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Abstract

During face-to-face conversation, people use visual feedback (e.g., head and eye ges-
ture) to communicate relevant information and to synchronize rhythm between par-
ticipants. When recognizing visual feedback, people often rely on more than their
visual perception. For instance, knowledge about the current topic and from previ-
ous utterances help guide the recognition of nonverbal cues. The goal of this thesis is
to augment computer interfaces with the ability to perceive visual feedback gestures
and to enable the exploitation of contextual information from the current interaction
state to improve visual feedback recognition.

We introduce the concept of visual feedback anticipation where contextual knowl-
edge from an interactive system (e.g. last spoken utterance from the robot or sys-
tem events from the GUI interface) is analyzed online to anticipate visual feedback
from a human participant and improve visual feedback recognition. Our multi-modal
framework for context-based visual feedback recognition was successfully tested on
conversational and non-embodied interfaces for head and eye gesture recognition.

We also introduce Frame-based Hidden-state Conditional Random Field model,
a new discriminative model for visual gesture recognition which can model the sub-
structure of a gesture sequence, learn the dynamics between gesture labels, and can
be directly applied to label unsegmented sequences. The FHCRF model outperforms
previous approaches (i.e. HMM, SVM and CRF) for visual gesture recognition and
can efficiently learn relevant contextual information necessary for visual feedback
anticipation.

A real-time visual feedback recognition library for interactive interfaces (called
Watson) was developed to recognize head gaze, head gestures, and eye gaze using
the images from a monocular or stereo camera and the context information from the
interactive system. Watson was downloaded by more then 70 researchers around the
world and was successfully used by MERL, USC, NTT, MIT Media Lab and many
other research groups.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor
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Chapter 1

Introduction

In recent years, research in computer science has brought about new technologies

to produce multimedia animations, and sense multiple input modalities from spoken

words to detecting faces from images. These technologies open the way to new types

of human-computer interfaces, enabling modern interactive systems to communicate

more naturally with human participants. Figure 1-1 shows two examples of modern

interactive interfaces: Mel, a robotic penguin which hosts a participant during a demo

of a new product [84] and MACK, an on-screen character which offers directions to

visitors of a new building [69]. By incorporating human-like display capabilities into

these interactive systems, we can make them more efficient and attractive, but doing

so increases the expectations from human participants who interact with these sys-

tems. A key component missing from most of these moderns systems is the recognition

of visual feedback.

During face-to-face conversation, people use visual feedback to communicate rel-

evant information and to synchronize rhythm between participants. When people

interact naturally with each other, it is common to see indications of acknowledg-

ment, agreement, or disinterest given with a simple head gesture. For example, when

finished with a turn and willing to give up the floor, users tend to look at their

conversational partner. Conversely, when they wish to hold the floor, even as they

pause their speech, they often look away. This often appears as a "non-deictic" or

gaze-averting eye gesture while they pause their speech to momentarily consider a



Figure 1-1: Two examples of modern interactive systems. MACK (left) was designed
to study face-to-face grounding [69]. Mel (right), an interactive robot, can present the
iGlassware demo (table and copper cup on its right) or talk about its own dialogue
and sensorimotor abilities.

response [35, 86].

Recognizing visual feedback such as this from the user can dramatically improve

the interaction with the system. When a conversational system is speaking, head nods

can be detected and used by the system to know that the listener is engaged in the

conversation. This may be more natural interface compared to the original version

where the robot had to ask a question to get the same feedback. By recognizing

eye gaze aversion gestures, the system can understand delays resulting from the user

thinking about their answer when asked a question. It is disruptive for a user to

have a system not realize the user is still thinking about a response and interrupt

prematurely, or to wait inappropriately thinking the user is still going to speak when

the user has in fact finished their turn. The main focus of this thesis is visual feedback

recognition for interactive systems.

1.1 Challenges

Recognition of visual feedback for interactive systems brings many challenges:

Ambiguous Gestures Different types of visual feedback can often look alike. For

example, a person's head motion during a quick glance to the left looks similar to



a short head shake. A person's head motion when looking at their keyboard before

typing looks similar to a head nod. We need a recognition framework which is able

to differentiate these ambiguous gestures.

Subtle Motion Natural gestures are subtle and the range of motion involved is often

really small. For example, when someone head nods to ground (which is intended as

an acknowledgement) a sentence or part of a sentence, the head motion will usually

be really small and often only one nod is performed.

Natural Visual Feedback Which visual gestures should we be looking for? While

a human participant may potentially offer a large range of visual feedback while

interacting with the system, which visual feedback, if correctly recognized by the

interactive system, will improve the system performance and which visual gestures

are naturally performed by the user?

User Independent and Automatic Initialization Recognition of the visual feed-

back from a new user should start automatically even though this new user never

interacted with the system before and was not in the system's training data. Also,

our algorithms should be able to handle different facial appearances, including people

with glasses and beards, and different ways to gesture (short head nod versus slower

head nod).

Diversity of System Architectures Each interactive system has its own architec-

ture with a different representation of internal knowledge and its own protocol for

exchange of information. An approach for visual feedback recognition should be easy

to integrate with pre-existing systems.



