
Incrementally Verifiable Computation

or

Knowledge Implies Time/Space Efficiency

by

Paul Valiant

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2007

@ Paul Valiant, MMVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

A uthor .(.... ... .-.................................
Department of ngineering and Computer Science

February 2, 2007

C ertified by ............... ......................................
Silvio Micali

Professorpf Computer Science
S-,. . "Th9sis Supervisor

Accepted by........ ............
Arthur Smith

Chairman, EECS Committee on Graduate Students

ARCHIVES

MASSACHUSETTS
OF TECHNO

APR 3 0
I p

LIBRARIES

S INSTITUTE
FLOGY

2007





Incrementally Verifiable Computation

or

Knowledge Implies Time/Space Efficiency

by

Paul Valiant

Submitted to the Department of Electrical Engineering and Computer Science
on February 2, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

The probabilistically checkable proof (PCP) system enables proofs to be verified in
time polylogarithmic in the length of a classical proof. Computationally sound (CS)
proofs improve upon PCPs by additionally shortening the length of the transmitted
proof to be polylogarithmic in the length of the classical proof. In this thesis we
explore the ultimate limits of non-interactive proof systems with respect to time/space
efficiency and the new criterion of composability.

We deduce the existence of our proposed proof system by way of a natural new
assumption about proofs of knowledge. In fact, a main contribution of our result is
showing that knowledge can be "traded" for time and space efficiency in noninterac-
tive proof systems.

Thesis Supervisor: Silvio Micali
Title: Professor of Computer Science





Acknowledgments

I would like to thank Madhu Sudan, Brendan Juba and Rafael Pass for many helpful

discussions during the course of this work. I would especially like to thank Silvio

Micali for his tireless help and support in all stages of this project, from the initial

problem formulation to the final editing.

Paul Valiant

February, 2007





Contents

1 Introduction 9

1.1 A new problem .............................. 9

1.2 Intuitive idea of our solution ....................... 10

1.3 Proofs of knowledge ............................ 11

2 Definitions 15

2.1 Noninteractive proofs and the Common R~andom String model . ... . 15

2.2 The notion of incrementally verifiable computation . ......... 16

2.3 Noninteractive CS proofs of knowledge . ............. . . . 18

3 CS proofs of knowledge in the random oracle model 21

3.1 W itness-extractable PCPs ........................ 21

3.2 CS proof construction .......................... 23

4 Proofs in the Common Reference String model 29

4.1 M erging proofs .............................. 29

4.2 Incrementally verifying computation . ................. 31





Chapter 1

Introduction

Perhaps the simplest way to introduce the computational problem we address is by

means of the following.

Human motivation. Suppose humanity needs to conduct a very long computation

which will span super-polynomially many generations. Each generation runs the

computation until their deaths when they pass on the computational configuration

to the next generation. This computation is so important that they also pass on a

proof that the current configuration is correct, for fear that the following generations,

without such a guarantee, might abandon the project. Can this be done?

Computational setting In a more computational context, this problem becomes:

How can we compile a machine M into a new machine M' that frequently outputs

pairs (ci, Tri) where the ith output consists of the ith memory state ci of machine M,

and a proof 7ri of its correctness, while keeping the resources of M intact?

1.1 A new problem

We motivate our problem by way of a few examples of how current techniques fail to

achieve our goal. Suppose we are given a computation M that takes time t and space

k.



The natural thing to do is have the compiled machine M' keep a complete record

of all the memory states of M it has simulated so far; every time it simulates a new

state of M, it uses this record to output a proof that its simulation of M is thus far

correct. However, this approach has the clear drawbacks that the compiled machine

M' uses space tk to store the records, and the proofs it outputs consist simply of

this record of size tk; this requires the verifier of the proofs to also use time tk and

space tk to verify each proof. If t is polynomial in k, then all these parameters are

polynomial in k and the system is not so bad; however, we concern ourselves here

with the case where the running time t is typically much larger than k, in which case

this naive system is not at all efficient. What we need is a more efficient proof system.

We note that the problems of improving the efficiency of the construction, trans-

mission, and verification of proofs have been important themes in our field, and have

fueled a long line of research. One major milestone on this path was the discovery of

probabilistically checkable proofs (PCPs) (see [1, 2, 4, 9] and the references therein).

Under the PCP proof system statements with classical proofs of exponential length

could now be verified in polynomial time, via randomized sampling of an encoded

version of the classical proof. The PCP system still uses exponential resources to

construct and transmit the proof, but verification is now polynomial time.

The second milestone we note is the theory of computationally sound (CS) proofs

as formalized by Kilian and Micali [11, 12]. This proof system improves on the

PCP system by keeping verification polynomial time while shortening the transmitted

proof from exponential to polynomial length. If we instruct the compiled machine

M' to output CS proofs, then the length of the transmitted proofs, and the time and

space required by the verifier are now polynomial in k, but the compiler still requires

memory at least t, and a time interval of at least t between consecutive proofs.

1.2 Intuitive idea of our solution

The ideal way to achieve incrementally verifiable computation consists of efficiently

merging two CS proofs of equal length into a single CS proof which is as long as and



as easy to verify as each of the original ones. Letting co, cl,... be the sequence of

configurations of machine M, and for i < j, intuitively denote by ci _-4 cj a CS proof

that configuration cj is correctly obtained from configuration ci by running M for

(j - i) steps. After running M for 1 step from the initial configuration co so as to

reach configuration cl one could easily produce a CS proof co 4 cl. Running M for

another step from configuration cl, one can easily produce a CS proof cl 4 c2 . At

this point, if' CS proofs can be easily merged as hypothesized above, one could obtain

a CS proof co 4 c2 . And so on, until a final configuration Cf is obtained, together

with a CS proof co 4 cf.

Unfortunately, we have no idea of how to achieve such efficient and length pre-

serving merging of CS proofs. However, if a variant of CS proofs - which we call CS

proofs of knowledge - exist, we show a sufficient approximation of this ideal strategy.

A Dynamic CS-Proof Data Structure. In essence, we show that while machine

M marches through configurations C1 , c2 ,..., it can carry along a set S of CS proofs

of the form ci 4 cj such that:

* Each element of S has length poly(k) whenever M works in space k.

* The cardinality of S always is poly-logarithmic in t, M's running time.

* The final set S constitutes a (novel type of) CS proof that cf is the final con-

figuration of M, verifiable in time polynomial in k and log t.

In essence, therefore, while we cannot merge any two proofs, we can merge subsets of

S sufficiently often.

1.3 Proofs of knowledge

Central to the constructions in this paper is the notion of a proof of knowledge [10].

To motivate this notion, consider the following situation: a job applicant is being

interviewed for a specific position, and wishes to convince the interviewer that he

possesses knowledge relevant to this position. One option he has is to simply list



everything he knows about the area and if the interviewer has the time and patience,

he will certainly be convinced of the applicant's knowledge. However, if time is

limited, the applicant must try to prove to the interviewer that he possesses knowledge

of the right nature without actually divulging it all. Alternatively if time is not a

constraint, security may be a constraint: perhaps the applicant is applying for a job

predicting the stock market; if he reveals all his knowledge about the future of the

stock market before he is hired, the interviewer may reject him and strike it rich on

his own.

To formalize the notion of "knowledge of the right nature", we consider a polyno-

mial time relation R(x, y), and for a given x let this knowledge consist of any y such

that R(x, y) = 1. We note that a proof of knowledge in this sense is also a proof in

the classical sense of the statement "3y : R(x, y) = 1".

To show that the prover contains "knowledge", despite the fact that in his normal

operation he may never reveal such knowledge, it is standard to introduce a "knowl-

edge extractor," E, which produces this knowledge at the end of its interaction with

the prover. While anyone interacting normally with the prover may never be able to

access this knowledge, we consider E principally as a thought experiment, and give

it some extra powers beyond those of the verifier so that E may recover the knowl-

edge, and thereby justify to us that the prover contained this knowledge in the first

place. In different contexts it may be appropriate to endow E with different powers,

including additional computation time or non-black box access to the prover.

Proofs of knowledge may be seen as a restricted form of classical proofs. While

classically, proofs of a statement "3y : R(x, y) = 1" can take a wide variety of non-

constructive forms, the proof of knowledge form asserts that the prover knows a valid

y. This property will be essential to us later as we show how to merge CS proofs of

knowledge: while unrestricted proofs may be non-constructive enough that a pair of

them may be impossible to corroborate, proofs of knowledge leave enough of a "paper

trail" so that we can reassemble pieces of proofs of related theorems to a new whole.



The Non-Interactive CS Knowledge Assumption In [12], Micali explicitly

constructs non-interactive CS proofs given a random oracle. In Section 3 we show

that a variant on Micali's construction is a proof of knowledge as well. Intuitively,

there exists an efficient extractor E that, given a statement X, a CS proof 7, and

access to the CS prover that produced w, quickly outputs a (classical) proof fI of

X. Micali, also defines and uses non-interactive CS proofs in the common random

string (rather than random-oracle) model. But their existence requires an ad hoc

assumption. Our assumption is stronger: namely, we posit the existence of non-

interactive CS proofs, in the random string model, that also are proofs of knowledge.

In essence, our assumption states that, in a specific construction of non-interactive

CS proofs (given in the appendix), it is possible to replace the random oracle with a

random string and still preserve the proof of knowledge property of CS proofs. (That

is, we do not invoke the random-oracle hypothesis in its general form. As shown by

Canetti et al. [7] and others in different contexts, we expect that there may be other

non-interactive CS proof constructions for which no way to replace the oracle exists.)

Knowledge => time/space efficiency In this work we start with an unusual

and very strong assumption about (proofs of) knowledge and conclude with a proof

system of unprecedented time and space efficiency. Here we wish to draw the reader's

attention not to the assumption or the conclusion, but to the nature of the relationship

between them. On the left we make an assumption about knowledge in CS proofs: we

take a restricted system that only deals with witnesses of length 3k and compresses

them to proofs of length k, the security parameter, and assume that there is a linear-

time knowledge extractor that can extract the witness given access to the prover.

On the right, we conclude with a proof system that compresses any proof to length

poly(k), uses space polynomial in the space needed to classically accept the language,

and is time-efficient in the tightest possible sense, using poly(k) time to process a

step of the classical acceptance algorithm. We note that current constructions of CS

proofs based on random oracles need time polynomial in the time to classically accept,

and space of the same order as their time[12]. This constitutes a new technique to

leverage knowledge to gain time and space efficiency.





Chapter 2

Definitions

2.1 Noninteractive proofs and the Common Ran-

dom String model

It is a well-known aphorism in cryptography that "security requires randomness". In

a standard setting, a participant in a protocol injects randomness into his responses to

protect him from some pre-prepared deviousness on the part of the other participant.

In the noninteractive proof setting such an approach is inadequate: the verifier is

unable to protect himself with randomized messages to the prover, since he cannot

even communicate with the prover. To address these issues, the common random

string (CRS) model was introduced [6, 5].

The CRS model - sometimes called the common reference string model - assumes

that all parties have access to a random string, and further that each can be confident

that this string is truly random and not under the influence of the other parties.

Potential examples of such a string are measurements of cosmic background radiation

or, for a string that will appear in the future, tomorrow's weather. Typically, protocols

in the CRS model use only the randomness present in the common string, and are

deterministic given this string.

In the analysis of the security of a CRS protocol leeway must be given for "un-

lucky" choices of strings, since if every choice of string worked in the protocol we



would not need a random one. Thus even if a CRS protocol has a chance of failing,

we still consider it secure if this chance is negligible in the size of the random string.

2.2 The notion of incrementally verifiable compu-

tation

Basic notation We denote a Turing machine T with no inputs by T(), a Turing

machine with one input by T(.), a Turing machine with two inputs by T(-, .), etc. We

assume a standard encoding, and denote by ITI the length of the description of T.

For a Turing machine T running on input i. we denote by timeT(i) the time T takes

on input i, and by spaceT(i) the space T takes on input i; we denote the empty input

by e, so that spaceT(E) is the space of Turing machine T when run on no input.

The outline We formally define incrementally verifiable computation here. We

consider a Turing machine MO() that we wish to simulate for t time steps using k

memory. We consider a fixed compiler C(., .) that produces from (k, M) an incre-

mentally verifiable version of M, namely a machine C(M, k) = T(.) that takes as

input the common random string, and runs in time t. ko(1), uses memory ko(1), and

every ko(1) time steps outputs its memory configuration mi and a "proof". The

memory configuration output should be interpreted as a claim about the memory

configuration of M at the corresponding time. There is a fixed machine V, the ver-

ifier, that will accept all pairs of configurations and proofs generated in this way,

and will reject other pairs, subject to the usual condition of the CRS model that the

verifier may be fooled with negligible probability, and the computational soundness

caveat that an adversary with unbounded resources may also fool the verifier.

Incremental timelines and outputs Commonly, Turing machines make an out-

put only once, and making this output ends the computation. Instead, we interpret

Turing machines as being able to output their current memory state at certain times

in their operation: explicitly, consider a Turing machine with a special state "Out-



put" where whenever the machine is in state "Output" the entire contents of its tape

are outputted.

Definition 2.2.1. An increasing sequence of integers {tj} is an incremental timeline

if there exists an a such that for any j, tj - tj- <5 a.

If {tj } is an incremental timeline for a specific a, we may refer to {tj } as an

a-incremental timeline.

Definition 2.2.2. A Turing machine that makes outputs at every time on an (a-)

incremental timeline is called an (a-) incremental output Turing machine.

Definition 2.2.3 (Feasible Compiler). Let C(-, -) be a polynomial time Turing ma-

chine. We say that C is a feasible compiler if there exists a constant c such that for

all k > 0 and all Mo() such that MMI < k, C(k, M) is a Turing machine T(.) with one

input satisfying

1. T is a k'-incremental output Turing machine.

2. spacer (r) = k': for all inputs r.

In other words, properties 1 and 2 guarantee that each compiled machine T out-

puts its internal configuration "efficiently often" while working in "efficent space."

Definition 2.2.4 (Incrementally Verifiable Computation). Let C be a feasible com-

piler, and let V, the verifier, be a polynomial time Turing machine with 5 inputs.

The pair (C, V) is an incrementally verifiable computation scheme secure for compu-

tations of length up to tk provided that for every machine M as above, the properties

below are satisfied.

Throughout, r is the common (random) string of length k2 . Let the jth output of

the compiled machine C(M, k) be parsed as an ordered pair (mj, ir), representing a

claim about the jth memory configuration of M, and its proof. We require:

1. (Correctness) The compiled machine accurately simulates M, in that mj is in-

deed the jth memory configuration of M(E) for all j, and is independent of

r.



2. (Completeness) The verifier V accepts the proofs rj: Vr, V (M, j, mj, 7rj, r) = 1.

3. (Computational soundness) For any constant c and for any machine P' that for

any length k2 input r outputs a triple (j, m, 7rjr) in time tk, we have for large

enough k that

Prob[m~ mn A V( ,r r) = 1] < k-c .

2.3 Noninteractive CS proofs of knowledge

We now specify the assumption we make: the existence of noninteractive CS proofs

of knowledge.

We note that proofs of knowledge are typically studied in the form of zero knowl-

edge proofs of knowledge. In this setting, one party wants to convince another party

that he possesses certain knowledge without revealing this knowledge. The reason

why he does not simply transmit all his evidence to the other party is that he wishes

to maintain his privacy.

In our setting the reason one generation does not just transmit all its evidence to

the next generation is not a privacy concern, but rather the concern that the following

generation will not have the time to listen to all this evidence.

In both settings, the "knowledge" that must be proven may be considered to be

a witness for a member of an NP-complete language: one party proves to the other

that he knows, for example, a three-coloring of a certain graph.

In the zero-knowledge setting, our prover does not wish for the verifier to learn

a three-coloring of the graph. In the incremental computation setting, our prover is

worried that the verifier may not want to spare the resources to learn a three-coloring

of the graph.

Related issues were considered in a paper of Barak and Goldreich where they

investigated efficient (interactive) ways of providing proofs and proofs of knowledge

[3]. Our definition of a noninteractive CS proof of knowledge contains elements from

their definition of a universal argument.



For the sake of concreteness, we consider a specific NP-complete language, which

we define below. This language has the property that for any k the strings in the

language of length 4k have witnesses of length 3k. We require of our CS proof system

that instead of returning proofs of length 3k the proofs are shortened to length k.

Definition 2.3.1 (Noninteractive CS proof of knowledge). Consider the NP-complete

language L, that consists of the ordered pairs (M, x) where M is a Turing machine

and x is a {0, 1} string that satisfy the following properties for some k:

1. IMI = k and |xI = 3k.

2. There exists a string w of length 3k such that M when run on the concatenation

(x, w) accepts within time kc.

A noninteractive CS proof of knowledge is defined by Turing machines P the

prover, and U the verifier, a function K'(k) : Z + - Z+ that describes the strength

of an adversary necessary to break the system for inputs of length k, and constants

c, C1, c2.

The tuple (P, U, K', c, c1 , c2) is a noninteractive CS proof of knowledge if for all

machines M of size k and strings x of length 3k the following properties hold:

1. (Efficient prover) For any string r of length k, timep( (M, x, w, r) = ko(l)

2. (Length shrinking) For any string r of length k, P(M, x, w, r)l = k.

3. (Efficient verification) For any string r of length k, timeu(P(M, x, w, r), M, z, r) <

k
c - 1

4. (Completeness) For any string r of length k, U(P(M, x, w, r), M, x, r) = 1

5. (Knowledge extraction) There is a randomized Turing machine E, the extractor,

and constant c2 such that for any machine P' and input (M, x) of length 4k such

that for all r of length k timep,(M, x, r) < K(k) and Prr,[U(P' (M, x, r), M,x, r) =

1] = a > 1/K we have

Prob[w +- E(P', M, x) : M(x, w) = 1] > 1/2



and the running time of E(P', M, x) is at most .kc2/a times the expected running

time (over choices of r) of P'(M, x, r).



Chapter 3

CS proofs of knowledge in the

random oracle model

To introduce CS proofs of knowledge, and support our hypothesis that there exist

noninteractive CS proofs of knowledge in the common reference string model we pro-

vide details of such proofs in the random oracle model. Specifically, our construction

will satisfy Definition 2.3.1 modified by replacing the string r everywhere with access

to an oracle R.

The construction of the proofs is based closely on the constructions of Kilian and

Micali[11, 12]. The construction of the witness extractor is inspired by the construc-

tions of Pass[13].

3.1 Witness-extractable PCPs

One of the principal tools of the CS proof construction is the probabilistically check-

able proof (PCP)[1, 2]. The PCP theorem states that any witness w for a string x in a

language in NP can be encoded into a probabilistically checkable witness, specifically,

a witness of length n can be encoded into a PCP of length n - (log n)o(l) with an

:induced probabilistic scheme (based on x) for testing 0(1) bits of the encoding such

that:

* For any proof generated from a valid witness the test succeeds.



* For any x for which no witness exists the test fails with probability at least 3.

In practice, the test is run repeatedly to reduce the error probability from . to

something negligible in n. In addition to the above properties of PCPs, we require one

additional property that is part of the folklore of PCPs but rarely appears explicitly:

* Given an appropriate PCP test and a constant y, from any string s on which

the PCP test succeeds with probability at least 1 - y we can extract an NP

witness w for x.

We sketch briefly how this additional property can be attained. Consider the

related notion of a PCP of proximity (PCPP)[4]:

Definition 3.1.1 (Probabilistically checkable proof of proximity). A pair of machines

(P, V) are a PCPP for the NP relation R = {(x, w)} with proximity parameter e if

* If (x, w) E L then the verifier accepts the proof output by the prover:

Prob[V(P(x, w), x) = 1] = 1.

