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Abstract

Chip-to-chip optical interconnect technology, which is being explored as a potential
replacement for copper chip-to-chip interconnects at data transmission rates exceed-
ing 10 Gb/s, is one of several technologies that could be enabled by the monolithic
integration of III-V optoelectronic devices on a silicon integrated circuit.

Two significant capabilities required to achieve this monolithic integration were
addressed: the assembly of III-V device structures on silicon and the fabrication
of the waveguides that perform the intra-chip routing of the optical signal to and
from these integrated device structures. These waveguides, consisting of a silicon
oxynitride core (n = 1.6) and a silicon dioxide cladding (n = 1.45) were deposited via
plasma-enhanced chemical vapor deposition (PECVD). The integrated InP/InGaAsP
structures were fabricated using an existing novel technique for preparing very thin
(on the order of 5 pm thick) substrate free rectangular structures (approximately 145
pm wide by 300 pm long) with cleaved facets. Using a pick-and-place method, the
InP/InGaAsP structures were assembled in 6 pm deep rectangular wells formed by
etching through the waveguide stack. The resulting configuration of the integrated
devices in the wells facilitated end-fire coupling with the silicon oxynitride waveguides.

Transmission spectrum measurements for this configuration verified the desired
end-fire optical coupling through the integrated InP/InGaAsP device structures with
a total coupling loss of 17.75 dB. This loss was shown through measurements and finite
difference time domain (FDTD) simulations to be a function of integrated device
misalignment, silicon oxynitride waveguide design, length of the gaps between the
etched well edges and the device facets, and the well etch properties. Based on
FDTD simulations and device misalignment statistics, it was shown that realistic,
feasible improvements in the device alignment coupled with the use of higher index
contrast waveguides could lower the coupling loss to 3.25 dB.

Thesis Supervisor: Clifton G. Fonstad
Title: Vitesse Professor of Electrical Engineering
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Chapter 1

Introduction

The miniaturization of silicon microelectronics has been driven by the overwhelming

economic and functional benefits of scaling. As the size of a transistor, the funda-

mental microelectronic device, is reduced, the transistor switching time is reduced

and the systems that employ these transistors become more dense, less expensive,

and capable of performing tasks of ever increasing complexity. The result of some

sixty years of such development is the affordable, powerful silicon microelectronic

integrated circuits (ICs) that have enabled the present mobile digital information

age.

Integral to the success of the digital microelectronic revolution is the semicon-

ductor material silicon, whose fundamental material properties make it the ideal

semiconductor for low power, high speed logic and memory applications. While re-

duction of the size of the individual transistors is important, the technology of planar

wafer-based microfabrication, which permits the dense integration of these compo-

nents together on a single integrated circuit, is equally vital. Over the past sixty

years, continuous improvements have been made to this microfabrication technology,

and these improvements have allowed for manufacturers to push the limits of scaling

and integration.
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Figure 1-1: Examples of successful application of scaling and integration: (a) A
packaged integrated pressure sensor developed by Motorola and a schematic cross-
section showing the key components of the sensor [1]. (b) A microarray used for DNA
study [2].

Beyond Microelectronics

Due to recognition of the successful application of silicon microfabrication technology

within the field of electronics, the technology has been applied to other fields as well.

For example, successful application of scaling and integration to sensor technology in

the late 70's led to the development of integrated pressure sensors which play a role

in improved automotive fuel economy [1]. The pressure sensor, shown in Figure 1-1,

is integrated on a single silicon chip with electrodes that enable electronic control and

readout.

In the field of microbiology, the development of DNA microarrays (often made

from silicon) which allow for the orderly arrangement and study of thousands of

DNA samples (see Figure 1-1) , has accelerated the pace of genomics research [2].

These are just two of the many examples of devices that make use of wafer-based

microfabrication technology for something other than the standard microelectronic

integrated circuit. These examples are given to make the point that silicon is an

important material for technologies reaching well beyond CMOS microelectronics.

Because silicon is so prevalent, a technology that can extend the utility of silicon by

giving silicon some new functionality or capability, has the potential to impact a wide

, - - - .



array of applications.

The Limitations of a Single Material

While silicon is certainly a versatile material, it is not without limitations. Depending

on the application or device, there are other materials which may be better suited

for the task. One such device is the semiconductor laser, a component that is used

in systems ranging from common DVD players to high speed fiber optic communi-

cation systems. These lasers are typically made from III-V semiconductors such as

gallium arsenide (GaAs) and indium phosphide (InP). Silicon is not the ideal ma-

terial with which to make a laser because of a fundamental material property that

makes electro-optical conversion in silicon an inefficient process1 . For years, however,

researchers have been attempting to make a continuous wave silicon laser. This work

was ultimately a success2 , however at this point, these silicon lasers have very lim-

ited efficiency. But the fact that such an effort was even undertaken, when room

temperature operation of semiconductor lasers was achieved in 1970 [5] with the gal-

lium arsenide (GaAs) material system, speaks to both the prevalence of silicon and a

particular limitation of the semiconductor wafer based microfabrication process.

Wafer based microfabrication is a planar process that begins with a wafer of high

purity crystalline material called the substrate. Any devices created during the mi-

crofabrication are limited in makeup to a small set of materials that are compatible

with the substrate material. So even though a semiconductor laser is not new technol-

ogy, the massive research effort of making a laser from the indirect bandgap material,

silicon, is still relevant. This is because of the challenges associated with attempts

to combine the GaAs material used to make the semiconductor laser from 1970 with

silicon3 .

1The process of converting electrons into photons is a fundamentally inefficient process in silicon
relative to certain III-V semiconductors. This is because silicon is an indirect bandgap material (see
Reference [3]).

2Researchers at Intel Corporation have developed a silicon laser based on the Raman effect
([4]). These lasers convert light of one wavelength, called the pump wavelength, to light of a longer
wavelength. This is called optical pumping as opposed to electrical pumping in which electrons are
converted to light in the laser.

3Actually, there have been successful attempts to combine GaAs with Si, most notably the efforts



Overcoming the Limitation

It is this limitation with which this thesis is concerned. A new technique has been

developed to fabricate lasers from InP, a material well suited for lasing at the telecom

compatible wavelength of 1550 nm, and to integrate these lasers on a silicon substrate

in such a way that they are intimately connected to the silicon chip. This thesis deals

specifically with the design, fabrication, and testing of optical waveguides, the purpose

of which is to facilitate this intimate connection between the integrated lasers and

the silicon chip.

1.1 Motivation for III-V's on Silicon

Coupled with the ever increasing data processing capacity of silicon CMOS microelec-

tronics, is an increased demand on the data handling components of digital microelec-

tronic systems; currently, copper interconnects. In order for the system to function

properly, the copper interconnects that transport the data between the various pro-

cessing units must be capable of handling the increased data transmission rates. As

microprocessor speeds increase, the metal interconnects suffer higher frequency de-

pendent loss due to the skin effect and dielectric absorption [8]. At higher frequencies,

the tolerances on impedance discontinuities for a given maximum allowable reflection

become smaller as well. While potential future improvements in dielectric materials

and processing techniques can alleviate some of these problems, a data rate of 10

Gb/s is typically cited as the maximum feasible data rate for all but the shortest

chip-to-chip copper-based interconnects [9]. In order to maintain the current pace of

performance enhancement, an alternative interconnect is required.

Optical interconnects (which use light, rather than the manipulation of electrons

to transmit data) have been examined as a potential solution to the copper intercon-

discussed in References [6] and [7]. To be more precise, the limitation with these solutions is that
they are typically very specific to the exact III-V material that is being combined with silicon. The
exact technique used to combine GaAs with silicon, for example, cannot be used to combine InP
with silicon. One of the advantages of the technique proposed in this work is that the same approach
can be applied to the integration of many different III-V semiconductor materials on silicon.



nect problem. Optical interconnects already exist for communication channels with

lengths greater than 1 m, as illustrated in Figure 1-2. Optical interconnects have the

advantage over copper interconnects in terms of available channel bandwidth, and

they don't suffer from electromagnetic interference and large signal attenuation, as

do copper interconnects. That said, optical interconnects first were examined over

twenty years ago [10] as an alternative to standard copper interconnects, for the very

same reasons. So why have they not yet taken over? The reason for this is that the

performance benefits aren't yet realized relative to copper at the current data trans-

mission rates at chip-to-chip interconnect lengths. The crossover point, in terms of

data transmission rate at a given interconnect length (and vice versa), where optical

interconnects start to outperform copper interconnects in terms of power and latency

was examined recently in Reference [11]. The analysis shows that at high enough

rates, (greater than 10 Gb/s) there is a performance benefit for interconnects longer

than approximately 15 cm. This would be a rather long trace on a computer moth-

erboard. However, at higher transmission rates, the crossover length is smaller, more

in line with the average length of traces on a motherboard. There is the argument

that copper interconnect technology will continue to improve with the improvement

of dielectric materials on the motherboard and that optical components suffer from

reliability issues. The debate remains, but it is suspected that eventually, improve-

ments to copper interconnect technology will be too costly to implement and in terms

of price and power, optical interconnects will be a better choice.

Regardless of when it happens, there are certain technologies that will be required

to make it happen. One such requirement is the integration of a laser onto the silicon

chip, or it may be possible to implement a system where the lasers reside off chip and

the chip only modulates or amplifies the optical signal. The latter scenario is similar

to the case of an electrical power supply, which sits off-chip for a microelectronics

system. Transistors on-chip are used to modulate and amplify the signal. Such an

optical system would most likely require on chip amplification of the optical signal

as there is signal power loss in coupling light from a fiber onto an on-chip waveguide

and vice versa. This required gain could come from an integrated semiconductor
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Figure 1-2: Optical interconnects already exist at length scales of 1 m and greater.
The backplane and chip-to-chip interconnects are applications that could be enabled
by the technology in this thesis.
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optical amplifier (SOA) on the silicon chip which would restore signal levels to the

level required for on chip distribution.

Some of the other necessary photonic devices can actually be made from the silicon

material itself. For instance, it is possible that the photodetectors would be silicon

or silicon-germanium. Many of the passive devices such as waveguides and couplers

can be made from deposited dielectrics such as silicon dioxide and silicon oxynitride.

However, as previously discussed, the efficient generation of light, or in the case of off-

chip lasers, the efficient amplification and modulation 4 of light, necessitates the use

of a material other than silicon. For these reasons, for optical interconnect systems

at the chip-to-chip length scale, it is desireable to develop a method whereby III-V

devices can be integrated onto a silicon substrate. As previously discussed, this work

will focus on the integration of a III-V material, based on InP specifically, on a silicon

substrate.

1.2 The Proposed Approach

The proposed approach for the integration of III-V devices on a silicon substrate

requires four distinct capabilities:

1. Fabrication and accumulation of substrate-free III-V device pills.

2. Fabrication of a passive photonics platform with recesses on a silicon wafer.

3. Assembly of substrate-free III-V device pills in the recesses on the passive pho-

tonics platform wafer.

4. Mechanical bonding of pill, planarization, and formation of metal contacts.

4Silicon modulators do exist, but they are not as fast as their III-V counterparts. The operation
of fast III-V modulators is based on the electro-optic effect, which is a very fast process whereby the
refractive index of a crystal changes with the application of an electric field [12, 13]. The electro-optic
effect is stronger in crystals lacking inversion symmetry such as GaAs and InP. The electro-optic
response in silicon is weak[14]. Work is being done to overcome the problem of the weak electro-
optic effect in silicon. The free carrier plasma dispersion effect, rather than the electro-optic effect,
is being used to make silicon modulators [15, 16]
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Figure 1-3: The 1 st step of the pill process. The waveguide ridges have been etched
to the first etch stop layer.

Together, these four steps make up what is called, the RM', or Recessed Mounting

with Monolithic Metallization technology. The work in this thesis is focused primarily

on steps 12 and 3.

1.2.1 Pill Processing

The pill processing starts with InP/InGaAsP multi-quantum well epitaxial wafers. At

the completion of the process, the 300 pm thick wafer has been etched and cleaved into

several hundred 300 pm long, 145 pm wide, 5 pm thick InP/InGaAsP ridge waveguide

pills with mirror-smooth end facets. These pills are then ready to be assembled on the

silicon substrate. The significant steps in the pill fabrication process 5 are illustrated

in Figures 1-3 through 1-6.

5The pill fabrication process described here is being developed by Joseph Rumpler as part of his
Ph.D. work. Joseph is also credited with the fabrication of all of the pills that were used in this
thesis.



Deep

Figure 1-4: The 2"nd step of the pill process. The top image is looking from above the
wafer surface (plan view). The lower image is looking at the vertical cross section
(light going in/out of page in ridge waveguides). The deep grooves have been etched
past the etch stop layer. The next step is the substrate removal.

Figure 1-5: The 3rd step of the pill process. The top image is looking from above the
wafer surface (plan view). The lower image is looking at the vertical cross section
(light going in/out of page in ridge waveguides). The InP substrate has been removed
to form bars approximately 1 mm long, 145 pm wide, and 5 pm thick.



Figure 1-6: The 4th and final step of the pill process. Ultrasonic agitation has cleaved
the bars into 300 /m long InP/InGaAsP ridge waveguide pills.

1.2.2 Fabrication of Passive Photonics Platform

The passive photonics platform on silicon consists of waveguides designed to trans-
port light over the surface of the chip and to couple light both to and from the
InP/InGaAsP ridge waveguide pills. Wells etched into the waveguide stack house the
integrated pills and facilitate end-fire coupling with the silicon oxynitride interconnect

waveguides.

The interconnect waveguides are deposited as a lower cladding (3 um of silicon

dioxide), core (0.7 Mm of silicon oxynitride), upper cladding (3 Pm of silicon dioxide)

waveguide stack on the silicon wafer. The total thickness of the stack is 6.7 [Im.

After the deposition of the silicon oxynitride core material, and before the deposition

of the upper cladding, the silicon oxynitride is patterned and etched into the desired

waveguide pattern as shown in Figure 1-7. The, following the deposition of the upper
cladding, wells sized slightly larger than the ridge waveguide pills are etched into the
waveguide stack all the way down to the silicon surface. A drawing of the silicon

wafer with the full waveguide stack, with patterned waveguides and an etched well is

shown in Figure 1-8.



Figure 1-7: The 1st and 2"d steps in the waveguide fabrication sequence. In the top
figure, the lower cladding and core layers have been deposited. In the lower figure,
the core layer has been etched into the interconnect waveguide pattern.
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Figure 1-8: The 3rd and 4th steps in the waveguide fabrication sequence. The upper
cladding layer (3 /pm thick) has been deposited and a well has been etched through
the entire waveguide stack all the way down to the silicon surface.

1.2.3 Pill Assembly

The next step after the deep etching of the wells is the assembly of the InP/InGaAsP

ridge waveguide pills into the wells. A micropipette was used to pick up the pills

and assemble them into place in the wells. The micropipette is able to pick up the

pills with the application of a vacuum. The micropipette tip is bevelled (as shown in

Figure 1-9) so that when in contact with the pill, the pill and the micropipette may

be viewed from above with a microscope.

1.3 Alternative Approaches

In this section, a brief survey of current or recent alternative approaches to the in-

tegration technology used in this thesis will be given. Rather than attempting to

systematically describe the entire integration space, specific examples taken from the

literature will be discussed with the objective being to provide a general picture of

the various methods and technologies that have been developed to integrate either

multiple photonic devices on a single chip to integrate photonic functionality on sili-
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Figure 1-9: On the left, an image of the micropipette tool. On the right, a drawing
showing the assembly of the pill into a well. While not actually done in this work,
this drawing shows the case of integrating the pill into the inter metal layer dielectric
stack of a fully processed silicon CMOS wafer.

InP/InGaAsP Ridge Waveguide
Pill Assembled into the Well

Figure 1-10: The pill assembled into the well. Light is shown exiting the pill at the
level of the core material (shown as the darker region) in the pill.



con.

The technology proposed in this thesis allows for the integration of active and

passive photonic devices based on any number of III-V material systems, together on a

common silicon substrate which could contain silicon microelectronics. Consequently,

it is the most complete of the integration types. Most of the alternative approaches

that will be discussed in this section are for a less comprehensive level of integration,

as the target application may be different, but they still provide a relevant comparison

in that they provide a reference for the work in this thesis. For instance, the first

technology that will be discussed does not involve the integration of electronics and

is targeted for use in current optical fiber interconnects, but it does provide a target

value for coupling efficiency (and the size of the coupling region required to achieve

the given coupling efficiency) between integrated active and passive devices.

Integration Examples

Three examples taken from the literature will be examined:

1. Asymmetric Twin Waveguide: InP based active and passive photonic device

integration

2. Fabless Photonics on Silicon: silicon waveguide and modulators seamlessly in-

tegrated with silicon microelectronics

3. Surface Mount Technology: similar to the work in this thesis, allows for the

separate optimization of the photonic devices

Before continuing it is worthwhile to reiterate the basic shortcoming of wafer based

microfabrication when it comes to the integration of multiple material or multiple

structure devices. While photolithography and etching steps allow for the highly pre-

cise lateral (in the wafer plane) definition of devices and structures of nearly limitless

complexity, the vertical cross-section, particularly of the active devices, is extremely

simple by comparison. The integrated devices on the circuit can have very different

lateral geometry, but they all share the same vertical structure. This all stems from



the fact that a given semiconductor material can only be grown on a select few other

semiconductor materials. Solutions, therefore, either involve adding vertical com-

plexity and developing a way to route optical and/or electrical signals in the vertical

direction, or developing ways to alter the vertical structure in selective areas on the

chip.

This need to alter the structure to perform various functions is not only a re-

quirement of photonic/electronic integration but, it is also a requirement of photonic

integration where more than one of the three photonic functions (generation, trans-

mission, and detection of light) is integrated on a single chip. This is illustrated with

the following scenario. Light is coupled onto waveguides at the edges of the chip. It is

then coupled into an optical amplifier on the chip. At the exiting side of the amplifier,

it is coupled back into an output waveguide which splits into several branches and

terminates at a detector. Imagine that a single growth step over the entire surface of

the wafer was used to create the core and cladding layers and that photolithography

and etching were used to define the waveguides, etc. The problem is that the epitax-

ial structure that optimizes the gain is typically a strained quantum well structure

with transition energies at the photon energy. The wave guiding sections require

a structure with transitional energies that are greater than the photon wavelength,

and the transition energies of the detector should be lower than the photon energy.

Obviously, there is no single structure that meets these needs.

1.3.1 Asymmetric Twin Waveguide

In References [17] and [18], the development of a versatile technology based on an

asymmetric twin waveguide structure is described. This technology is one of the

approaches in which vertical complexity is added6 .

The asymmetric twin waveguide solution employs a structure with two core layers

separated by a cladding layer. One of the core layers is designed to optimize the wave

6Solutions involving the alteration of the vertical structure in selective areas on the chip include
material regrowth ([19], [20], [21], [22]), quantum well intermixing ([23], [24]), and selective area
regrowth ([25], [26])
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Figure 1-11: Taken from Reference [27], a three-dimensional schematic view of the
integrated heterodyne receiver chip. Inset: Scanning electron micrograph of an LO
laser grating fabricated on top of the fiber waveguide.

guiding function, the other is designed to optimize either the gain or detection func-

tion7. Transfer between the lower guiding waveguide and the upper gain waveguide

is achieved with adiabatic tapers (see the dark tapered sections in Figure 1-11). At a

taper length of 200 pm, 50% power transfer is achieved, and at a taper length of 400

pm and greater, 90% power transfer is achieved.

In Reference [27], the twin waveguide structure was used to fabricate a heterodyne

receiver in the InP/InGaAsP material system. This involved the integration of a

laser, waveguides, an optical amplifier, and a p-i-n photodetector. A schematic of

the receiver is shown in Figure 1-11. Operation at 3 GHz was demonstrated. The

advantage of this technique is that

As a final note, this technology has moved beyond the lab and has been commer-

cialized by a company called Apogee Photonics. As reported in Reference [28], with

this technology and others, Apogee is able to address all segments of the 10 Gb/s

fiberoptic market, from very short-reach datacom links to high-performance, DWDM

transport networks.
7Actually, in one of the papers (Reference [27]) employing this structure, three layers were in-

cluded, so that each function was separately optimized



Figure 1-12: Taken from Reference [29], silicon optical Mach-Zehnder modulator.
Dashed lines illustrate the path of the waveguides, which are hidden under the metal.

1.3.2 Fabless Photonics on Silicon

The goal of the work in Reference [29] is very similar to the goal of the work in this

thesis. Passive (high index contrast silicon waveguides) and active (Mach-Zehnder

modulators) photonic devices are integrated seamlessly with silicon microelectronics.

This technology is particularly interesting because it uses only standard silicon mi-

crofabrication processes. Figure 1-12 shows the integrated Mach-Zehnder modulator

which operates via the plasma dispersion effect in silicon s . As previously discussed,

it is very difficult to make a laser from silicon. Rather than generating the optical

signal on the silicon chip, the approach here is to couple light onto the chip from an

off-chip laser. Figure 1-13 is an SEM image of the holographic lens used to transfer

surface normal light from a fiber to in-wafer-plane light into the on-chip waveguides.

Optical switching is then achieved by the modulator which is electrically driven by

the readily available silicon microelectronics.

This technology is currently being commercialized by Luxtera [31]. Perhaps the

main advantage of this technology is the fact that it makes use of standard silicon

microfabrication processes. The disadvantage is that it relies on silicon-based modu-

lators, which are not as efficient as their III-V counterparts.

sFaster modulators made from GaInAs discussed in Reference [30] make use of the Franz-Keldysh
effect. Other modulators make use of the electro-optic effect. The electro-optic effect is a fast process
whereby the refractive index of a crystal changes with the application of an electric field [12, 13].
Silicon, however, exhibits a weak electro-optic effect. The electro-optic effect is stronger in crystals
lacking inversion symmetry such as GaAs and InP. The small electro-optic response of silicon was
studied in [14]



Figure 1-13: Taken from Reference [29], SEM photograph of a holographic lens (upper
right corner) illuminated by an optical fiber (represented by dashed lines). Light is
coupled into the submicron waveguides shown.

1.3.3 Surface-Mount Technology

A technology developed by a company called Xponent that combines the adiabatic

tapers of the asymmetric twin waveguide with the III-V mounting technology similar

to the III-V device mounting in this thesis is discussed in Reference [32] and [33]. This

surface mount technology for optical components is inspired by the success of hybrid

microelectronic packaging. Figure 1-14 is an overview of the surface mount technology

process taken from [34]. The particular application for this work is the triplexer found

in passive optical network transceivers (see Reference [35]). The success of passive

optical networks depends on many factors, but a crucial aspect in particular is the

price of the triplexer. This surface mount technology enables a reduction in the

packaging costs of the triplexer through an order of magnitude increase in the laser

diode and alignment tolerances. The technology allows for the separate optimization

of the components for the three different wavelengths handled by the triplexer.

Another surface mount technology, designed to evanescently couple light from a

surface mounted AlGaInAs laser operating at 1568 nm into a silicon waveguide on an

SOI wafer, is discussed in References [36] and [37]. The technology has been developed
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Figure 1-14: Taken from Reference [33], this drawing shows the use of an adiabatic
jumper chip that is flip chip mounted to connect two separate waveguides. This
jumper increases the alignment tolerances compared with the case of end-fire coupling
between the two separate waveguides without the jumper.

for the pumping of the silicon Raman laser developed at intel as reported in Reference

[4]. Figure 1-15 shows the cross section of the structure. These structures were

optically pumped showing a pump power threshold of 200 mW at room temperature.

In this case, alignment sensitivity is related to the alignment of the pump laser, not

the mounted III-V structure. The III-V structure is invariant in the wafer plane.

1.3.4 Summary of Alternatives

Three different alternative technologies for photonic integrated circuits were shown.

Each method has its advantages and disadvantages. In general, it is seen that the

more flexible the technology, the more complex. The twin waveguide structure and the

fabless photonics on silicon approach are elegant in design as they require no mounting

and alignment of structures as with the surface mount techniques. However, they are

limited in flexibility in that only one material, in the case of the fabless photonics on

silicon, and one lattice matched material system, in the case of the twin waveguide,
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Figure 1-15: Taken from Reference [37], (a) drawing of the cross-section device struc-
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is available for use.

The technology proposed in this thesis is extremely flexible in that any III-V

material can be integrated on silicon (or on some other III-V material for that matter),

and it is correspondingly more difficult to implement than, for instance, the twin

waveguide approach.

1.4 Overview of Thesis

This thesis is divided into six chapters, including this introductory chapter.

In the second chapter, the suitability of a fully processed (front-end and back-

end) silicon CMOS wafer is examined for use as a substrate for low loss deposited

dielectric waveguides. This would be desirable given the RM3 technology applied to

fully processed silicon wafers in which active optoelectronic devices are integrated into

the back-end inter metal layer dielectric stack. In this case, the deposited waveguides

would be required to carry light over the surface of the wafer between the various

integrated devices. The concern, however, which is examined in the chapter, is that

a fully processed wafer may be too rough to serve this purpose and the waveguides

might be very lossy. It is shown in Chapter 2 that this is not the case.

The third chapter details the design of the silicon oxynitride waveguides. Finite

Difference Time Domain (FDTD) simulation software is used to determine the inter-

connect waveguide (i.e. the silicon oxynitride waveguide) design that optimizes the op-

tical coupling between the interconnect waveguides and the integrated InP/InGaAsP

ridge waveguide pills. The effects of several non-idealities, such as pill misalignment,

on the coupling efficiency are examined as well.

In chapter four, the waveguide and well fabrication is discussed. In addition, the

preparation of waveguide samples for measurement and the assembly of InP/InGaAsP

ridge waveguide pills is detailed.

The results and analysis of the optical testing and characterization of the waveg-

uides and the InP/InGaAsP ridge waveguide pills are addressed in the fifth chapter.

The analysis of measurements taken on integrated ridge waveguide pills are examined



in this chapter as well.

The final chapter provides a summary of the significant findings in this work and

highlights some directions for future work.

Appendix A describes the optical measurement setup that was used for the ma-

jority of the experiments in this thesis. Appendix B gives the derivation for an

approximate end-fire coupling equation given in Chapter 3. Appendix C contains

detailed process recipes for all of the fabrication steps given in Chapter 4. Appendix

D contains the Matlab code for several of the scripts written to aid in the analysis of

the data. In particular, the code for calculating the multimode Transmission Matrix

for an arbitrarily complex series of lossy dielectric materials.



Chapter 2

Waveguides on Processed Wafers

This chapter details the work (see Reference [38]) that served as the introduction to

the main project of this thesis. In this chapter, the suitability of a fully processed

(front-end and back-end) silicon CMOS wafer as a substrate for low loss deposited

dielectric waveguides is examined. This would be desirable given a technology in

which active optoelectronic devices could be integrated into the back-end inter metal

layer dielectric stack, in which case the deposited waveguides would be required to

carry light over the surface of the wafer between the various integrated devices. The

concern, however, is that a fully processed wafer is too rough to serve this purpose

and the waveguides would be very lossy.

In this chapter, the "roughness" of a processed wafer will be defined and a worst

case roughness will be determined. It will then be shown that given a minimum

waveguide index contrast, the added loss from the surface roughness is negligible.

2.1 Problem Background

Using processed silicon integrated circuit (IC) wafers as the foundation for forming

optoelectronic integrated circuits (OEICs) has become an important approach to

heterogeneous integration, and several different technologies ranging from flip-chip

surface mounting [39] to recess mounting with monolithic metallization, [40] have

now been demonstrated. With these techniques, III-V light emitters and detectors
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Figure 2-1: Schematic cross section of a Si CMOS IC integrated with optoelectronic
devices and dielectric waveguides. Figure is not to scale.

can readily be integrated monolithically on high performance silicon ICs that have

been fabricated on state-of-the-art commercial production lines. An example of an

OEIC with a fully-processed Si substrate is shown in Figure 2-1. 2-1.

The reported applications of OEICs fabricated on Si foundations are almost ex-

clusively directed at surface-normal input and output of the optical signals. While

this is the desired geometry for many applications, there is another broad collection

of applications for which it would be desirable to direct and guide the optical signals

in the plane of the wafer. This is particularly true for on-chip optical interconnect ap-

plications; this geometry is also attractive for some fiber-coupled applications. This

paper addresses the issue of adding monolithic dielectric waveguides to silicon IC

wafers to provide thin film interconnect lines for optical signals similar to those which

are formed for the electrical signals in the various metal layers.

The problem of forming dielectric waveguides on silicon wafers has been addressed

Waleguide Coe



by numerous groups [41], but this work has almost exclusively been done on unpro-

cessed wafers, rather than on wafers that have gone through a complete IC fabrication

process. The published work has thus addressed the issues of choosing cladding and

core materials, of reducing side-wall losses, and of forming bends, couplers, splitters,

etc., but not the issue of forming these guides and structures on the surface of a fully

processed integrated circuit wafer.

An important additional complication is introduced when waveguides are de-

posited on a processed integrated circuit wafer as part of the back-end process because

the upper surface of the wafer is no longer perfectly smooth and planar. Chemical

mechanical polishing (CMP) can be used to effectively restore the local planarity

by reducing the topography caused by the metal traces, and CMP is able to signif-

icantly reduce the microroughness that is typical of the surfaces of low temperature

deposited dielectric layers. These two properties of the CMP step are crucial to

obtaining low loss waveguides. However, while the CMP process improves local pla-

narity and minimizes microroughness, the CMP process itself introduces long range

global non-planarity on the order of several millimeters. This is explained in Section

II. Because of this global non-planarity, waveguide bending losses must be considered

for bending in the direction perpendicular to the substrate in addition to the typical

in-plane lateral bending losses. In this paper we examine these waveguide bending

losses using the Marcuse waveguide bending loss equation [42] and the beam propa-

gation method (BPM) [43] to develop a range of waveguide and process parameters

for which these surface undulation losses may safely be ignored. It should be noted

that the Marcuse equation models only radiation losses and was consequently used

only as a means of validating the results from the BPM at short bending radii where

radiation losses dominate.

2.2 Estimating Wafer Surface Non-planarity

Prior to the formation of the waveguide structure and most likely as part of each metal

layer formation, a wafer surface will typically undergo a series of chemical-mechanical-



polishing (CMP) steps to remove local microroughness and local structure left behind

by patterning of the metal layers and via formation. However, as previously stated,

this CMP process can introduce long range or global non-planarity, loosely defined

here as over a range of several mm, due to variations in underlying pattern density

[44]. In order to determine the bending losses resulting from these long-range surface

variations, it is necessary to know the details of the shape of the post-CMP wafer

surface profile. The following model can be used to determine this profile and is

discussed in detail in [44] . Consider the typical case in which the CMP technique

is applied to an oxide layer deposited over an area with metal traces. According to

the model proposed by Stine et al. [45], the relationship between ILD thickness and

pattern density can be expressed as [44]:

zo - [PKt for t < pozl/Kz =Y (2.1)
zo - zl - Kt + Po (x, y)zl for t > poz/K

Here z is the ILD thickness referenced from the top of the metal regions, z0o is the

amount of dielectric deposited before CMP, z1 is the as-deposited metal step height,

K is the removal rate for blanket or unpatterned wafers, t is time, and p is the pattern

density. The pattern density for metal traces over some area is defined as the fraction

of that area that is covered by the metal traces. Note that t = pozl/K is the time

required to remove the step height and is smaller for a lower pattern density, Po. This

is based on Preston's equation [46] in which the removal rate is proportional to the

pressure, which is inversely proportional to the raised area or pattern density.

This model can now be extended to consider the differences in polishing for two

separate areas. It is typical to have various areas of uniform pattern density on a

chip. For instance, an area for SRAM memory has a fairly constant pattern density

and may differ considerably from an area corresponding to an adder. Consider two

such areas A and B on a wafer with the same zl and z0o and different pattern densities

PA and PB. For the purposes of this discussion, A and B represent areas that are



L ~ 2 Planazation Lengths

A;

Se\eral mm
Figure 2-2: Schematic of a CMP oxide surface over a 0.5-1.0 pattern density variation
over approximately two planarization lengths. R is the radius of each arc making up
the approximated surface transition. Figure is not to scale.

approximately 10 pm x 10 pm. The following applies for t > pozl/K:

ZA = Z0 - z 1 - Kt + PAZ1ZB = Z - z - Kt + PBZ1 (2.2)

(2.3)AZ = ZB - ZA = Z1 (PB - PA)

The as-deposited step height, zl, is the maximum Az for two areas, A and B, corre-

sponding to the case in which PB = 1, and PA = 0.

An additional parameter called the planarization length or interaction distance,

which is a function of the CMP pad, is effectively the minimum distance between

areas A and B over which the full Az height difference will be realized from the CMP

step. This is illustrated in Figure 2-2. A more precise definition of the planarization

length will follow. This length is typically on the order of a few mm. For two areas,

separated by less than the planarization length, a fraction of the full Az height will

! I



be realized. The details of the surface profile transition over the Az height variation

requires an understanding of how the CMP pad flexes as it polishes.

In [44], a model is developed for determining the shape of the post-CMP wafer

surface over a changing pattern density. Using a linear systems approach, the shape is

found as the convolution of the spatially dependent pattern density with the CMP pad

weighting function, which is effectively the impulse response of the pad. The profile

between areas A and B in the example above can then be found as the convolution

of a unit step function in pattern density with the pad weighting function. This case

was simulated in [44] using four different weighting functions. The results were then

compared with experimental results. The two most accurate weighting functions were

a gaussian and an elliptic function. The surface profile data taken from the simulation

using the gaussian weighting function matched the experimental data to within an

RMS error of 56 A over a surface profile which varied over 3000 A. For ease of use,

the gaussian function was considered for the work presented in this paper. The error

function is the result of the convolution of the gaussian function with a step function.

When considering a gaussian weighting function, the planarization length is formally

defined as twice the standard deviation:

L = 2a (2.4)

The planarization length is a function of the CMP pad type. In general a stiffer

pad will have a longer planarization length while a more flexible pad will have a

shorter planarization length. Typically, the planarization length falls in the range of

1 to 5 mm [44].

Because it is not possible using the BPM software to simulate waveguides shaped

as an error function, it was necessary to fit the error function with two arcs to form

an S-bend. The S-bend could then easily be simulated using the BPM software. In

order to verify that an S-bend yields a close approximation to the error function, a

Matlab simulation was run comparing the two curves for a one dimensional (1-D)

problem. The simulation consisted of convolving the weighting function with the
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Figure 2-3: Error function curve corresponding to the surface profile based on the
model in [44] compared with S-bend. Lbend is twice L, the planarization length.

pattern density function and then graphically comparing this result with an S-bend.

A normalized Gaussian weighting function was used with a standard deviation, a, of

1.75mm corresponding to a 3.5mm planarization length:

w() = 1 -2/2a2 (2.5)

This was then convolved with the pattern density function Po(x), which was a step

function in this case. Referring to Figure 2-4, the height of the S-bend was fixed

as Az, and the length, Lbend, was adjusted to obtain a close match with the error

function. Close matching was found with

Lbend = 2L (2.6)

where L is the planarization length from Equation 2.4. The coefficient in Equation

2.6 controls the curvature of the S-bend. A higher coefficient yields a lower curvature.
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Figure 2-4: S-bend waveguide structure as entered into BeamProp. The x-axis is
perpendicular to the wafer surface. A Az of 5 pm was maintained for each simulation,
Lbend was varied to vary the radius (R).

The radius, R, is then found from the following equation

L 2 d + A Z2

R = e + Az (2.7)
4Az

Using Equations 2.6 and 2.7, an S-bend was plotted along with the error function.

The result is shown in Figure 2-3. Notice that the S-bend has greater curvature than

the error function, meaning that to first order, losses from the simulated S-bend will

be greater than losses from the actual error function. A coefficient of 2 in Equation

2.6 represents a conservative matching since the goal is to find the worst case bending

loss. Based on Equations 2.3 through 2.7, a range of possible out-of-plane bending

radii can be calculated for typical to worst-case back-end process scenarios. The worst

case scenario corresponds to the case with the tightest bends and consequently the

I



largest bending losses. From Equation 2.7, clearly the minimum radius corresponds

to the minimum Lbend, or minimum planarization length. The minimum planarization

length for typical CMP pads is approximately 1 mm. Since L end is much larger than

Az 2 (i.e. the typical height variations are on the order of microns while the interaction

distances are on the order of millimeters), the minimum radius corresponds to the

maximum Az. Typical metal layers are at most approximately 0.5 ,/m thick. If there

were 10 such metal layers all perfectly aligned so that the 0.5 m height variation

added from one layer to the next, there would be at most a 5 m height variation on

the final wafer surface. Inserting these values (Lbend = 2L = 2 mm, Az = 5pm) into

Equation 2.7 yields a worst case bending radius of approximately 20 cm.

2.3 Modelling Loss Due to Surface Curvature

2.3.1 Restriction To Single Mode

It has been observed that single mode guides see less total bending loss than multi-

mode guides [47]. When the confined, guided modes of a straight waveguide encounter

a bend, they couple into corresponding bending modes which radiate as they go

around the bend. For a multi-mode guide, the fundamental mode of the straight

portion couples into the fundamental bending mode as well as higher order bending

modes which are non-existent for the single-mode case. These higher order bending

modes radiate more power than the fundamental bending mode due to the fact that

the field intensity of the higher order modes is larger at the waveguide boundaries

than the fundamental mode [47]. No attempt was made to model this effect in either

the BPM or Marcuse equation simulations, and thus the present study is restricted

to single-mode guides.



2.3.2 Marcuse Formalism

The bending loss for a two-dimensional slab waveguide was approximated by Marcuse

[42] as
a 2 K e2{7 d-R[btanh-1(- (2.8)

P (1 + yd) (n - n) k
where a is one half the power loss coefficient, y is the extinction coefficient which

is the magnitude of the transverse portion of the k-vector in the cladding, , is the

magnitude of the transverse portion of the k-vector in the core, 3 is the propagation

coefficient, d is one half the waveguide width, ko is the magnitude of the free-space

k-vector, R is the bending radius, nl is the core index, and n 2 is the cladding index.

Given d, ni, n2, and ko, y, 3, and K can be determined for a propagating mode from

the dielectric slab two-dimensional waveguide eigenvalue equation

tan (Kd) = k2 (n2 - n 2) - (2.9)

and the following relationships

k02n = 02 - 2  (2.10)

0kn1 = +2 K2 (2.11)

2.3.3 Beam Propagation Method Simulation

The beam propagation method (BPM) was also used to estimate bending losses using

a software package from Rsoft called BeamProp1 . The package includes the option of

using a Pade-based model to simulate bending greater than 150 from the z-direction

(the direction of propagation). In most of the simulations reported here, this was

not the case and so the basic BPM model was used. BeamProp allows the user to

inject the fundamental mode into a 3 dimensional guide and monitor the power of

that mode along the guide by computing overlap integrals of the waveform with the

'BeamPROP is a product of Rsoft Design Group, Ossining, N.Y.



initial injected mode at certain points along the guide. In this way it was possible to

determine the losses for various bending radii and various 3-D waveguide geometries.

A basic parameterized waveguide structure was used for each simulation and the

parameters were adjusted or automatically stepped for each simulation. The structure

consisted of two straight sections connected by an S-bend structure composed of two

arcs of equal radius and angle. The straight sections were offset laterally by 5 /1m,

corresponding to the worst case height variation across a planarization length. The

structure is illustrated in Figure 2-4. As the radius was increased in steps, the length

of the S-bend was increased to maintain the constant 5 Mm lateral separation. 3-D

waveguide structures were graphically entered as 2-D objects, where the details of

the third dimension, depth, were defined numerically through various menus in the

program. It is important to recognize the proper orientation of the axes in Figure

2-4, with respect to the surface. The x-axis in the figure is perpendicular to the plane

of the wafer surface. The z-axis, or propagation axis is parallel to the wafer surface.

The y-z-plane (the y-axis, not shown, is directed into the page) is parallel to the wafer

surface.

2.4 Simulation Results

Using both the Marcuse equation and the BeamProp software, S-bend waveguide

structures with square cross-sections were simulated. In all cases the cladding was

taken to be silicon dioxide (n = 1.45) and the various indices of refraction assumed for

the cores of the simulated waveguides were chosen based on representative waveguides

found in the literature. Table I shows the core/cladding indices, the typical material

system used to achieve the index contrast, the maximum waveguide dimensions for

single-mode operation, typical propagation loss for a straight guide, and the targeted

application. It should be noted that not all of these waveguide material systems are

necessarily compatible with post back-end processing usually because of the require-

ment of high annealing temperatures, or because they are, by definition, a part of

the front-end process. Nevertheless they represent typical waveguide designs and,
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Figure 2-5: Waveguide loss at A = 1.55 /m versus bending radius predicted by the
Marcuse formula and by the BPM simulation in a guide with a 4.5 pm wide silicon
oxynitride core (n = 1.46) and silicon dioxide cladding (n = 1.45).

therefore, provide some relevance to actual waveguides.

The results of a typical simulation showing predicted bending loss versus bending

radius for the two models are shown in Figure 2-5. Notice the large discrepancy at

large radii between the BPM and Marcuse equation results. As previously mentioned,

this is due to the fact that the Marcuse equation is modeling only radiation losses in

the bending structure and does not take into account modal coupling losses between

the straight and curved sections or between the two opposing curves of the S-bend.

For this reason, the results are similar only in the small bending radius regime where

radiation loss dominates. The Marcuse results are included to stress the importance

of including the coupling losses of the BPM model when considering bending losses

at large radii.

The waveguide simulated in Fig. 5 has a width of 4.5 /m and the propagating

radiation has a wavelength of 1.55 ttm. The core index is 1.46, and the cladding

index is 1.45. This results in a An of 0.01, which is the lowest index contrast that

+ BeamProp 3D
- Marcuse 2D EIM

~c_

I I I



TABLE I
TYPICAL WAVEGUIDE CHARACTERISTICS

Core Dimension LossClad Indices Application Wavelength dB/cm Ref.Clad Wavelength Bc

Si 3.45 Dense integrated .5 gpm
SiO2 1.45 optics on SOI 1.55 pm

Si 3.45 SOI ridge guides, 8 jpm
SiO2 1.45 Fiber Coupling 1.55 pm

2.0 Sensors, ~1 pim
1.45 Microphotonics 1.3-1.55, 0.85

Passives

1.5 Sensors1.5
1.45 OpticalCommunications

1.6 pm
850 nm

3 pm
1.55 pm

> 10 [13]

0.25 [14]

-1 [16]

1.9 [12]

0.2 [11]

SiO2 : Ge 1.465 Passives, 5.5 pm 0.042-
SiO2 1.445 Fiber Coupling 1.3 - 1.55 pm 0.23

Si02 :Ge 1.455 Passives, 5.5 jim
SiO2 1.445 Fiber Coupling 1.3 - 1.55 pm 0.063

Typical waveguide materials, parameters, applications, dimensions, and
experimentally measured transmission losses [10].

Si3N4
SiO2

SiOxiNyl
SiOx2Ny2

SiOxNy
Si02



was simulated. Because a low index contrast translates into weaker confinement and,

therefore, a larger bending loss, this waveguide simulation illustrates the worst case

of the simulated guides (i.e. greatest loss for a given bending radius).

BPM simulations like those illustrated in Figure 2-5 were also performed for waveg-

uides with silicon dioxide cladding (index = 1.45) and cores with indices yielding index

steps of 0.05, 0.1, 0.55, and 2.0. The plots of loss as a function of bending radius

look qualitatively similar to those in Figure 2-5, but, of course, show smaller losses.

Rather than showing several plots, three points from each simulation for the various

indices of refraction are included in Table II. The values given in the table are the

radii in microns that yield a bending loss of 10, 1, or 0.1 dB/cm for a given index

contrast.

Recall that a radius of 20 cm was determined to be the worst case (minimum)

bending radius for a wafer surface profile. It is clear from Fig. 5 that for radii

of 20 cm or greater, the bending losses may be ignored. Note that 20 cm, or 200

mm, falls well to the right of the x-axis values included in the figure. For an index

contrast of 0.01, a 20 cm bending radius is nearly an order of magnitude greater

than the 2.2 cm (see Table II) bending radius that gives a loss of 0.1 dB/cm. This is

entirely consistent with the fact that rectangular dielectric waveguides are designed to

maintain low losses in lateral bends in the wafer plane, and that in most cases bending

radii considerably less than 20 cm are sought. Table II shows that the bending radii

on the wafer would have to be much smaller than 20 cm to contribute any significant

loss. The values in Table II are valuable in that they show the order of magnitude

of the bending radii that produce a certain loss. Because the exact values were not

verified experimentally, they represent an approximation.

One important observation to make regarding the BPM simulations is that they

become increasingly sensitive to round-off errors in the computation as the bending

radius is increased and the accuracy of the modeling must be questioned and in

particular the leveling off of the loss at large radii, which was seen in all cases, may

be in part an artifact of the modeling and in reality the loss may be smaller than

indicated. The calculation can be viewed as yielding a conservative estimate of the



TABLE II
BENDING RADII

0.01 0.05 0.1 0.55 2.0
10 dB/cm 4300 600 275 52 20
IdB/cm 11000 1550 610 140 50
0.1 dB/cm 22000 4000 1800 450 300

The values in the table are the bending radii (Lm) which produce a given
bending loss (row) for a given waveguide index contrast (column). These
values are taken from the BeamProp simulations.

loss and in spite of this possible effect, still indicates that the loss is negligible.

2.5 Discussion and Conclusion

Using equations which govern the dependence of underlying pattern density on the

removal rate of inter-layer dielectric oxide by CMP, a worst case wafer surface profile

for a deposited waveguide has been calculated. This corresponds to the surface profile

of a Si CMOS wafer after completion of the back-end processing including all metal

layers. Given a minimum planarization length of 1 mm and a total step height of 5

pm, a deposited waveguide would see approximately a 20 cm out-of-plane bending

radius. The identification of 20 cm with the worst-case bending radius associated

with the surface undulations on processed IC wafers is clearly a key result of this

study. This work translates the problem from one of understanding waveguide loss

due to post CMP global non-planarity into the more common problem of waveguide

loss given a certain bending radius. Simulations using the Marcuse bending loss

equation and Rsoft's BeamProp BPM software package, both indicated that for even

the worst case scenario, out-of-plane bending losses may be safely ignored as they

typically fall well below the range of propagation loss for the corresponding material

systems. This implies that modern, CMP-processed integrated circuit wafers can be

used as low-loss substrates for the deposition of rectangular dielectric waveguides,

and that addition of dielectric waveguide interconnect layers to the back-end process

sequence is a viable approach to implementing intra-chip optical interconnects and

optical clock distribution networks.





Chapter 3

Interconnect Waveguide Design for

Optimum Coupling to Integrated

III-V Devices

In an on-chip integrated photonic system, an interconnect waveguide provides the

path for transmission of the optical signal from one device or on-chip location to

another. An interconnect waveguide is the optical equivalent of a metal wire inter-

connect in an electronic circuit. Just like a metal wire interconnect, the waveguide

should be compact and capable of providing low loss, low distortion signal transmis-

sion all in a manner that does not adversely affect the performance of the devices it

connects. Figure 3-1 is an illustration of a silicon chip with integrated III-V devices

(InP SOA and an InP laser) connected to the edge of the chip and to other devices by

interconnect waveguides'. As discussed in the introductory chapter, in the context

of the proposed III-V device integration technique, the interconnect waveguides must

be designed for optimized coupling to the integrated III-V devices2 (which also in-

corporate waveguides), taking into account the non-deterministic nature of the III-V

'The term, interconnect waveguide will be used repeatedly throughout this thesis. This is done
to distinguish these waveguide from the ridge waveguides in the integrated III-V devices.

2The actual III-V devices used in this work were fabricated using InP/InGaAsP multiple quantum
well material that was specifically designed for ridge waveguide lasers. While the design methods used
in this chapter can be generalized to a different material and/or device structure, the quantitative
results are based on the specific InP/InGaAsP material and structure that was used in this work.
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Figure 3-1: Illustration of integrated InP/InGaAsP devices connected to the edge
of the chip and other devices via the interconnect waveguides. The interconnect
waveguides are designed to maximize the efficiency of the coupling interface.

device placement. In addition, the waveguide design requires a consideration for the

fabrication of the waveguide, and this must be compatible with the fabrication of the

other components in the system.

This chapter details the design of the interconnect waveguides. It is divided into

three sections, one for each of the three distinct interconnect waveguide design stages.

In the first stage, the focus is primarily on rough design. That is, no waveguide

parameters are finalized, but a suitable range is found based on the consideration

of the available materials, the size of the III-V structure, the approximate desired

maximum for the waveguide propagation loss, etc.

In the next section, the design is focused on maximizing the coupling between the

interconnect waveguides and the III-V device waveguides for the most simple case,

perfectly aligned end-fire coupling3 with no gap between the waveguides.

In the final section of this chapter, Finite Difference Time Domain simulation soft-

3End-Fire coupling of two waveguides simply involves bringing the two ends of the waveguide
together so that they share the same propagation axis. The end facets of the two waveguides butt
up against each other



ware, which was used extensively for the design of the waveguides will be introduced

and used to determine the effect of integrated device misalignment and various other

real-world imperfections on the coupling efficiency. The basic goal is to determine

the waveguide design that maximizes the interface coupling efficiency and minimizes

the sensitivity of this coupling efficiency to random fabrication and integration pro-

cess variations. The simulations in this section are also useful in that they provide

expected values for the experimental coupling loss measurements.

3.1 Basic Waveguide Background and Design

This section focuses on the first waveguide design stage where basic waveguide pa-

rameters will be discussed. The goal is to give the reader some basic waveguide

background in addition to explaining the rationale behind some of the basic design

decisions involving waveguide materials, geometry, etc.

3.1.1 Waveguide Composition

A waveguide is a device composed of both a high refractive index and a low refractive

index optically transparent material. The higher refractive index material, called the

core, is surrounded by the lower refractive index material, called the cladding. The

light propagates in the core through a series of lossless reflections at the core/cladding

interface as illustrated schematically in Figure 3-2.

The following sections will discuss the significance of the waveguide geometry,

index of refraction of the core and cladding materials, the propagation loss in a

waveguide due to material absorption and other imperfections, and the operation of

the most basic waveguide: the slab waveguide.

3.1.2 Waveguide Geometry

The cross-section of a waveguide typically takes one of the forms shown in Figure 3-3.

On-chip waveguides are fabricated using planar processing techniques which result



Figure 3-2: Light propagating in a waveguide through a series of reflections at the
core/cladding interface.

(a) (b)

(c) (d)

Figure 3-3: Common waveguide cross sectional geometries: (a) circular (b) buried
rectangular channel (c) strip-loaded (d) ridge. The core material is shown as the
darker material.

in waveguides of the planar variety (Figure 3-3 part (b), (c), or (d)). Based on the

waveguide material system or the application, one shape may be more appropriate

than another. For instance, the buried rectangular channel guide, while capable

of supporting compact modes, is more sensitive to core sidewall roughness (rough

core/cladding interface induced by etching of the core) than the ridge guide. The

ridge and strip-loaded geometries are useful when the core material cannot be etched

or when it is difficult to do so. The rectangular channel waveguide geometry is chosen

for the waveguides in this thesis because it allows for more confinement and a corre-

spondingly more compact design. The interconnect waveguides are buried rectangular

channel guides while the InP/InGaAsP device waveguides are ridge waveguides.



3.1.3 Index Contrast

Waveguides are characterized by the degree of index contrast and are often referred

to as being either high index contrast or low index contrast waveguides. The index

contrast, A, is the difference between the refractive index of the core and the cladding.

A = nco - nclad (3.1)

The index contrast is also sometimes [48] defined as a percentage

A = nco - nclad (3.2)
•co

While there is no standard crossover point between low and high index contrast

waveguides, an index contrast larger than 0.1, using the definition of Equation 3.1, is

typically considered high index. Typical low index contrast waveguides may have an

index contrast as small as 0.005 or lower. High index contrast waveguides on silicon

formed using silicon as the core material (r7,(Si) = 3.5) and silicon dioxide as the

cladding material (qlr(SiO 2) = 1.45) have a very high index contrast (A = 2.05). The

interconnect waveguides in this work have a moderately high index waveguides with

index contrasts on the order of 0.2. This permits a relatively compact design with

small waveguides and small low loss bending radii on the order of 200 pim.

3.1.4 Single-Mode vs. Multi-Mode Waveguides

Depending on the geometry and composition of a waveguide, the propagating light

in the waveguide can take on a variety of configurations or modes. The modal char-

acteristics of the waveguide play an important role in the performance of the over-

all photonic system and must be taken into consideration during waveguide design.

Waveguides are classified as being either single-mode or multi-mode. Single-mode

waveguides are capable of supporting only one mode, whereas multi-mode waveg-

uides can support two or more guided modes.

The question of employing single-mode or multi-mode waveguides is dependent



upon the target application. In general, higher performance (i.e. high speed, low

power consumption) and longer interconnect lengths require single-mode waveguides,

while multi-mode waveguides can be used for lower performance applications and

shorter interconnect lengths. It is also possible to utilize a hybrid approach in which

both single-mode and multi-mode guides are used. The majority of the work in the

thesis was done with single-mode waveguides, however some consideration was made

for the applicability of multi-mode waveguides. Because of the existence of only one

mode, single-mode waveguides do not suffer from intermodal dispersion. A lower

bound on the length at which intermodal dispersion (IMD) becomes a significant

factor in a slab waveguide can be found as a function [49] of the waveguide core and

cladding indices and the period of the optical signal:

cT
LIMD= n( 1) (3.3)

where c is the speed of light in a vacuum, T is the period of the signal, no is the

refractive index of the core, and nc is the refractive index of the cladding. Equation

3.3 gives an LIMD of approximately 18cm for a 10GHz signal with neo = 1.6 and

nt = 1.45. This implies that any waveguide interconnect operating at 10GHz with

the given refractive index characteristics will suffer from intermodal dispersion for

lengths greater than 18cm. This falls within the typical length range of on-board

interchip interconnects. So that the results of this work could be applied to any

general high frequency, long-range optical interconnect, the waveguides presented

here were designed for single mode operation.

Besides intermodal dispersion, there are other characteristics related to overall

performance that vary depending on the choice of single-mode or multi-mode waveg-

uides. Both coupling loss and propagation loss may increase or decrease depending

on the modal characteristics of the waveguides.



Material Refractive Index

SiO 2  1.45
SiOxN, 1.45 - 2.0

Si3N4  2.0
Silicon-Rich Nitride 2.0 - 3.5

Metal Oxides 1.6 - 2.2
Silicon/Polysilicon 3.5

Table 3.1: Refractive index of common waveguide materials.

3.1.5 Waveguide Material Selection

Selection of the proper waveguide materials requires a consideration of the wavelength

of light that will be used in the system (1550 nm for this work as mentioned in

the first chapter), the absolute refractive index that is most compatible with the

active photonic devices, the order of the index contrast that will be required, and the

compatibility of the waveguide materials, the substrate, and the active devices.

Due to advancements in thin film processing, there are a wide variety of materials

that meet the low temperature, silicon processing compatibility requirements for the

interconnect waveguides. These materials include silicon dioxide, silicon oxynitride,

silicon nitride, silicon-rich nitride, metal oxides, polysilicon, doped versions of these

materials, and many other materials as well.

Table 3.1 lists these materials and the corresponding refractive index ranges.

There is often more than one way to deposit each of these materials. For instance,

silicon dioxide films can be deposited by CVD, sputtering, flame hydrolysis deposi-

tion, sol-gel processing [50], or via spin-on techniques. It is necessary, therefore, to

determine not only the waveguide material, but also the manner in which the material

will be deposited.

Silicon Oxynitride

The problem of silicon compatible waveguides is not new, and much has been pub-

lished in this area ([48], [51], [52], [53], [54]). Silicon oxynitride (SiOxN,) is becoming a

standard material for low-loss waveguides that are compatible with silicon processing.



Silicon oxynitride can, in theory, be deposited with any nitrogen:oxygen stoichiomet-

ric ratio, with resulting films ranging from pure SiO 2 to pure Si3N4 . Consequently,

the refractive index of the film may be varied from 1.45 to 2.0 as indicated in Table

3.1. Waveguides with an index contrast as high as 0.55 can be formed when silicon

nitride is used as the core material with SiO 2 as the cladding material. The ability to

vary the index contrast over this range simply by varying the deposition conditions

makes silicon oxynitride an attractive waveguide material, particularly in the context

of this work where it is desirable to be able to make refractive index changes through-

out the learning and design phase. In addition, silicon oxynitride is easily deposited

using plasma enhanced chemical vapor deposition (PECVD) which is a common and

readily available technique. For these reasons, silicon oxynitride was chosen as the

material for the waveguide core and silicon dioxide was chosen for the cladding.

3.1.6 Propagation Loss

Much discussion will be made of the propagation loss of the waveguides in this thesis.

There is always loss in any real waveguide. The optical loss per unit length of a

waveguide, typically measured in dB/cm, is a result of material absorption, scattering

due to waveguide sidewall roughness [55], scattering due to random discontinuities in

the refractive index of the waveguide materials, and may also be due to evanescent

coupling to nearby higher index materials such as the substrate. Each of these sources

of loss must be taken into account in the design of a waveguide.

The material absorption is an issue with PECVD deposited dielectric materials

like silicon oxynitride due to incorporated hydrogen during the deposition process as

discussed in Reference [48]. In the vicinity of 1550 nm, the N-H bonds in the material

contribute to an increased absorption due to optical coupling to the vibrational states

of these bonds. As will be discussed in Chapter 4, this problem can be alleviated with

a high temperature anneal.

The increase in absorption loss due to scattering from sidewalls of a given rough-

ness sets a lower bound on the waveguide cross-sectional dimensions (Reference [56]

and [571). The single mode condition sets an upper bound on the cross-sectional di-
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Figure 3-4: Schematic comparing (a) ideal lower cladding thickness resulting in min-
imal substrate coupling with (b) relatively high substrate coupling loss due to thin
lower cladding.

mensions. The lower the index contrast of the waveguide, the larger the range between

this lower and upper bound. However, the lower the index contrast, the less compact

the design as waveguide bends must be larger in radius and cladding thicknesses must

be larger to increase the shielding of the waveguide mode to surrounding high index

materials. With regards to these tradeoffs, the selection of silicon oxynitride is a good

compromise.

3.1.7 Minimum Cladding Thickness

As mentioned above, a reduction of the propagation loss includes reducing the evanes-

cent coupling to nearby higher index materials. In an effort to maintain a com-

pact, simple design, it is necessary to find the minimum cladding thickness for which

the evanescent coupling losses are sufficiently low. The cladding of the interconnect

waveguides is bounded by the silicon substrate which has an index of refraction of

3.45. The silicon dioxide cladding must be thick enough to "shield" the optical mode

from the high index silicon substrate. If the cladding is too thin, the guided mode

will couple into the silicon substrate (see Figure 3-4) inducing substrate coupling loss.

However, if the cladding is too thick, it will be difficult to deposit the required silicon

dioxide to form the cladding during fabrication. Thick layers are also undesirable be-

cause they create large stress that can lead to wafer bowing which makes processing

difficult at best.



Therefore, it is desirable to know the substrate coupling loss as a function of lower

cladding thickness. This thickness dependent loss can be determined analytically

[58, 59, 60]. In Reference [59], the application of boundary conditions is used to

develop a set of equations whose solution yields the substrate coupling loss for a

given lower cladding thickness4 . In the next section, this equation will be used to

determine the evanescent coupling losses for slab waveguides with a silicon dioxide

cladding (refractive index is 1.45) and a silicon oxynitride core where the index is

varied from 1.5 to 1.65 in increments of 0.05.

Substrate Coupling Loss: Analytical Solution

As discussed, the equations mentioned above were used to determine the evanescent

coupling loss as a function of lower cladding thickness. The goal is to find the lower

cladding thickness that yields a relatively low substrate coupling loss. Here, a loss

is relatively low if it is much smaller than the expected propagation loss due to

scattering and material absorption. Based on the literature (References [48] and

[61]), the waveguides are expected to have a total propagation loss on the order

of 5dB/cm. For the purpose of this exercise, any substrate coupling loss less than

1dB/cm is considered to be relatively low.

The results of the calculations for the 4 different core refractive indices: 1.5, 1.55,

1.6, and 1.65, with a silicon dioxide cladding and a silicon substrate are shown in

Figure 3-5.

Based on this calculation, a lower cladding thickness of 3.3um yields a substrate

coupling loss below 1dB/cm for each of the four waveguides for both polarizations.

Fortunately, this is a thickness that can easily be deposited using standard deposition

techniques so any of the given core index values may be used. As shown in the plot,

the higher the index of the core, the lower the substrate coupling loss.

4While only numerical solutions exist for these equations, it was shown in Reference [58, 60]
that a perturbation technique valid for guided modes far from cutoff resulted in a purely analytical
solution.
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Figure 3-5: Calculated (using equation in [58]) substrate coupling loss in units of
dB/cm for slab waveguides as a function of lower cladding thickness and core refractive
index. For all cases, the refractive index of the cladding is 1.45 and the substrate is
silicon with a refractive index of 3.5. The solid and dashed lines are for TE and TM
polarization respectively. The horizontal line shows the target threshold of 1dB/cm.
This threshold condition is met for each case for lower cladding thicknesses to the
right of the vertical line (corresponding to 3.3um).



Summary

The choices of interconnect waveguide type (buried channel waveguide) and material

(silicon oxynitride for the core and silicon dioxide for the cladding) have been chosen

and justified. It has been shown that for a range of core refractive index values

consistent with waveguides in the literature, the lower cladding thickness should be

at least 3.3 pm to ensure minimal substrate coupling loss.

The focus is now shifted to the task of designing the interconnect waveguides for

optimum coupling to the III-V devices that will be integrated on the silicon wafer.

3.2 Interconnect to III-V Waveguide Coupling

The successful integration of the III-V devices in this work rests largely on the abil-

ity to couple light between the silicon oxynitride interconnect waveguides and these

devices. If the III-V device is a semiconductor optical amplifier (SOA), light from an

input silicon oxynitride (interconnect) waveguide must be coupled to the gain region

of an integrated ridge waveguide SOA and then back again to an output interconnect

waveguide. In the case of an integrated laser, light must be coupled from the laser to

the interconnect waveguide. These two scenarios are illustrated in Figure 3-6.

In this section, the details of the III-V structure used for the work in this thesis

will be given. Two types of coupling, evanescent and end-fire, will be compared and it

will be shown that the choice of end-fire coupling makes the most sense for this work.

Given the end-fire coupling arrangement, an equation that highlights the two factors

that affect the coupling efficiency will be developed and used to find an approximation

for the interconnect waveguide parameters for optimum coupling to the III-V device

in the absence of a gap.

3.2.1 InP/InGaAsP Ridge Waveguides

Much of the remainder of this chapter deals with the design of interconnect waveguides

for optimum coupling to the integrated III-V devices. One specific III-V structure
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Figure 3-6: (a) For an integrated SOA, light must be efficiently coupled from the
interconnect waveguide to the gain region of the SOA. At the end of the SOA, the
light must be efficiently coupled back into the core of the interconnect waveguide. (b)
For an integrated laser, light must be efficiently coupled from the laser gain region to
the core of the interconnect waveguide.
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Figure 3-7: Cross-section of the InP/InGaAsP ridge waveguide material from Land-
mark Optoelectronics. The plane formed by extending the dashed line into and out
of the page is the plane for which the majority of the calculations and simulations
are considered.

was used for all of this work so it is necessary to examine the details of this structure.

The device structure is a multi-quantum well ridge waveguide structure based on

the InP/InGaAsP material system. The cross-section of the structure is shown in

Figure 3-7. Throughout this thesis, these waveguides will often be referred to as the

InP/InGaAsP ridge waveguides to distinguish them from the silicon oxynitride buried

channel waveguides.

The width of the ridge is not given in the figure because no single width was used.

The earlier measurements taken in this work were with 8 pm wide ridges. Later in

the work after improvements were made to the fabrication process, micro-cleaved pill

structures were fabricated with 6 pm wide ridges. Either way, the waveguides are

multimode. Given this structure and these values for the index of refraction, the

waveguide is multimode for a ridge width greater than approximately 2 pm. In the

0.27 urn
ncore = 3.4
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Figure 3-8: (a) End-fire coupling arrangement. (b) Evanescent coupling.

event that these devices are "activated" as either optical amplifiers or lasers, the wide

ridge is not ideal. It does, however, reduce the sensitivity of the coupling efficiency

to the width of the interconnect waveguides. Consequently, in the work that follows,

coupling will be studied primarily for the vertical cross section plane (shown in Figure

3-7 as the dotted line, running in and out of the page).