1.2 Contributions

The contributions of this thesis intersect the fields of human-computer interaction

(HCI), computer vision, machine learning and multi-modal interfaces.

Visual Feedback Anticipation is a new concept to improve visual feedback recog-

nition where contextual knowledge from the interactive system is analyzed online to

anticipate visual feedback from the human participant. We developed a multi-modal

framework for context-based visual recognition was successfully tested on conversa-

tional and non-embodied interfaces for head gesture and eye gestures recognition and

has shown a statistically significant improvement in recognition performance.

Frame-based Hidden-state Conditional Random Fields is a new discriminative

model for visual gesture recognition which can model the sub-structure of a gesture

sequence, can learn the dynamics between gesture labels and be directly applied to

label unsegmented sequences. Our FHCRF model outperforms previous approaches

(i.e. HMM and CRF) for visual gesture recognition and can efficiently learn relevant

contextual information necessary for visual feedback anticipation.

Visual Feedback User Study In the context of our user studies with virtual and

physically embodied agents, we investigate four kinds of visual feedback that are

naturally performed by human participants when interacting with interactive inter-

faces and which, if automatically recognized, can improve the user experience: head

gaze, head gestures (head nods and head shakes), eye gaze and eye gestures (gaze

aversions).

Adaptive View-based Appearance Model is a new user independent approach

for head pose estimation which merges differential tracking with view-based tracking.

AVAMs can track large head motion for long periods of time with bounded drift.

We experimentally observed an RMS error within the accuracy limit of an attached



inertial sensor.

Watson is a real-time visual feedback recognition library for interactive interfaces

that can recognize head gaze, head gestures, eye gaze and eye gestures using the

images of a monocular or stereo camera. Watson has been downloaded by more then

70 researchers around the world and was successfully used by MERL, USC, NTT,

Media Lab and many other research groups.

The following five subsections discuss with more details each contribution.

1.2.1 Visual Feedback Anticipation

To recognize visual feedback efficiently, humans often use contextual knowledge from

previous and current events to anticipate when feedback is most likely to occur. For

example, at the end of a sentence during an explanation, the speaker will often look

at the listener and anticipate some visual feedback like a head nod gesture from the

listener. Even if the listener does not perform a perfect head nod, the speaker will

most likely accept the gesture as a head nod and continue with the explanation.

Similarly, if a speaker refers to an object during his/her explanation and looks at

the listener, even a short glance will be accepted as glance-to-the-object gesture (see

Figure 1-2).

In this thesis we introduce' the concept of visual feedback anticipation for human-

computer interfaces and present a context-based recognition framework for analyzing

online contextual knowledge from the interactive system and anticipate visual feed-

back from the human participant. As shown in Figure 1-2, the contextual information

from the interactive system (i.e. the robot) is analyzed to predict visual feedback and

then incorporated with the results of the vision-only recognizer to make the final de-

cision. This new approach makes it possible for interactive systems to simulate the

natural anticipation that humans use when recognizing feedback.

Our experimental results show that incorporating contextual information inside

the recognition process improves performance. For example, ambiguous gestures like a

'First published at AISB in April 2005 [72].



Head
shake

Figure 1-2: Contextual recognition of head gestures during face-to-face interaction
with a conversational robot. In this scenario, contextual information from the robot's
spoken utterance helps to disambiguate the listener's visual gesture.

head glance and head shake can be differentiated using the contextual information (see

Figure 1-2). With a conversational robot or virtual agent, lexical, prosodic, timing,

and gesture features are used to predict a user's visual feedback during conversational

dialogue. In non-conversational interfaces, context features based on user-interface

system events (i.e. mouse motion or a key pressed on the keyboard) can improve

detection of head gestures for dialog box confirmation or document browsing.

1.2.2 FHCRF: Visual Gesture Recognition

Visual feedback tends to have a distinctive internal sub-structure as well as regular

dynamics between individual gestures. When we say that a gesture has internal sub-

structure we mean that it is composed of a set of basic motions that are combined

in an orderly fashion. For example, consider a head-nod gesture which consists of

moving the head up, moving the head down and moving the head back to its starting

position. Further, the transitions between gestures are not uniformly likely: it is clear



that a head-nod to head-shake transition is less likely than a transition between a

head-nod and another gesture (unless we have a very indecisive participant).

In this thesis we introduce a new visual gesture recognition algorithm, which

can capture both sub-gesture patterns and dynamics between gestures. Our Frame-

based Hidden Conditional Random Field (FHCRF) model is a discriminative, latent

variable, on-line approach for gesture recognition. Instead of trying to model each

gesture independently as previous approaches would (i.e. Hidden Markov Models),

our FHCRF model focuses on what best differentiates all the visual gestures. As we

show in our results, our approach can more accurately recognize subtle gestures such

as head nods or eye gaze aversion.

Our approach also offers several advantages over previous discriminative models:

in contrast to Conditional Random Fields (CRFs) [56] it incorporates hidden state

variables which model the sub-structure of a gesture sequence, and in contrast to

previous hidden-state conditional models [79] it can learn the dynamics between ges-

ture labels and be directly applied to label unsegmented sequences. We show that,

by assuming a deterministic relationship between class labels and hidden states, our

model can be efficiently trained.

1.2.3 User Studies with Interactive Interfaces

While a large range of visual feedback is performed by humans when interacting

face-to-face with each other, it is still an open question as to what visual feedback

is performed naturally by human participants when interacting with an interactive

system. Another important question is which visual feedback has the potential to

improve current interactive systems when recognized.

With this in mind, we performed a total of six user studies with three different

types of interactive systems: virtual embodied interfaces, physical embodied inter-

faces and non-embodied interfaces. Virtual embodied interfaces, also referred to as

Embodied Conversational Agent (ECA) [16] or Intelligent Virtual Agent (IVA) [3],

are autonomous, graphically embodied agents in an interactive, 2D or 3D virtual

environment which are able to interact intelligently with the environment, other em-



bodied agents, and especially with human users. Physical embodied interfaces, or

robots, are physically embodied agents able to interact with human user in the real

world. Non-embodied interfaces are interactive systems without any type of embodied

character, which include traditional graphical user interfaces (GUIs) and information

kiosks (without an on-screen character).

In our user studies, we investigate four kinds of visual feedback that have the

potential to improve the experience of human participants when interacting one-

on-one with an interactive interface: head gaze, head gestures, eye gaze and eye

gestures. Head gaze can be used to determine to whom the human participant is

speaking and can complement eye gaze information when estimating the user's focus

of attention. Head gestures such as head nods and head shakes offer key conversational

cues for information grounding and agreement/disagreement communication. Eye

gaze is an important cue during turn-taking and can help to determine the focus of

attention. Recognizing eye gestures like eye gaze aversions can help the interactive

system to know when a user is thinking about his/her answer versus waiting for more

information.

1.2.4 AVAM: Robust Online Head Gaze Tracking

One of our goal is to develop a user independent head gaze tracker that can be

initialized automatically, can track over a long period of time and should be robust

to different environments (lighting, moving background, etc.). Since head motion is

used as an input by the FHCRF model for head gesture recognition, our head pose

tracker has to be sensitive enough to distinguish natural and subtle gestures.

In this thesis, we introduce a new model for online head gaze tracking: Adaptive

View-based Appearance Model (AVAM). When the head pose trajectory crosses itself,

our tracker has bounded drift and can track an object undergoing large motion for long

periods of time. Our tracker registers each incoming frame against the views of the

appearance model using a two-frame registration algorithm. Using a linear Gaussian

filter, we simultaneously estimate the pose of the head and adjust the view-based

model as pose-changes are recovered from the registration algorithm. The adaptive



view-based model is populated online with views of the head as it undergoes different

orientations in pose space, allowing us to capture non-Lambertian effects. We tested

our approach on a real-time rigid object tracking task and observed an RMS error

within the accuracy limit of an attached inertial sensor.

1.2.5 Watson: Real-time Library

We developed a real-time library for context-based recognition of head gaze, head ges-

tures, eye gaze and eye gestures based on the algorithms described in this thesis. This

library offers a simplified interface for other researchers who want to include visual

feedback recognition in their interactive system. This visual module was successfully

used in many research projects including:

1. Leonardo, a robot developed at the Media lab, can quickly learn new skills

and tasks from natural human instruction and a few demonstrations [102];

2. Mel, a robotic penguin developed at MERL, hosting a participant during a

demo of a new product [89, 92];

3. MACK was originally developed to give direction around the Media Lab and

now its cousin NU-MACK can help with direction around the Northwestern

University campus [69];

4. Rapport was a user study performed at the USC Institute for Creative Tech-

nologies to improve the engagement between a human speaker and virtual hu-

man listener [36].

1.3 Road map

In chapter 2, we present our user studies with virtual embodied agents, robots and

non-embodied interfaces designed to observe natural and useful visual feedback. We

also present some related user studies where part of our approach for visual feedback

recognition was used.



In chapter 3, we first present our novel model, AVAM, for online head gaze es-

timation with a comparative evaluation with an inertial sensor. We then present

our approach for eye gaze estimation based on view-based eigenspaces. We conclude

Chapter 3 with our new algorithm, FHCRF, for gesture recognition, and show its

performance on vision-based head gestures and eye gestures recognition.

In chapter 4, we present our new concept for context-based visual feedback recog-

nition and describe our multi-modal framework for analyzing online contextual in-

formation and anticipating head gestures and eye gestures. We present experimental

results with conversational interfaces and non-embodied interfaces.

In chapter 5, we summarize our contributions and discuss future work, and in

Appendix A, we provide the the user guide of Watson, our context-based visual

feedback recognition library.



Chapter 2

Visual Feedback for Interactive

Interfaces

During face-to-face conversation, people use visual feedback to communicate relevant

information and to synchronize communicative rhythm between participants. While a

large literature exists in psychology describing and analyzing visual feedback during

human-to-human interactions, there are still a lot of unanswered questions about

natural visual feedback for interactive interfaces.

We are interested in natural visual feedback, meaning visual feedback that hu-

man participants perform automatically (without being instructed to perform these

gestures) when interacting with an interactive system. We also want to find out

what kind of visual feedback, if recognized properly by the system, would make the

interactive interface more useful and efficient.

In this chapter, we present five user studies designed to (1) analyze the visual

feedback naturally performed by human participants when interacting with an in-

teractive system and (2) find out how recognizing this visual feedback can improve

the performance of interactive interfaces. While visual feedback can be expressed by

almost any part of the human body, this thesis focuses on facial feedback, since our

main interest is face-to-face interaction with embodied and non embodied interfaces.

In the context of our user studies, we discuss forms of visual feedback (head gaze, eye

gaze, head gestures and eye gestures) that were naturally performed by our partici-



pants. We then show how interactive interfaces can be improved by recognizing and

utilizing these visual gestures.

Since interactive systems come in many different forms, we designed our user stud-

ies to explore two different axes: embodiment and conversational capabilities. For

embodiment, we group the interactive interfaces into three categories: virtual em-

bodied interfaces, physical embodied interfaces and non-embodied interfaces. Virtual

embodied interfaces are autonomous, graphically embodied agents in an interactive,

2D or 3D virtual environment. Physical embodied interfaces are best represented as

robots or robotic characters that interact with a human user in the real world. Non-

embodied interfaces are interactive systems without any type of embodied character

such as a conventional operating system or an information kiosk.

The conversational capabilities of interactive systems can range from simple trigger-

based interfaces to elaborated conversational interfaces. Trigger-based interfaces can

be seen as simple responsive interfaces where the system performs a pre-determined

set of actions when triggered by the input modality (or modalities). Conversational

interfaces usually incorporate a dialogue manager that will decide the next set of

actions based on the current inputs, a history of previous actions performed by the

participants (including the interface itself) and the goals of the participants. Some

interfaces like the conversational tooltips described later in this chapter are an inter-

mediate between a trigger-based approach and a conversational interface since they

use a trigger to start the interaction (i.e. you looking at a picture) and then start a

short conversation if you accept the help from the agent.

The following section reviews work related to the use of visual feedback with inter-

active interfaces. We focus on two interactive systems that are particularly relevant

to our research: MACK, an interactive on-screen character and Mel, an interactive

robot. In Section 2.2, we present three user studies that we performed with virtual

embodied agents: Look-to-talk, Conversational Tooltips and Gaze Aversion. In Sec-

tion 2.3, we present a collaborative user study made with researchers at MERL about

head nodding for interaction with a robot. In Section 2.4, we present a user study with

two non-embodied gesture-based interfaces: dialog box answering/acknowledgement



and document browsing. Finally, in Section 2.5, we summarize the results of the

user studies and present four kinds of natural visual feedback useful for interactive

interfaces.

2.1 Related Work

Several systems have exploited head-pose cues or eye gaze cues in interactive and

conversational systems. Stiefelhagen has developed several successful systems for

tracking face pose in meeting rooms and has shown that face pose is very useful for

predicting turn-taking [98]. Takemae et al. also examined face pose in conversation

and showed that, if tracked accurately, face pose is useful for creating a video summary

of a meeting [101]. Siracusa et al. developed a kiosk front end that uses head pose

tracking to interpret who was talking to whom in a conversational setting [93]. The

position and orientation of the head can be used to estimate head gaze, which is a

good estimate of a person's attention. When compared with eye gaze, head gaze can

be more accurate when dealing with low resolution images and can be estimated over

a larger range than eye gaze [65].

Several authors have proposed face tracking for pointer or scrolling control and

have reported successful user studies [105, 52]. In contrast to eye gaze [118], users

seem to be able to maintain fine motor control of head gaze at or below the level

needed to make fine pointing gestures'. However, many systems required users to

manually initialize or reset tracking. These systems supported a direct manipulation

style of interaction and did not recognize distinct gestures.

A considerable body of work has been carried out regarding eye gaze and eye

motion patterns for human-computer interaction. Velichkovsky suggested the use of

eye motion to replace the mouse as a pointing device [108]. Qvarfordt and Zhai used

eye-gaze patterns to sense user interest with a map-based interactive system [80]. Li

and Selker developed the InVision system which responded to a user's eye fixation

patterns in a kitchen environment [60].

'Involuntary microsaccades are known to limit the accuracy of eye-gaze based tracking [47].



In a study of eye gaze patterns in multi-party (more than two people) conversa-

tions, Vertegaal et al. [109] showed that people are much more likely to look at the

people they are talking to than any other people in the room. Also, in another study,

Maglio et al. [61] found that users in a room with multiple devices almost always look

at the devices before talking to them. Stiefelhagen et al. [99] showed that the focus of

attention can be predicted from the head position 74% of the time during a meeting

scenario.

Breazeal's work [14] on infantoid robots explored how the robot gazed at a person

and responded to the person's gaze and prosodic contours in what might be called

pre-conversational interactions. Davis and Vaks modeled head nods and head shakes

using a timed finite state machine and suggested an application with an on-screen

embodied agent [28].

There has been substantial research in hand/body gesture in for human-computer

interaction. Lenman et al. explored the use of pie- and marking menus in hand

gesture-based interaction[59]. Cohen et al. studied the issues involved in control-

ling computer applications via hand gestures composed of both static and dynamic

symbols[24].

There has been considerable work on gestures with virtual embodied interfaces,

also known as embodied conversational agents (ECAs). Bickmore and Cassell de-

veloped an ECA that exhibited many gestural capabilities to accompany its spoken

conversation and could interpret spoken utterances from human users [8]. Sidner et

al. have investigated how people interact with a humanoid robot [91]. They found

that more than half their participants naturally nodded at the robot's conversational

contributions even though the robot could not interpret head nods. Nakano et al.

analyzed eye gaze and head nods in computer-human conversation and found that

their subjects were aware of the lack of conversational feedback from the ECA [69].

They incorporated their results in an ECA that updated its dialogue state. Numerous

other ECAs (e.g. [106, 15]) are exploring aspects of gestural behavior in human-ECA

interactions. Physically embodied ECAs-for example, ARMAR II [31, 32] and Leo

[13]-have also begun to incorporate the ability to perform articulated body tracking



and recognize human gestures.

2.1.1 MACK: Face-to-face grounding

MACK (Media lab Autonomous Conversational Kiosk) is an embodied conversational

agent (ECA) that relies on both verbal and nonverbal signals to establish common

ground in computer-human interactions [69]. Using a map placed in front of the kiosk

and an overhead projector, MACK can give directions to different research projects

of the MIT Media Lab. Figure 2-1 shows a user interacting with MACK.

The MACK system tokenizes input signals into utterance units (UU) [78] cor-

responding to single intonational phrases. After each UU, the dialogue manager

decides the next action based on the log of verbal and nonverbal events. The dia-

logue manager's main challenge is to determine if the agent's last UU is grounded

(the information was understood by the listener) or is still ungrounded (a sign of

miscommunication).

As described in [69], a grounding model has been developed based on the verbal

and nonverbal signals happening during human-human interactions. The two main

nonverbal patterns observed in the grounding model are gaze and head nods. Non-

verbal patterns are used by MACK to decide whether to proceed to the next UU or

elaborate on the current one. Positive evidence of grounding is recognized by MACK

if the user looks at the map or nods his or her head. In this case, the agent goes

ahead with the next UU 70% of the time. Negative evidence of grounding is recog-

nized if the user looks continuously at the agent. In this case, MACK will elaborate

on the current UU 73% of the time. These percentages are based on the analysis

of human-human interactions. In the final version of MACK, Watson, our real-time

visual feedback recognition library, was used to estimate the gaze of the user and

detect head nods.



Figure 2-1: MACK was designed to study face-to-face grounding [69]. Directions are
given by the avatar using a common map placed on the table which is highlighted
using an over-head projector. The head pose tracker is used to determine if the
subject is looking at the common map.

2.1.2 Mel: Human-Robot Engagement

Mel is a robot developed at Mitsubishi Electric Research Labs (MERL) that mimics

human conversational gaze behavior in collaborative conversation [89]. One important

goal of this project is to study engagement during conversation. The robot performs

a demonstration of an invention created at MERL in collaboration with the user (see

Figure 2-2).

Mel's conversation model, based on COLLAGEN [84], determines the next move

on the agenda using a predefined set of engagement rules, originally based on human-

human interaction [90]. The conversation model also assesses engagement information

about the human conversational partner from a Sensor Fusion Module, which keeps

track of verbal (speech recognition) and nonverbal cues (multiview face detection[1 10]).

A recent experiment using the Mel system suggested that users respond to changes

in head direction and gaze by changing their own gaze or head direction[89]. Another

interesting observation is that people tend to nod their heads at the robot during



Figure 2-2: Mel, an interactive robot, can present the iGlassware demo (table and
copper cup on its right) or talk about its own dialogue and sensorimotor abilities.

explanation. These kinds of positive responses from the listener could be used to

improve the engagement between a human and robot.

2.2 Virtual Embodied Interfaces

In this section, we explore how visual feedback can be used when interacting with

an on-screen character. For this purpose we present three user studies that range

from a trigger-based interface to simple conversational interfaces. The "look-to-talk"

experiment, described in Section 2.2.1, explores the use of head gaze as a trigger for

activating an automatic speech recognizer inside a meeting environment. The "con-

versational tooltips" experiment, described in Section 2.2.2, explores an intermediate

interface between trigger-based and conversational using head gaze and head gestures.

The "gaze aversion" experiment, described in Section 2.2.3 looks at recognition of eye

gestures for a scripted conversational interface.



2.2.1 Look-to-Talk

The goal of this user study was to observe how people prefer to interact with a

simple on-screen agent when meeting in an intelligent environment where the virtual

agent can be addressed at any point in the meeting to help the participants1 . In

this setting where multiple users interact with one another and, possibly, with a

multitude of virtual agents, knowing who is speaking to whom is an important and

difficult question that cannot always be answered with speech alone. Gaze tracking

has been identified as an effective cue to help disambiguate the addressee of a spoken

utterance [99].

To test our hypothesis, we implemented look-to-talk(LTT), a gaze-driven in-

terface, and talk-to-talk (TTT), a spoken keyword-driven interface. We have also

implemented push-to-talk(PTT), where the user pushes a button to activate the

speech recognizer. We present and discuss a user evaluation of our prototype system

as well as a Wizard-of-Oz setup.

Experimental Study

We set up the experiment to simulate a collaboration activity among two subjects

and a software agent in an the Intelligent Room [23] (from here on referred to as

the I-Room). The first subject (subject A) sits facing the front wall displays, and a

second "helper" subject (subject B) sits across from subject A. The task is displayed

on the wall facing subject A. The camera is on the table in front of subject A, and

Sam, an animated character representing the software agent, is displayed on the side

wall (see Figure 2-3). Subject A wears a wireless microphone and communicates with

Sam via IBM ViaVoice. Subject B discusses the task with subject A and acts as a

collaborator. The I-Room does not detect subject B's words and head-pose.

Sam is the I-Room's "emotive" user interface agent. Sam consists of simple shapes

forming a face, which animate to continually reflect the I-Room's state (see Fig-

ure 2-3). During this experiment, Sam reads quiz questions through a text-to-speech

'The results in Section 2.2.1 were obtained in collaboration with Alice Oh, Harold Fox, Max Van
Kleek, Aaron Adler and Krzysztof Gajos. It was originally published at CHI 2002 [72].



Figure 2-3: Look-To-Talk in non-listening (left) and listening (right) mode.

synthesizer and was constrained to two facial expressions: non-listening and listening.

To compare the usability of look-to-talk with the other modes, we ran two

experiments in the I-Room. We ran the first experiment with a real vision- and

speech-based system, and the second experiment with a Wizard-of-Oz setup where

gaze tracking and automatic speech recognition were simulated by an experimenter

behind the scenes. Each subject was asked to use all three modes to activate the

speech recognizer and then to evaluate each mode.

For a natural look-to-talk interface, we needed a fast and reliable computer

vision system to accurately track the users gaze. This need has limited gaze-based

interfaces from being widely implemented in intelligent environments. However, fast

and reliable gaze trackers using state-of-the-art vision technologies are now becoming

available and are being used to estimate the focus of attention. In our prototype

system, we estimate gaze with a 3-D gradient-based head-pose tracker [83] (an early of

version of our head gaze tracker described in Section 3.1) that uses shape and intensity

of the moving object. The tracker provides a good non-intrusive approximation of

the user s gaze.

There were 13 subjects, 6 for the first experiment and 7 for the Wizard-of-Oz

experiment. All of them were students in computer science, some of whom had prior

experience with talk-to-talk in the I-Room. After the experiment, the subjects

rated each of the three modes on a scale of one to five on three dimensions: ease of

use, naturalness, and future use. We also asked the subjects to tell us which mode

they liked best and why.

Each subject was asked three sets of five trivia questions, each set using a different



Mode Activate Feedback Deactivate Feedback
PTT Switch the micro- Physical status Switch the micro- Physical status

phone to "on" of the switch phone to "mute" of the switch
LTT Turn head Sam shows lis- Turn head away Sam shows nor-

toward Sam tening expression from Sam mal expression
TTT Say computer Special beep Automatic None

(after 5 sec)

Table 2.1: How to activate and deactivate the speech interface using three modes:
push-to-talk (PTT), look-to-talk (LTT), and talk-to-talk (TTT).

mode of interaction in counterbalanced order. In the Wizard-of-Oz experiment, we

ran a fourth set in which all three modes were available, and the subjects were told

to use any one of them for each question. Table 2.1 illustrates how users activate and

deactivate the speech recognizer using the three modes and what feedback the system

provides for each mode.

Results and Discussion

As we first reported in [72], for the first experiment, there was no significant difference

(using analysis of variance at D=0.05) between the three modes for any of the surveyed

dimensions. However, most users preferred talk-to-talk to the other two. They

reported that talk-to-talk seemed more accurate than look-to-talk and more

convenient than push-to-talk.

For the Wizard-of-Oz experiment, there was a significant difference in the natu-

ralness rating between push-to-talk and the other two (p=0.01). This shows that,

with better perception technologies, both look-to-talk and talk-to-talk will be

better choices for natural human-computer interaction. Between look-to-talk and

talk-to-talk, there was no significant difference on any of the dimensions. However,

five out of the seven subjects reported that they liked talk-to-talk best compared to

two subjects who preferred look-to-talk. One reason for preferring talk-to-talk

to look-to-talk was that there seemed to be a shorter latency in talk-to-talk

than look-to-talk. Also, a few subjects remarked that Sam seemed disconnected

from the task, and thus it felt awkward to look at Sam.



Despite the subjects' survey answers, for the fourth set, 19 out of 30 questions were

answered using look-to-talk, compared with 9 using talk-to-talk (we have this

data for five out of the seven subjects; the other two chose a mode before beginning

the fourth set to use for the entire set, and they each picked look-to-talk and

talk-to-talk). When asked why he chose to use look-to-talk even though he

liked talk-to-talk better, one subject answered " I just turned my head to answer

and noticed that the Room was already in listening mode." This confirms the findings

in [61] that users naturally look at agents before talking to them.

This user study about the look-to-talk concept shows that gaze is an important

cue in multi-party conversation since human participants naturally turn their head

toward the person, avatar or device they want to talk to. For an interactive system,

to recognize this kind of behavior can help distinguish if the speaker is addressing the

system or not.

2.2.2 Conversational Tooltips

A tooltip is a graphical user interface element that is used in conjunction with a

mouse cursor. As a user hovers the cursor over an item without clicking it, a small box

appears with a short description or name of the item being hovered over. In current

user interfaces, tooltips are used to give some extra information to the user without

interrupting the application. In this case, the cursor position typically represents an

approximation of the user attention.

Visual tooltips are an extension of the concept of mouse-based tooltips where the

user's attention is estimated from the head-gaze estimate. There are many applica-

tions for visual tooltips. Most museum exhibitions now have an audio guide to help

visitors understand the different parts of the exhibition. These audio guides use proxy

sensors to determine the location of the visitor or need input on a keypad to start

the prerecorded information. Visual tooltips are a more intuitive alternative.

We define visual tooltips as a three-step process: deictic gesture, tooltip, and

answer. During the first step, the system analyzes the user's gaze to determine if

a specific object or region is under observation. Then the system informs the user



Figure 2-4: Multimodal kiosk built to experiment with Conversational tooltip. A
stereo camera is mounted on top of the avatar to track the head position and recognize
head gestures. When the subject looks at a picture, the avatar offers to give more
information about the picture. The subject can accept, decline or ignore the offer for
extra information.

about this object or region and offers to give more information. During the final step,

if the user answers positively, the system gives more information about the object.

To work properly, the system that offers visual tooltips needs to know where the

user attention is and if the user wants more information. A natural way to estimate

the user's focus is to look at the user's head orientation. If a user is interested in a

specific object, he or she will usually move his or her head in the direction of that

object [98]. Another interesting observation is that people often nod or shake their

head when answering a question. To test this hypothesis, we designed a multimodal

experiment that accepts speech as well as vision input from the user. The following

section describes the experimental setup and our analysis of the results.

Experimental Study

We designed this experiment with three tasks in mind: exploring the idea of visual

tooltips, observing the relationship between head gestures and speech, and testing our

head-tracking system. We built a multimodal kiosk that could provide information



about some graduate students in our research group (see Figure 2-4). The kiosk

consisted of a Tablet PC surrounded by pictures of the group members. A stereo

camera [30] and a microphone array were attached to the Tablet PC.

The central software part of our kiosk consists of a simple event-based dialogue

manager. The dialogue manager receives input from the Watson tracking library

(described in Appendix A) and the speech recognition tools [71]. Based on these

inputs, the dialogue manager decides the next action to perform and produces output

via the text-to-speech routines [2] and the avatar [41].

When the user approaches the kiosk, the head tracker starts sending pose informa-

tion and head nod detection results to the dialogue manager. The avatar then recites

a short greeting message that informs the user of the pictures surrounding the kiosk

and asks the user to say a name or look at a specific picture for more information. Af-

ter the welcome message, the kiosk switches to listening mode (the passive interface)

and waits for one of two events: the user saying the name of one of the members or

the user looking at one of the pictures for more than n milliseconds. When the vocal

command is used, the kiosk automatically gives more information about the targeted

member. If the user looks at a picture, the kiosk provides a short description and

offers to give more information. In this case, the user can answer using voice (yes,

no) or a gesture (head nods and head shakes). If the answer is positive, the kiosk

describes the picture, otherwise the kiosk returns to listening mode.

For our user study, we asked 10 people (between 24 and 30 years old) to interact

with the kiosk. Their goal was to collect information about each member. They were

informed about both ways to interact: voice (name tags and yes/no) and gesture

(head gaze and head nods). There were no constraints on the way the user should

interact with the kiosk.

Results and Discussion

10 people participated in our user study. The average duration of each interaction

was approximately 3 minutes. At the end of each interaction, the participant was

asked some subjective questions about the kiosk and the different types of interaction



(voice and gesture).

A log of the events from each interaction allowed us to perform a quantitative

evaluation of the type of interaction preferred. The avatar gave a total of 48 expla-

nations during the 10 interactions. Of these 48 explanations, 16 were initiated with

voice commands and 32 were initiated with conversational tooltips (the user looked

at a picture). During the interactions, the avatar offered 61 tooltips, of which 32 were

accepted, 6 refused and 23 ignored. Of the 32 accepted tooltips, 16 were accepted

with a head nod and 16 with a verbal response. Our results suggest that head gesture

and pose can be useful cues when interacting with a kiosk.

The comments recorded after each interaction show a general appreciation of the

conversational tooltips. Eight of the ten participants said they prefer the tooltips

compared to the voice commands. One of the participants who preferred the voice

commands suggested an on-demand tooltip version where the user asked for more

information and the head gaze is used to determine the current object observed. Two

participants suggested that the kiosk should merge the information coming from the

audio (the yes/no answer) with the video (the head nods and head shakes).

This user study about "conversational tooltips" shows how head gaze can be

used to estimate the user's focus of attention and presents an application where a

conversation is initiated by the avatar when it perceives that the user is focusing on

a specific target and may want more information.

2.2.3 Gaze Aversion

Eye gaze plays an important role in face-to-face interactions. Kendon proposed that

eye gaze in two-person conversation offers different functions: monitor visual feedback,

express emotion and information, regulate the flow of the conversation (turn-taking),

and improve concentration by restricting visual input [51]. Many of these functions

have been studied for creating more realistic ECAs [107, 109, 34], but they have

tended to explore only gaze directed towards individual conversational partners or

objects.

We define three types of distinctive eye motion patterns or "eye gestures": eye



contact, deictic gestures, and non-deictic gestures. Eye contact implies one partici-

pant looking at the other participant. During typical interactions, the listener usually

maintains fairly long gazes at the speaker while the speaker tends to look at the lis-

tener as he or she is about to finish the utterance [51, 70]. Deictic gestures are eye

gestures with a specific reference which can be a person not currently involved in the

discussion, or an object. Griffin and Bock showed in their user studies that speakers

look at an object approximately 900ms before referencing it vocally [37]. Non-deictic

gestures are eye movements to empty or uninformative regions of space. This ges-

ture is also referred to as a gaze-averting gesture [35] and the eye movement of a

thinker [86]. Researchers have shown that people will make gaze-averting gestures

to retrieve information from memory [85] or while listening to a story [95]. Gaze

aversion during conversation has been shown to be a function of cognitive load [35].

These studies of human-to-human interaction give us insight regarding the kind

of gestures that could be useful for ECAs. Humans do seem to make similar gestures

when interacting with an animated agent. Colburn et al. looked at eye contact with

ECAs and found a correlation between the time people spend looking at an avatar

versus the time they spend looking at another human during conversation [25].

We have observed that eye motions that attend to a specific person or object

tend to involve direct saccades, while gaze aversion gestures tend to include more

of a "wandering" eye motion. Looking at still images may be inconclusive in terms

of deciding whether it is a gaze aversion gesture or a deictic eye movement, while

looking at the dynamics of motion tends to be more discriminative (Figure 2-5).

We therefore investigate the use of eye motion trajectory features to estimate gaze

aversion gestures.

To our knowledge, no work has been done to study gaze aversion by human par-

ticipants when interacting with ECAs. Recognizing such eye gestures would be useful

for an ECA. A gaze aversion gesture while a person is thinking may indicate the

person is not finished with their conversational turn. If the ECA senses the aversion

gesture, it can correctly wait for mutual gaze to be re-established before taking its

turn.
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Figure 2-5: Comparison of a typical gaze aversion gesture (top) with a "deictic" eye
movement (bottom). Each eye gesture is indistinguishable from a single image (see left
images). However, the eye motion patterns of each gesture are clearly different (see
right plots).

Experimental Study

Our user study was designed with two tasks in mind: (1) to observe the kind of eye

gestures people make when interacting with an ECA, and (2) to evaluate how well

we can recognize these gestures. The first task is the main topic of this section while

the results of the second task are described later in Section 3.3 where we present our

algorithm for gesture recognition.

For the purpose of this user study, we built a multimodal kiosk with an interactive

avatar that can perform a survey of 100 questions (see Figure 2-6). Sample questions

asked during the user study include:

1. Are you a student?

2. Is your age an even number?

3. Do you live on campus?

II · 1 I~~ I-
I stmatre gaze trajectory

S[ Estimated gaze trajectory



Figure 2-6: Multimodal interactive kiosk used during our user study.

4. Do you like Coke better than Pepsi?

5. Is one of the official languages in Canada Spanish?

6. Does Canada have a president?

7. Is fifteen minus five equal to nine?

8. Is five a prime number?

Our user study was composed of 6 participants: 2 men and 4 women, aged be-

tween 25-35 years old. Each interaction lasted approximately 10-12 minutes. At the

beginning of the experiment, participants were informed that they would interact

with an avatar who would ask them 100 questions. Participants were asked to answer

every question with a positive answer (by saying "yes" and/or head nodding) or a

negative answer (by saying "no" and/or head shaking) and were not aware that their

eye gestures were being monitored1 .

1The main purpose of this user study was to observe the eye gaze patterns made by human
participants. For this reason, we are not discussing in this thesis the performance of our head
gestures recognizer for this user study but more details can be found in a related paper about
co-adaptation [21].



The kiosk consisted of a 15.4" screen and a monocular camera with an integrated

microphone placed on top of the screen. Participants sat in a chair placed 1.3 meters

in front of the screen. The screen was elevated so that the eyes of the avatar were

approximately at the same height as the eyes of the participant. The central software

component of our kiosk consisted of a simple event-based dialogue manager that

produced output using the AT&T text-to-speech engine [2] and the Haptek virtual

avatar [41]. The experimenter, sitting to the right of each participant, used a remote

keyboard to trigger the dialogue manager after each answer from each participant.

Results and Discussion

Since eye gaze gestures can be subtle and sometimes hard to differentiate even for a

human, we asked three people to annotate the aversion gestures in the video sequences

corresponding to each subject. The following definition was given to each coder for

gaze aversion gestures: eye movements to empty or uninformative regions of space,

reflecting "look-away" or "thinking".

Even though the user study did not include any explicit deictic reference to the

environment around the user, human participants naturally made deictic eye gestures

during the interactions. Most of these deictic gestures were targeted to the video

camera or the experimenter sitting on the right side of the participant. