e

-/

-/

-/

LIk=100tH

- LIk=1mH

Section 2.3 : Zero Sequence Harmonic Control in Three Phase Systems

al

N1 \ ==

\+V

N a2

Vc2 Vb2 +
2, +

I+

C/2

TC/2

N a3

VO Vb3 +

C/2

C/2 +

Figure 2.4: Multiple Stator Connections Driving Three-Phase Rectifiers.

Va1

In1

Ic1

in

V2

+

V3

~,, 2 7 ,

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

the dc output voltage given by

V2 = Vk 1sin O, + Vk3 sin(30p + 03), (2.10)

where Vkl and Vk3 are the amplitudes of the fundamental and third harmonic inverter voltages,

respectively, #3 is the phase angle of the third harmonic relative to the fundamental and O,
is the phase angle where the drive voltage is at a maximum. The angle O, is given by the

extremum relation for the drive voltage

dV2d = VkI cos Op + Vk3 cos(30p + #3) = 0, (2.11)
d9p

which unfortunately is transcendental.

Figures 2.6 and 2.7 illustrates how the dc output voltage will vary with third harmonic

amplitude and phase for a rectifier operating in discontinuous mode. One notices that for a

third harmonic phase #3 = 7r, the dc output voltage is not only monotonic, but also linear with

third harmonic voltage Vk3; the reason for this is immediately obvious from Figure 2.5, as the

peaks of the fundamental and third harmonic occur coincidentally. While not proven, it can be

plausibly argued that while V2 is monotonic with Vk3 over various intervals for different values

of 03, linearity as well as the widest range of Vk3 for monotonicity occurs only for #3 7r.

3 0 33=T2 $3
a)

0

1 1 1

E

E 0 0 0
a)
0

0.

E -1 -1 -1
0 1 2 0 1 2 0 1 2

EQ0 0 0 A
E

0 1 2 0 12 0 12
0 (n units) 0 (n units) 0 (n units)

Figure 2.5: Drive Waveform with Third Harmonic

~-' 28 -n

Section 2.3: Zero Sequence Harmonic Control in Three Phase Systems

3 -

25 ---

01

V3N 1 43 (n units)

Figure 2.6: Control surface for peak amplitude control using third harmonic voltage amplitude

(V3) and phase (#3) with fundamental voltage (V1i) held constant.

2.3.1 Voltage Output Control by Harmonic Amplitude Variation

The dc output V2 of a grounded wye-connected rectifier can be controlled by varying the third

harmonic voltage applied to the primary drive winding in Figure 1.1. For 03 = 0, it can be

exactly calculated (for a system that can be modeled as having no ac-side line inductance)

that V2 is monotonic with |Vk3| for |Vk3I > IVkil/6 (at IVk3I = IVkI/ 6, IV21 = VfIVkI/2). The

dependence of V2 on Vk3 is plotted in Figure 2.7(a) for values of #3 between 0 and 7r. At03 = 7r,

V2 is affine for VUk > 0. At other value #3 closed-form solutions to V2(Vk3) are likely to not

exist, but numerical methods can be used to estimate where this function is monotonic. Figure

2.7(b) shows that experimental data does indeed agree with calculations.

The strategy used for ir-phase harmonic control is founded on the fact that the peaks of

the 3 rd harmonic and the fundamental coincide. In this case, where we have assumed discon-

tinuous current in the phase connections of the secondary windings and 1:1 turns ratio, the dc

output voltage will be very nearly equal to the sums of the peak voltages, Vkl + Vk3. In the

implementation, a closed-loop PI controller ensures as Vkl drops, which for example is the case

when the speed is lowered, that the 3 rd harmonic Vk3 makes up the difference.

~-a 29 %-.'

Chapter 2 Power Conversion Control By Zero Sequence Harmonics

3

2.5-

3

2

1.5--

1C $3=0 -

0.5
0 0.5 1 1.5 2

VkNk

(a) MATLAB Calculations

300

250 -

S200 --

150-

I.a

1000 10 20 30 40 50 80 70 80 90 10

150

too-100--

-0- 13

0

o 10 20 30 40 50 60 70 80 90 100
Vk (RMS Volta)

(b) Experimental Results[5]

Figure 2.7: Peak amplitude control using third harmonic voltage amplitude (V3) over a spread

of phase (03) with fundamental voltage (V) held constant.

.., 30 -

Section 2.3 : Zero Sequence Harmonic Control in Three Phase Systems

(a) No 3 rd Harmonic

(b) PI Control with Third Harmonic

Figure 2.8: PI Control of Dc Output Using Third Harmonic. The top trace shows V, the dc

output of the grounded-wye secondary winding.

~-' 31 s-'

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

I1 12

Rs Lis Lis Rs

Mo

Figure 2.9: T-Model for the Zero Sequence Circuit.

2.3.2 Zero Sequence Circuit

The zero sequence circuit is the portion of a multi-phase system where current can run in the

same direction at the same time; it is that the part that is connected to one might call "common"

to all the phases-with nomenclatures that include wye or neutral. Not all polyphase systems

have a zero sequence path, often systems that do are called wye-grounded.

Zero Sequence Reactance in a Three Phase Circuit

A key issue in driving a zero sequence current through two magnetically coupled windings with

grounded wyes is the effective magnetizing inductance, which is the phase-to-phase leakage in an

induction machine, hence is typically kept as small as possible tfor good machine performance

[6]. Figure 2.9 shows a zero sequence circuit model for an induction machine with two identical

stators. Small magnetizing inductance Mo results in high zero sequence reactive current and

represents additional loss in the stator resistance R8, as well as additional switch stress in the

power electronics.

One method to increase the zero sequence reactance is to decrease the phase-to-phase cou-

pling. Looking for the moment at the flux from phase a of a three-legged transformer,

A L Lc Lcc,(.2Aa = Lcia - k b - k (2.12)

which implies that for a balanced set of currents with kp now less than unity, each leg must

now support a higher volt-seconds, hence resulting in a larger core.

From this transformer picture of the inductance matrix, it becomes more obvious that the

~ 32 ^

Section 2.3 : Zero Sequence Harmonic Control in Three Phase Systems

amount of flux coupled to the secondary winding sorely depends on the coupling between the

positive inductance windings (L,) being large (i.e. nearly unity ko3), yet with little coupling

(kp) between adjacent phases (e.g. a and b). For a stator geometry with little saliency, which

is mostly the case with induction motors, the coupling between phases tends to be typically

high. When viewed as the single-circuit T-model illustrated in Figure 2.9, this results in a zero

sequence magnetizing inductance that is deplorably small; a zero sequence transformer in series

with the neutral current path alleviates this problem with the caveat that it is now the zero

sequence transformer that must transfer essentially all the zero sequence power to the secondary

side.

Zero Sequence Transformer Topologies

One solution to the problem of small magnetizing inductance is shown in Figure 2.10, where

a zero sequence transformer with an acceptable magnetizing inductance is used in the wye

connection; a turns ratio other than unity offers an additional degree of freedom in optimizing

machine design through the scaling of the zero sequence voltage and current. This zero se-

quence transformer can be integrated into the machine back-iron, although this is not currently

implemented.

VC

Va

Vb
1:N

Zero Sequence
Transformer

Figure 2.10: Zero sequence transformer.

Power can be derived directly from the wye point as illustrated in Figure 2.11. In this

topology, fewer rectifiers are required and a spit-capacitor ground is not needed; power to the

output is derived solely from the zero sequence harmonics, so rectifier currents do not contribute

to torque ripples, even without special accommodations in the control. Because the rectifiers

only draw zero sequence current, standard field-oriented control schemes with fewer current

sensors are more easily implemented.

3 ko = M/Lc for identical stator windings.

~- 33 -

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

1:N- {
Figure 2.11: Direct zero sequence transformer.

Although using a direct zero sequence transformer offers a number of advantages, the trade-

off is that all the dc output power is converted solely through a single-phase circuit, whereas the

topology shown in Figure 2.10 allows, in certain regimes of operation, a portion of the power

to be transferred to the output through the three phase circuit.

Under instances where the stator is not driven by an inverter, such as in an alternator, zero

sequence harmonics can be exogenously driven through the wye as illustrated in Figure 2.12.

'field

Va2

N2\ ;42

Vc2 Vb2 +

vn,c

C/2

V2

?-/
TC/2_

Figure 2.12: Exogenously driven zero sequence transformer.

2.4 Toward a Machine Design

Multi-use machines combine the challenges of both machine and transformer design. For exam-

ple, in "standard" machines, insulation breakdown is a troublesome, but not a safety-critical

~- 34 n

Section 2.4 : Toward a Machine Design

issue. In transformers where the primary is greater than some voltage threshold 4 and where the
secondary must be safe, the requirements for isolation (creepage and clearance) and insulation
breakdown are strict and regulated by legislation.

While this section does not pretend to be a comprehensive treatise on the design of multi-
use machines, nor does it suggest a design example, it attempts to offer some perspectives on
the design limitations and advantages, which provides a motivation and some foundations for
future work.

2.4.1 Fundamental Design Limitations

In the discussion of a machine design, there is an advantage to keeping the coupling between
phases high, in very much the same way that a three-legged three phase transformer is better
than three separate single phase transformers: the flux in each leg of the core has to carry
only 1/2 of the flux than for each separate single phase transformer, resulting in a weight and
volume savings for a given amount of apparent power.

2.4.2 Zero Sequence Control of Three-Phase, Three-Legged Transformer

2.4.3 Scaling Laws

The rationale for a multiple output transformer (i.e. 1 : N : M : ...) as opposed to multiple

single transformers (i.e. 1 : N, 1 : M, ...) appears to be two-fold. As power conversion is

combined into a single piece of magnetics, both weight and volume is lower than the aggregate

of the single transformers; per unit power handling capability along with better overall window

utilization.

Area Product

The power handling capability of a transformer is proportional to the area product AP which
is the product of the the window area Wa and the core cross-sectional area A

AP = WaAc. (2.13)

Both the weight and the volume of the transformer increase sub-linearly with Ap and hence

also with power capability [7],

V Oc Ap. 75 . (2.14)

4CE standards are 60V

r~i 35 n

Chapter 2 : Power Conversion Control By Zero Sequence Harmonics

Window Utilization

Isolation between primary and secondaries requires the use of a substantial amount of insulating

tape between windings or the use of a triple-insulated wire5 to meet safety standards (e.g. CE

and UL). With a lower power winding, the insulation consists of a higher percentage of the

overall cross-sectional area of the wire. This results in a lower window utilization K for lower

power windings. A poignant example of this is illustrated in Figure 2.13, where the insulation

is a significant fraction of the wire cross-section. Despite being a good fraction of the cross-

section, the insulation is still much lighter than the enclosed copper so that the unit weight of

the wire still increases pretty much linearly with its power handling capability. 6

Induction Machine

In any case, when the voltage amplitude of the third harmonic is less than that of the funda-

mental, there will be a fundamental component in the stator current and hence will contribute

a torque ripple. However, one expects that a large fundamental drive voltage occur at high

speed, where cogging is not as significant of an issue. At zero or low speed, rectifier current will

be zero sequence. These have consequences in terms of per phase winding and core utilization.

5Furukawa Tex-Eg.
6The power handling capability of a wire is related to its temperature rise for a given amount of current,

hence is inversely proportional to unit resistance. Because of that, the amount of power that a wire can handle
is proportional to cross-sectional area, or to the square of its diameter.

~,,) 36 i-^

0.4 0.6 0.8 1.0
Conductor Diameter (mm)

(a) Data plotted from Furukawa Tex-E6 wire table. [8]

% of Overall Diameter
% of Cross-Sectional Area

0.4 0.6 0.8 1.0
Conductor Diameter (mm)

(b) Cross-Sectional Utilization

Figure 2.13: Better utilization of the wire cross-section by the conductor is unambiguous for
larger diameters in triple insulated wire.

1.5

Section 2.4 : Toward a Machine Design

1.0

0.5

S4-

I A

L '

- Overall Wire Diameter
- - - Unit Weight

7.5

5

2.5

000. 2

0

H
0

0

rJ~

100

80

60

40

20

0
0

~- 3 7 -

Chapter 3

Vector Drive Control

The general concern of a variable speed drive is accurate and fast control of speed. However
facetious as this sounds, it is not so straightforward of an endeavor in an induction machine.
Speed and torque have no easy relation to voltage and terminal currents as on a dc machine.
One must expend more effort to implement the classic speed control loop that has a minor loop
for torque.

3.1 Constant Volts per Hertz Drive

In an induction machine with constant slip, flux is inversely proportional to frequency. For
operation with constant flux, the ratio of voltage to frequency is held constant. At a given
flux, the maximum speed attained when the equivalent back-EMF equals the available inverter
voltage. At higher speeds, one must operate the machine at a constant voltage, while the
flux decreases with speed: this is know as field-weakening or constant-power operation. The
maximum available torque falls roughly in proportion to the inverse square of the frequency. [4]

This type of drive is typically good for VSDs that generally operate in the steady and
where the best transient performance is not required (e.g. HVACs operating under relatively
constant load). In a closed-loop speed control system, response and its complement, disturbance
rejection, is ultimately determine by the controllability of torque and hence flux. During a
transient, neither constant slip, nor any value of slip is guaranteed with a constant V/Hz drive.
In addition, at low speeds and high torques, the implied low voltage and high current means
that voltage drops across the stator resistance become a serious limitation for a drive system
whose control variable is terminal voltage.

While the advantage of constant V/Hz operation is that it is simple to implement and does
not require current sensors except perhaps for fault detection, it is most likely not good enough

~,-J 39 -'

Chapter 3 : Vector Drive Control

for traction and generation applications like EVs where speed and torque is both widely and

strongly varying. Attempts at enhancing this method of speed controller include [9], but because

of advancements in digital signal processors and subsequent price competitiveness, field oriented

control methods have become more popular and accessible for high performance applications.

3.2 Indirect Field Oriented Control

Field oriented control takes advantage of the relation given by Equation 2.5

TM =p P(Aqridr -Adriqr)

to control the machine torque by specifying a flux and a current. If we set Aqr = 0 and hold

Adr = Ao constant, then the torque is proportional to iqr, which resembles how the torque

relates to terminal current in dc machine.

Aqr = 0 (3. 1a)

Adr = A0 Constant, (3.1b)

so the torque in Equation 2.5 can be written as

3
T - PAoiqr. (3.2)

2

Aqr = 0 implies that Aqr = 0 which results on the constraint in slip frequency

WS--rrigr rrM .
s - r - - r. (3.3)

Adr Lar Adr Zq 33

The torque in stator coordinates is then given by

3r = -p Aoiqs (3.4)
2 Lar

An estimator for Adr can be derived from the first order differential equation

rr rrM
Adr + Adr = r . (3.5)

Lar Lartds

where Tr = Lar/rr is referred to as the rotor time constant. Adr can then be programmed by

~- 40 ^

Section 3.3 : Cartesian Feedback in the Synchronous Current Regulator

iqr through a first-order transfer function,

A r (3.6)
sTr + 1

Field-oriented control methods require the control of the current in the stator that is magnet-
ically linked to the rotor. In a multiple stator machine, this current measurement is corrupted
by the additional loads presented by the secondary stators. This can be resolved by subtracting
those load components from the primary stator currents to get the drive currents, which is
described in §3.3. The field-oriented system illustrated in Figure 3.3 includes an implementa-
tion of a synchronous frame regulator. [10] gives a good discussion on tuning, stability and
robustness of field-oriented controllers over parameter variations.

3.3 Cartesian Feedback in the Synchronous Current

Regulator

The advantage of regulating current in the synchronous frame of reference is that the stator

currents are represented as dc. In RF parlance, this is the consequence of mixing down the

sinusoidal ac currents in the stator terminals to a dc baseband. In this synchronous reference

frame, zero steady state error can be achieved by placing a pole at the origin in the controller,
i.e. integral control. In the stator reference frame, the currents are sinusoidal and hence cannot

have zero steady error for a proportional-integral controller. 1

By applying the conditions for field-oriented control in §3.2, the following state equations

can be derived for the direct and quadrature stator currents from the state equations for dAd/dt

and dAd,/dt:

dids m2
- Las dt -s W a- Lar qs - Vds (3.7a)dd . - (La

M
2 di

- Las - _ d_ = rsiqs + wLasids - Vqs. (3.7b)

Lar dt

It is apparent from Equation 3.7a that there is a strong coupling term between the direct

and quadrature axis currents that is proportional to the synchronous frequency.

A number of assumptions simplify the design of a controller for the Aardvark induction

machine. A key assumption in designing the synchronous current controller is that the electrical

'See Roberge[11] for a discussion on the error series derivation, which is germane to the tracking error of a
proportional-integral controller to a sinusoid.

~ 41 n

Chapter 3 : Vector Drive Control

time constants of the machine are much smaller than the mechanical time constants. This is

important because it allows us to satisfy the condition that the bandwidth of a minor loop be

higher than the outer loop crossover frequency.

3.4 Integrator Anti-Windup

There are two output limits in any real inverter: current limit and voltage saturation (i.e.

compliance of the current source). The maximum current that ought to be allowed depends

on the physical limits of the power devices and the load. Voltage saturation is the result of a

finite dc bus voltage, hence limiting the time rate of changes in flux (dA/dt). In the short-time

scale, this is due to the time rate of change in current (di/dt), and on the longer time scale

(or steady state) by winding resistances (stator and rotor) and to the time rate of change of

mutual inductance, which is proportional to the speed w. Abstractly, by the product rule

dA di .dL
v - L - + i . (3.8)

dt dt dt

Voltage saturation level is actually subtle: when one wants an inverter output with as few

harmonics as possible, saturation occurs when the peak amplitude of the sine wave fundamental

equals the one-half of the dc bus voltage for the half-bridge inverter (the full dc bus voltage

for a full-bridge inverter); however, if over-modulation is allowed, the fundamental amplitude

can be as high as 4/7r times larger by applying 100% duty cycle for 50% of the time, i.e. a

symmetric square wave.

In terms of dq-axis quantities the current limit

is,max2 2 ds + i qs2 (3.9)

The voltage saturation limit in this dq space

Vs,max 2 Vds2 + Vqs 2 (3.10)

From a control perspective, either limit presents itself as a classic actuator saturation. In

a controller that integrates the error between the command (or reference) and the output, this

error accumulates causing a large overshoot even when the actuator comes out of saturation and

the setpoint been reached. That which is not a classical about this situation is the limitation of

the magnitude of a vector of control variables (a MIMO system); a further complication is that

the integrator in the controller is designed with an integrator for each variable so that there

~ 42 -

Section 3.4 : Integrator Anti-Windup

will be zero error in the steady state.

From Equation 3.4, ids programs the flux in the machine and iqs programs the torque.

Typically, the flux is programmed to some optimal value below the rated motor speed; above

this speed, the flux is decreased in inverse proportion to the speed, resulting in a constant power

operating regime. If we assume that the speed changes at a much lower rate than the torque,
the dynamics to consider in the controller design are that of the torque while that of the speed

over the relevant time scale is invariant.

The condition for voltage saturation in Equation 3.10 allows for one degree of freedom,
which we choose to be vd. In the polar coordinate frame, the contour is described by

0 = cos- 1 Vds (3.11)
Vs,max

This allows ids to still be programmed through Vds during saturation as illustrated in Figure

3.1.

In arranging the saturation conditions this way, we maintain the dc motor analogue, where

the torque is constrained while the flux remains a free variable. 2

The speed is also controlled by a PI controller, but it has SISO (single input, single output)

dynamics, with an LTI function of the error commanding a torque, which we assume to be

proportional to stator quadrature current sq,. The field, or flux is proportional to ids which value

is determined by a field-weakening function of speed that we presume to have no dynamics. 3

We would like to saturate the output of the controller for any of several reasons: a current limit

given by Equation 3.9, a mechanical damage torque limit, and an electrical torque limit which

depends on the flux 4 . The signaling of either these limits results in a relatively straightforward

anti-windup strategy, such as limiting the speed-control integrator.

The current limit is the result of a number of factors. As already mentioned, these include

a hard current limit to prevent physical damage and current source compliance due to a finite

inverter voltage. Because the speed controller is much slower than the current controller, its

integrator winds up at a much lower rate. We would like to signal a saturation from the current

controller to the speed-control integrator only for longer time scale saturation events due to

such things as demanding more torque than what is within the limits of the setting for the flux.

If the speed controller with its field-weakening algorithm and torque limits were ideal, these

longer time scale voltage saturation events would not occur; however, time-varying parameters

2In a speed controller with field weakening, flux is a non-linear function of speed.
3 Only perhaps presumptuous in that the flux dynamics have a time scale in the neighborhood of the rotor time

constant (Tr given in Equation 3.5), which we assume to be much smaller than the mechanical time constants.
4The electrical torque limits can be precalculated from the flux.

~d 43 m

Chapter 3 : Vector Drive Control

Vqs,'tqs

I Vmax,'tmax

Vds itds

Figure 3.1: Contour of the saturation limit for the synchronous current regulator and the
allowed trajectory in dq-space. There is a maximum torque limit that can also be described on
the dq axis, but ought to be considered as part of the speed controller and not included in this

diagram.

~NJ 44 m

J

Section 3.5 : Simulation

such as stator and rotor resistances, as well as nonlinearities in the iron permeability may well
cause the speed controller to ask for more than the current regulator can provide.

The question is how does one determine the cause of the voltage saturation. Recall Equation
3.8. One way to do that is to keep track of the magnitude of the time derivative of the current
di/dt during the voltage saturation. If

d Fid1
[iqs] 2 (3.12)

where c is some threshold while the voltage is still saturated, then current controller signals a
saturation event to the speed controller.

3.5 Simulation

Table 3.1: Aardvark Machine Parameters[2]

Stator Resistance Ra 2.OQ
Rotor Resistance R 2 1.5Q
Stator Reactancet X 1 2.8Q
Rotor Reactancet X 2 2.8Q
Mutual ReactanceF XM 42.09Q
Free Moment of Inertia Jo 0.0168 kg - m2

The electrical parameters for the Aardvark induction machine are listed in Table 3.1. These

parameters were derived by J. Holloway in [2] from a non-linear least square fit to the start

up transient of the induction machine using IEEE blocked-rotor and no-load tests as well as
impedance measurements for values for the initial guess.

The parameters in Table 3.1 along with an indirect field oriented controller and the strategies

for anti-windup form the basis for a Simulink® model and simulation. Figure 3.2 predicts good

transient performance under step speed reversals and steps in torque load. A diagram of the

simulation can be found in Appendix C.

4 Reactances are customarily referenced to 60 Hz.

~,, 4 5

Chapter 3 : Vector Drive Control

-C

--5

400

200

-400-

40

E 20 -- -. -.-.---

- 2 0 - . -. .. - -- - ..-- - -- - .- . -~-40
0 5 10 15 20

Time (seconds)

(a)

0.6 - - - --

0 .2 -- - - - - - --

0-

S.8

06
0.2

0-

0.1

-0.1

0 -
0 5 10

Time (seconds)

(c)

4.

10

-5 -
-5-
10

80

20

10 - - -- -

-10 - - - - - - - - - --

$

0 5 10 15 20
Time (seconds)

(b)

10

0

-10

0-

100

-50

400

200-

-200 - - - - - -

0 5 10
Time (seconds)

(d)

Figure 3.2: Simulation of induction motor under field-oriented control with speed and torque

load steps.

~ 46 -^

200 -

0
-200 - -- -

5 -- - - - - - - - -- - - -- - - -

5

00

5
I

.

f

is 2015 20

Section 3.6 : Implementation

3.6 Implementation

The controller illustrated in Figure 3.3 is currently being implemented with minimal current

sensing as described in §4.4.2. There were a number of issues that precluded the inclusion

of results in this thesis. These included a number of hardware issues that included slow and

erratic behavior in the opto-coupler circuit for the speed sensor and incorrect gains in the

current sensing circuits. In the firmware, timing miscues in the field oriented control routine

caused incorrect updates to the PWM routine.

A new opto-coupler circuit, as well as current sensing circuitry have been designed and

tested, but not yet integrated into the motor controller. Field-oriented control firmware is

currently being debugged and results are forthcoming.

~,- 4 7 ,

Slip Flux
Calnato r E Pmaol

SN sIT,+ I

D - ids Parl~s
Tr TransformIC2

* Cntrlle toPolr p e P1 Contolle

+ + i nere

Sas r s transformetoe

Sare possible by proper scaling when subtracting the transformed stator winding currents.

C-)

Chapter 4

Inverter Design

4.1 Power Module and Digital Signal Processor

A half-bridge inverter was designed around International Rectifier's PIIPM15P12DO07 pro-

grammable isolated integrated power module. The power module contains the power electronics

(e.g. IGBTs, gate drives, etc.), ac mains rectifiers, as well as a TI TMS320LF2406A DSP for

digital control of the digital control of the motor drive and for any zero sequence control of dc

output voltages.

The combined power electronic and control platform used in this thesis is shown in Figure

4.1. The PIIPM15P12DO07 from International Rectifier (IR) combines all the necessary power

electronics (i.e. IGBTs, gate drives, and protection) with a TMS320LF2406A control-optimized

DSP from Texas Instruemnts, along with associated sensors, peripherals, auxiliary supplies, and

communications (e.g. RS485, JTAG, CAN). Although this platform has been discontinued by
IR, it is close to an ideal model for the development of digital motor control systems.

4.2 Sine Wave Generation

4.2.1 Synchronous PWM

In variable speed drive, the inverter fundamental frequency varies with speed; in a field-oriented

controller, it also varies with torque. When using a constant PWM frequency, non-integer ratios

between the PWM frequency and the fundamental result in subharmonic content as a result

of the "beating". Synchronous PWM was achieved by vaying the PWM switching frequency

about a nominal (e.g. 10 kHz) so that the switching frequency is always a multiple n of the

generated sine wave; an algorithm for hysteresis about the transition points of n was included

~N-' 49 n

Chapter 4 : Inverter Design

Power Module schematic:

Package:

L\ out I
ITN2 0 - R- Ou 2

Input bridge. brake and tlue phase inverter (BBI) with current
PIIPM - BBI (EconoPack 2 outline compatible) sensing resistors on all output phases and thermistor

(a) PIIPM Integrated Power Module (b) PIIPM Schematic

PIIPM15P12DO07 System Block Schematic:
JIAG CAN

-- resIstor
71

PflPM15P12WO7
out I BRK

Conitol logicad
pmsw st$vply ACft4C minto

Monatd onDSP f ---

TM532ULF2406A)
R 2214 * qut lak. IGT * lOSTs

A dw dd and * F dFNs

Te p Power

C"Waa Seing ICS

(c) PIIPM Block Diagram

Figure 4.1: International Rectifier's Integrated Power Module[12]

~ 50 ^

Section 4.2 : Sine Wave Generation

to eliminate switching frequency jitter and oscillation. A good discussion of synchronous PWM

can be found in [13].

4.2.2 Table-Based Implementation

A sine wave drive with low spurious harmonic content is important for rectifier output voltage

control. The three-phase inverter is based on a 108-element sine reference table that drives a

symmetric PWM whose output is illustrated by the MATLAB plot in Figure 4.2. The size of

the table was chosen to be both a multiple of 3 (aligned three-phase system) and 4 (quarter-

wave symmetry). This results in a THD (total harmonic distortion) of 1.71% and a maximum

error of 2.90%.

Table 4.1: THD and Maximum For a DLT Sine Reference Using Different Interpolating Func-
tions

Interpolating Function THD (%) Maximum Error (%)
ceiling() 3.37 5.81
floor() 3.37 5.81
round() 1.71 2.90

Although not implemented, an equivalent 27-element quarter-wave table could be used.

The generation of the third harmonic is achieved by accessing every third table entry during

each PWM update. A key to the generation of a sine wave with low harmonic content is

the alignment of the PWM switching instances with the table element entries, which ensures

synchronous PWM. A discussion of table-based implementations are presented in [14]. Figure

4.4 shows no harmonic content to at least 1.25 kHz with a 60 Hz fundamental and a third

harmonic amplitude that is 50% of the fundamental. The algorithm is simple computationally

because it performs only a direct table lookup and does not require interpolation. With this

algorithm, the resolution for third harmonic phase modulation is determined by the size of the

table. If a better resolution is required without the penalty of a large table size, interpolation

for only the third harmonic lookup is required.

4.2.3 Parabolic Approximations

Real-time, on-the-fly second order approximations are a good alternative to look-up table based

implementations. Angular resolution is limited only by the working precision of the desired

number type. A second-order approximation requires at most three multiplications and three

~ 51 s-n

1

0.

-D

75 I-

0

-0.25

-0.5

-0.75

-1
0 7r/ 2 7 r

0 (radians)
37r/2 27

Figure 4.2: Sine reference created from a 108-element direct-lookup table.

100

10

1

H

0.1
10

Table Length N
100 500

Figure 4.3: THD and maximum error versus table length N for a sine reference using a direct

lookup table.

Chapter 4 : Inverter Design

N =108 -

Maximum Error

Total Harmonic Distortion

-

- -

0.5 -

0.25

~,, 5 2 -

Tek Stop I

.

Ch3l 2. L A&4
m1 2. . 125 Hz R A.50.00 %

Figure 4.5: Inverter Current for Fundamental + 25% Third Harmonic

Section 4.2: Sine Wave Generation

(3T

--- ___ -

h 250 V Ch2 250
Ch3 5.00 A QQCh4 1.00 V _ _

2..0 V 125 Hz |50.60 % |

Figure 4.4: Inverter output voltage.

Tekstop I

. A

........ 3 J 4. .

536mA
16.6kHz
180 Hz

22 Dec 2004
23:37:33

A:

A:
@:

~,- 5 3 -

A: 22.0 V
0: 20.0 V
A: 120 Hz
0: 180 Hz

23 Dec 2004
23:31:22

A: 532mA

Chapter 4 : Inverter Design

additions; a half-wave approximation requires one compare while a quarter-wave approximation

requires at most three compares, if one assumes the argument to the approximating function is

already limited to principal values, i.e. [0, 27r]. Over the approximating interval (e.g. [0, 7r] for

a half wave),

S(O) = x 2 (0 - x1) 2 + Xo (4.1)

A number of authors have used parabolic approximations for DFSS(direct-digital frequency

synthesis) in communications, but have used either a three-point fit (zero crossing and peak with

no errors) [15], least-squares fitting [16], or Taylor series approximations[16, 17]. In addition, 4th

order approximations based on doubly iterated parabolic approximations have been proposed

[15]. In the proceeding sections, we will see that choosing the appropriate metric for the

fitting optimization gives a more appropriate result for an intended application. Only a second

order approximation is shown, but a higher order iterated parabolic approximation with the

appropriate metric can easily be implemented.

The coefficients of the approximation are chosen in some optimal way:

" Maximizing the fundamental.

" Minimizing harmonic distortion.

" Minimizing percentage error.

" Zero error at the endpoints.

" Zero error at the peak.

" Zero error at the zero crossings.

" L' optimal.

" L2 optimal, which minimizes the mean square error.

" L' optimal, which minimizes peak error.

" And so forth ...

In general, these conditions do not result in the same coefficients and are sometimes conflicting.

As a second-order approximation, only three degrees are freedom are available.

As a sine reference for an inverter, values of the approximating function must match at the

endpoints of the sub-intervals; this does not necessarily mean that there must be zero error at

~- 54 ^

Section 4.2 : Sine Wave Generation

these points. However, enforcing zero error at the zero crossings minimizes crossover distortion

and prevents an ambiguity that could lead to a systematic dc offset.

In the case of a half-wave approximation, enforcing zero error at the zero crossings leaves only

one degree of freedom for any other optimization, whereas in the quarter-wave approximation,

two degrees of freedom are still available, which in reviewing Tables 4.2 and 4.3, result in better

optimization figures of merit.

In the calculation of the Park's transform, it seems reasonable that the sine approximation

be L optimal, which results in the smallest peak error for the calculation of d-axis and q-

axis quantities, while the sine reference for the inverter may use coefficients that reduce total

harmonic distortion. Ultimately, it is a multi-parameter design optimization in the design of the

inverter where proper weighting of such things as torque ripple and efficiency in the machine,

controller stability, among many others, must be taken into consideration.

Minimizing total harmonic distortion is not equivalent to maximizing the fundamental,

which is equivalent to minimizing the objective function

5(xo, x 1, x 2) = sin 2 0' dO' - j [x2(0' - X1)2 + xO] sin 6' dO' (4.2)

= fj2 (/n &(') sin(0') dO' (4.3)
30

where n is the number of sub-intervals and the error

&(0) = S(0) - sin 6. (4.4)

Total harmonic distortion (THD) when the dc term is zero, is defined as the ratio of rms

value of the harmonics in the waveform to the rms value of the fundamental,

jIfl S 2 (0') dO'

THD= 2 2w/n 2 -a (4.5)

where a, is the fundamental Fourier coefficient,

a, = -j 2 7r/n S(6') sin 0' dO'.
70 0

~- 5 5 -

Chapter 4 : Inverter Design

Optimizing for total harmonic distortion is equivalent to minimizing

27r/n

j 32(0/) dO'
W(XO, X1, X2) = a1

2 (4.6)

which is proportional to the reciprocal of the square of the distortion factor. The distortion

factor is the ratio of the rms of the fundamental to the rms of the waveform.

The L' norm to minimize becomes

W(XO, X1, X2) = 1 |Ioo sup{ 1(0)1 : 0 E [0, 27r/n]}, (4.7)

and the L 2 norm, or least-squares objective

W(XO, X1, X2) = 1 1122 g e2(0) d'. (4.8)

Half-Wave Approximation

A half-wave approximation is an optimal second-order fit to each of two sub-intervals: [0, 7r]

and [7, 27r]. The error over the approximating interval are illustrated in Figure 4.6 for a fit to a

unit amplitude sine wave. Table 4.2 was calculated in MATLAB using a uniform grid of 10,000

points using both constrained and unconstrained non-linear optimizations. The optimization for

THD appeared sensitive to the initial conditions, which indicates that the minimum might be

relatively flat, or that multiple local minima exist. For these calculations, the initial conditions

for all the optimizations are the case for zero error at the peak and at the zero crossings.

Quarter-Wave Approximation

The quarter-wave approximation is an optimal second order fit to a sine wave over the interval

[0, r/2]. Table 4.3 and Figure 4.7 shows that this approximation results in better values in

comparison to the half-wave case for both THD and error, respectively. These calculations

were performed with 100,000 points over the quarter-wave interval. In the unconstrained case,
it seems that a lower THD was achieved by fitting using least squares than for fitting by directly

optimizing THD, possibly similar reasons that the THD fit was sensitive to initial conditions

in the half-wave case.

The quarter-wave approximation with an L -optimal fit results in slightly better THD and

much better maximum error figures (1.67% and 1.65%, respectively) than in the 108-element

~NJ 56 -'

Section 4.2: Sine Wave Generation

7r/4 7r/2 37r/4

0 (radians)

(a) Unconstrained Optimization

ir/4 7T/2 37r/4
9 (radians)

(b) Zero Error at Zero Crossings

7r

Figure 4.6: Error from parabolic half-wave approximations to a sine function with unit ampli-

tude. l(-); £2(... ;L (-.); Maximal Fundamental ; Minimum THD(- + -); Zero

Error for Peak and Zero Crossing (- o -).

- -

'....-

F

0.1

0.05

-0.0&

0

L~-0.1

-0.15'(

0.06

0.05

-e

S

0~
5-4
5.4

0.04

0.03

0.02

0.01

-0

-0.01

-0.02

-/

A\I

X/

-I

-*

-'

-0.03

-0.04
0

~-. 5 7 ^

L-

Chapter 4 : Inverter Design

Table 4.2: Coefficients for Half-Wave Sine Approximations (10,000 point discretization for all
calculations).

Goal xo xi x2] THD(%)

El 0.9851 1.5708 -0.4270 143 2.84
_2 0.9802 1.5708 -0.4177 2.9829 2.64
_OO 0.9719 1.5708 -0.4051 0.0281 2.95
Max. Fundamental 0.9831 1.6286 -0.4199 8.26 x 10- 6.77
Min. Distortion 0.9924 1.5708 -0.4229 0.0238 2.64

Zero Crossing Error I I I
Zero Error Peak 1. 7r/2 -4/7r 2 3.93
El 0.9721 1.5708 -0.3940 240.30 3.93
L2 0.9675 1.5708 -0.3921 7.2249 3.93
'Coo_ 0.9618 1.5708 -0.3898 0.0382 3.93
Max. Fundamental 0.9689 1.5708 -0.3927 0.0131 3.93
Min. Distortion 1.0000 1.5708 -0.4053 0.0641 3.93

direct table lookup case (1.71% and 2.91%), in

crossings.

the case where there is no error at the zero

In addition to being useful as a sine reference for the inverter, a quarter wave approximation

forms the basis for the cos- 1 function that is necessary to calculate the phase output' of the

synchronous current regulator.

4.3 Three Phase Filters with Four Legs

A number of issues arise from currents and voltages at the PWM frequency (10-30 kHz). Among

these include capacitive currents which can cause wear in bearings and cause inadvertent ground

loops that cause additional inverter loading and create additional difficulties in sensor measure-

ment. The PWM waveform is rich with harmonics, which makes electromagnetic compatibility

another issue even with relatively PWM switching frequencies. A number of authors have have

tried to analyze [18] and mitigate [19] these issues.

Three-phase filters are used to reduce the PWM frequency content from the inverter in

driving the stator. Although these filters represent additional cost and component count, it

reduces losses in both the stator windings and the core in addition to eliminating resonances

'Equation 3.11.

~ 58 m

Section 4.3 : Three Phase Filters with Four Legs

0.1

0.08

0.06-e

0.04

0.02

-0.02

-0.04

-0.06

08'00 7r/47r
0 (radians)

(a) Unconstrained Optimization

An

-e

S

'-4
0~
'-4
'-.4

0.05

0.04

0.03

0.02

0.01

7r/4 7r/2

9 (radians)
(b) Zero Error at Zero Crossings

Figure 4.7: Error from parabolic quarter-wave approximations to a sine function with unit

amplitude. L'(-); L2(.... L' (--); Maximal Fundamental ; Minimum THD(- + -);

Zero Error for Peak and Zero Crossing (- o

%j 59 .

6 , -+

-I'

F

. -

(Y

-0.01

-0.03-

-0 04j

Chapter 4 : Inverter Design

Table 4.3: Coefficients for Quarter-Wave Sine Approximations. (10,000 point uniform dis-
cretization for all calculations).

Goal XO xi X2] THD(%)

_ _ _ _ 1.0341 1.7596 -0.3445 34.63 1.27
L2 1.0325 1.7676 -0.3382 0.3518 1.19
M. Ds1.0273 1.7723 -0.3315 0.0139 1.32
Max. Fundamental 0.9948 1.7676 -0.4133 8.76 x 10-5 1.32
Min. Distortion 1.0453 1.5708 -0.3424 0.0492 1.32

Zero Crossing Error I
Zero Error Peak 1. r/2 -4/7r 2 3.8
L 1.0612 1.8730 -0.3025 50.95 1.66
L 1.0524 1.8563 -0.3054 0.6804 1.65

1.0378 1.8261 -0.3112 0.0175 1.67
Max. Fundamental 0.9699 1.5744 -0.3913 4.28 x 10~7 3.81
Min. Distortion 1.0455 1.8564 -0.3034 0.0272 1.65

due to parasitics and inductance nonlinearities from high frequency effects, which can couple

changes in zero sequence current to dq-axis flux.

There are a number of ways to do three phase filters; among the most convenient is to use

series inductors and shunt capacitors between the inverter output and the motor. Figure 4.8

shows such a filter with the capacitors connected across the line in a A configuration which

similar to that used in [20, 21]. This configuration filters only line-to-line currents and is useful in

circuits where the wye is ungrounded, or where one wants the neutral to have a low impedance.

It is apparent from the filter response that the attenuation on the line with frequency is 2 nd

order, but only a 1st order LR response between the resistive load and series inductance for the

the zero sequence path. The single-phase, off-line analogy is using differential inductors with

X-capacitors (line-to-line).

In a multi-use application, both line and neutral currents require filtering. The filter in Fig-

ure 4.9 attenuates high frequencies from both phase and zero sequence components identically.

This topology suffers if there are mismatches in the line-to-neutral capacitors by unbalanc-

ing the response, hence converting some of the differential current to common mode, which is

reminiscent of what happens with Y-capacitors in single-phase, off-line applications.

The improved filter illustrated in Figure 4.10 is more complicated because it uses a coupled

inductor along with series inductors and shunt capacitors. This circuit is a novel three-phase,

four-wire derivation of the coupled inductor filters in [22, 23, 24] In this topology, the zero

~ 60 ^

Section 4.3 : Three Phase Filters with Four Legs

N VVV

Va

Vb

Vn

VC

6
N V

(a)

0

-20

-30
0
CL

-40
-o

-50

a2-60

-70

-80

-90
10 10 (

Frequency (Hz)

(b) Filter Response

Figure 4.8: Line-to-line filter with delta-connected capacitors do not filter zero sequence com-

ponents, but provide additional inductance in the zero sequence path. Filter response with

Y-connected 1OQ resistive load. (-) Line Response; 1 Zero Sequence Response.(LTSpice)

V VVbp oCp

105

I I

ap

..... ...-. .

-. ...

-.

-.. .-.. .-

-.-.
............. -

-.

-10F

1 10 410 2

~-. 6 1 -

Chapter 4 : Inverter Design

0 Vap

Va

Vb

Vn

VC

Vbp

OVP

T
(a)

10

0

-10

-20-~0
C,
C
a-
a)

'0

C

-30 -

-40 F-

-50 K

-60 F

-70

-80
101 102 10 (

Frequency (Hz)

(b) Filter Response

Figure 4.9: Typical three phase filter for both phase-to-phase and zero sequence components.

Zero sequence may be introduced by mismatches in filter components. Filter response with

Y-connected 1OQ resistive load. (-) Line Response; Zero Sequence Response.(LTSpice)

~,. 6 2

-..... -

A:-

-.....-.

- -

- - -

10 5

Section 4.4 : Minimal Implementations for Phase Current Measurement

sequence components are filtered separately from the positive and negative sequence compo-

nents. Because the coupled inductor is connected similarly to a common-mode choke, the net

flux in the core is only that of the zero sequence current if the leakages between each leg is

small enough. This topology is necessarily better than using just a common-mode choke be-

cause power is a significant amount of power is expected to be carried on the neutral (i.e. zero

sequence), which benefits by having a filter with a 2nd order response; this is quite different

from the single-phase, off-line case where one tries to minimize the current in the ground wire.

There are a number of considerations in the design of these three-phase filters from the

perspective of doing current control (§3.3): ignoring the filter by placing the filter breakpoints

well above the current-loop crossover frequency, or including the filter in the plant dynamics.

In either case, the fact that filter damping depends on the resistance seen at the stator drive

terminal (i.e. rotor effective resistance and secondary stator rectifier load) becomes an issue at

light loads. Typically, the series resistance of the inductor and the stator provide a bound on

the damping. If additional damping is required, small series resistances can be added to the

capacitor, and if the degradation in the filter response by doing this is not acceptable, explicit

dampening legs can be placed in parallel to the capacitors.

4.4 Minimal Implementations for Phase Current

Measurement

For field-oriented drive control, only the positive and negative sequence (or equivalently, the d-

axis and q-axis) currents need to be measured because zero sequence current does not contribute

to torque. Zero sequence current measurement, however, may be useful for detecting overcurrent

conditions in the power conversion circuit.

4.4.1 Balanced Three Phase, Wye Grounded and Ungrounded

In a balanced three-phase line,

ia + ib + ic = 0- (4.9)

In this case, there are only two independent variables (e.g. ia, ib) to be measured. The third

can be calculated, ic -(ia + ib).

When the the wye is ungrounded, there can be no zero sequence current, which is the

-) 63 -

Chapter 4 : Inverter Design

9 VC,~

L11)

Cz

(a)

10F
Frequency (Hz)

(b) Filter Response

Figure 4.10: Three phase filter with additional coupled inductor stage for zero sequence com-
ponents. Filter response with Y-connected 10Q resistive load. (-) Line Response;
Sequence Response. (LTSpice)

Zero

~-. 64 s-'

b

-H-

0

-10

0

CD

'0

0)

CO

-20-

-30 -

-40 -

-50F

-60 F -

-70

-80'
10

V,

I i)

V, I

Vb

..

- -.

- -

................... ..-.. .

-m

.. ~~~ ~ ~ ~ ~ .- .

1
10 2 10 510 4

Section 4.4 : Minimal Implementations for Phase Current Measurement

simplest balanced three-phase case for current measurement.

i" = I cos(wt)

ib = I cos(wt - 27/3)

ic = I cos(wt + 27/3)

When the wye is grounded, but the currents are still balanced even though there is a zero

sequence current, i.e.

a = + Za = + I cos(wt)3 3

b = - + ib = - + I cos(wt + 27r/3)3 3

C= + c = + I cos(wt - 27/3),3 3

Equation 4.9 still holds, and only two current sensors are needed to recover the sequence

currents. This can be accomplished by subtracting the 1/3 of the zero sequence current from

each of the phases on each of the sensors.

4.4.2 Multiple Stator

In a machine with multiple stators, a field oriented controller requires access to the component

of the phase currents in the stator that links flux to the rotor. While a detailed model of the

leakage inductances and coupling coefficients is required for the exact currents, these parameters

are generally time-varying and nonlinear because of the effects of temperature and magnetic

saturation.

Several approximations are appropriate in the Aardvark induction machine. Because the

stator primary and secondaries are wound in-hand, one can assume that these windings are

well-coupled. This means that the current in the magnetizing inductances is small relative to

the overall phase current. The remaining phase current then consists of the currents from the

rotor and the secondaries reflected back to the primary.

In a machine with unity turns ratio between the primary and secondaries and with good

coupling in the stator-stator windings, as it is in the Aardvark machine, the phase currents

reflect back to the primary. In this way, the correct linear combination of current measurements

from the different stator windings recovers the rotor-linked flux current as Figures 4.11 and

4.12 illustrates. The recovery of the linked current in these figures is calculated based on the

assumption that there is good coupling of the zero sequence, which is the case since a zero

~d 65 -'

Chapter 4 Inverter Design

2

0

-2

0.5

0

-0.5

-1

2

0

0 5 10 15 20 25 30 35 40
Time (ms)

Figure 4.11: Illustration of how the phase current that links flux to the rotor (Irec) can be

recovered from a linear combination of current measurements from different stator windings.

Ial is the current phase a of the primary, In1 is from the neutral of the primary, and Ia2 is that

of phase a of the secondary.

sequence transformer was part of the circuit 2 . The recovered linked current is

2
Irec =al - 1a2 - 2Inl.3

4.4.3 Estimation from Inverter Current Out of the DC Bus

A common objection to the idea of using an induction motor as a multi-use machine is that such

a large number of current sensors are required. In a "normal" machine, the phase currents are

balanced and there is no zero sequence current, hence only two current sensors are required for

field-oriented control. With a multi-use machine, one expects that at best two current sensors

are required for each addition stator winding.

The idea of using a single current sensor on the dc link along with the already available

knowledge of the switching states has been demonstrated in [25, 26]. By extending this idea

from the inverter dc link to the output dc buses, only one additional current sensor is required

2 See Figure 2.10.

~ 66 ^

Section 4.4 : Minimal Implementations for Phase Current Measurement

0.4

. 0 .2 -- -. . - -..0I
0.1

0.05 .

0-

0.1

0 .0 5 -.

0
1

0.4-

0.2

0 200 400 600
Frequency (Hz)

800 1000

Figure 4.12: The FFT of the currents used in the recovery of current that links flux to the

rotor. The dc components were subtracted and a Hanning window was used.

for each secondary stator winding, which will probably be necessary anyway for short-circuit

and overload sensing and protection.

~- 67 s-'

0
-...o

Chapter 5

Firmware Design

The DSP programme is multi-tasking and real-time. The typical approach is to use a real-time

operating system (RTOS). In this design, I have used a program architecture that does not use

an RTOS, but is multi-tasking and real-time.

The architecture uses a round-robin approach within a superloop with preemptive tasks

handled by interrupts. Although events are handled within the super loop, tasks do not run

to completion, but rather, are time-sliced. In addition, a number of persistent data structures

are shared publicly among the tasks and are not explicitly protected by an operating system.

Semaphores are included as part of these data structures a means for mutual exclusion, but

each task is responsible for checking and setting these semaphores.

This architecture is advantageous for small programs where both the intellectual and pro-

grammatic overhead of an RTOS is undesired. A certain coding discipline is required as is

understanding the timing requirements of particular routines. In any case, multi-tasking, real-

time firmware is not for the unwary.

5.1 Time Slicing Algorithm

The task functions in the main loop are time triggered from a hardware counter. As each

function is called in the main loop, it checks the counter to determine whether it should be

in an active state or a wait state. When the function, or more precisely the task, becomes

active, one iteration is performed. Actually, the function may actually iterate several times,

it depends on just how the task is defined. This task iteration runs to completion and only

can be preempted by an interrupt. For this scheme to work, the task iteration must complete

within the timing limits set by the timing budget, which must be decided at design-time. In

addition, interrupts add to the iteration time, hence a timing margin for each task is needed

~ 69 -

Chapter 5: Firmware Design

for the worst-case interrupt scenario, which includes context saving and loading along with the

actual service routine. It goes without saying that there can only be few interrupts and that

the interrupt service routines (ISR) must be short. There are a few ways to ensure this, for

example the ISR can either complete the task quickly or set a flag to wake a normal task. In

this architecture, it is important to note that tasks are created at design-time and cannot be

spawned.

Table 5.1 shows the execution times and approximate periods for each of the tasks tasks.

update-PWM() and controlV3() are normal task functions while periodic-ISR() is an ISR that

completes its task quickly.

One may notice that the periodicity for the example functions in Table 5.1 to be rather

slow. Let's examine the slowest, control V3(). Because the output voltage is controlled on the

peaks of a three-phase waveform, in which 60 Hz is the highest frequency, the fastest that one

can actuate a control is three times 60 Hz or 180 Hz, which also true for 7r-phase 3 rd harmonic

control. The most periodic is periodiciSRO, which updates the PWM duty cycle from a 108-

element sine reference table. At the fastest which is 60 Hz, the update rate is 1 / 1 0 8 th of a 60

Hz period which is 154 ps.

Table 5.1: Examples of Task Timing

Task Execution Period

updatePWM() 111 ps 500 ps

periodiclSR 8 ps 154 ps

controlV3() 117 ps 1 ms

5.2 Data Structures

As currently implemented, several persistent data structures are shared among different tasks.

For example sinrpwm contains information about the switching frequency, fundamental and

harmonic frequencies and amplitudes, among others; VFRamping is used for volts per hertz

ramping and contains information about the voltage and frequency steps of the drive, as well

as the ramp rate.

While it may be considered memory intensive to have too many persistent data structures,

in the currently limited use case for this application, all the tasks remain active, so it seems

appropriate in many cases to use these persistent data structures rather than maintain a mailbox,

or some other means of data passing.

~NJ 70 c-'

Section 5.3 : Output Voltage Regulation Module

Hardware registers and other peripherals are generally abstracted from the general tasks by

a data structure such as sinrpwm. Each of these data structures maintained by a separate task

such as updatePWM() that updates the peripherals and lower level drivers and ensures that

there are no collisions during these updates.

5.3 Output Voltage Regulation Module

The algorithm for the regulation of dc rectifier output using the r-phase 3 rd harmonic is

illustrated in the UML 1 activity diagram in Figure 5.1. This diagram describes what happens

during a single time slice.

The maximum amplitude for the 3 rd harmonic voltage is determined by the available voltage

headroom, i.e. 100% PWM duty cycle at the peak of the inverter output, which is a combination

of 1st and 3 rd harmonics.

5.4 Synchronous PWM Module

Updates to the PWM module occur all at once. During an update all tasks are mutually

excluded from the PWM data structure. update-PWMO has the job of brokering the transfer

of PMW parameters from the higher level tasks to the interrupt service routine as well as

making all the low-level calculations. Every task gets a chance to update sinrpwm because of

the end position in the round-robin queue of updatePWM. updatePWM() checks a semaphore

to see if the periodic-interrupt-isr() is being handled, and if not, excludes the this interrupt

service routine and updates the parameters.

Synchronous PWM is implemented so that the switching frequency is an integral multiple

of the highest zero sequence harmonic and hence also the fundamental. The actual multiple

used to determine the switching frequency changes as upper and lower boundaries. To prevent

oscillations near the boundaries, hysteresis is included in the algorithm.

5.5 Synchronous Current Controller

The main function for the synchronous current controller is illustrated in the activity diagram

in Figure 5.2. The synchronous current controller keeps track of the voltage and current limits

and calls appropriate handlers during voltage saturation and soft overcurrents.

'(UML-Universal Modeling Language, although it isn't claimed that these diagrams are compliant to the
most recent standards.

~ 71 m

Chapter 5 : Firmware Design

get V_1 get Vdcr_r

<invariant)
{V3_max < Vmax - V1}

ef get Vdcr
Vdcr
from

calculate Vdcrerror

= dc rectifier output
secondary winding.

Accum = Accum + Vdcr_error

[Accum<AccumMin] [Accum>AccumMax]

[else]

Accum = AccumMin Accum = AccumMax

\V

V3 = Kp*Vdcr error + Ki*Accum

V3 Vrin [V3<V3_min] [V3>V3_max] V3=3ma

[else]

V3 out = V3

V3 min can be zero
or -16% of V_max...

Figure 5.1: Activity diagram for closed-loop control of dc output using a proportion-integral

controller with accumulator anti-windup along with overflow and underflow control.

~%.J 72 -n

Max Limits -

calculate V 3_ma

calculate AccumMax

0a

xr

\ \ 7j
Oi6

Section 5.5 : Synchronous Current Controller

Speed Controller ensures that id*
and iq* are within torque and current
limits. i_q--> Torque

id--> Flux

geti id*, i_q* get Stator_2Currents

calculate i-cd i_q, i-mag

[i mag^2>i max^2

[elseo] alsfovrurnHndr(

{Over/Underflow Limit calculate id{error, cLerror {Over/Underflow Limit:

Accum Min<Accum id. AccumMin<Accumjq;
Accum id<Accum Max) Accum_iq<AccumMax)

Accum_id = Accumid + id_error Accum_iq = Accum _iq + iqerror

V d =Kdp*idrerror + Kdi*AccumKid

[Accum_iq<Aocum_iq min] [Accu_iq>Accum_iq_max]

[else]
Accumiq = Accum iq min Accumnjiq = Acmiqma~x

Vq =Kqp*kq_error + Kqi*Accum_iq)

Accumiq Limits set
by saturationHandler()

VMag^2 = V_d^2 + V_q^A2

call saturationHandler([Vmag^2>Vmax^ 2]

[else]

Vmag=Vmax

psi = arccos(V dNmag), Vmag=Vmag

Figure 5.2: Activity diagram for control of stator current in the synchronous frame using a

proportional-integral controller with accumulator anti-windup along with overflow and under-

flow control.

~ 73 -

Chapter 6

Conclusions and Future Work

A number of challenges were surmounted which resulted in a number of innovations. An

enabling concept has been the use of zero sequence harmonics where the peak of the fundamental

coincides with a peak of the harmonic to control the dc rectifier output of a secondary on the

stator. This concept has been demonstrated in a 1.5 hp induction machine using a closed-loop,

proportional-integral controller to control a 7r-phase third harmonic so that a dc output can be

regulated. Another enabling concept has been the use of a zero sequence transformer, which

allows the efficient transfer of zero sequence harmonics to the secondary.

To realize the system, an inverter and drive control had to be developed. The design of the

inverter was crucial in that it had produce an accurate sine wave and superposing it with any

other harmonic without overwhelming the digital signal processor. Two implementations were

carefully analyzed: a table-based sine reference and a parabolic approximation to pieces of the

sine. Ultimately, the parabolic approximation appears superior to a stored table that can easily

fit into the DSP. In the future, it may be possible to implement a 4th-order approximation using

a doubly-iterated parabolic approximation, which in the literature appears to have excellent

performance.

Two drive control methods have been developed. The volts per hertz drive has been suc-

cessfully implemented while the indirect field-oriented controller has been shown to work in

simulation, but with results of the implementation forthcoming. A number of practical and

theoretical issues arise with the field-oriented controller. These include anti-windup, cross-

coupling of the dq-axis variables in the plant and the implementation of current regulator. The

synchronous current regulator for a multi-use machine is different than what is commonly used

in field-oriented controllers in that it must supply a drive current that links flux to the rotor,

but must also provide a voltage with which to regulate a dc rectifier output. In a sense, it

must be both a current and a voltage source. Such a thing is possible using feedback so that

~- 75 -

Chapter 6 : Conclusions and Future Work

the fundamental is controlled as a current loop and the zero sequence harmonics controlled

by a voltage loop. To achieve this, the inputs are conceptually the frequencies and voltage

amplitudes of the fundamental and harmonics, along with a phase, which are essentially polar

coordinates, as opposed to the Cartesian d- and q axis variables.

Included is a preliminary analysis of what might be possible with the idea of multi-use

machine, by quoting some rough scaling laws.

To achieve this, a number of analysis and simulation tools have been developed, in MAT-

LAB, Simulink and SPICE. Some concepts, some of which are novel, have been reframed into

appropriate contexts.

Future results include implementation results from the field-oriented controller along with a

careful analysis of an example design for a multi-use machine, so that better comparisons with

competing technologies can be made.

~ 76 -

Appendix A

SPICE Deck for Multistator
Transformer

A.1 PSPICE-Wye- Ungrounded

* Schematics Netlist *

L_L4 $N0001 $N0002 {Lc/2}

L_L6 $N0003 $N0004 {Lc/2}

L_L5 vzO $N_0002 {Lc/2}

L_L8 $N_0003 vzO {Lc/2}

L_L7 $N0005 $N0006 {Lc/2}

L_L14 $N0007 $N0008 {Lc/2}

L_L17 $N0009 $N0010 {Lc/2}

L_L15 $N0007 vzl {Lc/2}

L_L13 $N0011 $N0012 {Lc/2}

L_L18 vzi $N.0012 {Lc/2}

L_L16 vzi $N0010 {Lc/2}

L_Li $N_0013 $N0001 {Llk}

LL2 $N0014 $N0004 {Llk}

L_L3 $N0015 $N_0005 {Llk}

L_LiO $N0011 $N0016 {Llk}

L_Lii $N0008 $N0017 {Llk}

L_L12 $N0009 $N0018 {Llk}

V_Vb $N0019 $N0020

+SIN 0 {Vki} {fi} 0 0 240

V-Vc $N0021 $N.0020

+SIN 0 {Vki} {fi} 0 0 120

V_Vn $N0020 0

+SIN 0 {Vk3} {f3} 0 0 0

D_D8 $N0022 vOl Dbreak

~NJ 77 m

Va Vb Vc

fV ii iVk} i)Vlii),>

V 120

LC/2)

PARAMLiERS

f I

f3

60 Vki

1S Vk3

f000800008$

kp

kO

K)

COiPUNGN4kp}
K_.Unear

L4 COLUPUNG=lkp)

L6 LV

L13 L7

L14 L17

L18

LS

ULC2}

vzo

LI,

L2)'

R ! /k) 2
R2 k}

jUkl

L4 L6

{L/) {LCI;2}

K 7

KLmnear
COUPLING-{kp}

L9

L15

L1d

Figure A.1: Wye-Ungrounded

LP R .M.0R

Lc GC0mH
U~k 100UH

I.-
71 VL17

LIS'2 L15
j~ ;Lc/2)

j LCv21

LIQ

R4

..- -

200

200

Wuk} R5
_ -_-_ _ _- _ _---- - A -

R6)

L12

I L.'k)

I/2 L13

itC/2)

-1

D13DI1

4

C)
co:

LIS)

KC12}Z

1008EG

s
0-

D9 .010

- -
1000uf

C2
1'MLIF

3 04'
O.001

Section A.1 : PSPICE-Wye-Ungrounded

D_D9 $N0023 v01 Dbreak

D_D10 $N_0024 v01 Dbreak

D_D11 v02 $N_0022 Dbreak

D_D12 v02 $N_0023 Dbreak

DD13 v02 $N_0024 Dbreak

KnK1 LL4 LL6

+ LL13 LL14 {kp}

KnK4 LL5 LL7

+ LL17 LL18 {kp}

KnK7 LL8 LL9

+ LL15 LL16 {kp}

R_R1 $N0025 $N0013 1

R_R2 $N0019 $N0014 1

RR3 $N0021 $N0015 1

RR4 $N0016 $N_0022 1

R_R5 $N0017 $N0023 1

RR6 $N0018 $N0024 1

V_Va $N0025 $N0020

+SIN 0 {Vk1} {fl} 0 0 0

C_Cl vOO v01 10OOuF

C_C2 v02 vOO 10OO0uF

RR7 vOO v01 200

RR8 v02 vOO 200

R_R11 vOO vzl 100MEG

RR9 0 vzl 1

L_L9 vz0 $N0006 {Lc/2}

.PARAM f1=60 f3=180

.PARAM kp=1 k0=1

.PARAM Lc=100mH Llk=100uH

.PARAM Vk1=300 Vk3=0.001

** Analysis setup **

.tran Ons 2

.OPTIONS ABSTOL=10pA

.OPTIONS RELTOL=0.005

.OPTIONS VNTOL=10uV

.OP

* From [PSPICE NETLIST] section of pspiceev.ini:

.lib "nom.lib"

r,.- 79 -^

Appendix A : SPICE Deck for Multistator Transformer

.INC "three-legged transformer4.net"

.INC "three-legged transformer4.als"

.probe

.END

A.2 PSPICE-Wye- Grounded

* Schematics Netlist *

L_L4 $N_0001 $N0002 {Lc/2}

L_L6 $N0003 $N.0004 {Lc/2}

L_L5 0 $N_0002 {Lc/2}

L_L8 $N_0003 0 {Lc/2}

L_L7 $N0005 $N0006 {Lc/2}

L_L9 0 $N_0006 {Lc/2}

L_L14 $N0007 $N0008 {Lc/2}

L_L17 $N0009 $N0010 {Lc/2}

L_L15 $N_0007 vzi {Lc/2}

L_L13 $N_0011 $N0012 {Lc/2}

L_L18 vzi $N0012 {Lc/2}

L_L16 vzi $N0010 {Lc/2}

L_L1 $N0013 $N0001 {Llk}

L_L2 $N0014 $N_0004 {Llk}

L_L3 $N0015 $N0005 {Llk}

L_L10 $N0011 $N0016 {Llk}

L_L11 $N0008 $N0017 {Llk}

L_L12 $N0009 $N0018 {Llk}

C_Ci v00 vOl 10OOuF

C_C2 v02 v00 10OOuF

R_R8 v02 v00 200

V_Vb $N0019 $N0020

+SIN 0 {Vk1} {fi} 0 0 240

VVc $N0021 $N0020

+SIN 0 {Vk1} {fi} 0 0 120

V_Vn $N0020 0

+SIN 0 {Vk3} {f3} 0 0 0

D_D8 $N_0022 v0i Dbreak

D_D9 $N_0023 v0i Dbreak

D_D10 $N_0024 v0i Dbreak

r-.' 80 '-'

?AWELII.

LC
Ulk

61

jVkl)

240
........ .

Li

(Uik)

R 2 L2

L1k)

(7

1.00

..0

0j

PAIRAMKT0R.

60 Vk3

180 Vk3

'Kj K1
CO Unear

COUPLING=jkp}

L43

L14

L3

L4

LS

ILc/2)

L6

{L12)

fLC/2)

L9

LB LC/2)'K 2

1.......2...

104mH

100UH

LIO
R4

Li.

i{ik) R5

L12
11.k)

L14 113

C/2) L4/2)

D9 Di0

Vol

1000200

.1.. .
RS

-C2 2DO

iOO0uF
V0

DZ D13

LIS

{LC/2)

L17
!LC/2)

L16

tW/21

R9

K_Unpar
COUPLING={kpl

LI

113

1/21

0.001

- 7

K_0j ear

COUPUNG-=kp)

L9

LIS

116

Figure A.2: Wye-Grounded

O0

s
-AAAM.05-

01

13

PARAMETTRS.

k0

Cn

C)

0b

Va

[Vkl)(

0

300
0.001

Appendix A : SPICE Deck for Multistator Transformer

D_D11
D_D12
D_D13
Kn_K1
+ L_L13
Kn_K4
+ L_L17
Kn_K7
+ L_L15
R_R1
R_R2
R_R3

R_R4

R_R5
R_R6

V_Va
+SIN 0 {

R_R7
R_R9
R_R10

.PARAM

.PARAM
.PARAM
.PARAM

** Anal

.tran 0

.0P

v02 $N_0022 Dbreak

v02 $N_0023 Dbreak

v02 $N_0024 Dbreak

L_L4 LL6

L_L14 {kp}

L_L5 LL7

L_L18 {kp}

L_L8 LL9

LL16 {kp}

$N0025 $N0013 1

$N_0019 $N_0014 1

$N0021 $N0015 1

$N0016 $N0022 1

$N_0017 $N0023 1

$N_0018 $N0024 1

$N0025 $N0020

Vk1} {fl} 0 0 0

vOO vOl 200

0 vzl 1

vzl v00 0.001

ysis

as 2

Lc=lOOmH Llk=100uH

f1=60 f3=180

kp=1 kO=1

Vk1=300 Vk3=0.001

setup **

* From [PSPICE NETLIST] section of pspiceev.ini:

.lib "nom.lib"

.INC "three-legged transformer2.net"

.INC "three-legged transformer2.als"

.probe

.END

r,-o 82 e

Section A.3: PSPICE-Wye-Grounded with Zero Sequence Transformer

A.3 PSPICE-Wye-Grounded with Zero Sequence
Transformer

* Schematics Netlist *

L_L4 vpa $N0001 {Lc/2}

L_L6 $N0002 vpb {Lc/2}

L_L5 vz0 $N0001 {Lc/2}

L_L8 $N0002 vz0 {Lc/2}

L_L14 $N0003 vsb {Lc/2}

L_L15 $N0003 vzi {Lc/2}

L_L13 vsa $N0004 {Lc/2}

L_Li $N0005 vpa {Llk}

L_L2 $N0006 vpb {Llk}

L_L3 $N0007 vpc {Llk}

LL10 vsa $N_0008 {Llk}

L_Lii vsb $N0009 {Llk}

L_L12 vsc $N0010 {Llk}
C_Cl v00 vOl 1000uF

C_C2 v02 vOC 1000uF

RR8 v02 vOO 200

D_Dii v02 $N_0011 Dbreak

D_D12 v02 $N_0012 Dbreak

D_D13 v02 $N_0013 Dbreak

KnKi LL4 LL6

+ L_L13 L_L14 {kp}

Kn-K4 . LL5 L-L7

+ L_L17 L_L18 {kp}

KnK7 LL8 LL9

+ L_L15 L_L16 {kp}
L_L17 vsc $N0014 {Lc/2}

L_L7 vpc $N0015 {Lc/2}

L_L18 vzi $N0004 {Lc/2}

R_R7 vOC vOl 200

D_D8 $N_0011 vOl Dbreak

D_DiO $N0013 vOl Dbreak

D_D9 $N0012 vOl Dbreak

R_Ri $N0016 $N0005 1

R_R2 $N0017 $N0006 1

R_R3 $N0018 $N.0007 1

RR6 $N0010 $N0013 1

R_R5 $N0009 $N0012 1

-, 83 -

U 2TS

Va Vb Vc

(Vk1} (Vkt +I Vli ,60 60 60
0 -120 +120

(V13} Vo

190

11L

60
ISO

K1

1 COUP.NG=--(kp}

iL4
L6

L:3

L 4

L6 .

DS D9 D1O

0
1

01R4
k1.111

L 7

LC/21

L2R6

4~I

Y_.

D- -
Dli UV' 013

L8 I I
1 .0 1.9 ~ .06

U/2) LISlL.21 2

3 L 2i

K_ K4

K-Linear . K7

COUPUING=Ckp O Klneap

LS COUPNG=tKp

L7 L8

.11 L9

TX2

L2.VALUJE=mI00m,

LVALUE=1001H

F I LIG~

............. ...I .

Figure A.3: Wye-Grounded with Zero Sequence Transformer

PAK,;1

R2 L2
..k.

L4

C-
100O.F

9

C)

0e

L14
LC21

(1.0/2

VkI 0.1
Vk3 299.9

L13

ILC/2M

IC/21

..PA METERS:

f3

PARAPMETERS

kp

k0

s

0MH
1mH

11200

Y20

L11

(Uk
P1

C2

------- -

R10
1 L20

LIB L16

Section A.3 : PSPICE-Wye-Grounded with Zero Sequence Transformer

R_R4 $N_0008 $N0011 1

R_R9 0 v00 1

L_L16 vzi $N_0014 {Lc/2}

L_L9 vz0 $N0015 {Lc/2}

K_TX2 L1_TX2 L2_TX2 1

L1_TX2 $N_0019 0 100mH

L2_TX2 $N0020 vOO 100mH

R_R10 $N0019 vz0 1

V_Va $N0016 $N0021

+SIN 0 {Vk} 60 0 0 0

V_Vb $N0017 $N0021

+SIN 0 {Vk1} 60 0 0 -120

V_Vc $N0018 $N0021

+SIN 0 {Vk1} 60 0 0 +120

VVn $N0021 0

+SIN 0 {Vk3} 180 0 0 180

L_L20 vzi $N_0020 1mH

.PARAM f1=60 f3=180

.PARAM kp=i kO=1

.PARAM Lc=lOOmH Llk=imH

.PARAM Vkl=0.1 Vk3=299.9

** Analysis setup **

.tran Ons 2

.OP

* From [PSPICE NETLIST] section of pspiceev.ini:

.lib "nom.lib"

.INC "three-legged transformer3.net"

.INC "three-legged transformer3.als"

.probe

.END

r,.. 85 -'

Appendix B

MATLAB Script for Parabolic
Approximations of Sine Function

B.1 Script

1 %%II-file to generate plots and coefficients for various
%%2nd order sine approximations

3 clear;
npts 10000;

5 tmesh 0:pi/npts:pi;
x0 [-4/pi^2 pi/2 1]';

7 str cell (11 ,11);
%L1 fit

9 k=1;
[y, f] = fminsearch(O(x) hlfit (x,tmesh) ,x)

11 [r ,al, df] =thd(y,tmesh, pi);
str(k,1) {'Ll-Fit'}

13 for i = 2:4
str(k,i) = {y(i-1)};

is end
str(k,5) = {'b-'};

17 str(k,6) = {f};
str(k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave - 4/npts; qtr=8/npts

19 str(k,8) = {r};
str(k,9) = {al};

21 str(k,10) {df};

23 %L2 fit
k=k + 1;

25 str (k,1) = 'L2-Fit'
[y, f] = fminsearch (Q(x) h2fit (x, tmesh) ,x)

27 [r ,al, df] = thd(y,tmesh);
for i = 2:4

~ 87 -

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

end
31 str

str

33 str

str

35 str

str

(k,5) = {'g:'};
(k,6) = {f};
(k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave = 4/npts;
(k,8) = {r};
(k,9) = {al};
(k,10) = {df};

37

39 Linf fit
k=k + 1;

41 str (k,1) = 'Linf -Fit'
[y, f] = fminsearch(O(x) hinffit (x,tmesh),xO)

43 [r,al,df] = thd(y,tmesh);
for i = 2:4

45 str(k,i) = {y(i-1)};
end

47 str(k,5) = {'r
str(k,6) = {f};

49 str(k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave = 4/npts;
str (k,8) {r};

51 str(k,9) {al};
str(k,10) {df};

53

qtr=8/npts

qtr=8/npts

s %Min Distortion Fit
k=k + 1;

57 str (k , 1) = { 'Min-Distortion -Fit '}
[y, f] = fminsearch(@(x) mindistfit (x,tmesh) ,x)

59 [r ,al, df] = thd(y,tmesh);
for i = 2:4

61 str (k,i) ={f(i -1)1;
end

63 str (k,5) = {'c-'};
str(k,6) = {f};

65 str (k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts
str(k,8) = {r};

67 str(k,9) = {all;
str(k,10) = {df};

69

%Min Distortion Fit2
71 k=k+1;

st r (k ,1) = { 'Min-Dist -Fit2 '}
73 xOO = [-0.4177 1.5708 0.9802; %Use L2 guess for initial fit

[y,f] = fminsearch(@(x) thdopt(x,tmesh),xOO)
75 [r,al,dfl = thd(y,tmesh);

for i = 2:4

-' 88 m

29 str (k , i) = fy(i-1)1;

Section B.I : Script

77 str (k,i) = y(i -1)};
end

79 str (k,5) = {'k-'};
str(k,6) = {f};

81 str (k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave - 4/npts; qtr=8/npts
str(k,8) = {r};

83 str (k,9) = {al};
str(k,10) = {df};

85 str (k,11)=f 'k+';

87 %Zero pk and crossing error
k=k + 1;

89 str(k,1) = {'Pk-and-Zero Cross'}
y = xO;

91 [r , al, df) thd (y, tmesh)
for i = 2:4

93 str (k, i) = {y(i -1)};
end

95 Str (k,5)
str(k,6) = {f};

97 str (k,7) = {4*mindistfit(y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts
str(k,8) = {r};

99 str(k,9) = {al};
str (k,10) = {df};

101 str (k,11) = {'bo'};

103 %L1 fit , zero crossing error
k=k + 1;

105 str (k,1) = {'LI-Fit -Zero-Cross '}
options optimset ('LargeScale ','off');

107 [y, f] = fmincon (((x) hl1f it (x, tmesh),x ,[],],],],],], .
©confuneq, options)

109 [c,ceq] = confuneq(y)
[r ,al, df] = thd(y,tmesh);

ill for i = 2:4
str(k, i) = {y(i -1)};

113 end
str(k,5) =

115 str(k,6) = {f};
str(k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts

117 str(k,8) = {r};
str(k,9) = {al};

119 str (k,10) = {df };

121 %L2 fit , zero crossing error
k=k + 1;

123 str (k,1) = {'L2-Fit-Zero-Cross '}
options optimset ('LargeScale ','off');

r- 89 -

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

125 [y, f] = fmincon(@(x) h2fit (x,tmesh) ,xO , [H [] H] H [] ...
Oconfuneq, options)

127 [c,ceq] = confuneq(y)

[r ,al, df) = thd(y,tmesh);
129 for i = 2:4

str(k,i) = {y(i-1)};
131 end

str (k,5) = {'r: '};
133 str(k,6) = {f};

str (k,7) = {4*mindistfit (y, tmesh)/npts }; %half wave = 4/npts; qtr=8/npts
135 str(k,8) = {r};

str(k,9) = {al};
137 str(k,10) {df};

139 %Linf fit , zero crossing error
k=k + 1;

141 str (k ,1) { {'Linf.-..Fit .Zero-Cross'}
options optimset ('LargeScale ' , ' off ')

143 [y, f] = fmincon(A(x) hinffit (xtmesh),x0 [[[[],],],.
@confuneq, options)

145 [c,ceq] = confuneq(y)
[r ,al, df] = thd(y,tmesh);

147 for i = 2:4
str(k,i) = {y(i-1)};

149 end
str(k,5) = {'c-.'};

151 str(k,6) = {f};
str(k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave 4/npts; qtr=8/npts

153 str(k,8) = {r};
str(k,9) = {al};

155 str(k,10) = {df};

157 %Wax fundamental, zero crossing error
k=k + 1;

159 str (k,1) = 'Min-Distort ..ZCross '}
options optimset ('LargeScale ','off');

161 [y, f] = fmincon(§(x) mindistfit (x,tmesh),xO ,[] H H ,] 3]
Lconfuneq, options)

163 [c,ceq] confuneq(y)

[r ,al, df] = thd(y,tmesh);
165 for i = 2:4

str(k,i) = {y(i-1)};
167 end

str(k,5) = {'m-'};
169 str(k,6) = {f};

str(k,7) = {4*mindistfit(y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts

171 str(k,8) = {r};
str(k,9) = {al};

s-- 90 v-'

Section B.1 : Script

173 str(k,10) = {df};

175 %Min distortion fit 2, zero crossing error
k=k + 1;

177 str (k,1) = {'Min....Distort2 ,..ZCross '}
xOO = [-0.3921 1.5708 0.9675];

179 options = optimset ('LargeScale ','off');

[y, f] = fmincon(@(x) thdopt(x,tmesh),x00 ,[] , [] ,[] ,[] , [] , [] ,.

181 Aconfuneq, options)
[c,ceqI = confuneq(y)

183 [r ,al, df] = thd(y,tmesh);
for i = 2:4

185 str (k , i j y(i -1)j;
end

187 str (k,5) = 'k-'
str(k,6) = {f};

189 str (k,7) = {4*mindistfit (y,tmesh)/npts}; %half wave - 4/npts; qtr=8/npts
str(k,8) = {r};

191 str (k,9) = {al;
str (k,10) = {df};

193 str (k,11)={ 'k+' ;

195 % Sa = y(1)* (tmesh - y(2)* ones(size (tmesh))). ^2 + y(3)* ones(size (tmesh));
% error = Sa - sin(tmesh);

197 % figure (1)
% plot (tmesh/pi , error);

199 % figure (2)
% plot (tmesh/pi , sin (tmesh) , tmesh/pi , Sa);

201 clear i ,y; y = zeros(1 ,3);
figure (1);

203 for i = 1:6
for j = 1:3;

205 y(j ,1) = str{i ,j+1}
end

207 Sa = y (1)* (tmesh - y (2)* ones (size (tmesh))). 2 + .

y(3)* ones (size (tmesh));
209 error = Sa - sin(tmesh);

plot (tmesh, error ,str{i ,5});
211 hold on;

if isa(str{i ,11},'char')
213 plot (downsample (tmesh , (npts / 10)) ,...

downsample (error , (npts /10)) , str {i ,11});
215 end

end
217 set(gca, 'XTick' ,[0 pi/4 pi/2 3*pi/4 pi]);

set (gca, 'XTickLabel' , 'tgx0 tgxpi4 tgxpi2 tgx3pi4l tgxpi ');
219 %set(gca, 'YTick',[-0.15 -0.1 0.05 0 0.05 0.1]);

%set(gca, 'YTickLabel ',...

~'-' 91 m

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

221 % 'tgym0p15| tgym0pl tgym0p05| tgy0 I tgyOpO5 tgym0pl ');
xlabel ('tgxxtheta')

223 ylabel ('tgyyerror ')
hold off;

225 figure (2);
for i = 6:11

227 for j = 1:3;
y(j ,1) = str{i ,j+1}

229 end
Sa = y(1)*(tmesh - y(2)*ones(size(tmesh))). 2 +..

231 y(3)* ones (size (tmesh));
error = Sa - sin (tmesh);

233 plot (tmesh, error, str{i ,5});
hold on;

235 if isa(str{i,11} ,'char')
plot (downsample (tmesh, (npts /10))

237 downsample (error , (npts /10)) , str {i ,11});

end
239 end

% set (gca, 'XTick ',[0 pi/4 pi/2 3* pi/4 pi]);
241 % set (gca , 'XTickLabel ', '0\ pi /4| pi /23pi /4 pi ');

% xlabel('\theta (radians)')
243 % y labe l ('Error (Unit Amplitude)')

set (gca, 'XTick' ,[0 pi/4 pi/2 3*pi/4 pi]);
245 set (gca, 'XTickLabel' , 'tgxO I tgxpi4 I tgxpi2 tgx3pi4l tgxpi ');

%set(gca, 'YTick',[-0.15 -0.1 0.05 0 0.05 0.1]);
247 %set(gca, 'YTickLabel ',...

% 'tgym0p15 | tgym0pl tgymOpo5\ tgy0| tgy0p05 tgym0pl ');
249 Xlabel ('tgxxtheta ')

ylabel ('tgyyerror')
251 hold off;

253

%Quarter Wave Approximation
255

tmesh = 0:pi/2/npts:pi/2;
257 x0 = [-4/pi^2 pi/2 1]';

str2 = cell(11,10);
259 %L1 f i t

k=1;
261 [y,f] = fminsearch(@(x) hlfit(x,tmesh),xO)

[r , a1,df) = thd(y,tmesh);
263 str2(k,1) = {'Ll-Fit '}

for i = 2:4
265 str2 (k,i) {y(i -1);

end
267 str2(k,5) =

str2(k,6) = {f};

~-' 92 m

Section B.1 : Script

269 str2(k,7) = 18*mindistfit (y,tmesh)/npts}; %half wave = 4/npts;
str2(k,8) = {r};

271 str2(k,9) = {al};
str2(k,10) = {df};

273

%L2 fit
275 k=k+1;

[y, f] = fminsearch(A(x) h2fit (x,tmesh) ,xO)
277 [r , al , df] = thd (y, tmesh);

str2 (k,1I) = {'L2-Fit'
279 for i = 2:4

str2(k,i) {y(i -1)};
281 end

str2
283 str2

str2
285 str2

str2
287 str2

(k,5) = {'g:'};
(k,6) = {f};
(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts;
(k,8) = {r};
(k,9) = {al};
(k,10) = {df};

qtr=8/npts

qtr=8/npts

289 %Linf fit
k=k + 1;

291 [y, f] = fminsearch(Q(x) hinffit (x, tmesh) ,x)

I r , al, df) thd (y, tmesh)
293 str2(k,1) {'Linf-Fit'}

for i = 2:4
295 str2(k, i) {y(i -1)};

end
297 str2(k,5) = 'r

str2(k,6) = {f};
299 str2(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts

str2(k,8) = {r};
301 str2 (k,9) = {al};

str2(k,10) {df};
303

%AMax Fundamental Fit
305 k=k+1;

[y,f] = fminsearch(Q(x) mindistfit(x,tmesh),xO)
307 str2(k,1) = {'Min-Dist-Fit '}

for i = 2:4
309 str2(k, i) = {y(i -1)};

end
311 str2(k,5) = {'c-'};

str2(k,6) = {f};
313 str2(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts

str2(k,8) = {r};
315 str2 (k,9) = {al};

str2(k,10) = {df};

~,, 93 ,n

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

317

%Min Distortion Fit 2
319 k=k+1;

xOO [-0.3882 1.7676 1.0325];
321 [yf] = fminsearch(4(x) thdopt(x,tmesh),xOO)

str2(k,1) = {'Min-Dist-Fit2'}
323 for i = 2:4

str2(k,i) - {y(i-1)};
325 end

str2(k,5) 'k-'};
327 str2 (k,6) - {f};

str2(k,7) - {8*mindistfit (y,tmesh)/npts}; %half wave - 4/npts; qtr=8/npts
329 str2(k,8) = r};

str2(k,9) {al};
331 str2 (k,10) = {df};

str2 (k,11)={ 'k+' };
333

%Zero pk and crossing error
335 k=k+1;

y = xO;
337 [r,al, df] thd(y,tmesh);

str2 (k,1) = 'Zero-pk-and-cross'}
339 for i = 2:4

str2(k,i) {y(i-1)};
341 end

str2(k,5) =
343 str2 (k,6) = {f};

str2(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave 4/npts; qtr=8/npts
345 str2(k,8) = {r};

str2(k,9) = {al};
347 str2(k,10) = {df};

str2(k,11) = {'bo'};
349

%L1 fit , zero crossing error
351 k=k+1;

options = optimset ('LargeScale ','off');

353 [y, f] = fmincon(La(x) h1fit (x,tmesh),xO [[[],[],.
@confuneq2 , options)

355 [c,ceq] = confuneq2(y)

[r ,al, df) = thd(y,tmesh);
357 str2 (k,1) = 'L1-Fit-Z.Cross'}

for i = 2:4
359 str2(k,i {y(i-1)1;

end
361 str2(k,5) ={'g-'}

str2(k,6) = {f};
363 str2(k,7) = {8*mindistfit(y,tmesh)/npts}; %half wave =4/npts; qtr=8/npts

str2(k,8) = {r};

~N. 94 m

Section B.1 : Script

365 str2(k,9) {all;
str2(k,10) = {df};

367

%L2 fit , zero crossing error
369 k=k+1;

options = optimset ('LargeScale ','off');

371 [y, f] = fmincon((q(x) h2fit (x ,tmesh),x ,[] ,[] ,[,[I[, , .
@confuneq2 , options)

373 [c , ceq] = confuneq2(y)
[r ,al, df] = thd(y,tmesh);

375 str2(k,1) = {'L2-Fit-Z-Cross'}
for i = 2:4

377 str2(k, i) {y(i -1)};
end

379 str2(k,5) = {'r: '};
str2(k,6) = {f};

381 str2(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave =4/npts; qtr=8/npts
str2(k,8) = {r};

383 str2(k,9) = fal};
str2(k,10) = {df};

385

%Linf fit , zero crossing error
387 k=k+1;

options = optimset ('LargeScale ','off');
389 y, f] = fmincon(©(x) hinffit (x,tmesh),xO , [] , , [] , [] , [] , [] ,.

@confuneq2 , options)
391 c , ceq = confuneq2 (y)

[r ,al, df] = thd(y,tmesh);
393 str2 (k ,1) = { 'Linf-Fit ..Z-Cross'}

for i = 2:4
395 str2 (k,i) {y(i -1)1;

end
397 str2(k,5) = 'c-.

str2(k,6) = {f};
399 str2 (k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts

str2(k,8) = {r};

401 str2(k,9) = {al};
str2(k,10) = {df};

403

%W'ax fundamental, zero crossing error
405 k=k+1;

options = optimset ('LargeScale ','off');

407 [y, f] = fmincon(@(x) mindistfit (x, tmesh) ,xO , [] , [] , [] , [] , [] , [] ,

Aconfuneq2 , options)
409 [c,ceq = confuneq2(y)

[r , al , df] =thd (y, tmesh);
411 str2 (k, 1) = {'Min..Dist -Z-Cross'}

for i = 2:4

~- 9 5 ,

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

413 str2 (k , i) = {y(i -1)};

(k,5) = {'m-'};
(k,6) = {f};
(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts;
(k,8) = {r };
(k,9) = {all;
(k,10) = {df};

%Min distortion fit 2, zero crossing error
423 k=k+1;

x00 = [-0.3054 1.8563 1.05241;
425 options = optimset ('LargeScale ','off');

[y, f] = fmincon(@(x) thdopt(x,tmesh),x0 , [] , [] ,[] [] , [] , L]
427 4confuneq2 , options)

[c,ceq] confuneq2(y)
429 [r ,al, df] = thd(y,tmesh);

str2 (k,1) = {'Min-Dist2 -ZCross'}

431 for i = 2:4
str2(k,i) = {y(i-1)};

(k,5) = {'k- '};
(k,6) = {f};
(k,7) = {8*mindistfit (y,tmesh)/npts}; %half wave = 4/npts; qtr=8/npts
(k,8) = {r;
(k,9) = {al1};
(k,10) ={df}

(k,11) { 'k+'}

figure (3);
443 for i = 1:6

for j = 1:3;
445 y(j ,1) str2{i , j+1}

end
447 Sa = y(1)*(tmesh - y(2)*ones(size(tmesh))).^ 2 +...

y (3)* ones (size (tmesh));
449 error = Sa - sin (tmesh);

plot (tmesh, error , str 2{i ,5});

451 hold on;
if isa(str2{i ,11} ,'char')

453 plot (downsample (tmesh , (npts /10)) ...

downsample (error , (npts /10)), str2{i ,11});

455 end
end

457% set (gca, 'XTick',[0 pi/4 pi/2 3*pi/4 pi]);
% set (gca, 'XTickLabel ', '0| pi /4| pi /2|3pi/4pi ');

459 % xlabe ('theta (radians
% ylabel('Error (Unit Amplitude)')

~ 96 k-^

end
415 str2

str2
417 str2

str2
419 str2

str2
421

qtr=8/npts

433 end
str2

435 str2
str2

437 str2
str2

439 str2
str2

441

Section B.2 : Functions

461 set (gca, 'XTick' , [0 pi/4 pi/2 3*pi/4 pi]);
set (gca, 'XTickLabel' , 'tgx0 tgxpi4 tgxpi2 tgx3pi4l tgxpi ');

463 %set(gca, 'YTick',[-0.15 -0.1 0.05 0 0.05 0.1]);
%set(gca, 'YTickLabel

465 % 'tgym0p15 tgym0pl I tgym0p05 tgy0 tgy0p05 tgym0pl ');
xlabel ('tgxxtheta')

467 ylabel('tgyyerror
hold off;

469 figure (4);
for i = 6:11

471 for j = 1:3;
y(j,1) str2{i ,j+1}

473 end
Sa = y(1)*(tmesh - y(2)*ones(size(tmesh))).^2 +...

475 y(3)* ones (size (tmesh));
error = Sa - sin (tmesh);

477 plot (tmesh, error , str2{i ,5});
hold on;

479 if isa(str2{i,11},'char')
plot (downsample (tmesh , (npts /10))

481 downsample (error , (npts /10)) , str2{i ,11});
end

483 end
% set (gca, 'XTick',[0 pi/4 pi/2 2*pi/4 pi]);

485 % set (gca, 'XTickLabel ', '0| pi/4|pi/2|3pi/14pi ');
% xlabel('\theta (radians)')

487 % ylabel ('Error (Unit Amplitude)')
set (gca, 'XTick' ,[0 pi/4 pi/2 3*pi/4 pi]);

489 set (gca, 'XTickLabel' , 'tgx0I tgxpi4 I tgxpi2 tgx3pi4 tgxpi ');

%set(gca, 'YTick',[-0.15 -0.1 0.05 0 0.05 0.1]);
491 %set(gca, 'YTickLabel ',...

% 'tgymOpl5|tgym0pl|tgym0p05|tgy0ltgy0p05|tgym0p1');
493 Xlabel ' tgXxtheta '

ylabel('tgyyerror')
495 hold off;

B.2 Functions

B.2.1 h1mt()

function f = h1fit (x,tmesh)
2 %L1 fitting sine fitting function
%yl = x(3)*tmesh.^2 + x(2)*tmesh + x(1)* ones(size (tmesh));

4 yl = x(1)*(tmesh - x(2)*ones (size (tmesh))). ^2 + x(3)*ones(size(tmesh));

y2 = abs(yl - sin(tmesh));
6 f = surn(y2);

~ 97 ^

Appendix B : MATLAB Script for Parabolic Approximations of Sine Function

B.2.2 h2ft()

function f = h2fit (x,tmesh)
2 %L2 fitting sine fitting function

%yl = x(3)* tmesh. ^2 + x(2)* tmesh + x(1)* ones(size (tmesh));
4 y1 = x(1)*(tmesh - x(2)*ones(size(tmesh))).^2 + x(3)*ones(size(tmesh));

y2 = (yl - sin(tmesh)).^2;
6 f = sum(y2);

B.2.3 hinfit()

function f = hinffit (x,tmesh)
2 %Linf fitting sine fitting function

%yl = x(3)* tmesh. ^2 + x(2)* tmesh + x (1)* ones(size (tmesh));
4 yl = x(1)*(tmesh - x(2)*ones(size(tmesh))).^2 + x(3)*ones(size(tmesh));

y2 = abs(yl - sin(tmesh));
6 f = max(y2);

B.2.4 mindistit()

function f = mindistfit(x,tmesh)
2 %Min Distortion fitting sine fitting function

%yl = x(3)*tmesh.^2 + x(2)*tmesh + x(1)* ones(size (tmesh));
4 yl = x(1)*(tmesh - x(2)*ones(size(tmesh))).^2 + x(3)* ones (size (tmesh));

y2 = sum(yl.*sin(tmesh));
6 y3 = sum(sin (tmesh). ^2);
f = abs(y2-y3);

B.2.5 thdopt()

1 function f = thdopt(x,tmesh)
%Minimum THD fitting for sine wave approximation

3 yl = x(1)*(tmesh - x(2)*ones(size(tmesh))).^2 + x(3)* ones (size (tmesh));
y2 = sum(yl.^2)/length (tmesh);

5 al = (2/length(tmesh))*sum(yl.*sin(tmesh));

7 df = (al/sqrt(2))/sqrt(y2); %Distortion Factor

9 %f = sqrt((1/df,)2 - 1);
%f = (1/df)^2 - 1;

11 %f = -(df)^2;
f = (1/df)^2;

B.2.6 thd()

function [f , al , df] thd (x, tmesh, width)
2 %TID calculation for sine wave approximation

yl = x(1)*(tmesh - x(2)*ones(size(tmesh))).^2 + x(3)* ones (size (tmesh));

-' 98 v-'

Section B.2 : Functions

4 y2 sum(ylA. ^ 2) /length (tmesh);

6 %al = (2/(width* length (tmesh)))*sum(y1.* sin(tmesh));
%al = (2/(width* length (tmesh)))*sum(sin (tmesh). ^2);

8 al = (2/length (tmesh))*sum(yl.*sin (tmesh));
%y3 = sqrt(2)*sqrt(y2)/length(tmesh)/al; %1/Distortion Factor

10
df (al/sqrt(2))/sqrt(y2); %Distortion Factor

12

f sqrt((1/df)^2 - 1);

B.2.7 infnorm()

1 function f = infnorm(tmesh, yvals)
%Linf fitting sine fitting function

3 %yl = x(3)*tmesh.^2 + x(2)*tmesh + x(1)* ones(size (tmesh));
yl yvals;

5 y2 = abs(yl - sin(tmesh));
f = niax(y2);

~ 99 -

Field Oriented Control

Appendix C

Simulink
Model

C.1 Block Models

101 -

7mmad
D--a

SgnaIBrLder 1' r hs

DOE iqs D MagD

SS p-dsCommandD

->Tweh R~d -13x C art2 Polar1

S pBe d C otrol 9r dsConstant1

ids* vqsids

Fieldi Orienled Controller AA ya -
- Wr W F_ _ i Tes- -- - d br

- - dsi Vdso q is ud- -- T---inqtyr

Vs Idr - - - -- - -uyb Terminabr1

Vqso Vos Inrse9 Parks Transborm l
qso qso a -0 o TM -- - -

Costant Pfram lambda -

Inrduction Motor

-C-

Induction Motor P arameters
Sped Trqua-Speed

LT
Torque

Parameters:

[rs rr Las LasO Lar Laro MJ TL}

rs = Stator Resistance
rr = Rotor Resistarce
Las =Stbtr Pt-ase Inductance
LasO = Stator Neutrat Induciarce
Lar = Rdor Phase Inductance
Laro = Rotor Neutral Inductance
M = Mutual Inductance
J = Moment of Ini rlia
TL= Load Torque

Flux Vect

lgrmolor

Figure C.1: Top Level Model

-Z

Q)

VIPhtas9

vle1

S

SpeedCcnmand

3

G

C mstantl

Tach R 6ding

Model Info

P0.5

Gain1

ain I ntegraior S aturation2 lqso

Anti-Windup Switchfu)1

Magnitude Cocstant Is

Memory1 H ysteresis 5

IlLimit

H ysteresis has lo be properly set to prevert
trans lion oscillation, or lockup.

S ope
I,

Figure C.2: Speed Controller

r2

S

F1 1 1
Memor

Gon

s Cope P r Poduct

S1 S auration

0.087439s+1 S Wtch

FxE maor Abs Sgn

1
0-4

A 1 (-2 B

~f~1

0
C cnslant2

cnstant Mmr2 Gan3

vqso

Anti-Windup Swith Ga 1 Integrator u)... -- - -

Magnitude

y +_i 2000 +

Ga2 Integrator1 vdso

Fo F I oltage Limit
Memory3 G an4'' :'I

Anti-windlup on torque Memory1 H Wteresis Hysteresis has ID be properly set to preventcurrent command. F=transition oscillation, or lockup.

S'gn4 S cope 1

Figure C.3: Field Oriented Controller

wr-

iqs i

ids i

iqso

ids o

S
I"

C2

I

yw

Section C.2 : Induction Motor S-Function

C.2 Induction Motor S-Function

co

VdS,

Vqs

Pamam

DB0

Id motor

Sfwoton

ids

iqs

i~s

S Suration

lambda

Model I nio
Mon Sep27 15:3640 200427Sqtember2004

Oqpynght AI-Thaddeus Aoestruz
1.15010

T hu May 25 03:39:42 2006
25-May-200603:3942

Copyright 2004

Figure C.4: Induction Motor Model

function [sys xO, str , ts] = ind-motor (t ,x,u, flag ,P,XO)
2 %S'FUNTMPL General AI-fi le S-function template

% With A-file S-functions , you can define you own ordinary differential
4 % equations (ODEs), discrete system equations , and/or just about

% any type of algorithm to be used within a Simulink block diagram.
6%

The general form of an A/-File S-function syntax is
[SYS, XO, STR, TS] = SFUNC(T, X, U,FLAG, P1 , ... , Pn)

What is returned by SFUNC at a given point in time, T, depends on the
value of the FLAG, the current state vector , X, and the current
input vector , U.

14 % FLAG RESULT DESCRIPTION

16% 0 [SIZES,XO,STR,TS] Initialization , return system sizes in SYS,
% initial state in XO, state ordering strings

18 % in STR, and sample times in TS.
% 1 DX Return continuous state derivatives in SYS.

~ 105 n

8 %

10%

12 %

Appendix C: Field Oriented Control Simulink Model

20 % 2 DS Update discrete states SYS = X(n+1)
% 3 Y Return outputs in SYS.

22 % 4 TNEXT Return next time hit for variable step sample

% time in SYS.
24 % 5 Reserved for future (root finding).

% 9 [] Termination, perform any cleanup SYS=[].
26

28 % The state vectors , X and XO consists of continuous states followed
% by discrete states.

30%

% Optional parameters, P1,... ,Pn can be provided to the S-function and
32 % used during any FLAG operation.

34 % When SFUNC is called with FLAG = 0, the following information
% should be returned:

36%

% SYS(1) = Number of continuous states .
38 % SYS(2) = Number of discrete states.

% SYS(3) = Number of outputs.
40 % SYS(4) = Number of inputs .

% Any of the first four elements in SYS can be specified
42 % as -1 indicating that they are dynamically sized. The

actual length for all other flags will be equal to the
44 % length of the input, U.

% SYS(5) = Reserved for root finding . Must be zero.
46 % SYS(6) = Direct feedthrough flag (1=yes , 0=no). The s-function

% has direct feedthrough if U is used during the FLAG=3
48 % call . Setting this to 0 is akin to making a promise that

% U will not be used during FLAG=3. If you break the promise
50 % then unpredictable results will occur.

% SYS(7) = Number of sample times. This is the number of rows in TS.
52 %

54 % X0 = Initial state conditions or [] if no states.

56 % STR = State ordering strings which is generally specified as

58 % TS = An m-by-2 matrix containing the sample time

% (period, offset) information. Where m= number of sample

60 % times. The ordering of the sample times must be:

62 % TS = [0 0, : Continuous sample time.

% 0 1, : Continuous, but fixed in minor step

64 % sample time.

% PERIOD OFFSET, : Discrete sample time where

66 % PERIOD > 0 & OFFSET < PERIOD.

% -2 0]; : Variable step discrete sample time

~-- 106 -

Section C.2 : Induction Motor S-Function

68 % where FLAG=4 is used to get time of
% next hit.

70 %

There can be more than one sample time providing
72 % they are ordered such that they are monotonically

% increasing. Only the needed sample times should be
74 % specified in TS. When specifying than one

% sample time, you must check for sample hits explicitly by
76 % seeing if

% abs (round ((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
78 % is within a specified tolerance , generally le-8. This

% tolerance is dependent upon your model 's sampling times
80 and simulation time.

82 % You can also specify that the sample time of the S-function
is inherited from the driving block. For functions which

84 % change during minor steps , this is done by
% specifying SYS(7) = 1 and TS = [-1 0]. For functions which

86 % are held during minor steps , this is done by specifying
% SYS(7) = 1 and TS = [-1 1].

88

% Copyright 1990-2002 The MathWorks, Inc.
90 % $Revision: 1.18 $

92%

% The following outlines the general structure of an S-function.
94%

switch flag
96

98 % Initialization %

100 case 0,
[sys ,xO, str , ts]=mdlInitializeSizes (XO);

102

104 % Derivatives %

106 case 1 ,
sys=mdlDerivatives (t ,x,u,P);

108

110 % Update %

112 case 2,
sys=mdlUpdate (t , x, u);

114

- 107 -

Appendix C: Field Oriented Control Simulink Model

116 % Outputs %
%70%%%%%%%%%/00///W/00//

118 case 3,
sys=md1Outputs (t ,xuP);

120

122 % GetTimeOfNextVarHit %

124 case 4 ,
sys=mdIGetTimeOfNextVarHit (t , x,U);

126

128 % Terminate %

130 case 9,
sys=mdlTerminate (t , x , u);

132

134 % Unexpected flags %

136 otherwise
error(['Unhandled-fIag =',num2str(flag)]);

138

end
140

% end sfuntmpl
142

144

146

148

% mdlInitializeSizes
% Return the sizes , initial conditions , and sample times for
%the S-function.

7--

150 function [sys ,xO, str , ts]=mdlInitializeSizes (XO)

152

% call simsizes for a sizes structure , fill it in and convert it to a

154 % sizes array.

156 % Note that in this example, the values are hard coded. This is not a

% recommended practice as the characteristics of the block are typically

158 % defined by the S-function parameters.

160 sizes = simsizes;

162 size s . NumContStates = 7;

s iz e s . NumDiscStates = 0;

~ 108 ^

Section C.2 : Induction Motor S-Function

164 si z es . NumOutputs = 11;
s iz e s .NumInputs = 13;

166 sizes . DirFeedthrough = 1;
sizes .NumSampleTimes = 1; % at least one sample time is needed

168

sys = simsizes (sizes)
170

172 % initialize the initial conditions

174

x = XO;
176

178 % str is always an empty matrix

180 str

182

% initialize the array of sample times
184

ts [0 0];
186

% end mdllnitializeSizes
188

190

% mdlDerivatives
192 % Return the derivatives for the continuous states.

194

function sys=mdlDerivatives (t ,x, u,P)
196

Ids = x(1)
198 lqs = x(2);

10s = x(3);

200 ldr = x(4);

lqr = x(5);

202 lOr = x(6);

wr = (7);
204

w =U

206 vds = u(2);

vqs = u(3);
208 vOS = U(4);

rs =u(5);

210 rr = u(6);
Las = (7);

~,-, 109 -n

Appendix C: Field Oriented Control Simulink Model

212 LasO = (8)
Lar u(9);

214 LarO u(10);
M u(11);

216 J u(12);
TL u(13); %Load torque

218

ids = (Lar*lds - M*ldr)/(Las*Lar - M^2);
220 iqs (Lar*lqs - M*lqr)/(Las*Lar - M^2);

iOs =10s/LasO;
222 idr (-M*lds + Las*ldr)/(Las*Lar - M^2);

iqr (-M*lqs + Las*lqr)/(Las*Lar - M^2);

224 iOr 10r /LarO;

226 vOr 0 ;

228 TM = (3/2)*P*(lqr*idr - ldr*iqr); %Motor torque

230 dids = -rs*ids + w*lqs + vds;
dlqs = -rs*iqs - w*lds + vqs;

232 d10s = vOs - rs*i0s ;
dldr = -rr*idr + (w-wr)*lqr;

234 dlqr -rr*iqr - (w-wr)*ldr
d10r vOr - rr*iOr;

236 dwr (TM-TL)/J;

238 sys = [dIds dlqs d10s dldr dlqr di0r dwr];

240 % end mdlDerivatives

242

244 % mdlUpdate
% Handle discrete state updates , sample time hits , and major time step

246 % requirements .

248

250

252

254

256

258

function sys=mdIUpdate(t ,x,u)

sys = [];

% end mdlUpdate

% mdlOutputs
% Return the block outputs.

~--, 110 -'

Section C.2 : Induction Motor S-Function

260 %

function sys=mdlOutputs (t , x, u ,P)
262

Ids = x(1);

264 lqs = x(2);
10s = x(3);

266 ldr = x(4);

lqr = x(5);
268 10r = x(6);

wr = x(7);
270

w = U(1);
272 vds = u(2);

vqs = U(3);
274 vOs = u(4);

rs = u(5);
276 rr = u(6);

Las = (7);
278 LasO u(8)

Lar u(9);
280 LarO u(10

M= u(11);
282 J u(12);

TL = u(13);
284

ids
286 iqs

j0s
288 idr

iqr
290 iOr

%Load torque

(Lar*lds - M*ldr)/(Las*Lar - M^2);
(Lar*lqs - M*lqr)/(Las*Lar - M^2);
10s/LasO;
(-M*lds + Las*ldr)/(Las*Lar - M^2);
(-M*lqs + Las*lqr)/(Las*Lar - M^2);
10r /LarO ;

292 TM= (3/2)*P*(lqr*idr - ldr*iqr); %Motor torque

294 SyS [ids iqs iOs wr TM Ids lqs lOs ldr lqr lOr

296 % end mdlOutputs

298

mdlGetTimeOfNext VarHit
Return the time of the
absolute time. Note th
variable discrete-time
mdllnitializeSizes .

next hit for this block.
at this function is only
sample time [-2 0] in the

Note that the result is
used when you specify a
sample time array in

~ 111 -

300 %

302

304

306

function sys=mdlGetTimeOfNextVarHit (t , x , u)

Appendix C: Field Oriented Control Simulink Model

308

%sampleTime = 1; % Example, set the next hit to be one second later.

310 %sys= t + sampleTime;

sys = [;
312

% end mdlGetTimeOfNextVarHit
314

316

% mdlTerminate
318 % Perform any end of simulation tasks.

320

function sys=mdITerminate (t , x , u)
322

sys
324

% end mdlTerminate

~112 --

Appendix D

Motor Control Embedded Firmware

D.1 Main Motor Control Module

D.1.1 motcntl.c

//TMS32LF2406A Main Module Module
2 //

//Peripheral TMS320LF2406A
4 //Author: Al-Thaddeus Avestruz

//Created: 1 Dec 2004
6 //Copyright 2004 Al-Thaddeus Avestruz

8 //mot-cntl. c

* */
10

#include
12 #include

#include
14 #include

#include
16 #include

#include
18 #include

#include
20 #include

#include
22

<stdlib.h>
<string .h>
"regs240x.h"
"pwm/ include /F2407pwm. h"
"pwm/include /svgen . h"
"sysvecs .h"
" sinepwm-init. h"

umacros. h"
serialcomm. h"
periphs. h"
vfcontrol.h"

24#define WAIT-STATES 0x40;

26#define SETLO(x,b)
#define SETHI(x,b)

28

((x)&=~(1<<(b)))
((x)1= (I< <(b)))

~,- 113 -

Appendix D : Motor Control Embedded Firmware

30

32 #define CLKOUT 40000000

34 //LIMITS

36 //#define RAMP-END 256000L
#define RAMPEND 12800L //need the L postfix

38 #define VL-MAX 32767
#define F1-MAX (60*256)

40#define RAMP-dV 100L
#define RAMPdF 100L

42 #define RAMPVINTVL ((long) (RAMPdV*RAMPEND) / (long)VMAX)

#define RAMPFINTVL ((long) (RAMP-dF*RAMPEND) / (long)FlIMAX)
44

46 void interrupt periodic-interruptisr (void);
void interrupt phantom(void);

48 void trap(void);
void setupPLL (void);

50

/void RampVF(void);
52

54

/* pwm stuff */
56

volatile unsigned long isr-count = 0;
58 volatile unsigned long evCounterA = 0;

volatile unsigned long evCounterB = 0;
60 volatile int tmpregisterl = 0;

volatile int tmpregister2 = 0;
62 extern volatile unsigned long RampCount;

64 typedef struct

{
66 char * array;

unsigned int index;
68 unsigned int length;

int lock;
70 int full;

int empty;
72 int reading;

} typecBuffer;
74

76 typecBuffer SerTxBuffer = {0, 0, 64, 0, 0, 0, 0};

~-- 114 -

Section D.1 : Main Motor Control Module

78 typeRamp VFRamping {1 ,0 ,1 ,1 ,0 ,0 ,0};
typeVout VControl {0, {0 ,0 ,0 ,0 ,0 ,0 ,0 ,}

80

main()
82 {

84 Idiv-t ldivr;
unsigned long ltmp = 0;

86 signed int itmp = 0;
signed int itoggle = 1;

88

disable-ints (;
90

WDXR = 0x68;
92 MCRA = MCRA&(~x4000);

,0 ,0 ,0 ,0 ,0 ,0 ,0};

94 setupPLL ();

96 setupPWM(&sin-pwm);

98 setupEVB ();

100 setupTimer3();

102 SetupSerial (; sendChar ('E');

104 /7 setupADC();

106 setupV3ADC ();

108 SCSR 1= OxOO01; /Clear ILLADR bit

110
IFR = Oxffff ; /* Clear all interrupts. *7

112 IMR = 0x0002 + OxOOOl; // Enable INT2. and INT1 interrupt mask register

114 /
//7

116

/
118 /

strcpy (strtmp , "v.1.0");
sendString(strtmp);

EVAIFRA = Oxffff; /* Clear all EV1 group A EV interrupt flags. *7
EVAIMRA = 0x0080; /* Enable Timer 1 period interrupt interrupts *7

120 ENABT3 () ;

122 enable-ints()

124 sendChar ('F');
/7 RampVF(); /Volts/Hz Ramp

~- 115 -n

/Makes port IOBP6

Appendix D : Motor Control Embedded Firmware

126 sin-pwm. V1 = 0;
sin-pwm.V3 = 0;

128 sin-pwm.F1. f = 1;
sin-pwm.F1.n = 8;

130 update-PWM(&sinpwm);

132 VFRamping. direction = 1;
VFRamping. period = 25600L;

134 VFRamping. dF = 60 *256;
VFRamping.dV = 32767;

136 VFRamping. fstep = lOOL;
VFRamping. vstep = 1OOL;

138 RampVF(&sin-pwm, &VFRamping);
sendChar ('G');

140 /*
//12723/04

142 VFRamping. direction = -1;
VFRamping. period = 6000L;

144 // VFRamping.dF = 20*256;
VFRamping.dF = 1;

146 VFRamping.dV = 10000;
// VFRamping.fstep = 350L;

148 VFRamping. fste p = 0;
VFRamping. vstep = 250L;

150 RampVF(&sin-pwm , &VFRamping);
*7/

152

VFRamping. direction = -1;
154 VFRamping. period = 12800L;

VFRamping . dF 1;
156 7/ VFRamping.dV = 6554;

7/ VFRamping.dV 15000;
158 7/ VFRamping.dV 12000;

VFRamping. dV 10923;
160 VFRamping . fs t e p = 0;

VFRamping. vstep = 10OL;
162 RampVF(&sinpwm, &VFRamping);

164 7*
VFRamping. direction = -1;

166 VFRamping. period = 2400L;
VFRamping.dF = 12*256;

168 7/ VFRamping.dV = 6554;
VFRamping.fstep = 100OL;

170 VFRamping. vstep = 0;
RampVF(&sin-pwm , VFRamping);

172 *7
7*

~,- 116 -

Section D.1: Main Motor Control Module

174 VFRamping. direction = -1;
VFRamping. period = 2400L;

176 VFRamping.dF = 1;
VFRamping.dV = 6554;

178 VFRamping.fstep = 0;
VFRampirng.vstep = 1000L;

180 RampVF(&sin-pwm, &VFRamping);
*7

182 7*
VFRamping. direction = -1; /712-23-04

184 VFRamping. period = 8000L;
VFRamping.dF = 1;

186 VFRamping.dV = 5000;
VFRamping.fstep = 0;

188 VFRamping. vstep = lOOL;
Ramp VF(sin-pwm, &VFR amping);

190 *
/7 sin-pwm. V3 -6554;

192

/7 VControl.igain = 5;
194 VControl. pgain = 5;

196 VControl. igain = 60000;
VControl. pgain = 60000;

198 77 VControl. igain = 50;
77 VControl. pgain = 50;

200 77 VControl. igain = 25;
77 VControl. pgain = 25;

202 77 VControl. vcommand = 389;
77 VControl. vcommand = 76;

204 77 VControl.vcommand = 420;
77 VControl.vcommand = 480;

206 VControl.vcommand = 275; /old value 225

208 7 sin-pwm. V3 = -10000; updatePWM(&sin-pwm);
77 sin-pwm. V3 = -10000;

210

77 sin-pwm.V3 = 1000; update-PWM(&sin-pwm);
212 77 sinmpwm.V3 = -10923; updatePWM(&sin-pwm);

214 createcBuffer(&SerTxBuffer);
SerTxBuffer.empty = 1;

216 while (1)

{
218

7*
220 if (isr-count >= 2000L)

{

117 m

Appendix D : Motor Control Embedded Firmware

222 //VControl.vcommand = 389 + itoggle*30;
VControl.vcommand = VControl.vcommand + itoggle *30;

224 itoggle = -1* itoggle ;
isr-count = 0;

226

*7
228 7* if (0 == VFRamping. ramping)

{
230 VFRamping. direction = -1;

VFRamping. period = 12000L;
232 VFRamping.dF = 20* 256;

VFRamping.dV = 10000;
234 VFRamping.fstep = 10OL;

VFRamping. vstep = lOOL;
236

Ramp VFControl(&sin-pwm, &VFRamping, &evCounterB, 4000L, 1);
238

if (0 == VFRamping.ramping)
240

VFRamping. direction = 1;
242 VFRamping. period = 12000L;

VFRamping.dF = 20*256;
244 VFRfamping.dV = 10000;

VFRamping.fstep = 10OL;
246 VFRamping.vstep = 10OL;

1
248 RampVFControl(&sin-pwm, &VFRamping, &evCounterB, 4000L, 2);

*7
250

if (0 = VFRamping.ramping) /12-20-04
252

VFRamping. direction = -1;
254 VFRamping. period = 6000L;

VFRamping.dF 20*256;
256 VFRamping.dV = 10000;

VFRamping.fstep = 250L;
258 VFRamping.vstep = 250L;

}
260 RampVFControl(&sin pwm, &VFRamping, &evCounterB, 2000L, 1);

262 if (0 - VFRamping. ramping)

264 VFRamping. direction = 1;
VFRamping. period = 6000L;

266 VFRamping.dF = 20*256;
VFRamping.dV = 10000;

268 VFRamping.fstep = 250L;
VFRamping.vstep = 250L;

~-- 118 --

Section D.1 : Main Motor Control Module

}
RampVFControl(&sin pwm, &VFRamping, &evCounterB, 2000L, 2);

sin-pwm. V3 = -(32767-sin-pwm. V1);
to demonstrate third harmonic voltage regulation
sin-pwm.V3 = 0;
controlV3(&VControl, &sin-pwm);

update-PWM(&sinpwm);
/Single update for everybody to ensure synchronous update

writeSerBuffer (&SerTxBuffer , VControl. insum, &evCounterA, 500 ,1);
writeSerBuffer (&SerTxBuffer , VControl. verror , &evCounterA , 500 ,2);
writeSerBuffer (&SerTxBuffer , VControl.vcommand, /

&evCounterA, 500,3);
writeSerBuffer (&SerTxBuffer , VControl. accum, &evCounterA, 500 ,4);
writeSerBuffer (&SerTxBuffer , sin-pwm.V3, &evCounterA, 500,5);
writeSerBuffer (&SerTxBuffer , VControl.vbus, &evCounterA, 500,6);
terminate wrtSerBuffer(&SerTxBuffer , &evCounterA, 500);

sin-pwm.
sin-pwm.
sin-pwm.
sin-pwm.
sin-pwm.
sin-pwm.
sin-pwm.

V1 =

V1 =
V1 =
V3 =
V3 =
Fl. f
Fl. n

0x 7fff ;
26213;
0;
0x 7fff ;
0;

60*256;
8:

if (isr count >= 5000L)
if (isr-count >= 5000L)
{

sin-pwm.V3 -sin-pwm. V3;
sin-pwm.V3 = sin-pwm. V3 + itog gle*10000;
update-PWM(&sin-pwm);
itoggle = -1* ito ggle ;
isr-count = 0;

sendChar ('V');
printADC(8);
printADC(5);
sendChar ('B ');
printADC(3);

~ 119 -

270

272

274 /Hack

276

278

280

282

284

286

288

290

//7
292

/
294

//7
296

298

7*
300 //7

//7
302

304

306

308

310 *7

312 /

314 /
//7

316 //7

Appendix D : Motor Control Embedded Firmware

318 /7 sendChar('H'); 7/this works

320

322

324 /* end main() */
}

326

interrupt void high-interrupt isr ()
328 {

if (1 = BITGET(EVAIFRA,O)) /Power Drive Interrupt
330 {

sin-pwm. fault . flag = 1;
332 sin-pwm. fault count++;

sin-pwm.V3 = 0;
334 sin-pwm.V1 = 0;

update_PWM(&sinpwm);
336 sendChar ('* ');

sendChar (' f ')
338 asm(" NOP")

}
340

if (1 = BITGET(SCICTL2,7)) //TXRDY
342 /To do: no interrupts; something is masking these interrupts

344 sendBuffer(&SerTxBuffer);
}

346 }

348 interrupt void periodic-interrupt-isr ()
{

350 disable-ints (;
PBDATDIR 1= 0x0040; /Set IOBP6 High

352 7/ print-reg ('A ', IFR);
7/ printreg ('B', IMR);

354 7/ print-reg ('C',EVAIFRA);
77 printreg ('D',EVAIMRA);

356 77 sendChar ('\r '); sendChar ('\n ');
if (1 = BITGET(EVAIFRA,7)) //T1PINT Flag

358 {
77 PBDATDIR |= 0x0040; //Set IOBP6 High

360

handlePWM-interrupt (&sin-pwm);
362

EVAIMRA = 0x0080; /* Enable Timer 1 period interrupt interrupts */
364 EVAJIFRA = Oxffff; /* Clear all EV1 group A EV interrupt flags. */

~-- 120 -

Section D.1 : Main Motor Control Module

366 sendChar ('P ');
77 printreg ('A ', IFR);

368 77 print-reg('B', IMR);
// print-reg ('C',EVAIFRA);

370 77 print-re g ('D',EVAIMRA);
77 sendChar ('\r '); sendChar ('\n ');

372 7/ PBDATDIR &= ~OxQO40; /Sets IOBP6 Low
}

374

if (1 -- BITGET(EVBIFRA,7)) //T3PINT Flag
376 {

isr-count++;
378 RampCount++;

evCounterA++;
380 evCounterB++;

update-Vout(&VControl);
382 EVBIFRA = Oxffff;

384

386 7* Done with the ISR *7

388 /7 IFR = Oxffff; /* Clear all interrupts.
*/ /To do: clear only the flag that was handled;

390 this should automatically clear w/o intervention
7/ IMR = 0x0002; /* Enable INT2. *7

392

/7 EVAIMRA = OxOO80; /* Enable Timer 1 period interrupt interrupts *7
394 EVAIFRA = Oxffff; /* Clear all EV1 group A EV interrupt flags. *7

396 EVBIFRA = Oxffff;

398 PBDATDIR &=- ~0x0040; /Sets IOBP6 Low

400 enable-ints ()
}

402

404

406

void trap()
408 {

//Square wave on the contactor pin (#13) on the serial connector.
410 MCRA = MCRA&(~Ox4OOO);

412 //make that pin an output pin
PBDATDIR = PBDATDIRJOx4000;

~,- 12 1 --

Appendix D : Motor Control Embedded Firmware

while (1) {
if (GPTCONA & (1<<13))

PBDATDIR 0x0040;
else

PBDATDIR &- 0x0040;

424 void setupPLL()

{
426 /* setup the PLL module *7

7*
428 asm("SPLK #0041h,PLLCNT

asm ("SPLK #OB1h, PLLCNT
430 asm ("SPLK #0081h, PLLCNT

asm ("SPLK #0080h, PLLCNT
432 asm ("SPLK #40COh, SYSCR

*7/
434 SCSR1 = OxOOOO;//0x0600;

}
436

L1
L2
Li
Li

;Disable PLL first.=CPUCLK/2,");
;CLKIN(XTAL)=10MHz, PLL*2.0=20MHz;");
;CYKMD-PLL Enable ,jfSYSCLK=fCPUCLK/2");
;CLKMD-PLL Enable , f-SYSCLK=fCPUCLK/4");
; CLKOUT=CPUCLK");

438

void interrupt phantom()
440 {

77 IFR = 0xffff;
442 }

/* Clear all interrupts. */

444 /*
void RampVF(void)

446 {
int ramping = 0;

448 unsigned long ltmp = 0;
77 ldiv-t ldiv-r;

450 77 unsigned long lcount = 0;
unsigned long prevFCount = 0;

452 unsigned long prevVCount = 0;

454 sin-pwm.Vi = 0;
sin-pwm. V3 = 0;

456 sin-pwm.F.f = 1*256;
sin-pwm.Fi.n = 8;

458 updatePWM(&sin-pwm);

460 disable-ints (;
isr-count = 0;

~ 122 m

414

416

418

420 }
}

422

Section D.1 : Main Motor Control Module

462 enableints (;
ramping = 1;

464

ltmp = (long)RAMPVINTVL;
466

while (1 == ramping)

tmpregisterl = TSPR;
tmpregister2 = TSCNT;
if (sin-pwm.F1.f < FLMAX)

f

}

if
f

}

if ((isrcount - prevFCount)>

sin-pwm.Fl. f = sin-pwm. Fl
update-PWM(&sin-pwm) ;
prevFCount = isr-count;

(long)RAMPFINTVL)

f + RAMP-dF;

(sin-pwm. Vl<(unsigned int)V1_MAX)

if ((isr-count - prevVCount)> (long)RAMPVINTVL)

sin-pwm. V1 sin-pwm . V1 + RAMP-dV;
PBDATDIR 1= 0x0040; /Set IOBP6 High
update-PWM(&sin-pwm);
PBDATDIR &= ~QxOQ40; /Sets IOBP6 Low
prevVCount = isr-count;

if (isr-count >= RAMPEND)
ramping = 0;

umacros.h

//Utility Macros
2 //

/Utility Macros for TMS320LF2406A
4 //Author: Al-Thaddeus Avestruz

/Created: 7 November 2004
6 /Copyright 2004 Al-Thaddeus Avestruz

//
8 //umaCros. h

123 -

468

470

472

474

476

478

480

482

484

486 /

488 /

490

492

494

496

}
498 *

D.1.2

Appendix D : Motor Control Embedded Firmware

/REV 1.0
10

#ifndef __UMACROS_
12 #define _UMACROS-

14 #define BITSETL(x,b) ((x)&=~(1<<(b)))
#define BITSETH(x,b) ((x)l=(1<<(b)))

16#define BITGET(x,b) (((x)>>(b))& OxO001)

18 #de fine SETLO (x ,b) ((x)&=~(1<<(b)))
#define SETHI(x,b) ((x)j=(1<<(b)))

20

#define PI 3.1415927
22#define TWOPI 6.2831853

#define TWOPIBYTHREE 2.0943951
24#define SEVENPI 21.9911485751286

#define ONEBYTWOPI 0.159154943091895
26

#define dis able _int s () asm(" ---- set c - _---.intm- ..- ")
28

#define en able _int s () asm(" --- ..-.clrc --- ... intm ._.._")
30 asm (" .NOP") ; asm(" NOP") ;asm(" NOP") //Bug SDSsq29090

32 #define sgn(x) (-((x)<0) + ((x)>0))

34 typedef struct

{
36 unsigned int f;

int n;
38 } typeuQint;

40 typedef volatile unsigned int typeFlag;
typedef volatile struct

42 f

unsigned int locked;
44 unsigned int id;

unsigned int life
46 } typeSemaphore;

48 typedef volatile struct

{
50 typeSemaphore R; //Read

typeSemaphore W; //Write
52 typeFlag U; //Update

} typeRWSemaphore;
54

typedef volatile struct
56 f

- 124 s-

Section D.1 : Main Motor Control Module

union
58

int * iarray;
60 unsigned int * uiarray;

char * txtarray;
62 float * farray;

long * larray;
64 } addr;

unsigned int length;
66 unsigned int rindex;

unsigned int windex;
68 typeFlag overflow ;

typeRWSemaphore sem;
70 } typeCircBuffer;

72 typedef struct

{
74 char * array;

volatile unsigned int index;

76 unsigned int length;
volatile int lock;

78 volatile int full;
volatile int empty;

80 volatile int reading;
} typeeBuffer

82

84 union TwoBytes

{
86 unsigned int It;

unsigned char bt [2];

88 //To do: Check array alignments chars are 16 bits

90

struct bitfield
92 {

unsigned int b7:1;

94 unsigned int b6:1;
unsigned int b5:1;

96 unsigned int b4 :1;
unsigned int b3:1;

98 unsigned int b2:1;
unsigned int b1:1;

100 unsigned int bO:1;

102 typedef union Byte

{
104 struct bitfield bit;

~-- 12 5 --

Appendix D : Motor Control Embedded Firmware

unsigned char byte;
106 } byte ;

108 #endif // __UMACROS_

D.2 Sine Inverter PWM Module

D.2.1 sin-pwm.c

1 /Sine PWM Module

/7
3 /SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 11 November 2004

/Copyright 2004 Al-Thaddeus Avestruz

7 //
//sine-pwm. c

9 /REV 1.0
/712/1/04 Nearly constant switching frequency

11

" regs240x . h"
<st dlib .h>

"pwm/ in c lu d e /F2407pwm . h
"pwm/include /svgen .h"
"umacros.h"

serialcomm .h"

sine-pwm. h"
19

7*
21 typedef struct

{
23 signed int V1;

unsigned int Fl;
25 signed int V3;

unsigned int F3;
27 signed int Ph3;

unsigned int fs;
29 unsigned int N1;

unsigned int N3;
31 unsigned int tpd;

int mflag ;
33 } typeSIN-PWM;

//not yet implemented

Tables
TBLLEN 108 /Should
TBLLEN-3 TBLLEN/3
TBLLEN2-3 2*TBLLEN/3

always be a multiple of 3

#include
13 #include

#include
15 #ifnclude

#include
17 #include

#include

* 7
35

/Data
3 #define

#define
39 #define

~-- 12 6 -

Section D.2: Sine Inverter PWM Module

#define TBLLEN_2 TBLLEN/2
41

/#pragma DATA-SECTION(SinTab, ". tables")
43 //#pragma CODESECTION(update PWM, "fast ")

45 signed int SinTab [] =
{0,1905,3804,5690,7557,9398,11207,12978,14706,16383,

47 18006,19567,21062,22486,23834,25101,26283,27376,28377,
29282,30087,30791,31390,31884,32269,32545,32712,32767,

49 32712,32545,32269,31884,31390,30791,30087,29282,28377,
27376,26283,25101,23834,22486,21062,19567,18006,16384,

51 14706,12978,11207,9398,7557,5690,3804,1905,
0,-1905,-3804,-5690,-7557,-9398,-11207,-129781-14706,-16383,

3 -18006, -19567,-21062,-22486,-23834,-251011,-26283,-27376,-28377,
-29282,-30087,-30791,-31390,-31884,-32269,-32545,-32712,-32767,

55 -32712,-32545,-32269,-31884,-31390,-30791,-30087,-29282,-28377,
-27376,-26283,-25101,-23834,-22486,-21062,-19567,-18006,-16384

57 -14706, -12978,-11207,-9398,-7557,-5690,-3804,-1905};

59 ////Functions
//To do: run this interupt handler out of RAM

61 void handle -PWM _interrupt (typeSINPWM * pwm)

{
63 div-t idiv-r;

Idiv-t ldiv-r;
65

signed int fna = 0;
67 signed int fnb = 0;

signed int fnc = 0;
69 signed int fn3 = 0;

signed int itmp = 0;
71

//Private variables
73 static unsigned int ncnt 0;

static unsigned int N1 = 0;
75 static unsigned int n3 = 0;

static unsigned int na = 0;
77 static unsigned int nb = 0;

static unsigned int nc = 0;
79 static unsigned int tpd_2 = TMRPERIOD/2;

static signed int VI = 0;
81 static signed int V3 = 0;

static signed int V3tmp = 0;
83 static signed int tpd = TMHPERIOD;

//must be signed for the compiler to do the
85 //multiply properly

87 //To do: fix tpd so it can be unsigned and still multiply properly

~ 127 --

Appendix D : Motor Control Embedded Firmware

89 if (pwm->mflag) /Check mutex flag for update

{
91 V1 = pwni->V1;

V3tmp = pwm->V3;

93 tpd = pwm->tpd;
tpd_2 = tpd>>1;

95 NI = pwm->N1;
T1PR = pwm->tpd; /* Timer Period Register*/

97 }

99 if ((O==n3) I (TBLLEN_2-n3)) V3-V3tmp;
/7 update only on zero crossings of phi3

101
ncnt++;

103 if (ncnt >= NI)
{

105 //Fundamental
7/ if (na<TBL-LEN) na++; else na=O;

107 /To do: error here maybe should be na++<TBLLEN
if (++na<TBLILEN); else na=O;

109 if (na>TBLLEN2_3) nb = na - TBL-LEN2_3;
else nb = na + TBLLEN_3; /if (ka + K/3)>K

in if (na>TBLLEN-3) ne = na - TBLLEN_3;
else ne = na + TBLLEN2_3; /if (ka + 2*K/3)>K

113

/To do: MSK V1 also. e.g.

115 // if ((O==na) I (TBLLEN-2--na)) Vi=V1new;

117 itmp = ((long)V1 * (long)SinTab[na])>>16;
/Voltage Scale (14 bits max)

119 itmp 2*itmp;
fna ((long)itmp * (long) tpd)>>16;//really a mult by tpd/2

121 if (fna>O) fna-=l;
if (fna<O) fna+=l;

123 itmp = ((long)V1 * (long)SinTab[nb])>>16;
itmp = 2*itmp;

125 fnb = ((long)itmp * (long) tpd)>>16;
if (fnb>O) fnb-=1;

127 if (fnb<O) fnb+=i;
itmp = ((long)V1 * (long)SinTab[nc])>>16;

129 itmp = 2*itmp;
fnc = ((long)itmp * (long) tpd)>>16;

131 if (fnc>O) fnc-=1;
if (fnc<O) fnc+=1;

133

//3rd Harmonic

135 if ((n3+3)<TBLLEN) n3=n3+3; else n3=0;

~-- 12 8 , m

Section D.2: Sine Inverter PWM Module

itmp ((long)V3 * (long)SinTab[n3])>>16;
itmp 2*itmp;
fn3 = ((long)itmp * (long) tpd)>>16;
if (fn3>0) fn3-=1;
if (fn3<0) fn3+=1;

/* Phase A duty cycle */
CMPR1 = ((unsigned int)((fna

//Compare threshold
itmp = CMPR1;
/* Phase B duty cycle */
CNPR2 = ((unsigned int)((fnb
/* Phase C duty cycle */
CMPR3 = ((unsigned int)((fnc

+ fn3) + tpd_2));

+ fn3) + tpd_2));

+ fn3) + tpd_2));

pwm->mflag = 0; /release mutex

if (27==na)

{

}

printreg ('M',CMPR1);
print-reg ('T', tpd);

155

/
157 /

/
159

/
161

/
163 /

//7
165

}
167

void update-PWM(typeSINPWM * pwm)
169 {

div-t idiv-r;
171 ldiv-t ldivr

unsigned long ltmp
173 static unsigned long

0;
fs0thresh = FSO;

175 while (pwm->mflag); /Wait for flag to clear

177 pw->F3. f = 3*pwm->F1. f;
pwm->F3.n - pwm->Fl.n;

179

ltmp =
181 Itmp =

ldiv-r
183

((unsigned long)TBLLEN * (unsigned long)pwm->F1. f);
Itmp>>pwm->F1.n ;
= ldiv ((unsigned long) fs0thresh , ltmp);

137

139

141

143

145

147

149

151

153

ncnt = 0;

if (81==na)

{
printreg ('N',CMPR1);
printtreg ('U', tpd);

~-- 12 9 -

Appendix D : Motor Control Embedded Firmware

pwm->N1 = (unsigned int)ldivr.quot;
185 if ((2*ldivr .rem) > ltmp) pwm->N1+=1; //rounding

/To do: add rounding hysteresis so won't oscillate between fs 's

187

ltmp = pwm->fs;
189 pwm->fs = ((unsigned long)pwm->N1 /

*(unsigned long)TBLIEN * /
191 (unsigned long) (pwm->F1. f))>>pwm->F1.n;

//align switching period with the table
193

if (ltmp > pwm->fs) fs0thresh = FSO - FSOHYST;
195 else if (ltmp < pwm->fs) fs0thresh = FSO + FSOHYST;

197 ldiv-r = ldiv ((unsigned long) CLKOUT, /
2*PRESCALE*(unsigned long) pwm->fs);

199

pwn->tpd = (unsigned int) ldiv-r.quot; //calc
201 //To do: is this less than 32767

if (pwn->tpd > 32767) pwm->tpd=32767;
203 /added 2/20/05 because handle-PWM-interrupt()

205 if (pwm->tpd< (unsigned int)MINTMR1PD) /
pwm->tpd = (unsigned int)MINTMR1PD;

207 //limit the switching freq

209 /Update parameters - setting
//update all parameters

211 disableints ();
pwn->mflag 1;

213 enable-ints ()
}

215

void setuplPWM(typeSINPWM * pwm)
217 {

/To do: disable interrupts
219 /* setup the modules *7

221 MCRA = MCRA&(~0x4000);
PBDATDIR = PBDATDIRj0x4000;

223

/* Set 3PWM low */
225 SETLO(MCRC, 10); /7 Select IOPF2

SETIHI(PFDATDIR, 10); // Output
227 SETLO(PFDATDIR,2); // Pin low

229 7* reset any faults *
reset-PWM-fault (;

231

new timer period

won't do >32767

the flag causes isr to

~-- 130 -

Section D.2: Sine Inverter PWM Module

PIACKR1 = OxOOO1; /Ack PDP Interrupt - Si Errata
233 EVAIFRA = OxFFFF; /Clear EVA interrupt flags

235 /* Set up PW the correct way: */
SCSR1 |= 0x0004; /EVA Clock Enable

237

pwxm->V1 = 0
239 pwm->V3 = 0;

pwm->F1. f = 1*256;
241 pwm->F1.n = 8;

updatePWM (pwm);
243 T1PR = pwm->tpd;

/* Set Timer Period explicitly so that we can go into the interrupt*/
245

247

DBTWNA = DBTCONINIT-STATE;
249 /* Setup the bridging IGBT gate driver polarities *7

ACIRA - COMPARELAL +
251 COMPARE2AH +

COMPARE3AL +
253 COMPARE4AH +

COMPARE5AL +
255 COMPARE6AH;

257 CMPR1 0; /* Phase A duty cycle *7
CMPR2 0; /* Phase B duty cycle *7

259 CVPR3 0; /* Phase C duty cycle */

261 CMCONA=0xa200; //10100010 CENABLE CLD0 FCOMPOE
TiCON PWMINITSTATE;

263 MCRA 0x0fc0;

265 EVAIFRA = Oxffff; /* Clear all EV1 group A EV interrupt flags. *7
EVAIMRA = 0x0080 + 0x0001;

267 /* Enable Timer 1 period interrupts and PDP*/

269 /* Setup done *7

271 /* reset any faults *7
resetPWM-fault (;

273

/To do: enable interrupts
275

}
277

void resetPWM-fault (void)
279 {

-) 131 m-

Appendix D : Motor Control Embedded Firmware

int i ;
281 /* Clear faults on

SETLO(MCRC,3);
283 SET-HI (PEDATDIR, 11)

SET-HI (PEDATDIR, 3);
285 SETLO(PEDATDIR, 3);

287 7* Assert latch res
SETIO(MCRB,8);

289 SETHI (PDDATDIR, 8);
SETLO (PDDATDIR, 0);

291 for(i=0;i<100;i++)
asm("nop");

293 SETHI(PDDATDIR,0);

}

drivers */
// Select I

;// Output
/7 Pin high
7/ Pin low

et *

//7
/
//7

OPE3

/
Select IOPDO
Output
Pin low

// Delay to
// Pin high

allow the latch to reset

D.2.2 Header Files

sinpwminit.h

1 //Sine PWM Initializations Header File

//
3 /SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 //Created: 11 November 2004

/Copyright 2004 Al-Thaddeus Avestruz

7 //
//sine-pwm. h

9 /REV 1.0

ii #include "sine-pwm .h"

13 /Data Structures
7*

15 typedef volatile struct

{
17 signed int V1;

typeuQint Fl;
19 signed int V3;

typeuQint F3;
21 signed int Ph3; //not yet implemented

unsigned long fs;
23 unsigned int N1;

unsigned int N3;
25 unsigned int tpd;

unsigned int prescale ;
27 typeFault fault ;

unsigned int vbus;

~-- 132 -n

Section D.2: Sine Inverter PWM Module

29 volatile int mflag;
} typeSIN-PWM;

31 *7

33 typeSINPWM sin-pwm -

{
35 0, 7/V1

{1*256,8}, //F1
37 0, //VS

{3*256,8}, //F3
39 0 , //Ph3

FSO, //fs
41 1, //N1

1, //N3
43 TMRPERIOD, //tpd

1, 7/prescale
45 {0,0}, //fault. flag , fault. count

0,
47 0 //mflag O=exclude

};

D.2.3 sin-pwm.h

1 //Sine PWM Module Header File

//
3 //SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 11 November 2004

//Copyright 2004 Al-Thaddeus Avestruz
7 //

//sine-pwm. h
9 7/REV 1. 0

i #include <stdio .h>
#include "umacros. h"

13

//#define FSO 10800
15 //Nominal Switching Frequency needs to be a multiple of TBL-LEN

///#define FSOHYST 108
17

#define FSO 30800
19 //Nominal Switching Frequency needs to be a multiple of TBL-LEN

#define FSOHYST 308
21

#define PRESCALE 1
23#define TMRPERIOD (5000/PRESCALE)

//Nominal Timer Period- Must be less than 32767
25 /for handle-PWM-interrupt() to work properly

~ 133 m

Appendix D : Motor Control Embedded Firmware

#define MINTMR1PD (200/PRESCALE)
27

/To do: Make an ifndef here
29 #define CLKOUT 40000000

31 //Data Structures

33 typedef struct

{
35 signed int V1;

unsigned int Fl;
37 signed int V3;

unsigned int F3;
39 signed int Ph3; //not yet implemented

unsigned int fs;
41 unsigned int N1;

unsigned int N3;
43 unsigned int tpd;

volatile int mflag;
45 } typeSINhPWM;

47 typedef volatile struct
{

49 unsigned int flag;
unsigned int count;

51 } typeFault

53

typedef volatile struct
55 {

signed int Vi;
57 typeuQint Fl;

signed int V3;
59 typeuQint F3;

signed int Ph3; //not yet implemented
61 unsigned long fs ;

unsigned int NI;
63 unsigned int N3;

unsigned int tpd;
65 unsigned int prescale

typeFault fault ;
67 unsigned int vbus;

volatile int mflag;
69 } typeSINPWM;

71 //Function Prototypes

73 void handlePWM-interrupt (typeSIN-PWM *);

-- 134 -n

Section D.3 : Volts per Hertz Module

void updateiPWM (typeSINPWM *);
75 void setup-PWM(typeSIN-PWM * pwm);

void reset PWM-fault (void);

D.3 Volts per Hertz Module

D.3.1 vfcontrol.c

1 //TMS32OLF2406A Controller Driver Module

//
3 //Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 13 Dec 2004

/Copyright 2004 Al-Thaddeus Avestruz
7 //

//vfcontrol. c
9

#include <stdlib.h>
11 #include "regs240x.h"

#include "periphs.h"
13 #include " umacros. h"

#include "sine-pwm h"

15#include " vfcontrol.h"

17#define NEGTHRESH 100

19 7*
typedef struct

21 {
int direction; //(plus or minus 1)

23 unsigned long period;
unsigned int dV;

25 unsigned int dF;
unsigned int fstep;

27 unsigned int vstep;
} typeRamp;

29

extern volatile unsigned long RampCount - 0;
31 */

33 volatile unsigned long Ramp-Count = 0;

35 void RampVF(typeSINPWM * pwm, typeRamp * ramp)
{

37 int ramping = 0;
unsigned long prevFCount = 0;

39 unsigned long prevVCount = 0;
unsigned long fintvl = 0;

~ 135 -

Appendix D : Motor Control Embedded Firmware

41 unsigned long vintvl = 0;
unsigned int currentdF = 0;

43 unsigned int currentdV = 0;
signed int dir = 1;

45 signed int currentF = 0;
signed int currentV = 0;

47 ldiv-t ldiv-r ;

49 Idiv-r = ldiv ((long)ramp->vstep * ramp->period (long)ramp->dV);
vintvl = ldiv-r.quot;

51

ldiv-r = ldiv ((long)ramp->fstep * ramp->period, (long)ramp->dF);
53 fintvl = ldiv-r.quot;

55 disable-ints ();
RampCount 0;

57 enable-ints (;

59

while (Ramp-Count <= ramp->period)
61 {

/7 tmpregisterl = TSPR;
63 7/ tmpregister2 = TSCNT;

if (currentdF < ramp->dF)
65

if ((RampCount - prevFCount) > fintvl)

67

currentdF += ramp->fstep;
69 currentF = pwm->F1. f;

currentF = currentF + (ramp->direction * ramp->fstep);
71 if (currentF >0) pwm->F1. f = (unsigned int) currentF;

else pwn->F1.f = 1;
73 update!PWM(pwm);

prevFCount = Ramp-Count;
75

}
77

if (currentdV < ramp->dV)
79

if ((RampCount - prevVCount) > vintvl)

81

currentdV += ramp->vstep;
83 currentV = (unsigned int) pwm->V1;

currentV = currentV + (ramp->direction * ramp->vstep);
85 if (currentV >=0) pwrn->V1 = currentV;

else pwm->V1 = -currentV;
87 /7 PBDATDIR |= QxOO40; /Set IOBP6 High

update-PWM(pwm);

~ 136 ^

89 //

I

PBDATDIR &= ~OxQO40; //Sets IOBP6 Low
prevVCount = Ramp-Count;

91

}
93

} //while
95

}
97

void RampVFControl(typeSIN-PWM * pwm, typeRamp * ramp,
99 volatile unsigned long *ptimer, /

unsigned long trigger ,unsigned int myinstance)
101 {

static
103 static

static
105 static

static
107 static

static
109

signed
iii signed

ldiv-t
113

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

long prevFCount =
long prevVCount =
long fintvl = 0;
long vintvl = 0;
int currentdF = 0;
int currentdV = 0;
int triggered = 0;

0;
0;

int currentF 0; //temp variables
int currentV 0;
ldiv-r ;

(0 = ramp->ramping)

ramp->ramping = myinstance;

ldiv-r = ldiv ((long)ramp->vstep
vintvl = ldiv-r . quot;

ldiv-r = ldiv ((long)ramp->fstep
fintvl = ldiv-r.quot;

* ramp->period

* ramp->period

(long) ramp->dV);

(long)ramp->dF);

prevFCount = 0;
prevVCount = 0;
currentdF = 0;
currentdV = 0;

triggered = 0;

disable-ints (;
*ptimer = 0;
enable-ints ();

}

if ((* ptimer >trigger) && (myinstance = ramp->ramping) && !triggered)

- 137 -

Section D.3 : Volts per Hertz Module

if
115 {

117

119

121

123

125

127

129

131

133

135

Appendix D : Motor Control Embedded Firmware

* ptimer =0;
triggered 1

(triggered && (myinstance - ramp->ramping))

if (* ptimer <= ramp->period)

tmpregisterl = T3PR;

tmpregister2 = TSCNT;

if
f

(currentdF < ramp->dF)

if ((*ptimer - prevFCount) >

I
fint vI)

currentdF += ramp->fstep;
currentF = pwm->F1. f;
currentF = currentF + (ramp->direction * ramp->fstep);

if (currentF >0) pwm->F1. f = (unsigned int) currentF;
else pwm->F1. f = 1;

update-PWM(pwm);
prevFCount = *ptimer;

I

(currentdV < ramp->dV)

if ((*ptimer - prevVCount) > vintvl)

I
currentdV +=- ramp->vstep;
currentV (unsigned int) pwm-z>V1;
currentV currentV + (ramp->direction * ramp->vstep);
if (currentV >=0) pwm->V1 = currentV;

else pwm->V1 = -currentV;

PBDATDIR \= 0x0040; /Set IOBP6 High
updatePWM(pwm);
PBDATDIR &= ~OxOO40; /Sets IOBP6 Low
prevVCount = *ptimer;

}
I //if

else

ramp->ramping 0;
triggered = 0;
disable-ints 0;
*ptimer = 0;
enable-ints

} 7/else

I

if
f

137 {

139

}
141 if

{
143

145 //
/4

147

149

151

153

155

157 /

159

161

163

165

167

169

171 //
//

173 //7

}

175

177

179

181

183

~-- 13 8 --

Section D.3 : Volts per Hertz Module

185

}
187

7*
189 typedef struct

{
191 unsigned int vbus

unsigned int vcommand;
193 unsigned int vmeas/8];

unsigned int insum;
195 signed int verTor;

signed int accum;
197 unsigned int pgain;

unsigned int igain;
199 unsigned int mflag;

} typeVout;
201 *7

void controlV3(typeVout * vout , typeSIN!PWM * pwm) /PI Controller
203 {

205 int i = 0;
signed int v3max = 0;

207 signed long accum-max = 0;
signed int poutput = 0;

209 static signed long accumout = 0;
signed int tmpoutput = 0;

211 div-t idivr;

213 if (1 - vout->mflag)

{
215 77 PBDATDIR |= 0x0040; /Set IOBP6 High

vout->insum = 0;
217 for (i=0; i<8; i++)

{
219 vout->insum = vout->insum + (vout->vmeas [i]>>5);

//Sum eight 10 bit left justified unsigned inputs.
221 //Full count 14 bits right justified.

}
223

225 v3max = 32767 - pwm->V1;
accum-max ((signed long) v3max)<<16; /732 bit accumulator

227

vout->vbus vout->vbus>>4;
229 7/Bus voltage measurement 10 bits . Full count 14 bits

231 vout->verror = (signed int) /

(vout->vcommand<<4) - (signed int) vout->insum;

~- 139 '-'

Appendix D : Motor Control Embedded Firmware

233

accumout += 4L * /
235 ((signed long) vout->igain * (signed long) vout->verror);

237

//Anti-Windup: Saturate accumulator for underflow and overflow

239

if (accumout < 0) accumout = 0;
241 i f (accumout > accum-max) accumout = accum-max;

243 vout->accum = (signed int) (accumout>>16);

245

//Calculate proportional output

247

poutput =(lL * /
249 (signed long) vout->pgain * (signed long) vout->verror) >>16;

251 /7 poutput = 5*poutput;

253 /7Check for possible overflow and then add gain outputs

255 if ((sgn(poutput) = sgn(vout->accum)) && (0 != sgn(poutput)))

{
257 if (abs(poutput) > (32767 - abs(vout->accum)))

{
259 if (1 = sgn(poutput)) tmpoutput = 32767; /overflow

else tmpoutput = -32767; //underflow

261

else tmpoutput = poutput + vout->accum;

263

else tmpoutput = poutput + vout->accum;

265

//Saturate V3 for underflow and overflow
267 //negative VS values for phi = pi control

if (tmpoutput < 0) pwr->V3 = 0;
269 if (tmpoutput > v3max) pwn->V3 = -v3max;

else pwm->V3 = -abs(tmpoutput);

271

273

7/ PBDATDIR |= Ox0040; /Set IOBP6 High

275 7/ update-PWM(pwm);
/7 PBDATDIR &= ~Ox0040; /Sets IOBP6 Low

277

disable-ints 0;
279 vout->mflag = 0;

enable-ints 0;

~-- 140 -

Section D.3 : Volts per Hertz Module

281 /7 PBDATDIR &= ~OxOO40; /Sets IOBP6 Low
}

283 }

285 void update-Vout (typeVout * vout)
{

287 static int i = 0;

289 if (
{

291

293

295

297

299

301

303

305

307

309

(0 - vout->mflag))// && (0 == (ADCTRL2 & SEQ1-BSY)))

if (i <8)
{

MAXCONV = OxOO01; /Two conversions
CHSELSEQ1 = 0x0008 + (0x0003<<4);

ADCTRL2 J= RESETSEQ1;
ADTRL2 = SOC.SEQ1; 7/start conversion

asm(" NOP"
asm(" -N0P"
asm(" -NOP"
asm(" NOP"

while (ADCTRL2 & SEQ1-BSY);
vout->vmeas i] RESULTO;
vout->vbus RESULTI;

}
{

else

i = 0;
vout->mflag = 1;

}
311

}
313

void setupV3ADC (void)
315 {

/Dedicated ADC Pins
317 /Setup ADC Timer

SCSR1 1= 0x0080;
319 /Setup ADC Control Register

ADCTRL1 = RESETADC + ADC-SOFT + \
321 ACQPRESCALEX2 + CPSCLK_2 + START-STOP;

ADCTRL2 = INTDIS-SEQ1 + INTDISSEQ2;
323

//Maximum Conversions per autoconvert
325 MAXDNV= OxOO01; /2 conversions

327 /ADC input channel sequencing
CHSELSEQ1 = 8; /ADC in from DC Reg

~ 141 m

Output

Appendix D : Motor Control Embedded Firmware

329 CHSELSEQ1 += 0x0003<<4; //Inverter DC Bus Voltage

331 //Reset ADC
resetADC();

333

}
D.3.2 vfcontrol.h

1 //Motor Controller Module Header File

/
3 /SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 13 December 2004

/Copyright 2004 Al-Thaddeus Avestruz
7 //

//vfcontrol . h
9 /REV 1.0

ii #include " umacros . h"

13 #ifndef _VFCONTROL_
#define _VFCONTROL_

15

typedef struct

17 {
int direction; //(plus or minus 1)

19 unsigned long period;
unsigned int dV;

21 unsigned int dF;
unsigned int fstep;

23 unsigned int vstep;
int ramping;

25 } typeRamp;

27

typedef struct
29 {

unsigned int vcommand;
31 unsigned int vmeas [8];

unsigned int vbus;
33 unsigned int insum;

signed int verror;
35 signed int accum;

unsigned int pgain;
37 unsigned int igain;

unsigned int mflag;
39 } typeVout ;

~ 142 ^

Section D.4 : Serial Communications Module

41

/Prototypes
43

void RampVF(typeSIN-PWM * pwm, typeRamp * ramp);
45 void RampVFControl(typeSINPWM * pwm, typeRamp * ramp,

volatile unsigned long *ptimer , unsigned long trigger ,\
47 unsigned int myinstance);

void controlV3(typeVout * vout, typeSINPWM * pwm);
49 void update -Vout (typeVout * vout);

void setupV3ADC (void);
51

//Globals
53

55

57 //typeRamp VFRamping = {1,0,1,1,0,0};
/volatile unsigned long Ramp-Count = 0;

59

#endif

D.4 Serial Communications Module

D.4.1 serialcomm.c

1 /Serial Communications Module

//
3 /SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 2 November 2004

/Copyright 2004 Al-Thaddeus Avestruz

7 //
//serialcomm. c

9 /REV 1.0

11 #define ODD 0
#define EVEN 1

13

#include "regs240x.h"
15 #include " umacros . h"

#include "serialcomm.h"

17#include <stdlib.h>

19

/SetupSerial tested 11/17/04
21 unsigned char SetupSerial (void)

{

~ 143 m

Appendix D : Motor Control Embedded Firmware

union TwoBytes
b y t e bSCICCR;

brr;

// bSCICCR. byte = 0;
27

//Configure SCITx and
29 MCRA I=OxOO03;

31 //Enable SCI CLK
SCSR1 1= 0x0040;

33

/Bit Rate Register

SCIRx pins

/Bit 6 SCI CLKEN

//Enable RS485 driver - needed for PIIPM

35 MCRA = MCRA&(~OxOO04); /Makes port IOPA2
PADATDIR 1= 0x0400; /Set IOPA2 as output

37 PADATDIR 1= 0x0004; /Set IOPA2 High -- Enable RS485 Driver

/7 PADATDIR &= 0x0004; /Sets IOPA2 Low

39

resetSCI ();
41 /Register Setup SCICCR - SCI Communication Control Register

DATA-1; /Sets lower 3
= STOP-1;
= PARITY;
= PARITYEN;
= 0; /Disable Loopback

= 0; // 0 - Select Idle

bits

Line Mode; 1 -

49

7/ SCICCR=bSCICCR. b y t e;
51 SCICCR = 0x07;

BITSETL (SCICCR, 7);
53 BITSETL(SCICCR,6);

BITSETL (SCICCR, 5);
s BITSETL (SCICCR, 4);

BITSETL (SCICCR, 3);
57

/SCI Control Register
59 SCICTL1 = ((RXERRINT<<6)+(SWRESET<<5)+(IXWAKEk<3)+/

(SLEEP<<2)+(TXENA<<1)+RXENA);
61

SCICTL2 = ((RXBKINT<<1) + TXINT);

63

65

67

69 //Baud Rate Register Setup

~ 144 -^

23 /7
/

25

43 /7
//7

45 /7
/

47 //7
/

bSCICCR.
bSCICCR.
bSCICCR.
bSCICCR.
bSCICCR.
bSCICCR.

byte =
bit. b7
bit. b6
bit. b5
bit. b4
bit. b3 Address Bit Mode

// brr. It = ((int) CLKOUT)/((int) BAUD*8) - 1;
// Save the 16-bit value in local

75 /7 SCIHBAUD= brr.btf[];
77 Write low byte to Baud Select Register High byte

77 // SCILBAUD = brr.bt[0];
77 Write high byte to Baud Select Register Low byte

79

SCIMBAUD = OxOO; /
81 SCILBAUD = 0x81;

83 //Enable Receive Buffer
7/ BITSET-H(SCIPRI, 5);

85 7/ BITSET-H(SCICTL2, 1);
/7 BITSET-L(SCICTL2, 1);

87

38400 baud with a 40 MHz CLKOUT

Interrupt

/Low priority
//Enable
/Disable

SCIPRI = ((TXPRIORITY<<6)+(RXPRIORITY<<5)+(SCISOFTFREE<<3));

setSCI ();

95 //Enable SCI
77 BITSETH(SCICTL1, 1);

97 7/ BITSET-L(SCICTL1,0);

99 SCICTL1 |=OxOO20;

}
101

//Transmitter enable
/Receiver disable

//sendChar() tested 11/17/04
103 unsigned char sendChar (unsigned char cinput)

{
105 while (0==BITGET(SCICTL2,7));

SCITXBUF=cinput;
107 return(1);

}
109

/Wait until buffer is empty

unsigned char sendc (unsigned char cinput)
ill {

if (1==BITGET(SCICTL2,7)) /Check if buffer empty

SCITXBUF=c in p ut;
return(1);

117 else return(O);

}

~ 145 n

71

73

Section D.4 : Serial Communications Module

89

91

93

113 {

115

Appendix D : Motor Control Embedded Firmware

119

void print.reg(char label , int reg)
121 {

int i = 0;
123 sendChar (label);

sendChar ('-');
125 for (i=16; i>0; i--)

{
127 if ((12==i) j(8==i)i(4== i)) sendChar('-');

if (1 - ((reg>>(i-1))& OxOO01)) sendChar('1');
129 else sendChar ('0');

}
131 sendChar ('\r '); sendChar('\n');

}
133

inline unsigned char in-sendChar (unsigned char cinput)
135 {

if (1==BITGET(SCICTL2,7))
137 {

SCITXBUF=cinput;
139 return (1);

}
141 return(0);

}
143

145 unsigned char sendStrLit(const char *inputstr)
//To do; doesn 't work.

147 //need to do extra stuff because can 't get a pointer to program memory

{
149 while ('\0' 1= *inputstr)

151 if (1==sendChar (* inputstr)) inputstr++;
}

153

155 unsigned char sendString (char *inputstr)
{

157 while ('\0' != *inputstr)
{

159 sendChar (* inputstr)
inputstr++;

161

}
163

unsigned char sendStringTask(char *inputstr , char *strqueue)
165 {

~ 146 m

Section D.4 : Serial Communications Module

167 }

169 inline void resetSCI(void)
{

171 asm("J'40P");
BITSETL (SCICTL1, 5);

173 asm (" NP")

175 }

177 inline void setSCI(void)

{
179 asm (" NOP")

BITSETH (SCICTL1, 5);
181 asm("NOP") ;

}
183

void iprintd (char *string
185 {

//Active low reset

//Enable

unsigned int n)

unsigned int i 0;
187 const long a[5] {10000,1000,100,10,1};

ldiv-t ldiv-r;
189

for (i=O; i<5; i++)
191 {

193

195

ldiv-r = ldiv((long)n,a[i]);
*string 0x0030 + (unsigned int) ldiv-r.quot;
n = (unsigned int)ldivr.rem;
String++;

}
197 *string '\O'; //Terminate string

}
199

201

void createcBuffer (typecBuffer * buffer)
203 {

buffer->array = (char *) calloc (buffer ->length , sizeof(char));
205 }

207 void writeSerBuffer (typecBuffer * buffer , int invar,
volatile unsigned long *ptimer , unsigned long trigger ,

209 unsigned int myinstance)

{
211 static int i = 0;

/To do: put these static in the struct
213 /so each instance doesn't have to store its own

static int j = 0;

-- 147 -

Appendix D : Motor Control Embedded Firmware

215 static int n = 0;

217 ldiv.t ldiv-r;
const long a[5] = {10000,1000,100,10,1};

219

221 if

{
223

225 }

(0 -- buffer->lock)

n = invar ; //To do: this

buffer ->lock = myinstance;
is redundant

227 if (buffer->empty && (myinstance = buffer->lock) \
&& !buffer->full && (*ptimer>trigger))

(i <(buffer ->length 2))

if (0==j)
{

if (n<0) *(buffer->array + buffer->index) '_

else *(buffer->array + buffer->index) =

++;

else
239

241

243

245

247

249

251

253

255

257

259

261

if (j<6)
{

ldiv-r = ldiv((long)n,a[j -1]);
*(buffer->array + buffer->index) = 0x0030 + \

(unsigned int) labs(ldivr.quot);
n = (unsigned int)ldivr.rem;

i++;
} else

*(buffer->array +

j = 0;
buffer->lock = 0;

buffer ->index) -

}

buffer ->index++;

} else
{

*(buffer->array + buffer->index) = 'V';
//Signal overflow

*(buffer->array + buffer->index) = '\0'

7/Terminate string

229

231

if

{

233

235

237

~,- 148

Section DA : Serial Communications Module

disable-ints 0)
*ptimer = 0;
buffer->lock = 0;
buffer->full = 1;
enable-ints ();

}
269 }

271 }

273 void terminate-wrtSerBuffer(typecBuffer * buffer ,
volatile unsigned long *ptimer , unsigned long

275 { //this guy closes up the buffer and sends it
//driven serial out routine

277 if (buffer->empty && !buffer->lock && !buffer
(*ptimer>trigger))

*(buffer->array +
buffer ->index++;
*(buffer->array +
disable-ints ()
*ptimer = 0;
buffer->full 1;
enable-ints ();

trigger)
off to the interrupt

->full && \

buffer ->index) = '; ';

buffer->index) = '\O';

289 if (buffer->full && !buffer->reading) SCITXBUF '\O';

//wakes up the interrupt
291 }

293 void sendBuffer (typecBuffer * buffer)

{
295 static int i = 0;

297 if (buffer->full)
{

299 if (i<buffer ->index)

{
301 SCITXBUF = *(buffer->array + i);

buffer->reading = 1;
303 i ++;

} else
305 {

i=0;
307 buffer->index = 0;

buffer->full 0;
309 buffer->empty = 1;

buffer->reading = 0;

~ 149 -

263

265

267

279

281

283

285

287

Appendix D : Motor Control Embedded Firmware

311

}
}

313 }

D.4.2 serialcomm.h

1 //Serial Communications Module

//
3 /SCI Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz

5 /Created: 2 November 2004
//Copyright 2004 Al-Thaddeus Avestruz

7 //
//serialcomm. h

9 //REV 1.0

ii #ifndef _SERIALCOMM_
#define _SERIALCOMM_

13

#define BAUD 38400
15 #define CLKOUT 40000000

17 //Setup

#define
19 #define

#define

Parameters
DATA 8
PARITY-EN 0
PARITY ODD

21#define STOP 1 //One or two

23 //SCICTL1
#define RXERRJNT

25#define SWRESET
#de fine TXWAKE

27#define SLEEP
#define TXENA

29 #define RXENA
//SCICTL2

31#define RXBKINT
#define TXINT

33 /SCIPRI
#de fine TXPRIORITY

35 #define RXPRIORITY
#define SCISOFTFREE

37

0
0
0
0
1
0

/
/
//7
//7
/
/

0:
0:
0:
0:
1:
1:

0 7/ 0:
1 /7 0:

0
0
2

/
//7
//7

0:
0:
on

disable rx error interrupts
Reset
no wakefunc now
sleep disabled
tx enable
rx-enable

disable RX and break interr
disable TXRDY-interr

TXD-int on high priority (INT1)
RXD-int on high priority (INT1)
emulator suspend complete SCI

//Function Prototypes
39

41

unsigned char SetupSerial ();

unsigned char sendChar (unsigned char);

~ 150 '-^

stop bits

Section D.5 : Peripheral Driver Module

43 unsigned char recvChar ();
unsigned char sende (unsigned char);

45

unsigned char sendString (char *);
47

inline unsigned char in-sendChar (unsigned char);
49 unsigned char sendStringTask (char *, char *);

51 inline void resetSCI(void);
inline void setSCI(void);

53

unsigned char sendStrLit(const char *);
55

void print-reg(char, int);
57 /void printf(char *);

59 void iprintd (char *string , unsigned int number);

61 void createcBuffer (typecBuffer * buffer);
void writeSerBuffer (typecBuffer * buffer , int invar

63 volatile unsigned long *ptimer , unsigned long trigger ,

unsigned int myinstance);
65 void terminate-wrtSerBuffer(typecBuffer * buffer,

volatile unsigned long * ptimer , unsigned long trigger);
67 void sendBuffer (typecBuffer * buffer);

69

#endif

D.5 Peripheral Driver Module

D.5.1 periphs.c

1 //TMS32LF2406A Peripheral Driver Module

/7
3 /Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 /Created: 11 November 2004

/Copyright 2004 Al-Thaddeus Avestruz

7 //
7/periphs . c

9

#include "regs240x.h"
11 #include "umacros h"

#include "periphs.h"
13 #include "serialcomm.h"

15 void setupEVB(void)

- 151 -

Appendix D : Motor Control Embedded Firmware

{
17 EVBMA = OxOOOO; /Mask all EVB interrupts

/7 BITSET-H(SCSR1,3); //EVB Clock enable
19 SCSR1 J= 0x0008;

/Register may be Read-Modify-Write; BITSET may not work.
21 EVBIFRA = Oxffff; //Reset all EVB flags

}
23

void setupTimer3(void)
25 {

/7 BITSET-H(EVBIMRA,7); //enable Tmr3 period interrupts
27 EVBIMRA = 0x0040;

T3CON = T3SETUP;
29 GPTCONB = OxOOGO;

31 T3PR = T3PERIOD; /Set period register
// T3CNT = 0; /Clear T3 Counter

33 EVBIFRA = 0xffff; /Reset Tmr3 interrupt flags

}
35

void setupADC (void)
37 {

/Dedicated ADC Pins
39 /Setup ADC Timer

SCSR1 1= 0x0080;
41 /Setup ADC Control Register

ADCTRL1 = RESETADC + ADCSOFT + ACQPRESCALEX2 + \
43 CPS-CLK-2 + STARTSTOP;

ADCTRL2 = INTDIS-SEQ1 + INT-DISSEQ2;
45

//Maximum Conversions per autoconvert
47 MAXONV= OxOOOO; //1 conversion

49 /ADC input channel sequencing
CHSELSEQ1 = 0x0008; /ADC in from DC Reg Output

51 CHSELSEQ1 += 0x0003>>4; //Inverter DC Bus Voltage

53 /Reset ADC
resetADC();

55

}
57

unsigned int readADC(unsigned int channel)

59 {
MAXCDNV = OxOOOO; /Single conversion

61 CHSELSEQ1 = channel;
ADCTRL2 1= RESETSEQ1;

63 ADCTRL2 1= SOCSEQ1; 7/start conversion

- 152

Section D.5 Peripheral Driver Module

asm(-0P")

65 asm(" -NOP");
asm(" NOP");

67 asm(" JNOP")
while (ADCTRL2 & SEQ1LBSY);

69 return(RESULTO);
}

71

void printADC (unsigned int channel)
73 {

unsigned int result 0;
75 char strtmp[10] = "";

77 result = readADC(channel);
iprintd (strtmp , result)

79 sendString (strtmp
sendChar ('.');

81

}
83

85 void resetADC(void)
{

87 ADCTl 1= 0x4000; /Reset ADC
asm (" .NOP");

89 ADCTRL1 &-- ~Ox4OOO; /IUnreset ADC

I
D.5.2 periphs.h

1 //TMS32OLF2406A Peripheral Driver Header Module

//
3 /Peripheral TMS320LF2406A

//Author: Al-Thaddeus Avestruz
5 //Created: 11 November 2004

/Copyright 2004 Al-Thaddeus Avestruz
7 //

7/periphs . h
9 /REV 1.0

11 #include " . /pwm/include /F2407BMSK. h"
#include "umacros. h"

13

//Timer Parameters
15 //#define T3PERIOD 500

#define T3PERIOD 20000
17

//TSCON

~- 153 '-n

Appendix D : Motor Control Embedded Firmware

T3SETUP (SOFT-STOPLAG + TIMERCONTUP + \
TIMERCLKYPRESCALEX_1 + \
TIMERENABLEBY-OWN + TIMER-DISABLE + \
TIMERCLOCKSRCINTERNAL)
//Timer compare disabled; Own period register

For a 40 Mhz clock w/ prescale 1, \
tick = 500us for T3Period 20000

27

29 //GPTCONB

31 //ADC Bit Masks
//ADCTRL1

33 #define RESETADC
#define ADC-SOFI

35 #define ADCNOSOFT
#define ADCFREE

37 #define ADC-iOFREE
#define ACQPRESCALE

39 #define ACQPRESCALE_
#define ACQPRESCALE

41 #define ACQ-PRESCALE
#define CPS-CLK1 0

43 #define CPSCLK_2 0
#define CONT-RUN 0

45 #define STARTSTOP 0
#define INTHPRIORIT

47 #define INTL-PRIORIT
#define DUALSEQUENCE

49#define CASCADE
#define CALENABLE

51 #define BRIDGEEN

#define REFLO
53#define REFHI

//ADCTRL2
s5 #define RESETSEQ1

#define START-CAL
57#define SOCSEQ1

#define SEQ1iBSY
59 #define INTDIS-SEQ1

#define INTENA1_SEQ1
61 #define INTENA2_SEQ1

#define INTFLAG-SEQ1
63 #define EVASOCSEQ1

#define RESET-SEQ2
65 #define SOCSEQ2

#define SEQ2_BSY

Ox
Ox
Ox
Ox
Ox

X2
X3
X4
x0000

x0080
x0040
x0000

Y

4000
2000
0000
1000
0000
Ox00
0x01
0xO2
0 xO 3

00
00
00
00

Ox0000
0xO020
0x0000
Ox0010
0x0008
0x0004
Ox0000
Ox0001

0x4000
0x4000
0x2000
OxlO00
Ox0000
0x0400
0x0800
0x0200
Ox0100
0x0040
0xO020
Ox0010

~ 154 ^

19 #define

21

23

25 7

67 #define
#define

69 #define
#define

71 #define

INT-DIS-SEQ2
INT-ENAl-SEQ2
INTENA2_SEQ2
INTFLAG-SEQ2
EVB-SOCSEQ2

Ox0000
0x0004
0x0008
0x0002
Ox0001

73

75

//Prototypes
7 void setupEVB (void);

void set upTimer 3 (void);
79

void setupADC(void);
81 unsigned int readADC(unsigned int _channel);

void resetADC(void);
83 void printADC(unsigned int -channel);

85 void setupCapture (unsigned int
void handleCapture (void);

87

_timer);

89 //Macros
#define ENABT3()

91 #define DISBT3()
(T3CON =TIMERENABLE)
(T3CON &- ~TIERENABLE)

Section D.5 : Peripheral Driver Module

~-- 15 5 -

Bibliography

[1] T.M. Jahns and E.L. Owen. Ac adjustable-speed drives at the millennium: how did we

get here? Power Electronics, IEEE Transactions on, 16(1):17-25, 2001. TY - JOUR.

[2] Jack Wade Holloway. Harmonic control of multiple-stator machines for voltage regulation.

M.eng, Massachusetts Institute of Technology, 2004.

[3] Steven B. Leeb. Notes on field oriented control of induction motors, 2001.

[4] H. Wayne Beaty and Jr. James L. Kirtley. Electric Motor Handbook. McGraw-Hill, New

York, 1998.

[5] A.-T. Avestruz, J.W. Holloway, R. Cox, and S.B. Leeb. Voltage regulation in induction

machines with multiple stator windings by zero sequence harmonic control. In Applied

Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE,

volume 2, pages 746-752 Vol. 2, 2005. TY - CONF.

[6] Philip Langdon Alger. Induction Machines, Their Behavior and Uses. Gordon and Breach,
New York, 1970.

[7] Colonel William T. McLyman. Transformer and inductor design handbook. Marcel Dekker,
New York, 3rd edition, 2004. Colonel WM. T. McLyman. ill. ; 29 cm. Electrical and

computer engineering ; 121.

[8] Furukawa Electric. Triple insulated wire - standard type tex-e, 2006.

[9] A. Munoz-Garcia, T.A. Lipo, and D.W. Novotny. A new induction motor v/f control

method capable of high-performance regulation at low speeds. Industry Applications, IEEE

Transactions on, 34(4):813-821, 1998. TY - JOUR.

[10] G.-W. Chang, G. Espinosa-Perez, E. Mendes, and R. Ortega. Tuning rules for the pi gains

of field-oriented controllers of induction motors. Industrial Electronics, IEEE Transactions

on, 47(3):592-602, 2000. TY - JOUR.

[11] James K. Roberge. Operational amplifiers : theory and practice. Wiley, New York, 1975.

James K. Roberge. ill. ; 24 cm.

--, 157 ,--

Bibliography

[12] International Rectifier. Piipml5pl2dOO7 programmable isolated integrated power module,
September 2003 2003.

[13] Ned Mohan, Tore M. Undeland, and William P. Robbins. Power Electronics. John Wiley

and Sons, New York, 2nd edition, 1995.

[14] T. Abeyasekera, C.M. Johnson, D.J. Atkinson, and M. Armstrong. Elimination of

subharmonics in direct look-up table (dlt) sine wave reference generators for low-cost

microprocessor-controlled inverters. Power Electronics, IEEE Transactions on, 18(6):1315-

1321, 2003. TY - JOUR.

[15] A.M. Sodagar and G.R. Lahiji. A pipelined rom-less architecture for sine-output direct

digital frequency synthesizers using the second-order parabolic approximation. Circuits

and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also

Circuits and Systems II: Express Briefs, IEEE Transactions on], 48(9):850-857, 2001. TY

- JOUR.

[16] J. Vankka. Methods of mapping from phase to sine amplitude in direct digital synthesis.

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 44(2):526-534,
1997. TY - JOUR.

[17] A.M. Sodagar and G.R. Lahiji. Second-order parabolic approximation: a new mathe-

matical approximation dedicated to rom-less ddfss. In Microelectronics, 2000. ICM 2000.

Proceedings of the 12th International Conference on, pages 47-50, 2000. TY - CONF.

[18] A. Consoli, G. Oriti, A. Testa, and A.L. Julian. Induction motor modeling for common

mode and differential mode emission evaluation. In Industry Applications Conference,
1996. Thirty-First IAS Annual Meeting, IAS '96., Conference Record of the 1996 IEEE,
volume 1, pages 595-599 vol.1, 1996. TY - CONF.

[19] M. Cacciato, A. Consoli, G. Scarcella, and A. Testa. Continuous pwm to square wave

inverter control with low common mode emissions. In Power Electronics Specialists Con-

ference, 1998. PESC 98 Record. 29th Annual IEEE, volume 1, pages 871-877 vol.1, 1998.
TY - CONF.

[20] T. Kawabata, T. Miyashita, and Y. Yamamoto. Digital control of three-phase pwm inverter

with lc filter. Power Electronics, IEEE Transactions on, 6(1):62-72, 1991. TY - JOUR.

[21] J.D. Park, C. Khalizadeh, and H. Hofmann. Design and control of high-speed solid-rotor

synchronous reluctance drive with three-phase lc filter. In Industry Applications Confer-

ence, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005, volume 1, pages

715-722 Vol. 1, 2005. TY - CONF.

[22] P. Barbosa, F. Canales, and F. Lee. Passive input current ripple cancellation in three-phase

discontinuous conduction mode rectifiers. In Power Electronics Specialists Conference,

2001. PESC. 2001 IEEE 32nd Annual, volume 2, pages 1019-1024 vol.2, 2001. TY -

CONF.

- 158 i-'

Bibliography

[23] R. Balog and P.T. Krein. Automatic tuning of coupled inductor filters. In Power Electronics
Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, volume 2, pages 591-596
vol.2, 2002. TY - CONF.

[24] S. Senini and P.J. Wolfs. The coupled inductor filter: analysis and design for ac systems.

Industrial Electronics, IEEE Transactions on, 45(4):574-578, 1998. TY - JOUR.

[25] B. Jeftenic, S. Milosavljevic, N. Mitrovic, and M. Rodic. Speed control in inverter induction

motor drives based on only one current sensor. In Power Electronics Specialists Conference,
1996. PESC '96 Record., 27th Annual IEEE, volume 1, pages 364-369 vol.1, 1996. TY -
CONF.

[26] H. Kim and T.M. Jahns. Phase current reconstruction for ac motor drives using a dc-link

single current sensor and measurement voltage vectors. In Power Electronics Specialists,
2005 IEEE 36th Conference on, pages 1346-1352, 2005. TY - CONF.

~-- 15 9 -

