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Abstract

Aircraft noise is a significant concern to communities near airports, and therefore a constraint to the 
growth of aviation.  Advanced noise abatement approach and arrival procedures have been shown in 
previous studies and in limited implementation to be a cost effective means of achieving near- and 
medium-term noise reductions.  Additionally, these procedures can be employed to reduce fuel burn, 
emissions, and flight time.  However, because of aircraft trajectory variations due to operational 
uncertainties, it is difficult for air traffic controllers to predict and maintain separation between aircraft.  
Thus, without proper decision support tools, controllers need to add arbitrarily large buffers, thereby 
reducing airport throughput. 

A design and operational framework is proposed to advance the implementation of noise abatement 
arrival procedures.  Under this framework, a target separation is given at an intermediate metering point 
to ensure with a certain (limited) level of confidence that the remainder of the noise abatement arrival 
procedure may be completed without further controller intervention.  Small probability exceptions are 
handled by alternative plans.  A design methodology is presented, along with the details of a unique 
Monte Carlo simulation-based Tool for Analysis of Separation And Throughput (TASAT) that is used to 
determine the minimum possible target separation between aircraft at the metering point.  Hence, a 
smaller separation buffer can be used and traffic throughput can be maintained at a relatively high level. 

The Monte Carlo simulation-based design tool accounts for operational uncertainties such as differences 
in aircraft performance, Flight Management System logic, aircraft weight, pilot response, and winds.  A 
mode-decomposition and autoregressive approach was developed to model the stochastic wind variations 
between flights.  Aircraft trajectories from the Monte Carlo simulations (or from radar tracks if they are 
available) are used within the context of the design methodology to determine target separations for given 
desired level of confidence. 

The utility of the design framework, methodology, and tools was illustrated through simulation analysis 
and a Area Navigation (RNAV) Continuous Descent Arrival (CDA) flight test at Louisville International 
Airport.  The flight test results were consistent with the model prediction.  The research demonstrated that 
with the developed tools, noise abatement arrival procedures can be implemented to achieve noise 
reductions and other economic and environmental benefits while maintaining a relatively high level of 
traffic throughput.  Suggestions for the selection of target separations and the location of the intermediate 
metering point were provided based on the analysis. 

Thesis Supervisor: John-Paul B. Clarke 
Title: Principal Research Scientist 
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CHAPTER 1 

INTRODUCTION

Noise abatement approach and arrival procedures have been shown by previous studies to be a cost 
effective means of achieving near-and medium-term reductions in noise from arrival aircraft.  In addition, 
noise abatement approach and arrival procedures can be employed to save fuel, reduce emissions, and 
save flight time.  However, because of aircraft trajectory variations due to operational uncertainties, it is
difficult for air traffic controllers to predict and maintain separation and adequate spacing between aircraft
performing these procedures. Arbitrarily large separation buffers would be used resulting in negative 
impact on airport throughput.  The implementation of noise abatement approach procedures thus has been
limited to very few airports under light traffic conditions. 

A design and operational framework for implementing noise abatement arrival procedures, and the 
development of a unique Monte Carlo based aircraft trajectory simulation tool and a new separation
analysis methodology for predicting and managing saparation between aircraft performing noise 
abatement approach and arrival procedures are presented in this thesis.  As demonstrated in this thesis,
with the developed tool, noise abatement approach and arrival procedures can be implemented to achieve 
noise reductions and other economic and environmental benefits while maintaining a relatively high level
of traffic throughput.

The rest of this chapter is organized as follows.  The aircraft community noise issue and existing 
industry efforts in resolving this issue are discussed first.  The historical background of noise abatement
approach procedure development and the difficulties associated with the implementation of these
procedures are discussed in Section 1.2.  Based on the discussions, the problem of modeling and 
managing separations is formally introduced in Section 1.3.  The thesis structure is described in the last 
section.

1.1 THE AIRCRAFT COMMUNITY NOISE ISSUE 

1.1.1 The Effects of Aircraft Noise 
In the vicinity of airports, aircraft engine exhaust emissions and aircraft noise are the two most

pervasive pollutants resulting from aircraft operations.  Anyone who resides or works near an airport 
knows what a nuisance aircraft noise is, and how it reduces quality-of-life.  Beyond this, noise is also a 
real and present danger to health.  According to the World Health Organization’s (WHO) Guidelines for 
Community Noise1, adverse effects of noise include hearing loss; sleep disturbances; increased risk of
ischemic heart disease; as well as anxiety and emotional stress.  As a result, work performance and 
vigilance against error can be impaired.

Aircraft community noise presents a unique type of noise source. For residents living in the vicinity of 
airports, there are rarely immediate clinical outcomes as a result of a single aircraft noise event because of
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the range of sound levels as perceived on ground.  Damages to health, however, are developed gradually 
due to chronic exposure of aircraft noise, and thus represent a more hidden danger.  In a recent study, the 
Road Traffic and Aircraft Noise Exposure and Children’s Cognition and Health (RANCH) study2,
researchers from UK examined almost 3,000 children living in the UK, Spain and the Netherlands, the 
largest ever study on the effect of noise on children’s health.  Long-term aircraft noise exposure was 
found related to impaired performance in reading comprehension and recognition memory. The reading
age in children exposed to high levels of aircraft noise was delayed by up to two months in the UK for a 5 
dB change in noise exposure.

Aircraft noise typically affects areas at considerable distance from the airport.  For example, the WHO
nighttime limit of 60 dB A-weighted maximum sound level (LAMAX, the unit of LAMAX is also 
abbreviated as dBA) is frequently exceeded by aircraft noise many miles from an airport, by train noise
about 1000 ft or more from the tracks, and by road traffic noise about only 500 to 1000 ft from a
highway3. Unlike ground noise sources that are more easily shaded by trees and building structures
between the noise source and the residents, aircraft noise is emitted from the sky, so the effective noise
exposure is greater than from road or rail traffic.  The sporadic time pattern of aircraft noise also differs 
from the relatively steady noise of surface traffic4.  Aircraft noise is intermittent and depends on the
runways in use so it can seem unpredictable from one day to the next.  The frequency or the tune of
aircraft noise is some times more irritating.  For these reasons, aircraft noise seems more annoying than 
road traffic noise for the same day-night average sound level (DNL) as recognized by many researchers 
and international organizations3,5,6,7.

Unlike highway noise and noise from industrial activities, aircraft noise frequently affects 
communities in rural areas and suburban areas tens of miles away from airports that are otherwise sitting 
in a peaceful and quiet environment.  The recent airline industry trend of shifting more flights to
secondary airports8 that is at some distance from metropolitan areas are making the situation even worse. 

The negative impact of aircraft noise to living environment is reflected in the value of residential
property located around airports.  According to a Federal Aviation Administration (FAA) report published 
in 19854, an increase of 1 dB in DNL usually results in a 0.6 to 2.3% decrease in real estate values.

While the growth of air traffic is driven by, as well as beneficial to, the national and regional economy,
it is the local communities near airports that pay the direct environmental price.  Although aircraft source 
noise has been significantly reduced in the past few decades, the number of aircraft movements has
increased remarkably during the same period.  In fact, since the introduction of jet transport aircraft in the 
late 1950s and early 1960s, the lateral aircraft noise levels (see definition in the next subsection) have 
been reduced by approximately 20 dB in effective perceived noise level (EPNL)9.  On the other hand,
according to Air Transport Association (ATA), aircraft departures of US scheduled airlines increased
from 3.85 million to 11.18 million during the period from 1960 to 200410,11.  Given the public expectation
for a lower community noise and improved quality of life, aircraft noise continues to be a limiting factor 
for the growth of aircraft operations and airport expansion.  According to a United States General 
Accounting Office (GAO) report12, US airports reported noise concerns as their most serious
environmental challenge. 

Indeed, airport expansion has seen strong oppositions from communities around airports because of
environmental concerns, mainly aircraft noise concerns.  For example, Boston Logan Airport started the 
planning process for a new runway in 196913.  The original construction work for the new runway
commenced in May 1974 but it was stalled on the very first day by community opponents.  A Suffolk 
Superior Court injunction barring new runways at Logan airport was put in place in 1976.  After almost
three decades of legal debate, discussions, and thorough environmental assessment, the court did rule that 
a new unidirectional runway could be built in the same general location.  However, when it is completed
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in later 2006, the new runway can only be used to reduce delays rather than to increase capacity of the
airport.  The court ruling stated, the new runway can only be used by private planes and commuter jets
when northwest winds exceed 10 knots, and at least three of the existing five runways have to be shut
down for weather reasons.  The construction work finally started in April 2005.

Existing operations are also subject to restrictions to protect communities around airports from aircraft 
noise.  According to the FAA, as of 2003, noise concerns have resulted in over 600 operational
constraints and curfews at US airports.14  One measure commonly used throughout the US to mitigate
aircraft noise impact is soundproofing local residential homes and schools significantly affected by
aircraft noise.  For example, as of 2004, Chicago O’Hare Airport had spent approximately $212 million to 
sound insulate 86 schools and the spending is still growing.

1.1.2 Existing Efforts in Relieving the Aircraft Noise Problem
Since its inception, the continuing growth in civil aviation has lead to major economic, social, and 

cultural benefits to the nation and the world.  Civil aviation is strategically important to the economic
prosperity.  Both FAA15 and International Civil Aviation Organization (ICAO)16 have recognized the need 
to balance air transportation system needs with environmental concerns, and have adopted the concept of 
“Balanced Approach” to aircraft noise management. 

In response to the aircraft noise pollution, major federal legislations have been developed in the US (a 
historical account of US legislation of aircraft noise pollution can be found in ref. 17, part III) since the
late 1960s.  In 1968, Congress amended the Federal Aviation Act, authorizing the FAA to include noise 
considerations in aircraft and engine certification process.  The FAA then embarked upon a long-term 
program of controlling aircraft noise at its source (a brief history of US aircraft noise regulations can be 
found in ref. 18).  In 1969, the FAA issued the first aircraft noise regulations in Title 14, Code of Federal 
Regulations, part 36 (14 CFR part 36), “Noise Standards: Aircraft Type Certification.”  The new part 36
became effective on December 1, 1969, and set a limit on noise of large aircraft of new design.  In
response to the Noise Control Act of 1972, FAA amended 14 CFR part 36 in 1973 to give a stage 
designation to all newly produced aircraft.  The 1969 noise standards became known as the Stage 2
certification standards.  Aircraft that have not been shown to comply with the Stage 2 standards are
defined as Stage 1 aircraft.  Stage 1 aircraft included the first generation commercial jets powered by
turbojet engines and very low bypass ratio turbofan engines19.  Stage 2 aircraft are characterized by low 
bypass ratio engines with reduced jet exhaust noise and internal noise control features. Under amended
aircraft operating rules (in 1976 and 1980) of 14 CFR part 91, Stage 1 aircraft were phased out by January
1, 1985 (extended to not after January 1, 1986 for two-engine aircraft that were to be replaced with Stages 
2 or 3 compliant aircraft under an FAA approved replacement plan). 

In 1977, the stricter Stage 3 standards became effective.  Large aircraft of new design for which new 
type certificates are applied on or after November 5, 1975 must comply with these standards.  Stage 3 
aircraft features high bypass ratio turbofan engines.  Recognizing the need to balance the air
transportation growth with the relief from aircraft noise pollution, Congress passed the Airport Noise and
Capacity Act of 1990 (ANCA) on November 5, 1990.  Implementing ANCA for controlling aircraft noise 
at its source resulted in the gradual phasing out of Stage 2 aircraft in contiguous US by December 31, 
1999.

The FAA aircraft noise standards are defined by noise level limits at three reference measurement
points: lateral (previously sideline), flyover (previously takeoff), and approach.  The lateral point is a
point 1,476 ft (0.35 nm for aircraft with more than three jet engines when showing compliance with Stage
1 and Stage 2 noise limits) from extended centerline of the runway where the noise level after liftoff is
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greatest.  The flyover point is a point on the extended centerline of the runway that is 21,325 ft from the
start of takeoff roll.  The approach point is a point on the extended centerline of the runway that is 6,562 
ft from the runway threshold.  Aircraft noise level limits are defined in EPNL; and the unit is EPNdB.
ICAO adopted similar aircraft noise standards.  These standards are prescribed in Chapter 2
(corresponding to Stage 2) and Chapter 3 (corresponding to Stage 3) of the ICAO Annex 16,
Environmental Protection, Volume I, Aircraft Noise20.

The new quieter Stage 4 noise standards became effective on August 4, 2005.  The Stage 4 noise 
standards are the same as the new ICAO Chapter 4 noise standards20 that specifies a 10 EPNdB
cumulative noise reduction (the sum of the reductions in three measurements at the flyover, lateral, and
approach points) from Chapter 3 noise levels.  The Chapter 4 standards were developed through the
Committee on Aviation Environmental Protection (CAEP), which was established by the ICAO in 1983.
On and after January 1, 2006, any person filing an application for a new FAA airplane type design must
comply with the Stage 4 noise standards21.  In fact, some later models of aircraft certificated before 
January 1, 2006 already meet the Stage 4 standards.  However, the FAA has no plan to either phase out
the production of Stage 3 aircraft, or to impose operational restrictions on Stage 3 aircraft. The timelines
of aircraft noise standards and operational restrictions are shown in Fig. 1-1.  In Fig. 1-1, the vertical axis 
represents cumulative noise level – the sum of the three noise level limits at the three measurement points.
Because noise level limits are given as functions of the certified aircraft takeoff weight, thus, the vertical
axis is not labeled; but the interval between ticks represent a 10 EPNdB difference.  The horizontal axis
represents calendar year.
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Figure 1-1 Timelines of aircraft noise standards and 

operational restrictions.

The noise levels of Stage 1 aircraft were dominated by jet exhaust noise because of the very high jet 
exhaust speed of turbojet engines and early very low bypass ratio turbofan engines9.  The noise level
reductions of Stage 2 aircraft were achieved through slightly increased bypass ratios with decreased jet
exhaust velocity and internal noise control features19.  The noise levels of Stage 3 aircraft, featuring high
bypass ratio turbofan engines with significantly reduced jet exhaust velocity, are dominated by fan noise. 
This is especially true at reduced power and landing approach conditions9.  To save the cost of replacing 
older noisier aircraft, hush kit retrofit programs and re-engine programs have been employed by operators 
to bring those older aircraft up to the then current standard.  The engines has been the major source of 
aircraft noise.  However, on modern commercial aircraft, the noise from the airframe moving through the 
air becomes more and more important.  As illustrated by a recent study22, given constant fan speed at idle 
thrust, the lateral noise level of the A340 aircraft could be increased by almost 10 dBA if the flaps/slats
are extended and the landing gear is down.  The noise level reductions since the introduction of high 
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bypass ratio turbofan engines have been achieved through gradual improvements in engine component
design, engine nacelle acoustic performance, and aircraft low-speed aerodynamics.

It is seen that controlling aircraft noise at its source is a long process21.  For example, Stage 4 noise 
standards just adopted by the FAA waited 30 years after the Stage 3 noise standards were established in
1975.  From the time the Stage 3 noise standard was established in 1975 until the contiguous United
States had an all Stage 3 operational fleet at the end of 1999, approximately 25 years had elapsed.  Since 
the introduction of high bypass ratio turbofan engines, it has been very difficult to make additional
substantial source noise reductions9,19.  Nevertheless, technology is not the only factor in this process.
Aircraft are very expensive long-term investments. Existing fleet and aircraft that are still in production 
cannot be easily disposed of within the financial constraint facing the air transportation industry.

For complicated problems like aircraft noise, there is no single solution.  Compatible land use in areas 
adjacent to airports and noise abatement operational procedures are the other two types of important
measures23. Compatible land use falls under the category of policy and management measures.  It 
involves land use planning and development, zoning, and housing regulation that will limit the uses of 
land near airports to purposes compatible with airport operations.  Financial assistance may be provided 
to residents to encourage relocation to quieter areas from areas exposed to serious levels of aircraft noise. 
Land acquisition may also be employed by airports to enclose severe noise exposure within the 
boundaries of the airport. Before getting into the discussion of noise abatement operational procedures, it 
is necessary to review some of the background information about flight operations in the terminal area. 

From the point of view of aircraft safety, approach and landing phase is the most critical phase of 
flight.  Strict approach and landing procedures must be followed.  Most of the time, especially under low
visibility conditions, the Instrument Landing System (ILS) is used.  The ILS emits glide slope and 
localizer beams to guide the aircraft vertically to the minimum decision height, and laterally to the
approach end of the runway threshold. The glide slope is normally adjusted to 3 deg above horizontal.
Because of ground reflections of the glide slope radio wave, false glide slopes may exist above the true
ILS glide slope – the first of which is at about 9 deg.  Hence, aircraft normally fly a level segment and
intercept the ILS glide slope from below in order to avoid capturing the false glide slopes that could lead 
to inappropriately steep approach angles.  Typically, the interception is made about 5 nm to 10 nm from
the runway threshold, at a height of approximately 1,500 ft to 3,200 ft above runway elevation.

In current practices, to manage separation between aircraft and to maintain runway throughput,
controllers normally direct (vector) aircraft laterally to fly an extended flight path at low altitude, and then
turn them onto the final approach course where they intercept the ILS localizer and then capture the glide 
slope.  The level flight segments at low altitude are typically flown at relatively low speeds (say 160-200 
kt) with flaps/slats partly extended, requiring relatively high engine power settings (a more detailed 
analysis is given in Chapter 2).  This extends the noise to large residential areas under the flight path, and
inevitably increases fuel burn and emissions.

During the takeoff phase, controllers normally adjust spacing by holding the trailing aircraft on the 
ground for a short period of time.  Once aircraft are airborne, normally there is no need to hold them at 
low altitude.  The high thrust to weight ratio of modern turbofan aircraft permits climb angles much
higher (5-18 deg) than the ILS glide slope angles.  Though thrust is high during the takeoff and climb
phase, the aircraft rapidly gain altitude.  Because of these differences, the noise footprint could be smaller
and is closer to the airport during the takeoff phase than the approach phase. 

This is clearly shown in Fig. 1-2 by the approach and takeoff vertical profiles and their corresponding
noise contours.  The vertical profiles shown in Fig 1-2 are typical of existing operations.  They are based
on Flight Data Recorder (FDR) data extracted from UPS B767-300 (a Stage 3 aircraft) aircraft performing
revenue flights.  During the approach, the aircraft flew a step-down vertical profile with level segments at
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low altitudes, while during the takeoff the aircraft had very steep Flight Path Angles (FPAs).  The total
areas of the LAMAX 55 dBA noise contours seemed similar for both takeoff and approach profiles.
However, the LAMAX 55 dBA noise contour extended much farther from the runway threshold for the
approach profile than that for the takeoff profile (50 nm vs. 31 nm), affecting communities much farther 
away from the airport.  The LAMAX 60 dBA noise contour for the approach profile not only extended
much farther away from the runway than that for the takeoff profile (32 nm vs. 13 nm), but also had a
larger total area than the noise contour for the takeoff profile.  The noise from approach aircraft becomes
an increasingly greater problem.  Notice that, within 10 nm from the runway threshold, the takeoff noise 
contours are indeed wider than the approach contours due to the higher thrust during takeoff. 
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Figure 1-2 Example UPS B767-300 arrival departure profiles and noise contours. 

Noise abatement operational procedures seek to reduce the aircraft noise impact on communities by
improving the way aircraft are currently operated in the terminal area.  Procedure changes have the
advantage that noise reductions can be achieved as soon as the procedures are implemented, whereas 
design improvements that reduce aircraft noise at its source can take many years.  New aircraft designs
must go through a lengthy development and certification process.  Any new noise reduction technologies
developed today will not actually start to benefit communities until new aircraft first enter into service 
several years later, and it will take many years after that until the older, noisier aircraft in the existing fleet
are retired. Commercial aircraft normally have an operational life of 20 to 30 years.  Noise abatement
operational procedures thus could be applied to existing aircraft to reduce noise in the near term at
comparatively low cost. Of course, these procedures can also be applied to newly developed aircraft to
achieve additional noise reductions. 

There are several methods for improving aircraft operations in the terminal area, including preferential
runways and routes, as well as noise abatement procedures for takeoff and approach.  The purpose of 
preferential runways and routes is to divert aircraft to avoid densely populated areas around airports. 
Depending on the physical layout of the airport and its surroundings, aircraft may be directed to follow 
rivers, highways, or to fly over other non-noise-sensitive areas. The use of preferential runways and 
routes are widely adopted by airports around the world.  Some of these procedures are used throughout
the day, and others are used for nighttime operations only for avoiding sleep disturbance.
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Noise abatement procedures for takeoff and approach can be combined with preferential runways and 
routes to minimize noise impact.  The most commonly used noise abatement takeoff procedures are thrust
cutbacks that can be executed when aircraft are at least 800 ft above runway elevation after takeoff.  Two
thrust cutback procedures have been recommended by the FAA24 (in 1993) and the ICAO25 (in 2001).
The first procedure is identified by the FAA as the “close-in” noise abatement departure profile that aims
to provide noise reductions to areas close to (within couple miles) the departure end of the runway.  The 
second procedure is identified by the FAA as the “distant” noise abatement departure profile that aims to
provide noise reductions to all other areas.  The difference between the two procedures is that in the
close-in procedure, the thrust cutback is initiated prior to the initiation of flap/slat retraction; while in the 
distant procedure, the thrust cutback is initiated after the initiation of flap/slat retraction.  In both
procedures, the reduced thrust level is maintained until the aircraft reaches 3,000 ft above runway 
elevation, where transition to normal en route climb procedure is initiated.  The thrust cutback is limited
to the minimum level that is necessary to maintain proper speed and engine inoperative minimum climb
gradient (1.2, 1.5 or 1.7 percent for 2, 3 or 4 engine aircraft) for the flap/slat configuration without
increasing the thrust of operative engines, in the event of an engine failure.  Takeoff thrust cutback
procedures are adopted by a number of airports around the world. 

Compared with takeoff, noise abatement approach and arrival procedures may achieve additional
benefits such as fuel savings and emission reductions.  However, as it will be seen, noise abatement
approach procedures introduce difficult technical and Air Traffic Control (ATC) challenges because of
variations in aircraft trajectories.  The research to be presented in this thesis has been established to 
overcome these challenges.  In the next section, the concept and the historical development of noise
abatement approach procedures are described to provide a background for further discussions. 

1.2 NOISE ABATEMENT APPROACH AND ARRIVAL PROCEDURES

The concept of solving the noise abatement problem through procedural measures emerged in the 
early 1950’s when commercial air transportation boomed after the World War II.  In a paper26 published
at the Symposium on Aircraft Noise hosted by the Society of Automotive Engineers (SAE) in 1954,
Rosendahl argued that with the fast growing of residential communities near airports and increased
volume of airport operations, local communities traditionally seeking for airports shifted their attitude to 
fighting against having airports located contiguous to their residential and business districts.  The paper
reviewed actions taken in the areas contiguous to the New York-New Jersey metropolitan airports to 
solve the aircraft noise problem.  The two general strategies used were: 1) reduce the intensity at the noise 
source, and/or 2) increase the distance between the source and the receiver.  These two basic strategies
essentially remain unchanged for developing noise abatement operational procedures. 

The first operational practice described in the Rosendahl paper was to make maximum possible use of 
“preferential runways” which would divert numerous operations away from residential areas surrounding
airports by routing them over water, open areas, or least congested areas.  The novelty of the preferential
runway concept was that it permitted a considerable number of landings and takeoffs in certain crosswind 
situations in which another runway would normally be used.  The second operational practice, specific to
approach and landing, was to maintain altitudes of at least 1,200 ft above ground level (although still very
low compared to today’s practice of above 2,000 ft above ground level, as recommended in a 2004 FAA 
Advisory Circular27) as long prior to landings as the characteristics of aircraft permit.  Previously, long,
low, “drag-in” approaches were performed causing complaints as far as 10 to 15 miles away from the 
airport.  Rosendahl claimed that, those complaints from points at substantial distances from airports had 
been virtually eliminated with the new higher approaches.  These higher approaches with less power also
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benefited persons living closer to the airport.  Since early 50’s, many efforts have been made world wide
to develop different noise abatement approach procedures as technology advances. 

One way to reduce noise on approach is to keep the aircraft higher through using a steeper descent 
path.  In the later 60’s and the early 70’s, the National Aeronautics and Space Administration (NASA) 
examined instrumented two-segment approaches through a series of simulation and flight test
programs28,29.  In this technique, the aircraft initiated the approach at 3,000-4,000 ft above the runway
elevation, flew at a steeper descent path (4-7 deg) first and then made a transition to the conventional 3
deg glide slope at 400-1,000 ft to stabilize for landing.  Because of the steeper FPA during the upper
segment, little power would be required.  With the lower power and higher altitude, community noise 
below the flight path could be reduced between 2-7 nm from the runway.  Vertical guidance was provided
by an experimental 3D Area Navigation (RNAV) system during the upper segment and by ILS glide slope 
during the lower segment.  Lateral guidance was provided by the ILS localizer during the entire approach. 
To prevent the aircraft capturing false ILS glide slopes, the ILS glide slope was not armed until the 
aircraft reached 1,000 ft radio altitude.  Although effective at reducing noise, this procedure was not
implemented due to safety concerns in the event the transition from the upper steeper segment to ILS 
glide slop were not properly accomplished.

The early 70’s also saw extensive noise abatement approach procedure research and operational trials
in Europe30. Lufthansa developed a “low-drag, low power” procedure.31  Lufthansa B727s routinely flew 
this procedure into Frankfurt and Heathrow under visual conditions, providing simultaneous reductions in 
both noise footprints and fuel burn. In this procedure, descent to 3,000 ft above the runway elevation was 
in “clean” configuration, using idle power and optimum speed for the aircraft type.  Below 3,000 ft, speed
was reduced to 160-170 kt, with flaps in the go around takeoff setting, and engine power engaged to
maintain speed.  Descent was continued at this speed, and ILS glide slope was captured.  Landing gear 
was extended not until the aircraft reached the height of approximately 500 ft above the normal height for
crossing the outer marker.  Flaps were also further extended at this point and power increased so that the
aircraft can be stabilized in the landing configuration when passing the outer marker.  Following this
profile, flap/slat and landing gear extensions were significantly delayed as compared with conventional
approaches at that time. Considerable noise alleviation was gained up to the outer marker, but beyond
this point, no reduction could be achieved.  To be fully effective, close co-operation with ATC was
necessary.  The application of this procedure was limited because of the inability of some other aircraft 
types to properly follow the profile. 

In 1974, Dibley of British Airways proposed a procedure that can be used to reduce noise, and save 
significant amount of fuel at the same time32.  In this procedure, ATC gave expected distance measuring
equipment (DME) distances and flight levels for bottom of descent points, so that pilots could plan idle 
thrust descents from the cruise altitude efficiently to bottom of descent points, given suitable forms of 
guidance.  From that point on, aircraft speed is expected to be at least 200 kt Indicated Airspeed (IAS) to 
enable aircraft to stay in the clean configuration for as long as possible.  Ideally, the track miles from the
bottom of descent point should allow a 3 deg FPA to smoothly intercept the ILS glide slope with 
minimum thrust and any need for thrust changes.  The height for ILS glide slope interception was 
increased to 3,000 ft, preferably higher.  Landing gear extension was delayed until about 1,500 ft above
the runway elevation.  Dibley designed a circular slide rule called the Dibley Descent Computer to
compute the accurate location of the top of descent for the idle descent path and to provide continuous 
altitude and distance checks – similar to the Vertical Navigation (VNAV) functionality in modern flight
management system (FMS).  Wind was accounted for by using ground speed in the calculation.  Although 
a remarkable design, the procedure was not implemented due to the anticipated adverse effects it might
have upon the expeditious flow of traffic. 
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Based on these early studies, the now widely known Continuous Descent Approach (CDA) was
developed in UK the later 1970s33.  The CDA has been pragmatically defined as a descent from 6,000 ft
to the interception of the glide slope that contains no or at most one level segment not longer than 2 nm34.
Noise abatement approach procedures with improvements over the original CDA have also been proposed 
and studied, but they all achieve community noise reduction through the same two basic techniques used 
since 1950s: by reducing the overall thrust required during the descent; and by keeping the aircraft higher 
for longer. 

The development of modern Global Positioning System (GPS) based RNAV and FMS technology has 
enabled new classes of noise abatement procedures with complex 3D descent trajectories starting farther
from the runway.  For Required Navigation Performance (RNP) procedures35, more complex 3D approach 
flight path can be defined and be followed by RNP capable aircraft with very high accuracy.  RNP
improves airspace use and enables noise abatement approach procedures in complex airspace 
environment.  The acronym CDA is thus also used to refer to the recently developed Continuous Descent
Arrival procedures – noise abatement RNAV or RNP procedures that combine the arrival phase (often
initiated from cruise altitude) and the approach phase (within the terminal area).  In the rest of this thesis, 
the actual meaning of CDA in the context will be explained as appropriate.  The phase “approach
procedure” is thus used to refer to procedures confined within the terminal area.  The phrase “arrival
procedure” is used to refer to procedures that combine both the arrival and the approach phases.  Through
simulations, flight tests, and few limited implementations modern advanced noise abatement approach
and arrival procedures have been shown to be able to achieve near-and medium-term noise reductions, 
and fuel burn and emissions reductions as well30,36,37,38,39, to a degree that surpasses their predecessors.
However, routine application of these procedures is yet to happen. 

The major reason is that the techniques utilize idle or near idle descents, and there are differences and
variations in aircraft idle descent trajectories because of aircraft performance differences and operational
uncertainties.  Because aircraft are continuously descending, variations in aircraft trajectories make it
difficult for air traffic controllers to predict future spacing between aircraft40 and manage the arrival flow. 
Without proper technology, controllers need to add arbitrarily large buffers, resulted in negative impact
on airport capacity.  As reported by a widely publicized study of noise abatement approach procedures 
conducted at Amsterdam Schiphol Airport41,42,43,44,45, to assure separation during the execution of a
Continuous Descent Approach procedure, landing interval was increased from 1.8 to 4 minutes.  This 
represents more than 50% reduction in landing capacity at the airport. 

1.3 PROBLEM STATEMENT

As shown in Fig. 1-3, advanced noise abatement approach and arrival procedures allow aircraft to
continuously descend from high altitude directly into the ILS glide slope, or GPS based glide slope 
(illustrated by the solid flight path) without any level flight segment at low altitudes.  As mentioned
earlier, the higher flight path combined with lower engine thrust significantly reduces noise impact to the
community.

Trajectory variations exist in both conventional (or standard) arrival and approach operations and 
noise abatement arrival and approach procedures. With conventional approaches, controllers frequently 
vector aircraft to maintain separation until aircraft are established on final approach.  However, in order to
assure noise reduction benefits, it is preferred that controllers do not intervene with a noise abatement
approach by vectoring aircraft, because of doing so would usually require the engine thrust to increase
and flight path to be extended.  The requirement for air traffic controllers to predict future spacing is thus 
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higher for noise abatement approaches, and the ability for controllers to adjust spacing is restricted.  This 
explains the anticipated negative impact on airport capacity for noise abatement arrival and approach 
procedures.

The benefits of noise abatement approach and arrival procedures, on one hand, and the difficulties
related their implementation, on the other, form a dilemma.  Understanding the uncertainties in aircraft
trajectory variations and the interaction between consecutive aircraft is important to resolving the
dilemma.  Methods must be developed to address the challenges of predicting and mitigating these 
variations so that separations between aircraft performing these procedures can be managed efficiently by 
controllers in current and future ATC environments.  Only then, noise abatement approach and arrival
procedures can be implemented widely to benefit the communities and operators as well as to ease the
constraint on traffic growth. 

Figure 1-3 Noise abatement approach procedure and ATC environment.

In a recent study, the problem of mitigating aircraft trajectory variations was addressed by developing,
first, a methodology to determine the optimum design parameters for a continuous descent approach, and, 
second, a new pilot cueing system to allow for consistent speed profiles46.  In another study, a Three 
Degree Decelerating Approach36 (TDDA) was modified (i.e. the MTDDA) to mitigate the effects of flight 
operation uncertainties on aircraft trajectory47.  This was achieved by holding the initial speed for a 
certain time after the start of the three-degree descent to runway and then reducing the thrust to idle at a
lower altitude to allow for consistent deceleration. The airborne spacing technologies, such as the tool 
developed by NASA, provide another means to overcome the trajectory variation challenges.  However,
those technologies probably will not be available in the cockpit any time soon. The work to be presented
in this thesis primarily addresses the problem of predicting aircraft trajectory variations and the problem 
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of efficiently managing separations between aircraft performing noise abatement approach and arrival
procedures.  Specifically, the objectives of this thesis research were established as follows: 

Identify and model factors contributing aircraft trajectory variations during the execution of
noise abatement approach and arrival procedures; 
Develop a tool to simulate aircraft trajectory variations;
Develop a separation analysis methodology based on trajectory variation analysis to support the 
procedure design and the control of separation between aircraft; 
Integrate the separation analysis methodology into a proposed procedure design and operational
framework and develop a guideline for managing separation between consecutive aircraft
performing noise abatement and arrival procedures so that these procedures can be 
implemented in daily operations under a much wider range of external conditions.

One fundamental philosophy guiding this research is that through using a procedure that is slightly
sub-optimal in a noise reduction or separation maintenance sense, the robustness and applicability of the 
procedure may be significantly improved without sacrificing much of the noise abatement benefits.  This 
may in fact be the best solution overall, because higher traffic throughput can be maintained while 
achieving noise reductions.  In other words, this research sought to develop tools and methodologies that
assure separation during the execution of noise abatement approach and arrival procedures with a
reasonable – though not absolute – level of confidence without further controller intervention.  By
accepting some uncertainties in spacing, smaller landing intervals (smaller separation buffers) can be used 
and traffic throughput can be maintained at a relatively high level.  The robustness of the operational 
concept is achieved by employing alternative plans to cover separation exceptions.  Although noise
abatement benefits, i.e. community noise, fuel burn, and emissions reductions, may be sacrificed for an 
individual flight when an exception is handled, the total number of uninterrupted noise abatement 
operations can be greatly increased, and the procedure can be applied under a wide range of traffic
conditions.

1.4 OVERVIEW OF THE THESIS 

An introduction to the aircraft community noise issue and the historical development of noise 
abatement approach procedures has been provided in this Chapter.  The need for, and the objectives of the 
research presented in this thesis have also been introduced by analyzing implementation issues and airport
capacity concerns about these procedures.  Analyses of aircraft noise impact and aircraft performance 
during the approach phase of flight, as well as existing ATC terminal area practices are presented in
Chapter 2. Based on these analyses, a design and operational framework for noise abatement approach 
and arrival procedures is proposed.  A Monte Carlo based aircraft trajectory simulation tool specifically 
developed for trajectory variation analysis, and the techniques used in modeling various factors 
contributing to aircraft trajectory variations are described in Chapter 3.  The modeling of wind variation
between flights is described separately in Chapter 4, however, due to the complexity of the topic.  The
theoretical derivation of the separation analysis methodology is given in Chapter 5.  An analysis of the 
trade-off between traffic throughput and level of confidence is also presented. An integration of the
separation analysis methodology with procedure implementation is presented in Chapter 6.  The 
application of the framework and the separation analysis methodology is demonstrated through a
simulation study.  Data collected from flight test are compared with simulation results to show the
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effectiveness of the separation analysis methodology.  Key contributions, conclusions and implications of 
the research, as well as a discussion of potential future research directions are provided in Chapter 7.  A 
detailed description of the fast-time aircraft simulator, which is the core of the Monte Carlo simulation
tool, is provided in Appendix A.  Where applicable, items such as the nomenclature and the reference list 
are provided for each individual chapter for easy cross-reference.
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CHAPTER 2 

NOISE ABATEMENT APPROACH AND ARRIVAL 
PROCEDURE DESIGN AND OPERATIONAL 
FRAMEWORK

NOMENCLATURE

Cd = drag coefficient
Cl = lift coefficient
D = aircraft drag
g = the acceleration due to gravity
L = aircraft lift
L/D = aircraft lift to drag ratio 
LSP = sound pressure level in dB 
m = aircraft mass
p = root-mean-squared sound pressure
p0 = standard reference sound pressure, 0.02 mPa
pi = root-mean-squared sound pressure measurement i

S = aircraft wing reference area 
Tr = thrust required
Ti = idle thrust
V = true speed
Vr = true airspeed
LSP = difference in sound pressure level in decibel 

= flight path angle 
= ambient air density

2.1 INTRODUCTION 

In a conventional approach, air traffic controllers manage the movement of aircraft and achieve the
desired sequencing and spacing on the final approach through vectoring – the process of giving pilots ad
hoc altitude, speed and heading commands.  The primary benefit of vectoring is that it gives the controller 
the flexibility that has, to date, been required to achieve a tightly spaced approach queue, thereby 
maximizing runway throughput when there is high traffic demand.  However, vectoring is most frequently
conducted at low altitude with extended lateral flight path resulting in flight time, noise, emissions, and
fuel burn that are significantly higher than their respective minimum possible levels.  Sample ground
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tracks of UPS arrivals to Louisville International Airport (KSDF) from the west are shown in Fig. 2-1. 
These data were extracted from the UPS ground management system.  The blue (solid) tracks represent
B757-200 (B757) and B767-300 (B767) flights, and the red (dashed) tracks represent flights of other 
aircraft types.  The reason to differentiate B757 and B767 from other aircraft is that these two aircraft
types were used in a flight test, which will be described later.  As seen in Fig. 2-1, aircraft were directed
to perform a variety of heading changes, resulting in substantial increases and variations in flight distance
and the extent to which flight tracks span the area around the airport.  If these increases and variations
could be reduced, the size of noise contours could be significantly reduced, as could the amount of
emissions and fuel burn. In addition to the extended lateral path, vectoring also resulted in level flight
segments at low altitude that requires high engine thrust.  Vertical profiles of the same groups of arrival
flights are plotted in Fig. 2-2 as altitude vs. along-track distance.  The latter is defined as the distance 
along each flight’s own ground track, thus it reflects the actual distance flown by each aircraft.  As seen in 
Fig. 2-2, vectored flights followed step down vertical profiles and aircraft could fly level flight segments
at low altitude that extended to tens of nautical miles.  If the level flight segments at low altitude could be 
reduced or eliminated, the noise level on the ground could be significantly reduced, as would be 
additional reductions in emissions and fuel burn. 
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The first step in developing noise abatement approach and arrival procedures is to examine how 
operational parameters such as altitude, speed, and Flight Path Angle (FPA) affect the noise impact from
approaching aircraft.  Note that the nominal aircraft flap setting is determined by the aircraft weight and 
the airspeed.  Given aircraft flap configuration, altitude, speed, and FPA, the thrust required to maintain
the given speed can be obtained from the force equations.  Thus the two important noise contribution
factors, engine thrust and the nominal aircraft flap configuration, would become known once the afore 
mentioned operation parameters and aircraft weight are given.  Fuel burn, directly contributing to 
emissions and operating cost, should be examined at the same time.  Based on these analyses and the
availability of navigation and guidance technologies, a set of high-level noise abatement approach and 
arrival procedure design guidelines could be derived. 

The two fundamental elements in aircraft noise abatement are: 1) reducing noise at its source – lower 
engine power setting and clean configuration, and 2) moving the noise source farther away – flying at
higher altitudes and over less noise sensitive areas. However, for a balanced and feasible procedure 
design, the operating cost and existing airspace restrictions must also be taken into account.  The final
noise abatement approach and arrival procedure design should have a shortest lateral path and a
continuously descending vertical profile chosen such that airspace restrictions and regulatory operational 
limits are satisfied at the same time.  Naturally, vectoring during the execution of such procedures should 
be eliminated or at least be minimized. To maintain runway arrival throughput and assure proper spacing
between aircraft without extensive use of vectoring, a new procedure design and operational framework is
needed.  This new framework is the major topic of this chapter. 

The remainder of this chapter is organized as follows: The analysis of aircraft noise impact, through 
numeric examples, is provided in the next section. An analysis of aircraft performance pertinent to noise 
abatement approach and arrival procedure design is presented in Section 2.3.  General guidelines for noise 
abatement approach and arrival procedure design in light of the recent development of Global Positioning
System (GPS) based Area Navigation (RNAV) technology, the Required Navigation Performance (RNP)
concept, and the Lateral Navigation (LNAV) and Vertical Navigation (VNAV) capabilities already in 
place on board modern commercial aircraft are discussed in Section 2.4.  The proposed new noise
abatement arrival procedure design and operational framework is presented in Section 2.5 to provide the 
basis for the discussions in the chapters that follow.  A summary of this chapter is provided in the last 
section.

2.2 COMMUNITY NOISE IMPACT FROM APPROACH AIRCRAFT

2.2.1 Noise Metrics
The basic noise metric is the dimensionless sound pressure level (SPL) in decibel (dB).  SPL LSP is 

defined as ten times the logarithm (to the base 10) of the ratio of the root-mean-square (RMS) sound 
pressure p, squared, and the standard reference sound pressure p0, squared, 
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The standard reference sound pressure p0 is 20 Pa, which is about the limit of the sensitivity of the
human ear, in its most sensitive frequency range.  For free plane waves, sound pressure squared is
proportional to the sound intensity which is defined as the rate of flow of energy through a unit area 
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normal to the direction of propagation (see p.7 of ref. 1).  For two different sound pressure measurements
p1 and p2, the difference in SPL is, 
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If the second sound intensity is twice of that of the first measurement, the difference in SPL can be 
obtained as, 
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Equation (2-3) indicates that doubling the sound intensity gives a 3 dB increase in SPL, or that halving 
the sound intensity gives a 3 dB decrease in SPL.  It is obvious that a ten times increase in sound intensity
gives a 10 dB increase in SPL.  Human hearing is directly sensitive to sound pressure.  One dB is close to
the just noticeable difference for SPL.  A 3-dB difference in SPL is noticeable, and a 6-dB difference is 
clearly noticeable to the human ears.

There are three fundamental families of noise metrics used in measuring aircraft noise.  These three 
families are derived from the A-weighted sound level, C-weighted sound level, and the tone-corrected 
perceived noise level respectively.

The A-weighted sound level2,3,4,5 is SPL modified to de-emphasize the low (below 1 kHz) and the high 
(6.3 kHz and above) frequencies, and to emphasize the frequencies between 1 kHz and 6.3 kHz.  It is
intended to approximate the relative response of the human ear to different frequencies.  In the A-
weighting, sound at frequencies where the response of the ear is good is weighted more heavily than
sound at frequencies where the response of the ear is poor. Thus, this weighting provides a good
approximation of the response of human ear, and correlates well with the average person’s subjective 
judgment of the relative loudness of a noise event, regardless of the sound levels.  A-weighted sound level 
is the most commonly used rating for measuring community and transportation noise.

The C-weighted sound level2,3 is SPL modified to emphasize the low (between 0.1 kHz to 2 kHz) 
frequency portions of the spectrum while de-emphasizing other frequencies.  However, the weighting
remains relatively uniform from 0.0315 kHz to 8 kHz.  It provides a better approximation of human
perception of the loudness than the A weighted sound level for high level sounds above 90 dB.  The C-
weighting is often used to measure the peak value of a sound in order to assess the risk of hearing 
impairment. For aircraft noise, the C-weighted noise levels are commonly used for assessing scenarios
dominated by low-frequency sound, e.g., sound level at locations behind start-of-takeoff roll. 

The third group of metrics is related to the tone-corrected perceived noise level2,3,4.  The perceived
noise level (PNL) is a computed rating that is most accurate in estimating the perceived loudness of
broadband sounds, such as that from aircraft, of similar time duration, which do not contain strong
discrete frequency components.  Tone-corrected perceived noise level is the PNL adjusted to account for
added annoyance due to spectrum irregularity or discrete frequency components, such as tones.  The noise 
metric used in aircraft certification, effective perceived noise level (EPNL), is the value of PNL adjusted
for both spectral irregularities and the duration of the noise6.  Its unit is EPNdB. 

To examine the community noise impact from approach aircraft for improving approach procedures,
the A-weighted sound level is a natural choice.  There are several reasons for this.  The A-weighted sound
level is simple to compute.  The sound level on ground will not be very high (>90 dB) during the 
approach until the aircraft is very close to the runway threshold.  Moreover, the focus of noise abatement
procedures is to reduce the community noise impact of the same aircraft type through different
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operational procedures rather than to compare differences across different aircraft types.  Thus, the use of
tone corrected PNL is not necessary.

Within the three metric families, there are three types of metrics2, namely those that represent the
maximum sound levels at a location, metrics that represent the total sound exposures over a given time 
period, and metrics that represent the time (either in absolute values or as a percentage) that the sound 
exceeds a specified sound-level threshold.  For each individual flight, if the maximum sound level could 
be reduced, the total sound exposure and the time above a specified sound-level threshold would also be
reduced.  Therefore, in this section, the maximum A-weighted sound level (LAMAX) is used.  LAMAX 
is presented in decibels and the sound level unit is denoted as dBA to identify it from other sound level 
metrics.

2.2.2 Noise Impact of Constant Speed Level Flight Segments 
As mentioned above, one way to improve approach procedures is to eliminate or at least reduce level 

flight segments at low altitudes.  To quantify how much noise reduction can be achieved, it is necessary to 
numerically evaluate the community noise impact of these level flight segments as compared with idle-
descents.  Level flight segments are considered in this subsection.  Idle descents are considered in the next 
subsection.  Constant speed level flight requires aircraft engines to maintain certain level of thrust, thus it
is of special interest in representing the upper bound of noise levels for approach given all other
conditions such as aircraft weight, altitude, and speed equal. 

The noise levels of modern commercial transport aircraft are dominated by engine noise.  The higher 
the engine thrust, the higher the engine noise.  In constant speed level flight, lift L is equal to aircraft 
weight mg, and the thrust required Tr is equal to drag D.  The lift coefficient Cl can thus be determined
as,
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where  is the ambient air density, Vr is the True Airspeed (TAS), and S is the reference wing area. 
It is seen that given altitude (which determines ambient air density) and aircraft weight, the lift 

coefficient is inversely proportional to the square of TAS.  The smaller the TAS, the higher the lift
coefficient would be needed to maintain constant speed level flight.  The aircraft lift to drag ratio L/D is
given by,
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where Cd is the drag coefficient.  The L/D ratio is a function of the lift coefficient and the flap 
configuration (defined by flap/slat and landing gear positions).  The flap configuration determines the 
drag polar – the relationship between drag coefficient and lift coefficient.  A typical drag polar is shown
in Fig. 2-3.

For a given configuration, the L/D ratio increases as the lift coefficient increases from zero, until the
maximum L/D ratio is reached.  From that point on, the L/D ratio decreases as the lift coefficient
increases, until the stall occurs. Commercial transport aircraft are optimized for cruise operational 
conditions.  As the aircraft decelerates to lower speeds to prepare for approach, the lift coefficient will
eventually increase to values above the point corresponding to the maximum L/D ratio, and the L/D
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ratio will start to decrease.  In addition, as the aircraft decelerates further, flaps/slats need to be extended
to lower positions to provide high lift coefficient needed to maintain level flight.  This results in the drag 
polar shifting to the right hand side, thus yielding an even lower L/D ratio. 

Slope L/D ratio 

Cd

Cl Max L/D ratio

Figure 2-3 Drag polar. 

The thrust required for maintain constant speed level flight is given by,

DL

mg
DTr

/
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It is seen that the thrust required is inversely proportional to the L/D ratio.  Based on the above 
discussion, it can be expected that the noise impact from an aircraft performing constant speed level flight 
would increase with the decrease of the airspeed during approach. 

The fast-time aircraft simulator described in Appendix A was used to simulate constant speed level
flight segments at altitudes at 500 ft intervals from sea level to 10,000 ft, and over a range of Calibrated
Airspeeds (CAS) from 140 kts to 240 kts.  The actual altitude simulated for the sea level case was at 50 ft. 
The altitude range was selected so as to cover the possible range of altitudes at which level flight may be 
performed during the approach within the terminal area.  The speed range was selected to cover the
possible speeds during the approach within the terminal area before the aircraft is established on the final
approach.  Note that Indicated Airspeed (IAS) 250 kt is the regulatory upper speed limit for turbine 
aircraft operating below 10,000 ft.  Most onboard Flight Management Systems (FMSs) use CAS 240 kt as 
the default speed restriction below 10,000 ft.  Modern FMS equipped aircraft have air data computers,
and the IAS is corrected to be identical to the CAS.  Thus, CAS is used in this analysis.

Two aircraft types were simulated, UPS B757-200 with RB211-535E4 engines and UPS B767-300
with CF6-80C2B6 engines.  Aircraft weights for the B757-200 aircraft and the B767-300 aircraft were set
to values that are above average UPS package aircraft landing weights but close to average landing
weights for passenger aircraft of the same types.  They are therefore believed to be representative of the
nominal landing weights for the majority of aircraft of these two types.  Aircraft flaps/slats were extended 
at speeds recommended by aircraft operation manuals7 by the pilot agent built into the fast-time aircraft
simulator.

The FAA Integrated Noise Model (INM) Version 6.22,8 was used to compute aircraft noise impact.
The FAA INM is widely accepted as a standard tool for evaluating community impact of aircraft noise. 
INM is capable of computing many of the three families of noise metrics, including LAMAX as selected
for this analysis.  The ground level where noise metric was to be computed was assumed to be at sea level
to simplify both the aircraft simulation and noise computation.  Because B767-300 with CF6-80C2B6
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engines is not available in INM, only the B767-300 with PW4060 engines, the B767-400ER with CF6-
80C2F engines was used as a substitute.  The principal differences between the -300 and -400ER models
are in the shape of the wing tips and the fuselage length.  Because community impact of aircraft noise is 
dominated by noise from the engines, this substitution should be close enough for comparing noise 
between level flight and idle descent for the same aircraft type. 

Outputs from the fast-time aircraft simulator, presented as time history of aircraft state variables,
engine thrust and fuel flow in text format, were converted into aircraft profiles in the format required by
INM.  INM studies2 were created for the corresponding cases (different altitudes and speeds) simulated
using the aircraft simulator.  LAMAX at grid points along the simulated straight-line flight path was 
computed using INM.  Results from INM were extracted to form tables of LAMAX at the CAS values 
and altitude values used in the simulation.  The results are presented in Fig. 2-4 and Fig. 2-7 as equal
LAMAX contours for B757-200 and B767-300 respectively.  Contours were drawn at 5 dBA intervals. A
color map was used in these two figures to present gradual changes in LAMAX between contour lines. 
The dark blue color represents LAMAX of 30 dBA and blow, and the dark brown color represents
LAMAX of 110 dBA and above.  The gradual color shade change from dark blue to dark brown
represents the gradual LAMAX increase from 30 dBA to 110 dBA. 

By examining the vertical profiles of vectored arrival flights similar to that shown in Fig. 2-2 and
crosschecking with Fig. 2-4 and Fig. 2-7, the noise impact of the constant speed level flight segments in 
vectored trajectories can also be estimated.  For example, due to the level segments at 3,000 ft, it can be
estimated that residential communities up to 20 nm (along-track distance) away from the runway could
experience noise levels of up to 62 dBA (from B757-200) and 66 dBA (from B767-300).  Those
communities are mostly in suburban areas where quietness is expected.  Note that these INM estimates
were based on the assumption that the ground elevation is at mean sea level. If the ground elevation is
actually higher, which mostly will be the case, the noise level will be somewhat higher.

It is seen from Fig. 2-4 and Fig. 2-7 that the LAMAX on ground decreases nonlinearly with the
increase in altitude.  Thus, these results provide information about noise reductions that can be achieved
by increasing the altitude of constant level flight segments.  At any given speed, the altitude difference 
between any two adjacent equal LAMAX contours gives the altitude increase that would be needed to
reduce noise level by the amount equal to the interval between contour levels (i.e. 5 dBA as in Fig. 2-4
and Fig. 2-7).  For the B757-200 aircraft, the altitude of the level segment should be increased from about 
1,000 ft to about 1,600 ft (approximately a 600 ft increase) in order to reduce the noise level on ground 
from 75dBA to 70 dBA.  The altitude should be increased from about 1,600 ft to about 2,400 ft
(approximately a 800 ft increase) in order to reduce the noise level on ground from 70 dBA to 65 dBA. 
For the heavier B767-300 aircraft, the altitude should be increased from about 1,400 ft to about 2,200 ft 
(approximately a 800 ft increase) in order to reduce the noise level on ground from 75dBA to 70 dBA. 
The altitude should be increased from about 2,200 ft to about 3,200 ft (approximately a 10,00 ft increase)
in order to reduce the noise level on ground from 70 dBA to 65 dBA.

Notice that for both aircraft (Fig. 2-4 and Fig. 2-7), the LAMAX on ground increases with the 
decrease in CAS.  This is evidenced by the monotonic increase in altitude for equal LAMAX lines as 
CAS decreases.  The reason for this is that as airspeed decreases, aircraft drag increases and engine thrust 
must compensate, as explained earlier in this section.  This observation suggests that if constant speed
level flight segment is not avoidable, they should be conducted at higher speeds.

A third observation is that if the constant speed level flight is conducted above a certain altitude, the 
noise level on ground could fall below levels that can be viewed as acceptable.  For example, if the 
constant speed level flight were conducted above 5,000 ft, LAMAX would fall below 60 dBA for both
B757-200 and B767-300 most of the time.  The LAMAX 60-dBA threshold is recommended as a night 
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time limit by World Health Organization9 (WHO) to prevent sleep disruption.  If the constant speed level
flight were conducted above 7,000 ft, LAMAX would fall below 55 dBA for both B757-200 and B767-
300 most of the time.  Reducing noise level from 60 dBA to 55 dBA would significantly reduce the 
annoyance because noise levels below 55 dBA are generally tolerable to the human ear.  This suggests 
that vectoring above 7,000 ft may be acceptable from a community noise point of view. 

2.2.3 Noise Impact of Constant Speed Idle Descent Segments 
Another area of improvement in approach procedures is to allow aircraft engines to operate at lower

throttle settings.  As emphasized earlier, the way to reduce engine source noise is to use lower throttle 
settings and fan speeds. The idle throttle represents the lower bound of throttle settings under normal 
operational conditions, thus idle descents are of special interest in understanding the lower bound of noise 
levels given other conditions equal. 

The fast-time aircraft simulator was used to simulate constant CAS idle descent flight segments.  The
same two aircraft types, UPS B757-200 and UPS B767-300 were simulated.  The aircraft were assumed
to perform a straight-in approach.  Initial altitude was set to 11,000 ft.  The simulations ended when the 
aircraft reached 50 ft above sea level. Speed was again set at 10 kt intervals from CAS 140 kt to 240 kt. 
The desired FPA was pre-computed by the FMS module in the aircraft simulator for each selected CAS to
allow the aircraft to descend from 11,000 ft to 50 ft at that constant CAS and at the idle throttle setting
without using speedbrakes.  Because the approach was performed at constant CAS, the flap/slat position 
was also preset according to the aircraft operation manual7 before the simulation started.  The 
computation of the FPA for idle constant CAS descent is given in Subsection A.4.3 of Appendix A. 

LAMAX noise levels are shown in Fig. 2-5 and Fig. 2-8 for B757-200 and B767-300 respectively.
The results are presented in the same manner as for constant CAS level segments, i.e. as equal LAMAX
contours.  The same color map was used in these two figures to depict gradual changes in LAMAX 
between contour lines. 

It is seen from Fig. 2-5 and Fig. 2-8 that, similar to the results for constant CAS level flight segments,
the LAMAX on the ground decreases nonlinearly with the increase in altitude.  However, for any given
altitude, LAMAX on the ground remained relatively constant for constant CAS idle descent at different
CAS values. One reason is that the idle thrust or the idle fan speed remained relatively stable for different
CAS values.  Another reason could be that the difference in airframe noise due to the difference in CAS
and the difference in airframe noise due to the difference in flap configuration offset each other.  As
shown by a study on airframe noise10, for the same airspeed, airframe noise increases with the extension 
of flaps/slats; for the same flap configuration, airframe noise decreases with the decrease in airspeed.  In
the simulation, at higher speeds, the aircraft was in clean configuration, while at lower speeds, flaps/slats
had to be extended.  Lastly, the reason could also be that the INM is not accurate enough to capture the 
small difference in LAMAX due to difference in CAS when the engine throttles was at idle. 

By comparing Fig. 2-5 with Fig. 2-4 and Fig. 2-8 with Fig. 2-7, it can be confirmed that, as one might
expect, the noise levels for constant CAS idle descent were consistently lower than constant CAS level 
flight segments for the same altitude and CAS.  Each of the equal LAMAX contour lines in Fig. 2-5 (or
Fig. 2-8) is lower in altitude than its corresponding equal LAMAX contour line in Fig. 2-4 (or Fig. 2-7).
This means that the same LAMAX noise level can be achieved at a lower altitude during the constant 
CAS idle descent than that during the constant speed level flight.  The color shades in Fig. 2-5 and Fig. 2-
8 are more toward the blue (lower LAMAX) end of the color map as compared with the color shades in 
Fig. 2-4 and Fig. 2-7 respectively.
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Figure 2-4 B757-200 constant CAS level flight LAMAX, dBA.

Figure 2-5 B757-200 constant CAS idle descent LAMAX, dBA.

Figure 2-6 B757-200 noise reduction in LAMAX of constant CAS 

idle descent over level flight, dBA. 
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Figure 2-7 B767-300 constant CAS level flight LAMAX, dBA. 

Figure 2-8 B767-300 constant CAS idle descent LAMAX, dBA. 

Figure 2-9 B767-300 noise reduction in LAMAX of constant CAS 

idle descent over level flight, dBA. 
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To get the magnitude of noise reductions for each aircraft, the LAMAX noise level at each point in the
altitude-CAS space for constant CAS level flight was subtracted by the LAMAX noise level for the
constant CAS idle descent at the same point.  The result is an indicator of the maximum possible noise
reductions by setting the throttles to idle with all other parameters such as aircraft weight, altitude, and 
speed remaining the same.  The results are presented as equal LAMAX contours in Fig. 2-6 and Fig. 2-9
for B757-200 and B767-300 respectively.  Contours were drawn at 0.5 dBA intervals.  A different color
map was used in these two figures to present gradual changes in LAMAX reductions between contour 
lines.  A darker blue shade represents a higher magnitude in noise reductions so that the visual impression
is consistent with Fig. 2-4, Fig. 2-5, Fig. 2-7 and Fig. 2-8.  This is to say that a darker blue shade means a
higher noise reduction can be achieved by flying at idle throttle.  It is seen from Fig. 2-6 and Fig. 2-9 that, 
within reasonable altitude and speed ranges, the noise levels on the ground could be reduced by 1 to 3 
dBA by using idle throttle.  These noise level reductions are noticeable to the human ear.  They are 
equivalent to cutting the noise intensity on the ground by 20% to 50%.

2.2.4 Noise Reductions through Procedure Improvements 
Significant noise reduction can be achieved by flying higher vertical profiles and using lower engine 

throttle settings.  Numerical examples are given below to illustrate the possible noise reductions that can 
be achieved through procedure improvements.

Suppose a vectored approach aircraft descended to 3,000 ft above the ground at a point about 15 to 20 
nm (between -20 nm and -15 nm on the horizontal axis in Fig. 2-10) to the runway threshold along the 
flight track.  Further, suppose that from that point on, the aircraft maintained constant speed level flight at
CAS 180 kt until the aircraft captured Instrument Landing System (ILS) glide slope at -8 nm.  The 
vertical profile of the vectored aircraft is illustrated by the dashed thick curve in Fig. 2-10.  The LAMAX
noise levels on the ground below the level flight segment can be obtained from the INM noise 
computation results presented in Subsection 2.2.2 as 62.5 dBA and 66.1 dBA for B757-200 and B767-
300, respectively. 

Assume that a hypothetical noise abatement approach procedure were to be designed to reduce 
community noise impact.  Suppose that in this procedure, the aircraft would be 5,000 ft above the ground
and descending at CAS 200 kt with engine throttle set to idle when it passed the point at -15 nm.  The
vertical profile of the hypothetical noise abatement approach procedure is illustrated by the solid thick 
curve in Fig. 2-10.  The LAMAX noise levels on the ground at -15 nm can be obtained from the INM 
noise computation results presented in Subsection 2.2.3 as 54.0 dBA and 58.4 dBA for B757-200 and 
B767-300, respectively.  Note that these values are below the WHO recommended LAMAX 60-dBA 
threshold for preventing nighttime sleep disruption. These noise reductions are listed in Table 2-1. 

3000 ft
Runway

Threshold

Noise

Abatement

-15 nm

3

Vectored

0 nm

3000 ft
Runway

Threshold

Noise

Abatement

-15 nm

3

Vectored
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Figure 2-10 Example noise abatement approach procedure. 
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Table 2-1 Example noise reductions at -15 nm to runway threshold. 

Procedure Vectored
Noise

Abatement Difference

Altitude 3,000 ft 5,000 ft +2,000 ft 
CAS 180 kt 200 kt +20 kt

Operation mode Level Descent
Throttle Engaged Idle Reduced

LAMAX, B757-200 62.5 dBA 54.0 dBA 6.5 dBA
LAMAX, B767-300 66.1 dBA 58.4 dBA 7.7 dBA

The noise reductions at -15 nm would thus be 6.5dBA and 7.7 dBA for B757-200 and B767-300,
respectively.  It can also be further deducted from Fig. 2-6 and Fig. 2-9 that the noise reductions at -15 nm
simply due to the higher vertical profile and higher speed (without reducing engine thrust from that 
required for constant speed level flight) were 4.9 dBA and 6.6 dBA for B757-200 and B767-300
respectively.  The noise reductions due to reducing engine throttle to idle (at the altitude of 5,000 ft) were 
1.6 dBA and 0.9 dBA for B757-200 and B767-300 respectively. In this case, the higher vertical profile 
contributed more to noise reductions than reducing the engine throttle to idle. 

In this example, between -15 nm and -8 nm, noise reductions would gradually decrease when the point 
moved closer to the runway threshold.  Between the start of the level flight segment of the vectored
profile and -15 nm, noise reductions would gradually increase as the point moved farther away from the 
runway threshold.

2.3 AIRCRAFT PERFORMANCE

Aside from community noise impact, aircraft performance is another important aspect that must be 
considered in noise abatement procedure design.  Two performance parameters are of special interest: the
total fuel flow rate and the FPA.  The total engine fuel flow rate directly contributes to emissions and
operating costs, and therefore has become extremely important because of today’s high oil prices and
environmental concerns.  FPA directly determines the aircraft vertical profile and affects required engine 
thrust; it is also very important in satisfying Air Traffic Control (ATC) restrictions.  These two
performance parameters are discussed in this section. 

2.3.1 Total Fuel Flow Rate 
Constant CAS level flight not only defines the upper bound of approach noise levels, but also the 

upper bound of total fuel flow rate for approach given that all other conditions such as aircraft weight,
altitude, and speed are equal.  Total fuel flow rate data were extracted from the output files of the constant 
CAS level flight simulation runs described in Subsection 2.2.2. Results are illustrated in Fig. 2-11 and 
Fig. 2-12 as approximate equal fuel flow rate contours for the B757-200 and B767-300 respectively.  The 
intervals between consecutive contours are 1,000 lb/h. Again, a color map was used in these two figures 
to better portray gradual changes in fuel flow between contour lines.  The gradual color shade change 
from blue to brown represents the gradual total fuel flow rate increase. 

It is seen from Fig. 2-11 and Fig. 2-12 that total fuel flow rates for constant CAS level flight depend 
mostly on CAS.  They remained roughly the same for the same CAS throughout the altitude range 
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(10,000 ft and below) shown.  As the CAS decreased from 200 kt to 140 kt the total fuel flow rates 
increased about 50% for both aircraft types.  As discussed earlier, this is due to the aircraft drag increase
at low speeds.  It is thus desired that if level flight segments could not be avoided, they should be 
conducted at relatively high speed to save fuel. 

Figure 2-11 B757-200 constant CAS level flight fuel flow rate, lb/hr. 

Figure 2-12 B767-300 constant CAS level flight fuel flow rate, lb/hr. 

On the other hand, constant CAS idle descents represent the lower bound of total fuel flow rates for
approach given that all other conditions such as aircraft weight, altitude, and speed are equal.  Total fuel
flow rate data were extracted from the output files of constant CAS idle descent simulation runs described
in Subsection 2.2.3.  Total fuel flow rates for constant CAS idle descents are presented in Fig. 2-13 and 
Fig. 2-14 as equal percentage contours for B757-200 and B767-300 respectively.  The percentages were 
computed with respect to the corresponding total fuel flow rates for constant CAS level flight.  Again,
color maps were used to better portray gradual changes in total fuel flow rates between contour lines. 

Total fuel flow rates for constant CAS idle descent were significantly lower, approximately 15 to 30%
of that for constant CAS level flight for the two aircraft types.  Total fuel flow rate for constant CAS idle 
descent remained relatively constant for different CAS values. The decrease of the percentages at low
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CAS values shown in Fig. 2-13 and Fig. 2-14 were due to the significant increase of total fuel flow rates
for constant CAS level flight at low CAS values. 

Figure 2-13 B757-200 constant CAS idle descent fuel flow rate, 

percent of corresponding constant CAS level flight fuel flow rate. 

Figure 2-14 B767-300 constant CAS idle descent fuel flow rate, 

percent of corresponding constant CAS level flight fuel flow rate. 

Given today’s high oil prices, the fuel savings that can be achieved through improving approach 
procedures provide great incentives for operators to implement noise abatement approach and arrival 
procedures and improve the quality of life of residents in communities around airports.  Moreover, these 
reductions in fuel burn also preserve natural resources and improve local air quality without sacrificing
the quality of services of air transportation. 

2.3.2 The Flight Path Angle 
The FPA and the aircraft vertical profile are related to each other.  A higher FPA assures a higher

vertical profile.  If community noise impact were the only concern, high FPAs would naturally be
preferred for lower noise on the ground, at least when the aircraft is close to the runway. However, in 
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noise abatement approach and arrival procedure design, many other factors must also be taken into
account.

The FPA is also related to required engine thrust. During constant CAS level flight where FPA equals 
zero, engine throttle must be fully engaged to overcome drag.  As the FPA at which the aircraft is
descending becomes steeper, the required engine thrust to maintain a constant speed (such as a given
CAS) will decrease.  The FPA for constant CAS idle descent represents a critical condition.  If the FPA is
steeper than the FPA for constant CAS idle descent, speedbrakes must be extended to maintain the given 
CAS or the CAS will increase during descent.  Sustained use of speedbrakes during descents is not
desirable because it reduces comfort, increases airframe noise, and wastes the aircraft gravitational 
potential energy.  Thus, constant CAS idle descent represents the upper bound of the magnitude of FPAs 
from an aircraft performance point of view.

To illustrate the relationship between idle descent FPA and aircraft aerodynamics, consider a
simplified case – instantaneous constant true speed descent under zero wind.  Because wind is assumed to
be zero, the true speed V and true airspeed Vr have the same value.  The simplified free body diagram is 
shown in Fig. 2-15.  In the figure,  denotes FPA, which is negative for descent, and Ti denotes installed
idle thrust, which is approximately equal to zero. 
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Figure 2-15 Simplified free body diagram

for constant true speed idle descent.

For constant true descent, both vertical and horizontal accelerations are zero.  The force equations are
thus

0cos)(sin DTL
i
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i
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From Eq. (2-7), the FPA for constant true speed idle descent can be derived as 

L

DT
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Ignoring the installed idle thrust, the FPA for constant true speed idle descent becomes
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LDatan (2-10)

It can be seen from Eq. (2-10) that the FPA for constant true speed idle descent is determined by
aircraft L/D ratio.  The lower the L/D ratio, steeper the FPA will be and vise versa.  As mentioned
earlier in Subsection 2.2.2, for any given aircraft, the L/D ratio is a function of the lift coefficient and the 
aircraft configuration (flap/slat and landing gear positions).  From Eq. (2-8) and the first half of Eq. (2-4),
it can be derived 
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With the drag polar for a given aircraft configuration known, Eq. (2-10) and Eq. (2-11) can be solved 
iteratively to obtain the FPA for constant true speed idle descent.  Under normal operational conditions, 
Cd << Cl and the magnitude of FPA  is small.  Eq. (2-11) can be approximated by the lift coefficient for 
level flight, i.e. 
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Based on the discussion in Subsection 2.2.2, the L/D ratio decreases with the decrease in speed.  It is 
thus expected that the magnitude of FPA for constant true speed idle descent will increase as the speed
decreases. On the other hand, if the speed is adjusted (by proper trimming) to keep the term mg/V2 in
Eq. (2-12) constant as the aircraft weight varies, the lift coefficient will remain the same; hence, the L/D

ratio will remain the same.  In other words, the descend speed corresponding to the highest L/D ratio (or
the shallowest constant true speed idle descent FPA) varies with the aircraft weight.  At heavier weight, 
the descent speed corresponding to the highest L/D ratio is higher. 

Because of the nonlinear relationship between CAS and TAS, and the possible wind changes along
altitude, aircraft acceleration is normally not zero during constant CAS descent.  The computation of FPA 
for constant CAS idle descent is thus more complicated.  Nonetheless, the analysis of the FPA for
constant true speed idle descent does provide insight to the relationship between FPA and aircraft
aerodynamic performance, and descent speed.  Detailed derivation of the equations used for computing
the FPA for idle constant CAS descent is provided in Subsection A.4.3 of Appendix A.  They are not 
iterated here for the sake of clarity.

FPAs for constant CAS idle descent were extracted from the output files of simulation runs described 
in section 2.2.3.  Since FPAs for constant CAS idle descent did not change much for different altitudes 
with in the range (sea level to 10,000 ft) examined, average values for each CAS value were used to
represent the FPA for that speed.  The results are presented in Fig. 2-16.  The magnitude of FPAs for 
constant CAS idle descent above CAS 200 kt up to 240 kt (clean configuration) were approximately 3 deg 
for the given simulation conditions.  Below CAS 200 kt, the magnitude of FPAs for the constant CAS idle 
descent increased rapidly as speed decreased, because flap/slat extensions were initiated at approximately
that speed. At 140 kt, the magnitude of FPAs for constant CAS idle descent were about 7 deg – landing
gear had been deployed at that speed. 

In a practical approach procedure design, the aircraft would normally decelerate as it approaches the
runway threshold.  Should the aircraft decelerate to about 140 kt, it would normally have been established 
on the final approach.  At that time, the FPA would normally be determined by the ILS glide slope which 
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is about 3 deg.  In other words, as the aircraft decelerates and gets closer to the runway, thrust must be
added to maintain stabilized flight because the FPA to remain on glide slope would be far shallower than
the FPA required for constant CAS idle descent at low speeds.  The requirement to add engine thrust to 
counter the increased drag – because of the deployment of flaps/slats and landing gear at low speeds and
the need to remain on the glide slope – essentially limits the area where noise abatement approach 
procedures are effective in reducing community noise impact.  For this reason, noise abatement approach 
procedures can not be effective in reducing noise impact once the aircraft is established on the final 
approach as long as a conventional 3 deg glide slope is used. 
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Figure 2-16 Average FPAs for constant CAS idle descent. 

A special case is a noise abatement approach procedure that is some times referred to as steeper
approach.  This procedure resembles a glide-and-dive vertical profile, i.e. an initial approach segment
with normal FPA and a final approach segment with steeper FPA (steeper than the normal 3 deg glide 
slope).  If the FPA is steep enough, the final approach could also be performed at or near idle thrust even 
when the speed is relatively low. However, the majority of commercial jet aircraft are not certified for
steeper approaches.  The London City Airport is one of the few airports that require the glide-and-dive 
type steeper approach procedures – only aircraft capable of making an approach at 5.5 deg (-5.5 deg FPA) 
or steeper are permitted to land at the airport. 

The use of different FPAs is also important in satisfying ATC restrictions.  For example, if an “at or 
above” altitude restriction is imposed at a point relatively far from the runway, the FPA between that
point and the next lower altitude restriction must be steeper than a certain value.  In some cases, the ATC
dictated minimum FPA could be slightly higher than the FPA for the constant CAS idle descent
corresponding to the assigned CAS for that segment.  If this happens, speedbrakes will have to be 
frequently extended to add drag to keep the aircraft on the vertical path and maintain the assigned speed. 
This is not desirable because it increases pilot workload.  If other conditions permit, the assigned speed 
for the segment could be lowered so that the FPA for constant CAS idle descent corresponding to the new
speed would be higher than the ATC required minimum FPA.  With the new speed, an idle descent
segment satisfying the altitude restrictions may be built, and be executed without excessive use of 
speedbrakes11.

47



Knowledge of the magnitude of FPA for constant CAS idle descent for various conditions such as 
aircraft type, weight range, altitude, speed, and wind (which will be discussed in the following chapters) 
is thus a valuable tool for the design of noise abatement approach and arrival procedures. 

2.4 NOISE ABATEMENT APPROACH AND ARRIVAL PROCEDURE DESIGN 

The design of noise abatement approach and arrival procedures is determined by overall goal to be
achieved through these procedures.  The procedures could be designed with the primary objective of 
reducing aircraft noise impact.  Ordinary noise metrics, and residential area and population impacted by 
aircraft noise at specific levels5 can be used as objective functions.  In this case, the procedures of concern 
are normally limited within the terminal area.  Procedures could also be designed to achieve objectives
that are more comprehensive.  Aircraft noise impact, engine exhaust emissions, cost of implementation,
operating economy, traffic efficiency, and air traffic coordination can all be taken into account to form a
balanced approach to procedure development.  In this case, the procedures of concern may extend far 
beyond the boundaries of the terminal area.  Procedures that are designed to benefit the most stakeholders 
will most probably be accepted, implemented, and sustained into the future. 

The design of noise abatement approach and arrival procedures also heavily depends on the guidance
and navigation technology available for use by the aircraft performing these procedures.  Some proposed
near term designs, such as the one that relies on a paper based pilot cueing system consisting of gates (i.e., 
altitude/speed checkpoints) and recommended flap schedule12, do not require additional automation on
board the aircraft.  Some other proposed noise abatement procedure designs rely on the availability of
new automation such as the Advanced Continuous Descent Approach real-time FMS algorithm13 and the 
Low Noise Flight Guidance Concept14. Due to the lengthy development and certification process for any 
airborne system, these approaches to noise abatement procedure design should be considered long-term 
solutions.

In recent years, as the accuracy and reliability of GPS based RNAV improved and the number of FMS 
equipped RNAV capable aircraft (either newly built or through retrofit) increased, RNAV terminal area
procedures become more and more popular.  Aside from the many benefits documented in previous 
studies15,16, RNAV terminal area procedures provide an opportunity for implementing noise abatement 
approach and arrival procedures in the near term.  RNP17,18 is an authoritative statement of aircraft 
navigation capabilities and performance requirements that are necessary for aircraft to operate in a given 
airspace or use a given procedure.  With the RNP concept, special RNP RNAV noise abatement or arrival
approach procedures can be designed for specified aircraft types or specified operators with required 
capabilities20, and be approved by aviation authorities for routine use.  This regulatory advancement
enables maximized use of advanced navigation technology invested by the operators. 

RNAV noise abatement arrival procedures, referred to as RNAV Continuous Descent Arrival (CDA)
procedures, are RNAV arrival procedures with specially designed vertical and speed profiles that are
optimized to reduce aircraft community noise impact.  In RNAV CDA, the lateral flight path is defined by
a series of waypoints.  The lateral path can extend from the final approach fix all the way back to cruise
altitude.  The vertical and speed profiles are defined by altitude and speed constraints at certain waypoints
along the lateral path. The waypoints and the corresponding altitude and speed constraints are 
preprogrammed in the aircraft FMS navigation database.  The FMS LNAV function computes the lateral
path from the waypoints and works together with the autopilot to maintain the aircraft on the computed
lateral path. The FMS VNAV function computes the vertical and speed profiles that satisfy all constraints
and works with the autopilot and autothrottle to control the aircraft to follow the computed vertical and
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speed profiles.  If no fixed altitude constraint is specified at the higher end of a segment, the VNAV will
compute an idle thrust vertical segment consisting of a constant CAS idle descent upper sub segment and
an idle deceleration lower sub segment (when deceleration is required).  This type of idle thrust vertical
segment is referred to as the unrestricted path segment because the flight path angle will be determined by
the FMS based on aircraft performance, aircraft weight, and weather conditions (mainly wind).  In
contrast, geometric segments (with fixed altitude constraints at both ends) with straight-line sub segments
may be necessary to accommodate ATC restrictions, or to assure proper transition to final approach. 
During the execution of RNAV CDA, the pilot monitors the execution of the aircraft, controls the
extension of flaps/slats and landing gear at the proper time.  The pilot also controls the speedbrakes to add 
drag when it deems necessary to maintain the desired speed. 

The design of the RNAV CDA procedure is thus to: 1) choose a lateral flight path that is most direct to 
the final approach fix while satisfying lateral ATC restrictions and avoiding noise sensitive residential
areas; and, 2) choose altitude and speed constraints that assure a continuously descending vertical profile 
and a speed profile with delayed deceleration that allows the aircraft to remain in clean configuration as
long as possible while satisfying vertical airspace restrictions and regulatory operational limits.  The ideal 
vertical and speed profile design would enable the aircraft engine throttle to remain at idle until the
aircraft is established on the final approach.  This is essentially a unrestricted path design that will give
the highest benefits.  Minor adjustment to the unrestricted path design, by employing one or more fine
tuned geometric segments, may provide increased predictability or operational flexibility, and 
accommodate complex ATC restrictions.

For the designed procedure to be approved by aviation authorities for routine application, various 
regulatory criteria and standard must be satisfied and approval procedure be followed19.  These include
standards for terminal instrument procedures21,22, standards and guidelines for RNAV or RNP RNAV 
procedures20,23,24,25,26,27, procedure operation regulations28, and procedure approval guidelines29,30,31.

Once the lateral path and the altitude and speed constraints are determined, fast-time and pilot-in-the-
loop simulations are then performed to verify operability and noise impact.  Iteration is necessary to 
search for the best solution until the procedure is ready for flight trials. Depending on the actual situation, 
negotiation with ATC may be necessary to relax or modify some of the existing ATC restrictions to
achieve high noise reduction and other benefits.  Well-designed RNAV CDA can significantly reduce
community noise, fuel burn, emissions, and flight time while retain benefits of regular RNAV arrival
procedures32,33.  For example, up to 500 lb of fuel were saved by each UPS B767-300 that flew a CDA to
KSDF during a flight test conducted in October 200232.

The characteristics of the vertical profile of an example RNAV CDA are illustrated in Fig. 2-17.  This 
procedure was designed for a CDA flight test conducted at KSDF in September 200433.  The procedure 
starts at cruise altitude and continues along the FMS computed VNAV descent path until the aircraft is 
established on the ILS glide slope.  The segment above the first vertical constraint is an unrestricted path 
segment.  Ideally, the engine throttle would remain at idle until the aircraft is established on the final
approach.  Two shallower segments are facilitated by the FMS to allow for proper deceleration.  The first
of these shallower segments is at 10,000 ft allowing aircraft to decelerate to CAS 240 kt.  The second 
shallower segment is at 3,800, ft allowing aircraft to decelerate to CAS 180 kt, the speed at which the 
aircraft is configured for the final approach.  The segment from the first vertical constraint to the last
vertical constraint is a geometric segment that provides a smooth transition to the ILS glide slope
interception.  The FPA of the geometric segment is slightly shallower than the ILS glide slope to assure
proper capture of the ILS glide slope. Comparing with existing standard approaches, aircraft performing
CDA will have a higher vertical profile without any level segment, and a lower average throttle setting 
(mostly idle). 
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Figure 2-17 Characteristics of the vertical profile of a RNAV 

CDA designed for KSDF.

The lateral path of the example RNAV CDA is shown in Fig. 2-18.  The runway to be used depends 
on the prevailing winds on a given day. If the wind is from the South, runway 17R is used (the southern 
flow configuration).  If the wind is from North, runway 35L is used (the northern flow configuration).
Arrival aircraft from the west follows the path defined by waypoints ZARDA, PENTO, and SACKO, to 
CHERI.  Depending on the runway configuration in use, the aircraft then follows the path defined by
waypoints CHERI, TRN17, CHR27, to final approach fix CHRCL, or the path defined by waypoints
CHERI, TRN35, CRD27, to final approach fix CARDL.  The first vertical constraint is specified at
TRN17 and TRN35 for the CDA to runway 17R and runway 35L respectively, and the last vertical 
constraint is specified at the final approach fix. The RNAV CDA terminates at the final approach fix.  By 
then, the aircraft will have already established on the ILS localizer and the ILS glide slope.  This RNAV
CDA is used in this thesis as the example procedure for the simulation study.
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Figure 2-18 The lateral path of a RNAV CDA designed for 

KSDF.

Specific design parameters of the RNAV CDA designed for the KSDF 2004 flight test will be 
described later in Chapter 6 when simulation analysis results and flight test results are presented.  The 
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FMS computes the VNAV path through backward integration from the last vertical constraint.  Details 
about how the VNAV path is computed is presented in the next chapter and in Appendix A. 

Although the FMS capabilities have been advanced over the years since its inception, the basic FMS 
VNAV functionalities have been in existence for more than 20 years.  In the past, VNAV functionalities
have only been used by some aircrews for the descent from cruise to the terminal area boundary.  In the
vast majority of those cases where VNAV is used, the VNAV is turned off as soon as the aircraft enters 
the terminal area.  There have been two major reasons for this disuse.  The first reason is the cognitive
related concerns about the use of VNAV in terminal area.  Most importantly, the extensive use of 
vectoring in terminal area for managing separation – as discussed in Subsection 1.1.2 and Section 2.1 – is 
not consistent with a form of guidance and navigation that requires pre-programmed objectives and
planning.  In the next section, a proposed procedure design and operational framework is presented.  The
new framework can be used together with the separation analysis methodology to be presented later in
this thesis to maximize the use of VNAV and FMS technology and to achieve environmental and
economic benefits. 

2.5 PROPOSED PROCEDURE DESIGN AND OPERATIONAL FRAMEWORK 

As mentioned earlier in this chapter, in the current ATC practice, the required separation between
aircraft is achieved through vectoring.  To assure that the noise reduction and other benefits can be 
achieved as expected, vectoring, especially vectoring at low altitudes, should be avoided.  To allow noise 
abatement approach and arrival procedures to be executed safely and effectively, a new design and 
operational framework must be put in place.  The ultimate goal of the new framework is to allow noise
abatement approach and arrival procedures to be implemented at as many sites as possible, and whenever
the traffic condition permits to minimize noise impact, fuel burn, emissions, and flight time over time.
The philosophy is to develop a methodology to plan a better operation that can be executed without
interruption at high level of confidence and to provide alternative plans to cover exceptions, i.e. occasions 
when separation violations are projected, which occur only with a small probability. 

The proposed procedure design and operational framework is shown in Fig. 2-19.  In this proposed 
concept, the role of the air traffic controller during noise abatement approach procedures is divided into
four phases: streaming and sequencing; spacing; monitoring, and intervention if separation is projected to 
be violated; and missed approach.  A conceptual intermediate metering point (or simply metering point) 
separates the descent from cruise and the low noise descent to the runway.  The intermediate metering
point could be the existing ATC hand off point, a geometric point on the en route control and approach
control boundary, or a newly created reference point. A target separation between consecutive aircraft is
specified for the intermediate metering point such that separation can be assured – to a desired level of
confidence – throughout the low noise descent without further controller intervention.  Before the 
metering point, the controller is free to vector aircraft as necessary for streaming and sequencing, in order 
to establish the target separation (and altitude and speed, if so desired).  With these initial conditions
properly set, aircraft can continue the noise abatement approach or arrival procedure without further
vectoring.  In this phase, the controller monitors the spacing between aircraft, and only intervenes if 
additional spacing is required to prevent separation violations.  The additional spacing can be achieved by 
adjusting speed; vectoring the aircraft off the procedure lateral path, and returning it to the path when the
required separation is reestablished; extending the base leg; or by sidestepping to an alternate runway if it 
is available. As the aircraft approaches the Final Approach Fix, they will be cleared for final approach in
conventional fashion. 
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Figure 2-19 Proposed noise abatement approach procedure design and

operational framework.

Given this procedure framework, it is apparent that larger trajectory variations during the low noise 
descent could cause higher variations in the spacing between aircraft, forcing larger target separation to be 
used, and hence impacting the efficiency of the procedure.  All else leaving equal, the longer the low 
noise descent leg is, the higher the trajectory variations would be.  Thus, the location of the intermediate
metering point can be tailored to the traffic level.  In light traffic situations, it can be moved farther away 
from the runway to realize more fuel savings and emission reductions in addition to noise reductions.  In
heavier traffic, it can be moved closer to the runway as long as it is above a certain height (say 7,000 ft) 
so that noise benefits can be maintained.  Alternative metering point locations thus provide operational 
flexibility for the procedure to be adapted to different traffic levels.

One of the goals of this research, is thus to develop a modeling tool, and a separation analysis
methodology to determine the target separation that gives the desired level of confidence at any given
intermediate metering point for noise abatement approach and arrival procedures. 

2.6 SUMMARY 

Typical vectored arrival flight tracks were examined to illustrate areas where arrival procedures can be 
improved to reduce community noise impact.  The definitions of community noise metrics were reviewed,
including the rational for choosing the maximum A-weighted sound level (LAMAX) as a figure of merit.
Aircraft noise impact of two specific flight modes, constant CAS level flight and constant CAS idle 
descent were examined through numerical simulation to show the potential of noise reductions that can be 
achieved through procedure improvements.

By examining the noise impact of constant CAS level flight, three observations were obtained.  First,
as the altitude of the constant CAS level flight increases, LAMAX on the ground decreases nonlinearly.
At low altitudes, the decrease in LAMAX due to the increase of altitude happens faster than that at higher 
altitudes.  This suggests that more noise reduction can be achieved by increasing the altitude of low 
altitude level flight segments, or eliminating them completely. Second, for the constant CAS level flight, 
as CAS decreases, LAMAX on the ground increases. The increase in LAMAX due to the decrease in
CAS is more obvious when flaps are extended than that when the aircraft is in clean configuration.  This 
suggests that level flight in the terminal area should be conducted at high speeds when the aircraft is in 
clean configuration, if these level flights cannot be avoided.  Third, when the constant speed level flight is 
conducted above a specific altitude, the noise level on the ground falls below a threshold that can be
viewed as acceptable.  For example, based on the simulation results, if the constant CAS level flight is 
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conducted above 5,000 ft, LAMAX will fall below 60 dBA (the WHO recommended nighttime sleep
disruption threshold) for both B757-200 and B767-300 most of the time.  This suggests that vectoring at 
high altitudes may be tolerable from a community noise point of view.

By examining the noise impact of constant CAS idle descent, it was observed that although LAMAX 
on the ground decreased with the altitude in a similar way as for constant CAS level flight, LAMAX on 
the ground remained relatively constant for different CAS values. For B757-200 and B767-300, LAMAX 
on the ground is 1 to 3 dBA lower than that for constant CAS level flight, given the same altitude and
CAS.  These noise level reductions are noticeable by the human ear.  They are equivalent to cutting the 
noise intensity on the ground by 20% to 50%.  A hypothetical noise abatement approach procedure using
idle descent segment was estimated to reduce LAMAX noise levels at a point 15 nm from runway
threshold by 6.5dBA and 7.7 dBA for B757-200 and B767-300 respectively.  This reduction is the result 
of both a higher vertical profile and lower engine thrust as compared with the traditionally vectored 
flights with level segments at 3,000 ft. 

Aircraft total fuel flow rates for constant CAS level flight and constant CAS idle descent were also
examined.  It was found that by using idle throttle, the total fuel flow rates could be reduced by more than
70% for both B757-200 and B767-300 with respect to the corresponding total fuel flow rates during 
constant CAS level flight.  In light of today’s high oil prices, the fuel savings that can be achieved by 
improving approach and arrival procedures provide great incentives for operators to implement these 
procedures to improve the quality of life of residents in the communities around airports.  Moreover, the
reductions in fuel burn also preserve natural resources, and improve local air quality without sacrificing 
the quality of services of air transportation. 

The relationship between FPA, CAS, and engine thrust was also examined through theoretical analysis
and simulation for the two aircraft types.  At any given altitude and CAS, a zero FPA (level flight)
represents the upper bound of required thrust to maintain a constant CAS during approach. The FPA for 
constant CAS idle descent represents the lower bound of required thrust (idle thrust) to maintain a 
constant CAS during approach.  Anywhere in between, partial thrust will be required unless the aircraft is 
decelerating.  At low speeds, e.g. CAS 140 kt when flaps/slats and landing gear are extended, the 
magnitude of FPA for constant CAS idle descent could be as high as 7 deg for B757-200 and B767-300. 
Aircraft normally needs to decelerate to a speed close to its final approach speed once it is established on 
the final approach.  At that time, the FPA would normally be determined by the ILS glide slope, which is
about 3 deg.  In other words, as the aircraft decelerates and gets closer to the runway, thrust must be
added to maintain stabilized flight because the FPA would be far shallower than the FPA desired for
constant CAS idle descent.  This essentially limits the area where noise abatement approach procedures
are effective in reducing community noise impact.

Based on the above observations, general constraints and guidelines for noise abatement approach and 
arrival procedure design are discussed.  As the accuracy and reliability of GPS based RNAV improve and
the number of RNAV capable aircraft (either newly built or through retrofit) increases, RNAV 
Continuous Descent Arrival (CDA) becomes a suitable noise abatement approach procedure for near term
implementation.  Well-designed RNAV CDA could significantly reduce community noise, fuel burn, 
emissions, and flight time.  Characteristics of RNAV CDA vertical profiles are discussed through a
procedure designed for KSDF.  This procedure will be used in this research as a numeric example to 
demonstrate the separation analysis methodology.

The proposed procedure design and operational framework features a conceptual intermediate
metering point that separates the descent from cruise and the low noise descent to the runway.  The key is 
to establish a target separation for the intermediate metering point such that separation can be assured – to 
a desired level of confidence – throughout the rest of the noise abatement procedure without further
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controller intervention.  On the other hand, the controller is free to vector aircraft before the metering
point as necessary for streaming and sequencing, and to establish the target separation.  The location of 
the intermediate metering point can be tailored for the site and the traffic condition to give high
operational flexibility and overall efficiency.  Contingency plans, such as adjusting speed, vectoring the 
aircraft off the procedure lateral path and returning later, extending the base leg, or sidestepping to an 
alternate runway if it is available, can be prepared for the specific site to cover exceptions when 
separation violation is predicted.

In the following chapters, the development of the modeling tool and the separation analysis
methodology for determining the target separation at the intermediate metering point will be presented in
detail.
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CHAPTER 3 

THE MONTE CARLO SIMULATION TOOL 

NOMENCLATURE

B( , ) = beta function
E( ) = expectation, mean operator
Ê (X) = estimation of the mean of random variable X

M = random variable of aircraft landing weight
m = value of aircraft landing weight
mMLW = value of aircraft maximum design landing weight 
mOEW = value of aircraft spec operating empty weight
f(x, , ) = probability density function of beta distribution
STD( ) = standard deviation operator
ST̂D(X) = estimation of the standard deviation of random variable X

V = total speed vector 
Vg = ground speed vector 
Vg = ground speed
Vh = vertical speed vector 
Vh = vertical speed
Vr = true airspeed vector 
Vr = true airspeed
W = horizontal wind vector 
Wc = the crosswind component
Wh = the headwind component
X = random variable
x = value of random variable X

= the first parameter of beta distribution
^ = estimation of the first parameter of beta distribution

= the second parameter of beta distribution
^ = estimation of the second parameter of beta distribution

= flight path angle 

r = flight path angle relative to the air mass 

r = the angle between the ground speed vector and the wind vector, 

r = the angle between the projection of true airspeed on the horizontal plane and the ground
speed vector
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3.1 INTRODUCTION 

To study the trajectory variations of aircraft performing noise abatement approach and arrival
procedures, and to provide a means to support the application of the procedure design and operational 
framework introduced in the previous chapter, a fast-time Monte Carlo simulation tool was developed.
Because the aircraft system is nonlinear, and because the execution of a procedure is subject to various 
uncertainties that is varying along altitude, it has been difficult to quantify macro level trajectory
variations analytically.  This is especially the case for evaluating trajectory variations cumulated through
the execution of approach and arrival procedures.  Monte Carlo simulation would thus be a proper
technique to use.  A fast-time aircraft simulator was developed first.  External uncertainty factors
contributing to trajectory variations could then be fed into the aircraft simulator in a way similar to what
would happen to an aircraft in the real world environment.  Through a large number of simulation runs – 
of the procedure under development – with different aircraft types and different operation conditions, a
large number of aircraft trajectories could be obtained.  With all the elements properly modeled, the
simulated aircraft trajectories would reflect variations in trajectories of aircraft performing the same
procedure.  Simulated aircraft trajectories could then be used in separation analysis to determine the target 
separation for the selected intermediate metering point. 

Depending on the actual procedure design, the propagation of trajectory variation is often a two-stage
process.  The first stage is the computation of the lateral path and the vertical path of a noise abatement
approach or arrival procedure; the second stage is the execution of the procedure.  Trajectory variations
reflected in the computed vertical flight path could be differences in the computed location of the starting
point for each deceleration segment, and differences in the Flight Path Angle (FPA) for each segment.
Variations in the computed lateral path would normally be relatively small.  Trajectory variations
reflected in the execution could be deviations in terms of altitude, speed, and cross track errors, from the
flight path computed in the first stage. 

Trajectory variations exist between flights in different seasons, flights on different days, or flights
during different times of the day.  These variations would be reflected by the range of aircraft trajectories
spanning the 3D airspace and the range of aircraft states at each point on the flight path, as various 
external conditions change.  Thus, these variations would be very important in analyzing the compatibility
of noise abatement approach and arrival procedures with the existing airspace design and other aircraft 
operations in the same general volume of airspace. 

Trajectory variations also exist between consecutive flights on the same procedure.  These variations 
would affect the evolution of the spacing between aircraft.  Thus, these variations would be very 
important in analyzing the separation between aircraft performing noise abatement approach and arrival 
procedures.

Factors contributing to aircraft trajectory variations were identified as: 

Aircraft type – differences in aircraft dynamics and performance determine; these differences
affect both the execution of the procedure and the computation of procedure flight paths if they
are performance based, 
Low noise descent path logic – differences in how the descent path is generated for each aircraft 
due to difference in aircraft equipage; these differences affect the computation of procedure flight 
paths only, procedure design dependent, 
Pilot technique – differences among pilots and pilot response randomness; these differences affect
the execution of the procedure only,
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Aircraft weight – uncertainty due to demand and operational conditions; this uncertainty affects
aircraft dynamics and aircraft performance, hence the execution of the procedure, and very likely
the computation of procedure flight paths if they are performance based,
Weather conditions – predominantly winds, both wind variations and forecast uncertainties; these
variations and uncertainties affect both the execution of the procedure and the computation of
procedure flight paths if they are performance based.

Models of each of the aforementioned factors were developed either as part of the fast-time aircraft
simulator, or as individual external modules that will be working with the fast-time aircraft simulator.
Elements were carefully integrated together to form a unique Monte Carlo simulation tool.

The remainder of this chapter is organized as follows.  A brief introduction to the fast-time aircraft 
simulator, described in detail in Appendix A, is provided in the next section to lay the groundwork for the 
discussion that follows.  The modeling of pilot response delay, aircraft weight, and winds are described in 
Section 3.3.  Modeling of wind variations, however, is described separately in Chapter 4 because of the
complexity of this topic. The process incorporating various components into an integrated Monte Carlo 
simulation tool is discussed in Section 3.4.  A summary of this chapter is given in the last section.

3.2 THE FAST-TIME AIRCRAFT SIMULATOR 

The central element of the Monte Carlo simulation tool is the fast-time aircraft simulator. The fast-
time aircraft simulator is a batch mode computer program developed based on an early version developed 
by Ho and Clarke1 in 2001.  It was re-designed for this research as a 4D aircraft trajectory simulator with
improved accuracy, expanded functionality, and enhanced capability to simulate different approach and 
arrival procedures under various conditions2.  Modeled aircraft types include Airbus A319, Boeing 737-
300, 757-200, 767-300, and 747-400.  More aircraft types are being added as data become available. A
brief description of the aircraft simulator is given in this section to facilitate further discussion.  A 
complete description of this simulator can be found in Appendix A.  The block diagram of the aircraft 
simulator is repeated in Fig. 3-1. 
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Figure 3-1 Aircraft simulator block diagram.
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The aircraft simulator consists of several modular components.  The aircraft dynamics module
incorporates aerodynamics and kinetics to compute aircraft state derivatives.  Attitude control is 
performed by the autopilot module that is assumed to be able to maintain certain tracking accuracy, 
thereby eliminating the need for aerodynamic derivatives, rotational moments, and moments of inertial 
momentum. The engines are controlled by the autothrottle module.  Both autopilot and autothrottle were 
modeled as second order linear controllers.  The FMS module builds lateral and vertical flight paths based 
on entered waypoints and altitude/speed constraints during the preprocessing stage, and provides Lateral
Navigation (LNAV) and Vertical Navigation (VNAV) guidance during execution of the procedure. A
pilot agent is included to control speedbrakes, flaps/slats and landing gear, and thrust setting and autopilot 
mode changes when required.  The weather module includes the Air Data Computer (ADC) and a user
configurable wind and turbulence model.  The output of the simulator is a time history of aircraft state 
variables and system configuration parameters in the format similar to that of the data extracted from a
Flight Data Recorder (FDR). 

3.2.1 Aircraft Dynamics
The aircraft dynamics module is designed to compute aircraft translational and angular accelerations. 

By integrating these accelerations, the aircraft state at the next time step can be obtained.  The dynamics
of the aircraft are determined using a point-mass model based on non-steady-state equations of motion
and are thus more accurate in simulating wind effects than a ordinary point-mass model based on steady-
state equations of motion, e.g. the early version of the fast-time aircraft simulator.

Lift and drag coefficients were modeled as functions of angle of attack, flap/gear settings, speedbrake
position, and Mach number.  The instantaneous angle of attack was determined by the aircraft attitude and 
the wind condition.  This gives more accurate results for varying wind conditions, because the 
contribution of varying wind on angle of attack is directly reflected in lift.  A generic side force
component (which is normally ignored in steady-state point-mass models) is also included in the aircraft
dynamics model to represent the sideslip acceleration behavior of a typical commercial aircraft subject to 
changing crosswind.  Depending on the actual control mode and flight conditions, engine thrust may be at
idle, at maximum climb, or somewhere in between as determined by the autothrottle.  During the flight,
the aircraft weight continuously decreases with time as fuel is consumed.  However, because the total fuel 
flow is relatively small as compared to the total aircraft mass (especially during the descent), at any given
time, the aircraft weight is assumed static to simplify computation.

As a simplified model of controls and rotational dynamics, the autopilot module provides aircraft roll 
rate and pitch rate in the aircraft body frame as outputs.  With these two rotational rates, and applying
Newton’s law for the turning motion, derivatives of the three Euler angles can be obtained. 

The low speed drag polars for different flap/gear settings were approximated as parabolic curves for
the normal range of lift coefficient.  High-speed drag polars for different Mach numbers are given in a
look up table.  The contribution of speedbrakes was modeled as a drag coefficient increment proportional
to the speedbrake position.  Installed thrust tables were used to model engine performance.  Aircraft
performance engineering data provided by aircraft manufacturers were used to build the model of each 
aircraft.

3.2.2 The Effect of Wind 
Wind has a strong impact on aircraft trajectory.  It is assumed that the aircraft is flying at True 

Airspeed (TAS) Vr and FPA , subject to horizontal wind vector W.  The angle between the TAS vector 
and the horizontal plane is r, which represents the flight path angle relative to the air mass.  The
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geometric relationship between the TAS vector Vr, the vertical speed vector Vh, the ground speed vector
Vg, and the total speed vector V, are shown in Fig. 3-2 as collapsed into the vertical plane. 
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The relationship between speed vectors as projected in the horizontal plane is shown in Fig. 3-3 for the
case where r is the angle between the ground speed vector and the wind vector, and r is the angle
between the projection of TAS on the horizontal plane and the ground speed vector. 

In vector form, the relationship shown in Fig. 3-2 and 3-3 can be expressed as 

WVVVV rgh
(3-1)

The value of the ground speed can be obtained as2

hchrg WWVVV 222 (3-2)

which captures the effect of the headwind component Wh and the crosswind component Wc on ground
speed.  A positive headwind component causes the ground speed to decrease by the magnitude of the 
headwind, and a negative headwind component (or tail wind) causes the ground speed to increase by the
magnitude of the tail wind.  The crosswind component always causes the ground speed to decrease. 
However, the decrease in ground speed due to the crosswind component is much smaller than that due to
the headwind component, if the wind speed is relatively small.  As the crosswind component becomes
relatively stronger, its relative effect on ground speed also becomes stronger.  In the fast-time aircraft 
simulator, the effects of the headwind and crosswind components were both taken into account. 

Because aircraft control and flight procedures are mostly based on Indicated Airspeed (IAS), the
effects of wind on aircraft ground speed will result in a change in time-to-fly, e.g. to runway threshold,
and a change in the evolution of separation between consecutive aircraft pairs performing the same
procedure. Note that Calibrated Airspeed (CAS) is used in this research whenever IAS is required.
Uncertainties in wind forecast, and/or change of wind will result in uncertainties in time-to-fly and 
separation between aircraft.

Wind also affects the FPA.  For a flight path segment with a fixed FPA, such as the initial constant 
CAS segment in a Three Degree Decelerating Approach3,4 (TDDA) or modified TDDA (MTDDA5), the 
decrease in ground speed due to a headwind or crosswind will result in a shallower flight path angle
relative to the air mass.  This effect can be seen from Fig. 3-2. This in turn will require higher thrust to
maintain the same CAS. The increase in ground speed due to a tailwind will do the reverse, in which case
speedbrakes will need to be used. Both thrust change and speedbrake usage have noise implications for 
the same vertical flight profile.  If the engine throttle setting is also fixed, such as in an idle fixed path 
deceleration segment, a headwind or crosswind will cause the aircraft to decelerate faster, and a tailwind
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will cause the aircraft to decelerate slower.  This will affect the aircraft’s ability to follow a predefined
speed profile. 

On the other hand, for a flight segment with given flight path angle relative to the air mass, such as a 
constant CAS idle descent segment, the decrease in ground speed due to a headwind or crosswind will 
result in a steeper FPA.  The increase in ground speed due to a tailwind will result in a shallower FPA. 
For such a flight segment, the effect of wind is more complicated.  Different wind conditions will result in 
different vertical flight paths.  Not only will the altitude profile be different, but for the same CAS profile,
the longitudinal acceleration will also be different due to the change in the relationship between TAS and
CAS resulting from the change in the vertical profile.  A detailed discussion of the effects of wind can be
found in Appendix A. 

3.2.3 The FMS Model 
The FMS module in the aircraft simulator captures the basic RNAV functionalities found onboard 

modern commercial aircraft.  Its function is two-fold.  Before the execution of a procedure, the FMS 
module builds the lateral flight path (LNAV path) based on the location of the given waypoints defining 
the procedure and the vertical flight path (VNAV path) based on the given altitude/speed constraints at
certain waypoints in the similar way an actual FMS does.  During the execution of the procedure, the 
FMS module continuously monitors the states of the aircraft and compares them with the computed
LNAV path and VNAV path.  It selects the proper modes for, and feeds the altitude, speed, and cross-
track error to, the autopilot and autothrottle so that the aircraft can be controlled to follow the computed
flight path.

Procedure definition is provided in two separate files.  The lateral path definition file contains the list 
of waypoints defined by their latitude/longitude (or north/east coordinates relative to a reference point) 
and the lateral tracking modes to be used on each segment.  Two lateral modes are modeled: the LNAV
Track mode that tracks the cross-track error, and the localizer mode that tracks radial deviation from the 
extended runway centerline.  The lateral turn anticipation is computed from the angle of the turn and 
projected aircraft speed at the turn. 

The vertical path definition file contains the altitude/speed constraints at certain waypoints.  Other 
operational parameters such as the cruise altitude/speed, descent speed, stabilization altitude, and the final
approach speed are also contained in the vertical path definition file.  The vertical flight path is computed
through backward integration of the aircraft dynamics from the lowest altitude/speed constraint to the
cruise altitude.  The aircraft weight, wind forecast, and flap extension schedule are taken into account in 
the integration process.  The computed VNAV path may include constant Mach idle descent segments,
constant CAS idle descent segments, idle deceleration segments, and fixed FPA segments.  If proper
altitude/speed constraints are given, an idle VNAV path can be built from cruise to final approach fix. 
However, differences exist in FMS VNAV logic of aircraft from different manufacturers.  The final shape
of the computed VNAV path is also influenced by aircraft dynamics and performance, FMS descent
forecast winds, actual wind at the point where computation is performed (normally at cruise altitude),
aircraft weight, temperature, and the nominal flap schedule.  A schematic VNAV path and its possible 
variations are shown in Fig. 3-4. 

As shown in the figure, for repeatability and reliability, the constraints at lower altitudes are normally
given as “cross at” altitude constraints forcing the FMS to build geometric segments – straight lines in the
vertical plane.  When there is a difference between the speed constraints at successive waypoints, such as
for the segment between the two sets of constraints in the middle, a deceleration is inserted just before the 
lower waypoint.  If the altitude constraint at the higher waypoint of this segment is given as a window
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(i.e. at above and/or at below), some FMS may insert a shallow descending deceleration; while yet others
may insert a level deceleration. The deceleration point may also be computed differently by different
FMS systems.  At higher altitudes, to allow for the best performance/economy, altitude constraints are 
often given as altitude windows (closed or opened).  Vertical path, provided it is within the altitude 
windows, will vary with aircraft types and configurations as shown by the dashed curves in the figure.
Some times, due to external conditions, the FMS computed economy path might hit the altitude constraint 
at the higher end of a segment, resulting in the FMS to re-compute the flight path in a different way. 
These differences are captured by the FMS module for the aircraft types modeled in the simulator.
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Figure 3-4 FMS VNAV path and its possible variations. 

During the execution of the procedure, the FMS compares the aircraft state with the computed flight 
path, selects proper lateral and vertical modes, and feeds the altitude error, speed error and cross-track
error to the autopilot and autothrottle so that they can control the aircraft. All the control modes relevant
to performing approach and arrival procedures are modeled. With these modes, the aircraft can be
directed to hold a given altitude and speed, to hold a given speed and FPA, or to follow a given vertical
flight path defined by altitude, speed, and preferred power setting. 

3.2.4 The Pilot Model
Since the fast-time aircraft simulator was designed to run in batch mode, a pilot model (or pilot agent)

was also included to perform piloting tasks during the execution of approach and arrival procedures.  The 
pilot model assumes the responsibilities of controlling the extension of flaps/slats, landing gear, and
speedbrakes.  This is similar to the pilot’s responsibility in the real world. 

For each procedure to be simulated, a tailored flap schedule is first determined using the information 
available in aircraft operation manuals6 that provides speeds at which the flaps/slats and gear should be
extended.  The speeds are often defined as functions of aircraft weight, and they may be presented as
additives to the reference speed.  For a specific procedure, the flap/gear schedule may require the 
extension to a given flap setting be performed at a certain distance (such as at a certain waypoint) from
the runway threshold to either assure proper deceleration or to minimize noise.  In some procedures,
especially when performed by certain aircraft types, flaps/slats or gear be may be required to be extended 
when the aircraft reaches given altitudes.  As such, the flap/gear schedule used by the pilot model could 
be defined by speeds, distances, or altitudes. 

The use of speedbrakes may be necessary when additional drag is needed to keep the aircraft
following a given speed profile.  This often occurs when the tailwind experienced by the aircraft is 
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stronger than the wind predicted by the FMS when the VNAV path is computed.  Or, it may occur simply
because no wind forecast is entered in the descent forecast page, but a tailwind is experienced by the 
aircraft.  The pilot may be required to keep the aircraft within a speed range, such as 10 kt, from the
target speed.  This speed range can also be defined in the simulator.

The pilot model performs the controlling task according to the flap/gear schedule and the FMS
computed speed profile except that there is a random response delay.  Modeling of the pilot response 
delay is described in the next section. 

3.2.5 Simulator Validation
As a tool developed within the time and resource limits of this thesis research, the fast-time aircraft

simulator described in this chapter has not yet been validated and certified per industry standards.
However, a number of consideration and measures have been taken to make sure the implementation is 
correct and the simulation is as accurate as possible.  These considerations and measures are summarized
below:

The two major assumptions used to simply the design of the fast-time aircraft simulator, the flat
earth assumption, and the assumption that the autopilot and autothrottle are able to maintain
certain tracking accuracy, were based on careful evaluations.  A special coordinate transformation
that preserves the distance between consecutive waypoints and the angle of turn at each waypoint
was developed to achieve an accurate flat earth approximation.  The second assumption is
supported by the facts that the autopilot and the autothrottle have been integral parts of advanced
commercial jet aircraft, and that advanced navigation technology is available to those aircraft. 
Components of the aircraft simulator were carefully formulated and developed to assure
simulation accuracy.  These include the use of non-steady state equations of motion, careful
formulation of aircraft movement in the wind, and accurate modeling of the FMS logic.
Aircraft performance engineering data provided by manufactures were used to model each
aircraft type.
The simulator is mainly used to study the macro level relative behavior between simulated
trajectories. Should a small bias exist in the simulator, it is not likely to significantly affect the 
separation analysis results. 
The aircraft simulator has been rigorously tested by simulating different procedure designs at
several airports; some of them have complicated airspace restrictions.  During this course, various
erroneous and unexpected scenarios have been fed to the simulator, intentionally or
unintentionally, to verify the simulation design robustness.
Simulation results have been shown consistent with flight test data and airline pilot training
simulation runs.  A comparison between flight data and simulated trajectories is given in 
Subsection A.6.2. 

3.3 MODELING EXTERNAL FACTORS CONTRIBUTING TO TRAJECTORY
VARIATIONS

Among all the identified factors contributing to aircraft trajectory variations, pilot response delay,
aircraft weight, and weather conditions – predominantly wind conditions, are viewed as external to the
aircraft model.  They are thus modeled as separate elements to the fast-time aircraft simulator.
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3.3.1 Pilot Response Delay 
Since the pilot assumes the responsibility of controlling the extension of flaps/slats, the landing gear,

and speedbrakes, the major contribution of the pilot action to trajectory variation is the deviation from the 
FMS computed speed profile due to random pilot response.  Pilot response delay is the time between a
action cue, e.g. a specified speed to extend flaps/slats or the gear being reached, and the time when the
flap or gear handle is moved to the next position by the pilot.  For each flap setting, there is also a 
transition time between the time when the flap handle is moved and the time when flaps/slats are
extended to the intended position.  For a given aircraft type, the flap transition time for each flap setting is
a deterministic value, under normal operation conditions.  The landing gear has a similar transition time. 
These transition times were modeled as part of the aircraft dynamics.  On the other hand, pilot response
delay is a random variable. 

The pilot response delay model used in this study was developed by Ho and Clarke through a human-
in-the-loop B747-400 cab simulation study1.  Sixteen active airline pilots were recruited to fly the aircraft
simulator in that study.  The distribution of the pilot response delay times is reproduced in Fig. 3-5.  In the 
experiment when response times were measured, the flap extension cues were given by the non-flying
pilot.  The upper chart shows the frequency distribution, and the lower chart shows the cumulative
distribution function (cdf).  The pilot response time had a mean of 2.8318 seconds, and a standard
deviation of 2.2483 seconds.  The thick curves in Fig. 3-5 show the fitted normal distribution model of the 
pilot response time. 
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Figure 3-5 Pilot response delay. 

Similar to the flap extension under most operational conditions, the extension of speedbrakes is also 
based on the speed information presented to the pilot.  The same pilot response delay model is applied to 
the control of speedbrakes.

It is seen from Fig. 3-5 that while in most cases pilots started to extend flaps with a positive response 
delay, some times the pilot extended flaps early.  Great flexibility exists in real world operations in terms 
of flap and gear extension.  In current terminal operation environment, because of the uncertainties as to
the vectoring, much larger variations exist in pilot response time.  However, it is expected that the 
variation in pilot response time will be reduced and get closer to the aforementioned model as pilots get
more and more familiar with noise abatement procedure operations. 
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3.3.2 Aircraft Weight
The aircraft weight is a very important factor in aircraft performance.  Although aircraft weight 

changes continuously during the flight, because of fuel consumption, the biggest impact of aircraft weight
during the arrival and approach phases comes from the large variations in aircraft landing weight from
flight to flight within the same aircraft type.  Aircraft lift coefficient under any nominal operational 
condition is directly related to aircraft weight.  Thus, variation in aircraft weight will affect the lift/drag 
ratio under any given nominal operational conditions.  In most cases, aircraft flap extension speeds are 
also determined by the aircraft weight.  As a result, the FMS computed VNAV path would be different for 
different landing weights.  The difference would mostly be the in the location of deceleration point, and in 
the flight path angle of a non-geometric segment.  The dynamics of the aircraft will also be different for 
different weight. 

Variations in the landing weight of a given aircraft type are mostly due to uncertainties in local market
demand (payload) and operating conditions (fuel consumption).  Historical data can be used to model
these aircraft weight variations.  Table 3-1 shows UPS Boeing 757-200 and Boeing 767-300 package
cargo aircraft design weight parameters and statistics of the corresponding aircraft landing weight data 
collected between April 20 and May 18, 2004 at KSDF.  Those statistics were obtained from data of 163
B757-200 and 139 B767-300 arrivals.  The probability mass functions based on the aforementioned
landing weight data for the two aircraft types are shown as bar charts in Fig. 3-6 and 3-7 respectively.

Table 3-1 Landing weight parameters of UPS cargo aircraft
a
, 1000 lb. 

Aircraft Type

Parameters B757-200 B767-300

Spec Operating Empty 114.000 188.000
Maximum Design Landing 210.000 326.000

Minimum 146.617 229.271
Maximum 194.534 298.183

Mean 167.539 262.205
Standard Deviation  11.000  18.000

a Statistics based on data of 163 B757-200 and 139 B767-300 arrivals to 
KSDF between 20-Apr-2004 and 18-May-2004.
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Figure 3-6 UPS B757-200 landing weight distribution. 
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Figure 3-7 UPS B767-300 landing weight distribution. 

In each of the figures, the left boundary of the horizontal axis gives the spec operating empty weight
of the corresponding aircraft.  The right boundary of the horizontal axis gives the maximum design 
landing weight of the corresponding aircraft.  By definition, landing weights are always within the range 
defined by those two limits for the specific aircraft type.  As it can be seen, the landing weights resembled
the normal distribution.  Thus, a simple model of aircraft landing weight would be a normally distributed
random variable for each aircraft type.  The random variable should be bounded by the corresponding 
aircraft’s historical minimum landing weight and maximum landing weight to avoid nonrealistic values.
Model parameters such as the mean, standard deviation, minimum, and maximum can be estimated using
sample statistics.  Normal distribution landing weight models based on the sample mean and standard
deviation values listed in Table 3-1 are shown in Fig. 3-6 and 3-7 as solid black curves.  It is seen that the
normal distribution models captured the historical data well.  The dashed curves in Fig. 3-6 and 3-7 are 
beta distribution models, which will be discussed later.

Landing weights of passenger aircraft were also examined.  For the purpose of comparison, Delta Air
Lines Boeing 757-200 and Boeing 767-300 passenger aircraft landing weights collected between August
1 and August 30, 2005 at Hartsfield-Jackson Atlanta International Airport (KATL) were used.  The 
design weight parameters and statistics of landing weights for these two passenger aircraft are listed in 
Table 3-2.  The corresponding probability mass functions are shown in Fig. 3-8 and 3-9 respectively.
Again, in each of the figures, the left boundary of the horizontal axis gives the spec operating empty
weight of the corresponding aircraft type.  The right boundary of the horizontal axis gives the maximum
design landing weight of the corresponding aircraft type. 

Table 3-2 Landing weight parameters of Delta passenger aircraft
a
, 1000 lb.

Aircraft Type

Parameters B757-200 B767-300

Spec Operating Empty 130.860 186.380
Maximum Design Landing 198.000 300.000

Minimum 140.620 202.500
Maximum 197.872 294.977

Mean 180.258 266.422
Standard Deviation  10.041  16.318

a Statistics based on data of 2759 B757-200 and 1184 B767-300 arrivals to 
KATL between 1-Jul-2005 and 31-Jul-2005.
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It is seen that for the same aircraft type, the difference between the spec operating empty weight and 
the maximum design landing weight is smaller for the passenger version than the cargo version.  The
historical landing weight data also indicate that the passenger versions had slightly higher mean but 
lightly lower standard deviation than the cargo versions.  However, the most striking difference between
the passenger versions and the cargo versions is in the probability mass functions as shown by the figures.
The probability mass functions of the passenger aircraft are heavily skewed to the right-hand side. 
Similar to the treatment of the cargo aircraft, a normal distribution model was built from the sample mean
and sample standard deviation for each of the two passenger aircraft types.  These normal distribution
models are shown as solid black curves in Fig. 3-8 and 3-9.  It is seen that the normal distribution models
did not capture the data well for the passenger aircraft.  To be bounded by the corresponding aircraft’s
historical minimum landing weight and maximum landing weight to avoid nonrealistic values, a big
chuck of the right hand tail of the normal distribution has to be cut off.  This will further decrease the 
modeling accuracy.
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Figure 3-8 Delta B757-200 landing weight distribution. 
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Figure 3-9 Delta B767-300 landing weight distribution. 

A commonly used distribution to model variables that are lower and upper bounded is the beta 
distribution7.  The probability density function (pdf) of beta distribution is defined on the interval [0, 1]
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For an aircraft with spec operating empty weight mOEW and maximum design landing weight mMLW,
the normalized aircraft landing weight x for a given landing weight m can be defined as 

OEWMLW
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mm
x (3-9)

The estimated mean E^ (X) and the estimated standard deviation ST
^
D(X) of the normalized aircraft 

landing weight can then be computed from the estimated mean E
^
(M) and the estimated standard

deviation ST
^
D(M) of the aircraft landing weight as 
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With the normalized estimates from Eq. (3-10) and Eq. (3-11), using Eq. (3-7) and Eq. (3-8), estimates
of parameters  and  of the beta distribution model can be obtained.  The parameters of the beta
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distribution models for each of the four aircraft types examined thus far are listed in Table 3-3.  The
modeled beta distributions are shown as dashed curves in Fig. 3-6, Fig. 3-7, Fig. 3-8, and 3-9
respectively.

Table 3-3 Parameters of beta distribution landing weight models.

Aircraft Type ^ ^

UPS B757-200 11.5102 9.1285

Delta B757-200 5.6602 2.0330

UPS B767-300 13.3679 11.4924

Delta B767-300 6.4060 2.6874

It is seen that the beta distribution models were very close to the normal distribution models for the
two UPS cargo aircraft types.  The beta distribution models were much better than the normal
distributions for the two Delta passenger aircraft types.  Moreover, a beta distribution is bounded by the
lower and upper boundaries (spec operating empty weight and maximum landing weight in this case) – 
one does not have to worry about nonrealistic values generated during the simulation.  Thus, the beta
distribution models are a better choice in modeling aircraft landing weight distributions.  However, the 
simulation of a beta distribution model is more difficult than a normal distribution model.  For aircraft 
landing weight distribution similar to that of the UPS B757-200 and B767-300 aircraft, normal
distribution models would be comparably good but very easy to implement in the simulation.

3.3.3 Wind Variations
Wind conditions can be modeled using both long-term statistical expectations (such as mean wind and 

2-  wind) to reflect the magnitude of the wind that an aircraft would expect to experience during its
descent to the runway, and short-term variations to reflect wind changes between consecutive flights 
arriving on the same lateral path.  The long-term statistical models represent nominal wind conditions 
under which the analysis is done.  The short-term variations between consecutive flights represent
uncertainties in the wind. 

Archived Aircraft Communications Addressing and Reporting System (ACARS) automated weather 
reports from commercial aircraft were used to develop the wind models.  A mode decomposition and 
autoregressive technique was developed to model wind variations between flights.  In this technique,
wind variations were calculated between consecutive descending ACARS profiles that were separated by
less than 15 min upon arrival at the destination airport.  Wind variations were modeled using the east 
wind and north wind components.  The two components – east wind and north wind variation components
– were viewed as two independent stochastic processes.  To cope with the non-stationary behavior of
wind variation along altitude, an unique mode decomposition approach was used to separate each of the 
east and north wind variation components into a zero-mean higher frequency signal, a zero-mean lower
frequency signal and a static (DC) signal.  Each decomposed signal was then treated as a stationary 
stochastic process. 

For simplicity, and to make maximum use of the large ACARS data set, the wind variation signals
were approximated as autoregressive (AR) signals. AR models for the higher frequency components and
lower frequency components were obtained from the averages of covariances of the respective
decomposed signals.  Second order AR models were used in simulating the wind variations. To avoid the
high frequency artifacts of the AR model for the lower frequency signals, the outputs of the lower 
frequency AR models were fed through a low pass filter to obtain smooth simulated signals similar to the 
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original decomposed lower frequency signals.  Outputs from the higher frequency AR models were used
directly.  The DC signals were simply simulated as random variables.  Simulated components were then
combined to give simulated wind variations.

The final step was to incorporate simulated wind variations with a nominal wind profile to obtain the 
actual wind profile for each simulation run.  A complete description of the modeling technique for wind 
variation between flights is given in Chapter 4. 

3.3.4 Other Factors Contributing to Aircraft Trajectory Variations 
Aside from the factors introduced in the previous subsections, temperature, performance difference

between each individual aircraft in the same type fleet, uncertainties in the position of aircraft Center of
Gravity (CG), procedure design, the use of FMS descent forecast, and the timing of computing FMS
VNAV path also contribute to aircraft trajectory variations.

Temperature significantly affects engine thrust, especially thrust at higher throttle settings.  Generally,
higher temperature means lower thrust for the same throttle setting.  Compared with other weather 
conditions such as winds, short-term variations in temperature is relatively small.  The effects of
temperature on aircraft trajectories are more evident when a long time span (such as over a month, a
season, or even a year) is considered.  For the analysis of separation between consecutive aircraft pairs,
temperature is a less important factor. Thus, in this research, the international standard atmosphere is
used.

In addition to significant performance differences between different aircraft types (including different
engine variants), performance differences exist between individual aircraft in the same type fleet.  The 
differences between individual aircraft in the same type fleet include differences in both aerodynamics
and engine performances.  These differences are due to differences in wearing, weathering, and adjusting. 
These performance differences affect the execution of a procedure.  Normally, if the FMS computed
profile is used, the computed profile will not be affected by these performance variations of each 
individual aircraft because the FMS uses a pre-loaded aircraft performance model.  However, a specific
aircraft type may have a production life of two to three decades.  Significant improvements may have 
been made to the aircraft type over the years. Newly manufactured aircraft may have improved engines 
and improved avionics systems (including FMS).  If the differences are large, the older and the newer
aircraft of the same type may be modeled as different aircraft types.  In the current implementation of the 
aircraft simulator, average aerodynamic and engine performance data are used for each modeled aircraft
type.  Performance differences between individual aircraft of the same type fleet may be modeled in the
future as an enhancement.

The position of the aircraft CG affects aircraft trimming; hence, it also affects aircraft drag polars.  For 
simplicity, in the current fast time aircraft simulator, only one predetermined fixed CG position is 
implemented.  This is reasonable because during normal operations, aircraft CG are carefully adjusted to 
be as close to the ideal position as possible through arranging payloads.  The aircraft simulator can also be
improved through using multiple sets of drag polars to allow variations in aircraft CG position. 

Some procedure designs will have larger aircraft trajectory variations than others.  For example,
procedures allowing optimal vertical profile for each aircraft will minimize noise impact and save more
fuel, but they are likely to have larger aircraft trajectory variations than procedures that have fixed altitude 
and speed constraints all the way down to the final approach. The latter probably will have slightly
higher noise impact and save less fuel. Because aircraft trajectories can be simulated for each procedure 
design separately, the effects of procedure design on trajectory variations are well accommodated by the
simulation tool. 
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As discussed in Subsection 3.2.3, FMS descent forecast winds influence the FMS computed VNAV
paths.  In addition to this effect, large errors in descent forecast, or not entering any descent forecast
results in large discrepancies between the FMS computed VNAV flight path and actual operating 
conditions.  These large discrepancies would increase the flight path tracking error and demand more pilot 
efforts for managing the speed profile.  The results are larger trajectory variations.  Thus to reduce 
trajectory variations, the FMS descent forecast needs to be entered and it should be as accurate as
possible.  Since FMS descent forecast functionality is implemented in the FMS model, the effect of
descent forecast can be simulated.

Similar to the effects of FMS descent forecast winds, the earlier the FMS VNAV path is computed, the
larger the discrepancies between the FMS computed VNAV flight path and actual operating conditions 
would be.  Hence, the timing of FMS VNAV path computation will also affect trajectory variations.  One
way to cope with this is to force the FMS to re-compute the VNAV path right before the intermediate
metering point rather than totally rely on the VNAV path computed before top of descent, which is 
normally more than one hundred nautical miles away from the runway.  To force the FMS to re-compute
the VNAV path, the pilot can re-enter the altitude/speed constraints at any of the down stream waypoints.

3.4 THE INTEGRATED MONTE CARLO SIMULATION TOOL 
The random pilot response model, the random aircraft weight model, and the stochastic wind variation 

model are incorporated with the fast-time aircraft simulator to form a Monte Carlo simulation tool. 
Arrival procedures can be executed hundreds of times with different aircraft types and configurations
under different wind conditions.  Separation and throughput analysis can then be applied on simulated
trajectories8.  The Monte Carlo engine and the separation analysis methodology to be presented are
collectively referred to as the Tool for the Analysis of Separation And Throughput (TASAT) as illustrated
in Fig. 3-10.
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Figure 3-10 Tool for the Analysis of Separation And Throughput (TASAT). 
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During each simulation run, for a given aircraft type, a unique aircraft landing weight will be
generated by the random landing weight model. The wind profile will also be different for each
simulation run.  Pilot response time will be randomly generated for each control action.  Procedure
definition, FMS descent forecast winds (zero if not provided), and aircraft flap/gear schedule (as given to 
the pilots for real world operations) are provided to the simulator as deterministic inputs.  It is assumed
that there are no direct interactions between consecutive flights performing the same procedure.  Thus,
when multiple aircraft types are involved in performing a procedure, each aircraft can be simulated
separately.

The application of the wind model needs special attention.  To make best use of the inter-flight wind
variation model, flights are identified as leading flights and trailing flights.  For a given nominal wind
condition, this can be done as following.  For each aircraft type, an ensemble of flights can be simulated
with the fixed nominal wind condition while retaining variations in other factors such as the pilot
response and the aircraft weight.  Another ensemble of flights can be simulated with nominal wind
condition plus a stochastic inter-flight wind variation profile in addition to other random factors.  A 
simulated trajectory from the leading ensemble and a simulated trajectory from the trailing ensemble can
be selected to form a random flight pair.  By enumerating flights from each ensemble, a large number of
flight pairs can be constructed. Separation analysis (discussed in a separate chapter later) can then be
applied on those flight pairs accordingly. 

3.5 SUMMARY 

A Monte Carlo simulation tool built around a fast-time aircraft simulator was developed to simulate
variations in flight trajectories for noise abatement approach and arrival procedures.  The fast-time
aircraft simulator was developed with a careful trade-off between simplicity, fast execution, accuracy, and 
the capability to simulate 3D aircraft trajectories.  Focus is given to macro level aircraft trajectories rather 
than micro dynamic behavior.  Because wind is the most important single factor affecting aircraft
trajectory variations, non-steady state equations of motion were used in the aircraft dynamics model.  This 
would allow aircraft behavior under various wind conditions to be accurately simulated. Major aircraft
navigation and control systems such as the FMS and the autopilot models were included in the simulator.
A pilot model was also included in the simulator to control the extension of flaps, landing gear, and
speedbrakes during simulation runs.  A previously developed probability distribution pilot response delay
model, a newly developed probability distribution aircraft landing weight model, and a newly developed 
stochastic process wind variation model were incorporated with the fast-time aircraft simulator to form
the Monte Carlo simulation tool.  The tool enables approach and arrival procedures to be simulated
hundreds of times for each aircraft type under various external conditions with a short amount of time and
at very low cost.  The large pool of aircraft trajectories obtained through these simulation runs can then be
used to analyze variations in aircraft trajectories for the specific procedure design and operating
environment.

Future enhancements of the Monte Carlo simulation tool could include incorporating performance
variations due to differences in wearing, weathering, and adjusting between individual aircraft units
within the same aircraft type.  A probability distribution model of aircraft CG position could also be
developed.  The model of aircraft drag polars in the fast-time aircraft simulator could be revised to enable 
the effect of aircraft CG position being accurately simulated.  Limitations to these future enhancements
mostly rely on data available to support the modeling efforts. 
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CHAPTER 4 

MODELING AND SIMULATING WIND VARIATIONS 
BETWEEN FLIGHTS 

NOMENCLATURE

ai = the coefficients of an AR model
a^i = estimated coefficients of an AR model
a^Ei = estimated coefficients of the AR model of east wind variation 
a^H

Ei = estimated coefficients of the AR model of higher frequency signal of east wind variation 
a^H

Ni = estimated coefficients of the AR model of higher frequency signal of north wind variation
a^L

Ei = estimated coefficients of the AR model of lower frequency signal of east wind variation 
a^L

Ni = estimated coefficients of the AR model of lower frequency signal of north wind variation
a^Ni = estimated coefficients of the AR model of north wind variation
bi = the coefficients of an FIR filter 
E( ) = expectation, mean operator
H(z) = filter
hn = ACARS wind profile re-sampling altitude 
n = discrete sequence index 
K^ ( ) = estimated power spectra density function 
N = number of measurements in a finite sequence 
m = discrete sequence index 
p = the order of an AR model
q = the order of an FIR filter
wDC

j,E = DC signal of east wind variation observed by flight j
wDC

j,N = DC signal of north wind variation observed by flight j

wf
j,E(hn) = filtered east wind variation observed by flight j at altitude hn

wf
j,N(hn) = filtered north wind variation observed by flight j at altitude hn

wH
E[n] = simulated higher frequency signal of east wind variation

wH
j,E(hn) = higher frequency signal of east wind variation observed by flight j at altitude hn

wH
j,N(hn) = higher frequency signal of north wind variation observed by flight j at altitude hn

wH
N[n] = simulated higher frequency signal of north wind variation
Wj(hn) = re-sampled wind profile from flight j at altitude hn

Wj,D(hn) = wind direction of re-sampled wind profile from flight j at altitude hn

Wj,E(hn) = east wind component of re-sampled wind profile from flight j at altitude hn

Wj,N(hn) = north wind component of re-sampled wind profile from flight j at altitude hn

Wj,V(hn) = wind speed of re-sampled wind profile from flight j at altitude hn
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wL
E[n] = simulated lower frequency signal of east wind variation

wL
j,E(hn) = lower frequency signal of east wind variation observed by flight j at altitude hn

wL
j,N(hn) = lower frequency signal of north wind variation observed by flight j at altitude hn

wL
N[n] = simulated lower frequency signal of north wind variation

x[n] = generic sequence
WE[n] = simulated east wind variation component
Wj,D(hn)= wind variation in direction observed by flight j at altitude hn

Wj,E(hn)= east wind variation component observed by flight j at altitude hn

Wj,N(hn)= north wind variation component observed by flight j at altitude hn

Wj,V(hn)= wind variation in speed observed by flight j at altitude hn

WN[n] = simulated north wind variation component
 = innovation variance

^  = estimated innovation variance

x[m] = covariance sequence of generic sequence x
^
x[m] = covariance sequence of generic sequence x
[n] = white sequence

E[n] = white noise sequence for simulating the east wind variation
H
E[n] = white noise sequence for simulating the higher frequency signal of east wind variation
H
N[n] = white noise sequence for simulating the higher frequency signal of north wind variation
L
E[n] = white noise sequence for simulating the lower frequency signal of east wind variation
L
N[n] = white noise sequence for simulating the lower frequency signal of north wind variation

N[n] = white noise sequence for simulating the north wind variation

4.1 INTRODUCTION 

Wind is arguably the most significant single factor that influences aircraft trajectory.  Separation
analysis requires an accurate model of wind variations in speed and direction between consecutive flights
conducting the same approach or arrival procedure. Such a model requires large amount of data.  One
source of this data is the Aircraft Communications Addressing and Reporting System (ACARS)
automated weather reports.  ACARS is an air-ground communication system managed by Aeronautical
Radio Inc. (ARINC). Airlines use this system to transmit digital messages between the aircraft and
ground.  Weather reports are automatically transmitted by the aircraft to ground at certain intervals1.
Using ACARS metrological reports, it is possible to create a large set of inter-flight wind variation 
profiles from which the model is derived.  The wind variation model may then be used in the Monte Carlo 
simulation tool described in the previous chapter to simulate aircraft trajectory variations with high 
accuracy.

A modeling approach was developed to model wind variations between consecutive flights.  In this 
modeling approach, wind variation profiles are viewed as stochastic processes along the altitude.  Because
these processes deems non-stationary, a unique mode decomposition approach is used to separate each
wind variation component profile – the east wind or the north wind profile – into a zero mean higher
frequency signal, a zero mean lower frequency signal, and a static (DC) signal.  Each separated signal is
then viewed as a stationary process.  The decomposed wind variation signals are then approximated as
autoregressive (AR) signals.  The final AR model for each decomposed signal is built based on the 
average of estimated covariances of data samples of the corresponding component signal. 
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As mentioned in the previous chapter, the winds experienced by a pair of consecutive flights are
assumed the sum of a nominal wind profile that is common to both the leading and trailing flights, and a
wind variation profile that is only applied to the trailing flight.  This is a simplified scenario in that the
nominal wind profile and the wind variation profile can be modeled separately.  The selection of the 
nominal wind profile is site dependent.  The nominal wind profile could be either selected to signify the 
most common wind conditions or any wind conditions with a special concern at the airport. 

The rest of this chapter is organized as follows. Details of the ACARS wind data, as compared with
other data sources available in the US, are explained in Section 4.2.  The modeling approach is introduced 
in the section to lay the ground for more detailed discussions that follow. The process for the mode-
decomposition of raw ACARS wind variation profiles, and the process for modeling the decomposed
signals as autoregressive signals are discussed in Sections 4.3 and 4.4 respectively.  Finally, the process
whereby the wind variation model is used in simulating trajectories of aircraft performing noise
abatement approach and arrival procedures is explained in Section 4.5.  Examples are also presented to 
demonstrate the accuracy and the effectiveness of the modeling technique.  The summary of this chapter
is provided in the last section.

4.2 DATA SOURCE AND MODELING APPROACH 

Details of the data used in the numerical examples are presented below, along with a discussion of the 
modeling approach that is used in the context of aircraft trajectory simulation for separation analysis.
This is to lay the ground for more detailed discussions of modeling and simulating wind variations in the
subsequent sections. 

4.2.1 Data Source
In recent years, National Oceanic and Atmospheric Administration’s (NOAA’s) Global Systems

Division (GSD; previously Forecast Systems Laboratory, or FSL) of the Earth System Research
Laboratory (ESRL) has made available ACARS metrological reports for research use2.  These reports
include wind data measured by airborne sensors sampled at intervals on the order of tens of seconds to 
minutes.  Wind data are reported in the form of wind speed and direction, along with the time, altitude, 
and latitude and longitude at which the measurement was observed by the sensors on board the aircraft. 
A sample ACARS flight track is shown in Fig. 4-1.  This aircraft landed at Louisville International
Airport (KSDF) at approximately 1:09AM on 25 September 2004.  This flight is referred to as the 
“sample flight” throughout this chapter.  Note that the airport elevation at KSDF is 501 ft.  The wind data 
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Figure 4-1 ACARS flight track of the sample flight. 
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from the sample flight, as a function of altitude, are shown in Fig. 4-2.  NOAA GSD has made available 
current near real time ACARS wind data covering the entire US airspace and many other airports around 
the world.  These ACARS data are provided to NOAA GSD by participating airlines including major
airlines in the US and some international airlines.  Historical data back to 1 July 2001 are also available to
the research community.  Since the ACARS wind data were measured by airborne sensors, they represent 
what was experienced by aircraft in the past.  Thus, they provide a good basis for modeling winds, at sites 
where sufficient data are available.
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Figure 4-2 ACARS wind profile from the sample flight. 

As with any source of meteorological data, these data are not perfect.  The resolution of the data points 
is not very high.  As shown in Fig. 4-2, at high altitudes, the vertical interval between data points could be 
as high as ten thousand feet.  There are also sensor noise and measurement errors.  Nevertheless, compare
with other data sources, such as the Doppler radar (which relies on reflections from particles floating in 
the air to detect wind speed) and the Wind Profiler3 (limited availability) etc, ACARS data are still
considered to be one of the best data sources. NOAA GSD provides each data point with an error tag and 
other properties, thus for modeling purpose, erroneous data points identified by GSD can be eliminated
from data samples.

ACARS data are provided in Network Common Data Form (netCDF) format, which is a compact
binary data format used to present scientific data4.  Data points are identified by GSD encrypted tail
numbers.  Thus, data points with the same encrypted tail number could be extracted to form a flight track.
A set of software tools has been developed to decode, filter, and extract data from the NOAA ACARS
data set. Individual flight tracks can then be used for further processing.  Figure 4-1 was generated from
such a flight track. 

Data filtering criteria can be tailored to serve different applications at different airports.  Of course, 
because airlines participate in the NOAA ACARS data program at voluntary bases, the availability of data
varies airport by airport.  Especially, international airports have much less coverage due to weaker 
international participation. 
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4.2.2 Modeling Approach
For a wind model to be effective in modeling aircraft trajectory uncertainties, two important elements

must be modeled.  The first element is the nominal wind field; the second element is the variation in the 
wind field between flights. 

A complete model of the wind field could be represented by 3-D grid points spanning the airspace.
Aircraft destined to the same airport via the same arrival would normally follow a similar vertical profile.
Thus, for aircraft trajectory planning and separation analysis, the 3-D wind field is often simplified as a 
sequence of points along altitude.  This is normally referred to as a wind profile.  Traditionally, wind 
profiles are given in wind direction and wind speed as functions of altitude such as the one shown in Fig. 
4-2.  Mean wind and 2  (mean plus two standard deviations) wind have been used to represent wind
strength and direction at a given point.

The wind profiles in Fig. 4-3 are based on NOAA ACARS flight tracks from aircraft destined to
KSDF from the west.  Three wind profiles are shown: mean wind, 2  wind, and maximum observed
wind.  To obtain the wind profiles, ACARS wind data from each flight track were interpolated at every
thousand feet.  Statistics were then obtained at each of the altitudes.  Mean wind speed and 2  wind were
calculated directly from wind speed regardless of the wind direction at each data point.  Mean wind
direction was calculated using the unit vector method where the wind direction at each data point was 
represented by an unit vector.  Mean direction was determined by the direction of the mean unit vector of 
all data points.  Another method to calculate mean wind direction is to use wind direction at each data 
point weighted by the wind speed at that data point.  The later method would have a better representation
of the direction at higher winds.
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Figure 4-3 KSDF wind profiles based on ACARS flight tracks from the west.

If an airport experiences strong wind from different directions during different periods of the day, or in 
different seasons of the year, special wind profiles representing these conditions should be obtained in 
addition to the mean wind and 2  wind profiles. For example, an airport may frequently experience 
northwest only winds during the winter, but southeast only winds during the summer.  In this case, it 
makes sense to model the seasonal winds separately.
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Wind variations between flights are of great concern because these variations would affect the
interactions between trajectories of consecutive flights.  In this research, wind variations are defined as
changes in wind direction or speed (or east wind and north wind components) at same altitudes during the
time between the passages of consecutive flights through the same altitude.  As such, the winds
experienced by a pair of consecutive flights are assumed to share a common wind profile, and a wind
variation profile that is only experienced by the trailing flight.  The common (or nominal) wind profile is 
modeled as one of the wind profiles mentioned in the previous paragraphs.  The inter-flight wind
variation profile is modeled separately.  While the nominal wind profile is deterministic for any given
conditions, the wind variation profile would be a stochastic process possessing the same stochastic
characteristics as historic data. 

A two-step process was employed to model the wind variation.  The first step was to decompose each
of wind variation profile component into a zero mean higher frequency signal, a zero mean lower
frequency signal, and a DC signal.  The next step was to model the decomposed wind components as AR 
signals.  The final AR model for each component was built on the average of estimated covariances of 
data samples of the corresponding component. Details of this modeling approach are described in the
next two sections. 

Once both the nominal wind profile model and wind variation model are developed, they can be
combined to simulate realistic wind fields.  To simulate a consecutive pair of aircraft, the wind profile for 
the leading aircraft can be a pre-selected nominal wind profile; the wind profile for the trailing aircraft
can be the nominal wind profile plus simulated wind variation profile.

4.2.3 Data for the Numeric Examples 
To use the wind variation model in a Continuous Descent Arrival (CDA) flight test project at KSDF5,

the modeling effort used wind data reported by arrival aircraft flying into KSDF from the west.  ACARS
reports within a time widow of 5 hours starting 10:00 PM to 3:00 AM local standard time were used. 
Ideally, as much data as available (at least one year worth) should be used for a reliable wind model.  Due
to database access issues, only six-month worth of data were used to develop the model.  The data
covered 10 February 2004 through 12 August 2004.  For the selected time window at KSDF, on each
weekday, 10 to 17 flight tracks were extracted.  Most of them were UPS flights clustered in groups.  Data 
from these flight tracks match the need of the CDA project at KSDF perfectly.  These data are used as the
numeric examples throughout this chapter. 

4.3 MODE DECOMPOSITION OF THE WIND VARIATION SIGNAL

The first step of the mode decomposition and AR approach is presented in this section.  The method
for extracting the wind variation profiles from ACARS flight tracks is described first.  Criteria used to
pair flight tracks and select usable data range are discussed.  It follows the description of the mode
decomposition method that separates wind variation profile components into categorized frequency
signals.

4.3.1 Extracting Wind Variation Profiles 
As shown in Fig. 4-2, the raw ACARS reports are not evenly distributed along altitude.  Altitudes of 

data points vary from flight to flight.  To simplify the processing, wind data from each flight track are re-
sampled at 250 ft altitude intervals using linear interpolation.  This altitude interval was selected to match
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the sampling rate of the most detailed wind profiles from the raw ACARS data.  Because the new wind
samples have regular intervals along altitude, wind variations can be easily obtained by a direct
comparison of data points from consecutive flight pairs at the same altitude.  The re-sampled wind profile
is denoted as Wj(hn), where subscript j identifies each individual flight, and hn denotes the re-sampling
altitudes.

Flights are first sorted by arrival time at the destination airport.  Wind variation is then calculated
between consecutive flight pairs that are separated by less than 15 minutes. Wind variation, in terms of
wind speed and direction, as experienced by each trailing flight j at each altitude could be obtained as: 
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In Eq. (4-1), subscripts V and D denote wind speed and direction respectively. Subscript j-1 identifies 
the leading flight in front of flight j.  Wind direction change, computed by the second equation, has values 
within the range of (-180, 180] deg. Wind variation, in terms of east wind and north wind components,
could be obtained as 
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In Eq. (4-2), subscripts E and N denote east and north wind components respectively.  The wind 
variation profile for the sample flight is shown in Fig. 4-4 in terms of wind direction and wind speed in a)
on the left, and in east and north wind components in b) on the right. 
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Figure 4-4 Wind variations observed by the sample flight, ACARS data. 

A maximum time interval of 15 minutes was used to maximize data usage.  This is because within the 
terminal area, flights that are separated by more than 15 minutes in arrival time would not likely be a 
factor to each other.  To verify the suitability of using 15 minutes as the maximum time interval between 
consecutive flights, statistics were obtained for east and north components of wind variation at each
altitude.  The mean and the standard deviation of these components of the wind variation are shown in 
Fig. 4-5 versus time interval at 11,000 ft.  The statistics were based on 1048 consecutive flight pairs that
were separated by less than 15 minutes in arrival time. Mean and standard deviation for data point in Fig.
4-5 was computed from wind variations of 10% of all the consecutive flight pairs centered at that point. 
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Thus, Fig. 4-5 can be viewed as a moving statistics chart.  It can be seen that the standard deviation of 
wind variation components stayed roughly the same as the time interval increases.  This observation is 
consistent through all altitudes. 
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Figure 4-5 Wind variation versus time interval, 11,000 ft. 

The mean and the standard deviation of the east and north components of the wind variation are shown
in Fig. 4-6 versus wind speed at 11,000 ft.  The mean and the standard deviation for each wind speed was 
computed in the same way as that in Fig. 4-5. The standard deviation of wind variation components
stayed roughly the same as wind speed increases; except when wind speed is above 35 kt (roughly above
mean wind plus ), when a slight increasing trend in standard deviation is observed.  This tendency is 
slight more obvious at altitudes below 10,000 ft, and is hardly identifiable above 12,000 ft. 
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Figure 4-6 Wind variation versus wind speed, 11,000 ft. 

Because separation is only a concern for aircraft on the same procedure that are between 1 to 3
minutes apart, wind variation can be modeled as being independent of the time interval between flights. 
As an approximation, wind variation could also be modeled as being independent of wind speed.

Wind variation could be modeled either by variation in wind direction and speed, or by variation in
east and north components.  As shown in Fig. 4-4a, there are distinctive differences between the variation 
in wind direction and the variation in wind speed. Actually, very large wind direction variation often 
occurs when wind speed is relatively small.  On the other hand, east and north wind components could be
viewed as two equally positioned contribution factors to the total wind variation. 

Sample correlation coefficient between east and north wind components was obtained at each altitude. 
As shown in Fig. 4-7, the correlation between east and north was very weak.  An examination of the
actual distribution of the east and north components at each altitude indicated that the east and north 
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components could be assumed to be two independent processes.  Thus, wind variation was modeled in
east and north components.
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Figure 4-7 Sample crosscorrelation coefficient between east

and north wind variations versus altitude.

As shown in Fig. 4-4b that, given altitude as the independent variable, the east and north wind 
variation components were not stationary, although their variation in magnitude and frequency was much
less than that of the wind direction change.  This is a natural observation since differences in air
movement exist in different atmosphere layers. As mentioned earlier, raw ACARS data have a much
lower sampling rate at high altitude.  The frequency differences at different altitudes as reflected by
ACARS data may well contain artifacts due to the difference in sampling rate. Thus, it is worth a closer 
look before further analysis.  The wind profile extracted from Flight Data Record (FDR) data of the
sample flight is shown in Fig. 4-8.  By comparing Fig. 4-8 and Fig. 4-2, it is seen that the ACARS data
captured the overall wind profile relatively well. 
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Figure 4-8 FDR wind profile from the sample flight. 

Using FDR data from the sample flight and that of the aircraft immediately in front of it, a wind 
variation profile was derived.  The wind variation profile is shown in Fig. 4-9.  Comparing Fig. 4-9 with
Fig. 4-4b, it is seen that due to the overall lower sampling rate, use of ACARS data resulted in a smoother
wind variation profile.  Additionally, high frequency contents were cut off in the ACARS data.  This 
should not pose a problem as high frequency contents reflect turbulence and measurement noise.  The 
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turbulence would mostly affect the micro-level aircraft dynamics. With proper guidance and control, the 
macro-level aircraft trajectory will not likely be significantly affected by those high frequency wind 
contents.  Below 20,000 ft, wind variations reflected by FDR data was also captured by the ACARS data
relatively well.  Interestingly, at about 3,000 ft, there was a relatively large wind shift in the FDR data; 
this was also captured by the ACARS data.  This relatively large wind shift at lower altitude is a common
phenomenon at KSDF, and it is more visible in same data samples than in others.  This phenomenon has 
been identified by both pilots and air traffic controllers in real world operations.  However, as expected, 
due to the very low sampling rate at high altitude, ACARS data did not capture the wind variation well at 
high altitude.  This is especially true above 20,000 ft, at least for the data sample shown in Fig. 4-4b.  It is 
obvious that FDR data would be a good source for modeling the wind and wind variations.  However, due 
to organizational constraints, FDR data could not be easily obtained in large volume and for a great 
number of days.
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Figure 4-9 Wind variation observed by the sample flight, 

FDR data. 

4.3.2 Mode Decomposition
To model wind variations using ACARS data, two issues must be resolved.  As mentioned earlier,

wind variations along altitude are non-stationary random processes.  The second issue is the low sampling
rate at high altitude.  Thus, even using nonlinear methods, a very accurate model would not be obtained if 
the methods were applied to ACARS data directly. One way to cope with these two issues could be to 
use both FDR data and ACARS data in the modeling effort.  Non-stationary analysis method, such as the
Hilbert-Huang Transform6, could be applied to the FDR to obtain the energy-frequency-altitude
distribution of wind variations.  Classic statistics method could be applied to the large ACARS data set to
obtain statistic characteristics of the wind variation along altitude.  Analysis results using the FDR data
set and the ACARS data set could be combined to build a wind variation model in the form of digital 
shaping filter, which could then be implemented to simulate wind variation profiles from a white noise 
sequence.  The parameters of the shaping filter could be functions of altitude.  One of the problems with
this approach is that, although the ACARS data set may be large enough to fully represent the actual wind 
variations, the FDR data is still limited and it may not be large enough to fully represent the energy-
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frequency-altitude distribution of wind variations over a wide variety of wind conditions. On the other
hand, the frequency distribution information contained in the large ACARS data set is not utilized.

For simplicity and to make maximum use of the large ACARS data set, the wind variation profile was 
approximated as AR signals7.  An AR model has been previously used in the Dryden wind turbulence
model8 in which the longitudinal wind turbulence component was approximated as a first order AR 
signal.  To avoid the problem raised by the low sampling rate of ACARS data at high altitude, only wind 
data between 3,000 ft and 20,000 ft were used.  To cope with the problem of the wind variation being a 
non-stationary process, a mode decomposition approach was used to separate each of the two components
– the east and north wind variation components – of the wind variation profiles into a zero mean higher
frequency signal, a zero mean lower frequency signal, and a DC signal.  By doing this, each separated
signal within the aforementioned altitude range was treated as a stationary process.  It is worth to point
out that the upper bound of usable data was selected based on ACARS data sampling rate, so it could be 
viewed as site independent.  The lower bound of the usable data however was selected based on 
observations.  It thus should be viewed as site dependent. 
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Figure 4-10 Sample mean and standard deviation of wind

variations versus altitude. 

AR models could be built based on the characteristics of the higher frequency signal and lower
frequency signal.  Then the AR models could be tuned to fit the wind variation characteristics below 
3,000 ft and above 20,000 ft to cover the whole range of altitude if such fidelity is required.  The mean
and standard deviation of the east and north wind components at each altitude are shown in Fig. 4-10. 
The corresponding data points were obtained from the entire ensemble of wind variation profiles.  The 
mean values shown in Fig. 4-10 are ensemble means.  The standard deviation values are derived using the
autocorrelation functions at zero altitude difference. It is seen that the sample ensemble mean values 
were essentially zero.  Within the range of 3,000 ft to 20,000 ft, the standard deviation values remained
roughly the same.  Above 20,000 ft, the standard deviation values tended to increase with altitude. 
Assuming the only information lost due to the lower sampling rate at high altitude is frequency
information, the tendency of standard deviation to increase with altitude could be viewed as reflecting the
true characteristics of wind variation at high altitude.  It is also seen that below 3,000 ft, the standard
deviation tended to decrease with altitude.  Data shown in Fig. 4-10 could be used to tune the wind
variation intensity of the AR models.

85



However, for the purpose of aircraft trajectory simulation within the terminal area, accuracy below
20,000 ft is more important.  Based on an inspection of the data set, it was assumed that by simply
extending the model below 3,000 ft, the wind variation would be slightly over estimated.  Because aircraft 
would normally be established on the Instrument Landing System (ILS) localizer and the ILS glide slope, 
it’s believed that extending such developed wind variation model down below 3,000 ft without further
adjustment would still produce reasonable results. 

The mode decomposition was done as following.  The east and north components of wind variation
profiles were first passed through a Finite Impulse Response (FIR) low pass filter to obtain two 
corresponding smooth curves.  The smooth curves were then subtracted from their corresponding raw 
wind variation components to obtain the higher frequency signals of the wind variation.  The DC signals 
were simply the mean of the smooth curves given by the FIR filter.  The lower frequency signals were 
obtained by subtracting the DC signals from their corresponding smooth curves. The separated signals of 
the east and north wind variation components observed by the sample flight are shown in Fig. 4-11.
Notice that for demonstration purposes, the mode decomposition shown in Fig. 4-11 was done for the full 
altitude range.  The actual wind variation model was built based on data within the altitude range of 3,000
ft to 20,000 ft.  A mathematical description of this process is presented below. 
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Figure 4-11 Mode decomposition of wind variation observed

by the sample flight. 

The transfer function of a qth order FIR filter can be expressed as9

(4-3)q
qzbzbzbbzH 2
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1

10
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In the numerical example, the FIR filter was designed with an order of 100 and a digital cut off
frequency of 0.06 (0.03 times sampling rate).  Because data were re-sampled at every 250 ft, the cut off 
frequency was actually 0.03/250, 1/ft. This is equivalent to 1 cycle for every 8,333 ft.  The order and cut 
off frequency of the FIR filter were manually selected after running a large number of wind variation 
profiles.  It was selected such that the filtered smooth curves would capture the general trend of wind 
variation along altitude.  The N+1 coefficients, {bi, for i = 0, 1, …, q}, were determined using the window 
method.  Details of the window method are out of the scope of this document. The readers are referred to
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Chapter 9 of reference 9.  To avoid aliasing toward the start and end altitudes, padding was applied to 
both ends of the wind variation profiles.  Before the start altitude, q points with the corresponding values
at the start altitude were added to the east and north wind variation components respectively.  After the
end altitude, q points with the corresponding values at the end altitude were added to the east and north 
wind variation components respectively.  The padded east and north wind variation components were
passed through the FIR filter.  The filtered data sequences were then aligned with the east and north wind 
variation components and truncated to yield the smooth curves wf

j,E(hn) for the east wind variation 
component and wf

j,N(hn) for the north wind component. The higher frequency signals of the wind variation 
could be obtained as 

(4-4)
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The DC signals of the wind variation could be obtained as 
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Notice that the mean in Eq. (4-5) should be computed across altitude, thus the re-sampling altitudes
were dropped on the left hand side of the two equations.  Finally, the lower frequency signals of the wind
variation could be obtained as 
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The wind variation component in each direction can be reconstructed by adding the DC signal, the
lower frequency signal, and the higher frequency signal together.  The decomposed wind variation signals 
can be interpreted as the wind variations at different geographical scales.  The DC signals reflect the
overall wind variation between flights, i.e. wind variation spanning the entire arrival phase.  The lower
frequency signals reflect wind variations at a scale of tens of nautical miles.  The higher frequency signals
reflect wind variations from 500 ft (corresponding to the Nyquist rate for re-sampling interval of 250 ft) 
up to about 26 nm (corresponding to the cut off frequency of the FIR filter, estimated based on a flight
path angle of -3 deg). 

4.4 THE AUTOREGRESSIVE WIND VARIATION MODEL 

The second step of the mode decomposition and AR modeling approach is presented in this section. A
brief description of the AR model is given first.  The estimation of autocovariance sequences of wind 
variation signals is presented next.  The estimated autocovariance sequences are the bases for determining
the AR model parameters.  Finally, analyses of estimated power spectral density are presented to 
demonstrate the effectiveness of the mode decomposition method.
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4.4.1 Formulation of Autoregressive Model 
An AR model has a general form of 

][][]2[]1[][
21

npnxanxanxanx p  (4-7) 

where [n] is a white sequence that is uncorrelated with past values of x[n], that is,
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Parameter  is called the innovation variance. Thus for a pth order AR model, there are p+1
parameters, { , a1, …, ap}.  These parameters can be obtained from the autocovariance sequence x[m]

using Yule-Walker equations9
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Because the autocovariance sequence x[m] of the signal to be modeled x[n] is not known, an
estimation must be made to obtain the AR model.

4.4.2 The Estimation of Covariance Sequences of Wind Variation Signals 
For the set of measurements {x[n], 0 n N-1} of a zero mean signal, the estimated autocovariance

sequence can be computed using the formula9,
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In the equation above, the hat denotes that the autocovariance sequence was estimated from
measurements.  The same naming convention will be used for all estimated values.  For the numerical 
example, autocovariance sequences were computed based on data points between 3,000 ft and 20,000 ft. 
The estimated autocovariance sequences of the raw ACARS east and north wind variation components
observed by the sample flight are shown in Fig. 4-12.  The estimated autocovariance sequences of the raw
wind variation components are noisy, and large differences exist between the autocovariances of the each 
and north wind variation components.

Figure 4-13 and Fig. 4-14 show estimated autocovariances of the higher and lower frequency signals
respectively.  By comparison, it is seen that the higher frequency signals reflected the shorter-term
autocorrelation, the lower frequency signals reflected the longer-term autocorrelation.  It is also seen that
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in the decomposed higher frequency and lower frequency signals, the two directional components
demonstrated similar behavior.  This is not clearly seen in the autocovariances of the raw wind variation 
components shown in Fig. 4-12.
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Figure 4-12 Estimated autocovariances of raw wind 

variation components observed by the sample flight.
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Figure 4-13 Estimated autocovariances of higher frequency

signals from wind variations observed by the sample flight. 
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Figure 4-14 Estimated autocovariances of lower frequency

signals from wind variations observed by the sample flight. 
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Estimated autocovariances of the raw wind variation components, the higher frequency signals, and 
the lower frequency signals, are shown in Fig. 4-15, 4-16, and 4-17 as averages over 1029 flights from the 
period of ACARS data that were available.  The autocovariances were not only much smoother; the east
and north autocovariances were closer to each other too. 
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Figure 4-15 Estimated autocovariances of raw wind 

variation components averaged over 1029 flights.
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Figure 4-16 Estimated autocovariances of higher frequency

signals averaged over 1029 flights. 
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Figure 4-17 Estimated autocovariances of lower frequency

signals averaged over 1029 flights. 
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The effectiveness of mode decomposition is clearly illustrated in Fig. 4-15, 4-16, and 4-17.  The raw
wind variation components were decomposed into higher frequency signals that have weaker 
autocorrelation, and lower frequency signals that have stronger autocorrelation.  With the autocovariance
sequences estimated, the AR model parameters can be solved. 

4.4.3 Solving Autoregressive Model Parameters 
AR models could be developed using either averaged autocovariance sequences of the raw wind

variation components, or that of the higher frequency signals and lower frequency signals.  Referring to
Eq. (4-7), the pth order AR models of the raw east and north wind variation components WE and WN

can be written as, 
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In Eq. (4-13), subscription j is no longer used, indicating that the wind variation components are 
simulated values.  Sequence index n denotes simulated values at altitude hn, n-1 denotes simulated values 
at altitude hn-1 and so on.  Note that the two white noise sequences E and N are independent of each 
other.  Coefficients a^Ei and a^Ni are the solutions of the corresponding Yule-Walker equations for east and
north wind variation components.  Similarly, the pth order AR models of the higher frequency signals and
the lower frequency signals can be written as, 
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The Levinson-Durbin algorithm9 could be used to solve the Yule-Walker equations with orders from 1 
up to p for each signal through one execution.  This allows comparison of different orders of the AR 
models so that the most suitable ones could be selected.  The Levinson-Durbin algorithm is a 
computationally efficient algorithm, especially when all orders of the Yule-Walker equations up to pth
order are solved at the same time.  Specifically, in this algorithm, the solution (AR model parameters) to
lower order equations is updated using the next element of the autocovariance sequence to obtain the
solution to the next higher order equations.

Table 4-1 Numerical example of 2
nd

 order AR model parameters.

Parameters a^1 a^2
^

Raw East -1.0852 0.2655 1.1994

Wind Variation North -1.1077 0.2969 1.2494

Higher East -1.0139 0.3449 0.9282

Frequency Signal North -1.0307 0.3748 0.9829

Lower East -1.1205 0.1417 0.2932

Frequency Signal North -1.1120 0.1352 0.3366
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From the estimated autocovariances presented earlier, AR models with orders from 1 up to 32 were 
obtained.  For example, parameters of the 2nd order AR models are listed in Table 4-1.  For the sake of 
simplicity, other superscriptions and subscriptions of the model parameters were dropped in the table 
since the model type and wind components are clearly annotated.  With all parameters available, power 
spectral density analysis could be performed to compare different orders of AR models.  This analysis is 
presented in the next subsection. 

4.4.4 Power Spectral Density Analysis
The AR model parameters can also be used to estimate the power spectral density (PSD) function, 
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The estimated PSDs from the 2nd order AR models of the raw wind variation components are shown in
Fig. 4-18.  It is seen that the 2nd order PSDs were very smooth, thus they were probably relative crude 
depictions of the true PSDs. 
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Figure 4-18 Estimated power spectral density from 2
nd

order AR models of raw wind variation components.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

,  per 250 ft

E
s
ti
m

a
te

d
 P

S
D

, 
k
t2

East

North

Figure 4-19 Estimated power spectral density from 2
nd

order AR models of the higher frequency signals. 
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Figure 4-20 Estimated power spectral density from 2
nd

order AR models of the lower frequency signals. 

The estimated PSDs from the corresponding 2nd order AR models of the higher frequency signals and
the lower frequency signals are shown in Fig. 4-19 and 4-20 respectively. These estimates are very
smooth and lack subtle details too.  The estimated PSDs of the higher frequency signals have band-
limited frequency contents, indicating band-limited white noise like behavior. The estimated PSDs of the
lower frequency signals had a very narrow spike at the lower end of the frequency spectrum, indicating
that the general trend of the simulated wind variation would be dominated by the lower frequency 
component.

The estimated PSDs from the 32nd order AR models of the raw wind variation components are shown
in Fig. 4-21.  They have details not seen in the estimated PSDs from the 2nd order AR models.  It is also
noticeable that the peak frequencies were different.  The estimated PSDs from the 32nd order AR models
had slightly higher peak frequency, and there was a small hump around digital frequency of 0.085 .
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Figure 4-21 Estimated power spectral density from 32
nd

order AR models of raw wind variation components.

The estimated PSDs from the 32nd order AR models of the higher frequency signals and the lower 
frequency signals are shown in Fig. 4-22 and 4-23 respectively.  Again, the estimated PSDs from 32nd

order AR models have features not seen in the estimates from the 2nd order AR models.  The peak
frequencies in these two figures are now standing out by themselves; and the peak frequencies of the
higher frequency signals and the lower frequency signals are distinct from each other. 

Comparing Fig. 4-22 and 4-23 with Fig. 4-21, the power of the mode decomposition approach in 
identifying different frequency contents is clearly seen.  The frequency separation is barely seen in Fig. 4-
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21 as a small hump at round digital frequency of 0.07 .  Without using mode decomposition, even with 
high degree AR models such as that shown in Fig. 4-21 the characteristics of the original signals may not
always be fully captured. This will be further demonstrated in the next section. 
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Figure 4-22 Estimated power spectral density from 32
nd

order AR models of the higher frequency signals. 
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Figure 4-23 Estimated power spectral density from 32
nd

order AR models of the lower frequency signals. 

For higher accuracy, high order AR models would definitely be better choice. However, for a specific
application such as the modeling of wind variations between flights for aircraft trajectory simulation,
lower order AR models may serve the same purpose well.  In the next section, the selection of the order of 
the AR models through comparing simulation results of the KSDF numerical examples is discussed.

4.5 SIMULATION WITH AUTOREGRESSIVE WIND VARIATION MODELS 

The AR models that have been developed can be used to simulate wind variations between flights. 
For the purpose of comparison, the AR models based on the raw wind variation components are examined
first.  The AR models based on mode decomposition are examined next.  The latter will be used in aircraft 
trajectory simulations.  Finally, the application of the wind variation model is briefly discussed.
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4.5.1 Simulation Using AR Models Based on Raw Wind Variation Components 
With the AR model parameters known, wind variations can be simulated using Eq. (4-13).  To start up 

the simulation process of a pth order AR model, sequence index n is initially set to zero and all elements 
of the output sequence with negative indices are treated as if they are zero.  The first simulated p elements
starting from n = 0 are then dropped from the output sequence to allow for the simulation to stabilize. 
Thus, the pth element of the simulated output sequence are considered to be the first usable element.  This
process was used for all simulations discussed in this section. 

Examples of simulated results using the 2nd order AR models are shown in Fig. 4-24.  Examples of
simulated results using the 32nd order AR models are shown in Fig. 4-25.  Interestingly, the differences 
between 2nd order AR models and 32nd order AR models are not obvious from the simulated wind 
variation components.  This suggests that higher order model might not be necessary to achieve higher 
fidelity.  Recall that, in the Dryden wind turbulence model, the longitudinal turbulence component was 
modeled as a first order AR signal.  To the scale of aircraft trajectory simulation, especially when the 
focus is on how the distance traveled evolves over time, higher order AR models probably will not yield
significantly more accurate results. 
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Figure 4-24 Simulation results of 2
nd

 order AR models based

on raw wind variation components.

One might notice that the simulated wind variation components have a lower magnitude compared
with the raw wind variation shown in changes in Fig. 4-4b.  This could be explained partially by the fact 
that the raw wind variation components observed by the sample flight were from a large pool of data 
reported by many flights, and that the simulated results were from a large pool of all possible simulation
results.  The magnitude thus may not necessarily be the same for the two specific individual samples.
Another reason is that the wind variation components shown in Fig. 4-4b did not necessarily have zero
mean.  However, in the AR modeling approach, wind variation components are treated as having zero
mean.

Another observation from Fig. 4-24 and 4-25 is that the simulated wind variation components lack the
non-stationary characteristics demonstrated by the raw wind variation components.  However, those non-
stationary characteristics may very well contribute to the aircraft trajectory variations.  Thus, the AR
models directly based on the raw wind variation components are deemed unacceptable.
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Figure 4-25 Simulation results of 32
nd

 order AR models

based on raw wind variation components.

4.5.2 Simulation Using AR Models Based on Mode Decomposition
With the AR models based on mode decomposition, each of the final simulated east and north wind 

variation components are the summation of three signals: a higher frequency signal, a lower frequency 
signal, and a random DC signal. 

The higher frequency signals were the direct outputs of the corresponding AR models.  Examples of 
simulated higher frequency signals from the 2nd order AR models are shown in Fig. 4-26. The random
DC signals were simply normally distributed random numbers bounded by the corresponding maximum
and minimum values of source data.  If any of such obtained DC signals exceeded the range of the
corresponding source data, that value was regenerated again until a new value within the range was 
obtained.
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Figure 4-26 Simulation results of 2
nd

 order AR models based

on higher frequency signals. 
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Special attention is needed to simulate the lower frequency signals.  To avoid high frequency artifacts 
of the AR models, the outputs of the lower frequency AR models were filtered using the same FIR filter
that were used in the mode decomposition.  High frequency artifacts of the AR models exist because the
filtered lower frequency signals from the wind variation profiles were not exactly AR signals.  If those 
high frequency artifacts are not properly removed, they will couple with the higher frequency signals that 
are simulated separately, yielding inaccurate results.  Examples of simulated lower frequency signals 
from the 2nd order AR models are shown in Fig. 4-27.  It is obvious that within the altitude range, the 
simulated lower frequency signals demonstrated non-stationary characteristics, although the AR models
were developed as stationary models.  If the altitude range were large enough, the simulated lower 
frequency signals would look more like stationary processes.  The low cutoff frequency assures that for
the practical range of altitudes, the simulated lower frequency processes do depict the non-stationary
characteristics of the data.  This again shows the effectiveness of the mode decomposition approach in 
modeling non-stationary signals.
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Figure 4-27 Simulation results of 2
nd

 order AR models based

on lower frequency signals. 

The simulated higher frequency signals, low frequency signals, and the random DC signals are then 
added together to give simulated wind variation components. Wind variation components obtained from
adding the separately simulated signals discussed above are shown in Fig. 4-28.  In addition to the non-
stationary characteristics, simulated wind variation components normally do not have zero mean.  The 
magnitudes are also higher, at least as seen in the example results.  Comparing Fig. 4-28 with Fig. 4-24 
and 4-25, the simulated wind variation based on mode decomposition were much more closer to the wind 
variation reflected in the data. 

Examples of simulated wind variation components from the 32nd order AR models are shown in Fig.
4-29.  It is again seen that the simulated results from the 2nd order models and the high order models were
very similar.  Thus for aircraft trajectory simulation, the 2nd order models are good choice.  If 
computational time is not a concern, high order models could definitely be used.
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Figure 4-28 Simulated wind changes of 2
nd

 order AR models

based on mode decomposition. 
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Figure 4-29 Simulated wind changes of 32
nd

 order AR

models based on mode decomposition.

4.5.3 Application of the Wind Variation Model 
The final step is to incorporate simulated wind variation components with the nominal wind profile to

obtain actual wind profile for use in aircraft trajectory simulation.  For analyzing separation between
flight pairs, the nominal wind profile is used as the wind profile for the leading flight; and the nominal
wind profile plus a simulated wind variation profile is used as the wind profile for the trailing flight.  If
the mean wind is used as the nominal wind profile, then the wind profile for the trailing flight will be the 
mean wind profile plus a simulated wind variation profile, as the example shown in Fig. 4-30.  The solid
curves are the east and north wind components of the mean wind profile.  The dotted curves are the east 
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and north wind components of the mean wind profile plus a simulated wind variation profile.  The dotted
wind profile was obtained by adding the mean wind profile shown in Fig. 4-3 and the wind variation
components shown in Fig. 4-28.

-80 -60 -40 -20 0
0

5

10

15

20

25

30

35

40

East Wind, kt

A
lt
it
u
d
e
, 

1
0

8
 f

t

-20 -10 0 10 20
0

5

10

15

20

25

30

35

40

North Wind, kt

Figure 4-30 Simulated wind variation supper imposed on

mean wind profile. 

For simulating large numbers of aircraft trajectories, each of the leading flight can be simulated with
the fixed nominal wind profile but with all other uncertainty factors taking into account.  The pool of
simulated leading trajectories will reflect trajectory variations without wind variations.  Each of the 
trailing flight can be simulated with all other uncertainty factors taking into account, plus a wind variation 
profile freshly generated for each flight that is supper imposed on the fixed nominal wind profile.  Thus,
the pool of simulated trailing trajectories will reflect trajectory variations with wind variations.  Flight
pairs can then be formed by randomly picking a trajectory from the leading pool and randomly picking a 
trajectory from the trailing pool.  Separation analysis can then be performed upon the large pool of 
random flight pairs. 

As an improvement of the wind variation model, the simulated wind variation (east and north) 
components can be tuned to fit additional magnitude variations along altitude. This could be done as
follows.  Statistics similar to that shown in Fig. 4-10 could be normalized such that, the values of the 
curves within the altitude range of 3,000 ft to 20,000 ft is equal to 1.  The values of the curves above 
20,000 ft would be higher than 1 and the values of the curves below would be lower than 1.  The 
simulated wind variation components could then be multiplied by the corresponding curves for magnitude 
adjustment.

4.6 SUMMARY 

To tackle the problem of simulating wind variation between consecutive flights, a unique mode
decomposition approach was developed to decompose the wind variation components into categorized
frequency content signals.  These frequency content signals include zero mean higher frequency signals, 
zero mean lower frequency signals, and random DC signals.  The higher frequency signals and lower 
frequency signals are modeled as AR signals.  Through numerical examples, the effectiveness of the 

99



mode decomposition modeling approach was demonstrated.  To overcome the shortcomings of AR 
method in modeling the lower frequency signals, FIR filtering is employed to obtain satisfactory results. 
This process provides an integrated wind variation modeling approach that is an essential part of the tool
for analyzing trajectory variations of aircraft performing approach and arrival procedures.

The numerical examples of wind variation modeling were based on ACARS wind data reported within 
the altitude range of 3,000 ft to 20,000 ft by aircraft landing to KSDF from the west.  Model 
improvements were suggested to adapt to the characteristics of actual wind field above 20,000 ft and
below 3,000 ft.  A simple way to do this would be to only adjust the magnitude of the simulated wind
variation components, and leave the frequency spectrum as unchanged.  Another possible way would be
to adapt both frequency spectrum and variance at the same time.  Using the latter approach, the final
model parameters would become functions of altitude themselves.  In digital simulation, varying model
parameters along altitude would not impose any problem.  The biggest challenge would be collecting 
enough data to support this effort.  The lower sampling rate of ACARS data at high altitude would not be
sufficient.

Although the numeric examples given in this chapter were based on ACARS data, these data are not
available at all sites.  In this case, data from other sources could also be used to model wind variation 
using the same modeling approach. One example of such data sources is the Mesosphere-Stratosphere-
Troposphere (MST) Radar at Aberystwyth in UK.  MST is unique in being able to provide continuous
measurements of the three-dimensional wind vector over the altitude range of 2-20 km at high resolution 
(typically 300 m in altitude and a few minutes in time)10.  It could therefore be used to model wind
variation in that area when the amount of ACARS data is not sufficient. 
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CHAPTER 5 

SEPARATION ANALYSIS METHODOLOGY 

NOMENCLATURE

C = traffic throughput in aircraft per hour 
Ci = traffic throughput for aircraft sequence i
D = along track distance
D0 = along track distance at the intermediate metering point
dPT,i,s = infinitesimal total probability for aircraft sequence i at separation s, unadjusted traffic
dPTa,i,s = infinitesimal total probability for aircraft sequence i at separation s, adjusted traffic under 

sequence-specific target separation
E( ) = expectation, mean, average operator 
f( ) = aircraft trajectory function 
fl( ) = aircraft trajectory function, leading aircraft 
ft( ) = aircraft trajectory function, trailing aircraft 
f -1( ) = inverse aircraft trajectory function
fl

-1( ) = inverse aircraft trajectory function, leading aircraft 
ft

-1( ) = inverse aircraft trajectory function, trailing aircraft 
i = index of aircraft sequence in arrival traffic 
Pi = probability of aircraft sequence i in arrival traffic 
pi = probability density of feasible separations at metering point for aircraft sequence i
PRi = conditional level of confidence for aircraft sequence i
PT = total level of confidence
pT = probability density of spacing in arrival traffic
PTa = total level of confidence under adjusted arrival traffic 
pTa = probability density of spacing in adjusted arrival traffic 
PTai = total probability for aircraft sequence i, adjusted traffic under sequence-specific target 

separation
PTa,i = total probability for aircraft sequence i, adjusted traffic under sequence-independent target 

separation
pTai = probability density of spacing in adjusted arrival traffic under sequence-specific target

separation  for aircraft sequence i

PT,i = total probability for aircraft sequence i, unadjusted traffic
s = spacing
S = target separation for unadjusted traffic 
sf = spacing at runway threshold 
Sf = separation minimum at runway threshold
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SI = target separation
SIi = sequence-specific target separation for aircraft sequence i

sT = spacing in unadjusted arrival traffic 
sTa = spacing in adjusted arrival traffic 
T = inter-arrival time at intermediate metering point
t = normalized time
tl,f = leading aircraft normalized time when leading aircraft is at runway threshold
tt,f = trailing aircraft normalized time when leading aircraft is at runway threshold
x = generic variable

f = final separation buffer 

5.1 INTRODUCTION 

A separation analysis methodology was developed to analyze the evolution of spacing between
consecutive aircraft pairs conducting the same noise abatement approach and arrival procedure, and to
determine the target separation at the intermediate metering point. This methodology can also be used to 
evaluate under what traffic condition the proposed operational framework may be applied.  This
methodology is based on the availability of a large number of aircraft trajectories such as that from the
Monte Carlo simulation tool, or from radar tracking data.  This methodology also assumes a set of
predefined separation minima that must be obeyed.  Existing separation minima are described in the
following paragraphs. 

Under Instrument Flight Rules (IFR), for aircraft at the same altitude, the FAA radar separation
minima are 3 nm between aircraft operating within 40 nm (60 nm for single sensor ASR-9 radar with
Mode S) of the radar antenna site, and 5 nm between aircraft operating beyond 40 nm (or 60 nm) from the 
antenna site (FAA Order 7110.65 5-5-4.a1, AIM 4-4-102). These minima may be increased or decreased
in certain specific situations. 

Wake turbulence procedures specify increased separation minima required for certain classes of
aircraft because of the possible effects of wake turbulence (FAA Order 7110.65 5-5-4.e,f,g1 and AIM 7-3-
92).  For the purposes of defining wake turbulence separation minima, aircraft are classified according to 
maximum certificated takeoff weight as Heavy (more than 255,000 lb), Large (more than 41,000 lb, up to
255,000 lb), and Small (41,000 lb or less).  Note that B757 is a Large aircraft but is treated specially when
it is in a leading position. Wake turbulence separation minima between arrival aircraft are summarized in
Table 5-1.  These minima apply when the trailing aircraft is operating directly behind, or directly behind 
and less than 1,000 feet below, or following an aircraft conducting an instrument approach except 
otherwise noted in the table.

Besides the separation minima, letters of agreement between adjacent facilities may define some 
higher miles-in-trail (MIT) restrictions (such as 10 nm or higher) limited to specified routes and/or
sectors/positions during certain periods of the day.

The remainder of this Chapter is organized as follows.  The relationship between trajectory variation
and the variability in spacing during noise abatement approach and arrival procedures is analyzed in the 
next section.  The basic concept of determining the target separation from the probability distribution of
final spacing at the runway threshold for given spacing at the metering point is presented.  This is
followed by a discussion in Section 5.3 about the solution to the inverse separation analysis problem –
obtaining the probability distribution of “feasible separations” at the metering point for given final 
separations – which is more efficient.  The conditional probability separation analysis method that is 
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Table 5-1 IFR wake turbulence separation minima matrix, nm 

Trailing Aircraft

Leading Aircraft Heavy Large Small

Heavy 4 5 5/6a

B757 4 4 5

rge 2.5b 2.5b 4a

Small 2.5b 2.5b 2.5b

a When leading aircraft is over the runway landing threshold.
b When aircraft established on the final approach course within 10 nm of 
the landing runway, radar operating in single sensor slant range mode, and
average runway occupancy time of 50 seconds or less. 

directly based on the distribution of feasible separations is presented in Section 5.4.  The total probability 
separation analysis method is presented in Section 5.5.  In this method, the aircraft mix and the actual 
spacing in the arrival stream are taken into account to determine the target separation.  Thus, the total
probability method is more realistic in reflecting the confidence levels.  A theoretical analysis of the 
tradeoff between target separations and traffic throughputs is presented in Section 5.6.  The summary of
this chapter is provided in the last section.

5.2 TRAJECTORY VARIATION AND SEPARATION

Distance versus time (as depicted in Fig. 5-1) is the most important relationship when analyzing the 
separation between consecutive aircraft flying along the same path.  In the figure, the horizontal axis
represents the along track distance, and the vertical axis represents time.  The shaded areas represent the
region of uncertainty in the distance-time space where the aircraft could be in the future.  Note that in 
reality, the segment on the trailing aircraft trajectory prior to the intermediate metering point would also 
be a shaded area.  This segment is presented in Fig. 5-1 as a straight line for the sake of simplicity.  It 
represents the case where every aircraft is flying at the same ground speed prior to the intermediate
metering point.  For a given spacing at the metering point (measured when the leading aircraft is at the
metering point), the final spacing (measured when the leading aircraft is at runway threshold) would have
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a probability density function (pdf) similar to that shown in the panel in the figure.  The minimum value 
of the final spacing would be given by the slowest leading trajectory and the fastest trailing trajectory, and 
the maximum value would be given by the fastest leading trajectory and slowest trailing trajectory.

As indicated in a previous simulation study3, the minimum spacing between any pair of consecutive 
aircraft will most probably occur when the leading aircraft is at the runway threshold because of the 
separation compression due to deceleration, and the variations in their trajectories.  Thus, although 
different separation minima are in effect at different stages of the arrival, the separation minima in effect
at the runway threshold are the binding constraints.  The target separation for a given pair of aircraft may
therefore be determined by the spacing at the metering point that gives a minimum value of the final 
spacing that is equal to the separation minimum for that pair.  However, the target separation determined
in this way is conservative in terms of throughput because one would be protecting against a rare worst-
case scenario.  Furthermore, the tail of the spacing distribution might never be known through practical
means.

On the other hand, the pdf of the final spacing for a given spacing at the metering point may be 
estimated through analysis of large numbers of aircraft trajectory pairs.  Therefore, the target separation
can be determined by adjusting the spacing at the metering point and the resulting estimated distribution
of the final spacing until there is sufficient confidence (i.e., probability) that the final spacing will be 
greater than or equal to the separation minimum. This process is illustrated in Fig. 5-2.  The level of
confidence is the integral of the pdf from the separation minimum to infinity. 
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separation.

The final separation buffer f, is a measure of how much the final spacing will be above the separation
minimum, and it is computed by taking the difference between the mean of the final spacing sf and the 
separation minimum.  This measure can be used as an indicator of efficiency for the given target
separation or level of confidence.  Another parameter to measure the efficiency is the average traffic
throughput C computed at the metering point in terms of aircraft per hour (1/h) and given by

)(/3600 TEC (5-1)

where E(T) is the mean of inter-arrival time T in seconds measured at the intermediate metering point. 
It is worth to mention that, because of the non-linearity in the distance-time relationship, a different

pdf will be resulted in each time the spacing at the metering point is adjusted.  That is to say, not only will 
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the pdf of the final spacing shift left or right (see Fig. 5-2), its standard deviation will also change.  Thus, 
it is not computationally efficient to determine the target separation by adjusting the spacing at the
metering point and then examining the final spacing. It is also difficult to visualize the relationship 
between the target separation and the level of confidence using this method.  In the next subsection, a 
method is introduced for determining the pdf of the “feasible separations” at the metering point that
ensures separation minima.  Using the new pdf of feasible separations, the above-mentioned shortcomings
are overcome.

5.3 THE INVERSE SEPARATION ANALYSIS PROBLEM

Consider a large pool of paired aircraft trajectories. For a specific pair of trajectories, the shaded areas 
in Fig. 5-1 would reduce to two curved lines, as shown in Fig. 5-3.  Assume that the leading trajectory 
and the trailing trajectory in the pair are independent of each other.  As a simplified case, the feasible
separation – the spacing at the metering point that ensures the separation minima for the specific
trajectory pair – can be determined by moving the trailing trajectory in the direction parallel to the time
axis until the final spacing is equal to the separation minimum in effect at the runway threshold.  For a 
separation minimum at the runway threshold, feasible separations (measured when the leading aircraft is
at the metering point) would have a pdf similar to that shown in the panel in the figure.  In reality,
different separation minima would be in effect at different stages of the arrival phase, and that the trailing 
aircraft could be faster than the leading at some points on the flight path.  Thus, to determine the feasible
separation for a trajectory pair, separation minima throughout the arrival flight, not just the final 
separation minimum, should be protected (see the red dashed curve in Fig. 5-3). 
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Figure 5-3 The inverse separation analysis problem. 

The feasible separation for a specific trajectory pair can be derived mathematically as follows. 
Assume that aircraft trajectories are expressed in the form of along track distance as a function of 
normalized time 

)(tfD (5-2)
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Along track distance has a positive sense along the direction of flight and it is defined as equal to zero 
at the runway threshold.  Normalized time is defined as at zero when the aircraft is at the metering point.
By definition, the location of the metering point is 

)0(
0

fD (5-3)

The inverse function of the Eq. (5-2) gives normalized time as a function of along track distance 

(5-4))(1 Dft

If spacing between the two aircraft exactly equals the separation minimum Sf when the leading aircraft
is at the runway threshold, the normalized times for the leading and trailing trajectories at that moment
would be 

(5-5)
)(

)0(
1

,

1

,

ftft

lfl

Sft

ft

where subscripts l and t denote leading and trailing respectively.  Note that the two normalized times in
Eq. (5-5) are actually the same moment to an external observer.  Referring to Fig. 5-1, the feasible
separation can be obtained as 

)()()0(
,,0,, flfttflfttl

ttfDttffs (5-6)

The separation minima at other points along the flight path and the case when the trailing aircraft is 
significantly slower than the leading aircraft on the final approach should also be protected.  To do this,
the feasible separation could be determined such that the spacing at any point on the approach flight path 
between the metering point and the runway threshold is equal to or greater than the separation minimum
in effect at that point.  A simplified method to achieve this is to apply the process defined by Eq. (5-5)
and (5-6) to the final approach fix in addition to the runway threshold.  The larger of the two spacing 
values determined is then the feasible separation for the trajectory pair.  Because of the natural separation
compression, it might not be always necessary to apply this process at higher altitudes though. 

It can be seen from the above derivation and Fig. 5-1 and 5-3 that the feasible separation depends on 
the separation minimum, the location of the metering point, and the characteristics of both the leading and 
the trailing trajectories.  If the leading aircraft is slow and the trailing aircraft is fast, a relatively large
feasible separation would be expected and vice-versa. 

Applying this process to all possible trajectory pairs, a large number of feasible separation values
could be obtained.  By definition, the frequency density distribution of these values normalized by the
total number of values would, as the number of values gets very large, become the pdf of feasible
separations that result in the required final separation.  The relationship between the target separation, and 
the level of confidence derived using the resulting pdf of feasible separations (by integrating the pdf from 
zero to the target separation), would be equivalent to that obtained using the pdf of possible final spacing 
for the given target separation (by integrating the pdf from the separation minimum to infinity), but
without the need to regenerate the pdf of possible final spacing for each target separation. 

The integral of the pdf of feasible separations from zero to the target separation, i.e. the cumulative
probability, is the probability that the feasible separation is less than the given target separation.  In other 
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words, this cumulative probability indicates the likelihood that no separation violations will occur during
the execution of the procedure, should the aircraft pair arrive at the metering point with the given target
separation.  The cumulative probability is thus a conditional probability, and the corresponding level of
confidence is therefore also conditional.  With the pdf of feasible separations known, a chosen target 
separation immediately gives the conditional level of confidence of uninterrupted operation. 

5.4 CONDITIONAL PROBABILITY SEPARATION ANALYSIS METHOD 

The sequence of aircraft in a consecutive pair is important for determining the target separation, as 
aircraft trajectories are functions of the dynamics of the specific aircraft involved, and the separation 
minima depend on aircraft weight classes.  This is illustrated in Fig. 5-4 by the pdfs of feasible
separations for complementary sequences: the first for aircraft type A leading type B; the second for
aircraft type B leading type A.  One reason for the difference between the pdfs would be the difference in
the weight classes of the aircraft.  For example, when a Heavy aircraft is leading a Large aircraft, the
separation minimum is greater than in the complementary case. Thus, the feasible separations would
probably be larger.  Another reason would be the difference in the performance characteristics of the
aircraft.  For example, if one aircraft descends at a steeper angle than the other does, the steeper aircraft
will have a higher ground speed for longer even if the two aircraft descend at the same Calibrated
Airspeed (CAS).  Notice that the sequences with aircraft of the same type—aircraft type A leading type A
and type B leading type B—are not shown in Fig. 5-4 for the sake of simplicity.

5.4.1 Sequence-Independent Target Separation 

Given the probability density pi of feasible separations for aircraft sequence i, and a target separation 
SI, the conditional level of confidence PRi is 

dspP
I

S

iRi 0
(5-7)

The conditional level of confidence is the probability that there will be no separation violations in an 
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uninterrupted noise abatement approach or arrival if (on the condition that) the spacing at the metering
point is exactly equal to the selected target separation. 

If different aircraft sequences have different pdfs of feasible separations, as shown in Fig. 5-4, 
different aircraft sequences will have different conditional levels of confidence for the same target 
separation.  Thus, if a single target separation is desired, to be consistent with the current practice of using 
a single MIT restriction for the entire traffic stream at the hand-off or metering point, it could be
determined by finding the minimum SI such that every single PRi, or the average of PRi is greater than or
equal to the desired value. 

5.4.2 Sequence-Specific Target Separation 

To have the same conditional level of confidence for all sequences, each aircraft sequence must have a 
different target separation.  While such a scheme is more complex, there is a strong motivation for it.  If a
single target separation is used, it will be too conservative for some aircraft sequences.  By using 
sequence-specific target separations, throughput may be increased.

The conditional probability separation analysis method using sequence-specific target separations is 
illustrated in Fig. 5-5.  The light gray dotted vertical line in the middle denotes the sequence-independent
target separation for both aircraft sequences.  This target separation would give a certain average
conditional level of confidence.  However, for each of the aircraft sequences, the sequence-independent 
target separation would give a different conditional level of confidence.  The dotted vertical line on the 
left corresponds to the target separation for aircraft type A leading type B with a conditional confidence 
level that is equal to the average level given by the sequence-independent target separation.  The dotted
vertical line on the right is the corresponding target separation for aircraft type B leading type A.
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method.

For relatively high confidence levels, the use of sequence-specific target separations would give a 
lower average target separation.  This is further illustrated in Fig. 5-6.  In this figure, cumulative
probabilities for the two aircraft sequences are shown as individual functions and as an average.  If
sequence-specific target separations with the same confidence level are used, as indicated in the figure, a 
smaller target separation would be needed when aircraft type A is leading type B, and a larger target 
separation would be needed when aircraft type B is leading type A.  For the confidence level shown, the
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decrease in the target separation for aircraft type A leading type B is greater than the increase for aircraft 
type B leading type A. 
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Figure 5-6 Sequence-specific separation capacity savings. 

As the confidence level increases, the difference would be even greater, giving an even smaller
average target separation thus greater throughput.  In other words, this would result in a smaller final 
separation buffer.  Given the target separation SIi for aircraft sequence i, Eq. (5-7) now becomes 

dspP
Ii

S

iRi 0
(5-8)

5.5 TOTAL PROBABILITY SEPARATION ANALYSIS METHOD 

A key assumption in the conditional probability separation analysis method is that the spacing at the 
metering point is exactly equal to the target separation.  The reality is that neither controllers nor
automation are this precise, nor does the traffic level guarantee the target separation can be exactly met.
Thus, there will always be some variability in the spacing at the metering point, and this variability must
be accounted for if the total probability of no separation violations is to be determined. 

5.5.1 The Characteristics of Spacing in Arrival Stream 
To this end, it is necessary to characterize the actual spacing in the arrival stream at the metering point.

A hypothetical pdf of the spacing at the metering point for under an existing MIT restriction at that 
metering point is illustrated by the solid black curve in Fig. 5-7.  The traffic stream under the existing 
MIT restriction is referred to as the unadjusted traffic. 

Should a higher target separation be used, as a result of controllers’ effort to achieve that target, the 
pdf of the spacing at the metering point will be shifted towards higher values, i.e. rightwards.  This is
illustrated by the gray curve in Fig. 5-7.  The traffic stream with the increased target separation is referred 
to as the adjusted traffic. The shapes of the pdfs are not symmetrical because controllers normally only
need to adjust the spacing that could fall below the target separation.  Notice that in the figure the tails of 
the pdfs extend to the left of target separations.  This is to illustrate that, on rare occasions, the spacing 
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may actually be less than the target separations.  However, this is typically not an issue as the target
separations are often much higher than the separation minima in effect at the metering point. 
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Figure 5-7 Spacing distribution in arrival traffic stream. 

The mean spacing at the metering point in the unadjusted traffic stream, an indicator of arrival traffic
volume, is given by

sdspsE
TT 0

)( (5-9)

The mean spacing for the adjusted traffic stream is simply

sdspsE
TaTa 0

)( (5-10)

In practice, the lower integration limit in Eq. (5-9) and (5-10) would be the separation minimum in
effect at the metering point because the integral from zero to the separation minimum should be zero. 
However, zero is used as the lower integration limit for the sake of simplicity.

When the arrival rate is below the runway acceptance rate, the mean of spacing in the unadjusted
traffic will be much higher than the separation minimum that is in effect at the metering point.  As the
arrival rate increases, the pdf of the spacing at the metering point will become narrower, and the mean of 
spacing in the unadjusted traffic will be closer to the separation minimum.

A natural metering point at which the requisite data can be collected is the boundary between the Air 
Route Traffic Control Center (Center) and the Terminal Radar Approach Control (TRACON), as this is
the point where the hand-off of aircraft occurs.  The distribution of the spacing in the unadjusted traffic 
can be obtained from radar tracking data, as can the distribution of the spacing in the adjusted traffic.  The
distribution of the spacing can also be obtained through controller-in-the-loop simulations.

5.5.2 Total Probability for Unadjusted Traffic 
Once the pdf of the spacing in the unadjusted traffic, such as that shown in Fig. 5-7 is known, a total 

probability can be computed.  For the pdf pT of the spacing in the unadjusted traffic, the probability
(referring to Fig. 5-8 and based on Eq. (5-7)) that aircraft sequence i contained in the small slice of traffic
at spacing s, and could execute the procedure without any separation violations is

(5-11)
s

iTsiT
dxpdspdP

0,,
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On the left hand side of Eq. (5-11), subscript T denotes that the probability is from the pdf of 
unadjusted traffic spacing.  The integral on the right hand side of Eq. (5-11) is actually the cumulative
probability of feasible separations.  The total probability that no separation violation will occur for aircraft
sequence i under the given traffic condition, i.e. the total level of confidence PTi for aircraft sequence i
can be obtained as 

0 0
dspdxpP

T

s

iiT ,
(5-12)
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Figure 5-8 Probability under normal traffic flow. 

For the probability Pi that aircraft sequence i is in the arrival traffic stream, the overall total 
probability PT that no separation violation will occur under the given traffic condition is a weighted
average of total probabilities for all aircraft sequences, that is 

i
T

s

ii
i

iTiT
dspdxpPPPP

0 0,
(5-13)

The probability given by Eq. (5-13) now depends on the actual traffic condition, i.e. traffic mix and 
the distribution of the spacing in the unadjusted traffic.  For example, if there is only a small percentage 
of a sequence where a heavy is leading a small – a sequence with large feasible separations, and a pdf 
farther to the right than other sequences – that sequence will not contribute much to the overall total 
probability. Note that once the pdf of the spacing in the unadjusted traffic and ground speed are known, 
the average arrival rate can be estimated.  However, the pdf of the spacing in the unadjusted traffic is not 
unique for a given average arrival rate even if ground speed is fixed.  Equations (5-12) and (5-13) not
only account for the arrival rate, it also accounts for the randomness in the arrival stream. For the same
average arrival rate, higher randomness will give a flatter PT, yielding lower total probability.

The overall total probability gives an estimated percentage of flights in the arrival stream that could 
execute the procedure without any separation violations.  This total probability is an indicator of how well 
the procedure fits into the actual traffic flow, i.e. without the need to impose a higher target separation at 
the intermediate metering point.  Under lighter traffic conditions, the pdf pT will shift to the right, yielding
higher values of PT.  This means the procedure could be executed with higher levels of confidence. 
Under heavier traffic conditions, the pdf pT will shift to the left, yielding lower values of PT.  This means
the procedure would be executed with lower levels of confidence.
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5.5.3 Sequence-Independent Target Separation 
When a higher target separation is used, the pdf of the observed spacing would be similar to the thick

gray curve in Fig. 5-9.  Following the same derivation described in the previous subsection, the total level
of confidence for aircraft sequence i under the adjusted traffic PTa is given by

0 0
dspdxpP

Ta

s

iiTa,
(5-14)
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Figure 5-9 Probability under adjusted traffic flow. 

The overall total probability PTa that no separation violation will occur under the adjusted traffic is 

i
Ta

s

iiTa
dspdxpPP

0 0
(5-15)

As shown in Fig. 5-9, the pdf of the spacing in the adjusted traffic is to the right of the pdf for the 
unadjusted traffic, resulting in a higher total level of confidence.  Thus, the goal of the total probability
method is to find a minimum target separation SI such that the resulting probability density pTa would 
assure an overall total probability PTa that is greater than or equal to the desired value. 

When traffic is not heavy, the mean of observed spacing would increase at a much slower rate than the
increase in the target separation.  In other words, the arrival rate would decrease at a much slower rate
than the rate at which the target separation is increased.  This is because, when traffic is not heavy, the use 
of an increased target separation would mostly reduce spacing randomness in the arrival stream rather 
than increase the mean of observed spacing.  However, when traffic is heavy, the increase in the target 
separation would cause at some point the arrival rate to decrease.  In this case, a tradeoff must be made
between noise abatement approach and arrival procedure benefits and throughput.  This will be discussed 
in more detail later. 

5.5.4 Sequence-Specific Target Separation 
The total probability separation analysis method using sequence-specific target separations is

illustrated in Fig. 5-10.  By using sequence-specific target separations, the spacing at the metering point
for each aircraft sequence will be adjusted by the controller based on the target separation for that specific
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aircraft sequence, as shown by the pdfs (thick gray curves) for adjusted traffic spacing in Fig. 5-10. 
Notice that both the means and shapes of the pdfs of the spacing in the adjusted traffic would be different 
for different target separations.  However, these pdfs will likely only depend on the pdfs of the spacing in 
the unadjusted traffic and the target separations used, but not the aircraft sequence, because controllers 
probably would not treat each aircraft differently. Based on this assumption, a generic model of pdfs of 
the spacing in the adjusted traffic may be developed that would be applicable to different aircraft types.
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Figure 5-10 Sequence-specific total probability method. 

Now the pdf of the spacing in the adjusted traffic stream for aircraft sequence i becomes pTai.
Referring to Fig. 5-8 and 5-9, the probability that aircraft sequence i contained in the small slice of traffic
at spacing s could execute the procedure without any separation violations is 

(5-16)
s

iTaisTai
dxpdspdP

0,

In Eq. (5-16), subscripts Tai denote that the probability is from the pdf of the spacing in the adjusted
traffic under the target separation for aircraft sequence i.  Similarly, the total probability that all aircraft
pairs of sequence i in the traffic stream could execute the procedure without any separation violations is 

0 0
dspdxpdPP

Tai

s

isTaiTai ,
(5-17)

The overall total level of confidence for all aircraft sequences then becomes

i
Tai

s

ii
i

TaiiTa
dspdxpPPPP

0 0
 (5-18) 

Note that the sum of probability Pi for all aircraft sequences in the arrival traffic stream is equal to 
one.  Thus, by selecting SIi such that PTai is equal to the desired confidence level, the resulting overall 
total level of confidence would also be equal to the same desired confidence level.  This observation 
offers a simple way to determine sequence-specific target separations using the total probability method,
i.e. by determining each target separation independently. 
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5.6 TRADEOFF ANALYSIS

In both the conditional probability and the total probability separation analysis methods, the individual
sequence-specific target separations for each of the aircraft sequences can be determined independently
with the same level of confidence.  Target separations determined this way treat each of the aircraft
sequences equally even though their contribution to throughput or overall level of confidence may very
well be different.  Under some situations, it may be better to assign different levels of confidence for
different aircraft sequences. 

For instance, if a specific aircraft sequence requires larger feasible separations than other sequences, 
and the sequence is rare in the arrival stream, it might not be prudent to simply use a large target 
separation for this aircraft sequence.  Rather, a moderate target separation could be used for this specific 
aircraft sequence if there is some tolerance for aircraft in this sequence being vectored during the descent
when deemed necessary. On the other hand, target separations slightly higher than what are specified by
the average confidence level could be used for aircraft sequences that require smaller feasible separations
to allow more aircraft of these sequences to perform noise abatement approach and arrival procedures 
without interruptions.  The benefits of this strategy are two folds.  First, by using sequence-specific target 
separations that are determined with different levels of confidence, the throughput may be increased even
for the same overall level of confidence, or higher overall level of confidence may be achieved for the
same throughput.  Second, by eliminating the use of very large target separations that might be nominally
required by some rare aircraft sequences, excessive delay to other aircraft behind those aircraft sequences 
may be avoided.

5.6.1 Trade-off Analysis through Solving Optimization Problems
Two optimization problems can be formulated for sequence-specific target separations using the total

probability method.  In the first optimization problem, traffic delay is minimized for given overall total 
level of confidence (the minimum delay problem).  Mean adjusted traffic spacing at the metering point is
used as the indicator of traffic delay caused by spacing adjustment.  A more direct indicator of traffic
delay would be the average inter-arrival time.  The connection between the two is ground speed.  The 
mean adjusted traffic spacing subject to a single target separation is given in Eq. (5-10).  The objective in 
this problem is to choose sequence-specific target separations SIi to minimize the mean adjusted traffic
spacing

i
TaiiTs

sdspPsE
0

)( (5-19)

subject to the constraint

givenTa
i

Tai

s

iiTa
PdspdxpPP

0 0
(5-20)

In the second optimization problem, the objective is to choose SIi to maximize the overall total level of
confidence (the maximum level of confidence problem) as given in Eq. (5-18), for given traffic 
conditions, i.e. the mean adjusted traffic spacing shall not exceed the mean unadjusted traffic spacing 

)()(
TTa

sEsE (5-21)
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In other words, no additional delay shall be introduced.  The mean unadjusted traffic spacing is given
in Eq. (5-9). For the sake of clarity, the second problem is rewritten as choosing SIi to maximize

i
Tai

s

iiTa
dspdxpPP

0 0
(5-22)

subject to the constraint

dsspsdspP
T

i
Taii 00

(5-23)

In the first optimization problem (the minimum delay problem), defined by Eq. (5-19) and (5-20), 
additional delay may have to be introduced as the given level of confidence increases. In the second 
optimization problem (maximum level of confidence problem), defined by Eq. (5-22) and (5-23), the
level of confidence may be limited to a certain level when the traffic is heavy.  The solution from 
maximum level of confidence problem gives the highest overall level of confidence that could be
achieved without introducing additional delay. The solution from the minimum delay problem, on the 
other hand, gives the maximum throughput (connected to minimum spacing via ground speeds) that could
be achieved for the given desired overall total level of confidence.

Although detailed analyses of noise abatement approach and arrival procedure benefits and delay
penalties are out of the scope of this thesis, the formulation of the two optimization problems provides 
bases for more rigorous tradeoff analysis in the future.  This tradeoff may be illustrated as follows.  To 
maintain throughput, the average spacing at the metering point needs to be kept as low as possible so that 
additional delay is not imposed to upper stream traffic.  This suggests the selection of a target separation 
that is as close as possible to the separation minima or MIT restrictions currently being used, or the use of 
a relatively low level of confidence. However, the benefits of noise abatement approach and arrival 
procedures are best achieved when there are no interruptions to the low noise descent leg.  This suggests
the selection of larger target separations, or a relatively high level of confidence.  The optimum solution is 
a tradeoff between the solutions of the two problems. It is important to note that this tradeoff is only
possible because of the controller’s ability to predict separation violations and intervene when necessary.
Additionally, the location of the intermediate metering point may be moved towards or away from the 
runway to search for a better design if the optimal solution at the current metering point is not 
satisfactory.

5.6.2 Simplified Optimization Problems
Since knowledge of pdf pIai of adjusted traffic for any arbitrary target separation is not readily

available, the above two optimization problems could not be easily solved.  However, they can be reduced
to a simplified form. Assuming only the aircraft mix is known, the minimum delay problem becomes to 
choose sequence-specific target separation SIi to minimize the weighed average target separation

i
IiiIi

SPSE )( (5-24)

subject to the constraint that the weighed average of conditional levels of confidence is greater than or 
equal to the given value, i.e. 
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givenR
i

S

iiRi
PdxpPPE

Ii

0
)( (5-25)

The maximum level of confidence problem becomes to choose squence-specific target separation SIi to 
maximize the weighed average of conditional levels of confidence 

i

S

iiRi

Ii

dxpPPE
0

)( (5-26)

subject to the constraint that the weighed average target separation is less than or equal to the given value,
i.e.

givenI
i

IiiIi
SSPSE )( (5-27)

The same tradeoff principle can now be applied to the solutions of the two simplified optimization 
problems to obtain sequence-specific target separations. 

5.6.3 On the Use of Sequence-Specific Target Separations 
In current practice, MIT restrictions at the metering point or hand-off point are given as a single 

number for the entire traffic stream at any given time.  Using sequence-specific target separations will 
increase the number of variables for the controller to work with.  For example, with two aircraft types A 
and B, four aircraft sequences exist, i.e. type A leading type A, type A leading type B, type B leading type
A, and type B leading type B.  As the number of aircraft types increases, the number of aircraft sequences
increases geometrically. To be practical, the number of sequence-specific target separations must be
limited to a manageable level.

More over, MIT restrictions are discretized4, often in increments of 5 nm.  However, the optimal target
separations are continuous variables and thus may fall between the discrete MIT restriction values 
currently in use.  These target separations must also be discretized to some degree for easy handling.  As 
an option, aircraft sequences with similar feasible separation distributions could be consolidated to 
simplify the scenario.  The optimization method could then be modified to accommodate the
discretization requirement.  In any case, for optimal performance, the discretization step size will have to 
be reduced from the commonly used 5 nm.

5.7 SUMMARY 

A methodology for analyzing separation between consecutive aircraft performing the same noise 
abatement approach or arrival procedure was presented.  This methodology provides means to determine
target separations at the intermediate metering point to allow for uninterrupted operation of noise 
abatement approach or arrival procedures with certain levels of confidence.  The methodology also
provides means to evaluate the suitability of the procedure operation concept under given traffic 
conditions. The methodology could be applied using aircraft trajectories obtained from radar tracks or
simulation.

The conditional probability method directly connects target separations at the intermediate metering
point with conditional levels of confidence. The total probability method, utilizing probability

118



distribution of the spacing in the arrival traffic, gives more realistic estimation of levels of confidence for 
given target separations in real world environment.  The sequence-independent target separation is easy to 
use, but sequence-specific target separations may provide additional throughput benefits.  The selection of 
which method to use should be based on data availability, traffic conditions, and existing controller
practices at the site.  Further discussion on this can be found in the next chapter. 

The formulation of the minimum delay optimization problem and the maximum levels of confidence
problem provides bases for rigorous tradeoff analysis.  Solving these two problems and detailed analyses
of noise abatement benefits and delay penalties provide research opportunities for the future. 

Although the methodology was specifically developed for solving the separation analysis problems for
noise abatement approach and arrival procedures, it may also be used more generally for any approach or
arrival procedure, such as the Area Navigation (RNAV) arrival procedures5, that have a predefined lateral 
flight path.
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CHAPTER 6 

THE UTILITY AND APPLICATION OF THE DESIGN 
FRAMEWORK, METHODOLOGY, AND TOOLS 

NOMENCLATURE

C = traffic throughput in aircraft per hr 
Ci = traffic throughput for aircraft sequence i
E( ) = expectation, mean, average operator 
E
^
( ) = sample mean

i = index of aircraft sequence in arrival traffic 
k = order of Erlang probability density function 
k
^

= estimated order of Erlang probability density function
PRi = conditional level of confidence for aircraft sequence i
PT = total level of confidence
PTa = total level of confidence under adjusted arrival traffic 
s = spacing
si = spacing for aircraft sequence i

SI = target separation
SIi = sequence-specific target separation for aircraft sequence i

f = final separation buffer 

fi = final separation buffer for aircraft sequence i
= parameter of Erlang probability density function

^
= estimated parameter of Erlang probability density function

 = standard deviation

s = standard deviation of spacing in arrival stream
^

s = sample standard deviation of spacing in arrival stream 

6.1 INTRODUCTION 

The procedure design and operational framework, the Monte Carlo based aircraft trajectory simulation
tool, and the separation analysis methodology form a Tool for Analysis of Separation And Throughput
(TASAT). As a vital part of this research, the application of TASAT has been demonstrated through a
simulation study and a flight test.  As stated earlier in this thesis, the goal of this research is to efficiently
manage separation between aircraft performing noise abatement approach and arrival procedures so that 
these procedures can be implemented widely to benefit the communities and operators, as well as to ease 
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the constraint on traffic growth.  Pertinent to this goal, analyses have also been done to determine the 
impact of operational conditions and procedure design parameters on traffic throughput.

The TASAT is currently being applied to approach and arrival procedure development projects at a
number of airports in the US and Europe.  These airports include Nottingham East Midlands Airport1 and 
London Gatwick Airport2 in UK, Los Angeles International Airport3 and Hartsfield-Jackson Atlanta 
International Airport4 in the US, and several other airports. The Continuous Descent Arrival (CDA) flight 
test conducted in September 2004 at Louisville International Airport (KSDF) was the first project in
which the separation analysis methodology was successfully applied.  The CDA procedure developed for
the KSDF 2004 flight test was used as the numeric example in the simulation study to be presented.  The 
analyses of data collected during the KSDF 2004 CDA flight test are also to be presented in this chapter
to demonstrate the effectiveness of the tool developed.  It is thus necessary to provide some background 
information about the flight test project and to provide details of the procedure design before proceeding 
to further discussions.

KSDF is the major hub for UPS overnight package delivery operations.  Due to the nature of its 
business, most UPS flight operations at KSDF occur during the night.  Each weekday, about 100 jet 
transport aircraft (mostly UPS package freighters) land at KSDF in a four-hour period between 10:00 PM
and 03:00 AM.  This is the period when residents are most sensitive to noise disturbance.  Thus, KSDF 
becomes a perfect candidate site for conducting noise abatement arrival procedure studies.  KSDF has 
three runways: runway 17R/35L, its parallel runway 17L/35R, and runway 11/29.  Because of the ramp
configuration of the UPS sorting facility at the airport, runway 17R/35L is the preferred runway for the
majority of UPS night arrivals.

In an effort to advance the development of noise abatement approach procedures, a research team
consisting of members from Massachusetts Institute of Technology, Boeing, Federal Aviation 
Administration (FAA), Louisville Regional Airport Authority (RAA), National Aeronautics and Space 
Administration (NASA), and UPS designed a continuous descent approach procedure for runway 17R at 
KSDF.  The research team conducted a flight demonstration test at KSDF in 2002 using UPS B767-300
revenue flights to evaluate the operational characteristics and to demonstrate the noise-reducing potential
of this advanced noise abatement procedure.  This procedure was shown to reduce the maximum A-
weighted sound level (LAMAX) noise at seven locations along the flight path by 3.9 to 6.5 dBA and 
reduce the fuel burn during approach by 400 to 500 lb5.

In 2004, to further the development and the implementation of CDA procedures, the research team
undertook the development of a CDA procedure that could be used regularly during nighttime by UPS 
aircraft destined to runways 17R or 35L at KSDF from origins in the Western United States.  A flight test
involving 12 to 14 UPS B757-200 and B767-300 revenue flights each night was conducted to 
demonstrate the consistency of the procedure and the effectiveness of the separation analysis
methodology; to measure the reductions in noise, emissions, fuel burn and time; and to obtain the data 
necessary for approval to use the procedure on a regular basis.  In the KSDF 2002 study, managing
separation between consecutive flights was purposely omitted to expedite the research project in that only
one flight performed a continuous descent approach each night.  However, managing separation 
effectively is essential for the implementation of CDA procedures in a real world environment; as such, it
became an integrated part of the 2004 research effort. 

The arrival chart used in the KSDF 2004 CDA flight test is shown in Fig. 6-1. As mentioned earlier in 
this thesis, this is an Area Navigation (RNAV) based CDA.  The lateral flight path would be managed by
the Flight Management System (FMS) Lateral Navigation (LNAV) function.  The nominal lateral flight 
path was a routing via waypoints CENTRALIA, ZARDA, PENTO, SACKO, to CHERI and then to either 
runway 17R or 35L.  The runway to be used depends on the prevailing winds on a given day.  If the wind
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were from the south, the CDA to runway 17R would be in effect (southern flow).  If the wind were from
north, the CDA to runway 35L would be in effect (northern flow).  The vertical profile would be a
continuous descent starting at cruise altitude and follow the FMS computed Vertical Navigation (VNAV) 
defined by altitude and speed constraints given at waypoints TRN17, CHR27, and CHRCL for the CDA 
to runway 17R, or waypoints TRN35, CRD27, and CRDNL for the CDA to runway 35L.  The
characteristics of the vertical profile are shown in Fig. 2-16.  Ideally, the engine throttle would remain at
idle until the aircraft is established on the final approach.  Two shallower segments are facilitated by the 
FMS to allow proper deceleration.  The first of these shallower segments is at 10,000 ft allowing aircraft
to decelerate to a Calibrated Airspeed (CAS) of 240 kt.  For turbojet aircraft operating below 10,000 ft,
Air Traffic Control (ATC) requires that the speed shall not exceed an Indicated Airspeed (IAS) of 250 kt.
CAS 240 kt is used by many FMS as the default value to leave a 10 kt speed buffer.  Note that for aircraft 
with FMS, the airspeed displayed to the pilot is the same as CAS. The second shallower segment is at
3,800 ft allowing aircraft to decelerate to CAS 180 kt; the speed at which the aircraft is configured for the 
final approach.  During the flight test, the waypoint SACKO was used as the intermediate metering point. 

Figure 6-1 Chart used in the KSDF 2004 RNAV CDA flight test. 

The remainder of this chapter is organized as follows:  The results of the simulation studies are
presented in the next section.  The application of the separation analysis methodology is demonstrated
through applying the conditional probability separation analysis method and the total probability
separation analysis method on simulated aircraft trajectories.  The contributions of winds and the effect of
the location of the intermediate metering point are also presented.  The analyses of data collected during 
the KSDF 2004 CDA flight test are presented in Section 6.3.  Spacing in the arrival stream at the 
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intermediate metering point and observations on separation management during the flight test are 
described in detail.  It follows a separation analysis based on aircraft trajectories extracted from radar
tracks.  Flight test results are compared with simulation results to show the effectiveness of the Monte
Carlo simulation tool and the separation analysis methodology.  The summary of this chapter is provided
in the last section.

6.2 THE SIMULATION STUDY 

A simulation study was conducted to both illustrate how the separation analysis methodology and the 
Monte Carlo simulation tool are applied, and to determine the impact of winds and the location of the 
intermediate metering point on traffic throughput.  The results of this study are presented in this section. 

6.2.1 Simulation Setup
The noise abatement arrival procedure used in the simulation study to be presented was based on the

RNAV CDA developed for the KSDF 2004 flight test. To be concise, only the results for the CDA to
runway 35L are presented in detail.  This runway configuration was selected because it was the most
commonly used configuration due to the local wind conditions. The altitude and speed constraints that 
define the vertical profile of the simulation procedure are listed in Table 6-1.  Notice that the altitude
constraint at waypoint TRN35 for the simulation procedure is 200 ft higher than the flight test procedure. 
The reason is that the altitude constraint at TRN35 was reduced from 4,000 ft to 38,000 ft for the flight
test procedure to assure proper capturing of Instrument Landing System (ILS) glide slope from below. 
However, the separation analysis results to be presented should be valid for both procedures.  The descent 
speed was CAS 335 kt from cruise to 10,000 ft, and CAS 240 kt (the FMS default value) from 10,000 ft
to the point where the aircraft began decelerating to satisfy the first speed constraint. 

Table 6-1 Vertical constraints for CDA to runway 35L. 

Waypoint Distance, nm Altitude, ft CAS, kt 

TRN35 -11.45 Above 4000 /
CRD27 -8.14 3000 180
CRDNL -5.79 2400 170
Runway 0 / /

Two aircraft types, B757-200 (B757) and B767-300 (B767), were simulated with random landing 
weights as defined in Table 6-2.  The random pilot response model described in Subsection 3.3.1 was 
used.  Nominal wind profiles and inter-flight wind variation were modeled using ACARS data reported
between 10:00 PM–3:00 AM local standard time each day during a period of 6 months from February 10
to August 12, 2004.  Three nominal wind profiles were used in the simulation: the mean wind profile, the
zero wind profile, and a hypothetical head wind profile.  The mean wind profile for KSDF (shown in Fig.
4-30 as the solid curves) would be a tail wind condition during most part of the arrival, and a crosswind

Table 6-2 Landing weight parameters, lb. 

B757-200 B767-300

Mean 167,539 262,205
Standard Deviation 11,000 18,000

Minimum 146,617 229,271
Maximum 194,534 298,183
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condition during the final approach.  The hypothetical head wind profile had the same wind speed profile 
but with the wind directions flipped about the line of longitude at the airport so that it would be 
experienced as a head wind condition during most of the arrival and as a crosswind condition during the
final approach. For a given scenario, each aircraft type was simulated 200 times in the leading position
and 200 times in the trailing position.  For the two aircraft types, a total of 800 trajectories were simulated
in each scenario.

6.2.2 Feasible Separations, the Target Separation and the Application of 
Conditional Probability Method 

In this scenario, the KSDF mean wind profile was used as the nominal wind profile.  The probability 
density functions (pdfs) of the feasible separations at SACKO, which is a waypoint at along track distance 
of -60.46 nm or about 10 nm west of the Terminal Radar Approach Control (TRACON) boundary, were 
obtained from simulated trajectories.  Note that the along track distance is defined as the distance along 
the nominal flight path in the direction of flight, with zero at the runway threshold.  The results are shown
in Fig. 6-2. Among the four possible aircraft sequences, the sequence of B767 leading B757 had the
largest values of feasible separations.  This was partially because this sequence has the largest final
separation minimum among the four – 5 nm while the other three sequences require 4 nm.  Another factor
was that the B757 aircraft, which was in the trailing position, had larger trajectory variations.  This latter
factor can also be seen by comparing the sequence of B757 leading B757 with the sequence of B767 
leading B767.
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Figure 6-2 Feasible separations at SACKO.

The pdfs of the final spacing are shown in Fig. 6-3 for a hypothetical target separation of 15 nm at 
SACKO.  The two vertical lines indicate the separation minima at the runway threshold.  The vertical line
on the right is for the sequence of B767 leading B757, the vertical line on the left is for the other three 
aircraft sequences.

The traffic throughput of an ideal case was examined first.  The ideal case implies that trajectory
variations were predicted precisely as they would happen and that the spacing at the metering fix for each
consecutive aircraft pair was set exactly to the corresponding feasible separation for that aircraft pair. 
This means there would be no capacity loss in accommodating uninterrupted noise abatement arrival
procedure execution, and that the final separation buffer would be nearly zero. Thus, throughputs for the
ideal case indicate system capacity for the given aircraft mix and wind condition.  For the ideal case, the 
traffic throughput C and the mean E(s) of spacing at the intermediate metering point for each aircraft
sequence i for the ideal case are listed in Table 6-3 as the group on the left. The average throughput
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values in the table are not averages of the individual aircraft sequences.  They were directly computed
from the mean of time intervals at SACKO.  The average throughput was 31.40 aircraft per hr for the
ideal case.

Table 6-3 Conditional levels of confidence and traffic throughputs.

Ideal Case SI = 15 nm
Aircraft

Type/Sequence
Ci

1/hr
E(si)
nm

PRi Ci

1/hr
fi

nm
B757 – B757 32.04 14.88 55.5% 31.78 0.05
B757 – B767 37.42 11.96 99.9% 30.08 1.01
B767 – B757 24.84 19.41 0.0% 31.78 -1.30
B767 – B767 34.24 13.11 95.2% 30.08 0.62

Average 31.40 14.84 62.7% 30.91 0.09
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Figure 6-3 Final spacing given 15 nm at SACKO. 

For a sequence-independent target separation of 15 nm (the target separation used in the flight test), 
conditional levels of confidence for the four aircraft sequences can be computed using either the pdfs of
the feasible separations shown in Fig. 6-2, or the pdfs of the final spacing shown in Fig. 6-3.  The results 
are listed in Table 6-3 as the group on the right.  Again, it is important to note that for a different target
separation, the pdfs need to be regenerated for the final spacing while the pdfs for the feasible separations
can be reused for any target separation values. The 15 nm target separation yielded an average 
conditional level of confidence PR of 62.7% and an average final separation buffer  of 0.09 nm.
However, the conditional level of confidence and final separation buffer vary drastically from aircraft
sequence to aircraft sequence.  The average throughput for a 15 nm target separation was 30.91 aircraft 
per hr, very close to the average throughput for the ideal case.  Note that the averages in Table 6-3 were 
not weighted.  Thus, they are only applicable to scenarios where there is 50% of each aircraft type.  For 
the CDA to runway 17R, the average conditional level of confidence was 68.2%, and the average 
throughput was 29.62 aircraft per hr. 

To illustrate the effect of sequence-specific target separations on traffic throughput, a conditional level 
of confidence of 75% was chosen. The corresponding sequence-independent target separation was 
determined to give an average conditional level of confidence of 75%.  The corresponding sequence-
specific target separations were determined to give the conditional confidence level of 75% for each
aircraft sequence.  The target separations, traffic throughputs, and final separation buffers are listed in 
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Table 6-4 for both cases.  The sequence-independent target separation determined was 17.07 nm.  The
average of the sequence-specific target separations was 15.63 nm, or 1.44 nm lower than the sequence-
independent target separation.  This 1.44 nm reduction in average target separations was the benefit of
using sequence-specific target separations for the conditional level of confidence of 75%.  It is seen from
Table 6-4 that for the same average conditional level of confidence, by using sequence-specific target
separations, the final separation buffer was reduced and more evenly shared by all aircraft sequences.
The average traffic throughput was increased from 27.31 to 29.85, by more than 2 aircraft per hr.  Based
on queueing theory, as the system is operating at near capacity, even a small improvement in traffic 
throughput would significantly reduce system delay6.

The traffic throughput values listed in Tables 6-3 and 6-4 only have theoretical meaning because in 
real world situations, the actual spacing at the intermediate metering point would not be exactly equal to 
the target separations. 

Table 6-4 Sequence-independent vs. sequence-specific target separations.

SI = 17.07 nm PRi = 75.0 %
Aircraft

Type/Sequence
PRi Ci

1/hr
fi

nm
SIi

nm
Ci

1/hr
fi

nm
B757 – B757 96.3% 28.08 0.67 15.67 30.47 0.25
B757 – B767 100.0% 26.59 1.73 12.69 35.34 0.24
B767 – B757 3.7% 28.08 -0.71 20.29 23.80 0.30
B767 – B767 100.0% 26.59 1.31 13.89 32.39 0.25

Average 75.0% 27.31 0.75 15.63 29.85 0.26

To further illustrate the relationship between the sequence-independent target separation and the 
corresponding sequence-specific target separations, a series of conditional levels of confidence were 
examined.  For each of the conditional levels of confidence, sequence-independent target separation and 
sequence-specific target separations were determined in the same way as the values in Table 6-4 were
determined. The sequence-independent target separations and the averages of sequence-specific target
separations are plotted in Fig. 6-4 versus conditional levels of confidence.  It is seen that, at lower levels
of confidence, i.e. below 65% in the simulated case, sequence-specific target separations would actually
reduce efficiency.  As the level of confidence became greater than 65%, sequence-specific target
separations began to improve efficiency; the higher the levels of confidence, the higher the benefits 
sequence-specific target separations would provide relative to a sequence-independent target separation. 
The reason behind this is graphically illustrated in Fig. 5-5, and explained earlier in Chapter 5.
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6.2.3 The Application of the Total Probability Method 
As discussed before, the total probability method can be used to examine how well the procedure fits 

into a given unadjusted traffic flow.  To demonstrate the application of the total probability separation 
analysis method, the spacing in the arrival stream at SACKO was extracted from Automated Radar 
Terminal System (ARTS) data via the UPS ground management system.  Details of the ARTS data used 
in this analysis are explained in Subsection 6.3.1 of this chapter. Flights arrived between 22:00 PM and 
3:00 AM local standard time on 28 days between September 14 and December 1, 2004 were examined.
On 18 of these 28 days, the normal 10 nm Miles-in-Trail (MIT) restriction was in effect.  On the
remaining 10 days, i.e. during the CDA flight test period from September 14 to September 25, a 15 nm
target separation was in effect.  In total, 131 flight pairs were selected from the arrival stream under the 
10 nm MIT, and 69 flight pairs were selected from the arrival stream under the 15 nm target separation.
The criteria for selecting these flight pairs were: a) the spacing at SACKO between a flight pair was less 
than or equal to 30 nm – larger spacing are considered as gaps in the arrival flow; b) no flights from other 
entry points had landed on the same runway between the flight pair – sepaaration values become
meaningless between the pair of aircraft.

The estimated pdfs of the spacing in the arrival stream are shown as bar charts in Fig. 6-5.  Traffic 
under the 10 nm MIT and the 15 nm target separation are denoted as the unadjusted traffic and the 
adjusted traffic respectively.  It is normal that at times, the MIT restrictions might not be satisfied, as
shown by the bars on the left of vertical lines at 10 nm and 15 nm for the unadjusted traffic and the
adjusted traffic respectively.  However, there were no observations of spacing below the separation 
minimum of 5 nm in effect at SACKO.  Estimated parameters of the spacing in the arrival stream such as
mean E(s) and standard deviation s are listed in Table 6-5.  It is seen that although the average traffic 
spacing was increased by using a larger target separation (or a larger MIT restriction), the standard 
deviation was decreased – indicating a reduction in randomness.  It is also seen that as the target
separation increases, the average traffic spacing increases by a smaller amount than the corresponding
increase in the target separation.
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Figure 6-5 Traffic spacing at SACKO. 

An Erlang probability density function6 was fit to model the spacing data.  The Erlang distribution is
bounded to positive values, and it has a smaller standard deviation (randomness) than the exponential
distribution that is commonly used to model inter-arrival times.  Because spacing in an arrival stream are
adjusted by the controller to meet the separation minima or MIT restrictions, Erlang pdf could be a proper
one to use.  The Erlang pdf is given by
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where s is the spacing in the arrival stream; and k is referred to as the order of the Erlang pdf. For any set
of given parameters, the mean and variance of the Erlang distribution are 
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Given estimated mean and variance (denoted by hat), from Eq. (6-2), parameters of the Erlang model
can be estimated as 

(6-3)
)(ˆ/ˆˆ

)ˆ/)(ˆround(ˆ 22

sEk

sEk s

The Erlang approximations to the pdfs of traffic spacing are shown as the solid black curve and the
light gray curve in Fig. 6-5 for the 10 nm MIT and 15 target separation respectively.  The estimated
model parameters are listed in Table 6-5.  It is seen from Fig. 6-5 that the models fit the data well.  With
sufficient radar data or simulation data, a generic model for a specific metering point may be developed as 
a function of the mean of spacing in the unadjusted traffic, the standard deviation of the unadjusted traffic 
spacing, and the target separations.  This provides another opportunity for future research.

Table 6-5 Spacing parameters in arrival traffic.

Traffic Data Model
Traffic

Condition
E(s)
nm

s

nm k
^ ^

, 1/nm

Unadjusted 15.79 5.88 7 1.050
Adjusted 19.05 4.28 20 0.443

With the distributions of the spacing in the arrival stream known, the total levels of confidence for the
unadjusted traffic and the adjusted traffic can be computed using Eq. (5-13) and Eq. (5-15) respectively.
The results listed in Table 6-6 are for a 50-50 traffic mix of B757 and B767 that is randomly sequenced 
such that there is 25% of each of the four aircraft sequences.  The computation was based on the pdfs of 
the feasible separations shown in Fig. 6-2 and the models of the spacing in arrival traffic shown in Fig. 6-
5.

Table 6-6 Total levels of confidence assuming 50-50 traffic mix

of B757 and B767.

Sequence PT (SI = 10 nm) PTa (SI = 15 nm)

B757–B757 52.0% 83.6%
B757–B767 72.1% 96.4%
B767–B757 25.5% 45.4%
B767–B767 64.3% 92.8%

Overall  53.5%  79.6%
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Comparing Table 6-6 with Table 6-3 and Fig. 6-4, it is seen that the total levels of confidence are
higher than the conditional levels of confidence for the same target separation. For a target separation of 
10 nm, the average (as if weighted by 50-50 traffic mix) of the conditional levels of confidence was less 
than 10%, while the total level of confidence was 53.5%.  For a target separation of 15 nm, the average of
the conditional levels of confidence was 62.7%, while the total level of confidence was 79.6%.  While the 
conditional level of confidence of 62.7% seems not to be very high, it worked well during the flight test,
because the actual probability seen by the controllers was the total level of confidence – an estimated
value of 79.6% which is higher. The total levels of confidence for the CDA to runway 17R were 58.7%
and 85.0% for the unadjusted and the adjusted traffic respectively.  The total confidence levels were 
higher for the CDA to runway 17R because the flight path was about 7 nm shorter than the CDA to
runway 35L. 

As these results illustrate, the total probability method provides a more complete view of the
relationship between the target separations and the levels of confidence in a real world environment.
However, extra effort is needed to obtain the distribution of the spacing in the traffic stream.  Often, data
are not readily available for adjusted traffic with different target separations.  Nevertheless, it is very
important to at least check traffic conditions such as traffic mix and arrival rate even if the total
probability method were not to be applied due to cost and time constraints.  It is also important to note
that, should the same level of confidence be desired, the total probability method would yield a smaller 
target separation.

Given the minimum acceptable total level of confidence, the traffic condition allowing CDA to be 
performed can be determined.  More data collected from the field will be needed to determine what would 
be the acceptable level of confidence, and what are the factors affecting the acceptable level of
confidence.  This would be an opportunity for future research.  In current applications3,4, 70% is often
used as a starting point*.

6.2.4 The Contributions of Winds 
The effects of inter-flight wind variations were examined first.  In this analysis, the mean wind profile 

was used as the nominal wind profile, and the pdfs of feasible separations were obtained from trajectories
simulated without inter-flight wind variations.  The results are shown in Fig. 6-6.  A comparison with Fig. 
6-2 will reveal that without inter-flight wind variations, the distribution of the feasible separation became
narrower.  This is further illustrated by a comparison of means and standard deviations in Table 6-7.
Although there is no big difference between the means of the feasible separations, the standard deviations
were reduced significantly when there were no wind variations.  This means that larger wind variations
would normally reduce conditional levels of confidence for a given target separation.  The effect would
be most significant when sequence-specific target separations were to be used. These results suggest that 
it is important to model wind variation accurately.

The effects of the magnitude of the nominal wind profile were also examined.  Simulations were 
conducted with different nominal wind profiles: the mean wind profile, the zero wind profile, and a 

* In response to a question about if a level of confidence of 70% is acceptable during the third CDA 
workshop hosted at Georgia Institute of Technology September 6-7, 2006, Walter White of Southern
California TRACON stated that 70% is a balance between workload and efficiency.  It is a starting point 
to be evaluated.  In many cases today, the operational level of confidence can be as low as 10%, meaning
that up to 90% of the approach flights require controller intervention in the form of either a speed
assignment or vector to maintain separation or to keep proper spacing. 
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Table 6-7 The effect of inter-flight wind variations.

With wind 
variations

Without Wind
Variations

Sequence
E(si)
nm nm

E(si)
nm nm

B757–B757 14.88 1.18 14.84 0.597
B757–B767 11.96 1.06 12.00 0.451
B767–B757 19.41 1.31 19.37 0.724
B767–B767 13.11 1.13 13.15 0.578

Average 14.84 14.84

hypothetical head wind profile.  The mean wind profile for KSDF would be experienced as a tail wind
during most part of the arrival, and as a crosswind during the final approach.  It is therefore referred to as 
tail wind profile in the following discussions.  The hypothetical head wind profile had the same wind
speed profile but with the wind directions mirrored about the line of longitude at the airport so that it 
would be experienced as a head wind during most part of the arrival and as a crosswind during the final
approach.  Distributions of the feasible separations were obtained for each wind profile.  The means and
standard deviations are shown in Fig. 6-7.  The standard deviations are presented as error bars on top of 
the mean values.  The means and standard deviations of feasible separations for the tail wind, zero wind,
and head wind profiles are listed in Table 6-8. 
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Table 6-8 The tail wind, zero wind and head wind results, nm.

Tail Wind Zero Wind Head Wind

Sequence E(si) E(si) E(si)

B757–B757 14.88 1.18 13.78 1.13 12.49 1.04
B757–B767 11.96 1.06 10.78 1.09 9.60 1.11
B767–B757 19.41 1.31 18.70 1.30 17.16 1.17
B767–B767 13.11 1.13 12.60 1.20 11.52 1.26

Average 14.84 13.97 12.69

From Fig. 6-7 and Table 6-8, it is seen that the means of the feasible separations were higher under the
tail wind and lower under the head wind relative to the zero wind.  The sequence-independent target 
separations at SACKO for an average conditional level of confidence of 62.7% were 15 nm, 14.12 nm,
and 12.94 nm for the tail wind, the zero wind, and the head wind respectively. These results suggest that
different target separations could be used for different wind conditions, especially when the differences in 
wind speeds are large. 

6.2.5 The Effect of the Location of the Intermediate Metering Point 
The effect of the location of the intermediate metering point on target separations was also studied.  To

this end, the distributions of the feasible separations were determined at three additional waypoints:
CHERI (the current ATC handoff point, at along track distance -50.38 nm), a point at -35 nm, and a point
at -25 nm.  The distances between points are 10 to 15 nm.  At -25 nm on the flight path, the altitude of a 
noise abatement approach procedure could still be around 7,000 ft.  Noise reduction benefits can still be
preserved. The mean wind profile was used as the nominal wind profile.  The means and standard
deviations of feasible separations for each of the metering points are shown in Fig. 6-8.  It is seen that as
the metering point moved closer to the runway, both the means and the standard deviations became 
smaller.  The averages of the means and standard deviations were 14.84/1.17, 13.95/1.07, 10.56/0.75,
9.18/0.51 nm at SACKO, CHERI, -35 nm, and -25 nm respectively. 
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Figure 6-8 The effect of the locations of metering point.

To determine the impact of metering point location on throughput, a sequence-independent target 
separation was obtained for the conditional level of confidence of 75% at each of the four points.  The
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resulting final separation buffer and throughput for each target separation are listed in Table 6-9.  As seen
from the table, the sequence-independent target separation to achieve the same average conditional level
of confidence became smaller as the metering point moved closer to the runway threshold.  The sequence-
independent target separation was reduced from 17.07 nm at SACKO to 9.64 nm at 25 nm from runway 
threshold.  At the same time, the throughput increased as the metering point moved closer to the runway 
threshold; from 27.31 at SACKO to 29.98 at 25 nm from the runway threshold.

Table 6-9 Final separation buffer and throughput for 

average conditional level of confidence of 75%.

Metering Point SACKO CHERI -35 nm -25 nm

SI
a 17.07 15.76 11.62 9.64

B757–B757 f
a 0.67 0.58 0.32 0.34

C 28.08 28.44 29.98 29.92

B757–B767 f 1.73 1.40 0.73 0.34
C 26.59 27.14 27.75 30.03

B767–B757 f -0.71 -0.61 -0.33 -0.38
C 28.08 28.44 29.98 29.92

B767–B767 f 1.31 1.20 1.10 0.63
C 26.59 27.14 27.75 30.03

Average f 0.75 0.65 0.46 0.23
C 27.31 27.78 28.82 29.98

a Target separations and final separation buffer are in nm.

Aside from reducing the target separation and increasing the theoretical throughput, an intermediate
metering point closer to the runway threshold would give controllers more time and airspace to adjust the 
spacing between aircraft.  Thus, it is reasonable to expect that spacing in the adjusted traffic stream
(similar to that shown in Fig. 6-5) would have a narrower distribution and higher percentage satisfying the
target separation at a metering point that is closer to the runway. This in turn would give an even higher
total level of confidence for the same average conditional levels of confidence. 

This analysis suggests that, for a given procedure, target separations could be provided at alternative 
metering points along the noise abatement arrival procedure flight path to allow for operational flexibility
in accommodating different traffic loads.  At lower traffic densities, intermediate metering points farther
away from the airport could be used to allow more fuel and time savings per flight. By using an
intermediate points farther away from the airport, especially when the metering points are at or beyond
the Air Route Traffic Control Center (Center)/TRACON boundary, more responsibility would be given to 
the Center controller.  However, because this would occur during low traffic period, it should not be a big 
concern, but the operators would benefit from more fuel savings and the public would benefit from 
reduced environmental impact.  At higher traffic densities, intermediate metering points closer to the 
runway threshold could be used to allow more flights to perform noise abatement approach procedures
albeit starting at a lower altitude.  Moreover, traffic throughput can be maintained.  At very high traffic 
densities such as those exceeds the system capacity, the system would have to be reverted to the 
conventional mode – all aircraft would have to be vectored.  This is an extreme case in that the 
“intermediate metering point” would have to be moved to the final approach fix.
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6.3 FLIGHT TEST RESULTS 

The analyses of the data collected during the KSDF 2004 CDA flight test are presented in this section
to further demonstrate the application, and to show the effectiveness of the Monte Carlo simulation tool
and the separation analysis methodology.  The flight test and the data collected during the flight test are 
described first.  Observed spacing in the arrival stream at the intermediate metering point and 
observations on separation management during the flight test are presented in Subsection 6.3.2.  A 
separation analysis using aircraft trajectories extracted from radar tracks is provided in the last subsection. 

6.3.1 The Flight Test
The design of the flight test CDA procedure is described in section 6.1.  Prior to the flight test, the 

research team selected SACKO as the intermediate metering point.  As mentioned earlier, this is a
waypoint 10 nm to the west of the TRACON boundary.  It was selected for two reasons: 1) to allow 
aircraft hand off to occur before the speed transition from the descent speed of CAS 335 kt to CAS 240 kt
occurring at 10,000 ft; 2) to save more fuel.

The existing MIT restriction at the boundary between Indianapolis Center (the Center that covers 
Louisville TRACON) and TRACON boundary is 10 nm.  To determine a target separation for the CDA 
flight test, simulation using the Monte Carlo simulation tool was performed with B757 and B767 aircraft
both flying the CDA to runway 35L and the CDA to runway 17R under various conditions.  These
conditions included different combinations of nominal wind conditions such as zero wind, mean wind, 
and 2  wind; with and without variations in pilot response delay; and random, minimum, mean, and 
maximum landing weight.  The conditions were selected to cover a broad range, from normal operation
conditions to cases that required high target separation, e.g., the 2  wind, which is a strong tail wind 
condition at KSDF.

Separation analysis was done for both runways, and all the simulated conditions.  Target separations
that would guarantee separation (at 100% level of confidence based on simulated trajectories) ranged
from 11.58 nm to 22.64 nm depending on the aircraft sequence, wind condition, and the range of aircraft 
weight used in the simulation.  Results were presented to the research team. To adapt to the current
practice of giving MIT restrictions in 5 nm increments, the research team determined that a target
separation of 15 nm at SACKO would give an acceptable level of confidence. 

During the flight test, Indianapolis Center was asked to make every effort to begin the descent from
the original cruise altitude, and to maintain 15 nm separations between aircraft. Aircraft were handed off
to Louisville TRACON at SACKO. The clearance from Indianapolis Center would be a routing to 
CHERI and pilots discretion of 11,000 ft.  Louisville TRACON would clear aircraft to proceed with CDA 
to runway 35L (or 17R) and maintain 3,000 ft. Prior to the waypoint FLP35 (or FLP17, refer to Fig. 6-1),
Louisville TRACON would issue another clearance to maintain 3,000 ft until establish on the Instrument
Landing System (ILS) localizer.  This clearance served as a reminder to the pilot to prepare for the 
deceleration to 180 kt.  The aircraft would then be handed off to Louisville Tower Control. 

Pilots were required to select the CDA35L (or the CDA17R) procedure and the appropriate ILS 
procedure prior to the Top of Descent (T/D).  During the descent, pilots were asked to keep the aircraft in 
FMS LNAV/VNAV path mode to best enable compliance of the altitude and speed constraints and the
intended CDA profile.  Minimum thrust or drag could be added as necessary to maintain the speed as
close as possible to the VNAV target speed.  Pilots were also required to select flaps 1 no later than 
FLP35 (or FLP17), and to select flaps 5 no later than TRN35 (or TRN17).  These flap extension 
requirements were necessary to enable proper deceleration before capturing the ILS localizer. 
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Should the spacing at cruise altitude be sufficient and the descent profile be properly managed, no 
vectoring would be necessary by either Center or TRACON controllers during the descent.  In this case, 
the engine throttle would likely remain at idle from T/D until aircraft is established on the final approach. 
Should the spacing at SACKO be projected as less than the 15 nm target separation, the Center controller 
would use speed adjustment, lateral vectoring, or both to maintain a 15 nm separation.  If the 15 nm target
separation at SACKO were met, in most cases no vectoring by the TRACON controller would be needed.
In any case, should the TRACON controller project that a separation violation were likely to occur, the 
aircraft would be vectored, or sent to the parallel runway.

The KSDF CDA flight test began on Tuesday, September 14 and ended on Saturday, September 25, 
2004.  The flights involved in the test were all scheduled to arrive within the one hour period between 
UTC 5:30 (1:30 AM local day light savings time) and UTC 6:30 (2:30 AM local day light savings time)
each morning.

The initial plan called for 12 CDA flights on Tuesdays through Fridays, and 14 CDA flights on
Saturdays.  However, due to changes in aircraft assignments (where B757 or B767 replaced A300, or vice
versa) and the request to participate by the crew of one flight that was not planned to fly CDA, a total of 
126 flights were finally cleared to proceed with CDA.  Among those 126 flights, 125 aircraft performed
the CDA and 1 aircraft was later cleared for visual approach upon request from the crew because of a
navigation database issue.

All the flights on September 16 and 24 and 1 flight on September 23 flew the CDA to runway 17R; the
remainder of the flights flew the CDA to runway 35L.  The numbers of CDA flown by each aircraft type
to each runway are summarized in Table 6-10.  Some of the flights that flew the CDA to runway 35L
actually landed on runway 35R following instructions from controllers to ensure separation.  The need for 
these landings on runway 35R will be explained later. 

Table 6-10 Number of CDA flights.

September

Date 14 15 16 17 18 21 22 23 24 25 Total

B757 6 7 5 8 6 7 7 8 54
35L

B767 6 5 6 6 6 6 5 6 46
B757 6 6 12

17R
B767 6 1 6 13

Total 12 12 12 11 14 12 13 13 12 14 125

ARTS data for the two-week CDA flight test period were retrieved from the UPS surface management
system.  These data provide flight identification, aircraft position, altitude, and ground speed at a rate of 
once every 4 to 10 seconds.  On each day, the data covered a time span of about 3 hours around the
scheduled CDA arrival time except on September 25 when only 2 hours worth of data were available. 
The data covered a spatial area of 55 nm radial from the airport.  All UPS flights arrived during the 3 hour
period were included.  Although there were occasional flights from other operators during this time of the 
day, their numbers were small; and only a few of them came from the west where the CDA flights 
arrived.  The ARTS data provided a good basis for separation analysis in the terminal area.  In the data 
retrieved from the UPS surface management system, aircraft position was represented as latitude and 
longitude.  It appeared that the magnetic variation was not corrected by the system while converting 
ARTS X-Y coordinates into latitude and longitude. This was corrected by converting the latitude and
longitude into bearing and range relative to the reference point at the airport, rotating the bearing 
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counterclockwise by 3 deg (the magnetic variation at KSDF), then converting bearing and range back to
latitude and longitude.  The corrected ground tracks closely matched the waypoints on CDA arrivals. 

Data for 8 CDA flights on September 25 were missing or incomplete due to the data availability issue 
mentioned before.  Data for 1 flight on September 23 was also missing because it was delayed by more
than an hour thus arrived after the 3-hour period.  Flight Data Recorder (FDR) data of 6 of those 9 flights 
were available and thus were used in place of ARTS data.  Non-CDA flights that arrived from the west
along CDA flights  were also included in the analysis to provide a complete view of the scenario.  During
the flight test period, voice communications between the aircraft and the TRACON controller were also
recorded using a commercial radio scanner and equipment hosted by the Noise Office of Louisville RAA.
The recorded voice communications provide additional information for interpreting the ARTS data.
Enhanced Traffic Management System (ETMS) data were also used to help identify non-UPS flights and
the vectoring outside the ARTS data coverage area. 

Figure 6-9 KSDF CDA flight test ground tracks. 

Figure 6-9 shows the ARTS ground tracks of all CDA flights and some non-CDA flights from the 
west that arrived while the CDA flight test was active.  The solid thin tracks (black, followed all
waypoints) were normal CDA flights. The thick tracks (blue, annotated with date and aircraft type) were 
CDA flights vectored for separation during the flight test.  The dotted thin tracks (red) were non-CDA 
flights from the west that had similar ground tracks as CDA flights.  It is seen from the figure that the
ground tracks of the normal CDA flights were extremely consistent.  The thick blue B757 track on
September 23 that joined the CDA lateral path after waypoint CHERI was the flight not originally
planned to fly CDA.  Except for that B757 flight, a total number of 6 CDA flights were laterally vectored
for separation during the flight test.  Details of these vectored CDA flights are explained in the next 
subsection.

During the flight test, the TRACON controller purposely vectored a number of non-CDA flights to 
follow the CDA lateral path to see how well non-CDA flights can be blended into the CDA arrival
stream.  It is seen from Fig. 6-9 that the amount of lateral vectoring was reduced for those non-CDA 
flights that followed the CDA lateral path.  The contrast can be easily seen by referring to vectored
ground tracks during regular operations shown in Fig. 2-1.  This suggests that some of the vectoring
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techniques that were developed to handle heavy traffic might have been used by controllers constantly
even when the traffic is not heavy. Thus, the number of heading commands maybe reduced by some
degree during non-busy periods through modifying vectoring strategies. 

During the flight test, pilots reported that missing, incorrect, or out-of-place information was observed
in the latitude, longitude, and altitude/speed constraints when the procedure was loaded into the FMS.  In 
most of these cases, the pilot manually entered the missing altitude/speed constraints, or manually
corrected the incorrect data.  There were still occasions in which the FMS VNAV path was not computed
as desired.  It was discovered after a discussion with the FMS manufacturer that the database issues can
be resolved through revising pilot procedures and FMS database management procedures.

Analysis revealed that, on average, approximately 2 minutes flight time was saved by flying CDA.  An
average of 118 lb of fuel was saved by each B757-200 CDA flight, and an average of 364 lb of fuel was 
saved by each B767-300 CDA flight, as compared with flights of same aircraft types performed
conventional approach procedures.  Up to 6 dBA peak level noise reduction, up to 30% noise contour area 
reduction7, and up to 34% local emissions reduction (below 3,000 ft) were achieved by flying the CDA. 
Other aspects of the flight test can be found in the report by the KSDF 2004 CDA flight test research
team8.

6.3.2 Observed Spacing and Spacing Adjustment during the Flight Test 
The actual spacing in the CDA arrival stream at SACKO (measured when the leading aircraft was at

SACKO) during the flight test were extracted from the ARTS data.  Spacing for 69 flight pairs were 
selected for analysis.  Other flight pairs were removed either because the spacing between a flight pair
was larger than 30 nm (considered as a gap in the arrival stream), or because another flight had landed
between the pair of flights (spacing for the flight pair becomes meaningless).  Among the 69 selected
flight pairs, 9 were non-CDA pairs.  The remainder 60 flight pairs involved at least one CDA flight.

The frequency distribution of spacing in the 69 selected flight pairs is shown in Fig. 6-10.  The spacing
shown in the figure included 56 flight pairs to runway 35L and 13 flight pairs to runway 17R.  Because 
SACKO was selected as the common intermediate metering point for both runways, and the same target
separation of 15 nm was used, flights to the two runways should have been treated in the same way by
Center controllers.  The frequency distribution shown in Fig. 6-10 were the bases of the probability 
densities and Erlang models shown in Fig. 6-5 for spacing in the adjusted traffic. 
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It is seen from Fig. 6-10 that among the 69 selected flight pairs, 12 flight pairs (all involved at least 1
CDA flight) indicated a spacing less than the recommended target separation of 15 nm at waypoint
SCAKO.  This illustrates that in real world environment, the recommended target separation might not be 
satisfied under some situations.  The 12 flight pairs that had spacing less than 15 nm at SACKO are
summarized in Table 6-11 and are examined in the following paragraphs. Among them, the trailing
aircraft in 4 of the flight pairs were laterally vectored for separation after the aircraft were handed off to
the TRACON controller and cleared to proceed with CDA. 

Table 6-11 Flight pairs with spacing less than 15 nm at SACKO.

  Aircraft Spacing, nm

Date
Leading-

Trailing
SACKO/Final

(Minimum)a
Laterally
Vectored Commentsc

14-Sep B767-
B757

10.9/3.7b

(5)
Yes Crew accepted to maintain visual separation.  Later 

vectored to side step to parallel runway 35R.

15-Sep B767-
B757

13.8/9.4
(5)

No No controller intervention observed.

16-Sep A300-
B767

13.1/5.1
(4)

No The leading aircraft (a non-CDA) was kept above
10,000 ft and at faster speed for longer than normal.

16-Sep B767-
B767

13.8/7.2
(4)

No Center directed aircraft to descend at lower speed
(first IAS 290 kt, then IAS 270 kt) before 10,000 ft. 

17-Sep B757-
B767

13.9/3.0b

(4)
Yes Vectored to extended base, and then side step to 

parallel runway 35R. 

17-Sep B767-
B767

14.9/4.8
(4)

No Crew accepted to maintain visual separation, 
deceleration before the turn started early.

18-Sep B757-
B767

14.3/5.4
(4)

Yes Vectored off the CDA path then directed to return 
the CDA path before turning to final. 

21-Sep B767-
B767

14.6/10.0
(4)

No Center directed aircraft to descend at lower speed
(IAS 270 kt) before 10,000 ft. 

22-Sep B757-
B767

14.9/7.7
(4)

No No controller intervention observed.

24-Sep B767-
B767

12.3/3.9
(4)

Yes Vectored off the CDA path then directed to return 
the CDA path before turning to final. 

24-Sep B757-
B767

12.5/2.5
(4)

No Crew accepted to maintain visual separation, no 
controller intervention observed.

25-Sep B767-
B757

14.2/3.2
(5)

No Crew accepted to maintain visual separation, no 
controller intervention observed.

a Numbers in parenthesis are separation minima in effect at runway threshold.
b Projected as if no action were taken, actual value unknown as aircraft were on different runway. 
c About trailing aircraft except indicated otherwise. 

On September 14, runway 35L was in use.  This is the first day of the CDA flight test.  For the 
vectored B757 (see the first flight pair in Table 6-11), the spacing at SACKO was 10.9 nm.  The 
TRACON controller decided not to vector the aircraft immediately.  Rather, the aircraft was let to 
continue on CDA without interruption so that the controller could gain first hand experience on how the
spacing would evolve as the CDA proceeded.  The crew accepted instructions from the controller to 
maintain visual separation from the leading aircraft which was a CDA flight as well. When visual
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separation is used upon instructions from the controller, the pilot provides his or her own separation by
maneuvering the aircraft as necessary.  Visual separation requires less spacing between aircraft than radar
separation, thus the interruptions to CDA execution can be reduced.  For the flight pair, the spacing 
decreased to 5 nm at TRN35.  Because spacing would continue to decrease as the aircraft turned to the 
final approach course, the aircraft was directed to side step to the parallel runway 35R.  Close
examination of the aircraft trajectory revealed that, should this aircraft stay on the final approach to
runway 35L, the final spacing could have dropped below 3.7 nm.  Spacing at SACKO for all the other 
flights on the same day were greater than 15 nm, and proper final separation were ensured without 
controller intervention.  After the first day of flight test, the research team gained great confidence in the
operational concept and the selected target separation. 

In the following paragraphs, flight pairs with spacing less than 15 nm at the intermediate metering 
point SACKO are examined.  Vectored flights are examined first. These flight pairs can be divided into 2
categories.

1. Aircraft vectored to extend base or to side step to the parallel runway 

The vectoring of the B757 on September 14mentioned above represents the first category of
vectoring used during the flight test.  Initially, the crew accepted instructions from the controller
to maintain visual separation.  As the procedure progressed, the separation compressed due to 
deceleration.  Given the spacing at the time and the projected further separation compression,
before the aircraft turned to final approach course, the controller gave clearance for the aircraft to
side step to the alternative runway.  Another case of this type of vectoring was the vectored B767
on September 17 (see the 5th flight pair in Table 6-11, runway 35L was in use that day). The
spacing was 13.9 nm at SACKO, and the spacing decreased to 6.1 nm at TRN35.  The aircraft
was cleared to extend the base leg (the segment prior to final approach segment) and to side step
to runway 35R.  Should the controller not intervene, the final spacing would have dropped to
approximately 3.0 nm.

2. Aircraft vectored as soon as they entered TRACON boundary 

In the second category, the controller vectored the aircraft not long after the aircraft was handed
off when spacing at the metering point was below the recommended target separation.  Should the
vectoring be effective, the aircraft could later return to the CDA and land on the originally
assigned runway.  This included the cases of the vectored B767 on September 18 (see the 7th fight
pair in Table 6-11, runway 35L was in use on that day) and the vectored B767 on September 24 
(see the 10th flight pair in Table 6-11, runway 17R was in use on that day).  The vectoring was a
moderate heading change (turn 30 deg off the CDA lateral path), and flying the new heading for a 
certain distance and then returning to re-join CDA. As seen from Table 6-11, in both cases, the
Instrument Flight Rules (IFR) separation minima were assured. Examining the FDR data of the
B767 on September 24 revealed that while the aircraft was vectored off the CDA lateral path, the 
aircraft remained on the VNAV path, and the engine throttle remained at idle.  This is an 
encouraging finding.  It suggests that similar vectoring techniques may be used to adjust spacing 
during CDA without losing much noise abatement and fuel saving benefits.

No lateral vectoring was observed for the other 8 flight pairs that had spacing less than 15 nm at
SACKO.  These cases can be divided into four categories. 

1. No additional air/ground communications were observed 

In the first category, no additional air/ground communications were observed except the basic
clearances for a CDA flight.  This included a flight pair with a trailing B757 on September 15
(see the 2nd fight pair in Table 6-11) and a flight pair with a trailing B767 on September 22 (see 
the 9th fight pair in Table 6-11).  For the case on September 15 with a trailing B757, the spacing
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was 13.8 nm at SACKO and was 11.1 nm at TRN35.  For the case on September 22 with a 
trailing B767, the spacing was 14.9 nm at SACKO and was 10.8 nm at TRN35.  It appeared that
no separation violations for the two flight pairs were predicted by the controller as the CDA 
proceeded, thus no intervention was needed. 

2. Crew accepted instructions from the controller to maintain visual separation 

In the second category of flight pairs, the crew of the trailing aircraft accepted instructions from
the controller to maintain visual separation.  This included three flight pairs: In the flight pair
with a trailing B767 on September 17 (see the 6th fight pair in Table 6-11), the deceleration before
the turn to the final approach course started early for the trailing B767.  Thus, the final spacing
was 4.8 nm – greater than the IFR wake turbulence separation minimum of 4 nm.  In the other
two flight pairs, the one on September 24 with a trailing B767 (see the 11th fight pair in Table 6-
11) and the one on September 25 with a trailing B757 (see the 12th fight pair in Table 6-11), no 
special actions were observed.  For the first pair, the spacing was 12.5 nm at SACKO and the 
final spacing was 2.5 nm.  For the second pair, the spacing was 14.2 nm at SACKO and the final 
spacing was 3.2 nm.  The final spacing was less than the IFR wake turbulence separation minima
of 4nm and 5 nm respectively. 

3. Trailing aircraft descent speed was lower than specified in the procedure 

In the third category of flight pairs, the descent speed of the trailing aircraft prior to the 
deceleration at 10,000 ft was lower than the descent speed of CAS 335 kt specified for CDA
flights.  This included a flight pair on September 16 with a trailing B767 (see the 4th fight pair in 
Table 6-11) and a flight pair on September 21 with a trailing B767 (see the 8th fight pair in Table 
6-11).  For the first pair, the trailing B767 was directed by Indianapolis Center to descend at CAS 
290 kt and later to descend at CAS 270 kt before hand off.  For the second pair, the trailing B767
was directed to descend at CAS 270 kt before hand off.  The spacing at SACKO was 13.8 nm for
the first pair, and 14.6 nm for the second pair.  The speed reductions appeared to be the Center
controller’s efforts to establish the 15 nm target separation at SACKO.  The aircraft continued at 
the reduced descent speeds until the deceleration at 10,000 ft.  After the deceleration at 10,000 ft, 
the aircraft resumed the normal CDA speed profile, i.e., descending at CAS 240 kt until the 
deceleration before turning on to the final approach course. The deceleration at 10,000 ft 
automatically isolated the speed adjustment initiated by the Center controller from the normal
CDA speed profile below 10,000 ft.  Because the deceleration at 10,000 ft was much closer to the 
runway than the metering point at waypoint SACKO, the speed reduction initiated by the Center 
controller also contributed to adjusting the spacing after the aircraft were handed off.  The final
spacing was 7.2 nm for the first pair, and 10.0 nm for the second pair.

4. Leading non-CDA was vectored

In the last category of the four, the leading aircraft, which was a non-CDA, was vectored.  For a 
flight pair on September 16 involving a trailing B767 (see the 3rd fight pair in Table 6-11), the 
leading aircraft was an Airbus 300 (A300) not flying CDA.  The spacing was 13.1 nm at SACKO.
The non-CDA aircraft was vectored by the controller to follow the CDA lateral path, and at the 
same time, it was directed to maintain 10,000 ft (without reducing speed) for slightly longer.
Normally the clearance for a non-CDA flight at the same stage would be to descend and maintain
at a lower altitude such as 7,000 ft.  At altitude above 10,000 ft, speed higher than CAS 250 kt
can be used. For the same CAS, the ground speed would also be higher at higher altitudes. With
the vectoring of the leading A300, wake turbulence separation minima was assured.  On the other
hand, the separation between the A300 and the flight in front of it (another B757 doing CDA) 
were maintained – the final spacing was 4.3 nm as compared with the wake turbulence separation
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of 4 nm.  This is a perfect example of how non-CDA flights can be blended into CDA arrival 
stream.

Table 6-12 Flight pairs with proper spacing at SACKO but small spacing at threshold.

  Aircraft Spacing, nm

Date
Leading-

Trailing
SACKO/Final
(Minimum)a

Laterally
Vectored Commentsb

22-Sep B757-
B767

25.4/2.6
(4)

No Crew accepted to maintain visual separation, 
leading aircraft too slow. No intervention observed.

25-Sep B767-
B757

16.3/4.0
(5)

No Crew accepted to maintain visual separation, no 
controller invention observed.

a Numbers in parenthesis indicate separation minima at runway threshold.
b About trailing aircraft except indicated otherwise. 

Among the 69 selected flight pairs, 2 flight pairs that had spacing greater than 15 nm at SACKO ended 
up with final spacing less than the corresponding IFR wake turbulence separation minima.  These 2 were 
CDA flight pairs.  They are summarized in Table 6-12. 

1. Leading aircraft too slow 

In the first flight pair, the leading B757 had a much shallower vertical profile than all other CDA 
flights on the same day, thus it was much slower.  The crew of the trailing B767 accepted 
instructions from the controller to maintain visual separation.  The spacing at SACKO was 25.4 
nm, a relatively large value.  The final spacing was 2.6 nm, less than the IFR wake turbulence 
separation minimum of 4 nm.  Apparently, the CDA VNAV path was not properly computed for
the leading B757.  Because of lack of data, it was not clear why this occurred.  The altitude and
speed constraints probably were not properly loaded into the FMS. 

2. Normal case of feasible separation greater than 15 nm

In the second flight pair of this type, both the leading and trailing aircraft had proper CDA VNAV 
path.  The crew of the trailing B767 accepted instructions from the controller to maintain visual
separation. The spacing at SACKO was 16.3 nm.  The final spacing was 4.0 nm, less than the 
IFR wake turbulence separation minimum of 5 nm. This flight pair represents a normal case in 
that spacing greater than 15 nm at SACKO would be needed to assure the IFR wake turbulence 
separation minima throughout the procedure.

Table 6-13 Other vectored flights not included in the selected 69 flight pairs.

  Aircraft Spacing, nm

Date
Leading-

Trailing
SACKO/Final
(Minimum)a

Laterally
Vectored Commentsb

18-Sep DC8-
B757

33.7/4.5
(5)

Yes Vectored to extend base because the non-CDA in 
front was vectored, thus disrupted separation. 

23-Sep B757-
B757

/
(4)

Yes Vectored to extend base.  The aircraft in front (a
non-planned CDA) had difficulty to manage speed. 

a Data in parenthesis indicate separation minima at runway threshold. 
b About trailing aircraft except indicated otherwise. 

The other 2 flight pairs involving laterally vectored trailing aircraft were not included in the 69 
selected flights based on the criteria described earlier in this subsection.  These 2 flight pairs are
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summarized in Table 6-13.  In these 2 pairs, the trailing aircraft were vectored due to unexpected 
situations.

1. Leading aircraft was vectored to avoid traffic from a different direction 

In the flight pair on September 18 (the first flight pair in Table 6-13), the spacing at SACKO was
33.7 nm.  The leading aircraft (a DC8) in this flight pair was a non-CDA flight that was vectored
to avoid traffic from a different direction, thus forced the trailing B767 to be vectored as well. 
Close examination of the FDR data revealed that the lateral flight path of the trailing B767 was
extended by about 13 nm.  The flight path of the leading aircraft was extended about the same 
amount.  The amount of overall flight path extension could have been reduced if better traffic 
coordination tools and mechanisms were in place. 

2. Leading aircraft was a unplanned CDA that had difficulties to manage speed 

In the flight pair on September 23, the spacing at SACKO was not computed because the two
aircraft were on different lateral flight path at the time.  The leading B757 was the unplanned
CDA that joined CDA upon request from the flight crew.  Because the leading B757 joined CDA 
late, it had difficulties to manage the speed.  This resulted in a very slow speed profile.  Thus, the 
trailing B757, an originally planned CDA, was vectored to extend base.  The vectoring of the
trailing B757 should thus be viewed as an exception event.

In summary, among the 125 flights that performed CDA, 6 flights, or 4.8% of them was laterally 
vectored for separations.  Four of the flights were vectored due to insufficient spacing (less than 15 nm) at 
the intermediate metering point SACKO.  Two of the flights were vectored due to unexpected events.  A 
total number of 69 consecutive flight pairs that had spacing less than or equal to 30 nm at SACKO and
had no other aircraft landed between the pair were selected for further examination.  In 60 of the selected
69 flight pairs, at least 1 CDA flight was involved. 

Among the 69 flight pairs, 12 pairs (all involved at least 1 CDA flights), or 17.4% had spacing less 
than 15 nm at SACKO.  The 4 flights vectored for separation were all included in the 12 flight pairs that
had spacing less than 15 nm at SACKO.  These 4 vectored flights involved 5.8% of the 69 selected flight
pairs (or 6.7% of the 60 CDA flight pairs) and 33.3% of the 12 flight that had spacing less than 15 nm at
SACKO.  The other 8 flight pairs that had spacing less than 15 nm at SACKO were handled as follows.
Speed reductions prior to 10,000 ft were applied to the trailing aircraft in 2 of the flight pairs.  The speed 
of the leading aircraft (a non-CDA) was adjustment in 1 of the flight pairs.  The crew of the trailing 
aircraft accepted instructions from the controller to maintain visual separation in 2 of the flight pairs; and 
the final spacing were less than the IFR wake turbulence separation minima.  The crew of the trailing 
aircraft accepted instructions from the controller to maintain visual separation in another flight pair, and
the final spacing was above the IFR wake turbulence separation minimum.  Spacing adjustment was not 
need in the other 2 of the 12 flight pairs.  This means in 9, or 75% of the 12 flight pairs that had spacing
less than 15 nm at SACKO, were vectored one way or another, or were cleared to maintain visual 
separation.  The controller projected that separation violation would occur in these 9 cases if non actions 
were to be taken.  In 2 of the flight pairs that had spacing greater than or equal 15 nm at SACKO, the
crew accepted instructions from the controller to maintain visual separation; and the final spacing were
less than the IFR wake turbulence separation minima.

In short, the final spacing in 11 flight pairs, or 15.9% of the 69 flight pairs would be less than the IFR 
wake turbulence separation minima if the controller had not intervened.  This is equivalent to a total level
of confidence of 84.1%.  Based on the 60 CDA flight pairs, the total level of confidence would be 81.7%. 
This is in between the simulated total levels of confidence of 79.6% and 85.0% for the CDA to runway 
35L and 17R respectively, as presented in subsection 6.2.3.
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As described above, after gaining experience managing the CDA flights, TRACON controllers were
able to develop techniques for predicting future separations between aircraft performing CDA.  The 15
nm target separation at SACKO was mainly recommended for Center controllers to establish separation 
between consecutive flights in a way similar to what the existing MIT restrictions are used.  The target 
separation was also used by TRACON controllers as a reference aid for predicting future separations
between aircraft on the CDA.  When the spacing between a consecutive aircraft pair was greater than the
15 nm target separation, the controller would not be too concerned about future separations between pair 
of aircraft during the monitoring phase, because separation violations would be less likely to occur.
When the spacing between an aircraft pair was less than the 15 nm target separation, the controller would
pay much closer attention to the separation between the pair of aircraft, as evidenced by increased voice
communications to negotiate with the crew and to provide crew with information about the relative speed
and spacing with respect to the aircraft in front.  In this case, the crew was normally instructed to maintain
visual separation from the aircraft in front, visibility permitting.  Because the lateral flight path was 
managed by the onboard FMS during the execution of CDA, the speed and the altitude became the only
variables determining the aircraft state in the airspace.  An interview with controllers revealed that, after 
observing a number of uninterrupted CDA operations, controllers were able to establish mental models of
the probable CDA speed profiles.  Air/ground communications indicated that controllers frequently
referenced to the relative speed of the trailing aircraft with respect to the leading aircraft in predicting the
future separation between aircraft.  Controllers acknowledged that differences in predicting accuracy
existed, indicating that the predicting accuracy could be improved should they gain more experience.

6.3.3 Separation Analysis Using Radar Tracks 
In the previous subsection, the observed spacing between successive flight pairs were described.  In 

this subsection, separation analysis using ARTS radar tracks is presented.  The question of great interest
is, given the CDA trajectories known, what would be feasible separations at the intermediate metering
point, namely SACKO, in order to assure separation minima throughout the execution of CDA. 
Trajectories of flights that performed the CDA as desired were selected for this purpose. Note that the 
criteria used in selecting the CDA flights in this subsection differ from that used in the previous
subsection. The criteria used in selecting flight pairs to obtain the spacing distribution in the CDA arrival
stream were based on the spacing at waypoint SACKO, regardless of how well the procedure was
performed by each aircraft involved. The criteria used in this subsection are based on how well the
procedure was performed by each CDA flight, regardless of the actual spacing between consecutive
flights.  Some CDA flights were removed either because they were vectored (the trajectory would not 
reflect uninterrupted CDA execution), or because their VNAV paths were not properly computed due to 
FMS database issues (these issues would have been corrected should the procedure be formally
implemented).  From the selected flight trajectories, CDA flight pairs were formed.  These CDA flight 
pairs were not necessarily the consecutive flight pairs during the flight test.  In rare occasions, a third
flight might have landed between the pair of flights.  For CDA to runway 35L, 73 flight pairs were 
formed.  For CDA to runway 17R, 18 flight pairs were formed.  The numbers of CDA flight pairs for
different aircraft sequences are listed in Table 6-14. 

Trajectories of the selected CDA flights on September 14 are shown in Fig. 6-11.  Trajectories on 
other days were in similar pattern.  In the figure, the horizontal axis represents along track distance.  The
vertical axis represents time since the aircraft passed SACKO, pointing downwards.  All trajectories were
aligned at SACKO to show the variation between flights.  At any given point on the horizontal axis, the 
variation represents differences between flight times from SACKO to that point.  At any given time on the 
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vertical axis, the variation represents differences between the aircraft locations.  To ensure safe execution 
of uninterrupted CDA, proper spacing (the feasible separations) must be given at SACKO to
accommodate trajectory uncertainties.  The larger the variations between flight trajectories were, the
larger the feasible separations would be.

Table 6-14 Selected CDA flight pairs for applying separation analysis methodology.

Aircraft September Sub

Sequence 14 15 16 17 18 21 22 23 24 25 Total

B757-B757 2 4 1 3 4 2 2 2 20

B757-B767 2 2 3 3 2 2 2 3 19

B767-B757 1 1 2 2 1 2 1 3 13
35L

B767-B767 3 3 2 2 3 4 3 1 21

B757-B757 4 3 7

B757-B767 2 3 5

B767-B757 1 2 3
17R

B767-B767 2 1 3

Figure 6-11 Sample CDA trajectories from ARTS data. 

To obtain feasible separations from flight trajectories extracted from the ARTS data, it is assumed that
the trajectories would remain the same when the spacing at the metering point between consecutive 
flights are slightly adjusted.  This is not exactly true in the real world.  However, it can be assumed that 
the effects of the adjustment would be canceled out if the analysis is applied to a very large pool of flight
pairs.  The process described in Chapter 5 was applied to the consecutive flight trajectory pairs to obtain 
feasible separations at SACKO.  The distribution of estimated feasible separations at SACKO for the
CDA to runway 35L is shown in Fig. 6-12.  The distribution of estimated feasible separations at SACKO
for the CDA to runway 17R is shown in Fig. 6-13.  The distributions of estimated feasible separations
were based on all flight pairs listed in Table 6-14.  Because the small sample size, different aircraft
sequences are not identified in these two figures.  The distributions in Fig. 6-12 and Fig. 6-13 thus 
indicate weighted average based on the traffic mix listed in Table 6-14. 
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The minimum and maximum values of the estimated feasible separations for the CDA to runway 35L 
were 5 nm and 20.5 nm respectively.  The minimum and maximum values of the estimated feasible
separations for the CDA to runway 17R were 6.4 nm and 22.5 nm respectively.  As seen from Fig. 6-12,
in 69.9% of the cases the feasible separations were less than or equal to 15 nm for the CDA to runway 
35L.  This number could be viewed as an estimate of the weighted average (by the actual traffic mix
shown in Table 6-14) of conditional levels of confidence for the CDA to runway 35L given a 15 nm
sequence-independent target separation at SACKO. As seen from Fig. 6-13, in 72.2% of the cases the 
feasible separations were less than or equal to 15 nm for the CDA to runway 17R.  This number could be
viewed as an estimate of the weighted average of conditional level of confidence for the CDA to runway
17R given a 15 nm sequence-independent target separation at SACKO. 
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Figure 6-12 Sample frequency distribution of feasible 

separations for CDA to runway 35L. 
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separations for CDA to runway 17R. 

The estimates of conditional levels of confidence for a 15 nm sequence-independent target separation
are listed in Table 6-15, along with the simulation results that have been presented in subsection 6.2.2.  In 
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Table 6-15, the average values from the simulation were arithmetic average, and the weighted average
values were weighted by the traffic mix data shown in Table 6-14.  It is seen that the weighted average 
values are very close to the flight test results. 

Table 6-15 Comparison of conditional levels of confidence given 15 nm

sequence-independent target separation.

Simulation Results

Average Weighted Average Flight Test Results 

CDA to 35L 62.7% 68.6% 69.9%
CDA to 17R 68.2% 72.5% 72.2%
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separations for different aircraft sequences, CDA to runway 

35L.

Frequency distributions of estimated feasible separations for the four different aircraft sequences were
also obtained for the CDA flights to runway 35L. The results are shown in Fig. 6-14.  Because the
sample sizes become even smaller after the flight pairs are divided into the four sequences, the data 
become even more scattered.  To illustrate the trend in the data, normal distributions were fit to the data. 
These normal distributions are shown as curves in Fig. 6-14.  By comparing Fig. 6-14 with Fig. 6-2, it is
seen that the central tendencies in the flight test results are similar to the simulation results.  The spread in 
the flight test data, however, seems larger than the simulation data.  There could be several possible 
reasons for this.  Due to schedule and operational issues, it was not possible to conduct extensive crew 
training on CDA operations before the flight test – the flight test was a learning process itself.  It was
observed from FDR data that some flights used different descent speeds (for the descent from cruise to 
10,000 ft) from that specified in the procedure chart.  The use of FMS wind forecast was not consistent 
across flights.  Larger variations in flap and speedbrake usage, mainly due to existing inconsistent 
practices under vectored environment, were also observed.  Although operational consistency improved
greatly in the second week of the flight test, it was still some distance away from stabilized operations.
The effects of these elements were reflected in the flight test data.  There is also the nuisance of very
small sample sizes.  Thus, it is believed as the flight crews become more familiar with the procedure, and 
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the operational consistency improves, the spread of feasible separations will be reduced. On the other
hand, more data collected from the field will also provide an opportunity to improve the model accuracy.

6.4 SUMMARY 

A simulation study and analyses of data collected from a CDA flight test at KSDF with B757-200 and 
B767-300 aircraft were presented.  For the CDA to runway 35L, the simulation results indicated that a 15 
nm sequence-independent target separation at the selected intermediate metering point SACKO would 
give an average conditional level of confidence of 62.7% for a 50-50 traffic mix of B757-200 and B767-
300 aircraft. This gives a theoretical average traffic throughput of 30.91 aircraft per hr.  The ideal case, in
which trajectory variations are exactly predicted and thus no capacity loss would occur, gives an average
traffic throughput of 31.40 aircraft per hr.  The throughput for the ideal case represents system capacity.

For a given conditional level of confidence of 75%, the sequence-independent target separation would
give an average theoretical throughput of 27.31 aircraft per hr, while sequence-specific target separations
would give an average theoretical throughput of 29.85 aircraft per hr.  The traffic throughput increase
from 27.31 aircraft per hr to 29.85 aircraft per hr is significant improvement.  This is because system
delay would be significantly reduced by a small throughput increase as the system is operating at near
capacity.  Simulation indicated that for relatively high conditional levels of confidence (>65% for the
simulated CDA to runway 35L), using sequence-specific target separations would always improve traffic 
throughput. The higher the conditional level of confidence, the more benefits can be gained by using
sequence specific target separations.

In a real world operating environment, spacing at the metering point will not be exactly as specified by 
target separations or MIT restrictions.  The analysis of the ARTS data collected at KSDF for night arrival 
traffic from the west revealed that, when a 10 nm MIT was in effect, the average traffic spacing was 15.79 
nm with a standard deviation of 5.88 nm.  When a 15 nm target separation was requested, the average 
traffic spacing became 19.05 nm with a standard deviation of 4.28 nm.  This represents an increase of the
average spacing of 3.26 nm (vs. 5 nm increase in the MIT restriction) and a decrease of the standard 
deviation of 1.60 nm.  This observation leads to the conclusion that as the target separation increases, the 
average traffic spacing increases by a smaller amount than the corresponding increase in the target 
separation.  Using a larger target separation will not just simply increase the traffic spacing, it also 
decrease the randomness in arrival traffic. 

An Erlang distribution model for the distribution of the spacing in the unadjusted traffic and adjusted
arrival traffic was developed based on ARTS data collected at KSDF.  The total probability method was 
applied to the simulation results to obtain total levels of confidence.  For the CDA to runway 35L, the
total level of confidence for a sequence-independent target separation of 15 nm was 79.6% while the 
average of conditional levels of confidence for the same target separation was 62.7%.  The total 
probability method provides a more complete view of the relationship between the target separations and
the levels of confidence in a real world environment.

Simulation results revealed that winds have a strong impact on the feasible separations.  A head wind
condition would yield lower feasible separations, and a tail wind would yield higher feasible separations.
If efficiency is a big concern, such as in relatively busy terminal areas or during relatively busy time of
the day, different sets of target separations should be developed for different wind conditions.  In this
case, a strong tail wind condition would need larger target separations, and a strong head wind condition 
would need smaller target separations.
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Simulation results also revealed that, for the same conditional level of confidence, traffic throughput
will be significantly improved as the intermediate metering point is moved closer to the runway threshold.
For the CDA to runway 35L, sequence-independent target separations for a given conditional level of 
confidence of 75% were obtained for four different intermediate metering point locations: SACKO, 
CHERI, a point at -35 nm, and a point at -25 nm. The target separations were 17.07, 15.76, 11.62, and
9.64 nm for the four metering points respectively.  The corresponding average theoretical traffic 
throughput were 27.31, 27.78, 28.82, and 29.98 aircraft per hr respectively.  Thus, for a given procedure, 
target separations could be provided at alternative metering points along the noise abatement approach or 
arrival procedure flight path to allow for operational flexibility in accommodating different traffic loads. 

The effectiveness and the accuracy of the Monte Carlo simulation tool and the separation analysis
methodology (collectively referred to as TASAT) were successfully demonstrated during the KSDF 2004 
CDA flight test.  Examining the ARTS data revealed that for a 15 nm target separation, a total confidence 
level of 81.7% was observed.  This is close to the predicted total level of confidence of 79.6% (CDA to 
runway 35L) and 85.0% (CDA to runway 17R) by the simulation study.

Separation analysis was also done using aircraft trajectories extracted from the ARTS data.  The 
analysis revealed that for a sequence-independent target separation of 15 nm, the estimated conditional
level of confidence for the CDA to runway 35L was 69.9%, which is also very close to the value of
68.6% predicted by the simulation study.  Because of the very small sample size, frequency distributions
of feasible separations were hardly visually discernible.  However, the central tendencies reflected by the
feasible separations from the ARTS data and from simulated aircraft trajectories were very similar. 

Feasible separations from ARTS data do reflect slightly larger spread (or standard deviations) than
simulated aircraft trajectories.  Possible reasons include: unplanned use of different descent speed from
cruise altitude, inconsistent use of FMS wind forecast, and larger variations in flap and speedbrake 
extension actions.  On one hand, these variations are expected to decrease in formal implementations of
CDA procedures as pilots gain more experience with these procedures through training and daily
operations. On the other hand, these variations reflected by flight test data provide an opportunity to 
further improve the model accuracy.

After gaining experience on managing CDA flights, controllers were able to develop techniques for 
predicting future separations between aircraft on the same procedure.  Because the lateral flight path was
fixed, controllers relied on their mental models of the probable CDA speed profile and the relative speed 
of the trailing aircraft with respect to the leading aircraft to predict if spacing would be less than
separation minima in the future. 

Two strategies were used by controllers to adjust the spacing between aircraft during the execution of 
CDA.  The first strategy was to vector the aircraft early when the spacing at the metering point was less
than the given target separation. The second strategy was to vector when the aircraft was close to turning
on to the final approach course and when the controller was certain that a separation violation would 
occur if no action were taken.  If the first strategy is used, some of the aircraft might have been vectored 
when in fact the separation could eventually be ensured without intervention.  As demonstrated in the 
flight test, a moderate heading change command could still be performed at idle thrust if managed early.
If the second strategy is used, the number of aircraft to be vectored could be reduced.  However, as 
actions are taken later during the procedure, the aircraft would probably have to be vectored to
substantially extend the base leg and fly level segments at relatively low altitudes if an alternative parallel
runway is not available for use. 

Controllers were also able to handle the arrival traffic flow with mixed aircraft types when the CDA 
flight test was active.  A number of non-CDA flights were fed into the gaps between CDA flights and
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were vectored to follow the CDA lateral flight path.  In several cases, speed commands were assigned to
non-CDA flights to maintain separation – allowing CDA flights to continue without interruption.
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CHAPTER 7 

CONTRIBUTIONS, CONCLUSIONS, AND FUTURE 
RESEARCH DIRECTIONS 

A practical and theoretically rigorous approach for supporting air traffic controllers managing
separation between aircraft performing noise abatement approach and arrival procedures under normal 
traffic conditions has been presented in this thesis.  The contributions of the research presented are
summarized in Section 7.1.  Major findings and observations, and implications of this research are
summarized in Section 7.2.  Possible future research directions are discussed in 7.3. 

7.1 CONTRIBUTIONS 

Major challenges exist for routing implementation of noise abatement approach and arrival procedures
under normal or high traffic conditions.  These challenges are: 1) variations in aircraft trajectories due to
differences between aircraft types and uncertainty factors, and 2) difficulties for controllers to predict and 
control separation between aircraft.  One way to overcome these challenges is to reduce aircraft trajectory
variations by improving aircraft guidance and control systems.  Another way is to develop tools and
strategies for controllers to efficiently manage the separation between aircraft given that the variations do
exist.  The research presented in this thesis has been focused on the latter.  Specifically this research has
contributed:

Developed a procedure design and operational framework for implementing noise

abatement arrival procedures that can be adapted to different traffic flow levels 

The philosophy guiding the operational framework is to plan a better operation that can be
executed with a reasonably high level of confidence, and to prepare alternative plans to cover 
exceptions so that traffic throughput can be maintained.  The operational framework features an
intermediate metering point that separates the descent from high altitude and the low noise 
descent to the runway.  The key is to give a target separation for the intermediate metering point
such that separation can be ensured – to a desired level of confidence – during the low noise
descent to the runway without further controller intervention so that noise can be minimized. The
location of the intermediate metering point can be tailored to the specifics of the site and the
traffic conditions thereby giving high operational flexibility and overall efficiency.  Contingency 
plans, i.e. occasional vectoring during the low nose descent, are prepared to cover exceptions 
when separation violation is predicted by the controller. Procedure robustness is thus
significantly improved.  With this operational framework, noise abatement approach and arrival 
procedures can be implemented at as many sites as possible, and whenever the traffic condition 
permits to minimize noise impact, fuel burn, emissions, and flight time over time.
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Identified and modeled the key factors contributing to aircraft trajectory variations 

Aircraft type, low noise descent path logic, pilot response delay, aircraft weight, and winds were
identified as major sources of trajectory uncertainties.  Models of aircraft type and low noise
descent path logic were developed as part of the fast-time aircraft simulator.  A previously 
developed pilot response delay model was used. The aircraft weights were modeled from data 
collected from airline operations as either normal distributions or beta distributions.  Aircraft
Communications Addressing and Reporting System (ACARS) meteorological reports from
commercial aircraft were used to build wind models.  The winds were modeled as long-term 
statistical expectations (such as mean wind and two-sigma wind) to reflect the magnitude of the 
wind that an aircraft would expect to experience during its descent to the runway, and short-term
variations to reflect wind changes between consecutive flights. 
Developed a mode-decomposition and autoregressive approach for the modeling of wind

variations between consecutive flights 

For separation analysis, wind variations between consecutive flights on the same approach and 
arrival procedure are extremely important.  A unique mode decomposition approach employing a 
Finite Impulse Response (FIR) low pass filter was developed to decompose the wind variation
components into categorized frequency content signals.  These included zero mean higher 
frequency signals, zero mean lower frequency signals, and Direct Current (DC) signals.  The
higher frequency signals and lower frequency signals were modeled as autoregressive (AR)
signals, and the DC signals were modeled as random variables.  To overcome the shortcomings of 
AR method in modeling the lower frequency signals, FIR filtering was applied to the output of
AR models to obtain satisfactory results.  Simulated components were then assembled to form a
unique inter-flight wind variation sample for each individual simulation run. 
Developed an unique fast-time Monte Carlo simulation tool for simulating aircraft

trajectory variations 

A fast-time aircraft simulator was developed with careful trade-offs between simplicity, fast
execution, accuracy, and the capability of simulating 4D aircraft flight trajectories.  Focus was 
given to macro level aircraft trajectories.  Non-steady state equations of motion were used to 
allow aircraft behavior under various wind conditions to be accurately simulated.  Major aircraft
navigation and control systems such as the Flight Management System (FMS) and autopilot
model were included in the simulator. A pilot agent was also included in the simulator to control 
the extension of flaps/slats, landing gear, and speedbrakes during simulation runs.  The aircraft
simulator and models of factors contributing to aircraft trajectory variations were combined to 
form a unique fast-time Monte Carlo simulation tool.  The tool enables arrival procedures being
simulated hundreds of times for each aircraft type under various external conditions within a short
amount of time and at very low cost.  The large pool of simulated aircraft trajectories can then be 
used to analyze variations in aircraft trajectories for the specific procedure design and operating 
environment.
Developed a new separation analysis methodology

A methodology for analyzing the separation between consecutive aircraft performing the same 
noise abatement approach and arrival was developed.  The methodology provides the means to
determine the target separations at the intermediate metering point.  The concept of feasible
separation was conceived, that is the minimum spacing at the intermediate metering point that
ensures that the required separation minima is not violated throughout the remainder of the 
procedure.  The method for obtaining probability density functions (pdfs) of feasible separations
from radar tracks or simulated aircraft trajectories was developed.  The conditional probability
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method directly connects target separations at the intermediate metering point with conditional
levels of confidence.  The total probability method gives a more realistic estimate of levels of 
confidence for given target separations in real world environment.  The sequence-independent
target separation is easy to use, but sequence-specific target separations could provide additional 
throughput benefits.  In order to rigorous analyzing trade-off between level of confidence and
traffic throughput, a theoretical framework for was also formulated that consists the minimum
delay optimization problem and the maximum levels of confidence problem.
Demonstrated the applicability and utility of the Monte Carlo simulation tool and the 

separation analysis methodology

The applicability and the effectiveness of the Monte Carlo simulation tool and the separation
analysis methodology were demonstrated through a simulation study and a flight test project.
The simulation study demonstrated that with aircraft trajectories generated from the Monte Carlo 
simulation tool, the application of the conditional probability method is straightforward. The
value of the total probability method and the benefits of using sequence-dependent target
separations over a sequence-independent target separation were also demonstrated through
simulation analysis.  Analysis of target separations and traffic throughput for different wind 
conditions and different locations of the intermediate metering point proved the flexibility of the 
operational framework.  The Monte Carlo simulation tool and the separation analysis
methodology were successfully applied in the Continuous Descent Arrival (CDA) flight test
conducted in September 2004 at Louisville International Airport (KSDF).  The flight test 
demonstrated that the separation analysis methodology is very effective in providing a target
separation for the controller to manage the CDA traffic flow.  Analysis of flight test data revealed
that both conditional probability and total probability from the simulation results closely matched 
what occurred during the flight test. 
Developed a model of spacing in arrival traffic stream from flight test data 

Data collected during the KSDF 2004 CDA flight test, including Automated Radar Terminal 
System (ARTS) data, Flight Data Recorder (FDR) data were carefully examined and rigorously
analyzed.  Based on these analyses, an Erlang distribution model of the spacing in unadjusted and
adjusted traffic streams was developed.  The modeling approach and resulting models developed
provide bases for developing more generic models that can be used in the application of the total
probability method at other sites in the future.
Identified controller techniques for predicting and adjusting spacing 

Data collected during the KSDF 2004 CDA flight test, including ARTS data, FDR data, and
air/ground voice communications, were carefully examined to identify controller techniques used
in predicting and adjusting spacing between aircraft during the flight test were identified. This
effort is important for expanding the implementation of noise abatement arrival procedures at
other sites in the future. 

The design framework, the Monte Carlo simulation tool, and the separation analysis methodology
form a Tool for Analysis of Separation And Throughput (TASAT).  In addition to the KSDF 2004 CDA 
flight test project, the procedure design and operational framework and the tool has been and are currently
being applied in approach and arrival procedure development projects at a number of airports in the US
and Europe.  These airports include Nottingham East Midlands Airport and London Gatwick Airport in 
UK, Los Angeles International Airport, Hartsfield-Jackson Atlanta International Airport, and several
other airports 

Although the methodology was specifically developed for solving the separation analysis problems for
noise abatement approach and arrival procedures, it may also be used more generally for any approach or
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arrival procedures that have a predefined lateral flight path, such as the Area Navigation (RNAV) arrival
procedures or Required Navigation Performance (RNP) approach and arrival procedures.

7.2 CONCLUSIONS AND IMPLICATIONS 

The research work presented in this thesis covered several aspects of the design and implementation of 
noise abatement approach and arrival procedures.  The conclusions are divided into three specific areas:
procedure design, separation analysis methodology, and observations from the KSDF 2004 CDA flight 
test.  These conclusions are summarized in the following three subsections respectively.  The implications
of this research are discussed in the last subsection. 

7.2.1 On Noise Abatement Arrival Procedure Design 
Flight tracks of existing vectored arrival flights were examined to illustrate areas that can be improved

to reduce community noise impact. Aircraft noise impact and fuel flow of two special flight modes,
constant Calibrated Airspeed (CAS) level flight and constant CAS idle descent, were examined through 
simulation to determine the potential noise reductions and fuel savings that can be achieved through
procedure improvements. It has been concluded that:

As the altitude of the constant CAS level flight increases, the maximum A-weighted sound level
(LAMAX) on ground decreases nonlinearly – the rate of decrease is higher at low altitudes than 
that at higher altitudes.  More noise reduction can be achieved by increasing the altitude of level
flight segments that are currently observed at low altitudes, or by eliminating them at all. 
As the CAS of the constant CAS level flight decreases, the LAMAX on ground increases.  The 
increase in LAMAX due to the decrease in CAS is more obvious when flaps are extended than 
that when the aircraft is in clean configuration.  Level flight in the terminal area should be
conducted at high speeds when the aircraft is in clean configuration, if these level segments
cannot be completely avoided.
When the constant CAS level flight is conducted above a certain altitude, the noise level on 
ground will fall below a certain threshold that can be viewed as acceptable. This suggests that
vectoring at high altitudes may be tolerable from a community noise point of view.
LAMAX on ground can be reduced by reducing the engine thrust from that required for constant
CAS level flight to idle.  However, this noise reduction can be easily surpassed by the noise
reduction by increasing the altitude.  It is more important to maintain a higher vertical profile in 
some cases, especially during the lower part of the noise abatement arrival procedures. 
The aircraft engine fuel flow can be significantly reduced by maintaining engine power at idle. 
Compared with this, the effects of other procedure parameters, such as speed and altitude, on 
engine fuel flow become secondary.  It is very important to maintain the engine power at idle as 
long as possible to save fuel. 
At any given altitude and speed, the level flight represents the upper bound of required thrust to
maintain a given constant CAS during the arrival and approach phase of flight.  The Flight Path
Angle (FPA) for constant CAS idle descent represents the lower bound of required thrust (idle 
thrust) to maintain the same constant CAS.  At any FPA in between, either the thrust will need to 
be added to maintain a given CAS, or the aircraft will decelerate.  As the aircraft decelerates and
gets closer to the runway, thrust must be added to maintain stabilized flight because the FPA
would be constrained by the Instrument Landing System (ILS) glide slope.  This essentially limits 
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the area where noise abatement approach and arrival procedures are effective in reducing 
community noise impact.
The operational framework presented in this thesis features an intermediate metering point that 
separates the descent from cruise and the low noise descent to the runway.  By giving proper
target separations for the intermediate metering point such that separation can be ensured – to a
desired level of confidence – throughout the low noise descent to the runway, the operational 
framework is able to accommodate noise abatement arrival and approach procedures and give 
controller the flexibility to manage traffic flow. 

7.2.2 On The Separation Analysis Methodology
The separation analysis methodology presented in this thesis may be used to determine the target

separation at a selected intermediate metering point that will allow aircraft to perform noise abatement
approach and arrival procedures to a desired level of confidence without interruption.  The methodology
utilizes aircraft trajectories from radar tracks or computer simulation.  In the accompanying Monte Carlo 
based aircraft trajectory simulation tool that has been developed to support the application of this
methodology, various uncertainty factors such as pilot actions, aircraft landing weight, and winds are
modeled to provide accurate and reliable estimates of aircraft trajectory variations.  Based on the
theoretical analysis and the results of the numeric simulation, the following conclusions can be drawn: 

The conditional probability method is a useful way to determine target separations because it
directly connects target separations at the intermediate metering point to conditional levels of 
confidence.  The relationship is shown by the pdfs of feasible separations and the application of 
the method is straightforward. 
The total probability method gives more realistic estimates of the levels of confidence for the 
given target separations.  Additionally, it can be used to evaluate the feasibility of a noise
abatement approach and arrival procedure under given traffic conditions, and to determine target 
separations that best fit the given traffic conditions.  However, it takes additional effort to obtain
the data required to generate the pdfs of the actual traffic spacing. 
There are significant benefits in using sequence-specific target separations relative to current 
practice of using a single Miles-in-Trail (MIT) restriction or target separation.  However, the use
of multiple target separations increases the number of variables that controllers must use as the
number of aircraft sequences is proportional to the square of the number of aircraft types in the 
arrival stream.  Sequence-specific target separations will need to be consolidated to keep the 
number of variables within a manageable level. 
The current practice of giving MIT restrictions in increments of 5 nm is not efficient, as the
computed target separations are not integer multiples of 5 nm.  Thus, it is necessary to reduce the 
discretization increment step from 5 nm to a smaller number.
Winds have a strong impact on the feasible separations.  If efficiency is a big concern, such as in 
relatively busy terminal areas or during relatively busy times of the day, different sets of target
separations should be determined for different nominal wind conditions.  In this case, a strong tail 
wind condition would need larger target separations, and a strong head wind condition would
need smaller target separations.
For the same conditional level of confidence, traffic throughput will be significantly improved as 
the intermediate metering point is moved closer to the runway threshold.  Thus, for a given
procedure, target separations could be provided at optional metering points along the noise 
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abatement arrival procedure flight path to allow for operational flexibility in accommodating
different traffic loads. 

7.2.3 Observations from the Flight Test 
The separation analysis methodology presented in this thesis was applied in the KSDF 2004 CDA 

flight test involving UPS B757-200 and B767-300 revenue flights. Based on simulation and analysis
results, a 15 nm target separation was recommended for the selected intermediate metering point SACKO.
Based on the analysis of radar tracking data and air/ground voice communications, it is observed that: 

The recommended 15 nm target separation was used by both Air Route Traffic Control Center
(Center) controllers and the Terminal Radar Approach Control (TRACON) controllers, but in
different ways.  The target separation was used by Center controllers as a MIT restriction to 
deliver traffic to TRACON controllers.  On the other hand, the target separation was used by 
TRACON controllers as a reference aid for predicting future separations between aircraft on the
CDA.
The use of larger target separation reduces randomness in the arrival flow. Although the average 
spacing in the arrival stream was increased by using a larger target separation (or a larger MIT 
restriction), the standard deviation was decreased.  As the target separation increased, the average
traffic spacing increased by a amount smaller than the corresponding increase in the target
separation.
The spacing in the arrival stream under MIT restrictions followed Erlang distributions.  The left 
side tail of the distribution extended to the spacing values less than the target separations. This
indicates that at times the MIT restrictions might not be satisfied.  However, there were no
observations of spacing below the separation minimum of 5 nm.
After gaining experience managing the CDA flights, controllers were able to develop techniques
for predicting future separations between aircraft on the same procedure.  Since the lateral flight
path was fixed, controllers used their mental models of the probable CDA speed profiles and 
relied on the relative speed of the trailing aircraft with respect to the speed of the leading aircraft 
to predict if spacing would be less than separation minima in the future. 
The techniques used by controllers to adjust spacing maintained noise abatement benefits in most
cases.  These techniques included directing the aircraft to side step to the parallel runway,
vectoring the aircraft 30 deg off CDA path and return later, and adjust descent speed prior to the
deceleration at 10,000 ft. 
In some cases, when the weather condition permitted, visual separation was used when 
controllers predicted that the Instrument Flight Rules (IFR) separation minima could be violated.
When using visual separation, a pilot sees the aircraft in front, and provides his own separation
from the aircraft in front.  Because visual separation requires less spacing between aircraft than 
radar separation, interruption to the execution of CDA was reduced.
Two strategies were used by controllers to adjust the spacing between aircraft during the 
execution of CDA.  The first strategy was to vector the aircraft early when the spacing at the
metering point was less than the given target separation.  The second strategy was to vector the
aircraft when aircraft was close to turning on to the final approach course and that the controller 
was certain that a separation violation would occur if no action were to be taken.  If the first
strategy is used, some of the aircraft may have been vectored when in fact the separation could 
eventually be ensured without intervention.  If the second strategy is used, the number of aircraft 
to be vectored could be reduced.  However, as the actions are to be taken later in the procedure, 
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the aircraft would probably have to vectored substantially to extend the base leg and fly level 
segments at relatively low altitudes if an alternative parallel runway is not available for use. 
Controllers were also able to handle the arrival traffic flow with mixed aircraft types when the 
CDA flight test was active.  A number of non-CDA flights were fed into the gaps between CDA
flights and were vectored to follow the CDA lateral flight path.  In several cases, speed
commands were assigned to non-CDA flights to maintain proper spacing – allowing CDA flights
to continue without interruption.

7.2.4 Implications of This Research 
Aircraft noise is a significant concern to communities near airports, and therefore a constraint to the

growth of aviation.  Advanced noise abatement approach and arrival procedures are a cost effective
means of achieving near- and medium-term noise reductions.  Additionally, these procedures can be
employed to reduce fuel burn, emissions, and flight time. However, because of the aircraft trajectory
variations due to operational uncertainties, and because the aircraft is continuously descending during 
noise abatement approach and arrival procedures, it is difficult for air traffic controllers to predict and 
maintain separation.  Without proper decision support tools, negative impact on airport capacity is
anticipated for implementing noise abatement approach and arrival procedures.  The benefits of noise 
abatement approach and arrival procedures on one hand and the anticipated negative impact on capacity 
from their implementation on the other form a dilemma.  This is essentially one of the major reasons why 
noise abatement approach and arrival procedures have not been routinely implemented in the past. 

The research presented in this thesis demonstrated through the KSDF 2004 CDA flight test that with 
the developed framework and tools, noise abatement arrival procedures can be implemented in near-term
to achieve noise reductions and other economic and environmental benefits while maintaining a certain 
level of traffic throughput.  Although the flight test was conducted during the middle of the night, because
of the nature of UPS’s over-night package delivery operations, the traffic level could be at times relatively
high.  Additionally, while the CDA flight test was active, UPS B757-200 and B767-300 were not the only
aircraft types in the arrival flow.  There were other UPS aircraft types, and occasional aircraft from other
carriers in the arrival flow.  Those aircraft were not expected to fly CDA.  However, controllers were able
to manage the arrival traffic with mixed types, CDA, and non-CDA.  Similar traffic conditions exist at
many airports.  For example, early morning arrivals from the west coast, at major east coast airports could 
be very good candidates to fly CDA.  Nighttime cargo operations at other airports can also fly CDA.
Similar traffic conditions could exist during daytime at certain airports, especially for traffic from certain
entry points. These are also windows of opportunity for implementing CDA.  Under this implementation
scheme, although only a fraction of flights fly CDA, the benefits add up quickly giving today’s large 
number of aircraft operations – over 10 million departures per year.  If 10% of the flights can perform
CDA, that would be 1 million CDA per year.  In fact, in several current projects, noise abatement arrival 
procedures are already being developed for implementation under this scheme.

The research presented in this thesis also demonstrated through simulation analysis that with the 
developed framework and tools, noise abatement approach and arrival procedures can be implemented in
the near-term under relatively high traffic conditions. This can be achieved by using an intermediate
metering point closer to the runway threshold, and using sequence-specific target separations.  It is also
important to allow the use of target separations presented in discretization step sizes smaller than the 5 nm 
discretization step size currently used for MIT restrictions.  With CDA implemented under higher traffic, 
an even larger number of flights can perform CDA.
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Under queueing theory, system delay comes from uncertainties, or randomness in arrival traffic and
the services handling the traffic.  The procedure design and operational framework implies increased level
of coordination between Center and TRACON as demonstrated by the KSDF CDA flight test.  The target
separations are determined based on the analysis of trajectory variations.  The use of such determined
target separations can be viewed as applying traffic regulators that reduce randomness in the traffic flow.
Thus, the procedure design framework, the supporting Monte Carlo simulation tool and the separation
analysis methodology provides a means to reduce system delay.  The application of the tools are thus not 
limited to noise abatement approach or arrival procedures.  They can be applied to generic RNAV and 
RNP arrivals as well.  With some changes, the tools can even be applied to the conventional approach to
determine the optimal MIT restrictions, thus improving system efficiency.  In contrast, in the current 
operational environment, MIT restrictions are purely determined based on experience. 

The framework and the tools presented in this thesis were developed with the open-loop control 
assumption, i.e. pilots flying aircraft to track pre-computed profiles without interacting with other traffic.
Controller intervention is needed when adjustment to spacing is necessary.  This does not imply that when 
new technology – such as airborne spacing – is available in the cockpit, the framework, and the separation
analysis methodology would become obsolete. On the contrary, the framework and the tools would still 
be a valuable means for strategic planning tasks so that the high gain control actions by each individual 
aircraft can be minimized to maintain procedure benefits to the highest level. On the other hand, should
airborne spacing technology or the required time of arrival technology be used, the traffic throughput for 
noise abatement approach and arrival procedures could be maintained at an even higher level.  This is 
because additional leverage would be available for adjusting spacing.  The airborne spacing would enable
the use of lower levels of confidence that is defined based on open-loop aircraft trajectory control. 

The procedure design and operational framework also presents a methodology to manage uncertainties 
in a more generic sense. Instead of employing ad hoc actions to respond to operational uncertainties, a
nominal plan can be developed with a reasonable – though not absolute – level of confidence without the 
need for ad hoc response actions.  By accepting some uncertainties, near-optimal plan can be used to 
achieve operational goals.  Alternative measures or contingency plans can be developed to cover
exceptions.

7.3 FUTURE RESEARCH WORK 

The simulation tool and the analysis methodology have been improved over the course of growing
applications in different projects in both US and Europe.  Future efforts to expand the research presented 
in this thesis include:

Modeling more aircraft types

One of the continuing efforts is to add new aircraft types to the fast-time aircraft simulator.
Specifically, more commercial transport aircraft types from Airbus and regional jets could be
added to expand the capability of the simulator so that it can be used for future projects with more
diverse fleet mix.
Enhancing the aircraft performance model

Future enhancements of the Monte Carlo simulation tool could include incorporating
performance variations within each aircraft type due to differences in wearing, weathering, and 
adjustment.  Probability distribution model of aircraft CG positions could also be developed. 
These future enhancements mostly rely on the data available to support the modeling efforts. 
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Expanding the wind model

Special wind profiles can be developed to study the procedure flyability and separation 
requirement under different wind conditions.  These may include seasonal wind profiles and wind
profiles for certain runway configurations.  The wind variation model may be expanded to use 
other available data sources at sites where no sufficient ACARS are available. 
Improving the pilot response delay model 

A previously developed pilot response model was used in the current Monte Carlo simulation
tool.  Larger variations in flap and speedbrake usage were observed during the KSDF 2004 CDA
flight test.  It is believed that training would improve operational consistency, but the larger
variations observed could also be partially due to difference between pilot response in line
operations and pilot response in a tightly controlled experiment with a specially designed
procedure. Data collected from the field or further experimental studies could thus be used to
calibrate the pilot response delay model.
Developing a generic model of spacing in the arrival traffic stream under different MIT

restrictions

Probability distributions of spacing in the arrival stream under different MIT restrictions are very 
important for evaluating the suitability of noise abatement approach and arrival procedures (and 
RNAV arrival procedures) under real world traffic conditions and determining optimal target
separations.  Radar data tracking under different MIT restrictions are often not readily available.
Controller-in-the-loop simulation studies could be used to collect these data.  With sufficient data, 
a generic model for the spacing in arrival stream may be developed as a function of the mean of 
unadjusted traffic spacing, the standard deviation of unadjusted traffic spacing, and the target
separations.
Tradeoff analysis through solving the separation optimization problems

The formulations of the minimum delay optimization problem and the maximum levels of 
confidence problem provide bases for rigorous tradeoff analysis.  With the generic model of
spacing in the arrival traffic stream developed, the tradeoff optimization problems can be solved 
to determine different sets of target separations for combined scenarios with different wind 
conditions, traffic mix, and traffic load.  This would allow for as many aircraft as possible to
perform uninterrupted noise abatement approach and arrival procedures (and RNAV procedures)
within a manageable limit even during relatively busy periods.  Detailed analyses of noise
abatement benefits and delay penalties to upstream traffic under MIT restrictions provide another
research opportunity for the future. 
Solving the traffic coordination problem for merging arrival routes 

The research presented in this thesis has been focused on the case of a single file of arrival
aircraft performing the same noise abatement approach or arrival procedure.  The separation
analysis methodology can also be extended to merging traffic on different arrival procedures from
different entry points leading to the same runway.  In the case of merging traffic, the target 
separation problem becomes a traffic coordination problem.  Two new elements associated with
winds come into play.  The first is the nominal wind profile. Given the same nominal wind
profile, the headwind and crosswind components will be different for different arrivals due to 
differences between their lateral paths.  The other is the wind variation between flights on 
different arrival paths. Aside from the influence of winds, aircraft trajectories in terms of
distance versus time will have systematic differences on different arrival procedures, mainly due 
to differences in procedure parameters.  Aircraft pairs will have to be treated as 
sequence/procedure combinations rather than sequences only.  However, the fundamental
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principle of the separation analysis presented in this thesis is still applicable.  Instead of spacing 
at the metering point between a pair of consecutive aircraft on the same procedure, distances of
the “trailing” aircraft to its own metering point – measured at the time when the “leading” aircraft
on the other procedure is at own its metering point – can be used for the analysis.  The analysis
could even be more straightforward if it were based on time of arrival to each procedure’s
respective metering point. The solution to the traffic coordination problem would be an essential 
step to more broad application of noise abatement approach and arrival procedures and 
RNAV/RNP arrival procedures alike. 
Applying the methodology to departure and en route operations 

The procedure design and operational framework and the separation analysis methodology can
also be extended in include departure and en route operations.  The goal is to streamline the
merging of departure flights into en route traffic flow, and to minimize vectoring of en route 
flights when they are handed off from one sector to another. 
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APPENDIX A 

THE FAST-TIME AIRCRAFT SIMULATOR 

NOMENCLATURE

A = transformation matrix, from NED to Body frame
ac = centrifugal acceleration
Cd = drag coefficient
CdSBfull = drag coefficient increment of fully extended speedbrake 
Cl = lift coefficient

l
C = lift curve slope 
Cl0 = lift coefficient at zero angle of attack 
Cy = side force coefficient
D = drag
Fc = centrifugal force
ff = total fuel flow 
Fy = side force
Fn = engine net thrust
Fn/ = corrected engine net thrust 
g = gravitational acceleration
h = aircraft altitude above mean sea level 
ki = drag polar parameters, i = 0, 1, 3
L = lift
m = aircraft mass
n = number of engines of an aircraft 
p = X component of aircraft angular velocity in Body frame 
pSB = speedbrake usage in % 
q = Y component of aircraft angular velocity in Body frame 
R = radius of turn
r = Z component of aircraft angular velocity in Body frame 
S = aircraft wing reference area 
T = total net thrust
u = X component of aircraft velocity in Body frame
ur = X component of true airspeed in Body frame
V = aircraft speed vector 
v = Y component of aircraft velocity in Body frame
Vc = calibrated airspeed
Vg = ground speed
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Vh = vertical speed
Vr = true airspeed
vr = Y component of true airspeed in Body frame
W = wind vector
w = Z component of aircraft velocity in Body frame
Wc = crosswind component
WF = wind forecast vector 
WFc = crosswind component of wind forecast 
WFh = headwind component wind forecast vector 
Wh = headwind component
WE = East wind component
WN = North wind component
wr = Z component of true airspeed in Body frame
Wu = X component of wind in Body frame 
Wv = Y component of wind in Body frame 
Ww = Z component of wind in Body frame 
XNED = North coordinate in NED frame
xte = cross track error
YNED = East coordinate in NED frame 
ZNED = Down coordinate in NED frame

= aircraft angle of attack 
 = sideslip angle

= ambient pressure ratio, p/p0

 = roll angle
= flight path angle 

r = the angle between true airspeed vector and the horizontal plane 
 = track angle

r = incidental angle between wind vector and ground speed in horizontal plane 

r = angle between true airspeed and ground speed in horizontal plane 
 = pitch angle

= ambient air density
 = yaw angle

A.1 INTRODUCTION 

Flight test is the ultimate means of studying aircraft trajectory characteristics and researching flight 
operation procedures.  However, it is also a costly and time-consuming process.  Simulations have thus 
been extensively used in flight operation procedure design and flight test planning.  Full fidelity dedicated
simulators such as the National Aeronautics and Space Administration (NASA) Ames B747-400 full
motion flight simulator1 have all the major flight crew interfaces and are very accurate in representing real
aircraft dynamics.  Experiments with these simulators usually involve qualified airline pilots.  Due to the 
relatively high cost of operating such simulators, and the difficulties in scheduling and recruiting pilot 
subjects, the number of simulation runs on a full fidelity dedicated simulator in an experiment is limited.
A workstation based aircraft simulator, the NASA PCPlane2, using general purpose computing platforms,
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provides a simulation environment for the flight management functions and displays of advanced civil 
transport aircraft.  It’s proven to be effective in explore new display and operation concepts, but it still
needs at least trained student pilot to perform each simulation run.  A trajectory-centered fast-time
simulation tool, the NASA TCSim3, can simulate a variety of aircraft types in a wide region of airspace at
same time.  TCSim includes embedded pilot agents and generates arrival time estimations by 
automatically ‘flying’ each aircraft’s trajectory and storing the time it takes to arrive at relevant points
along the trajectory.  However, for the specific application of TCSim, the resolution of trajectory 
simulation is relatively low; besides, it is not readily accessible outside the organization. 

To study noise abatement approach procedures, Ho and Clarke developed a workstation based fast-
time aircraft simulator using 2D point mass model formulation4. This simulator was improved by Ren et 
al for a capacity analysis study of a Modified Three Degree Decelerating Approach (MTDDA)5.  In 2004,
the fast-time simulator was redesigned to achieve 4D trajectory simulation accuracy comparable to full 
fidelity simulations.  Yet, it was designed to be simple enough so that it can be executed in fast-time to 
generate large number of trajectories for different operation conditions, namely combinations of aircraft
configurations, procedure design parameters, and weather conditions, in a relatively short amount of time.
To this end, a careful trade-off has been made between accuracy, flexibility, simplicity, and execution 
speed.  In order to accurately simulate aircraft behavior under various wind conditions, aircraft movement
in wind condition is carefully analyzed and formulated.  The simulator was developed for evaluating and
down-selecting procedure design features and for analyzing separation between aircraft during execution 
of arrival and approach procedures.  The most important parameters are altitude, thrust, distance, and time
along aircraft trajectory because these parameters directly affect noise impact and spacing between
aircraft.  Thus, less emphasis was given to aircraft micro dynamic behavior and human-machine
interactions.  Should those issues become important in later stages of procedure development, researchers 
can move to more sophisticated simulation facilities such as the full motion simulator mentioned earlier. 
The resulting fast-time aircraft simulator consists of an aircraft dynamics model, Flight Management
System (FMS) with Vertical Navigation (VNAV) capability, the autopilot, and the autothrottle.  A pilot 
agent was included to manually control the extension of flap, landing gear, and speedbrakes.  Procedure
definition and pilot operation procedure such as the flap schedule can be given as deterministic inputs. 
On the other hand, individual pilot action variations, aircraft weight, and wind profile can be given as
stochastic inputs.  System block diagram of the fast-time aircraft simulator is shown in Fig. A-1. 
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Figure A-1 Aircraft simulator block diagram.
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Because the application of this fast-time simulator is focused on aircraft arrival procedures, the flat 
earth assumption should be sufficient in terms of accuracy.  The following right-handed coordinate frame
definitions are used: 

North-East-Down (NED) frame.  The origin of this frame is assumed at a fixed point – normally the 
reference point at the destination airport.  The North-East plane is parallel to the Earth’s surface, X – 
north, Y – east, Z – down. This is essentially the inertial reference frame.

Aircraft body fixed (Body) frame.  This frame is fixed to the aircraft body with its origin at the
nominal center of gravity of the aircraft; X – forward along aircraft longitudinal reference line, Y – 
starboard, Z – down. 

Euler angles.  These are a sequence of three rotations that define aircraft’s instantaneous attitude, or 
the orientation of Body frame.  The rotations are performed in the order of yaw , pitch , and roll , with 
Body frame initially aligned with NED. 

Z

X

Y

NED

X

Y Z

Body

X of
Stability frame

Vr

Figure A-2 The relationship between NED, Body, and Stability frames. 

While the navigational computation was performed in NED frame, the aircraft dynamics computation
was performed in Body frame.  The transformation matrix from NED frame to Body frame can be derived 
as6

 (A-1) 

coscossinsincoscossincossincossinsin

cossinsinsinsincoscoscossinsinsincos

sinsincoscoscos

A

Stability frame.  Like the Body frame, the origin of this frame is also at the nominal center of gravity
of the aircraft.  The stability frame can be obtained through rotating Body axis about first its Y-axis and 
then the new Z-axis such that the new X-axis is aligned with the aircraft velocity relative to the air mass –
a widespread body of air in which the aircraft moves.  This is the frame in which aerodynamic force
components are calculated.  The rotation from Stability frame to Body frame is aircraft side slip angle 
and angle of attack .

All computation was to be conducted under International Civil Aviation Organization (ICAO) 
Standard Atmosphere7 (ISA) conditions.  A set of utility functions was created to convert between Mach 
number, True Airspeed (TAS), Equivalent Airspeed (EAS), and Calibrated Airspeed (CAS).  For aircraft
with electronic speed indicator or electronic speed tape, the position error values are accounted for in the 
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air data computers, resulting in the pilot reading computed airspeed, or CAS8.  Thus, whenever IAS was
required CAS was used instead because the simulation was only concerned about advanced jets with FMS
with electronic speed tape.

The remainder of this section is organized as follows.  The next section describes the aircraft dynamics
model used in the fast-time simulator.  This includes the aerodynamics model and the equations of 
motion.  Section A.3 presents an analysis of wind effects on aircraft motion.  Section A.4 describes the
FMS module used in this simulator.  Algorithms used in the FMS to compute VNAV flight path are
presented in detail.  Section A.5 describes simplified autopilot and autothrottle models, and the pilot 
model used in this simulator.  Assumptions used to simplify the autopilot and autothrottle models are 
discussed.  Lastly, the Monte-Carlo simulation data flow, simulation accuracy, and the interfaces to 
external tools are described.

A.2 THE AIRCRAFT DYNAMICS MODEL 

The basic procedure of aircraft simulation is to start with the aircraft dynamics model to obtain aircraft
angular and translational accelerations.  By integrating these accelerations, aircraft state at the next time 
step can be obtained.  The process is shown in Fig. A-1.  Starting from an initial state and iterating this 
process step by step, aircraft flight trajectory can be generated.  This section first describes the aircraft
aerodynamics model and engine model used in the fast-time simulator.  It then gives the derivation of
angular and translational displacement derivatives and navigation equations.  The integration method is 
also briefly discussed.

A.2.1 External Forces
Given altitude h, true airspeed Vr, angle of attack , and sideslip angle , aerodynamic forces as

represented by components in stability frame, namely lift L, drag D, and side force Fy, can be computed

lr SCVL 2

2

1
(A-2)

dr SCVD 2

2

1
(A-3)

yry SCVF 2

2

1
(A-4)

where  and S denote air density and the reference wing area respectively.
Unlike the commonly used point-mass models in which steady state equilibrium equations are used, 

the lift coefficient was modeled as a linear function of aircraft angle of attack.  This is shown in Eq. (A-
5).  The instantaneous angle of attack was determined by the aircraft attitude and the wind condition. 
This model gives more accurate results for varying wind conditions, because the effect of varying wind 
on angle of attack is directly reflected in lift.  It was assumed that the lift coefficient at zero angle of
attack Cl0 and the lift curve slope 

l
C  were functions of the aircraft’s flap/gear setting. 

lll
CCC

0
(A-5)
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As shown in Eq. (A-6), the low speed drag polars were approximated as parabolic curves for the
normal range of lift coefficient.  The three parameters k0, k1, k2 were assumed functions of aircraft’s 
flap/gear setting.  The last term in Eq. (A-6) represents the drag contribution of speedbrakes.  Coefficient 
CdSBfull was used to represent drag coefficient increment when speedbrakes are fully extended; and a
percentage pSB was used to represent how much speedbrake was to be used.  High-speed drag polars were
presented as a look up table given drag coefficient as a function of lift coefficient at different Mach 
numbers.  High-speed drag polar becomes important when descent from cruise altitude is to be simulated.

SBdSBfulllld
pCCkCkkC 2

210
(A-6)

Equation (A-7) represents a generic model of the side forces coefficient as suggested by Nelson9.  Side 
force was included in the model to represent the drifting acceleration behavior of a typical commercial
aircraft under changing crosswind.  Under stead-state conditions, the sideslip angle becomes zero, and, 
thus, the side force becomes zero. 

682.0yC (A-7)

Internally, engine thrust was modeled as corrected net thrust per engine under different power settings.
Corrected net thrust per engine is defined8 as net thrust per engine Fn divided by ambient pressure ratio ,
i.e. Fn/ .  Engine thrust was to be bounded by idle thrust and maximum climb thrust.  Depending on the
actual control mode used in a flight segment, engine thrust may be that of idle, maximum climb, or
somewhere in between as determined by the autothrottle.  A first order delay was used to model the 
engines’ spool-up response.  The total net thrust exerted on the aircraft was computed as 

/nFnT (A-8)

For idle power, corrected net thrust per engine and engine fuel flow were represented as a look up 
table given corrected thrust and fuel flow as functions of Mach number at different altitudes.  For
maximum climb power, only corrected net thrust per engine was represented as a look up table.  At power
settings other than idle, corrected engine fuel flow8 was represented as a look up table given fuel flow as a
function of corrected thrust and Mach number at different altitudes.  Engine surge bleed valve schedule
could also be provided to give more accurate fuel burn.

Based on the flat earth assumption, aircraft weight was assumed to only have the vertical component
in NED frame with a value equal to mg, where m is the aircraft mass and g is the gravitational
acceleration.  The derivative of aircraft mass with respect to time was assumed to equal to the total fuel 
flow, but with a negative sign 

f
fm (A-9)

In this simulator, the derivative of aircraft mass was only used to compute the instantaneous aircraft
mass itself.  The total fuel flow is relatively small as compared to the total aircraft mass; this is especially
true during the arrival phase of flight.  As such, at any given time, the aircraft mass was assumed static to
simplify the computation.
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A.2.2 Translational Derivatives
Applying Newton’s law in the Body frame6, the force equations yield translational derivatives of the

aircraft velocity components in the X direction u, Y direction v, and Z direction w as follows

mDLgpvquw

mFgrupwv

mDLTgqwrvu

y

/)sincos(coscos

/cossin

/)cossin(sin

 (A-10) 

where p, q, and r denote the aircraft angular velocity components in the Body frame X, Y, and Z directions
respectively.  It was assumed that engine thrust were aligned with X axis in Body frame.  As mentioned
before, side force was included to account for side drifting acceleration due to the possible change of
crosswind component along the flight path.

A.2.3 Angular Derivatives
In this simulator, aircraft attitude control is performed by an autopilot model that was assumed able to 

maintain certain tracking accuracy.  Since autopilot has been an integral part of advanced commercial
aircraft, and with modern navigation technology in place, this assumption is valid for most cases.  The 
autopilot model provides two aircraft rotational rates as outputs, i.e. roll rate p and pitch rate q.  This 
modeling scheme eliminated the need for aerodynamic derivatives, rotational moments, and moments of 
inertial momentum.  Details of the autopilot are described later. 

During a coordinated turn, for small flight path angles, the centrifugal force can be approximated as Fc

= Lsin .  Newton’s law gives RmVmaF gcc /2 , where ac denotes the centrifugal acceleration, Vg

denotes the aircraft ground speed, and R denotes the radius of turn.  For zero sideslip angles, the angular
velocity of turn can be approximated by RVg / .  Thus the derivative of aircraft yaw angle can be
obtained as 

)/(sin gmVL (A-11)

Through a coordinate transformation, the Z component of aircraft angular velocity in the Body frame 
can now be obtained as 

cos/)sincos( qr (A-12)

With all three components of aircraft angular velocity in the Body frame known, the remaining two
Euler angle rates can be computed:

sincos

tan)cossin(

rq

rqp
(A-13)

A.2.4 Navigation Equations
The basic navigation equations define the movement of aircraft center of gravity in 3D space relative

to the earth.  In the NED frame, these equations were obtained by transforming the aircraft velocity
components from the Body frame.  They are reiterated here for the sake of clarity6:
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 (A-14) 
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The transformation matrix A in Eq. (A-14) is the one given by Eq. (A-1). From the components of 
aircraft velocity in NED frame, other properties of the aircraft movement can be obtained.  By definition,
the ground speed is 

22

NEDNEDg XYV (A-15)

Track angle 

)/atan(
NEDNED

XY (A-16)

Flight path angle

)/atan( gNED
VZ (A-17)

According to the above definitions, the positive sense of track angle is clockwise, the positive sense of 
flight path angle is climb.

A.2.5 Integration Method
With aircraft state derivatives u , v , w , , , ,

NED
X ,

NED
Y , and h derived, aircraft state at next

time step can be obtained through integration.  In this simulator, the fourth-order Runge-Kutta method
was used to perform the integration for its accuracy and acceptable phase lag.  The integrations are
performed in the frame where each state variable is defined. 

A.3 THE EFFECT OF WIND 
Wind is the single most important external factor that affects aircraft trajectory.  In order to accurately

simulate aircraft trajectory under various wind conditions, special attention must be paid to the
formulation of aircraft movement when there is wind.  In the following analysis, only wind components
in the horizontal plane of the NED frame are considered because the vertical wind component (top shear) 
has a much smaller geometric scale, and its effect on the overall aircraft trajectory is limited.  In this
section, the effect of wind on aircraft ground speed is examined analytically first, then the computation of 
aircraft angle of attack and sideslip angle under wind conditions is described, and lastly the wind model
used in the fast-time simulator is introduced. 

A.3.1 The Effect of Wind on Aircraft Movement 
Assume that aircraft is flying at a true airspeed Vr, subject to horizontal wind vector W, with flight

path angle .  Further assume the angle between true airspeed and the horizontal plane is r.  This angle 
represents the flight path angle relative to the air mass.  The relationship between the true airspeed vector,
the vertical speed vector (Vh), the ground speed vector, and the total speed vector (V), as collapsed into 
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the vertical plane, is shown in Fig. A-3a.  The relationship between speed vectors as projected in the
horizontal plane is shown in Fig. A-3b, where r denotes the incidental angle between the wind vector and 
the ground speed vector, and r denotes the angle between the projection of true airspeed and the ground
speed vector. 
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Figure A-3a Relationship between flight

path angle, true airspeed, and ground

speed as collapsed in the vertical plane. 

Vr
W

Vg

r
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Figure A-3b Relationship between wind

speed, true airspeed, and ground speed

as projected to horizontal plane. 

As shown in Fig. A-3a and A-3b, the general relationship can be expressed in vector form as

WVVVV rgh
(A-18)

Decomposing the wind vector into a headwind component Wh=Wcos r and a crosswind component
Wc=Wsin r, from Eq. (A-18), in scalar form, the following equations can be derived 

cosVVg (A-19)

sinsin VVV rrh
(A-20)

2222 cos
hgcrr WVWV (A-21)

Assume 0 | r|< /2, i.e. ground speed is positive, the following equations can be derived from Eq. 
(A-19), (A-20) and (A-21)

hchrg WWVVV 222 (A-22)

cossin
hhcr WWWV 2222V (A-23)

cos/sin/sin/sin rgrr VVVV  (A-24) 

Equation (A-22) shows that for given vertical rate Vh and true airspeed Vr, both headwind component
Wh and the crosswind component Wc affect ground speed Vg.  A positive headwind component causes the
ground speed to decrease, and a negative headwind component (or tailwind component) causes the
ground speed to increase; while the crosswind component always causes the ground speed to decrease no
matter the crosswind component comes from left or right.  However, the reduction of ground speed due to
the crosswind component is much smaller than that due to the headwind component, if the wind speed is
relatively small.  This is easily seen from the following partial derivatives 
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1/
hg WV , independent of 

h
W (A-25)

222/ chrccg WVVWWV (A-26)

For level flight Vh = 0, Eq. (A-22) and (A-23) reduce to Eq. (A-27); and Eq. (A-26) reduces to Eq. (A-
28)

hrcrrhcrg WVWVVWWVVV 2222 /11  (A-27) 
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On the right hand side of Eq. (A-27), the second term is the contribution of the crosswind component,
and the third term is the contribution of the headwind component.  The relationship represented by Eq. 
(A-27) is illustrated in Fig. A-4, for several different values of the ratio of wind speed to true airspeed 
(W/Vr).  In Fig. A-4, the vertical axis represents the ratio of ground speed to true airspeed (Vg /Vr), the 
horizontal axis represents angle r.  As angle r varies from 0 deg to 90 deg, the wind vector changes 
from a pure headwind to a pure crosswind; and a r of 180 deg gives a pure tailwind.  The effect of wind
on ground speed is the highest under headwind and tailwind conditions.  The effect of a pure crosswind
component on ground speed is illustrated in Fig. A-5.  As seen in Fig. A-4 and A-5, the effect of the
crosswind component can be ignored when the crosswind component is relatively small comparing to true
airspeed.  However, when the crosswind component is not small, or when precise results are required, the 
effect of crosswind component should not be ignored.  In this simulator, both headwind component and
crosswind component were taken into account.
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Since aircraft control and flight operation procedures are mostly based on airspeed, the effects of wind 
on aircraft ground speed will affect time-to-fly, and also the evolution of spacing between consecutive 
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aircraft pairs.  The decrease of ground speed, such as in headwind conditions, will increase time-to-fly,
and cause earlier separation compression relative to zero wind condition.  The increase of ground speed, 
such as in tailwind conditions, will reduce time-to-fly, and delay separation compression relative to zero 
wind condition.  Uncertainties in wind forecast, and/or change of wind will transfer into uncertainties in
time-to-fly and uncertainties in spacing between aircraft.

Equation (A-24) represents the effect of wind on flight path angle.  Because flight path angle is small
under normal flight operation conditions, cos  1, Eq. (A-24) can be approximated as sin r  (Vg/Vr)
sin .  For a flight segment with fixed flight path angle , such as the initial constant speed segment in a
Three Degree Decelerating Approach (TDDA) or MTDDA5, the decrease in ground speed due to 
headwind or crosswind will result in a shallower flight path angle relative to the air mass.  This in turn
will require higher thrust or less speedbrake usage to maintain the same airspeed.  The increase of ground 
speed due to tailwind will result in a steeper flight path angle relative to the air mass, which in turn will 
require lower thrust or more speedbrake usage to maintain the same airspeed.  Both thrust and speedbrake
usage have noise implications.  If the engine throttle setting is fixed, such as in idle, headwind and 
crosswind will cause aircraft to decelerate faster, and tailwind will cause aircraft to decelerate slower.
This will affect aircraft’s capability to follow a specific profile. 

On the other hand, for a flight segment with given flight path angle relative to the air mass r, the
decrease of ground speed due to headwind or crosswind will result in a steeper flight path angle.  The 
increase of ground speed due to tailwind will result in a shallower flight path angle.  For such a flight 
segment, the effect of wind is more complicated.  Different wind conditions will result in different 
vertical flight paths.  Not only the altitude above ground will be different, for the same airspeed profile,
the longitudinal acceleration will also be different.  This is because the relationship between true airspeed
and calibrated airspeed will be different for different vertical profiles. 

A.3.2 Aircraft Angle of Attack and Sideslip Angle 
In the discussion of aerodynamic forces, to determine lift coefficient and side force coefficient, aircraft

angle of attack and sideslip angle must be determined first. Assume that the aircraft is subject to
horizontal wind vector W, with NED frame components WN and WE.  The components of wind in Body
frame can be computed through coordinate transformation 

(A-29)
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In Eq. (A-29) subscripts u, v, and w denote wind components in Body frame aligned with X, Y, Z

directions respectively.  The positive sense of the wind components is pointing to negative infinity for
each direction.  Aircraft speed relative to the moving air mass, true airspeed, in Body frame is thus 
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Figure A-6 Aircraft angle of attack 

and sideslip angle. 

From the geometric relationship shown in Fig. A-6, aircraft angle of attack  and sideslip angle  can
be obtained as

)/arctan( rr uw (A-31)
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A.3.3 The Wind Model
There are two aspects in the wind model, wind forecast and actual wind experienced by aircraft.  Wind

forecasts are available from a number of sources.  The National Oceanic and Atmospheric Administration
(NOAA) Forecast Systems Laboratory’s (FSL, now the Global Systems Division of the Earth System
Research Laboratory) Rapid Update Cycle, RUC40, has a horizontal resolution of 40 km and 40 vertical 
levels.  The update rate for RUC40 is one hour. The FSL’s RUC20 has a horizontal resolution of 20 km
and 50 vertical levels, with improved model and algorithms10. Near real-time Aircraft Communications
Addressing and Reporting System (ACARS) metrological reports from major US airlines are made
available by NOAA for research use.  ACARS data provides measurements taken by aircraft flying
through the airspace, thus can be used as an alternative source of wind forecast. 

Wind forecast data could be used by FMS in computing optimal speed and optimal descent path 
(VNAV path).  According to Bulfer and Gifford11, 12, depending on the system version, wind forecast data
may be entered for each waypoint.  For the Honeywell legacy FMS without the Product Improvement
Package (PIP), the wind may be entered at a given flight level, and is forward propagated and backward
propagated to the next waypoint if necessary.  Downward propagation is linearly tapered reaching zero at
the surface. For Honeywell PIP systems, wind data page provides wind entry capability for up to four 
altitudes.  These altitudes are applied to all waypoints in the flight plan.  Forward and backward 
propagation is done for the same flight level.  Forecast winds are assumed to vary linearly between
specified altitudes.  Downward propagation is linearly tapered reaching zero at the surface.  Descent
forecast wind entry is designed for use when coming out of the jet stream.  Four altitudes may be entered 
in the DESCENT FORECAST page. FMS uses a mixing algorithm to determine the predicted wind at
points in front of the aircraft.  The predicted wind is a mix of the forecast wind (entered by the pilot) and 
the measured wind.  At the aircraft’s current position, the computer uses 100% of the measured wind. 
During the climb and descent phase, at 5,000 ft in front of the aircraft, the FMS uses 50% of the actual
wind and 50% forecast wind.  At distance over 5,000 ft, the FMS uses successively less measured wind 
until the wind used is near 100% forecast. 
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In this simulator, the above-mentioned wind-mixing algorithm was implemented as part of the FMS
functionality.  Wind forecast data were to be provided as a separate input file allowing flexibility in the
number of altitude entries to be used to accommodate different aircraft equipage.  Actual wind profile was 
designed as another input file allowing the wind field to be defined as constant wind, or varying with
time, distance, or altitude.  A digital implementation of the Dryden wind turbulence model13 was also
included in the simulator.  The intensity of the wind turbulence was to be defined in the wind profile, or it 
can be simply disabled. 

A.4 THE FMS MODULE 

The functionality of the FMS module is two-fold.  Prior to the actual procedure run, the FMS module
builds lateral flight path and vertical flight path based on entered waypoints and altitude/speed 
constraints.  This is done according to FMS Lateral Navigation (LNAV) and VNAV logic.  During the
simulation run the FMS module provides guidance to the aircraft and feeds aircraft state error to the
autopilot module to control the aircraft to follow the computed LNAV path and VNAV path.  This section
gives an overview of the basic LNAV and VNAV logic first.  It then describes in detail the algorithms
used for computing VNAV flight path segments.

A.4.1 LNAV Functionality
The lateral flight path is normally defined by a series of waypoints leading to the runway threshold.

The location of waypoints can be given as either North-East coordinates or latitude/longitude in World 
Geodetic System 1984 (WGS 84).  Internally, the computation is performed in North-East coordinate
system. If waypoints are defined by latitude/longitude, they will be converted into the North-East 
coordinate system in such a way that the distance between consecutive waypoints and the angle of turn at
each waypoint are preserved.  Several lateral control modes are available for use during the arrival and 
approach phase.  The most commonly used modes are LNAV path track mode (LNAVTRACK) and 
localizer track mode (LOC).  Turn radius at each waypoint is determined based on the angle of turn and 
the estimated CAS at that waypoint.  Before the actual simulation run, the FMS module builds a nominal
flight path that consists of straight line and arc segments with corresponding control mode given at each
segment.

Runway
Threshold

Cross Track Error

Distance to 
Runway

LNAV Path 

Runway
Threshold

LOC Error
Runway

Threshold

LOC Error

LOC Mode

Figure A-7 Cross track error, distance to runway, and localizer tracking error.

During simulated flight, the FMS module computes an along track distance to runway threshold 
(distance to runway) by first projecting current aircraft position to the nominal flight path, then computing
the distance of the projected intersection to the runway threshold along the nominal flight path.  Distance 
to runway is then used as an indicator of aircraft’s progress in the approach procedure.  For a 
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LNAVTRACK segment, the cross track error, namely distance between current aircraft position and the 
projected intersection, is computed at the same time. This process is illustrated in Fig. A-7. Additionally,
a target high level heading command is computed based on the nominal flight path track angle and wind 
experienced by the aircraft.  Both the cross track error and the high level heading command are fed into 
the autopilot to control aircraft’s lateral motion.  For a LOC segment, normally the last segment of an
approach flight path, the tracking error is defined as the angular deviation of the straight line connecting
current aircraft position and runway threshold relative to extended runway centerline.

A.4.2 VNAV Functionality
The vertical flight path is defined by a series of profile parameters such as altitude, CAS/Mach, flight

path angle, and engine thrust setting given at certain distances to the runway threshold. These values
provide the cruise altitude, the cruise speed, the descent CAS/Mach, the vertical profile, and the
Instrument Landing System (ILS) parameters should ILS be used.  For VNAV descent segments, altitude 
and speed constraints can be given at certain waypoints on the lateral flight path to let the FMS compute
an optimal descent path. When VNAV is used, altitude and speed constraints given at waypoints take 
precedence over the profile parameters for the same segment.  The most commonly used vertical control 
modes in noise abatement approach and arrival procedure simulation are the VNAV flight path mode
(VNAVPATH), the altitude and speed hold mode (ALTSPD_HOLD), and the ILS glide slope following 
mode (ILS_GS). 

The FMS module builds an idle VNAV descent path from Top of Descent (T/D) to the first altitude 
constraint.  Because there is no fixed constraint at the upper end of such a descent path, it is also referred
to as unrestricted VNAV path.  Below the first altitude constraint, the descent path may or may not be idle
depending on the steepness of the path segments, determined by altitude constraints at waypoints.  The 
descent path is built starting from the lowest altitude constraint through backward integration to the cruise 
altitude.  A typical VNAV descent path is shown in Fig. A-8. 
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Figure A-8 Typical FMS VNAV flight path. 

As shown in Fig. A-8, the unrestricted VNAV path consists of three types of idle descent segments,
constant Mach, constant CAS, and deceleration segment.  Fixed descent rate is assumed for the 
deceleration segments.  Since engine power is assumed to be idle, to maintain the given CAS, Mach, or
descent rate, the flight path angle at any point on the computed unrestricted VNAV path is a function of 
aircraft weight, wind forecast, and nominal flap/gear extension schedule.  For fixed flight path segments
between vertical constraints, if different speed constraints are given at the two ends of the segment, the
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FMS module computes a point where an idle deceleration should start so that the aircraft would reach the 
speed constraint at the lower end of the segment upon arriving at that end.  Before this deceleration point, 
the aircraft is assumed to be maintaining a speed equal to that given at the higher end of the segment.
Again, the location of this deceleration point depends on the aircraft weight, wind forecast, and nominal
flap/gear extension schedule.  The following subsections describe in detail the algorithms used in this
simulator to compute VNAV path segments.

A.4.3 Idle Constant CAS Descent and Constant Mach Descent Segments
Idle constant CAS and constant Mach descent segments are normally built starting from a known point 

back to a higher altitude.  The known point, with known location and altitude, can either be a fixed 
constraint at a waypoint, or the upper endpoint of the immediate lower segment that has already been
constructed.  The higher end of the segment is normally defined by the cruise altitude or an altitude where 
speed transition occurs.  In constant CAS and constant Mach descent segments, aircraft acceleration is 
normally not zero due to the nonlinear relationship between CAS/Mach and true airspeed, and the
possible change in wind forecast along altitude. 

Assume that aircraft is flying at a true airspeed Vr and flight path angle , subject to horizontal wind 
forecast vector WF.  For the sake of simplicity, the aircraft is assumed flying straight forward; and the
analysis is performed in a vertical plane parallel to ground speed.  Moreover, true airspeed is treated as 
lying in this vertical plane too.  Although due to crosswind, true airspeed and ground speed are often not
in the same vertical plane, the aforementioned approximation is close enough.  This is because the total
acceleration will ultimately only contribute to changing the magnitude of aircraft speed and the flight path 
angle, based on the straight flight assumption; and that the effect of cross wind component is relatively
small.  Because thrust is small at idle power, it can be treated as aligned with the direction of true 
airspeed.  Such simplified free body diagram is shown in Fig. A-9. 
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Figure A-9 Simplified free body diagram 

for constant CAS descent.

In Fig. A-9, special coordinate frames are used.  The X-axis lies in the horizontal plane and points to
the direction of ground speed, the Z-axis is perpendicular to the horizontal plane.  The Z’X’ frame is a
rotation of the ZX frame so that the X’-axis aligns with the aircraft speed vector V.  Force equations in X’
and Z’ directions are thus 

dt

dV
mmgLDT rr sin)sin()cos()(  (A-33) 
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dt

d
mVmgDTL rr cos)sin()()cos(  (A-34) 

Recall that drag D is determined from the drag polar, therefore it is a function of lift.  At any given
altitude, true airspeed Vr can be calculated directly from the given CAS or Mach; thus, it’s known.  Flight
path angle  and angle r are related by Eq. (A-20).  Thus, there are three unknowns in the force
equations, i.e. aircraft speed V, flight path angle , and lift L.  Aircraft tangential acceleration can also be
expressed in the form of altitude derivative 
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From Eq. (A-23) it can be derived
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In Eq. (A-37), WFh and WFc are the headwind and crosswind components of FMS wind forecast that is 
known.  Plug Eq. (A-35) and (A-36) into Eq. (A-33) and (A-34) respectively, plus Eq. (A-37), there are 
now three independent equations.  The three unknowns can now be solved through backward integration 
to the higher end altitude. With aircraft speed V and flight path angle  known for each integration step, a 
flight path segment can be constructed. 

A.4.4 Fixed Descent Rate Deceleration 
Deceleration segments are normally built starting from a known point back to a point where a higher 

CAS is reached.  The descent rate used would assure a shallower descent path to allow effective
deceleration without adding additional drag.  Again, assume that the aircraft is flying straight forward; 
and the true airspeed is treated as lying in the vertical plane parallel to ground speed; and the thrust is 
treated as aligned with the direction of true airspeed.  The simplified free body diagram is shown in Fig.
A-10.

This free body diagram is the same as Fig. A-9 except that force equations are now derived in the ZX

frame shown.  For fixed descent rate segments, vertical acceleration is zero.  The force equations are thus 

0sin)(cos mgDTL rr (A-38)

dt

dV
mDTL g

rr cos)(sin (A-39)
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Figure A-10 Simplified free body diagram

for fixed flight path angle descent.

There are three unknowns in the force equations, i.e. ground speed Vg, angle r, and lift L. From Eq. 
(A-20) and (A-21), an additional equation can be obtained

2222 tan
hrFhgFc

VWVW (A-40)

There are now three independent equations. The three unknowns can be solved through backward
integration to the point where the desired CAS is reached.  With ground speed Vg known for each 
integration step, and the given vertical rate Vh, a deceleration segment can be constructed. 

A.4.5 Fixed Flight Path Angle Descent 
Fixed flight path angle descent segments are normally segments with the both ends fixed.  If speed

constraints at the two ends are the same, no further computation is needed.  The aircraft simply follow the 
path and maintain the constant speed.  If speed constraints at the two ends are different, an idle 
deceleration point needs to be computed.  Following the same assumptions as in the previous subsection, 
the same simplified free body diagram shown in Fig. A-9 can be used.  Since the flight path angle is 
fixed, force equations in X’ and Y’ directions are 

dt

dV
mmgLDT rr sin)sin()cos()(  (A-41) 

0cos)sin()()cos( mgDTL rr  (A-42) 

Equation (A-41) is exactly the same as Eq. (A-33).  It is repeated here for clarity.  Rewrite Eq. (A-23) 
by substituting wind components with FMS wind forecast components

cossin2222

FhFhcFr WWWVV  (A-43) 

Plug Eq. (A-24) into Eq. (A-41), there are now three unknowns, i.e. aircraft speed V, true airspeed Vr,
and lift L.  The above three independent equations can be solved through backward integration from the 
lower end of the fixed flight path angle segment up to the point where the speed given at the higher end of
the segment is reached.  This is the deceleration sub segment.  From that point on up to the higher end of
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the fixed flight path angle segment is a constant CAS sub segment.  The difference between this constant 
CAS sub segment and the idle constant CAS segment mentioned earlier is that thrust may be needed to 
maintain the speed. 

A.5 AIRCRAFT CONTROL

During approach, pilot assumes the responsibility to control the extension of flap and landing gear as 
aircraft decelerates and approaches to the airport.  The pilot may also use speedbrakes when additional
drag is needed to slowdown the aircraft to follow procedure speed profile.  In this simulator, a pilot model
is included to perform these tasks.  Although some noise abatement approach procedures can be manually 
performed, advanced procedures are assumed being performed with autopilot and autothrottle engaged. 
As mentioned earlier, in developing this simulator, focus was given to aircraft trajectories rather than 
micro dynamic behavior. It was further assumed that on advanced civil transport aircraft, autopilot and 
autothrottle are able to maintain certain tracking accuracy.  Thus, control surfaces and aircraft rotational
dynamics were modeled as a single controller element, there by eliminated the need of using aerodynamic
derivatives, rotational moments, and moments of inertial momentum.  This greatly simplified the 
simulator while maintaining certain simulation accuracy.  The autopilot model consists a lateral control 
module and a longitudinal control module.  The functionality of the autothrottle was included in the 
longitudinal control module.

A.5.1 The Pilot Model
The pilot model performs the extension of flap and landing gear according to a predefined

customizable flap schedule.  The initiation of each flap extension could be individually defined either as 
at a given speed (a fixed number or as an additive to the reference speed), at a certain distance to runway,
or at a given altitude.  Speedbrake usage could be defined as keeping the aircraft speed within a certain 
range, such as 5 kts, from the target speed.  Two different speed range values can be defined, one for
altitude above 10,000 ft, and the other for altitude below 10,000 ft. 

A random pilot response delay was incorporated into the pilot model to represent pilot action
uncertainties.  This is the time between a cue, say reaching the speed to initiate a flap extension, and the
actual initiation of the flap extension.  Aside from the pilot delay, flap and landing gear control and 
actuation system needs a certain amount of time to extend to the next position.  The flap and gear 
extension times were modeled after performance data of each aircraft type.  Since under normal operation
conditions the variation in extension time for a given flap or gear configuration is relatively small, the 
extension times were modeled as deterministic values.  Because of the existence of the extension time, it
could happen that when the cue for the next flap or gear extension arrives the system is still in transition 
to the target position of the current extension.  In this case, the new extension would not be initiated by
the system until the current extension is completed.  Flap and landing gear extension time was also
modeled in the FMS in computing the VNAV flight path.

Speedbrakes were to be pulled out when aircraft speed exceeds the given upper range; and they were
to be retracted when the aircraft speed fells back to the target speed.  Random pilot response delay was 
also modeled in operating speedbrakes.  In computing the VNAV flight path, the FMS assumes no
speedbrake usage. 
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A.5.2 Lateral Control Autopilot Module 
The lateral control autopilot module relies on the FMS LNAV guidance functionality to provide

control commands.  There are several different lateral control modes.  Taking LNAVTRACK mode as an
example, the FMS module feeds two parameters to the lateral control autopilot module, namely the high
level heading command and the cross track error.  The object of the lateral control autopilot module is to
track the heading command and minimize the cross track error.  The block diagram of the LNAVTRACK
control mode is shown in Fig. A-11. 
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Figure A-11 Lateral control autopilot. 

As shown in Fig. A-11, at first, a quickened heading error e  is derived from the heading command c,
actual heading , and cross track error xtc.  The quickened heading error is then fed into a proportional
controller to yield the banking command c, which is limited to the maximum banking angle (the limiter
is not shown).  The banking command is then passed through a proportional-plus-integral controller14 to
yield aircraft roll rate.  The proportional-plus-integral controller was used to approximate the overall 
effect of the roll control, the actuator/aileron system, and the aircraft roll dynamics. This greatly 
simplified the modeling effort.  On the other hand, the integration from roll rate to bank angle and the 
integration process from bank angle to heading change were preserved yielding relatively accurate results. 
Other control modes in the lateral control pilot module were modeled in similar fashion. 

A.5.3 Longitudinal Control Autopilot Module 
The longitudinal control autopilot module includes two separate functions, autothrottle and pitch 

control.  The following longitudinal control modes were modeled

ALTSPD_HOLD Altitude and speed hold mode.  Autothrottle and pitch control work together to 
maintain constant altitude and constant CAS.

SPDFPA_HOLD Speed and flight path angle hold mode.  Autothrottle and pitch control work
together to maintain constant CAS and follows a fixed flight path angle.

IDLFPA_HOLD Idle and flight path angle hold mode.  Throttle is set to idle; pitch control maintains
a fixed flight path angle.  If this mode is used in a decelerating segment, the 
autopilot will be switched to SPDFPA_HOLD mode once the target speed is
reached.

PWRFPA_HOLD Throttle and flight path angle hold mode.  This mode is useful for flying a
geometric low noise segment in that the required thrust may be estimated in 
advance and the throttle is fixed to provide the required thrust to avoid thrust
spikes.  If this mode is used in a decelerating segment, the autopilot will be 
switched to SPDFPA_HOLD mode once the target speed is reached.
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VNAVIDESCM VNAV idle descent with constant Mach.  Throttle is set to idle, pitch control 
follows FMS computed VNAV path.  If aircraft speed falls beyond a certain range
below the target Mach, thrust will be added to maintain the target Mach.

VNAVIDESCV VNAV idle descent with constant CAS.  Throttle is set to idle, pitch control 
follows FMS computed VNAV path.  If aircraft speed falls beyond a certain range
below the target CAS, thrust will be added to maintain the target CAS. 

VNAVSDESC VNAV constant speed descent.  Autothrottle and pitch control work together to 
maintain constant CAS and follows FMS computed VNAV path. 

VNAVDECEL VNAV deceleration.  Throttle is set to idle, pitch control follows FMS computed
VNAV deceleration path.  For the speed transition at 10,000 ft, if aircraft CAS is 
still higher than the target speed, i.e. 250 kts, when aircraft reached 10,000 ft,
aircraft will level off to decelerate to the target speed.

ILS_CPTR ILS Glideslope capture mode.
ILS_GS ILS Glideslope mode.

The block diagram of the autothrottle model is shown in Fig. A-12.  The object of the autothrottle is to
maintain the CAS command Vc,c provided by the FMS model.  A proportional-plus-integral controller
was used to generate thrust command Tc from the quickened speed error ev.  Engine response time was
modeled as a first order delay; this delay was included in the aircraft plant shown in the block diagram.
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Figure A-12 Autothrottle.

The longitudinal autopilot model was designed to follow the vertical guidance command from the 
FMS model.  In most of the vertical control modes listed above, this vertical guidance command is 
provided in the form of altitude command hc.  The block diagram of the longitudinal autopilot is shown in
Fig. A-13.  The outer loops yield a pitch command c, which is then passed through a prepositional-plus-
integral controller to yield aircraft pitch rate.  Similar to the lateral autopilot, to simplify the modeling
effort, the proportional-plus-integral controller was used to approximate the overall effect of the pitch
control, the actuator/elevator system, and aircraft pitch dynamics.
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Figure A-13 Longitudinal control autopilot. 
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A.6 THE APPLICATION OF THE AIRCRAFT SIMULATOR

The simulator was designed to allow fast and easy testing of different procedure designs with
customized pilot operation procedures and under different operating conditions.  It can be applied to 
down-selecting procedure design parameters or evaluating existing procedure designs.  Since the
simulation can be executed numerous times in batch mode, it is especially useful for Monte-Carlo 
simulation to explore aircraft trajectory variations under uncertainty conditions.  This section describes
the simulation data flow and how the simulation results can be fed into external programs for noise and
emissions evaluation. 

A.6.1 Simulation Data Flow 
Currently, five aircraft types have been modeled in the fast-time simulator.  They include Airbus A319 

and Boeing 737-300, 757-200, 767-300, and 747-400.  The simulation data flow is illustrated in Fig. A-
14.  The first step is to prepare the lateral flight path and vertical profile parameters as described in 
Section A.4.  Pilot operation procedures, as defined in the flap schedule for a given aircraft type, can be 
customized for the specific procedure to be tested. Wind forecast can also be provided.  In Fig. A-14, the
three elements to the left of the simulator core define procedure operating conditions, namely the 
randomness in pilot response delay, the randomness in aircraft landing weight, and uncertainties in wind. 
If the purpose of the simulation is to evaluate the trajectory of aircraft performing a procedure under
nominal conditions, the mean pilot response delay, normal aircraft landing weight, and a fixed wind field
model can be used.  If the procedure is designed to relying on FMS to compute a VNAV path, wind
forecast may also be provided to simulate the effect of FMS wind forecast. 
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Figure A-14 Monte Carlo Simulation data flow diagram.

If the purpose of the simulation is to analyze aircraft trajectory variations under varying operation
conditions, random pilot response time model based on human-in-the-loop experiment or flight test data,
random aircraft weight depicting data collected from airline operations, and a varying wind model
developed based on historical wind data can be used.  With these three uncertainty contributors modeled,
a full Monte-Carlo simulation can be formed.  For each single run of the Monte-Carlo simulation, pilot 
response time for each flap extension, aircraft landing weight, and the wind profile would be randomly
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generated by the respective models to form a unique set of operating conditions.  The output of each
single simulation run would be a unique sample of aircraft trajectories for the specific procedure. 
Through a large number of simulation runs, an ensemble of aircraft trajectories can be obtained to 
represent the range of trajectory variations what would occur in the real world. 

The simulation output is a time history of aircraft position, altitude, distance, speed, engine thrust, fan 
speed, fuel flow, weight, Euler angles, along with flap/gear position and speedbrake usage.  The FMS
generated lateral and vertical path parameters are also logged.  A sample of simulated trajectories is 
shown in Fig. A-15.  This was a simulated Continuous Descent Approach (CDA) to Louisville
International Airport (KSDF) runway 17R by B757-200.  The upper left graph is the ground track.  The 
lower left graph is the vertical profile vs. distance to runway with two shallower VNAV deceleration
segments shown.  The upper right graph is the speed profile vs. distance to runway, with both CAS and 
ground speed shown.  The deceleration from 310 kts to 240 kts corresponds to the deceleration segment at
10,000 ft shown in the vertical profile.  The deceleration from 240 kts to 180 kts corresponds to the 
deceleration segment at 3,800 ft shown in the vertical profile.  The lower right graph is the total thrust.  It 
is seen that in this procedure, thrust stayed in idle from top of descent until final approach speed was
reached.

Figure A-15 Simulated B757-200 trajectory.

Figure A-16 shows the range of trajectory variations from Monte-Carlo simulation of the same CDA
procedure performed by B757-200. The horizontal axis is distance to runway; the vertical axis is the time
since aircraft passed the metering point that is about 53.4 nm from runway.  Time-distance-trajectory
graph is a common tool used in traffic flow study15.  Figure A-16 was obtained through aligning all 
simulated trajectories at the metering point.  In the simulation, all three major uncertainty contributors,
pilot response time, aircraft weight, and wind variations were simulated.  It is seen from the figure that at 
around 8.2 nm from runway, where glide slope capture occurs, aircraft position could varying within a 
range of 1.5 nm for the same flight time.  With simulated trajectory variations, capacity and separation 
analysis can be performed. 

182



Figure A-16 Simulated B757-200 trajectory variation. 

A.6.2 Simulation Accuracy
Components of the aircraft simulator were carefully formulated and developed to assure simulation

accuracy.  Aircraft performance engineering data provided by manufactures were used to model aircraft
dynamics and engine performance.  Since actual performance depends on many internal and external
factors and it could vary aircraft by aircraft, aircraft performance engineering data provided by
manufactures reflect average performance of the same aircraft type.  The aircraft simulator would thus 
reflect average performance of the aircraft type being modeled.  A direct method to verify simulation
accuracy is to compare simulation results with actual flight test data.  To do this, the simulator was
configured to simulate the same procedure used in flight test.  To closely depict the flight test conditions,
wind profile and flap extension extracted from flight test data were used in the simulation.  Aircraft 
landing weight was also set as the same as the test aircraft.  Since the simulation was done under Standard 
Atmosphere conditions, for comparison purpose pressure altitude in the flight test data was corrected to
reflect actual altitude above mean sea level.  One of such comparisons, between simulation results and
flight test data from a CDA to KSDF 17R, performed by a B757-200 in early September 2004, is shown 
in Fig. A-17.  On the left hand side is the comparison of the altitude profiles, on the right hand side is the
comparison of the CAS profiles.  It is seen that both the simulated altitude and CAS profiles closely
depicted the flight test profiles.  It is also seen that in the simulated profile, the transition from cruise to 
descent was rudimental.  However, for simulating arrival and approach procedures, this should not pose a 

Figure A-17 Comparison between simulated (solid curve) and flight test (dotted curve) trajectory.
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significant problem, because only the part of the trajectory close to the airport is concerned.

A.6.3 Interfaces to External Tools 
The simulator was developed to interface with two external tools, the Federal Aviation Administration

(FAA) Integrated Noise Model (INM) and the Boeing Method 2 (BM2) fuel flow emissions estimation
methodology.  INM is the widely used standard tool for determining the predicted noise impact in the 
vicinity of airports.  The current version INM 6.1 was released in April 200316. To evaluate noise impact,
aircraft trajectories need to be imported to INM as profile points files containing aircraft type, operation
type (arrival, departure, or overflight), distance to runway, altitude, true airspeed, corrected net thrust per 
engine, and operation mode (arrival or departure).  INM input files are in dBase IV format.  INM users 
frequently use commercially available spreadsheet or database management programs to manually port 
trajectory data into dBase IV file format by inserting data points into INM input file templates.  The 
manual process is tedious and error can occur when file format is accidentally changed.  A tool was
created to automatically convert the simulation output files in text format into INM profile points files in 
dBase IV format.  This greatly simplifies the process for evaluate noise impact from simulated
trajectories. Figure A-18 shows the INM noise contour based on the simulated aircraft trajectory shown 
in Fig. A-15. 

Figure A-18 INM noise contour from simulated trajectory.

Figure A-19 Emission flow rates from simulated trajectory.
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BM2 is an empirical method to estimate aircraft emissions using installed engine fuel flow.  BM2 uses 
engine emissions indices in the ICAO Engine Exhaust Emissions Data Bank17 and takes into account
ambient temperature, pressure, humidity, and aircraft Mach number18.  BM2 has been adopted by FAA
and ICAO since its introduction.  To evaluate aircraft emissions from simulated aircraft trajectories, a
revised BM219 was implemented.  This implementation calculates at each trajectory data point the flow 
rate of the following emission species, NOx, HC, CO, CO2, H2O, and SO2. The output is a time history 
of flow rate of these emission species.  Emissions flow rate from BM2 for the simulated B757-200 
trajectory is shown in Fig. A-19.

A.7 SUMMARY 

The development and preliminary application of the workstation based fast-time aircraft simulator has
been presented.  The fast-time simulator provides 4D trajectory simulation accuracy comparable to full
fidelity simulations but is simple enough to allow fast execution.  Although the simulator was initially 
developed for simulating noise abatement approach and arrival procedures, with slight enhancements, it 
can also be used to simulate departure procedures and cruise flight segments.  The fast-time aircraft
simulator provides a tool for evaluating and down-selecting design features and a platform for the fast-
time Monte-Carlo simulation study of flight operation procedures.
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