* If for some x, 7r is e-far from any w such that (x, w) E L, then the verifier will

reject 7r with high probability:

Prob[V(7, x) = 1] <

We note that this property is stronger than the standard PCP property since in

addition to rejecting if no witness exists, the verifier also rejects if the prover tries to

significantly deceive him about the witness. Ben-Sasson et al. showed the existence

of PCPPs with 0(1) queries and n - (logn)o(1 ) length[4]. We use these PCPPs to

construct witness-extractable PCPs:

Construction 3.1.2. Let E be an error-correcting code of constant rate that can

correct e fraction of errors, with E the PCPP parameter as above. Let L = {(x, w)} be

the NP relation for which we wish to find a witness-extractable PCP. Modify L using

the code E to a relation

L'= {(x,E(w)) : (x,w) E L}.



Let P be a PCPP prover for this relation, which outputs the pair

(E(w), P(x, E(w)).

The verifier for this proof system is just the PCPP verifier for L', which expects

inputs of the form (E(w), P(x, E(w)). Let the witness extractor for the proof system

run the decoding algorithm on the portion of its input corresponding to E(w) and

report the result.

Claim 3.1.3. Construction 3.1.2 is a witness-extractable PCP with quasilinear ex-

pansion, where the verifier reads only a constant number of bits from the proof.

We note that since E is a constant-rate code and P expands input lengths qua-

silinearly, this scheme also has quasilinear expansion. Since the PCPP system reads

only 0(1) bits of the proof, this new system does too.

For any pair (x, w) E L the proof we generate will be accepted by the verifier, so

this scheme satisfies the first property of PCPs. If x is such that no valid w exists for

the L relation, then no valid E(w) exists under the L' relation and the verifier will

fail with probability at least Z, as required by the second property of PCPs.

Finally, to show the witness extractability property we note that by definition of

a PCPP, if the verifier succeeds with probability greater than 1 on the string (s, 7r)

then s is within relative distance e from the encoding of a valid witness E(w). Since

the code E can correct E fraction errors, we apply the decoding algorithm to s to

recover a fully correct witness w. We have thus constructed a witness-extractable

PCP for 7 = .

3.2 CS proof construction

We now outline the construction of noninteractive CS proofs of knowledge, which is

essentially the CS proof construction of Kilian and Micali[11, 12]. WVe present the

knowledge extraction construction in the next section.

The main idea of this CS proof construction is for the prover to construct a

(witness-extractable) PCP, choose random queries, simulate the verifier on this PCP



and queries, and send only the results of these queries to the real verifier, along with

convincing evidence that the queries were chosen randomly and independent of the

chosen PCP. For security parameter k' (to differentiate from k used in the definitions

of the previous chapeter) the prover sends only data related to k' runs of the PCP

verifier, and thus the length of the proof essentially depends only on the security

parameter k'.

The technical challenge in the construction is to convince the verifier that the

queries to the PCP are independent of the PCP. To accomplish this we use a random

oracle. Let R denote the set of functions

R: {0, 1}2k' -+ {0, 1}k'

By a random oracle we mean a function R drawn uniformly at random from the set

R. The machines in our construction will have oracle access to such an R.

We start by defining a Merkle hash:

Definition 3.2.1 (Merkle hash). Given a string s and a function R : {0, 1}2k' -

{0, 1}k', do the following:

* Partition s into chunks of length k'.

* Let each chunk be a leaf of a full binary tree of minimum depth.

* Filling up from the leaves, for each pair of siblings so, si, assign to their parent

the string R(so, si).

To aid in the notation we define a verification path in a tree:

Definition 3.2.2 (Verification path). For any leaf in a full binary tree, its verification

path consists of all the nodes on the path from this node to the root, along with each

node's sibling.

The construction of CS proofs is as follows:

Construction 3.2.3. Given a security parameter k', a polynomial-time relation L =

{(x, w)} with Iwi < 2k' and a corresponding witness-extractable PCP with prover and

verifier PP, PV respectively, we construct a CS prover P and verifier V.



P on input (x, w) and a function R: (0, 1}2 k' + {0, 1}k' does the following:

1. Run the PCP prover to produce s = PP(x, w).

2. Compute the Merkle hash tree of s, with sr the root.

3. Using R and s, as a seed, compute enough random bits to run the PCP verifier

PV k' times.

4. Run PV k' times with these random strings; let the CS proof PR(x, w) consist of

the k'.O(1) leaves accessed here, along with their complete verification pathways.

V on input x, a purported proof ir and a function R does the following:

1. Check for consistency of the verification pathways, i.e. for each pair of claimed

children (so, si) verify that R(so, si) equals the claimed parent.

2. From the claimed root sr run the procedure in steps 3 and 4 of the construction

of P, failing if the procedure asks for a leaf from the tree that does not have a

verification pathway.

3. Accept if both steps succeed, otherwise reject.

These are essentially the CS proofs of Killian and Micali. In the next section we

exhibit the knowledge extraction property of these proofs, and thereby infer their

soundness; further properties and applications may be found in the original papers.

Knowledge extraction We now turn to new part of this construction, the knowl-

edge extractor.

Recall that we want to construct a machine E that when given a (possibly decep-

tive) prover P' will efficiently extract a witness w for any x on which

Pr[VR(x, PR(x)) = 1] > 1/K.

In other words, if P' reliably constructs a proof for a given x, then there is a witness

"hidden" inside P', and E can extract one. The general idea of our construction is

to simulate P'"(x) while noting each oracle call and response, construct all possible



Merkle trees that P' could have "in mind", figure out based on the output of P' which

Merkle tree it finally chose, read off the PCP at the leaves of the tree, and use the

PCP's witness extraction property to reveal a witness.

We note that this extractor is slightly unusual in that it does not "rewind" the

computation at any stage, but merely examines the oracle calls P' makes; such extrac-

tors have been recently brought to light in other contexts under the names straight-line

extractors[13] or online extractors[8]. The principal reason we need such an extractor

is that we require the extractor to run in time linear in the time of P', up to multi-

plicative constant kc2, and we cannot afford the time needed to match up data from

multiple runs.

We show that the following extractor fails with negligible probability on the set

of R where p'R(x) is accepted by the verifier; to obtain an extractor that never fails,

we re-run the extractor until it succeeds.

Construction 3.2.4 (CS extractor). Simulate P'R(x), and let ql, ... , qt be the queries

the machine makes to R, in the order in which they are made, duplicates omitted.

Assemble {qi} and separately {R(qi)} into data structures that can be queried in time

logarithmic in their sizes, logt in this case. If for some i = j R(qi) = R(qj), or if for

some i < j qj = R(qj), then abort.

Consider {qi} as the nodes of a graph, initially with no edges. For any qi whose

first k' bits equal some R(qj) and whose second k' bits equal some R(q1), draw the

directed edges from qj to both qj and q,.

In the proof output by p'R(x) find the string at the root, s,. If s, does not equal

R(qr) for some r, then abort. If the verification paths from the proof are not embedded

in the tree rooted at q, abort.

Compute from, x the depth of the Merkle tree one would obtain from a PCP derived

from a witness for x. (Recall that in the main text we insist that witnesses have length

a fixed fraction of the length of x; in general we could pad witnesses to a prescribed

length.) Read off from the tree rooted at q, all strings of this depth from the root;

where strings are missing fill in 0 2k' instead. Denote this string by pcp.

Apply the PCP witness extractor to pcp. and output the result.



Claim 3.2.5. Construction 3.2.4 when given (P', x) such that PIR(x) always runs in

time at most 2 k'/4 and that convinces the verifier with probability PTR[VR (, P'R(x)) =

1] = a > 2 -k'/8, will return a witness w for x on all but a negligible fraction of those

R on which P' convinces the verifier in time O(k/a) times the expected running time

of P'.

Proof. We show that this construction fails with negligible probability. We begin by

showing that the probability of aborting is negligible.

Suppose P' has already made i - 1 queries to the oracle, and is just about to

query R(qi). This value is uniformly random and independent of the view of P' at

this point, so thus the probability that R(qi) equals any of qj or R(qj) for j < i

is at most 2i - 2 -k' . The probability that this occurs for any i < t is thus at most

t22 - k', which bounds the probability that the extractor aborts in the first half of the

extractor.

We note that since no two qi's hash to the same value the trees will be constructed

without collisions, and since i < j qi $ R(qj) the graph will be acyclic and thus a valid

binary tree. We now must bound the probability that some node on a verification

path (including possibly the root) does not lie in the graph we have constructed.

Let so, s9 be a pair of siblings on a verification pathway for which the concatenation

(so, s8) is not in the graph. Thus P' does not ever query R(so, Sl). Since the proof P'

generates is accepted by the verifier, the value of R(so, sl) must be on the verification

path output by P'. Thus P' must have guessed this value without evaluating it, and

further, the guess must have been right. This occurs with probability at most 2 -k' .

Thus the total probability of aborting is at most (t2 + 1)2
- k'.

We now show that if the extractor does not abort, it extracts a valid witness on

all but a negligible fraction of R's. Recall that the CS verifier makes k' calls to the

PCP verifier, each of which, if seeded randomly, fails with probability 1 whenever the

string pcp does not encode a valid witness w.

Consider for some non-aborting R and some i < t the distribution p on R obtained

by fixing those values of R that P'R(x) learns in its first i oracle calls, and letting

the values of R on the remaining inputs be distributed independently at random.



Consider an R drawn from the distribution p. Construct a Merkle tree from the

values {(qj, R(qj)) : j < i} rooted at qi, i.e., pretending that P', when it finishes,

will output R(qi) as the root, and let pcp be the string read off from the leaves, as

in the construction of the extractor. Compute from R and R(qi) as in step 3 of the

construction of the CS prover P the k' sets of queries to the PCP verifier. Unless

the oracle calls generated here collide with the i previous calls, the PCP queries will

be independent and uniformly generated; if witness extraction fails on pcp then by

definition, these PCP tests will succeed with probability at most k'. Adding in the at

most t22 - k' chance that, under this distribution, one of the new oracle calls will collide

with one of the old calls, the total probability that pcp is not witness-extractable, yet

the tests succeed, is at most (t2 + 1)2
- k'.

Consider all distributions p with i fixed values as above. We note that the distri-

butions have disjoint support, since no fixed R could give rise to two different initial

sequences of oracle calls. We note also that any R either aborts or induces such a

distribution p with i fixed values. We now vary i from 1 to t. Consider the set of

non-aborting R for which there is some i such that the string pcpf is not witness-

extractable yet the PCP tests generated by R all succeed. By the above arguments

and the union bound this set has density at most

t(t 2 + 1)2 - k'

By assumption the set of R for which the verifier accepts P'R(x) has density

at least 2
- k'/8 . Thus for all but a negligible fraction of these R, the string pcp is

witness-extractable, and we may recover a witness w as desired. O

We note that our extractor runs logarithmic factor slower than P'. Since the

running time of P' is subexponential in k, the extractor takes time k factor more

than P'. As noted above, if P' returns an acceptable proof with probability a we

may have to run the extractor 1/a times (in expectation) before it returns a witness.

Thus in total our extractor runs k times slower than P' returns acceptable proofs, as

desired.



Chapter 4

Proofs in the Common Reference

String model

4.1 Merging proofs

We first exhibit a construction for combining two proofs of knowledge into a single

proof of knowledge, of length still k, the lengths of each of the original proofs.

Construction 4.1.1 (Merging Proofs). Suppose we have a system to express computationally-

sound proofs of statements of the form "MAl when started on state sl reaches state s2

after t time steps" as claims of membership of (T, x) E L, with T a fixed machine

and x = (M. sl, s2, t). We exhibit a construction to merge an appropriate pair of such

proofs.

Assume we have the following: a machine M, an integer t, a triple of memory

states of M sI, s2, s3, and a pair of proofs of knowledge pi, P2 that prove respectively

that running M for t steps from memory state sl yields state 82, and running M for

a further t steps from memory state S2 yields state sa . We combine these into a proof

of knowledge that running M for 2t steps from memory state si yields memory state

83.

Explicitly we define a new pair (T', x') and claim that a proof of knowledge that

(T', x') E L implies this combined statement.

Let x' = (M, s~, S3 , 2t). Define T' as a machine that on input (x', w') does the



following:

* Interprets x' as the quadruple (M, sl, S3, 2t)

* Interprets w' as the triple (pl,p2, s2)

* Verifies the proofs of knowledge pl,p2 respectively show that (T, (M, sl,s2, t))

and (T, (M, s2, 83, t)) are in the language L, namely checks that U(pi, T, (M, sl, s2, t), r) =

U(p2, T, (M, s2 , s 3, t)) = 1.

Since the w' above is a witness that (T', x') E L, we construct a proof of knowledge

p' = P(T', x', w', r') of this fact. We have thus constructed x', p' from the original

x 1 , x2 , P1 , 2 . (For reasons that will become clear later the random string r' used for

this second-level proof should be independent of the random string r used for pi and

p2 -)

We now prove that any valid proof p' for the parameters x' = (M, sl, s3, 2t) and

the Turing machine T implies in a computationally-sound sense that running M for 2t

time steps from state s, will reach state 53. Call a pair (x = (M, sl, s2, t),p) deceptive

if p proves to the verifier that (T, x) E L but it is not the case that running M for t

steps from memory state s, reaches memory state s2.

Claim 4.1.2. Suppose that T has the property that the probability that a machine

running in time b, K' > b > 2t, outputs a deceptive pair ((M, sl, S2, t),p) is at most

1/2 over the random string r. Then for any machine running in time 1b/kc2, the

probability that it outputs a deceptive pair for the second-level machine T' is less than

1/K.
Proof. This result is a straightforward consequence of the knowledge extraction prop-

erty of the proofs in definition 2.3.1. Assume we have a machine X that outputs

deceptive pairs (x' = (M, s8, s3, 2t),p') for T' with probability 1/K (over r) in time

½b/ke2. We apply the extractor E, and have by definition that E(P', M, (s8, s3, 2t))

returns a classical witness w' (relative to r') with probability at least 1/2 in time at

most b/2. The witness w' is a classical witness for (T', x') in the language L, and thus

w' may be interpreted as w' = (pI, P2, 82) as in the construction, where, since w' is

a classical witness, both the proofs pi and P2 are accepted by the verifier. However,

since p' is deceptive, at least one of Pi, P2 must be deceptive (with respect to T). In



time t < b/2 we can classically check which one of Pl, P2 is deceptive, by just simu-

lating M for t steps on the appropriate input si or 82. Thus using b/2 + b/2 = b time

we have recovered a deceptive pair for T with probability at least 1/2, which implies

the desired result. O

We have shown how to combine a pair of proofs into a single proof. We will

recursively apply this construction to incrementally combine an arbitrary number of

proofs of knowledge. A base case for the recursion is easily obtained:

Construction 4.1.3 (Base Case). Let To be the machine that operates on pairs (x, w)

where x = (MI, sl, s2, 1), and checks that M when simulated for one step on configu-

ration sl ends up in configuration s2, ignoring the auxiliary input w.

We thus construct a sequence of machines Ti, where machine Ti is used to verify

claims where the simulation time t is 2', using random string ri. The random string r

of length k2 of the incrementally verifiable computation scheme will be interpreted as

the concatenation of strings (ro, rl,..., rk-L) to be used in the recursive construction

just outlined.

We note that each witness w used in the recursive construction consists of a pair

of proofs of knowledge (Pl, P2), and a memory state (s2) of M, and is thus of size 3k.

Further, merging two proofs via the construction involves constructing a single new

proof of knowledge; this construction takes time polynomial in k by definition 2.3.1.

Also, if we wish to prove statements about t steps of the computation of M, this will

involve log t layers of the recursion. This will lower the security time bound from K'

to K'/(2 -kc,:)lo gt

4.2 Incrementally verifying computation

We combine the observations of the previous section into the following result:

Theorem 4.2.1. Given a noninteractive CS proof of knowledge (P, U, K', c, cl, c2 ),

there exists an incrementally verifiable computation scheme (C, V, K) provided k-og k K'/(2-

k C)log K > K.



Proof. The above two constructions describe a recursive procedure for generating a

proof of t steps of the computation using log t levels of a binary recursion. Consider

the tree that such a recursion would induce. The leaves of the recursive tree are the

memory configurations of M, and the internal nodes i levels above the leaves are

proofs of knowledge of recursive depth i, asserting the results of simulating M for 2'

steps. Each node is computable in time polynomial in k from its two children, by

Construction 4.1.1.

Consider a depth-first traversal of the binary tree, starting at the leaf correspond-

ing to time 0 and visiting each leaf in order, computing the value of every node we

visit. At any moment in such a traversal the "stack" consists of the values of nodes

on a path from a leaf to the root. Every time a leaf is visited, we output the values

of all the nodes along this path as a proof of incremental correctness. We note that

processing any node takes time polynomial in k, and the depth of the recursion is less

than k, and so a leaf is visited every ko (1) time. Thus this procedure uses the desired

time and space.

We now show that these "stack dumps" in fact constitute computationally-sound

proofs.

Consider a subtree whose leaves consist of a range [tl, t 2]. When the recursion

finishes processing that subtree, it will store in the parent node parameters x =

(M, sl, s 2, t 2 - t + 1) and a proof of knowledge that M when starting in configuration

sl reaches configuration s2 in time t2 - tl + 1.

We note that when the recursion processes leaf t' it must have finished processing

all the leaves before t', and thus the leaves spanned by those subtrees in the "stack"

must constitute all the leaves before t'. Thus these proofs of knowledge, when con-

sidered together, assert the complete result of simulating M from time 0 to time

ti.

To check such a sequence of proofs, we verify their individual correctness, and

check that the start and end memory states for each of the corresponding "theorems"

match up.

We note, as above, that if such a sequence of proofs is deceptive, then we can



(classically) isolate the deceptive proof in time O(t) by simulating M. Provided this

is less than K', the probability of fooling the verifier is thus bounded by repeated

application of Claim 4.1.2 to be at most 1/K. Thus if k- log kK'/(2. kc2)log K > K

then our proof system is computationally sound.

We have thus transformed an arbitrary machine M into an incrementally-verifiable

version of itself, as desired. O





Bibliography

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario

Szegedy. Proof verification and the hardness of approximation problems. Journal

of the A CM, 45(3):501-555, May 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization

of NP. Journal of the ACM, 45(1):70--122, January 1998.

[3] B. Barak and 0. Goldreich. Universal Arguments. Proc. Complexity (CCC) 2002.

[4] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs

of proximity, shorter PCPs and applications to coding. STOC 2004, pp. 1-10.

[5] Al. Blum, A. De Santis, S. Micali, G. Persiano. Noninteractive Zero-Knowledge.

SIAM J. Comput. 20(6): 1084-1118 1991.

[6] M. Blum, P. Feldman, S. Micali. Non-Interactive Zero-Knowledge and Its Ap-

plications (Extended Abstract). STOC 1988, pp. 103-112.

[7] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Re-

visited, STOC 1998, pp. 209-218.

[8] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with

online extractors. Advances in Cryptology 2005.

[9] 0. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear

length. FOCS 2002.

[10] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Inter-

active Proof Systems. SIAM J. on Computing, 18(1), 1989, pp. 186-208.



[11] J. Kilian. A note on efficient zero-knowledge proofs and arguments. STOC, 1992,

pp. 723-732.

[12] S. Micali. Computationally Sound Proofs. SIAM J. Computing 30(4), 2000, pp.

1253-1298.

[13] R. Pass. On deniability in the common reference string and random oracle model.

Advances in Cryptology, 2003, pp. 316-337.