A parameter that will be useful throughout the following sections is the effective

index (see Reference [49] for a discussion of the effective index method) of the various

modes of the ridge waveguide structure. The effective index of the fundamental TE

mode is 3.192. The effective index of the highest order mode (TM03) is 3.159. These

are both for the 6 /tm wide ridge, but the values change by less than 1% for the 8 pm

wide ridge.

3.2.2 End-Fire vs. Evanescent Coupling

The task of coupling light between two separate waveguides is accomplished by either

end-fire coupling, which was used for this work, or evanescent coupling. This section

compares the two types and gives reasons for the choice of using end-fire coupling.

End-fire coupling, as the name implies, is accomplished by positioning the two

waveguides coaxially and bringing the two ends close together (see Figure 3-8a). The

light is emitted from the end of the first waveguide, and some component of this

light is coupled into the guided mode(s) of the second waveguide. Invariably, a gap



Figure 3-9: Even and odd TE modes for two evanescently coupled waveguides.

of some length exists between the two ends, and this affects the coupling efficiency.

Depending on the details of the modes in the two waveguides, the gap length that

maximizes the coupling may or may not be the shortest achievable length. When

possible, an index matching material may be placed between the two ends to enhance

the coupling.

Evanescent coupling involves positioning the two waveguides, A and B, parallel to

one another with a certain separation distance, dv,, between them as shown in Figure

3-8b. One way to understand the coupling between the two waveguides is to consider

the modal properties of two identical single mode waveguides brought close together.

Notice in Figure 3-9, that the two adjacent waveguide system has two modes: an even

mode , V), with an effective index n, and an odd mode, 4 odd with an effective index

no. When light is incident on this two waveguide system, some component, ce, of this

light couples into ?/ at some phase 0e, and some component, co, couples into bo with

some phase o0.

Consider the case in which the even and odd modes are excited such that the phase

of each mode is zero and that ce = c,. At z = 0, the modes add together in such a way

that constructive interference occurs in waveguide A, with destructive interference in



waveguide B. This would be the case if the even and odd modes as shown in Figure 3-9

were added together. At some later distance, zeit, the phase difference between the

two modes is 7r and constructive interference occurs in waveguide B with destructive

interference in waveguide A. The distance, zerit is then the distance required for the

light to couple from one waveguide to the other. Given zero phase difference at z = 0,

the distance, zrit, is found as follows:

¢e - Oo (3.4)

where

,e = keZzrit (3.5)

0o = kozrit (3.6)

and where
27rneken= (3.7)

ko = (3.8)

Solving for zit yields

Z 2rit = (3.9)
2 (ne - no)

In the case of two different single mode waveguides A and B, with two different

effective indices n, > nb, it can be shown (paperref or bookref) that ne for the

evanescently coupled A and B waveguides is greater than n, and that no is less than

nb. This means that the difference, ne - no is larger than the difference n, - nb. As

a result, n, - nb (a known value from simple analysis of the isolated waveguides A

and B) can be used in place of ne - no in Equation 3.9 to get an upper bound on

Zcrit. Solving for z•rit using the typical effective indices for the interconnect waveguide

and the InP/InGaAsP ridge waveguide gives a critical distance of less than 0.5 pm.

This would mean that the evanescent coupling region would have to fabricated with

a margin of error on the length that is less than a fraction of 0.5ftm. The statistics

for the mean length of micro-cleaved devices is shown i! n the plot in Figure figref.



Notice that a margin of error of 2 pm is typical with the current process. It would be

extremely difficult to design the evanescently coupled waveguide region to guarantee

good coupling from the interconnect waveguides to the III-V waveguides and then

back again .

It was shown in Reference [17] that even in the case of waveguides, A and B, with

more similar effective indices, it can still be difficult to control the coupling as the

tolerances on the effective indices can be difficult to meet. There are also sources of

coupling loss that must be addressed for the evanescent coupling case. They showed

that many of these issues can be alleviated with the use of an absorbing layer and

tapered waveguides. The tapers, however, must be made quite long which means that

the design is less compact.

In summary, while evanescent coupling is a viable option, the large index contrast

between the interconnect and III-V waveguides makes the coupling difficult to con-

trol, and solutions compromise the desired compact design. Consequently, end-fire

coupling was chosen as the method for coupling between the interconnect and III-V

waveguides.

3.2.3 End-Fire Coupling without a Gap

Recall that the planned approach for end-fire coupling involves integrating III-V de-

vices in wells etched into the silicon oxynitride/silicon dioxide waveguide stack. The

result is that a gap exists between the edge of the wells and the III-V device facet.

While it is important to understand the impact of this gap on the coupling, it is

useful to start by looking at the case of coupling without the gap. As mentioned in

the introduction to this chapter, the more complex problem of coupling across a gap

(as well as other real-world complications such as misalignment).

5Notice that the critical length could be made much larger if the two waveguides had more
similar effective indices. This would require a much higher index interconnect waveguide material
system than the silicon oxynitride used in this work. While much work has been done paperref with
silicon/silicon dioxide core/cladding waveguides which would meet this higher index requirement,
these waveguides must be made very small to maintain single mode operation. This makes the
waveguide fabrication much more challenging, and it would place even stricter tolerances on the
allowable misalignment for the gap coupling regions.



This section addresses a basic design question, and in so doing, provides some gen-

eral end-fire waveguide coupling intuition. This is important because the majority of

the actual analysis that comes later in this chapter is the result of FDTD simulations

only, where little insight is required to simply run the simulations and compile the

results. The design question:

Given the InP/InGaAsP ridge waveguide structure, and considering only the 2D

cross section shown in Figure 3-7, and given that silicon dioxide is used as the cladding

material for the interconnect waveguide and that the core of the interconnect waveguide

is the same thickness as the core of the InP/InGaAsP ridge waveguide, what value

for the index of refraction of the core gives the best coupling between the interconnect

and InP/InGaAsP waveguides?

Figure 3-10 is a cross section of the interface between the two waveguides, A on

the left and B on the right, showing the given parameters. The incident wave from

the left is the fundamental mode of waveguide A. Upon incidence, a transmitted wave

travels to the right and a reflected wave travels back to the left. A component, Rmode,

of the incident wave power couples back into the fundamental mode of waveguide A,

and a component, Tmode, of the incident wave power couples into the fundamental

mode of waveguide B and is guided to the right. Typically, Rmode + Tmode e 1

because there are unguided modes in both waveguides that are excited as a result

of the reflection. The value Tmode is the value that must be maximized to achieve

maximum coupled power from waveguide A to waveguide B. To calculate this value,

one must solve for the electric and magnetic fields at the interface between the two

waveguides. This can be done numerically, as in Reference [62], by discretizing the

reflected and transmitted modes by placing perfect electric conductors at some large

distance away from the waveguide core. The interface field is found as the weighted

sum of the discrete reflected and transmitted modes that meets the interface boundary

conditions6. The weights of the modes are found as the least squared error solution

to the equations set by the boundary conditions. The accuracy of this equation can

6The boundary conditions require continuity of the tangential component of the electric and
magnetic fields at the interface.



(A) InP/InGaAsP
Ridge Waveguide

(B) Interconnect
Waveguide

nclad = 3.14

Figure 3-10: Drawing of the end-fire coupled InP/InGaAsP ridge waveguide and
interconnect waveguide. The refractive index of the core of the interconnect waveguide
is the desired parameter.



be made arbitrarily high by increasing the number of included modes by increasing

the distance between the perfect electric conductors (i.e. moving them away from the

waveguide core). However, this numerical solution gives little intuition into what is

actually affecting the coupling efficiency. On the other hand, an approximation can

be made that permits an analytical solution.

A perturbation approach will be used in which it is first assumed that the lateral

mode matching between waveguide A and B is perfect, which allows for a simplifying

assumption to be made. The perfect mode matching can then be relaxed and its

effect on the coupling examined.

The simplifying assumption is this. Instead of finding the electric field profile at

the interface, it will be assumed that the field profile is just the fundamental mode

profile of waveguide A, which is the incident mode profile. This can be justified as

follows. Assuming that the waveguides are designed such that the fundamental mode

profiles of waveguide A and waveguide B are identical (perfect lateral mode matching),

it would be required that the electric field profile of waveguide A is identical to the

electric field profile of waveguide B. For the case of a TE wave7, this implies that

the magnetic field profile of waveguide A is identical to the magnetic field profile of

waveguide B. Therefore, the fundamental mode profile of waveguide A must be a

solution to the boundary condition. If this is the case then the following equation,

which finds the coupled power for two electromagnetic waves, m and n, in the same

space can be applied.

Pm,n = (Em, x Hn + En x Hm) dxzdy (3.10)

The application of this equation for the TE case where the fundamental mode field

profiles for the two waveguides EA and EB are allowed to differ (given in Appendix

A) yields the following equation for Tmode where Tmode is the power transmitted into

7For a TM wave, it is not the case that two slab waveguides with identical magnetic field profiles
will have identical electric field profiles because the solution for the profiles is dependent on the ratio
of the permittivity of the core material to the cladding material which will be different for the two
waveguides. However, for a TE wave, the solution of the profiles is dependent on the ratio of the
permeability of the core and cladding materials, which at optical frequencies, is essentially unity for
these materials.



the fundamental mode of waveguide B.

Tmode r TFreSneI~AB (3.11)

where

TFresnel = 1 - RFresnel 1 nef f,A - neff,B (3.12)
neff,A + neff,B )

where neff,A and neff,B are the effective indices of the fundamental modes of waveg-

uide A and B respectively, and where

f EA (x)Es(x)dx
GAB (3.13)/f EA(x)dx f E(x)dx

The closer DAB is to unity, the better this approximation becomes. In the case

that DAB is unity, Equation 3.11 is exact (as this was the original assumption upon

which this analysis was based). In order to maximize the coupled power, the product

TFresnelDAB must be maximized. While the two terms in this product are not inde-

pendent, it is useful to examine the way to maximize each separately before examining

how to maximize the product as a whole.

Maximization of DAB

At this point, the design question from above is still being answered. An equation

for Tmode, the portion of the incident power that is transmitted into the fundamental

mode of waveguide B has been developed based on the assumption of perfect mode

matching or identical mode profiles for the two waveguides. Allowing for the mode

profiles to vary in the derivation results in Equation 3.13.

This section now examines how the waveguide parameters should be chosen to

maximize 2 AB. To maximize QAB, the mode shape for the two slab waveguides must

be identical. An analytical solution exists to the problem of choosing the core and

cladding indices of waveguide B given the core and cladding indices of waveguide A

to match the mode shape of waveguide B to the mode shape of waveguide A. That

is, there is an analytical solution to the problem of forcing DAB to equal unity given



Figure 3-11: Slab waveguide.

the parameters for waveguide A. The electric and magnetic

slab (see Figure 3-11) mode taken from Reference [63] are

field equations for a TE

Ey(x, z) =
Ceyxeipz

Dcos(kxx)eiPz

Ce-^I eipz

for x < d/2

for Ixl < d/2

for x > d/2

And from Faraday's Law, the magnetic field in the z-direction:

Hz(x, z) = I
yCeyx eiPz

-kxDsin(kxx)eioz

-yCe-Ix eipz

for x < d/2

for Izl < d/2

for x > d/2

where Ey(x, z) is the electric field in the y-dimension, Hz(x, y) is the magnetic field

oriented in the z -dimension, 3 is the propagation vector, kx is the wave vector in the

x-dimension inside the core, y is the wave vector in the x-dimension in the cladding,

and C and D are constants, the solution of which follows from the application of the

(3.14)

(3.15)



boundary conditions.

Notice that QAB is dependent only on the field profiles in the x-dimension. The

x-dimension portion of the profiles is dependent on ks, y, C, and D. The coefficients

C, and D are dependent on ks, y, and the mode power. Therefore, if waveguide B

is designed with the same thickness, d, as waveguide A, and k, and - for waveguide

B are designed to be equal to k. and y for waveguide A, then QAB will be equal to

unity.

The expressions relating k. and y to the physical parameters, ncore and nclad come

from the dispersion relations and the boundary conditions.

The dispersion relations are

k + p2 =CrekI2 =ncore ( (3.16)

for the core and

-7 2 + 02 = 2 ladk=clad 2 (3.17)

for the cladding. where A is the wavelength.

Subtracting Equation 3.17 from Equation 3.16 yields

k2 + 2 = (n2oe- n2 ad 27r )2 (3.18)

Applying the tangential E-field continuity requirement at the x = -d/2 interface

and at z = 0 yields
a d

Ce-' = Dcos(-kx-) (3.19)

Applying the tangential H-field continuity requirement at the x = -d/2 interface

and at z = 0 yields
d d

yCe-' = -kkDsin(-klc ) (3.20)

Dividing Equation 3.20 by Equation 3.19 yields

7 = kxtan(kxd )  (3.21)
2



Equations 3.18 and 3.21 are two equations for the two desired values, k, and 7.

The goal now is to develop an equation that gives no,,, and ntda for waveguide B

given nore and ndad for waveguide A so that k. and y for waveguides A and B are

identical. This will guarantee that the mode shapes are the same for both waveguides

which means that QAB = 1-

At this point, the subscripts A and B will be used to denote waveguide A or

waveguide B. Rewriting equations 3.18 and 3.21 for waveguides A and B:

,A + A = (oe,A dad,A) ()2 = G (3.22)

yA = ks,Atan(k,A 2d )  (3.23)

k,s + = (re,B dB) = GB (3.24)

d,B
YB = kx,Btan(kx,Bd ) (3.25)

Notice that the term, GA Or GB is a constant, dependent only on the core/cladding

indices and the wavelength, A. By studying these equations, it is clear that if dB = dA

and if nore,S and ndad,B are chosen such that GB = GA, then kx,B must be equal to

ks,A and yB must be equal to YAs . This means that noe,B - _n2ad,B should be set

2 n 2equal to ncore,A -- lclad,A:

PAB =1 (3.26)

if dB = dA and
2 2 n2 2 (3.27)

ncore,B clad,B core,A - dcad,A

Solution and Discussion

The original design question can now be answered. Refer back to Figure 3-10. Re-

member that the goal was to find the index of refraction of the core of waveguide B

to optimize the coupling given all of the other parameters. Applying Equation 3.27,

sThis is only true for single mode waveguides. If the waveguides are multimode, then this
condition will guarantee that for each mode, ks,B will be equal to ks,A and 'YB will be equal to 7A.



Zero Separation Coupling Optimization
Ncore = 2.0, Nclad = 1.45
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Figure 3-12: Optimization of Equation 3.11 given a core index
B in Figure3-10 by varying the thickness of waveguide B.

0.85

of 2.0 for waveguide

the matching core index is found to be 2.0. To find Tmode, one must simply solve for

the Fresnel transmissivity using the effective index of the two modes. The effective

index is found as /O/27r, which gives 3.193 and 1.654 for the InP/InGaAsP ridge

waveguide and the interconnect waveguide respectively. Applying Equation 3.12, a

value of 0.899 is found for Tmode.

However, this isn't really the maximum Tmode. It is the maximum Tmode when

QAB is unity. It is possible that Tmodal,Fresnel could be made larger without signifi-

cantly reducing QAB. The Fresnel modal reflectivity and transmissivity equations are

repeated here:

Rmodal Fresnel = eff,1 - neff'2

n eff,1 - neff,2)

Tmodal,Fresnel 1 -Rmodal,Fresnel

(3.28)

(3.29)

Clearly, maximum Tmodal,Fresnel occurs when neff,1 = nff,2. This would require the

use of very high index materials for the interconnect waveguides as the effective index



for the InP/InGaAsP ridge waveguide is on the order of 3.2.

Recall that at the design question was for identical core thicknesses for waveguides

A and B. Given, that a core index of 2.0 maximizes £AB, it would be interesting to see

if Tmode can be increased by increasing the thickness of waveguide B, keeping the core

index constant. The results for this sets of calculations is shown in Figure 3-12. As

the thickness is increased, the effective index of the mode in waveguide B is increasing

so Tmodal,Fresnel is increasing. Of course, as the thickness is changed, the mode profiles

no longer perfectly overlap so QAB decreases. At a thickness of approximately 0.63

pm, Tmode is at a maximum for a core index of 2.0.

This analysis has proven useful in showing that the problem of end-fire transmis-

sion optimization is a problem of lateral field profile matching and effective index

matching. It is also interesting that even for the rather large difference in effective

indices for waveguide A and B above, the Fresnel transmissivity was as high as 0.9,

or less than 0.5 dB. In the next section, it will become more clear that the matching

of the lateral mode profiles will have the greatest effect on the coupling efficiency.

A recap of the steps that have been taken to find the optimum conditions for slab

waveguide coupling is given here.

* Starting with the actual core thickness and core and cladding indices of the

InP/InGaAsP device waveguide and given the cladding index of the interconnect

waveguide as 1.45 (that of silicon dioxide), the core index of the interconnect

waveguide that maximizes the mode overlap, QAB, was found to be 2.0. This is

for equal waveguide thicknesses.

* It was then found that given the core/cladding index values of the interconnect

waveguide of 2.0/1.45, the coupling could be maximized by increasing the inter-

connect waveguide core thickness to 0. 63 pm. This was a result of an increase in

the effective index of the interconnect waveguide mode and the resulting increase

in Tmodal,Fresnel

Although this analysis is useful for the purpose of understanding the coupling,

the calculated interconnect waveguide thickness and core refractive index are not, in



practice, the best values to use. The materials with a refractive index of 2.0 (like

silicon nitride) are more difficult to process and have a higher propagation loss as

compared with lower refractive index materials (silicon oxynitride). Also, as previ-

ously discussed, the dimensions for single mode operation with a high index contrast

make the task of fabricating a low loss waveguide very difficult. In addition to these

material issues, there is, in practice, a remnant gap between the interconnect waveg-

uides and the III-V device due to imperfect device alignment. Because there is no

guiding in this gap, the wave spreads in the gap region with the result that the opti-

mum interconnect waveguide parameters for coupling across a gap are different from

those calculated thus far for the case of no gap. For these reasons, the waveguide

parameters that have been determined up to this point (i.e. core refractive index of

2.0 and thickness 0.63) will serve only as an approximate starting point.

3.3 End-Fire Coupling Across a Gap

Up until this point, solutions given for the problem of coupling between the intercon-

nect waveguides and the InP/InGaAsP ridge waveguides have been for the ideal case

of perfect alignment and the absence of a gap. They have also been based on approx-

imations to provide some intuition. Now, the affect of device misalignment will be

considered and the FDTD method will be used instead of approximations. In Figure

3-13, an InP ridge waveguide platelet device is shown integrated in the interconnect

waveguide stack. There is invariably some random gap between the edges of the well

and the III-V device facets where no wave guiding occurs. In addition, the device

could be sitting higher or lower in the well. Situations such as these will be examined

in this chapter.

Given that there is a gap, it is possible to fill the gap with some material to

potentially improve the coupling. So the coupling will be studied as a function of the

refractive index of the material used to fill the gap in addition to the misalignment.
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Figure 3-13: An integrated device and the unguided gap between the well edge and

the InP platelet device facet.

The FDTD Method: Accurate Maximization of Tmode

To obtain a more accurate value for Tmode than that given by the approximate method

of the previous section, and to study the effect of misalignment which makes it even

more difficult to find analytical solutions, the 2D Finite Difference Time Domain

(FDTD) method 9 will now be used (see References [64] or [65] for more on the FDTD

method). The 2D FDTD method is the most accurate method for simulating a 2D

simulation window consisting of dielectric objects and a given source. It is based on

the discrete solution of Maxwell's Equations. The input to the FDTD simulation

software is a text file with a description of the geometry of the waveguides and the

refractive index of the waveguide core and cladding. The input text file also instructs

the simulator to use a Gaussian (in time) input source with a given time duration and

center wavelength (1550nm for all of the simulations in this work) which is matched

in shape to the fundamental mode of the input slab waveguide. This input source

starts at a specific point in the input waveguide and travels towards the interface and

output waveguide. The simulation is run long enough for the input wave to travel

the length of the simulation window. There are three important simulation outputs

9The particular software that was used for this thesis was developed by Christina Manolatau and

Milos Popovic



that were used repeatedly throughout this work. The first is Tmode, the fraction of the

input wave at the center wavelength that couples into the fundamental mode of the

output waveguide. The second is Rmode, the fraction of the input wave at the center

wavelength that upon reflection at the interface, couples back into the fundamental

mode of the input waveguide. The third is a set of field"' magnitude snapshots which

is useful for visualizing where and how the wave is propagating. Figure 3-14 is a set

of snapshots taken from a simulation for coupling from the interconnect waveguide

on the left, to the InP/InGaAsP ridge waveguide on the right. The 2D cross-section

plane is that shown by the dashed line in Figure 3-10. Notice the progression of the

wave from the left waveguide to the right. Also, notice the shorter wavelength in

the higher index InP/InGaAsP ridge waveguide on the right as compared with the

wavelength on the left.

3.3.1 Mode Spreading

In the last section, the coupling efficiency was optimized for the ideal case of no gap.

The results of that analysis were an interconnect waveguide core thickness of 0.63 Am

and a core refractive index of 2.0 (recall Figure 3-12). The structure shown in Figure

3-17 will now be simulated using the parameters shown for the InP/InGaAsP ridge

waveguide on the right and an interconnect waveguide core thickness of 0.63 Am and

a core refractive index of 2.0 on the left. The gap is varied from 0 to 5 Am in 0.5

Am increments 11 and the gap is simply air-filled at this point (ngap = 1). The results

are shown in Figure 3-15 for the case of TE polarization. The y-axis in the plot is

the loss measured in dB (i.e. -10log(Tmode)). So a large value implies a low Tmode

or a high loss. A value of zero implies perfect coupling. Notice the very low loss

(approximately 0.45 dB) at zero gap length. However, at a separation of 5 Am, there

10 The field magnitudes given in the snapshots is the electric field for TE simulations and the
magnetic field for TM simulations.

"A maximum value of 5 pm was chosen for the gap length in this and most other simulations.
This value was chosen without knowing what the gap length would typically be. As shown by the
results in the chapters on fabrication and testing, this was a good value to use. The maximum gap
length experimentally observed for the integrated pills was 7.9 pm and the average gap length was
on the order of 3 pm.
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Figure 3-14: Six field snapshots equally spaced in time taken from a FDTD simulation.



Tmode vs. Gap Length for KIAB Optimized Mode

U7o

M 6
5

3

0

0 1 2 3 4 5

Gap Length (um)

Figure 3-15: Tmode loss as a function of gap length and core refractive index for the
interconnect waveguide optimized for zero separation (the "AB optimized mode. The
gap is air-filled.

is nearly an order of magnitude loss. The periodicity seen is due to gap resonance.

This simulation demonstrates the importance of considering the gap in the design

of the waveguides. While the parameters were optimum for zero separation, the

coupling worsened significantly as the gap length was increased.

The next step is to see if the gap dependence can be reduced with some other

interconnect waveguide parameters. The same simulation that produced the results

above was run again, this time with four lower indices of refraction for the core,

1.55, 1.6, 1.65, and 1.7. The results are shown in Figure 3-16. Notice that at zero

separation, the highest index core waveguide (nco, = 1.7) has the lowest coupling loss.

However at a gap length of 5.0 pm, the lowest index core waveguide (nor = 1.55)

has the lowest coupling loss. The transition occurs at a gap length of approximately

1.5 Mm. Given that the gap length is expected to be larger than 1.5 ,am in practice,

it would appear that a core index of 1.55 would give the best results.

In Figure 3-18, the results from the QAB optimized mode (Figure 3-15) are shown

along with the results from the 1.55 core index mode (best coupling at large gap

100
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Tmode vs. Gap Length and Core Refractive Index
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Figure 3-16: Tmode loss as a function of gap length and core refractive index. For each
core index, the waveguide was sized to the maximum size at which single-mode oper-
ation is maintained. This ensures ease of fabrication and a lower sidewall scattering
loss. The gap is air-filled.

lengths in Figure 3-16). Notice the improvement of a little more than 2 dB in the

loss at a 5 pm gap length. The penalty for the lower gap loss at the long gap length

is a higher gap loss at a zero separation. However, the crossover point for these two

modes is at a gap length of less than 0.5 pm and it is certainly expected that the gap

will be at least that long experimentally.

To examine what is causing this difference in average slope of the loss versus gap

length for the two different modes, the mode profiles must be examined. Figure 3-

19 shows the mode profile for the two modes. Notice that the gap optimized mode

(which is the mode for a core index of 1.55) is wider than the QAB optimized mode

with a core index of 2.0. The reason for this is that a higher index contrast waveguide

confines the light more than a lower index contrast waveguide.

To see what how this affects the coupling across a gap, the field profiles are plotted

in Figure 3-20 for the case of a 5 pm gap (refer to Figure 3-17 to see what the structures

are). Notice that the originally narrower mode from Figure 3-19 is wider in front of

the InP/InGaAsP ridge waveguide facet than the originally wider mode from Figure

101
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Figure 3-17: Structure for FDTD simulations of coupling across a gap.
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Tmode vs. Gap Length for OmegaAB Optimized Mode
and a Larger Mode
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Figure 3-18: Comparison of the coupling results for the QAB optimized mode and the
mode for a core index of 1.55.
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Figure 3-19: Normalized mode profiles for the two waveguides used in the FDTD
simulations shown in Figure 3-18. The gap optimized mode is for the waveguide with
a core refractive index of 1.55.
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3-19. So it can be seen now that the difference in the average slope of the two curves

in Figure 3-18 is due to the different angle of wave spreading in the gap for the two

modes. The power density is lowered and less power couples into the InP/InGaAsP

ridge waveguide at the end of the gap for the mode with the larger gap spread angle.

To understand why a narrower mode spreads faster than a larger mode, the reflection

and transmission at the waveguide/air interface must be examined more closely. A

basic understanding can be gained by thinking of the mode width at the end facet

as the slit width in the classic slit diffraction experiment. The width of the resulting

diffraction pattern is larger for a narrower slit, just as the spreading of a narrow mode

exiting a waveguide is greater than the spreading of a larger exiting mode.

In this section, it was observed that modes that couple well at zero gap length

coupled with much higher loss at a large gap length than modes that did not match

as well at zero separation. By examining the mode profiles and looking at the electric

field plots from the FDTD simulations, mode spreading was identified as the cause

of this effect.

3.3.2 Coupling Efficiency vs. Gap Fill Index

The previous simulations show the effect of the mode shape on mode spreading in

the gap. Another parameter that affects the mode spreading is the refractive index

of the gap. In all of the previous simulations, the refractive index of the gap was 1.0,

implying an air-filled gap. In practice, it will be necessary to fill the gap with some

material with a refractive index other than that of air, so it is essential to look at this

effect in more detail. Figure 3-21 compares the coupling loss vs. gap length for the

same waveguide parameters but for three different gap materials with varying index

of refraction. Notice that the best coupling is for a gap index of 2.2. The air-filled gap

(which is the exact same data plotted in Figure 3-18 labelled n,, = 1.55) yields the

highest loss. At certain points, the highest index gap fill (ngp = 5.0) yields the best

results. But because of the high index, the reflectivity at the facets is higher for this

mode so the resonances are sharper. This is a moot point , however, because there is

no material that has a refractive index of 5.0 at the relevant optical frequencies. There
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(a)

(b)

Figure 3-20: Electric field magnitude contour plots (the wave is travelling from the
interconnect waveguide on the left to the InP/InGaAsP ridge waveguide on the right)
for the same time in the simulation that resulted in the 5 /tm loss value in Figure 3-18
for (a) QAB optimized mode and (b) Gap optimized mode (core index of 1.55). The
line segment in the two figures is the same length which allows for the comparison of
the width of the modes for the two cases right at the InP/InGaAsP ridge waveguide
facet. The wave in (a) has spread more than the wave in (b).
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Tmode vs. Gap Length for Three Different Gap Refractive
Indices
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Figure 3-21: FDTD simulation results: Tmode loss versus gap length for three different
gap indices. For each case, the interconnect waveguide parameters are the same that
generated the lower loss in Figure 3-18, the 1.55 core index.
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is, however, a material with a refractive index of 2.2 (which is why it was specifically

shown). Silicon rich nitride can be deposited with this index of refraction using the

same tool that was used to deposit the silicon oxynitride interconnect waveguide

materials.

The reason for the improvement for the higher index gap fill is that the wave

spreads less in the lateral direction when propagating in a higher index material. A

basic explanation comes from thinking about ray refraction at a dielectric interface in

which the ray is transmitted into a higher index material. The ray bends towards the

interface normal (i.e. in the direction of propagation, left and right in Figure 3-20),

and the higher the index of refraction, the closer the ray bends towards the normal.

The radiating wave transmitted into the unguided region at the waveguide facet can

be thought of as being composed of many rays all bending towards the normal. The

higher the gap refractive index, the more these constituent rays bend towards the

normal, the less spreading of the overall wave. In the limit that the gap index of

refraction is very large, however, most of the incident mode reflects back into the

interconnect waveguide from the waveguide/gap interface.

It was demonstrated in this section that filling the gap with a material with an

index of refraction of 2.2 can reduce the coupling loss by approximately 4 dB as

compared with an air-filled gap.

3.3.3 Misalignment and Other Imperfections

The gap that was analyzed in the previous two sections is just one of the practical

device alignment issues that affects the coupling efficiency. Given that the integrated

device is resting flat against the bottom of the well and assuming that the bottom of

the well is flat and parallel to the the propagation plane of the interconnect waveg-

uides, there are four degrees of freedom for the device: the three degrees of freedom

for the device position (x, y, and z) and one degree of freedom for the orientation:

yaw. Given the length of the integrated devices in this work (approximately 300 /m)

and a typical space between the integrated device and the well edge of a few microns,

the device yaw is rather small so its effect on coupling will not be explored. This
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leaves the translational misalignment in the x, y, and z directions to be examined

(where for the purposes of this section, z is the wave propagation direction, x is into

the page in Figure 3-17, and y is directed out of the wafer, or up, in Figure 3-17.

Misalignment in z has been handled by the above gap analysis. In the following

sections, the impact of vertical misalignment (y) and the lateral misalignment (x) on

the coupling efficiency will be examined.

Vertical Device Misalignment

The vertical alignment of the integrated devices should, in theory, be well controlled.

The individual layers that make up the InP/InGaAsP device waveguide are deposited

via MOCVD, and, as such, have well controlled thicknesses. The interconnect waveg-

uide core and cladding layers are deposited with thicknesses controlled to better than

0.05 jpm so the layer thickness variation should not be a significant problem. There

is, however, thickness variability in the final thermo-compression bond layers used to

bond the III-V device in place. The bonding was not carried out for this work so the

details of this variability are not known, but given that the metal layers involved in

the bonding have a thickness on the order of hundreds of nanometers, it is expected

that the vertical misalignment would be on this order.

To determine the sensitivity of the coupling power to vertical misalignment, FDTD

simulations were preformed on the structure shown in Figure 3-17 where the vertical

position of the III-V device was varied. The refractive index of the gap was 1.0.

The results are shown in Figure 3-22. To remove the effect of resonance on the data,

Tmode/(1- Rmode is plotted rather than Tmode. This permits a comparison based solely

on vertical shifting and mode spreading.

The data shows that at a large gap length, 5 pm for instance, vertical shifting

by 750 nm incurs less than 1 dB of additional loss. However, at zero separation, the

loss increases by 4.5 dB. Looking at the nominal range of a 2 to 3 pim gap, a 0.5 /.m

vertical shift incurs a loss only 0.5 dB greater than for no shift. Also, notice that the

change in loss from in shifting vertically from 0 to 0.3 pm, is less than the change in

loss in shifting vertically from 0.3 to 0.6 pm. This can be understood by looking at
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Tmode vs Vertical Misalignment and Gap Length
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Figure 3-22: FDTD simulation results: normalized Tmode versus vertical displacement
for six different gap lengths.

the mode shape in Figure 3-19 and the electric field plots in Figure 3-20. They are

approximately gaussian in shape. As one is shifted relative to the other, the overlap

of the two decreases and the rate of decrease is increasing.

This implies that the pill can be vertically shifted by some amount on the order of

300 nm without a significant impact, but the coupling efficiency falls off faster for a

larger shift. In terms of practical sources of vertical misalignment, if the total bonding

metal thickness is on the order of 300 nm, it would not be possible to have a vertical

shift greater than 300 nm. This might be a good target value for the thickness of the

metal bonding layers when that is studied experimentally.

Lateral Device Misalignment

In addition to misalignment resulting in the gap and vertical shifting, the integrated

device does not perfectly line up with the interconnect waveguide in the lateral direc-

tion. In actual integration misalignment tests discussed in Chapter 5, the maximum

lateral shifting was on the order of 4 um and the average was approximately 2 im.

To determine the effect of this misalignment on coupling, FDTD simulations were
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Coupling Loss vs. Lateral Shift
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Figure 3-23: FDTD simulation results: Tmode loss for coupling from the interconnect
guides to a laterally shifted InP/InGaAsP ridge waveguide. The width of the inter-
connect waveguide is 1.7 um. The width of the InP/InGaAsP ridge waveguide is 2
pAm.

performed. The 2D simulation window for these simulations is, of course, a different

cross-section than for the vertical shifting. These simulations are conducted with a

simulation window of the wafer plan view. The results of the simulation are shown

in Figure 3-23. The results compare the case of a cladding index matching material

in the gap (ngap = 1.45) with the silicon rich nitride gap fill (ngap = 2.2). The two

curves are at a gap length of 3 um. A width of 1.7 pm was used for the interconnect

waveguide (based on maximum size for single mode operation) and a width of 2 um

was used for the InP/InGaAsP ridge waveguide. Note that while 2 Am is the required

width for single mode operation of the InP/InGaAsP ridge waveguides, the actual

width used in the experimental coupling section of this thesis was 6 Am. It is expected

that the change in coupling loss for lateral shifting for 6 Am wide InP/InGaAsP ridge

waveguides is smaller than implied by the results shown in Figure 3-23.
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Figure 3-24: SEM image of the deep etched sidewall of the wells. The location of the
core is shown with an overlain shape as it cannot be seen in the SEM.

Sidewall Angle

In addition to the misalignment, another imperfection that affects the coupling effi-

ciency is the sidewall angle of the deep waveguide stack etch. A scanning electron

microscope image of the deep etched sidewall is shown in Figure 3-24.The sidewall

angle is approximately 120 and this can have an adverse effect on the coupling. In

Figure 3-25, the FDTD simulation window is shown for the angled facets on the in-

terconnect waveguides. The image has been overlain with the electric field magnitude

contour plot from one of the simulations. The results for a particular set of simu-

lations is shown in Figure 3-26. These results are for the standard 1.55 core index

for the interconnect waveguide and all of the values are for a separation of 3 Mtm.

What is plotted is the difference between the loss with the angle and for the same

parameters but with no angle. Vertical shift is varied along the x-axis. The reason

the vertical shift was examined, is because it was suspected that the additional loss
of approximately 0.55 dB at no shift was due to the fact that the wave exiting the
waveguide bends up as seen in Figure 3-25 because of the angled etched facet. It



Figure 3-25: FDTD simulation window for the angled facet simulations.

was suspected that this could be corrected for by shifting the InP/InGaAsP ridge

waveguide vertically. This was the case to some extent as the additional loss was

reduced to 0.45 dB, but further shifting did not improve the loss as can be seen by

the curve flattening out. The conclusion is that for a nominal gap length of 3 Am,

the angled facet adds 0.5 dB to the coupling loss.

3.4 Summary

In this chapter, the choices of interconnect waveguide type (buried channel waveguide)

and material (silicon oxynitride for the core and silicon dioxide for the cladding) were

chosen and justified. Through the development of an approximate coupling equation,

the problem of end-fire transmission optimization was shown to be a problem of lateral

field profile matching and effective index matching.

The problem of finding the ideal waveguide parameters for coupling across a gap

was examined with FDTD simulation software. It was found that the optimum index

of refraction for the core is 1.55 and the thickness corresponds with the maximum
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Change in Tmode Loss for an Angled
Facet Relative to no Angle
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Figure 3-26: FDTD simulation window for the angled facet simulations.

thickness for single mode operation (0.7 pm). By allowing for variations in the refrac-

tive index of the gap, it was shown that the coupling efficiency could be maximized

with a refractive index of 2.2 in the gap (silicon rich nitride).

Various imperfections were studied. Specifically, it was shown that a vertical

misalignment of 300 nm contributed only an additional 0.5 dB of loss. The lateral

misalignment sensitivity was shown to be quite large, but this was for the case of a

narrow single mode InP/InGaAsP ridge waveguide. It is expected that for the wide

6 pm ridge guides in the experimental section of this work, that the additional loss

would be much smaller. Finally, the effect of an angled facet due to an etch angle of

120 was shown to be an additional loss of 0.5 dB.

Assuming the worst case of 7 dB loss for a 5 ,um air-filled gap with 0.5 dB for

vertical misalignment, 0.5 dB for angled facets, and 4 dB for lateral shifting, the total

worst case loss would be 17 dB. The nominal case, however, with silicon rich nitride

gap fill and nominal shifting would be on the order of 5 to 6 dB per facet.
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Chapter 4

Waveguide and Well Fabrication

Of all the work in this thesis, the fabrication and preparation of the waveguide chips

and the integration of the InP devices is the most crucial. While the design and testing

phases of this project are important, it is the device fabrication and integration that

typically set the limitation to how well the system performs. The waveguides can be

designed, in theory, to ensure optimized coupling, but if they cannot be fabricated to

the necessary specifications, the quality of the design is irrelevant.

In addition to being so important, the fabrication stage is also the most challeng-

ing. There are approximately 30 steps in the fabrication sequence, and each step was

carefully tailored to deliver a certain result. Interestingly enough, while the fabri-

cation stage is difficult and crucial, rare is the case when the success or failure of a

given step can be attributed to some known measurable quantity that can be fully

controlled and engineered to deliver the desired effect. Rather, much of the progress

comes from a series of systematic trials and errors with a foundation in basic theo-

retical considerations. So while the development of the working fabrication sequence

is extremely important, it is less the result of the application of theory and more the

result of developing over time an understanding of what does and does not deliver

the desired results. This is, of course, not meant to imply that the final working pro-

cess came out of blind trial and error. There are specific examples in which changes

made to the process based on the literature and some theoretical considerations led

to improved results.
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The goal of this chapter is to detail the complete process, discuss the cases in

which success was born out of a greater understanding of a particular failure, and

discuss the parts of the process to which the system performance is the most sensitive

as these are the parts that require the most control.

There are four major parts to the fabrication sequence for a fully integrated' InP

pill device on silicon. The four parts are:

1. Waveguide Deposition and Etch

2. Well Etch

3. Die-Saw Assisted Cleave

4. Pick-and-Place Pill Integration

These four parts will be described in detail in the following sections.

4.1 Waveguide Deposition and Etch

The waveguide fabrication consists of depositing the cladding and core materials,

annealing, patterning and etching the core, deposition of the upper cladding, and

finally a second anneal of the entire waveguide stack2. The specifications needed from

the results of the design phase are the thicknesses of the lower cladding, the core, the

upper cladding, and the refractive index of the core and the cladding. While some of

these values were varied for certain tests3 , the standard parameters used are shown

in Table 4.1 4

1 "Fully integrate" refers to the full integration for this work, which is actually not the completed
integrated chip. What is left out of the "fully integrated" process is the postprocessing required to
replanarize and electrically contact the integrated III-V device.

2The waveguide stack refers to the combination of the lower cladding, waveguide core, and upper
cladding layers.

3The lower cladding thickness, the core thickness, and the upper cladding thickness were varied in
certain instances to obtain information about the waveguide loss as a function of these parameters.
The standard process, however, was based on the numbers given above.

4In the previous chapter, the value for the refractive index of the core was given as 1.55. However,
that was for 2D slab waveguide simulations. The value of 1.55 is actually the effective index of the
TM mode for a 1.7 pm wide waveguide. So the actual material index of 1.6 is consistent with the
effective index of 1.55 used in the previous chapter.
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Waveguide Stack Parameters
Lower Cladding Thickness

Core Thickness
Upper Cladding Thickness

Cladding Material & Index of Refraction
Core Material & Index of Refraction

3 pm
0.7 pm
3 pm

SiO 2: 1.45
SiOxN,: 1.6

Table 4.1: Table listing the standard parameters used for the waveguide stack fab-
rication. The selection of these parameters was based on the design phase and the
consideration of available materials.

4.1.1 DCVD Dielectric Layer Deposition

The dielectric waveguide materials used for the waveguide stack were deposited using

a Dense Chemical Vapor Deposition (DCVD) system. The system consists of a depo-

sition chamber with an RF power source and gas inlets. At low chamber pressures,

the RF source accelerates electrons in the gas which bombard and excite neutral

gas species creating more charged particles. At the proper pressure and RF power,

a plasma is induced containing reactive gaseous species (called free radicals) which

accumulate on the surface, reacting with each other to form a thin layer of material

(Reference [66]). Given the proper gases and deposition time, the desired material

with the desired thickness is deposited on the surface of the wafer. The primary

gases used for the deposition of silicon dioxide are silane (SiH 4), and oxygen (02).

The addition of nitrous oxide (N20) to the silane is necessary for the deposition of

silicon oxynitride. By varying the relative gas flows, the refractive index of the silicon

oxynitride can be varied from silicon dioxide (no nitrous oxide) to silicon nitride (no

oxygen). As shown in Table 4.1, the desired silicon oxynitride index of refraction is

1.6. The detailed recipe which has been tailored to deposit material with this desired

index of refraction is provided in Appendix C (along with all of the recipes and details

for the fabrication sequences in this work).

Once the desired recipe has been developed, the waveguide stack deposition is a

relatively straightforward part of the process. There are, however, two issues that

make the rest of the process slightly more complex. Compressive stress, and the

presence of unwanted hydrogen in the deposited material must be dealt with through
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Deposited Layer
Under Compressive Stress ,

Figure 4-1: A compressively strained layer deposited on the surface of a silicon wafer
causes the wafer to bow. A thicker deposited layer causes a greater wafer bow.

the addition of more processing steps.

Stress in Deposited Dielectric Layers

There are two primary sources of stress in CVD deposited materials: intrinsic and

thermal. The intrinsic stress is generated during the deposition of the material and

is strongly related to the process conditions (see Reference [67] and [68]). It is caused

by ion bombardment of the surface ([69]). The thermal stress is a result of the

deposition of the silicon dioxide and silicon oxynitride materials at a temperature

of 4000 C. When the deposition is complete and the wafer is brought back to room

temperature, both the deposited layer and the silicon wafer slightly contract, but

not by the same amount. This difference is due to the difference in coefficient of

thermal expansion (cTE) of the silicon wafer and the deposited layer. Depending on

the film composition, CTE,silicon - CTE,layer may be positive or negative. In this work,

the difference was positive meaning that the silicon contracts more when cooling

from 400C to room temperature. As a result of both compressive internal stress and

compressive thermal stress, the wafer bows out (as shown in Figure 4-1). The exact

geometry of the bow is a function of the amount of stress in the deposited layer, the

thickness in the layer, and the silicon wafer thickness (and silicon bulk modulus). The

thicker the deposited layer, the greater the stress and the greater the bow in the wafer.

While there are some important adverse effects of the material stress on the optical

properties of the waveguides5 the problem at this point is mechanical in nature. If

5Stress in the waveguide core material can produce birefringence. The result is a difference in
the effective index for a TE versus a TM polarized wave. This can lead to pulse spreading for a
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Front Side of Wafer Silicon Oxynitride Core
/ I

Back Side of Wafer Silicon Dioxide Cladding

Figure 4-2: The waveguide stack is deposited on both the front and back sides of the
wafer to balance the stress and virtually eliminate any wafer bow.

the wafer bow is large enough, the wafer handlers in the process tools are unable

to get sufficient vacuum to hold the wafers, or they are unable to sense the wafers.

These issues are in addition to the reduction in correct focus across the surface of a

bowed wafer during photolithography. The easiest solution to this problem is simply

to deposit the waveguide stack on both the front and back of the wafer (see Figure

4-2). The stress in the layers on the backside of the wafer balance the stresses on the

front of the wafer.

Deposition on both sides of the wafer requires that the wafer be flipped upside

down during the DCVD layer deposition. In order to protect the front side of the

wafer during this deposition, a sacrificial oxide layer is deposited on the front of the

wafer prior to the deposition on the backside of the wafer, and is approximately 0 .5 pm

thick. Any scratches from the DCVD wafer handler on the front of the wafer that

occur during backside deposition are located in this sacrificial layer and are removed

with the complete removal of the sacrificial layer via a buffered oxide etch6. In order

to protect the backside of the wafer during this etch (the etch attacks both sides of

the wafer because it is a wet etch), a 0.5pm thick sacrificial oxide layer is deposited

as the final layer on the backside of the wafer.

wave composed of both polarizations. While this is important, it is beyond the scope of this project.
Measures can be taken to reduce this birefringence ([70])

6Buffered Oxide Etch (BOE) is a mixture of hydrofluoric acid (HF) and deionized (DI) water.
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Effect of Incorporated Hydrogen on Waveguide Loss

As discussed in Chapter 3, the propagation loss of a waveguide is dependent, in part,

on absorption in the waveguide core and cladding materials. Absorption in insulating

materials like silicon oxynitride and silicon dioxide occurs via photon-phonon interac-

tions. Unfortunately, the first harmonic of the vibrational modes of N-H bonds is well

matched to light at wavelength of 1550nm (citeRefWorks:13). The result is enhanced

absorption at a wavelength of 1550nm for these dielectric layers. The hydrogen, which

appears in the first place as an unwanted adsorbent during the dielectric layer depo-

sition' can be removed from these layers by annealing at high temperatures. This is

an unacceptable solution for waveguides deposited on fully processed silicon CMOS

wafers, as such wafers cannot tolerate temperatures greater much greater than 5000 C.

There are ways of depositing the waveguides without using hydrogen containing pre-

cursors. Sputtering from a silicon nitride target is one suggested solution (Reference

[71]). While the eventual goal of this work is the fabrication of waveguides and inte-

grated III-V components on fully processed silicon wafers, at this phase of the project,

the starting material is just a bare silicon wafer. Future generations of this project

must deal with this issue, but because solutions do exist (mentioned in [72]), the focus

at this point is to get a working process on bare silicon.

In Reference [73] and [52], it was demonstrated that an anneal at 11500C for

several hours resulted in a significant reduction in absorption loss. However, due to

processing restrictions, the waveguides in this work are annealed at a temperature of

1050'C for 4 hours. While the longer anneal at higher temperatures has been proven

to be more effective, annealing at this temperature still results in an absorption loss

reduction.

4.1.2 Waveguide Etch

Once the lower cladding and core layers have been deposited, the waveguide core must

be etched in the desired waveguide paftern. This etch is carried out in a reactive ion
7The CVD reaction with hydrogenated precursors such as silane results in an amorphous layer

with a high concentration of hydrogen.
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etch (RIE) chamber. An RIE chamber is similar to a CVD chamber, but the gas

chemistry and flow rates are such that material is not deposited on, but removed

from the surface. For this step, there are two primary issues. The etch selectivity8

must be high enough to remove the 0.7pm of silicon oxynitride core material before the

photoresist is removed, and the sidewalls of the waveguides must be nearly vertical.

These, however, are divergent requirements. High selectivity is achieved with gases

that promote polymer deposition that decreases the etch rate of the photoresist more

than it decreases the etch rate of the silicon oxynitride. However, this polymer also

builds up on the sides of the wall that forms during the etch (see Reference [74]),

effectively increasing the width of the mask resulting in a sloped sidewall.

Silicon Dielectric Etching Chemistry

A brief discussion of silicon dioxide (and similar films, i.e. silicon oxynitride) etching

chemistry is necessary at this point. Silicon dioxide can be etched with a variety of

fluorine (F) containing gases, and for this work, the primary fluorine containing gas

that was used is carbon tetrachloride (CF 4). When used alone, CF 4 offers a very

low selectivity. When used with CHF3 , the presence of the hydrogen improves the

selectivity. During the silicon dioxide etch with CF 4, a CzFy passivation layer grows.

At some passivation layer equilibrium thickness, the layer stops growing. The thicker

the passivation layer, the slower the etch, but the higher the etch selectivity. This

passivation layer is etched by F atoms. The more available F atoms, the thinner

the passivation layer and, therefore, the faster the etch and the lower the selectivity.

Adding a hydrogen containing gas such as CHF 3 lowers the concentration of F atoms

due to F scavenging by the hydrogen atoms (see Reference [75]).

As mentioned above, this passivation layer causes the etch sidewalls to be sloped.

As this is not desired for the waveguides, a lower selectivity, vertical etch with a

1:1 ratio of CHF3 :CF 4. The lower selectivity was not a major problem because the
8Etch selectivity is the ratio between the etch rate of the material that is purposely being etched

and the material that is masking the etch (usually, but not always, the latter material is photoresist).
A high selectivity means that little of the masking material is removed relative to the amount of the
etched material.



waveguides were only 700 nm thick. For the etch of the deep wells, the ratio CHF 3:CF 4

was increased to 3:1. This was required to get a high enough selectivity to etch the

6 Im thick waveguide stack.

Figure 4-3 contains SEMs of the cross-section of the vertical and non-vertical

waveguide etch. The implications of this have admittedly not been fully explored.

The propagation loss may be larger for the case of vertical sidewalls if a rougher

sidewall accompanies the vertical profile. However, the mode matching may be better

for vertical sidewalls. As will be seen later in this chapter, the more dominant issue

for coupling is device alignment, and at the stage of the project, slight differences

(angular variation from 80' to 900) in the waveguide sidewall profile are not a first

order concern.

4.1.3 Upper Cladding Deposition

The upper cladding serves two main purposes. The upper cladding matches the up-

per vertical confinement of the guided mode to the lower confinement of the lower

cladding. The result is a vertically symmetric mode. It also protects the core from

contamination due to the accumulation of particulates which could increase the scat-

tering from the top side of the core. Finally, it matches the height of the waveguide

stack to the integrated pill device. This helps to hold the pill in place and to maintain

planarity once the pill device is in place. In the event that any subsequent metal layers

are deposited above the upper cladding (this is the case for a fully metal connected

pill as shown in Figure 4-4), the upper cladding shields the guided mode from this

metal layer. Without the upper cladding, the mode would terminate at the surface

of the metal, and depending on the conductivity of the metal, suffer absorption loss

in the metal layer.

The upper cladding deposition varies from the lower cladding deposition only

in that the front side layer is deposited first, followed by the backside layer. Any

scratches in the upper cladding on the front side should not significantly effect the

mode propagation in the waveguide 9. Again, the purpose for the front and back

9It is true that scratches in the silicon layer prior to the lower cladding and core layer deposition
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(a)

(b)

(c)
Figure 4-3: (a) SEM of a waveguide etched with the 3:1 CHF 3:CF 4 chemistry. (b)
SEM of a waveguide etched with the 1:1 CHF 3:CF 4 chemistry. This was the narrowest
waveguide fabricated with a width less than 1pm. (c) SEM of a 1.5pm wide waveguide
etched with the 1:1 CHF 3:CF 4 chemistry.
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Metal Interconnect

SiOxNy
Waveguide
Core

Figure 4-4: Illustration of a fully integrated, metal contacted III-V device. The light
is propagating normal to the page for both the III-V device and the nearby, unrelated
silicon oxynitride waveguide. The thick upper cladding (> 3pm) shields the silicon
oxynitride waveguide mode from the metal.

side deposition is to balance the stresses on the front and back side of the wafers to

minimize wafer bowing.

The thickness of the upper cladding was set at 3pm to properly shield the mode

from any metal layers above and to match the approximate height of an integrated

pill device.

4.2 Well Etch

Once the entire waveguide stack has been deposited and defined, the next step is the

deep well device etch. These wells are the receptacles for the integrated pill devices.

The wells are etched completely through the waveguide stack all the way down to the

silicon layer. The well needs to be etched to a depth of 6.7Tpm (3 pm for the lower

cladding, 0.7 -um for the core, and 3 pm for the upper cladding). In some tests, the

lower cladding thickness was increased by as much as 1.2pm, making the well depth

as large as 7.9/pm. The challenge with etching to this depth is finding an etch mask

are just as close to the core as scratches in the top of the upper cladding layer. However, it is
likely that scratches in the silicon would be deeper than the scratches in the deposited oxide. Also,
scratches in the silicon surface would propagate up to the core layer with some smoothing whereas
scratches in the upper cladding layer would not affect the topography of the core layer. Due to this
difference between upper cladding to surface scratches and starting silicon scratches, no sacrificial
scratch removal layer was included for the upper cladding.
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material and an etch chemistry that yields a high enough etch selectivity to etch the

nearly 8pm of dielectric. The need to etch oxide depths on the order of several microns

does not occur in standard silicon CMOS processing, but it is rather common in the

area of MEMS (Micro-Electro Mechanical Systems), particularly optical MEMS. The

masking material typically used by the MEMS community for this etch is either

polysilicon or aluminum. Due to process restrictions regarding metals in the etching

tools, polysilicon was used for this work.

4.2.1 Polysilicon Hardmask

In order to achieve the high etch selectivity required for the deep well etch, a polysili-

con hardmask10 was employed. The process of defining a hardmask requires an extra

etch step, but the advantage is an increased selectivity. First the hardmask is etched,

then the hardmask is used as an etch mask for the deep waveguide stack etch. To

determine the sufficient thickness of the polysilicon to withstand this deep etch, etch

selectivity tests were carried out with chemistries similar to the two discussed in the

waveguide etch section. The highest selectivity achieved was approximately 6:111. As

with the waveguide etches, the higher selectivity well etch yields sloped sidewalls at

an angle of 80'. The impact of the sloped sidewalls on coupling loss was discussed in

Chapter 3.

Initial Polysilicon Hardmask Thickness

The polysilicon hardmask must be thick enough to withstand the deep oxide etch,

but it must be thin enough so that the photoresist can stand up to the polysilicon

10The term hardmask refers to a material that is deposited above the layer to be etched before the
application of photoresist. The photoresist is then patterned using the standard resist exposure and
develop. The hardmask is then etched followed by the material which was originally to be etched.

11The actual selectivity obtained is a function of the specifics of the local etch pattern and varies
for low versus high aspect ratio etches. This value of 6:1 was for the low aspect ratio portions of the
pattern. Because the dimensions of the wells ( 150x300m) are very large relative to the waveguide
stack thickness, the etch of the wells is a low aspect ratio etch. There are, however, narrow lpm
wide test structures on the well etch mask which are used to characterize the quality of the etched
facets. The selectivity in these high aspect ratio areas is lower than 6:1, but this is not a problem
because these areas only need to be etched through the upper cladding and the core, not the whole
way through the lower cladding.
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Desired Well Dimension
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Figure 4-5: (a) For a sidewall other than vertical, a thicker hardmask results in more
total error (A) in the desired well dimension. (b) For a thinner hardmask, the error
(A') is smaller.

etch. In addition, if the hardmask is too thick, it becomes difficult to control the lat-

eral dimension of the etch because there will invariably be an angle to the polysilicon

sidewall as a result of the polysilicon etch (see Figure 4-5). Therefore, it is important

to determine the minimum polysilicon thickness that can withstand the deep waveg-

uide stack etch. The etch selectivity value of 6:1 was determined for trials in which

1pm of polysilicon was chosen as the hardmask thickness. This initial polysilicon

thickness of 1pm was chosen because of the known 3:2 selectivity of the polysilicon

etch. With this selectivity, exactly 1.5pm of polysilicon could be etched with the

standard 1plm photoresist thickness 12 . To be on the safe side, 1pm of polysilicon was

used. As mentioned, the etch selectivity was determined to be 6:1. With a 1pm thick

polysilicon layer, 6pm of waveguide stack was removed. This is enough to remove the

lower and upper cladding oxide which together are 6pm thick. However, this is not

enough to remove the 6.7pm or even worse, 7.9pm, total waveguide stack thickness

which exists above the waveguide core in the center of the well.

12In theory, the photoresist thickness could be increased beyond 1prm to withstand a thicker
polysilicon layer. However, this requires a recalibration of the exposure and develop steps. A better
solution will be discussed in the next section
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4.2.2 Oxide and Polysilicon Hardmask

Once the actual etch selectivity was known, the exact polysilicon thickness required

to etch the nearly 8/pm of waveguide stack could be determined. With a selectivity

of 6:1, approximately 1.35/im of polysilicon is required to etch 8pm of waveguide

stack. To allow for process variations, 1.51Lm of polysilicon was used. The polysilicon

was deposited using Low Pressure Chemical Vapor Deposition (LPCVD) at a rate

of approximately 90A/minute. With 1.51Lm of polysilicon, 1/m of photoresist is

only just enough to stand up to the polysilicon etch (recall the 3:2 selectivity of

this etch). Initial trials with this thickness of polysilicon resulted in wells with tall

lines running down their center. This is seen in the SEMs shown in Figure 4-6.

The issue can be better understood by looking at a cross section of the waveguide

stack where the waveguide is coming out of the page as shown in Figure 4-7(a)

with a zoomed-out perspective drawing shown in Figure 4-7(b). Notice the bump

due to the conformal deposition of the upper cladding. In order to guarantee that

the end of the waveguides meet exactly with the edge of the wells, the waveguide

pattern was drawn in a continuous line through the wells. So the cross section shown

in Figure 4-7 is the pre-etch cross section for the entire length of the well. The

polysilicon deposition is conformal, and as a result, the polysilicon thickness is greater

at the edges of the bump than on the surrounding flat surfaces (see Figure 4-8). The

actual amount of polysilicon deposited is determined by measuring the thickness on a

monitor wafer with no topography. Therefore, the measured thickness on the monitor

was always less than the thickest part of the polysilicon on the bump edges. Because

the polysilicon etch was tailored to the monitor thickness, some polysilicon remained

along the edges of the bump resulting in the lines seen in Figure 4-6. However, this

was not the only issue. Increasing the polysilicon etch time was not an option because

the polysilicon:photoresist etch selectivity was low enough that the photoresist was

nearly completely etched after etching the 1.0m. Another method was required to

allow for the complete etching of 1.5pm of oxide plus the extra amount on the edges

of the waveguide bump.
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Figure 4-6: (a) SEM of a well etch with an undesired ridge in the center of the well.
(b) SEM Close-up of the undesired ridge.
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Upper Cladding Bump

(a)

(b)

Figure 4-7: (a) Cross section of the dielectric waveguide stack showing the bump in
the upper cladding. (b) Perspective drawing showing the bump running in a line
parallel to the waveguide core at the surface of the waveguide stack.
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Figure 4-8: Cross-section of the dielectric waveguide stack after the polysilicon depo-
sition. Because of the conformal deposition, the polysilicon is thicker at the edges of
the bump than on the flat regions.

The etching of oxide with a polysilicon hardmask is much more difficult than the

etching of polysilicon with an oxide hardmask. The reason for this is the difference in

etch selectivity for the two etches. While it is difficult to etch oxide without etching

the polysilicon, the reverse is not true. It is actually much easier to etch polysilicon

without etching the oxide, meaning that the selectivity for a polysilicon etch with

an oxide hardmask is much higher than the 6:1 selectivity achieved for the oxide

etch with a polysilicon hardmask. This can be exploited to make the polysilicon

hardmask etch step a much easier one. In order to etch the polysilicon, an oxide

hardmask was employed. It seems like a lot of steps just to etch the waveguide stack,

but it guarantees that all of the polysilicon is removed from the well area when the

polysilicon is etched, so that all of the waveguide stack in the well area can be etched

during the waveguide stack etch.

Figure 4-9 is an SEM of the well etch with the additional oxide hardmask step.

Notice that there is still a line in the center of the well but it is much smaller than

the ridges in Figure 4-6. Figure 4-10 is an SEM of one of the gaps that was used

to systematically measure the gap coupling losses (this will be discussed in greater

detail in the following two chapters).

The following argument explains why this bump is still present even for full re-
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Figure 4-9: SEM looking down into a well at an angle. This well was etched using
the additional oxide hardmask step. A slight remnant of the original bump can be
seen running down the middle of the well, but it is only about 30 nm thick.

Figure 4-10: SEM looking down into an etched gap at an angle. This gap was etched
using the additional oxide hardmask step.



(a)

(b)
Figure 4-11: Cross section of the dielectric waveguide stack showing the bump in the
upper cladding.

moval of the polysilicon hardmask during the polysilicon hardmask etch. Figure

4-11(a) is a schematic showing the initial patterning of the area for the waveguide

stack etch. Figure 4-11(b) is a schematic that shows the waveguide stack etch at some

partially completed stage. Notice that once the area on the sides of the bump has

been fully etched, the silicon in those areas begins to etch at a rate equal to 1/ 6th the

oxide etch rate. The resulting height of the remnant bump once the etch is complete

is, therefore, 1/ 6 th of the original bump height. The original bump height is 0.7pum,

the thickness of the waveguide core, so the remnant bump height is on the order of

0.1pm13.

13In practice, the bump etches slightly faster than the surrounding area, so the remnant bump
was smaller even than this theoretical value. Furthermore, the selectivity of 6:1 is for the entire
waveguide stack, including the silicon oxynitride core. This material actually etches slower than the
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4.3 Die-Saw Assisted Cleave

Once the waveguides and the deep well etch have been completed, the wafer must be

die-sawed into individual die. In the case of preparation for optical measurements,

the edges of the die perpendicular to the waveguides must be as smooth as possible

to allow for good coupling both into and out of the waveguides. This is accomplished

with a die-saw assisted cleavel4. It is very difficult to cleave samples smaller than

1cm 2 from a 6" silicon wafer because it is quite thick (approximately 0.65mm). Any

roughness in the silicon cleave edge shows up as an even rougher edge in the over-

lying dielectric waveguide stack because it is an amorphous, rather than crystalline,

material. The die-saw assisted cleave alleviates the problem of the thick silicon wafer.

4.3.1 Basic Process

As mentioned, the die-saw assisted cleave can be used to improve the quality of the

waveguide facets that form during the wafer cleave step. In short, the wafer is sawed

from the back side, but instead of slicing entirely through the wafer, approximately

100,pm of silicon is left. A slight torque is applied to the wafer and it cleaves readily

along the sawed line (see Figure 4-12). The silicon cleavage plane is the (111) plane

which is at an angle of 54.74' to the wafer surface as shown in Reference [76].

In order to protect the front side of the wafer during the die-sawing, a few microns

of photoresist are applied to the front of the wafer prior to die-sawing. With a

standard die-saw step, a thick tape it applied to the back-side of the wafer and cuts

are made from the front. With the die-saw assisted cleave, the tape is applied to

the front of the wafer and cuts are made to the back side of the wafer. The thick

photoresist protects the front wafer surface from the tape.

The die-saw cuts are then made with the cuts parallel to the waveguides (between

the die) made through the wafer and the cleave cuts perpendicular to the waveguide

silicon dioxide cladding, so the selectivity to silicon dioxide is slightly higher than the stated 6:1
value for the entire stack. Considering these two points, the actual remnant bump height varied in
practice between 0.02 and 0.08pm.

14This technique was developed by Tymon Barwicz, a post-doc at MIT. This author is unaware
of any publications that discuss the die-saw assisted cleave technique.
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Waveguide Stack Photoresist Waveguide Stack Photoresist Tape

(a)

(c)

Figure 4-12: The four steps of the die-saw assisted cleave technique (a) Starting point,
wafer coated with a thick protective layer of photoresist. (b) Die-saw tape applied
to front side of wafer. (c) Die-saw cut made from back side most of the way through
the wafer (typically leaving 100pm of silicon). (d) The piece is cleaved and the tape
is removed (or vice versa in some cases).

made as discussed above. Once the cuts have been made to the backside of the wafer,

the tape is carefully removed leaving long pieces of wafer one die in width and 4

or 5 die in length (see Figure 4-13). With the front side of the wafer facing down,

the individual die are cleaved, one facet at a time, until all of the die have been

separated by cleaves. The individual pieces are then inspected and placed in acetone

to strip away the protective photoresist. The pieces are cleaned using a standard

solvent degrease clean (acetone, methanol, isopropanol) and then mounted on special

aluminum mounts.

4.3.2 Optimum Die-Saw Parameters

For even the best recipe, the yield for this technique is approximately 20%. It seems

that the facet quality is a function of how carefully the tape is removed, the length

of the sample being cleaved, and the depth of the backside die-saw cut.

Ideally, the wafer does not cleave while the tape is being removed. If it does, the

cleave is typically very poor. However if the sample survives the tape removal without

cleaving and is then cleaved properly later, a much better facet typically results.

The length of the piece being cleaved also affects the quality. For many of the
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Figure 4-13: In the case of cleaving a die at the ends of the long waveguides that
extend across the entire die, a strip with several die is cut with two long through-
wafer cuts. The individual die are each removed with two cleaves.

Fabry-Perot measurements, a good waveguide length is about 4mm. The best way

to cleave a length this short is to make four cuts, two main cuts which are at the

required location, 4mm apart, and two other cuts, each positioned at least 1cm away

from the main cuts. The distant cuts are cleaved first, followed by the main cuts (see

Figure 4-14). This seems to improve the quality of the cleave by spreading the force

evenly over the length of the cut.

The depth of the backside die-saw cut determines how much silicon remains to be

cleaved. It seems that the less remaining, the better the cleave. However, if too little

remains, the sample typically cleaves either while removing it from the die-saw chuck

or while removing it from the tape. To complicate matters, the amount remaining is

a relative term affected by the length of the sample. It is the torque on the cut that

determines when the cut cleaves, so for a given cut depth, a longer sample will cleave

with less force than a short sample. So it is better that the backside cut be deeper

for short samples and shallower for longer samples.

4.3.3 Cleave Setup and Sample Mounting

A very simple setup was used to cleave the samples (see Figure 4-15). The sample

was placed between two aluminum blocks, each covered with a fabwipe. The sample
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Figure 4-14: In the case of cleaving a short
distant cleave cuts are made. The distant
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Figure 4-15: Schematic of the setup used to cleave samples for waveguide facet for-
mation.
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was mounted backside up with the cut sitting just past the edge of the two blocks.

The dull edge of a razor blade was used to apply an even force along the length of

the sample.

Occasionally, very good facets resulted from cleaving the samples while they were

still attached to the tape. The samples were then just peeled away from the tape.

The difficulty is that this often worked for just one sample on the wafer. The act

of cleaving and peeling would usually cause other samples on the wafer to cleave

prematurely. The cleaved faces would then grind against each other while the wafer

was being handled causing the edges to become very rough. As previously mentioned,

coating the wafers with photoresist helped to alleviate this problem somewhat.

Once the samples were cleaved, the photoresist was stripped and the samples were

cleaned using a solvent degrease as described above. The samples were then mounted

to thin aluminum mounts using crystal bond. The mount was designed for a chuck

that was specifically designed for the experimental setup. At this point, the samples

are ready for measurements or III-V device mounting, whatever the case may be.

4.4 III-V Device Pick-and-Place

The final fabrication step involves the integration of the III-V device on the prepared

silicon photonic substrate. At this stage, the III-V devices with an approximate

dimension of 300 x 150am have been prepared with a ridge waveguide and micro-

cleaved facets, and they are sitting on a bare silicon wafer ready for pick-and-place

(see Figure 4-16). While many of the pills have cleaved and are ready for pick and

place, the most notable pills are those that haven't cleaved and remain in a bar of

three attached pills. There is clearly some stress in the pills although no significant

bowing was seen for the single pills. The preparation of the III-V devices is the work

of another student, Joseph Rumpler and is discussed in a paper pending publication.
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Figure 4-16: SEM of many pills sitting on a substrate.

4.4.1 Pick-and-Place Setup

The setup for the pick-and-place method consists of a microscope and a micropipette

attached to a 3-axis micro-positioning stage. The micro-pipette (see Figure 4-17) is

placed at; an angle so that neither the positioning controls nor the micro-pipette itself

interfere with the microscope view of the device and the substrate. The micro-pipette

tip is bevelled at the end so that its surface is flush with the III-V device surface.

The outer diameter of the micro-pipette tip is approximately 50 pm and the diameter

Figure 4-17: On the left, an image of the micro-pipette used for pick and place.

On the right, a schematic showing the bevelled edge and the pill attached to the

micropipette tip as it is lowered into place.
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of the cavity is 20 pm. At this size, the micro-pipette tip is smaller than half the

width of the III-V device so it can be placed on either side of the ridge for device

pick-up. The end of the micro-pipette opposite the tip is fitted with a hose and a

valve to which a vacuum is applied. The valve can be turned on to pick up a device

and turned off once the device is in place.

While the method requires some patience and practice, it is fairly straightforward.

The micro-pipette vacuum is turned on it is lowered so that the tip is pressing down

against the top of a device. The micro-pipette is moved laterally until a good seal

forms. The micro-pipette and attached device are moved up and positioned over the

device well on the silicon substrate using the micro-positioning knobs. The device is

then lowered into place in the well and the vacuum is turned off. Usually the micro-

pipette tip must be moved laterally at this point to completely break free from the

device 15

For the purpose of this work, the device was placed in the device well and received

no further processing. It was determined that the devices stayed in place for careful

moving and handling so no method was developed to permanently secure them. In the

case that further processing (metal interconnects, etc.) is required, such a securing

method must be developed.

4.4.2 Pick-and-Place Results

Three main sets of device pick-and-place were performed during this work. In total,

over 30 devices were integrated, with an average pick-and-place time of about 30

minutes. The purpose of the three sets is listed below:

1. Initial Trials and Tests

2. Multiple Device Placement for Transmission Measurements 1

3. Isolated Device Mounting (not in a well)
15It is this final lateral movement that sets the limit to the positioning accuracy of this technique.

In order to improve the placement accuracy, a technique must be developed to hold the device in
place while the tip is being removed. Another possibility is to use a well with angled sides so that
the device has a stable resting place to which it returns via gravity after it is slightly disturbed.
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Figure 4-18: SEM of the first integrated device.

4.4.3 Initial Trials and Tests

The Initial Trials and Tests phase was the practice phase in which incomplete 16 III-V

devices were integrated to verify the feasibility of the pick-and-place technique. The

size of the wells into which the III-V devices fit was determined, and an understanding

was developed as to what, in practice, affects device placement and yields the best

results. Finally, the test phase was useful for obtaining some statistics on the device

placement, such as the typical gap lengths and the lateral misalignment.

The first step was to determine the feasibility of the pick-and-place technique.

This basic capability was verified with the first successful integrated device shown

in Figure 4-18. To improve upon this first integration, devices were placed in wells

with a tighter fit. The fit was improved systematically by attempting to place the

devices in smaller and smaller wells to find the best fit. A grid of wells on the silicon

substrate was used for this purpose. The well width increases by 5pum from 135upm

16Some of the devices had no ridge or lacked the quantum wells.
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to 150g/m from the leftmost to rightmost column, and the well length increases by

1prm from 293pm to 312pm from the uppermost row to the lowest row. The devices

typically fit into the 150pm wide wells with lengths ranging from 307 to 312pm.

In practice, the lateral device alignment (see Figure 4-19 for visualization of the

different alignment terms) is a function of how much time is spent aligning the device.

At this point, the placement is not a very exact process. With patience, the device

can be placed with a lateral misalignment of less than about 2pm. The translational

alignment of the device is better controlled than the lateral alignment. The III-V

device is always placed in the well such that one of the III-V device facets is closer

to the well edge than the other facet. The reason for this is that when the device is

in place, the micro-pipette tip is removed by sliding it sideways off the device. When

this happens, the devices moves slightly in the direction that the micro-pipette tip

is slid. To maintain the lateral alignment, the tip is slid in the direction of the well

edge, which pushes the device towards one well edge. This is illustrated in Figure

4-21. Figure 4-20 is an image of an integrated device showing an extreme example of

this gap length disparity. Based on the trials, the short gap length is on the order of

a few hundred nanometers, and the long gap length is typically in the range of 3 to

5pLm.

Given perfect lateral and vertical alignment, the cross-gap coupling efficiency is

exponentially related to the gap length (see Chapter 3). However, in practice, the

lateral alignment (vertical and sideways) is not perfect and this reduces the sensitivity

of the coupling on the gap length. This effect was also discussed in Chapter 3.

4.4.4 Multiple Device Placement

Once the initial trials were complete, an investigation into the optical coupling through

a passive integrated device was conducted. This step was the culmination of all of

the design, fabrication, and testing efforts. This required the integration and mea-

surement of pills with ridges (see Figure 4-22 for an SEM of the first integrated ridge

pill). The goal was to determine whether any light could be sent through the sil-

icon oxynitride waveguides, coupled across the gap into the III-V device, and then

141



Vertical

Translational

Lateral
Vertical

_ SiOxNy
Core

Silicon Substrate
(Bottom of Well)

SiOxNy
Core

Lateral

itional

Vertical

Figure 4-19: Schematics of the device misalignment in the well and the terms used
for each direction. (a) Cross-section plane containing the wafer surface normal and
the waveguide propagation direction. (b) Wafer plan view.
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Figure 4-20: Microphotograph of a pill with two very different gap lengths. This is a
result of pushing the pill to the right during removal of the micropipette tip.

Figure 4-21: Plan view schematic of the removal of the micro-pipette tip and the
resulting short and long gap length.
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Figure 4-22: Two SEM images of the first integrated ridge pill. Notice the broken
facet at one end and the very good alignment at the opposite end.

144



Figure 4-23: Close up SEM image of the ridge waveguide pill shown in Figure 4-22.

coupled across the second gap into the silicon oxynitride waveguide. In addition, a

quantitative determination of this total coupling loss, and the dependence of this loss

on device placement was desired.

Six InP/InGaAsP ridge waveguide pill devices were integrated onto a single silicon

chip with processed waveguides and etched wells. The pill lengths were distributed

about a mean length of 300 pm with a standard deviation of 2 pm. The six pills were

placed in the six longest wells ranging in length from 308 to 312ptm (see the micropho-

tograph in Figure 4-24). Transmission measurements spanning the full wavelength

range of the tuneable laser were taken for each integrated device. High magnification

microphotographs of both gaps were taken for each device (see Figure 4-25) to de-

termine the lateral and translational misalignment"1 As mentioned, the goal was to

relate the data extracted from the transmission measurements to the alignment data

to determine a typical, and perhaps, best case, value for the coupling loss. This is

discussed in Chapter 6 with the other measurement results.
17It is, of course, not possible to measure the vertical misalignment from a standard microscope.

Attempts were made to measure the vertical misalignment using a profilometer, but the probe tip
moved the device during the profiling.
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Figure 4-24: Microphotograph of 5 pills (the pill in the 307 pm long well can just be
seen at the top of the image). There is another integrated pill just out of view in the
312 pm long well.

Figure 4-25: Microphotograph of the left
pills.

and right facet of each of the six integrated
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4.4.5 Isolated Device Mounting

During the analysis of the data from the Multiple Device Placement I transmission

measurements, it became clear that a better understanding of the transmission mea-

surements for a single isolated device was needed. Transmission measurements had

been taken for a long (several millimeters) III-V ridge waveguide fabricated in the full

wafer material"s , but not for the fully micro-cleave processed device (i.e. the devices

that were being integrated in the wells). A single micro-cleaved device is only 30 0pm

long and about 6pm thick. The modal properties for a ridge waveguide made from

such a thin device can be quite different from that for the much longer, full wafer

thickness InP/InGaAsP waveguide.

The difficulty comes in trying to measure the transmission spectrum for a single

isolated micro-cleaved device. More so than the short length being a problem, the

very small thickness makes it impossible to measure the spectrum with the standard

setup. If such a device were mounted on the standard mounts, which are 5 mm

long, the input and output fibers in the transmission measurement setup would be

too thick to align the vertical center of the fibers ( 125pm above the surface of the

mount) with the vertical center of the micro-cleaved devices ( 3yrm above the surface

of the mount). What was needed was a way to mount a single device on a mount

that was narrower than the 30 0pm device length. A razor blade is about 250Am at its

thickest. When placed sideways, it is the perfect mount for the 30 0gm long device.

The device was mounted to the razor blade edge using the standard pick and place

method. To hold the device in place, the razor blade edge was covered with a thin

layer of nearly cured epoxy just prior to mounting the micro-cleaved device.

Because not all of the devices cleave during the ultrasonic agitation stage of the

micro-cleave technique, there are readily available 9 30ym long devices (this is the

length of the bars prior to the micro-cleave ultrasonic agitation step, or the length

after the step in the case that the bar fails to cleave). A device of this length was also

18The InP/InGaAsP quantum well material comes from a 2 inch diameter epitaxial wafer. The
"full wafer material" designation is used to contrast the waveguide made from this material from
the much thinner micro-cleaved device.
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mounted on the edge of the razor blade in order to compare the transmission spectra

for the two different lengths.

4.5 Summary

In this chapter, the various fabrication and assembly steps were discussed. Waveg-

uides were fabricated with a silicon oxynitride core with a refractive index of 1.6, a

core thickness of 0.7 Mm, and an upper and lower cladding thickness of 3 Im based

on the identification in Chapter 3 of these parameters as the optimum parameters for

coupling to the InP/InGaAsP ridge waveguides.

The significant difficulty associated with the selectivity of the approximately 7

pm thick dielectric stack well etch was resolved with the use of a double hard mask

approach (silicon dioxide was used to mask the polysilicon, which was used to mask

the deep well etch) and a high selectivity etch was achieved with the addition of CHF 3

to the standard CF 4 etch chemistry.

InP/InGaAsP ridge waveguide pills were fabricated with a length of 300 pm. They

were integrated in wells ranging in length from 307 to 312 pm. The maximum gap

length was 7.9 Mm. The minimum gap length was on the order of 400 nm.
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Chapter 5

Waveguide Loss and Coupling

Efficiency Results

This chapter details the results of the measurements that were taken to determine

the interconnect and InP/InGaAsP waveguide propagation loss and the coupling be-

tween the interconnect waveguides and integrated III-V devices. The bulk of this

information is obtained from transmission spectra (see Appendix A). Interpretations

of these spectra and comparisons with the FDTD simulations of Chapter 3 are made.

Analysis of this data yields the propagation loss for the interconnect waveguides and

the InP/InGaAsP ridge waveguides. The data confirms the theorized conclusion that

coupling across a gap is improved when the gap is filled with a high index mate-

rial. This chapter concludes with the experimental demonstration of optical coupling

between the interconnect waveguides and an integrated passive InP/InGaAsP pill,

which is the ultimate result of this work.

At several points throughout this chapter, the analysis of the measured data is

enhanced by the comparison of this data with the results of a Matlab program. The

program was written to generate transmission spectra based on a model that makes

use of the T-matrix discussed in Appendix A. Because the model is a physical model

with inputs based on actual waveguide geometries and material properties, it plays a

vital role in interpreting the measured data.

This chapter is organized into four sections. The first section details the results
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Figure 5-1: On-chip waveguide transmission measurement setup.

of the waveguide Fabry-Perot measurements to determine the propagation loss of the

interconnect silicon oxynitride waveguides. The second section examines the prop-

erties of the InP/InGaAsP ridge waveguides for the case of conventionally cleaved

facets with InP substrate intact and the micro-cleaved ridge waveguide pills. The

third section deals with the analysis of the transmission measurements of intercon-

nect waveguides with etched gaps. The final section concerns the aforementioned

integrated pill measurements.

5.1 Silicon Oxynitride Interconnect Waveguide Loss

Measurements

As discussed in the previous chapter, transmission spectra were used repeatedly to

obtain information about the waveguides in this work. In this section, the propagation

loss of the interconnect waveguides is measured as a function of waveguide width. The

minimum measured loss is then compared with values for the propagation loss taken

from the literature.

The setup shown in Figure 5-1 was used to measure the transmission spectrum

for silicon oxynitride waveguides to determine the waveguide propagation loss. The

measured spectrum for a single mode waveguide with a 1.7 /m wide core and a core

thickness of 0.7 tm is shown in Figure 5-2.
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Transmission Spectrum for a 1.7um Wide
SiON Waveguide
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Figure 5-2: Transmission spectrum for a standard 4mm long silicon oxynitride inter-
connect waveguide with width 1.7 pm and thickness 0.7 pm: (a) Zoomed out. (b)
Zoomed in.
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5.1.1 Transmission Spectrum Period

Notice that there are approximately 10 periods of oscillation in the 2nm spectral

range from 1550nm to 1552nm. A single period, then, is on the order of 2nm/10, or

0.2 nm. The following analysis shows that a period of approximately 0.2nm makes

sense given the known length of the sample (4mm) and the expected effective index

of the mode, 1.49 (calculated using a 2D modesolver).

A maximum in the spectrum occurs when the phase of the propagating mode is

increased by an even multiple of 27r over one round trip (lengthwise) in the waveguide.

The phase is found by multiplying the propagation vector, P by the propagation

length, twice the length of the waveguide in this case. Equating this with an integer

multiple of 27,

/2L = m27 (5.1)

Expressing / in terms of the effective index:

n = (5.2)
A

Substituting P from Equation 5.2 in Equation 5.1 yields:

2Lneff-2Lef- = m (5.3)

and for the nearest shorter wavelength at which the phase is increased by (m + 1)2wr,

the following holds
2L = m + 1 (5.4)

Solving for the difference between A and A',

A = A- A' (5.5)

= 2Lneff 2Lneff (5.6)
m m+1
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Substituting m from Equation 5.3 into Equation 5.6 and simplifying yields

AA = - 2Lnf (5.7)
2Lnf +1

Putting the length (4mm), effective index(1.49), and wavelength (1550) into this

equation gives a AA of 0.202, which is in agreement with the data in Figure 5-2.

Equation 5.7 is very useful when analyzing the transmission spectra for various

structures because it can be used to extract an unknown parameter, the contributing

cavity length or the effective index for instance, given the measured value for AA at

a given wavelength.

5.1.2 Estimation of Waveguide Propagation Loss

Given the measured peak/valley ratio (as in Figure 5-2) of the waveguide transmission

spectrum, the calculated facet reflectivity, and the waveguide length, the propagation

loss can be calculated using Equation A.11. In practice, as Figure 5-2b shows, the

peak/valley ratio is difficult to determine exactly from the data as there is some

noise. This noise can be attributed to the edge roughness of the waveguide core

(see Reference [55]) in addition to mechanical vibrations and drift present in the

measurement setup. An averaged result can be obtained by calculating the loss using

the peak/adjacent valley ratio for each local peak and valley and then averaging these

loss values to get an average loss. This was done for the spectrum shown in Figure 5-2

and for 10 other waveguides ranging in width from 0.7 to 1.6 pm. For each waveguide

width, two waveguides were measured using this averaged loss technique and those

two loss values were averaged to arrive at the data plotted in Figure 5-3. The data

demonstrates the expected trend of reduced loss for wider waveguides. Again, this is

expected because for wider waveguides, the field is lower at the rough core-cladding

interface so less of the guided mode is scattered (Reference [55]).

The final conclusion from this data is that the lowest propagation loss can be

achieved with 1.7 pm wide waveguides. In theory, a lower loss would be achieved at

an even greater width as implied by the downward trend of the data. However, at a

153



Average Interconnect Waveguide Propagation Loss
Measured with the Averaged Fabry-Perot Method
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Figure 5-3: Propagation loss for interconnect waveguides measured using the averaged
Fabry-Perot method. The data is the average of the loss for two waveguides at each
width.

width of 1.7 im, these waveguides are close to the cutoff of the second mode. Making

the waveguides any wider would result in propagation of this second mode which is

undesirable.

As shown in Figure 5-3, the averaged measured loss at the width of 1.7 Aim is

7.3 dB/cm. This is quite high compared with record low propagation loss values

on the order of 0.01 dB/cm taken from the literature (Reference [48]) for silicon

oxynitride waveguides. However, it is consistent with the propagation loss values

in the range of 0.1 dB/cm (Reference [48]) to 5 dB/cm (Reference [61]) for silicon

oxynitride waveguides in which the primary goal of the work was not ultra low-loss

propagation. In these papers, the processing techniques that were used were very

similar to the techniques used for this work. In addition, the propagation loss values

quoted above are for waveguides that are twice the size of the waveguides in this

thesis. No reports were found for waveguides with comparable dimensions. The larger

waveguide size can reduce the loss significantly as shown in Reference [55]. Finally,

due to processing restrictions, the annealing temperature, which has a significant
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effect on the propagation loss, was lower than the temperature used in the literature

(Reference [77]) where it is shown that higher annealing temperatures result in lower

waveguide propagation loss. For these reasons, a propagation loss of 7.3 dB/cm is

reasonable and consistent with the literature.

5.2 InP/InGaAsP MQW Ridge Waveguide Trans-

mission Spectra

The presentation and analysis of the transmission spectra for InP/InGaAsP multi-

quantum well (MQW) ridge waveguides is given in this section. The stated ultimate

goal of this thesis is the coupling of light through InP/InGaAsP ridge waveguide pills

which have been integrated in wells etched into the interconnect waveguide stack.

Before proceeding to that point, it is useful to characterize these ridge waveguides in

isolation.

Two different structures are examined in this section. Both structures use the

same epitaxial InP/InGaAsP MQW structure from Landmark Optoelectronics that

was used throughout this thesis. The first structure is a simple ridge waveguide

fabricated with a wet etch and cleaved with a conventional cleave technique to a

length of 8 mm. Nothing else was done to these structures. They were not etched

into pill devices. The InP substrate was left intact. These waveguides will heretofore

be referred to as the conventionally cleaved ridge waveguides. The second structure

is the individual isolated micro-cleaved waveguides with lengths of approximately 300

and 900 p 1. An estimation of the ridge waveguide fundamental mode propagation

loss is given in this section. Through the analysis of the transmission spectra for the

isolated pills, a better understanding of how light travels in the pills will be gained.

1The 900 p long devices were actually three connected pills for which the outer facets cleaved,
but the two inner facets did not cleave.
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Figure 5-4: Wet etched InP/InGaAsP waveguide ridge. The width of this waveguide
is 8 pm.

5.2.1 Analysis of the Conventionally Cleaved Ridge Waveg-

uide Transmission Spectra

The analysis of the conventionally cleaved ridge waveguides is complicated by the ab-

sorbing quantum well layers and by the fact that the waveguides that were analyzed

were multimode waveguides. Figure 5-4 is an SEM of the etched waveguide ridge

showing that it is 8 pm wide, which is certainly wider than the 2 Pm width necessary

for single mode operation. The result of the absorption is a variation in the propa-

gation loss over the measured spectrum, and the result of the multiple propagating

modes is mode beating or mode interference. Both of these effects can be seen in the

measured transmission spectrum in Figure 5-5.

Absorption in the Quantum Well Structure

The integrated InP/InGaAsP ridge waveguide structure is shown in Figure 5-6. The

quantum wells, which provide gain when activated via a current, are instead absorb-

ing when in a passive state as is the case for this work. Figure 5-5b is a close-up of the

transmission spectrum for this ridge waveguide in the wavelength range from 1500-
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Transmission Spectrum for a 6 um Wide, 8 mm Long
InP/InGaAsP Ridge Waveguide

Wavelength (nm)

Transmission Spectrum for a 6 um Wide, 8 mm Long
x 10 3 InP/InGaAsP Ridge Waveguide

'1500 1505 1510 1515
Wavelength (nm)

1520 1525

Transmission Spectrum for a 6um Wide, 8mm Long
InPIInGaAsP Ridge Waveguide

Wavelength (nm)
76

Figure 5-5: Conventionally cleaved InP/InGaAsP ridge waveguide transmission spec-
trum: (a) Full measured spectrum. (b) Zoomed in to examine the shorter wavelength
part of the spectrum. (c) Higher resolution measurement of the longer wavelength
part of the spectrum.
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L1, L3, L5, L7: InGaAsP @ 1.127eV
Quantum Wells:

L2,L4,L6: InGaAsP @ .886eV

Figure 5-6: Cross-section of the InP/InGaAsP ridge waveguide material from Land-
mark Optoelectronics.
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Figure 5-7: Measured absorption spectrum for TE and TM modes of an InP/InGaAsP
MQW structure used as an electro-absorption modulator (taken from Reference [78]).

1525 nm. Notice that the measured lock-in voltage is nearly 3 orders of magnitude

smaller in the vicinity of 1500 nm relative to values near 1580 nm. This increased

propagation loss at shorter wavelengths is due to absorption by the quantum well

structure. The peak in the gain for this structure is designed to be at 1550 nm, so it

is expected that the absorption edge is in the vicinity of 1550nm. A calculated ab-

sorption spectrum for a similar InP/InGaAsP MQW structure taken from Reference

[78] is shown in Figure 5-7. Notice the sharp transition at 1520 to 1530 nm2.

A clear, sharp transition in the vicinity of 1550 nm is not seen in the measured

transmission spectrum of Figure 5-5 because the transition is obscured by the in-

terference of the multiple guided modes. In Section 5.5, the transmission through

integrated InP/InGaAsP ridge waveguide pills will be examined, and the presence of

2It is tempting to use this absorption spectrum to calculate the difference in absorption loss at
short and long wavelengths for an 8 mm long waveguide to see if the 3 orders of magnitude difference
measured for the waveguides in this work is consistent with this spectrum. However, the absorption
in Figure 5-7 is the material absorption and does not take into account the overlap of the mode
with the quantum well regions (often referred to as rQw in the literature). This would make the
magnitude of the modal absorption lower than the values in the figure.
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this wavelength dependent absorption will be used as an indicator that light is indeed

propagating in the quantum well structure.

5.2.2 Multimode Behavior

Beyond the vicinity of the absorption edge, at wavelengths greater than 1550 nm,

the transmission spectrum in Figure 5-5 has peaks separated by approximately 8nm.

These peaks are not due to the waveguide cavity as seen in a typical Fabry-Perot

transmission spectrum. If that were the case, they would be spaced at approximately

0.045 nm (for an 8 mm long waveguide cavity with an effective index of 3.3, calculated

using Equation 5.7). It is hypothesized that they are due, instead, to interference of

the various modes of the InP/InGaAsP ridge waveguide structure.

In order to see if this 8 nm period is consistent with the effective indices of the

ridge waveguide modes, a 2D modesolver 3 was used to determine the modal properties

of the ridge waveguide structure. The input to the modesolver is the cross-sectional

geometry and refractive index information for the ridge waveguide structure as well

as the desired number of computed modes. The output is the effective index for each

mode, the loss for each mode4, and a plot window containing four separate plots

(Figure 5-8). The upper left hand plot is the cross-section of the ridge waveguide

(where areas with different refractive indices have different shading), the upper right

hand plot and the lower left hand plot are respectively the real part of the x-oriented

and y-oriented electric field. The lower right hand plot is useful in determining where

power is flowing in the lateral direction (i.e. towards the edges of the simulation

window). If it is present inside the waveguide, then there is no loss, as this is just the

wave propagating in the waveguide at a slight angle to the z direction. If it is present

outside of the waveguide, as in Figure 5-8b, then there is loss.

The modesolver simulation shows that the zero-order TE mode has an effective
3This 2D modesolver is a Matlab program written by Milos Popovic
4If perfectly matched layers (see Reference [64] for more on perfectly matched layers or PMLs) are

used at the boundaries of the cross-section simulation window, the modesolver will find modes with
complex propagation vectors. The imaginary part of the vector determines the loss. The presence
of loss for a computed mode means that the mode is a lossy mode (see Reference [49] for a formal
discussion of lossy modes) or unguided mode.
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Figure 5-8: 2D modesolver output plot window showing the properties of the (a)
fundamental quasi-TE mode for the InP/InGaAsP ridge waveguide structure and (b)
a higher order lossy mode. In each set of four plots, the upper left hand plot is the
cross-section of the ridge waveguide, where areas with different refractive indices have
different shading. The core of the ridge waveguide structure can be seen as the thin,
wide dark stripe centered vertically at 0 pm. The upper right hand plot and the lower
left hand plot are respectively the real part of the x-oriented and y-oriented electric
field. The field max/min appear as the ,acrk regions. The lower right hand plot is
useful in determining where power is flowing in the lateral direction (i.e. towards the
edges of the simulation window). If it is present inside the waveguide, as in set (a),
then there is no loss, as this is just the wave propagating in the waveguide at a slight
angle to the z direction. If it is present outside of the waveguide, as in set (b), then
there is loss.
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Calculated Transmission Spectrum for an 8mm Long Waveguide
With Two Interfering Modes, neffl = 3.2, neff2 = 3.16
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Figure 5-9: Calculated transmission spectrum for a waveguide cavity with two inter-
fering modes.

index of 3.2, and that the highest order guided mode has an effective index of 3.16.

There are 7 guided modes all together. This makes the transmission spectrum more

complicated than the simple single mode Fabry-Perot transmission spectrum. In Ap-

pendix A the electric field transmission coefficient is found as a function of wavelength

(i.e. the transmission spectrum) for this simple single mode case. To model the effects

of two or more modes, the field transmission coefficient must be found for each mode.

The total transmission spectrum taking into account all of the modes is then found

by summing the individual transmission coefficients and squaring the magnitude of

the total. That is,
M 2

Ttota (A) = E S 2 1,m (5.8)
m=1

where M is the number of modes, and S21,m is the electric field transmission coefficient

for the mth mode. S21 is the S-parameter which is the ratio of the transmitted field

strength to the incident field strength. This is used instead of T because T is used to

represent the modal Fresnel transmissivity.

Figure 5-9 shows the result of the calculation in Equation 5.8 for the two modes

with effective indices of 3.2 and 3.16. Notice that the peaks are separated by 8nm, the
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Calculated Transmission Spectrum for an 8mm Long Waveguide
With Three Interfering Modes, neffl = 3.2, neff2 = 3.18, neff3 = 3.16

70
Wavelength (nm)

Calculated Transmission Spectrum for an 8mm Long Waveguide
With Three Interfering Modes, neffi = 3.2, neff2 = 3.18, neff3 = 3.16

1551 1552 1553 1554 1555 1556

(b) Wavelength (nm)

Figure 5-10: (a) Calculated transmission spectrum for a waveguide cavity with three
interfering modes. (b) Close-up of part of the spectrum showing the "fast" oscillations
which is a cavity resonance effect seen in the standard Fabry-Perot transmission
spectrum. The period of these oscillations is much shorter than the period of the
multi-mode interference oscillations.
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same as the separation of the peaks in the measured transmission spectrum in Figure

5-5. The spacing of the peaks is a function of the length of the cavity and the difference

between the effective indices of the interfering modes. The shorter the cavity and the

smaller the difference in effective index, the greater the spacing between the peaks.

This means that the shortest observable period is due to interference between the

modes with the greatest difference in effective index, 3.2 and 3.16. So when looking

at an 8nm range of the spectrum, the observable periodic behavior is due to the

interference of these two modes only, permitting the use of a model that considers

only 2 modes.

Of course, the measured spectrum in Figure 5-5 has more structure than the

simple calculated spectrum of Figure 5-9. This is because there are more than just

two interfering modes in the actual transmission spectrum. Figure 5-10a shows the

results of Equation 5.8 in which three interfering modes contribute to the overall

transmission spectrum. From this calculated spectrum, it is easier to see how the

measured transmission spectrum could be composed of several interfering modes.

Based on the modesolver results, the InP/InGaAsP ridge waveguide has 7 guided

modes. It is a combination of these modes that makes up the total transmission

spectrum as seen in Figure 5-5.

Approximating Propagation Loss in Multimode Waveguides

Figure 5-10b is a close-up of the calculated spectrum of Figure 5-10a revealing the

short period oscillations in the simulated InP/InGaAsP ridge waveguide spectrum.

These are the typical Fabry-Perot resonances that are the result of the reflecting end

facets of the waveguide, the period of which is determined by Equation 5.7. In the

case of a single mode guide with no higher order interfering modes, the peak/valley

ratio of these shorter period oscillations can be used to determine the loss of the mode.

This is done using the Fabry-Perot loss equation, Equation A.11, as was discussed

in Section A.2. However, because of multimode interference which adds long period

oscillations to the spectrum, it is difficult to extract a peak/valley ratio. And if one

takes the local peak to valley ration, the ratio varies leading to varying results. This is,
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of course, because the loss equation was derived from the Fabry-Perot transmissivity

for a single mode. Therefore, it is necessary to consider the transmissivity for two

modes, to see if it is possible to determine an approximate value for the propagation

loss of the two interfering modes.

The Fabry-Perot transmission coefficient which was derived in Section A.2 using

T-matrices is repeated here.

t2eiL

S21 = 1 - r2e2iO L (5.9)

where S21 is the standard field transmission S-parameter for the mth mode, / is the

complex propagation vector defined in Equation A.9, L is the cavity length, and r

and t are the fresnel reflection and transmission coefficients found from the effective

index of the mth mode. The right side of Equation 5.9 can be rewritten in terms of

a real and imaginary part, F and G respectively.

tm = Fm + iGm (5.10)

where
Amcos (PL)Fm = (5.11)

[Amcos (L)] 2 + [msi (L) 2  (5.11)

and
-Bmsin (/mL) (5.12)G = (5.12)

[ AmCOS (fmL)]2 + [Bmsin ( 23L)]2

where

S= 2rneff,m (5.13)A

and
1 - Rm e- 2a m'L

Am =1 - Rme L (5.14)
Tme-aL

-1 + Rme - 2amL
Bm = TeL (5.15)

Tme-aL

When the transmission spectrum is measured experimentally, it is the power, or

transmissivity, that is actually measured. For a single mode, the transmissivity is
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just the square of the magnitude of S21.

IS2112 = F 2 + G2  (5.16)

The transmissivity for two interfering modes can be written out using Equation 5.8.

IS211,2 = (F1 + iGi) + (F2 + iG2) 2  (5.17)

IS21I,2 = j(F1 + F2) + i (Gi + G2 2 (5.18)

-S21 ,2 (F1 + F2) 2 + (G1 + G2)2 (5.19)

IS211,2 = F2 + 2F1F2 + F2 + G2 + 2G 1G2 + G (5.20)

IS21 ,2 = IS21 1 + IS212 + 2 (FIF2 + G1G 2) (5.21)

where |S21 ,2 is the total transmissivity for the two modes and 1S21 j and I$21 ~ are the

transmissivity for Mode 1 and Mode 2 respectively. The actual measured spectrum

is the sum of the spectra for the two individual modes and the cross-product term.

At this point, it is useful to summarize what has been done so far in this section.

It was noted that the Fabry-Perot loss equation yields varying results when applied

to the Fabry-Perot transmission spectrum of a multimode waveguide. In an effort

to understand how the spectrum changes with the addition of a second mode, the

transmissivity was derived for the case of two modes by squaring the sum of the

two individual field (as opposed to power) transmission coefficients. The result of

this derivation is Equation 5.21. This equation was then applied to a waveguide with

parameters similar to those of the ridge waveguide sample used to generate Figure 5-5.

The goal was to obtain a calculated spectrum using this equation that has a similar

shape to the part of the spectrum shown in Figure 5-5c. Through trial and error

parameter selection, this goal was achieved and the calculated spectrum is shown

in Figure 5-11b. Notice the close agreement between the measured and simulated

data. This exercise shows that the measured transmission spectrum corresponds,

at least qualitatively, with the calculated spectrum for two interfering modes with
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Figure 5-11: (a) Measured InP/InGaAsP ridge waveguide transmission spectrum in
which both the Fabry-Perot (short period) and multimode oscillations (-8 nm period)
can be seen. (b) Calculated (with Equation 5.21) transmission spectrum for the same
part of the spectrum as in (a) with a similar shape. This calculated spectrum was
obtained with the following parameters: nff,1 = 3.2, nff,2 = 3.17, lossl = 15
dB/cm, loss2 = 20dB/cm, and a ratio of input fiber power coupled into model to
input fiber power coupled into mode2 of 5:1.
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Transmission Spectrum of a Waveguide with Two Modes

Figure 5-12: Calculated transmission spectrum (labelled Sum) for a waveguide with
two modes shown with the three constituent parts of this spectrum. These three parts
are taken from the right hand side of Equation 5.21 and are the transmissivity for
mode 1, the transmissivity for mode 2, and the cross-product term. This spectrum is
the same as the spectrum plotted in Figure 5-11b.

neff,1 = 3.2, neff,2 = 3.17, loss1 = 15 dB/cm, loss2 = 20dB/cm. It makes sense that

the higher order, lower effective index mode, would have a slightly higher loss than the

fundamental mode. Also, the coupling from the input fiber to the fundamental mode

should be higher than the coupling into the higher order more diffuse mode. However,

Figure 5-11 is not meant to imply that these parameters are the exact parameters

that existed in the measured waveguide.

The next step is to see if there is a way to extract the known fundamental mode

propagation loss of 15 dB/cm from the simulated spectrum of Figure 5-11. The idea

is that if this can be done, the same method could be applied to the measured data

to extract the propagation loss of the fundamental mode for the actual measured

waveguide. The calculated spectrum of Figure 5-11b is plotted in Figure 5-12 along

with the three terms on the right hand side of Equation 5.21, which summed together,

make up the spectrum of Figure 5-11b.

To determine the mode loss using the single-mode Fabry-Perot loss equation

(Equation A.11), one must extract the Model and Mode2 signals from, Sum, the
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signal that is actually measured. The actual parameters that must be extracted

are A,, A2, Pag,1, and Pavg,2. These parameters can then be used to calculate the

peak-to-valley ratio for each mode as

Pavg,m + Am
K = Pvg,m - Am (5.22)

This peak-to-valley ratio parameter, K, is the parameter that is required in Equation

A.11.

At the maximum of the cross-product term, the individual mode transmissivity

spectra are in phase with each other and the cross-product term and all three compo-

nents add constructively. At the minimum of the cross-product term, the individual

mode transmissivity spectra are in phase with each other, but are 1800 out of phase

with the cross-product term. Based on this observation, the following equations can

be written5

Al + A2 + Ac Amax (5.23)

A1 + A2 - Ac = Amin (5.24)

Summing these two equations and dividing by two yields

A -+ A2 = min (5.25)
2

The sum of the average transmitted power for the two modes is equal to the "DC"

offset of the measured signal. This offset is the average of the background long period

oscillation in the measured signal.

(Mazmeas , + (Minmeas - A )Pavg,l + Pavg,2 = (- (5.26)
4

5The proof of these equations follows from the simplification of Equation 5.21, where Fm and
Gm are defined in Equations 5.11 and 5.12.
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Applying Equations 5.25 and 5.26 to the spectrum of Figure 5-11b yields the following,

A1 + A2 = 0.0364 (5.27)

Pavg,1 + Pavg,2 = 0.2756 (5.28)

The sum of the required parameters for the two modes has been extracted. Another

two equations are required to extract the individual parameters for each mode. At

this point, however, an approximation can be made for the case in which there is a

large disparity in the power of the two modes, which can be caused by a disparity

in the propagation loss and/or the input power coupled into the particular mode.

This is assumed to be the case for the two modes contributing to the interference in

the measured spectrum of Figure 5-11. Assuming that both A2 and Pavg,2 are small

relative to A1 and Pavg,1 respectively, they can be ignored in Equations 5.27 and 5.28

above. An approximate calculation of the loss using the standard single-mode Fabry-

Perot loss equation (Equation A.11) with A1 = 0.364 and Pavg,1 = 0.2756 results in a

fundamental mode loss of 15.34 dB/cm. Recall from the caption of Figure 5-11 that

the actual loss for this mode was 15 dB/cm, so this is good approximation. Of course,

in order to use this approximation in the first place, one must be able to assume that

there is a disparity between power of the two modes. This is the case for the two

modes in the measured spectrum.

Waveguide Loss Conclusions

The important final step is to use the above method to find the approximate propa-

gation loss of the fundamental mode of the InP/InGaAsP ridge waveguide based on

the data in Figure 5-11a. The result of this calculation is 9.6 dB/cm. Recall that this

is the loss found at a wavelength of approximately 1570 nm (the wavelength range

of the data was 1570 to 1576 nm). At this wavelength, it is expected that the multi-

quantum well absorption is relatively low and that this propagation loss is due to a

combination of absorption and scattering from the rough wet etched ridge sidewalls.

Earlier in this section, it was determined experimentally that the lowest average
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propagation loss for the silicon oxynitride interconnect waveguides was approximately

7.3 dB/cm. This was for a waveguide width of 1.7 im.

5.3 Gap Measurement Results

Throughout this thesis, there has been much discussion of the effect of the gap between

the etched well edge and the integrated III-V device (shown again in Figure 5-13a).

Figure 5-13b shows the etched gaps in a previously continuous interconnect waveguide.

The measurement of the etched gaps is important as it provides a means to measure

the best case scenario for coupling, as there can be no lateral or vertical misalignment

on either side of the gap given a continuous interconnect waveguide prior to the gap

etch. The etched gaps also allow for control of the gap length so that the effect of gap

length can be measured. Finally, by comparing the results of the measurements of

these gaps with the FDTD simulations, the effect of scattering due to the roughness of

the etched facet can be examined, as this was not modelled by the FDTD simulations.

In other words, it is expected that the measured gap losses will be greater than the

FDTD modelled gap losses by an amount that can be contributed to the rough etched

sidewall. If the measured and simulated values are similar, it can be assumed that

the rough etch does not significantly contribute to the coupling loss.

Figure 5-14 shows the arrangement of the etched gaps. Five different gap lengths

(1-5 Am) were measured, and for each gap length, waveguides with 1, 2, 3, and 4

gaps were fabricated. That is, in total, 20 different waveguides were fabricated with

etched gaps and measured to determine the gap loss for each length.

In addition to these air-filled gaps, gaps filled with silicon rich nitride with an

index of refraction of 2.2 and gaps filled with index matching gel with an index of

refraction of 1.52, were measured. Finally, air-filled gaps in which the waveguide on

one end of the gap is shifted sideways in the wafer plane by 0.45 Am and 0.9 pm were

also measured. The results are shown and discussed in this section.

This section is segmented into three subsections. The first subsection demon-

strates the impact of the presence and location of the gap on the measured trans-
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Silicon Oxynitride
Waveguide Stack

Integrategrated InP
Pill Device I

Random Remnant
Gap Length

Designed Gap
Length

Figure 5-13: (a) Cross-section of an integrated pill where the gap exists because the

well is slightly longer than the integrated InP pill device. The etched facet is created

as a result of the deep well etch. (b) In order to determine the effects of the etched

facet and the gap, the etched gap feature was replicated via a narrow etch (essentially

a very short well). This is the gap to which this section refers.
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i Etched Gap Length

Waveguides

Etched Gaps

Figure 5-14: Illustration of the gap layout. The transmission through each waveguide
was measured in succession and the measurements were compared to extract the gap
loss. The details of the gap layout are important because the location of the gap
relative to other gaps and the end facets affects the measured transmission spectrum.

mission spectrum by showing results obtained from a Matlab script that was written

to model the transmission of multiple cavities (see Appendix A for an explanation of

the model that was used and Appendix D for the Matlab code itself).

The second subsection discusses the effect of multi-mode interference on the trans-

mission spectra. This subsection is essentially a reiteration of Section 5.2.2. It is

included to stress that the transmission spectra in this section are affected by both

the multiple gaps and multiple interfering modes.

5.3.1 Multiple Fabry-Perot Cavities

When one or more gaps are etched into a waveguide segment, the entire structure

containing the separate waveguide segments and the gaps contributes to the overall

shape of the transmission spectrum. Take for instance, a 4 mm long waveguide

segment into which a 1 pm gap is etched at the center of the waveguide. This creates

two separate waveguide segments 2 mm in length, separated by the 1 pm gap. Where
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there was one 4 mm Fabry-Perot cavity, there are now two 2 mm long cavities and one

1 pm long cavity. The goal of these gap measurements is to determine the coupling loss

across the gap by comparing the measured transmitted power at a certain wavelength

for 1, 2, 3, and 4 gaps of a given length and then to extract the loss from this data.

The problem is that the multiple Fabry-Perot cavities of varying arrangement for

a waveguide with one gap versus a waveguide with four gaps (see Figure 5-14) can

have very different transmission spectra, and it is misleading to compare measured

transmission values at a single wavelength for waveguides with different numbers of

gaps. Rather, an entire transmission spectrum must be taken so that values can

be taken from comparable parts of the transmission spectrum, rather than at just a

single wavelength.

In addition to the presence of multiple cavities, it is possible to have interfering

modes. While the interconnect waveguides are designed to be single mode, there are

some lossy modes that may result in the presence of mode beating in the measured

spectrum.

In order to model the effects of multiple cavities on the transmission spectrum,

a Matlab script was written to calculate the transmission matrix for a structure of

arbitrary complexity. The input to the script is the number of segments and a set of

parameters for each segment: the index of refraction of the material (or in the case

of waveguides, the effective index of the waveguide mode), the length of the material

segment, and the propagation loss (or gain) of the segment. To model the effects of m

number of modes modes, the input index of refraction of the material and the input

loss are arrays of length m containing the effective index and propagation loss of the

contributing modes. Consequently, the script can handle multiple modes interfering

in an arbitrarily complex structure. The results of this script were discussed in Section

5.2.2. It was used to find the multimode interference patterns in Figure 5-9 and Figure

5-10.

As a first pass in demonstrating the utility of this script, a comparison of the

calculated transmission spectrum for a single mode waveguide with one, two, and

three 5 /um long gaps is shown in Figures 5-15 through Figure 5-17. For each case, the
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Calculated Transmission Spectrum for a 4 mm Long
Interconnect Waveguide with a 5 um Long Air-Gap

0.12r

C

Wavelength (nm)

Figure 5-15: Calculated transmission spectrum for an interconnect waveguide cavity
with one 5, pm gap. The spectrum is purposely shown at a scale at which the individ-
ual oscillations cannot be seen so that the variations over a much larger wavelength
range can be seen. The long range oscillation with a period of approximately 280 nm
is a result of the 5 ptm gap. The two labels show the maximum transmissivity and
the transmissivity at 1550 nm.

total structure length is 4 mm, the effective index of the mode is 1.49, the propagation

loss in the interconnect waveguide is taken to be 10dB/cm, and the propagation loss 6

in the unguided gap segment is taken to be 1dB/pm.

6What really happens in the gap is that there is coupling loss in going from the fundamental
mode of the guide on one end of the gap to the fundamental mode of the guide on the other end of
the gap. The amount of coupling loss depends on the mode spreading in the gap and the overlap of
this spread mode with the interconnect waveguide on the far end of the gap. It is not the case that
this process of mode spreading and then coupling varies exactly exponentially with distance (gap
length). It is not exact, therefore, to model the gap as a medium with the standard exponentially
decaying signal (i.e. a constant loss in dB/cm). However, looking back at the FDTD simulation
results for coupling across a gap, the log of the coupled power is nearly linear, so it is safe to use this
model of ex:ponential decay as an approximation. The given value of 1 dB/pm for the propagation
loss in the gaps is consistent with these FDTD simulations. The goal of this model, after all, is to
quickly gain some insight into the expected shape and magnitude of the transmission spectrum for
these long structures with a varying number of gaps . It would be very time consuming (and most
likely impossible on a standard PC) to model these waveguides and gaps using the FDTD algorithm.
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Calculated Transmission Spectrum for a 4 mm Long
Interconnect Waveguide with Two 5 um Long Air-Gaps

1350 1400 1450 1500 1550
Wavelength (nm)

Figure 5-16: Calculated transmission spectrum for an interconnect
with two 5 ,/m gaps.

waveguide cavity

Calculated Transmission Spectrum for a 4 mm Long
Interconnect Waveauide with Three 5 um Lona Air-GaDs

I! 'm''IIr

1400 1450 1500 1550
Wavelength (nm)

1600 1650 1700

Figure 5-17: Calculated transmission spectrum for an interconnect
with three 5 [pm gaps.

waveguide cavity
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Extracting the Gap Loss

In theory, it should be possible to extract the gap loss from the transmission spectra

for the waveguides with one, two, and three 5 pm gaps shown in Figures 5-15, 5-16,

and 5-17. Because of the resonances, however, one could arrive at the wrong value if

only a small part of the spectrum is examined, or even worse, only a single wavelength

is used. Each of these figures has two labels, one showing the maximum transmissivity

near 1550 nm, and another showing the transmissivity at exactly 1550 nm. The loss

per gap in dB can be extracted using the following equation:

10log ( )GapLoss = l ,) (5.29)
n-m

where n > m and Tmax,n is the maximum measured transmissivity for a waveguide

with n gaps, and Tman,m is the same for a waveguide with m gaps. Using the data

at the maximum of the single gap and double gap, the loss is calculated as 5.013

dB per gap. Using the data from the maximum of the double gap and the triple

gap, the loss is calculated as 5.002 dB. This checks with the input data which was

1 dB/pm for 5 pm gaps, or 5 dB per gap. If only the values taken at exactly 1550

nm were used, the extracted losses would have been 6.03 and 5.38 dB/gap. This

is not an overly significant difference, but a difference nonetheless. It is necessary,

therefore, to take full transmission spectra when measuring the gaps, rather than

just the transmission at a single wavelength. Again, comparisons of the spectra for

the purpose of calculating the gap loss should be made between similar parts of the

spectrum (i.e. compare peaks in one spectrum with peaks in the other spectrum).

The validity of this approach will be examined in Section 5.3.3.

5.3.2 Multi-Mode Interference

After examining, in the previous section, the calculated transmission spectra for

waveguides with gaps, it is clear that the presence of the multiple Fabry-Perot cavities

requires that a wide transmission spectrum be measured, rather than just transmis-
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sion at a single wavelength. In this section, an additional complication is examined.

While the interconnect waveguides are single mode guides, it appears from the mea-

surements that some of the higher order lossy modes or cladding modes are interfering

with the fundamental mode. Even if a waveguide is a single mode guide, it is possible

that for short lengths, depending on the source that excited the fundamental mode

(the tapered fiber in this case) lossy modes could interfere with the fundamental mode

and contribute to the shape of the transmission spectrum.

At this point, it is useful to understand, qualitatively, what effects the shape of

the spectrum when two modes interfere. It has already been mentioned that the

space between the peaks in the spectrum is greater for a shorter waveguide and for

a smaller difference between the effective index of the interfering modes. In Figures

5-18 and 5-19, the effect of relative loss is examined. It is expected that the higher

order modes that are interfering with the fundamental mode are lossy, so it makes

sense to consider two interfering modes where one has a higher loss than the other.

Notice that the interference is weaker for the higher order mode with a higher loss,

but even with a loss of 150 dB/cm, there is a noticeable effect on the transmission

spectrum. This is because the length of the cavity is quite short at 2 mm. The reason

that 2 mm is being considered is that this is the length of the longer segment created

when the gaps are etched in the center of the 4 mm long waveguides.

In the limit that the second interfering mode has an infinitely high loss, the trans-

mission spectrum reduces to that of the case of just one mode 7 as shown in Figure

5-20.

Looking at Figure 5-19, it seems incorrect that a mode with such a high loss

(150 dB/cm) could alter the transmission spectrum so significantly, especially if the

transmission spectrum for only the lossy mode is considered (Figure 5-21). However,

7Actually, the transmission spectrum for a single mode with the given specifications would have
twice the transmissivity of that shown in this Figure. This is a result of the way this spectrum
was normalized. It was normalized so that the maximum transmissivity for the two modes together
would be 1. This means that the power in each mode has been normalized to 0.5. Typically, the
transmissivity is examined for a single mode and all of the power is put into this single mode.
Because it is divided between the two modes in this case and one of the modes has a very high
loss, the maximum transmissivity for the two interfering modes can only be 0.5 (which would be the
extreme case of zero loss in the lower loss mode).
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Figure 5-18: Calculated transmission spectrum for an interconnect waveguide cavity
with two interfering modes.

Two Interfering Modes, 2 mm Long Cavity
neffl = 1.49, neff2 = 1.46, lossl = 10 dBlcm, loss2 = 150 dB/cm

70
Wavelength (nm)

Figure 5-19: Calculated transmission spectrum for an interconnect
with two interfering modes.

waveguide cavity
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Two Interfering Modes, 2 mm Long Cavity
= 1.49, neff2 = 1.46, lossl = 10 dB/cm, loss2 = 1000dBIcm
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Wavelength (nm)

1550 1560 1570

Figure 5-20: Calculated transmission spectrum for an interconnect waveguide cavity
with two interfering modes. The loss of the higher order mode (lower effective index)
is so high that this spectrum is just the same as the spectrum for a single mode.
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Transmission Spectrum for Lossy Mode
neff = 1.46, loss = 150 dB/cm

1500 1510 1520 1530 1540 1550 1560
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1570

Figure 5-21: Calculated transmission spectrum for an interconnect waveguide cavity
with two interfering modes. The loss of the higher order mode (lower effective index)
is so high that this spectrum is just the same as the spectrum for a single mode.

the plotted transmission spectra are of the transmissivity (i.e. power) whereas it is

the field magnitudes that interfere.

By comparing Figures 5-19 and 5-20, it can be seen that in order to extract an

approximate transmissivity for the fundamental mode from a spectrum like that of

Figure 5-19, one can simply take the average value from the spectrum. That is, if the

slowly varying part of Figure 5-19 is removed, the resulting spectrum is very close to

that of Figure 5-20, which is essentially just the spectrum for the fundamental mode

only. This is exactly what was done in Section 5.2 to approximate the propagation

loss of the fundamental mode in the InP/InGaAsP waveguides.
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Transmission Spectrum for Waveguides with
Single Gaps of 5 Different Lengths

1.1

1

0.9

• 0.8

> 0.7

.0 .6
o

1530 1535 1540 1545 1550 1555 1560 1565 1570
Wavelength (nm)

Figure 5-22: Measured transmission spectrum for waveguides with a single air-filled
etched gap. The gap is positioned in the center of a 4mm long, 1.3 Am wide inter-
connect waveguide.

5.3.3 Measured Gap Transmission Spectra and Loss Extrac-

tion

After discussing at length what to expect from the gap measurements, the actual

measurements will now be shown and an average gap loss will be calculated in this

section.

Gap Data

In Figure 5-22, the transmission spectra for waveguides with a single gap of varying

length (1 - 5 /-m) are plotted. Figure 5-23 is a plot of the data for two gaps of

varying length, and Figure 5-24 is a plot of the data for three gaps of varying length.

Within each of these three plots just mentioned, the effect of the gap length can

be seen as the spectrum for each gap length is plotted. Another way of showing the

data is to plot for a given gap length, the transmission spectra for each number of
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Transmission Spectrum for Waveguides with
Double Gaps of 5 Different Lengths

Wavelength (nm)

Figure 5-23: Measured transmission spectrum for waveguides with two air-filled
etched gaps separated by 250 [m. The first gap is positioned in the center of a
4mm long, 1.3 pm wide interconnect waveguide. The second gap is located 250 pm
from the first gap. This is important because the lengths of the segments of intercon-
nect waveguide between the gaps (250 pm) and between the gaps and the end facet
(2 mm and 1.75 mm) are, in addition to the multimode interference, what gives the
measured transmission spectra its signature appearance.
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Transmission Spectrum for Waveguides with
Triple Gaps of 5 Different Lengths

1 um Gap

1530 1535 1540 1545 1550 1555
Wavelength (nm)

1560 1565 1570

Figure 5-24: Measured transmission spectrum for waveguides with three air-filled
etched gaps separated by 250 pm. The first gap is positioned in the center of a 4mm
long, 1.3 /,m wide interconnect waveguide. The second gap is positioned 250 pm from
the first gap, and the third gap is position 250 jm from the second gap.

Transmission Spectrum of Waveguides with
Varying Number of 1 um Gaps

1530 1535 1540 1545 1550 1555
Wavelength (nm)

1560 1565 1570

Figure 5-25: Measured transmission spectrum for waveguides with 1-4 1 pim Gaps.
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Transmission Spectrum for Single Gaps of Varying Lengths

o

0

Tc0

-j
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Wavelength (nm)

Figure 5-26: Comparison of the transmission spectrum for a single silicon-rich nitride
filled gap of varying lengths. For each gap, the gap is positioned in the center of a
4mm long. 1.5 um wide interconnect waveguide. The dip in the transmission spectra
in the vicinity of 1550 nm is due to enhanced material absorption at this wavelength
due to coupling due to incorporated hydrogen in the silicon-rich nitride.
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gaps (i.e. 1, 2, 3, and 4 gaps). This is done in Figure 5-25 for the case of a 1 ym

long gap. Each of these four plots just mentioned is for the air-filled gaps with no

lateral shifting. There is nothing qualitatively different for the case of air-filled gaps

with shifting so they are not shown. The results of the calculations will, however, be

included with the gap measurement results in Section 5.3.3.

A change in the index of the gap filling material, does, however, qualitatively

alter the transmission spectra. In figure 5-26, the measured transmission spectra

for the five different gap lengths for a single gap are shown. The sharp dip in the

spectrum in the vicinity of 1550 nm is not a resonant effect. It is also not affected

by the number of gaps. It is most likely due to enhanced absorption by the silicon-

rich nitride material in the gap at 1550 nm. This silicon-rich nitride material was

not annealed after deposition. This absorption at 1550 nm is typical for PECVD

deposited films such as the silicon-rich nitride used here [48]. When calculating the

gap loss for the silicon-rich nitride gaps, only the 1560-1570 nm part of the spectrum

was used in the calculation to avoid the influence of the dip in the spectrum

Modeling

The features of the data for the double gap measurements and a model that captures

these features will now be discussed. The prominent features of the double gap data

(Figure 5-23) are the result of the arrangement of the gaps along the waveguide as

shown in Figure 5-27. The periodicity on the order of 3-4 nm comes from the 250 /m

section between the gaps. The finer periodicity (which is difficult to see at this scale)

comes from the two longer sections. The period on the order of 40 nm arises from

the interference of two modes. Recall that Figure 5-16 was a plot of the transmission

spectrum based on the T-matrix Matlab script for the waveguide and gaps. The scale

was quite different for that plot and only one mode was included in the simulation.

Shown here in Figure 5-28 with two interfering modes and at a scale that shows the

similarity between the modelled spectrum and the data is the calculated results for

two 5 Im gaps shown alongside the measured data for the same gap arrangement.

The simulation results were multiplied by a fitting factor for ease of comparison with
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Figure 5-27: Illustration showing the arrangement of the two gaps for the simulated
and measured data shown in Figure 5-28.

the measured data. This factor just normalizes the input power of the modelled data

to that of the measured data and doesn't alter the shape of the modelled spectrum.

The qualitative and approximate quantitative similarity between the model and

the data implies that the model is capturing the fundamental elements that are con-

tributing to the shape of the measured spectrum, namely that there is a higher order

lossy mode that is indeed interfering with the fundamental mode. The effective

indices listed in the caption for Figure 5-28 are very well matched to the actual ef-

fective indices present in the measured waveguides because these values are based on

the separation between the interference peaks (this gives the difference between the

two effective indices) and the "faster" Fabry-Perot oscillation period (which gives the

absolute effective index for the fundamental mode). The given propagation loss for

the fundamental mode of 10 dB/cm is approximate, but is based on the data from

Section 5.1.2. The given propagation loss for the higher order mode could be different

than the actual value as a lower propagation loss and a lower power relative to the

fundamental mode would result in a simulated plot similar to that shown in Figure

5-28.

Gap Loss Calculation

Figures 5-23 and 5-24 show the data for all of the gap lengths for double and triple

gap arrangements respectively. For the double, triple, and quadruple (not shown) gap

data, there are four different characteristic oscillations. The shortest period oscilla-
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Figure 5-28: Comparison of the simulated and measured transmission spectrum for
a waveguide with two 5 pm long air-filled gaps. This simulated results are from the
T-matrix Matlab model for a waveguide with two gaps with two interfering modes.
The parameters for the modes are neff,1 = 1.49, neff,2 = 1.478, a1 = 10dB/cm,
a 2 = 55dB/cm. The initial excited power ratio for the two modes is 1:1.
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Gap Loss Extraction Error for Three Methods
Based on Calculated Spectra
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Figure 5-29: Extracted gap loss error for three different methods.

tions are due to the 2 mm long waveguide sections. The more prominent oscillations

with a period on the order of 3-4 nm are due to the 250 pm long sections between

the gaps, while the 35-40 nm period is due to mode interference. Finally, the gaps

themselves contribute oscillations with a period of over 250 nm. With all of this

structure, it is important to determine what points in the various spectra to use as

the comparison points. To do this, one could extract the gap loss from the from the

equations used in the model for the transmission spectrum for multiple Fabry-Perot

cavities with two mode interference. This would be difficult at best. Instead of doing

this, three different methods were employed to extract the known gap loss from the

calculated spectra. The extracted gap loss was then compared with the known input

gap loss and the error was recorded. The results of this exercise are shown in Figure

5-29. For each method, there are three parts to extracting the gap loss. First, for a

given gap length, the five transmission spectra corresponding to 0, 1, 2, 3, and 4 gaps

were calculated for two interfering modes using the Matlab script with the same pa-

rameters that were used in Figure 5-28. The propagation loss in the gap was assumed

189



to be 1 dB/[Lm which was based on the FDTD simulation results. The wavelength

range for these spectra was the range of exactly one period of multimode interfer-

ence (40 nm). The next step was to find the mean and the maximum transmissivity

for each of the five spectra. Finally, for each gap length, the mean transmissivity

was compared with the mean transmissivity for the next shortest gap length (Mean,

Nearest Length in the figure). Also, the mean and maximum transmissivity were

compared with the same value for the spectrum with no gaps (labelled Mean, No

Gap and Max, No Gap respectively). As the data shows, Max, No Gap yielded the

closest values. However, this method was not used to extract the gap loss from the

actual measurements. This is because it is based on a single value, the maximum

in the signal. Due to noise in the measured signal, it was possible that this method

would actually lead to a greater error than shown here. Consequently, the Mean, No

Gap method was used. This is based on an average value for the entire spectrum. It

should be mentioned that the extracted loss for this method was always greater than

the actual loss, so it can be considered a maximum value for the gap loss.

Gap Loss Calculation Results

At the beginning of this subsection, Section 5.3.3, the measured gap data was shown

for air-filled gaps and for silicon-rich nitride filled gaps. It was mentioned that mea-

surements were also taken for air-filled gaps with a lateral shift of 0.45 pm and 0.9

pm, but that there was no qualitative difference between this data and the unshifted

air-filled gaps so that data was not shown. The results for all four types of gaps is

shown in Figure 5-30 based on the application of the Mean, No Gap method.

Notice that the high-index gap fill results in the lowest coupling loss as theorized.

Recall that this was theorized to be the result of a reduction in mode spreading for

unguided propagation in a high index material. This effect is confirmed in the plot

not only by virtue of the fact that the loss is lower for each gap length for the high

index gap fill relative to the air-filled no shift gap, but that the amount by which it

is lower is, on average, increasing for an increasing gap length. This confirms that

the lower loss is indeed a gap length dependent effect, as would be expected for a
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Figure 5-30: Gap loss in dB extracted from the gap measurement results. The gap
loss for four different types of measured gaps was calculated.

decrease in mode spreading over the length of the gap.

Owing to the nonlinear distribution (approximately gaussian) of the power in the

cross-section of the radiated mode in the gaps, a lateral shift of 0.9 pm results in a

deviation of the loss from perfect alignment by more than twice the deviation of the

loss from perfect alignment for a lateral shift of 0.45 /tm.

The shifted data demonstrates another effect. The greater the gap length, the

less the deviation of the loss from the case of no shift. That is the difference between

the no shift and the 0.9 pm shift or the no shift and the 0.45 pm shift is smaller

at a gap length of 5 [pm than at a gap length of 1 pm. This can be explained as

follows. The explanation for the greater gap loss at a greater gap length is that

the propagating wave is unguided in the gap and, consequently, spreads, distributing

the power over a greater area. This results in a weaker overlap with the waveguide

facet after propagating through the gap. Therefore, at a gap length of 5 pm, the

propagating mode is wider than it was at a gap length of 1 pm. For the purpose

of this illustration, it will be assumed that after propagating 1 pm through the gap,

the unguided wave perfectly overlaps with the fundamental mode of the waveguide
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at the end of the gap. After propagating 5 pm, the mode has spread more and no

longer perfectly overlaps with the fundamental mode of the waveguide at the end of

the gap. These two cases are illustrated in Figures 5-31a and 5-31b respectively.

Now imagine that the waveguide at the front side of the gap has been shifted

laterally 0.9 pm relative to the waveguide at the end of the gap. The same set of

plots in the unshifted case in Figure 5-31 is shown in Figure 5-32 for this shifted case.

Notice that the 0.9 pm lateral shift has affected the overlap of the wave having

propagated 1 pm in the gap (heretofore called the narrow field) more than the wave

having propagated 5 pm in the gap (heretofore called the wide field). The shift

changed the narrow mode overlap from 1.0 to 0.82, and the wide mode overlap from

0.77 to 0.74. A more complete way to show the affect of shifting on the overlap is to

plot the convolution of the narrow field with the fundamental waveguide mode and

the convolution of the wide field with the fundamental waveguide mode. The overlap

integral for two field profiles A(x) and B(x) is

f A (x) B ()dx
PA,B = (5.30)

P /f A 2 (x) dx f B 2 (x) dx

The convolution integral normalized by the power of the two fields is

f A(u)B (x - u)du
CA,B( f A2 (x)dx f 2 (x)dx(5.31)

Notice that the value of this normalized convolution integral for some x, is noth-

ing other than the overlap integral in which B has been shifted by an amount x.

Consequently, plotting the convolution integral as a function of the displacement, x,

gives the overlap integral as a function of the shifting, x, of one mode relative to the

other. Figure 5-33a is a plot of the convolution of the fundamental waveguide mode

with the narrow field and the convolution of the fundamental waveguide mode with

the wide field.
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Figure 5-31: (a) Electric field profile of the unguided wave after 1 Ym of propagation
in the gap, the fundamental waveguide mode (these two profiles are sitting directly
on top of one another) and the product of the two profiles. The profiles have been
normalized for unity power. The area under the overlap (i.e. integral of the product of
the two profiles) is unity for perfect overlap. (b) Electric field profile of the unguided
wave after 5 pm of propagation in the gap, the fundamental waveguide mode and the
product of the two profiles.
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Figure 5-32: (a) Electric field profile of the 0.9 pm laterally shifted unguided wave
after 1 pm of propagation in the gap, the fundamental waveguide mode and the
product of the two profiles. (b) Electric field profile of the 0.9 Ptm laterally shifted
unguided wave after 5 1am of propagation in the gap, the fundamental waveguide
mode and the product of the two profiles.
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Convolution

Lateral Shift

Convolution

-1 -0.5 0 0.5 1
Lateral Shift

Figure 5-33: Convolution of the fundamental waveguide mode with the narrow field
and the fundamental waveguide mode with the wide field. (a) Zoomed out. (b) Close-
up showing that the values of the convolution integral at 0 pm shift and at 0.9 pIm
shift are indeed the values calculated using the overlap integral, Equation 5.30, as
shown in Figures 5-31 and 5-32. Notice that the 0.9 pim shift affects the narrow field
more so than the wide field.
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Notice in Figure 5-33b, that at a shift of approximately 1.2 pm , the value of

the wide field overlap is larger than that of the narrow field overlap. This analysis

demonstrates the trade-off between efficient coupling and sensitivity to misalignment.

Maximizing the coupling efficiency for perfect alignment would not yield the best

results on average if the average misalignment were greater than 1.2 pm.

Extracting the Facet Scattering Loss

The measured results can now be compared with the results from the Finite Difference

Time Domain (FDTD) simulations to extract the loss due to scattering at the rough

facets. The simulation results are shown in Figure 5-34. Looking back at Figure

5-30, there is on average, a difference between the measured and simulated loss on

the order of 1 dB, which is a factor of about 0.8. It is likely that this difference in

loss is a result of scattering at the rough etched interface. Notice too that there is

qualitative agreement between the measured and simulated data. The lowest losses

are seen with the high index gap fill.

Gap Loss Section Summary

In this section, a model for the transmission spectra for a varying number of gaps

of varying length was developed taking into account the effect of the multiple gaps

and multi-mode interference. The measured gap transmission spectra were shown for

air-filled gaps and silicon rich nitride filled gaps. The model for the gap transmission

spectra was compared with the measured transmission spectrum for the case of a

waveguide with two air-filled gaps with good qualitative agreement. Three methods

for extracting the gap loss from the measured transmission spectra were developed

and were tested using calculated data. This involved calculating the transmission

spectrum for a given gap loss using the model. The three methods were then used

to extract the gap loss from the calculated spectrum and this number was compared

with the known gap loss. The second best method in terms of calculation error was
8The exact numbers presented here were chosen to exaggerate the effect of shifting on the coupling

for the purpose of the illustration. This is not meant to imply that a shift of 1.2 pm for these
waveguides would have resulted in a lower gap loss for a 5 pm gap than a 1 /pm gap.

196



Simulated Gap Loss
2.5

2

*" 1.5

U,
o 1

0.5

0

Figure 5-34: Gap loss in dB extracted from the gap measurement
loss for four different types of measured gaps was calculated.

results. The gap

chosen because it was based on an average over the entire measured spectrum rather

than the transmissivity at a single wavelength.

The method was then used to calculate the gap loss from the measured spectra.

The lowest gap loss was achieved for the silicon-rich nitride filled gaps. At 5 pm,

the gap loss was less than 2.5 dB. While shifting the waveguides relative to one

another increased the gap loss, it was seen that at the longer gap lengths, the effect

of shifting was reduced. This was shown to be a result of mode spreading. This effect

showed that there exists a tradeoff between maximum coupling efficiency and reduced

sensitivity to lateral shifting.

Finally, the measured gap loss was compared with the FDTD data. There was

good qualitative agreement. The quantitative difference between the measured gap

loss and the FDTD simulated gap loss was attributed to scattering loss at the rough

etched facet. Based on this assumption, the two facets combine on average for an

additional 1 dB of loss.
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5.4 Isolated InP/InGaAsP Pill Device Measure-

ments

In order to characterize integrated InP/InGaAsP pill devices,it was useful to first

examine the devices in isolation, outside of the wells in which they were to be inte-

grated. Not only does this remove the influence of the surrounding gap and inter-

connect waveguides on the transmission spectrum, but it allows for the devices to be

examined with optimum input and output (fiber) alignment. Going a step further,

one can examine the effects of shifting the input (fiber) vertically or laterally relative

to the optimum alignment position.

5.4.1 Isolated Pill Mounting and Initial Measurements

To accomplish this isolated measurement, devices were mounted on the back edge

of a razor blade with adhesion provided by an epoxy. The razor blade was chosen

because it is both rigid and narrow. The back part of a razor blade is only 250 Am

thick. This was the perfect thickness because the devices are 300 Am in length. This

extra 25 1 m overhang per end facet guarantees that the input and output fibers can

be brought right up to the device facet.

In addition to the standard length 300 Am device, a 900 Am long device was

measured. Being able to compare the spectra for two devices allows for the removal

of length dependent features. The longer device also has a greater length over which

to "filter out" cladding modes that might interfere with the measured spectrum.

The measured transmission spectrum for an isolated 300 pm long pill waveguide

is shown in Figure 5-35. Compare this with the measured spectrum for a 930 Am

long pill waveguide shown in Figure 5-36. Notice that the peak value for both spectra

is nearly the same. This is most likely the result of a better facet or better input

fiber alignment for the 930 Am device measurement. Given identical coupling into the

device, the longer device would have a lower output coupled power than the shorter

device. So it is likely that more power was coupled into the longer device (or at
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Measured Transmission Spectrum of an Isolated 300um Long
InP/InGaAsP Ridge Waveguide Pil
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Figure 5-35: Measured transmission spectrum for an
InP/InGaAsP ridge waveguide pill.

isolated 300 pm long
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Measured Transmission Spectrum for a
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Figure 5-36: Measured transmission spectrum for an
InP/InGaAsP ridge waveguide pill.

isolated 930 ym long
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least more of the power was coupled into the fundamental mode of the longer device

than for the shorter device) . Another obvious feature is the difference between

the transmitted power in the shorter wavelength range with respect to the longer

wavelength range. This was seen in the transmission spectra for the long "bulk"

ridge waveguides measured in Section 5.2. This is due to higher absorption in the

multi-quantum well region at shorter wavelengths, with a pronounced transition from

higher to lower absorption when increasing beyond wavelengths of approximately 1520

nm. Notice that this transition is more pronounced in the longer pill where there is a

greater length over which to absorb the lower wavelength light. For this same reason,

this transition is pronounced even more still when looking back at the transmission

spectrum of the long "bulk" ridge waveguide in Figure 5-5.

The fact that the lower wavelength transmission is so high for the shorter pill is

likely also related to the poorer input coupling to the fundamental mode as suspected

above. If the light is coupled less efficiently into the fundamental mode of the shorter

device (for whatever reason, be it a poor facet, operator error, etc.) manifesting itself

in a lower output signal relative to the longer pill at the longer wavelengths where

the MQW absorption is lower, this would further contribute to the relatively high

output power measured at shorter wavelengths. This is because poor coupling to

the fundamental mode implies that more of the light is coupled into cladding modes.

These cladding modes are distributed throughout the thickness of the pill so they

don't have as high of a MQW absorption loss as the fundamental mode which is

concentrated in the quantum well region.

Figures 5-37 and 5-38 show the profile for a TE cladding mode of the InP/InGaAsP

pill ridge waveguide structure. Notice that the peaks of this mode fall outside of the

MQW core. As it is difficult to excite only the fundamental mode of the structure

with a tapered input fiber, the presence of modes such as this TE20 mode must be

considered in the analysis of the isolated and integrated measured pill spectra.
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,Core: Absorbing MQW Region

Ex

0. 6

0.4
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0.C
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-0.4

Figure 5-37: Side view (substrate is to the left, the top of the device is to the right)
of the vertical cross-section of TE20 mode profile for the InP/InGaAsP pill ridge
waveguide. The black mode is the vertical cross-section of the mode taken in the
center of the ridge, while the white mode is taken outside of the ridge. Notice that
the peaks of the mode under the ridge (the black mode) fall outside of the absorbing
MQW core. If excited, this mode would propagate with less MQW absorption loss
than the fundamental mode.
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Figure 5-38: Cross-section of the (a) TE20 mode for the InP/InGaAsP pill ridge
waveguide. While it is more difficult to see than in Figure 5-37, the mode peaks fall
outside of the core. This is compared with the cross-section of the (b) TEOO mode,
the peak of which is aligned with the core.
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Multimode Interference

Another obvious feature of Figures 5-35 and 5-36 is the long period oscillations on

the order of 30 nm and 10 nm for the 300 /Lm long pill and the 930 ,Im long pill

respectively. Taking into account the period of the "fast" oscillations (Fabry-Perot

resonance), which give the absolute effective index, and modelling the long period

oscillations as the interference of two modes, which is a function of the difference of

the effective index of the two modes, the effective indices of the two interfering modes

are approximately 3.2 and 2.95. As said before, this is not meant to imply that there

are only two interfering modes. Rather, this is an effective range. There are modes

with effective indices that are lower than 2.95, but this is the point at which the

modes become more lossy or are weakly excited by the input fiber.

Referring again to Figure 5-37, the InP cladding which makes up the bulk of the

InP/InGaAsP ridge waveguide material, can be thought of as the core of a multimode

waveguide where the cladding is the surrounding air. The effective indices of the

higher order modes of this waveguide are very close to 1.0, the refractive index of

the air-cladding. The overlap of these modes with the input fiber would be low but

nonzero. As mentioned in the previous section, these higher order modes have a small

overlap with the quantum wells in the core, and would, therefore, see little wavelength

dependent loss. The existence of these modes explains the nonzero transmissivity for

the shorter wavelength spectral range in the 300 im long isolated pill transmission

spectrum of Figure 5-35.

5.4.2 Vertical Shift Misalignment Measurements

One of the benefits of examining an isolated pill is the ability to shift the input fiber

vertically away from perfectly centered alignment with the waveguide to examine the

effect that vertical misalignment has on the pill transmission spectrum properties. If

there are any notable differences between the spectrum for perfect alignment and the

shifted spectra, this would provide a misalignment indicator that would be useful in

characterizing the integrated pill transmission spectra.
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Figure 5-39: Vertical cross-section of the TE00 mode and the TE19-0 mode for the
isolated InP/InGaAsP pill ridge waveguide taken at the center of the ridge waveguide.
The overlap of this and other higher order modes with the tapered fiber input is small
relative to the overlap with the TE00 mode.

Shown in Figure 5-40 are the transmission spectra for the isolated 300 pm long

pill with the input fiber perfectly aligned, and shifted vertically towards the lower

cladding of the pill waveguide in increments of 1 pm. The data shows the expected

decrease in measured transmitted power as the input fiber is lowered.

In Figure 5-41, the maxima of the spectra in Figure 5-40 in the range of 1500 nm

are plotted versus the fiber shift. The data from the measurements for the negative

vertical shift was repeated for a positive vertical shift. This data was then fit with

a spline curve. An ellipse was drawn with a width equal to the width of the curve

at e- 1 of the maximum point. This width, - 3.5pm is very close to the reported 2.5

± 0.5 pm spot size of the tapered fiber used as the input for these measurements.

The reason that the data was presented this way is to show that the variations in the

spectra of Figure 5-40 for the different input fiber offsets are the result of a reduction

in the overlap of the input fiber with the ridge waveguide.

It does appear, however, that shifting the input fiber does not simply scale the

spectra. Looking at Figure 5-40, comparing the shape of the no shift spectrum with
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Transmission Spectrum for an Isolated 300um Long InP/InGaAsP Pill
With the Input Fiber Shifted Vertically (lower cladding direction)
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Figure 5-40: Measured transmission spectra for a 300 pm long isolated InP/InGaAsP
ridge waveguide pill. The input fiber has been shifted vertically towards the lower
cladding of the pill in 1 pm increments.

1.2

-3 -2 -1 0 1
Fiber Shift (um)

2 3 4

Figure 5-41: The measured data in this plot are the maxima taking in the vicinity
of 1500 nm from the data in Figure 5-40 for a input fiber vertical shift of 0, -1, -2,
-3, and -4 pm (not shown in Figure 5-40). The data shown for 1, 2, 3, and 4 /m are
just a repeat of the data for a shift of 1 /m through 4 pm. The data was fit with a
spline curve. The width of the ellipse is the width of the curve at e- 1 of the maximum
point.
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the 2 pm shift spectrum in the vicinity of 1540 nm, there is clearly a difference.

This difference is the result of a different excitation of the various modes of the ridge

waveguide pill.

Also notice the shift of the local max and min points in the spectrum by about 10

nm from the no shift spectrum to the 3 jim shift spectrum for the shorter wavelengths.

The absolute max, however, did not shift from a wavelength of about 1570 nm for

each spectrum. A possible explanation, although admittedly speculative, is that the

shifting is the result of a slight change in the effective indices of the modes (or the

weights of the modes) that are contributing to the multimode interference. At the

longer wavelengths, interference involving the core modes dominates regardless of the

position of the input fiber.

Finally, the ratio of the absolute max (at 1570 nm) to the first local max (near

1460 nm) is 2.2 for the no shift spectrum and 1.2 for the 3 im shift spectrum. This

implies that more of the power is distributed in modes that have less of an overlap

with the quantum wells for the 3 pm shift spectrum compared with the no shift

spectrum. That is, as expected, more cladding modes are excited as the input fiber

is shifted down towards the lower cladding.

Summary: Isolated Pill Measurements

The transmission measurements for the isolated pill are useful in that they permit an

inspection of the transmission spectra without the confounding effects of the inter-

connect waveguides, the gaps, and the misalignment, all of which are present in the

transmission measurements for integrated pills. The measurements showed that for

these short 300 jm pills, the spectrum looks quite different than it did for the nearly

1 cm long "bulk" samples discussed in Section 5.2. The absorption edge is not as

pronounced because there is less length over which to absorb the core guided modes.

This is important information for the analysis of the integrated pill measurements

in the subsequent section. It means that a lack of a sharp absorption edge does not

necessarily imply that the pill is not well aligned.
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5.5 Integrated InP/InGaAsP Ridge Waveguide Pill

Measurements

The ultimate goal of this work is to demonstrate and measure coupling between

interconnect waveguides and integrated InP/InGaAsP ridge waveguide pills. This

section details the results of the measurements on integrated pills and compares these

measured results with the expected results based on FDTD simulations. Throughout

this work, approximately 30 InP/InGaAsP ridge waveguide pills were integrated in

wells using the micropipette pick-and-place integration tool described in Chapter 4.

This gives an indication as to the complexity or difficulty of the pill integration task.

It was not something that could easily be done hundreds of times by a single person,

but it was not so involved that it could only be done a few times. The majority of

these approximately 30 integrated pills were used to characterize the pick-and-place

process. This section deals with 6 integrated pills, in particular, that were integrated

specifically for taking transmission measurements to determine the coupling efficiency.

5.5.1 Details of the Experiment

These pills were integrated in wells located in the center of a 4 mm long silicon

oxynitride interconnect waveguide. The dimensions of the waveguide were 0.7 /m

thick by 1.7 pm wide. The index of refraction of the core was 1.6 and the cladding

was silicon dioxide with an index of 1.45. These were the parameters which yielded

the highest coupling efficiency based on the FDTD simulations of Chapter 3. The

approximate dimensions of the pills were 145 pm wide by 300 /tm long. Each of the

six wells into which these pills were integrated was 150 Ium wide and the length varied

from 307 to 312 pm. Figure 5-42 shows one of the pills integrated in the 312 /.m long

well. As discussed in Chapter 4, while future generations of integrated pills will be

held in place in the well by the lower contact bond, these pills were simply held in

place by gravity and possibly weak electrostatic forces. Once the six pills were placed

in the wells, transmission measurements were taken for each of the six pills over the
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Figure 5-42: Photomicrograph of an InP/InGaAsP ridge waveguide pill integrated in
a well etched into the interconnect waveguide stack.
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full wavelength range of the input tuneable laser, 1440 to 1580nm.

5.5.2 Results

Three of the six measured transmission spectra are shown in Figure 5-43. These three

spectra are a good representation of the six measured spectra. Of the six integrated

pills, the pill integrated in the 312 Am long well had the highest transmitted power as

seen in Figure 5-43a. The transmission spectrum shown in Figure 5-43b was for the

310 Am long well, but is very similar to what was seen for the 308 Am long well. The

coupling loss at long wavelengths is about 3 dB higher than for the pill integrated

in the 312 Am long well. In the shorter wavelength range, the transmitted power is

higher than for the pill in the 312 Am long well. Very little transmission was seen

for the other three integrated pills. Figure 5-43c is the spectrum for the 311 Am long

well, and it is very similar to what was seen for the pills in the 307 and 309 Am long

wells. Notice that the maximum on the y-axis for this plot is 10 times that of the

other plots.

Pill Alignment in the Wells

Microphotographs of both interfaces for each of the six integrated pills were taken to

see if there was any visibly noticeable difference between the alignment of the pills

with measurable transmission as versus those with immeasurable transmission. These

images were quite informative. The images for the pill integrated in the 312 Am long

well are shown in Figure 5-44. The left gap length seen in Figure 5-44b was measured

at 7.9 Am long. The right gap (seen in Figure 5-44c) length was measured at less

than 1 Am. The lateral alignment looks very good for the right facet. The left facet

is shifted by about 1.5 Am relative to the interconnect waveguide.

Compare these images with the images of the left and right facet for the pill

integrated in the 310 Am long well. This was another case in which transmission was

measurable. The peak measured transmission power was about 3 dB lower than for

the pill in the 312 Am long well. Notice that the gap lengths are similar to the case
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Transmission Spectrum for 300um long InPllnGaAsP
Pill in 4mm long SION Waveguide
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Figure 5-43: A comparison of the transmission spectra for three of the six integrated
pills. These three spectra are a good representation of what was seen. (a) The
transmission spectrum for the integrated pill with maximum transmission. This was
for the pill in the 312 ,im long well. (b) Transmission spectrum for the integrated pill
in the 308 jm long well. (c) Transmission spectrum for the pill in the 311 pm long
well. 211
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(a)

(b)

(c)

Figure 5-44: Photomicrographs of the integrated pill with the highest transmission.
(a) Entire pill, (b) Left facet, (c) Right facet. The left gap is approximately 7.9 pm and
the left facet is shifted approximately 2 [im laterally. The right gap is approximately
1.5 pm and the right facet is shifted approximately 0.5 pm.
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(a)

(b)

Figure 5-45: (a)
waveguide pill in

Left and (b) Right facets of the integrated InP/InGaAsP ridge
the 310 pm long well.
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for the 312 pm long well, with the longer gap about 2.5 pm shorter. However, in this

case, the shorter facet with the shorter gap was not aligned as well as the facet for

the shorter gap of the pill in the 312 pm long well (Figure 5-44c). Recall from the

analysis resulting in the plots shown in Figure 5-33 that a lateral shift across a very

narrow gap incurs more additional loss than the same lateral shift across a longer

gap. For the pill in the 312 pm long well, the shifted facet was the facet with the

longer gap. The lateral shift of the facet with the very short gap was immeasurable.

In Figure 5-46, photomicrographs of the facets for the pill in the 311 pm long well

are shown. The right facet looks good, but the left facet looks almost too good to be

true. Notice that the interconnect waveguide stack is out of focus, more so than for

the images in Figure 5-44 or 5-45. It is believed that this pill was not actually sitting

down in the well, which is why the transmission was immeasurable.

Finally, the facets for the pill in the 309 pm long well are shown in Figure 5-47.

The reason for the immeasurable transmission is quite clear.

5.5.3 Transmission Spectrum Analysis

The transmission spectra for pills in the 308, 310 and 312 pm long wells have the

characteristic shape of higher transmissivity at longer wavelengths, implying that

the transmitted light has propagated through the multi-quantum well core. The

periodicity in the spectrum is most likely the result of mode interference as seen in

the spectra for the isolated pills. A higher resolution transmission spectrum of the pill

in the 312 pm long well is shown in Figure 5-48b along with a copy of the spectrum

which was already seen in Figure 5-43a. As seen many times before, the oscillation

with a period on the order of 3 nm is the Fabry-Perot resonance of the 300 pm long

pill. The longer period oscillation is consistent with the mode interference that was

seen in the transmission spectra of the isolated 300 pm long pills.

The one significant difference between the measured spectrum for the pill in the

312 pm long well and the isolated pill of Figure 5-35, (see the comparison in Figure

5-49 is the long wavelength to short wavelength peak transmitted power ratio. This

ratio is significantly higher for the integrated pill. This is partly due to the difference
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(a)

(b)

Figure 5-46: (a) Left and (b) Right facets of the pill integrated in the 311 Atm long
well. Notice that the waveguide stack is out of focus, more so than in Figure 5-45. It
is believed that the very weak transmission through this pill was the result of vertical
misalignment, as implied by the waveguide stack being out of focus.
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Figure 5-47: Left facet was broken during handling. The undetectable signal is clearly
a result of facet scattering loss.
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Figure 5-48: Best transmission results for an integrated pill:
Detail of the longer wavelength portion of the spectrum.
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Transmission Spectrum for 300um long InP/lnGaAsP
Pill in 4mm long SiON Waveguide
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Figure 5-49: Comparison between the measured transmission spectrum for (a) the
pill integrated in the 312 im long well and (b) an isolated 300 /Im long InP/InGaAsP
ridge waveguide pill.
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in the profile of the wave that is incident on the front of the isolated pill and the wave

incident on the front of the integrated pill. Recall, of course, that the isolated pill

was measured with the input fiber and the output fiber right next to the input and

output facets of the pill. The lateral wave profile of the input lensed fiber is certainly

different than the profile of the wave emitted from the etched facet of the interconnect

waveguide at the edge of the well. Given the larger profile of the lensed fiber relative

to the interconnect waveguide facet, more of the cladding modes (the loss of which is

less wavelength dependent than the core modes) would be excited for the isolated pill

than the integrated pill. This would be consistent with the higher long wavelength

transmission to short wavelength transmission ratio for the integrated pill.

Polarization Sensitivity

Another effect that should be taken into consideration is the polarization depen-

dent loss for the interconnect waveguides and the InP/InGaAsP ridge waveguides.

In all of the transmission measurements, the polarization controller9 was adjusted

to maximize the transmission. That is, each time the interconnect waveguides or

the isolated pills were measured, the polarization controller was adjusted until the

voltage on the lock-in amplifier was maximized. This was always done at or near a

wavelength of 1580 nm. It is likely that the polarization for maximum interconnect

waveguide transmissivity is different from the polarization at which the transmissivity

is a maximum for the InP/InGaAsP ridge waveguides. The result would be that even

for perfect coupling between the interconnect waveguide and the integrated pill, the

measured transmission loss would be higher than what would be expected based on

the measurements for the isolated interconnect waveguide and the isolated pill.

To investigate this effect, transmission spectra were taken for polarizations co-

inciding with maximum and minimum transmission for the interconnect waveguides

(Figure 5-50), the isolated 300 pm long pills (Figure 5-52), and for the pill integrated

in the 312 pm long well (Figure 5-52). Notice that for the polarization corresponding

9The polarization controller is a series of three paddles through which a fiber is run. By rotating
the paddles stress is placed on the fiber, altering the polarization of the emitted light.
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Silicon Oxynitride Interconnect Waveguide Transmission Spectrum
Polarization Controller Set for Max vs Min Transmisson
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Figure 5-50: Interconnect waveguide transmission spectra. Comparison between the
transmission spectrum for a polarization corresponding with maximum transmission
and the transmission spectrum for a polarization corresponding with minimum trans-
mission.

with minimum transmission at a wavelength of 1580 nm in Figure 5-52, the transmis-

sion is higher at the shorter wavelengths than it is for the polarization corresponding

with maximum transmission at 1580 nm. In fact, for the mid wavelength range (1460

- 1540 nm) the spectrum for polarization for minimum transmission at 1580 nm re-

sembles the transmission spectrum for the isolated pill (Figure 5-35). In Figure 5-53,

these two spectra are compared, where the isolated pill spectrum has been scaled for

a better comparison and it has been shifted1 o by approximately 10 nm.

It would seem from this figure that the polarization that gave the highest trans-

mission for the integrated pill at a wavelength of 1580 nm, was a polarization for

which the polarization dependent loss in the surrounding interconnect waveguides

was higher in the mid wavelength range than the higher wavelength range. It ap-

pears that neither of the spectra in Figure 5-50 for the interconnect waveguides has

1 0When the spectrum is dominated by multimode interference, shifting the spectrum by about
10 nm corresponds to shortening or lengthening the pill by 1.5 Im. As the integrated pill and the
isolated pill were not the same length and could have easily differed by 1.5 4m, this shifting is
justified.
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Single PIll Transmission Spectrum
For Varying Input Polarizations

1460 1480 1500 1520 1540
Wavelength (nm)

1560 1580

Figure 5-51: Transmission spectra for essentially two different polarizations. One
polarization maximizes the transmissivity at 1580 nm, the other polarization results in
the minimum transmission at 1580 nm. The polarization for maximum transmissivity
at 1440 nm is essentially the same as the polarization for minimum transmissivity at
1580 nm and vice versa (as shown in the plot).

Transmission Spectrum for Pill in 312 um Well
Polarization Control Set for Max vs. Min Transmission

x 10-3

Wavelength (nm)

Figure 5-5'2: Transmission spectrum for the pill in the 312 pm long well with the
polarization set for minimum transmission at 1580 nm compared with the spectrum
with the polarization set for maximum transmission at 1580 nm.
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Figure 5-53: Transmission spectrum for the pill in the 312 pm long well with the
polarization control set to a minimum, compared with the shifted, and scaled trans-
mission spectrum of the isolated 300 p/m long pill.

this characteristic. However, it is possible that for some other polarization, the spec-

tra for the interconnect waveguides would have this characteristic. Based on the small

change in the spectrum for the isolated pill for the two polarizations (Figure 5-51,

it seems more likely that polarization dependent loss in the interconnect waveguides

resulted in the discrepancy between the integrated pill spectrum and the isolated pill

spectrum.

Coupling Loss Calculation and Comparison with FDTD Simulation Results

One of the ultimate goals of this thesis was to demonstrate coupling between the

silicon oxynitride interconnect waveguides and the integrated InP/InGaAsP ridge

waveguide pill structures. The data in this last section has shown that this was

achieved for 3 of the 6 integrated pills. After determining why the transmission for

some pills was higher than for others and why the spectra are shaped the way they

are, the final step is to estimate the interface coupling loss.

In the transmission spectrum of the pill integrated in the 312 ym long well shown
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in Figure 5-48, the maximum voltage measured on the lock-in amplifier was 27 mV.

Recall that this was the integrated pill with the highest measured transmission. This

value will now be used to estimate the interface coupling loss for this integrated pill

by comparing it with the peak measured lock-in voltage for similar silicon oxynitride

waveguides with no integrated pill. For the same input power, the average measured

voltage on the lock-in amplifier for the interconnect waveguides without wells taken

from the same chip was 1.25 V. Assuming no propagation loss in the pill, a worst-

case coupling loss is computed as 10logio(1.25/.027) = 16 dB. That implies an average

facet loss of 8 dB 11. This is consistent with the FDTD simulations of Chapter 3 given

the measured gap lengths and lateral misalignment of the pill in the 312 Am long well.

The FDTD data originally shown in Figure 3-18 is shown again in Figure 5-54 with

a linear fit so that the coupling loss at a separation of 7.9 im can be extrapolated.

Notice that the loss is approximately 9.5 dB/facet. Recall from Figure 5-44 that the

right facet gap for the integrated pill was less than 1 im. This would mean a loss of

about 4 dB for this facet. The lateral shift of the right facet was minimal, but the

left facet was shifted about 2 tm. This contributes approximately 3 dB of additional

loss. The facet scattering loss was about 0.5 dB/facet, or 1 dB total. Finally, recall

that the angled etch added a total of 1 dB (0.5 dB/facet). The total simulated loss

is about 18.5 dB.

This simulated result is actually higher than the measured loss of 16 dB. The

difference is most likely a result of the fact that the measurements do not only detect

light that is coupled into the fundamental mode of both the pill and the interconnect

waveguides. Recall that there was nonzero transmission through the isolated pill at

the shorter wavelengths where most of the core guided modes would have been filtered

out. In fact, this accounted for approximately 1/3 (1.75 dB) of the total measured

power at the peak near 1580 nm. Adding this to the measured value of 16 dB yields

a total loss of 17.75 dB. This differs by 0.75 dB from the simulated results.

"This is a safe assumption. If one assumes 10 dB/cm loss in the pill, which is consistent with the
measurements in the first section of this chapter, then the propagation loss over the length of the
pill is 10 dB/cm * 0.03 cm, or 0.3 dB. Of course, the interconnect waveguide would have had a loss
of approximately 7 dB/cm, or 0.021 dB total. Clearly, the propagation loss is not dominating the
overall loss and need not be considered in the calculation of the interface coupling loss.
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Figure 5-54: FDTD simulation results for interface coupling loss. Linear fit added to
extrapolate out to 7.9 /tm.

5.6 Summary

In the first section of this chapter, the propagation losses were determined by apply-

ing the Fabry-Perot propagation loss measurement technique for the silicon oxynitride

waveguides. It was determined that fora width of 1.7 pm and a thickness of 0.7 pm,

the average propagation loss was 7.3 dB/cm. In the second section, the propaga-

tion loss was approximated for the fundamental mode of the InP/InGaAsP ridge

waveguide structures with the full substrate. This required a consideration of the

multimode behavior of the waveguides. Based on the evaluation of the equation for

the transmissivity for a waveguide with two interfering modes, the propagation loss

was approximated at 9.6 dB/cm.

Etched gaps were measured and a model based on T-matrices for a multimode

waveguide structure, the gap loss was extracted. It was shown that a high index gap

fill material improves the coupling across that gap. Loss due to scattering at the

rough interface was determined to be on the order of 0.5 dB/facet.

Transmission measurements were taken for isolated pill structures and six inte-

grated pill structures. By comparing the spectra for the isolated and integrated
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pills, it appears that polarization dependent loss in the two structures was limiting

the maximum attainable transmitted power for the integrated pill. By comparing the

highest measured transmitted power for an integrated pill with the transmitted power

for waveguides with no pill and by removing the portion of the measured power at-

tributable to cladding modes, the total coupling loss was found to be 17.75 dB. This

is slightly lower than the FDTD simulated transmission loss of 18.75 dB. For two

other of the six integrated pills, the transmission was measurable and that coupling

loss was about 3 dB higher, or 20.75 dB. For the remaining three integrated pills, the

lack of a measurable transmitted power was due to vertical misalignment (pill not

sitting in the well) and a broken facet.
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Chapter 6

Conclusion

There have been many accomplishments in this work, and yet a great deal remains

to be done. This chapter summarizes the accomplishments and offers suggestions for

the direction of future work.

6.1 Summary of Findings and Accomplishments

In this thesis, the design, fabrication, and characterization of a passive silicon-based

photonics substrate was developed for the integration of InP/InGaAsP multi-quantum

well ridge waveguide structures. These structures were assembled on the passive

photonics substrate in wells etched into the silicon oxynitride waveguide stack. The

silicon oxynitride waveguides, the InP/InGaAsP ridge waveguide structures, and the

integrated system as a whole were characterized.

Silicon Oxynitride Waveguides

Silicon oxynitride core, silicon dioxide cladding waveguides were designed, fabricated,

and characterized. The average propagation loss of the waveguides with optimum

dimensions was measured as 7.3 dB/cm, which is consistent with the propagation

loss of similar waveguides reported in the literature. The determination of the exact

dimensions and index of refraction of the core for the waveguide was based on the opti-

mization of coupling between the silicon oxynitride waveguides and the InP/InGaAsP
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ridge waveguides found through Finite Difference Time Domain (FDTD) simulations.

These simulations accounted for expected variations in the alignment of the integrated

ridge waveguide pill structures.

Deep Waveguide Stack Etch

A process based on a polysilicon/silicon dioxide double hard mask design was devel-

oped for the etching of the thick (> 7 ym) waveguide stack. While the development of

MEMS and MOEMS (Micro Opto-Electro-Mechanical Systems) technology has made

the processing of thick layers more common, the etching of a silicon dioxide layer of

this thickness is not a standard processing step. The success was the result of the

double hard mask step and the proper etching chemistry and chamber conditions as

discussed in Section 4.2.2.

Measurement Setup, Gap Measurements, and Modeling

For the measurements in this thesis, a waveguide measurement setup was refurbished

and custom chucks and mounts were designed and machined. A technique was devel-

oped for the measurement of gap losses in which the transmission spectra of waveg-

uides with varying numbers of etched gaps were compared to extract the loss incurred

in coupling across a gap etched into the waveguide stack. Matlab scripts were written

to model the gaps using T-matrices and multimode interference, with good qualita-

tive agreement. Based on comparisons with FDTD simulations, scattering from the

etched facets contributes approximately 0.5 dB per facet. It was also shown that as

theorized, filling the gap with a material (other than air) and, in particular, with a

refractive index of 2.2, the gap losses could be reduced.

Integration and Measurement of InP/InGaAsP Ridge Waveguide Pill Struc-

tures

InP/InGaAsP ridge waveguide pill structures were characterized and integrated in

the wells etched into the silicon oxynitride/silicon dioxide waveguide stack. Coupling

was measured for fifty percent of the pills that were integrated. For the best case,
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the coupling loss was determined to be 17.75 dB. This is comparable to the 18.5 dB

figure obtained from FDTD simulations.

6.2 Recommendations

While much was accomplished by the work presented in this thesis, there is much that

still remains to be done in order to achieve the final goal of active III-V optoelectronic

devices integrated with waveguides on silicon. Some recommendations for achieving

this goal are given in this section. In addition, it is shown that the coupling loss

for integrated InP/InGaAsP ridge waveguide devices could be significantly improved

with only better pill alignment. Also, it is shown that the optimum waveguide design

given better alignment yields an even lower coupling loss than the current waveguide

design given this same better alignment.

Device Assembly

The device assembly method used in this thesis was rather rudimentary. It worked

well for proof of concept, but continued work would necessitate some improvements.

First, there should be a way to mount the pill and hold it in place. Either the pill needs

to be bonded in place while it is being held down, or the spacing between the edges

of the pill and the edges of the well need to be reduced so that the pill is not able to

move much when the micropipette is removed. The reduction of the spacing requires

vertical sidewalls for the edges of the pills (something currently being explored) and

vertical sidewalls for the deep well etch. The latter could be achieved with a metal

hardmask and an inductively coupled plasma (ICP) etcher, a combination that was

not available in the labs used for the work in this thesis.

Improved Coupling

Improvements in the device assembly would drastically improve the coupling. Recall

from the results and discussion in Section 5.5.2 that the best aligned facet had a

gap length less than 1 Am. There is no fundamental reason for why the left and
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right gap lengths for integrated pills could not both be less than 1 um. Given the

current waveguide design, a vertical sidewall well etch as discussed above, and lateral

misalignment for both facets equal to the best measured value (less than 1 Am) the

coupling loss for a pill with both gaps no greater than 1 im would be on the order

of 8.5 dB less than the measured value of 17.75 dB, or 9.25 dB. The use of an index

matching material (like BCB) could reduce the scattering loss due to the etched facet

roughness by as much as 0.5 dB/facet, lowering the total loss to 8.25 dB. While this

exact loss value may not be achieved with these improvements, this analysis does

demonstrate that reasonable and feasible improvements could cut the coupling loss

in half.

Given the demonstrated shortest gap length on the order of 1 Am for well sidewalls

with an 80' angle, it is likely that this shortest gap length would be reduced for the

case of a vertical sidewall well etch. Given that left and right gap lengths both less

than 1 Am could be achieved and shown to be repeatable, the optimum waveguide

design would correspondingly need to be changed. Recall that the original waveguide

design in Section 3.2.3 was for coupling without a gap. It was shown that for no gap,

the optimum design given a silicon oxynitride cladding was for a waveguide core with

an index of 2.0, which is the refractive index of the material silicon nitride (which can

be deposited using the same PECVD deposition system used to deposit the silicon

oxynitride in this work) and a thickness of 0.3 rum. Simulations based on a 0.5 Am

long gap with this waveguide design show coupling losses lowered by 2.5 dB per facet,

reducing the total loss to 3.25 dB. Of course, this design places stricter tolerances on

the vertical and lateral misalignment, and the issue of fabricating smaller waveguides

to maintain single mode operation would need to be addressed, but it shows again

that reasonable improvements could significantly reduce the coupling loss and that

it is the alignment technique, not something fundamental, that limits the achievable

coupling efficiency.
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System Level Consideration

If the integrated pill were to be operated as a semiconductor optical amplifier (SOA),

the gain of the SOA could be improved by choosing an operating wavelength at the

peak of the gain curve for a structure and material that gives the highest known

optical gain. For instance, it is possible that a larger gain relative to that achieved

with the InP material system could be achieved with the GaAs material system

operating at a wavelength of 850 nm. The 1550 nm wavelength used in this thesis was

based on the minimum fiber dispersion requirements of long haul telecommunications

networks. For the shorter interconnect lengths involved in chip-to-chip interconnects,

the minimization of the losses in coupling between the on-chip waveguides and the

printed circuit board (PCB) waveguides and the minimization of propagation loss in

the PCB waveguides are more crucial than dispersion minimization.

Optimum Pill Shape

Another possible area for improvement is the shape of the integrated pill. Currently,

the basic shape of the pill when viewed from above as shown in the microscope

images in Section 5.5.2 is rectangular. As illustrated in Figure 6-1, a wedge shape,

for instance, would force the pill into perfect lateral alignment. Even if the pill or

the well was slightly over or under etched, as long as the angle was well controlled

(which is typically the case as this is a function of the well controlled wafer and stage

alignment of stepper photolithography systems) the pill would still be well aligned

laterally.

The Future

While it is unknown if optical interconnects will ever be a viable technology for chip-

to-chip communication, there is reason to believe that the advancement of integrated

photonics in general will benefit from the integration of multiple materials on a single

substrate, as many of the material requirements for the various photonic devices

are orthogonal, requiring more than a single material. Towards that end, the work in
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Figure 6-1: Shapes other than rectangular could improve the alignment of the pill in
the well. A wedge shape shown here would greatly improve the lateral misalignment.

this thesis provides the foundation for understanding the issues involved with multiple

material integration for in-plane photonics applications.
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Appendix A

Transmission Measurements

Aside from visual inspection, the most frequently used measurement technique for this

work is the on-chip waveguide optical transmission spectrum. This spectrum gives

insight into both the coupling efficiency and the waveguide loss. This appendix details

this measurement technique and how the data from these measurements can be used

to characterize the devices and quantify the coupling efficiency. It also details the

T-matrix, which, for the purpose of this work, is a mathematical description of either

an interface between dielectric materials of differing refractive index, or a dielectric

segment of some length and some propagation loss.

A.1 Transmission Spectrum Measurement Setup

Transmission spectrum measurements were used repeatedly throughout this work to

provide a quantitative assessment of the device fabrication and integration. As such, it

is a vital part of this work. These measurements involve coupling monochromatic light

of a known wavelength from a tuneable laser' into one end of an on-chip waveguide

via a lensed fiber2 The light emitted from the other end of the waveguide is coupled

1The laser used for this work is an HP 8168F with emission in the range of 1430-1590nm. The
wavelength can be stepped by 1 picometer.

2A lensed fiber is a fiber with a lensed tip. The lens is created either by polishing or melting the
end of the fiber into a lens shape. In the case of melting, the tip is heated via a high voltage arc
to the point of reflow. Surface tension pulls the surface into a spherical shape. Manufacturers can
actually control the radius of curvature of the surface in order to set the working distance and spot
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into a second fiber and sent to a photodetector. The optical power measured by the

photodetector is recorded. The laser emission wavelength is stepped over some range

of values, and the optical power measured by the photodetector is recorded for each

wavelength. In order to remove the effects of photodetector dark current and stray

light that is coupled into the output fiber, a lock-in amplifier is used3 . A schematic

of the complete measurement setup4 is shown in Figure A-1. The positioning stages

that hold the input and output fibers are three axis piezoelectric stages with position

controlling feedback circuitry to reduce the effects of mechanical drift. The IR laser

and the lock-in amplifier are connected via a GPIB interface to a computer running

LabView. The computer is able to set and step the laser wavelength and store the

lock-in amplifier voltage.

The final component in the measurement setup is a polarization controller. The

polarization controller consists of input and output fiber ports and three paddles

through which the fiber is run. When the paddles are rotated, the fiber is distorted

inducing a shift in the polarization of the propagating light. This is an important

size of the emitted light.
3 A lock-in amplifier reduces the influence of noise and dark current on the measured signal by

locking in to the part of the photodetector current that is solely in response to the light coming
from the input IR laser. The other parts of the photocurrent are filtered out. This works as follows.
The chopper modulates the input light from the fiber with a square wave of some frequency fchop
(typically in the hundreds of Hz to a few kHz range). The photodetector generates a current that
is the summation of the dark current, current due to stray light, and current due to light from
the IR laser. This total current is sent to the lock-in amplifier as signal A. Signal A has a dc
component due to the dark current and unmodulated stray light, a component at frequency fchop,
and components at other frequencies due to other optical and electrical noise sources. In addition
to signal A, the square wave signal that corresponds to the chopper square wave modulation is also
sent to the lock-in amplifier as signal B. The lock-in amplifier multiplies signal A by signal B. The
signal generated by the multiplication of two signals with frequencies fi and f2 is a signal with new
frequency components at the sum, fi + f2, and difference, f1 - f2, of the original frequencies. Both
signal A and signal B have a component at fchop, so when they are multiplied, the resulting signal,
AB, has a dc component due to the difference. The signal AB is then sent through a low pass filter
to remove the influence of all other components. The voltage level of this filtered signal is sent
to the lock-in amplifier display. It is this voltage that is recorded in these transmission spectrum
measurements.

4Notice that in addition to the IR tunable laser, light from a red laser is also coupled into the
on-chip waveguides. This is done solely for the purpose of vertically aligning the input lensed fiber
for optimum coupling. The microscope can of course be used for in-plane alignment, but it is difficult
to tell if the fiber is emitting light just above, right on, or just below the waveguide. In the case
of coupling into the silicon oxynitride waveguides, the red light also provides verification that the
light is actually being guided by the waveguide, as opposed to simply being coupled into cladding
or substrate modes.

234



Red Laser Chopper

Coupler

Tunable R Laser n

Tunable IR Laser (1440-1585nm)

Lock-in Amplifier

Polarization TaperedSample
Controller Fibers

Photo
_DeDetector

Chopper Control Signal Piezoelectric
(Square Wave) Stages

Figure A-1: On-chip waveguide transmission measurement setup.

components because both the silicon oxynitride waveguides and the InP/InGaAsP

waveguides have polarization dependent loss ratios as high as 20dB.

A.1.1 Waveguide Loss Measurements

There are two techniques that can be used to measure waveguide propagation loss

with the type of measurement setup described above. The first is commonly referred

to as the cutback technique. It involves coupling light into waveguides of varying

lengths and measuring the light coupled out of each of the waveguides. The propa-

gation loss can be extracted from a plot of the measured light out versus waveguide

length. The second approach, called the Fabry-Perot loss measurement, is essen-

tially a measurement of the quality factor of a Fabry-Perot cavity. A waveguide with

cleaved facets forms a lossy Fabry-Perot cavity, and knowledge of the effective index

and length of the waveguide together with a measured transmission spectrum (as

described above) can be used to calculate the waveguide propagation loss.

Cutback Technique

With the cutback technique, the transmission through waveguides of varying lengths

is measured and used to extract the waveguide propagation loss. This technique

is named for the method originally used to achieve different waveguide lengths. A

waveguide is cleaved to a certain length and then measured. The waveguide is then
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cleaved to a shorter length and measured again, etc. The limitation to the accuracy

of this technique arises from variations5 in the fiber-to-waveguide and waveguide-to-

fiber coupling for the measurements made at the different lengths. It is important

that the change in measured light out from the measurement at one waveguide length

to the next be dominated by differences in the waveguide length (and loss therefore),

not by variations in the facet quality.

A technique commonly used to minimize the variation in facet quality with the

cutback technique is to vary the length of the waveguides by laying them out with

bends and varying the length of the waveguide between the bends. Often called

the "paperclip" method, this technique requires just two cleaves (one on each end

of the waveguides). Each waveguide is designed with an equal number of bends

so that the loss from the bends is the same for each waveguide. For the silicon

oxynitride waveguides in this work, a bend radius of 25011m was used for the paperclip

waveguides.

A.2 The Fabry-Perot Technique

The Fabry-Perot technique has the advantage that the measurement is not dependent

on the fiber-to-waveguide and waveguide-to-fiber coupling. This technique is based

on the extraction of the waveguide propagation loss from the transmission spectrum

for the waveguide. The peak/valley ratio, along with the facet reflectivity and the

waveguide length are used to calculate the propagation loss. The reflectivity is ap-

proximated using the fresnel reflection equation,

R = (n- 12 (A.1)
\n+l1

where the value used for, n, the refractive index, is the effective index of the waveguide

fundamental mode 6

5These fiber-to-waveguide and waveguide-to-fiber coupling variations are due to variations in the
quality of the waveguide end facets.

6 The Fabry-Perot method works best for single-mode waveguides. Its application to multimode
waveguides is useful only in gaining an approximate value for the loss of the various modes.
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A.2.1 Fabry-Perot Technique Loss Equation

The equation for the propagation loss can be derived from the T-matrix for a Fabry-

Perot cavity, which can be calculated from the T-matrix for a material segment with

absorption loss situated between two dielectric interfaces. The T-matrices for a di-

electric interface and a material segment with complex propagation vector are

1 i r
Tint =

Tmat = e-iPL[ 1 0

TFP = TintlTmatTint2

e-iTF p L 1 --r 1 0 1 r

0 - 1 0 1 1

e-iPL  1 - r2  0
TFp" t2 0 -- r 2 +1

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Solving for the transmission coefficient for the total Fabry-Perot cavity, A2/A 1 yields

A 2  t2e i
_ 

L

A 1 - r2e2iPL
(A.7)

Where r is the reflection coefficient corresponding to incidence on the facets from

inside the cavity,

r = ne - 1 (A.8)
neff + 1

assuming air outside the cavity. L is the length of the cavity and / is the complex

propagation coefficient,
/ = 2rneff
- + ia (A.9)

where a is the field absorption coefficient. As previously described, the transmission

spectrum measurement measures power, not field magnitude. An equation for the
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Figure A-2: T and S matrices.

power transmission spectrum can be found by squaring the magnitude of A 2/A 1.

T A2 2 A4
A=• 2 - 2r2 cos (2PL) (A.10)

Solving for the maximum, Imax, and minimum Imin in the above equation and taking

the ratio gives the desired final equation:

-1 1/,/. -1
Q = I• Ln 1+ (A.11)

A.3 Transmission Matrix

An optical transmission matrix (T-matrix for short) is a matrix that can be used

to determine the transmission spectrum for a structure of arbitrary complexity. It

relates incident and reflected field magnitudes on the right side of a structure, to the

incident and reflected field magnitudes on the left side of the structure. The T-matrix

is similar to the Scattering matrix which is composed of the more frequently used

S-parameters of a structure. A T-matrix and the S-matrix are shown in Figure A-

2. The difference is that the arrangement of the values of the T-matrix allows

for T-matrices of two connected structures to be multiplied together to get the T-

matrix for the combination of the two structures (see Figure A-3). In this way,

the T-matrix for a complex structure can be determined by breaking it down into

its fundamental elements, each of which has an easily determined T-matrix. The

fundamental elements are a dielectric interface and a medium with a given length
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Figure A-3: T matrices for adjacent elements in a structure, T and T', may be
multiplied to get one T-matrix, T", for the combined structure.

and refractive index.

A.3.1 Dielectric Interface T-matrix

The T-matrix parameters for a dielectric interface can be found by starting with the

matrix equations.

A1 = A2T11 + B 2T12  (A.12)

B 1 = A 2T12 + B 2T22  (A.13)

It is straightforward to express A2 and B 1, the reflected field vectors, in terms of the

incident field vectors and the interface reflection and transmission coefficients.

A2 = t1A 1 + r2B 2  (A.14)

B 1 = rlA 1 + t2B 2 (A.15)
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Rearranging equation A.14 yields

1 ri
A1 = 1A2 + B2

ti tl

Substituting this expression for A1 in equation A.15 yields

rl 1
B1 = rA2 +  B2

t1  t1

In equations A.16 and A.17 the following was used

tl = t2 = t

rl = -Tr2

r1 + t2 = 1

Hence the T-matrix for a dielectric interface is

1
Tint= 1t

[1 r1ir1 1
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Appendix B

Determination of Tmode for TE

End-Fire Coupling

The goal of this Appendix is to find the transmissivity for two TE modes at an

interface between two end-fire coupled slab waveguides with perfect alignment. Refer

to Figure B-1 for this derivation. A mode is propagating in waveguide 1 from the left

and is transmitted into waveguide 2 on the right.

The following equation gives the coupled power between two slab modes and is

taken from page 604 of Reference [49]:

P 1,2 = 1 E (El(x) x H(x) + E (x) x H A(x))dx (B.1)

where E is the electric field in the y direction and H is the magnetic field in the

x direction. The subscripts refer to waveguides 1 and 2 shown in Figure B-1. A

normalization factor, A can be applied so that the power for each mode is unity.

Writing out the full normalized electric and magnetic fields in the y and x directions

respectively for the components travelling to the right (positive z direction):

E1 = AEpi(x)ei1z (B.2)

E2 = A 2Ep2(x)e i2zJ (B.3)
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Figure B-1: Two end-fire coupled slab waveguides with left and right travelling field
coefficients a and b.

H1 = - A1Ep(x)eipzzi
H2 W2 A2Ep2

H2 = 02A2Ep 2(x)e32zz

(B.4)

(B.5)

where EPm is the mode profile for mode m, Pfm is the propagation vector for mode m,

1L is the permeability of the dielectric materials, and w is the angular frequency of the

electromagnetic wave. The normalization is found by setting the following condition:

P = Re (Em x Hm) dx = 1
2 L i )

(B.6)

Applying this normalization yields the following:

2pw
Am = ( )) 2 d

SSmf (Epm(x))2 dX
(B.7)

Referring to Figure B-1, the following equations can be written:

a2 = klal + k12bl

b2 = k21al + k22bl

(B.8)

(B.9)
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The desired value is the ratio a2/al, which is t, the transmission coefficient (it is

actually T, the transmissivity that is desired, but that is found by squaring t). From

the previous two equations:

t = a2 = kll 22 (B.10)
a1  k22

Applying Equation B.1 for the mode overlap power:

k 2 2 = kl = I (El(x) x H(x) + E(x) x H(x)) dx (B.11)

k22 = kil = (El(x) x H*(x) - E2(x) x Hi(x)) dx (B.12)

The minus sign is a result of the fact that k22 and kll are for the overlap of waves

propagating in opposite direction. Solving these equations and substituting the results

into Equation B.10 yields:

t = TFresnel fEpl(x)Ep2(x)dx (B.13)
sf (Ep1(x)) 2 dx f (Ep2 ())

2 dx

where TfresneI is just the Fresnel transmission coefficient where,

TFresnel = 1 - RFresnel (B.14)

and

RFresnel = -0 1 2 (B.15)11 + 02
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Appendix C

Process Recipes

This appendix contains all of the process recipes that were used to fabricate the

waveguides and the etched wells. The waveguide and well etch processes are first

shown as a series of steps. Following this section, the details of the individual steps

are given.
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C.1 Process Steps

Waveguide Deposition and Etch Process:

Step Name Description/Details

RCA Clean

Oxide DeD

3. Oxide Dep

4. OxyNitride Dep

5. Oxide Dep

6. BOE Etch

RCA Clean

Oxide DeD

9. OxyNitride Dep

10. Waveguide An-

neal

11. Waveguide

Patterning

12. Waveguide

Etch

13. Resist Ash

14. Piranha Clean

Basic Wafer Clean

0.5 Am of oxide on front of wafer to protect

wafer during backside deposition

3 Am of oxide on back of wafer (lower

cladding stress compensation layer)

0.7 Am of silicon oxynitride on back of wafer

(core stress compensation layer) using recipe

SiON RI = 1.6

0.5 Am of oxide on back of wafer (sacrificial

layer)

Wet etch of 0.5 Am of oxide from front and

back of wafer

Basic Wafer Clean

3 Am of oxide on front of wafer (lower

cladding)

0.7 Am of silicon oxynitride on front of wafer

(core) using recipe SiON RI = 1.6

4 hr anneal at 1050 (removes adsorbed hy-

drogen from deposited layers)

Photoresist spin-on, expose, and develop us-

ing Ed B Waveguide mask

Etch of 0.7 Am core into waveguides

02 plasma removal of photoresist

Double piranha clean
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Tool

rca-ICL

DCVD

DCVD

DCVD

DCVD

oxEtch-

BOE

rca-ICL

DCVD

DCVD

5B-Anneal

i-stepper

and

coater6

AME5000

asher-ICL

premetal-

Piranha



Waveguide Deposition and Etch Process (Cont.):

Step Name Description/Details

15. RCA Clean

16. Oxide Dep

17. Oxide Dep

18. RCA Clean

19. Waveguide An-

neal

Basic Wafer Clean

3 pm of oxide on front of wafer (upper

cladding)

3 pm of oxide on back of wafer (upper

cladding stress compensation layer)

Basic Wafer Clean

4 hr anneal at 1050 (removes adsorbed hy-

drogen from deposited layers)

Deep Well Etch Process:

Step Name Description/Details

RCA Clean

Poly Dep

RCA Clean

Oxide Dep

5. Well Patterning

6. Oxide Etch

Poly Etch

Deep Etch

Resist Ash

Basic Wafer Clean

LPCVD deposition of 1.5 pm of polysilicon

hardmask layer

Basic Wafer Clean

0.5 pm of oxide on front of wafer (second

hardmask layer)

Photoresist spin-on, expose, and develop us-

ing Ed B Well mask

Etch of 0.5 tm oxide hardmask using same

recipe as Waveguide Etch step above

Etch of 1.5 pm poly hardmask

Etch of 6.7 pm of waveguide stack

02 plasma removal of photoresist
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Tool

rca-ICL

DCVD

DCVD

rca-ICL

5B-Anneal

Tool

rca-ICL

6B-Poly

rca-ICL

DCVD

i-stepper

and

coater6

AME5000

AME5000

AME5000

asher-ICL



C.2 Step Recipes

Waveguide Etch

"ED B WG"):

Step Name

(also Oxide Etch) on MTL Tool AME5000 (Stored Recipe

Parameters/Details Time
(sec)

1. STAB

2. DESCUM

3. STAB

4. ETCH

Pressure = 200mTorr; Gases = 02 0 30

sccm; RF = 0 W; MF = 50 Gauss;

Pressure = 200mTorr; Gases = 02 0 30

sccm; RF = 100 W; MF = 50 Gauss;

Pressure = 200mTorr; Gases = CF 4 0 30

sccm, CHF 3 @ 30 sccm, Ar @ 100 sccm; RF

= 0 W; MF = 50 Gauss;

Pressure = 200mTorr; Gases = CF 4 @ 30

scem, CHF 3 0 30 sccm, Ar @ 100 sccm; RF

= 600 W; MF = 50 Gauss;

Deep Etch on MTL Tool AME5000 (Stored Recipe "EB THK OX"):

Step Name Parameters/Details Time

(sec)

Pressure = 200mTorr; Gases = CF 4 0 15

sccm, CHF 3 @ 45 sccm, Ar @ 100 sccm; RF

= 600 W; MF = 30 Gauss;

Pressure = 200mTorr; No Gases, Throttle

Fully Open; MF = 30 Gauss;
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30

30

20

160 for

Waveguide

Etch, 100

for Oxide

Etch

1. ETCH

2. COOL

300

120



Poly Etch on MTL Tool AME5000 (Stored Recipe "5000: CH B STI"):

Step Name Parameters/Details Time

(sec)

1. ETCH Pressure = 200mTorr; Gases = CL 2 @ 60 600

scm, HBR 3 @ 20 seem; RF = 400 W; MF =

30 Gauss;
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Appendix D

Modeling Software

This appendix contains the code for four of the more significant Matlab programs that

were written and used for the modeling and data analysis in this thesis. The first

program called getMmulti takes as the input, the information about a series of waveg-

uide segments and output a matrix that is used by the second program serialfpmulti.

This program calculates the transmission spectrum for a series of dielectric materials

for the case of more than one mode. The third program calculates the period of the

resonance for the transmission spectrum of a Fabry-Perot cavity. The fourth program

calculates the propagation loss in dB/cm for a waveguide from the peak/valley ratio

of the measured transmission spectrum, the length of the waveguide, and the effective

index of the mode.

D.1 getMmulti.m

% Edward R. Barkley 7/12/05

% The purpose of this function is to calculate the material matrix, M, for

% use in the script 'serialfp'. This function can be used for the case of

% normal incidence plane wave propagation. The reflection and

% transmission coefficients are calculated from the refractive index of

% the materials.
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% Input:

% nr: an Nx3xm matrix where nr(n,l,m) is the refractive index of the

% mth mode in the nth material, nr(n,2,m) is the modal loss

% (or negative of the gain)

% of the material in dB/cm, and nr(n,3,m) is the length of the

% material segment in cm. The first and last material segments

% are assumed to be semi-infinite in extent and are not included

% in this array. For example, if you want to find T for a

% high-index segment of length 2mm embedded in a polymer,

% then N=1. N is the number of finite material segments.

% ni: the index of the leading semi-infinite material

% nf: the index of the trailing semi-inifinite material

% Output:

% M: The M matrix detailed in the code for 'serialfp'

function[M] = getMmulti(nr,nl,nf)

len = length(nr(:,1,1));

m = length(nr(1,1,:));

M = ones(len,8,m);

for mm = 1:m,
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for ii = 1:len,

if ii==1,

nprev = ni;

else

nprev = nr(ii-1,1,mm);

end

r12 = (nprev - nr(ii,l,mm))/(nprev + nr(ii,l,mm));

r21 = -r12;

t12 = sqrt(l - r12*r12);

t21 = t12;

M(2*ii - 1,:,mm) = [0 r12 r21 t12 t21 0 0 0];

M(2*ii,:,mm) = [1 0 0 0 0 nr(ii,2,mm) nr(ii,3,mm) nr(ii,l,mm)];

end

r12 = (nr(ii,l,mm) - nf)/(nr(ii,1,mm) + nf);

r21 = -r12;

t12 = sqrt(1 - r12*r12);

t21 = t12;

M(2*ii + 1,:,mm) = [0 r12 r21 t12 t21 0 0 0 1;

end

D.2 serialfpmulti.m

% This script is used to find the wavelength dependent transmissivity of a

% series of fabry perots which may contain lossy elements.

% Input:

% Mirrors Matrix M: An Nx8xm matrix where M(N,1,:) is an element

% type indicator. A 0 means that the element
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% is an interface. A I means that the

% element is a material with some length. If

% the element is an interface, then M(N,2,:) is

% the reflection coefficient for the Nth

% interface referenced from the input side

S(meaning that it will be positive when

% going from a higher index to a lower

% index). Looking at the diagram below, this

% would typically be called r_12. M(N,3,:) is

% the reflection coefficient r_21 of the Nth

% interface. M(N,4,:) is the transmission

% coefficient t_12 of the Nth interface.

% M(N,5,:) is the transmission coefficient t_21

% of the Nth interface. If the element is a

% material segment, then M(N,6,:) is the loss

% in dB/cm, and M(N,7,:) is the length of the

% segment in cm. M(N,8,:) is the effective

% index of the segment. m is the number of

% modes.

% lam: Vector with the wavelengths in nm for which

% the transmissivity of the structure is to

% be computed.

% show: plots T vs. L when show = 1, no plot when

% show = 0.

% mag: A vector of length m with the magnitude

0 coefficient for each mode.

SThe T matrices are defined as follows:

-------
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% A_n ---------- > ---------- > An+1

% I T I% I

% B_n <---------- ________----------__1 <---------- B_n+1

% The input (light in) side is the left, the output is on the right.

% However the inputs to the T-matrix are A2 and B2. This is because

% while Ai is known, B1 is not. But we can set A2 = 1 and B2 = 0.

% We find Al from the T-matrix and the transmission coefficient for

% the matrix is then 1/A1. The calculation proceeds as follows:

% Conceptually, the elements are in a line from left to right. The

% T-matrix for the rightmost element is calculated and multiplies the

% input vector to the T-matrix [A_N BN] where N is the number of

% elements. The resulting vector is then multiplied by the T-matrix

' of the second to rightmost element. This continues until A_1 is

% found. The transmission coefficient is then i/A1. Matlab matrix

% multiplication is written in the opposite of the conventional

% orientation: i.e. Vector*Matrix as opposed to the way it is

% normally written: Matrix*Vector. For more on T-matrices, see the

, text by Coldren and Corzine.

% Modifications:

% ERB:12-22-05: Now outputs Reflectivity as well as Transmissivity.

% ERB:08-28-06: Changed the name of the function to serialfpmulti and

% to add multimode functionality.

function[Tran Refl] = serialfpmulti(M,lam,show,mag)

N = length(M(:,l,1)); % N as defined above
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N_L = length(lam);

lam = lam*1E-7;

m = length(M(1,1,:))

Tran = zeros(N_L,1);

Refl = zeros(NL,1);

for mm = 1:m,

for ii = 1:N_L;

Vector = [1 01; % Initialize the Input Vector [A(N+1) B(N+1)]

for jj=N:-1:1,

if(M(jj,1,mm))

alpha = M(jj,6,mm)/(20*loglO(exp(1)));

beta = (2*pi*M(jj,8,mm)/lam(ii)) + i*alpha;

T(1,1,jj) = exp(-i*beta*M(jj,7,mm));

T(1,2,jj) = 0;

T(2,1,jj) = 0;

T(2,2,jj) = exp(i*beta*M(jj,7,mm));

else

r_12 = M(jj,2,mm);

r_21 = M(jj,3,mm);

t_12 = M(jj,4,mm);

t_21 = M(jj,5,mm);

T(1,1,jj) = 1/t_12;

T(1,2,jj) = -r_21/t_12;

T(2,1,jj) = r_12/t_12;

T(2,2,jj) = (t_12*t_21 - r_12*r_21)/t_12;

end

Vector = Vector*T(:,:,jj);

end

Tran(ii) = abs(1/Vector(1))^2;
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% Refl(ii) = (abs(Vector(2)/Vector(1)))^2;

Tran(ii) = Tran(ii) + (sqrt(mag(mm)))*(1/Vector(1));

% Refl(ii) = Refl(ii) + (Vector(2)/Vector(1));

end

end

Tran = (abs(Tran)). ̂ 2;

%Refl = (abs(Refl)).^2;

if (nargin > 2)

if (show == 1)

% figure;

plot(lam*1E7,10*Tran, 'r');

end

end

ratio = min(Tran)/max(Tran);

D.3 fabryperiod.m

% This function returns the period (dlam) in nanometers for a fabry perot cavity

% of length L (cm) and refractive index n at the wavelength lam (nm).

function[dlam] = fabry_period(lam,L,n)

L = L*1E7;

N = 2*L*n/lam;

lam2 = 2*L*n/(N-1);

dlam = lam2 - lam;
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D.4 fpalpha.m

% This script finds the loss in dB/cm given the cavity length, R, and

% contrast ratio for a Fabry Perot waveguide loss experiment. A positive

% result for alpha implies loss.

% Written by Edward Barkley 9/22/2005

% Inputs:

% L: cavity length in cm

% R: cavity mirror reflectivity

% ratio: Imax/Imin

% Edits:

% 1.0: On 7-07-06 changed line 25 from -10* ... to -20* ... Alpha as

% calculated before was the loss in dB/cm of the field strength, not the

% power. As corrected, it is now the power loss in dB/cm.

function[alpha] = fpalpha(L,R,ratio)

ki = sqrt(ratio);

k2 = ki - 1;

k3 = ki + 1;

k4 = k2/k3;

k5 = k4/R;

k6 = log(k5);

alpha = -20*loglO(exp(1))*k6/(2*L);

258



k7 = k3/k2;

k8 = k7/R;

k9 = log(k8);

alpha2 = -10*logl0 (exp ())*k9/(2*L);
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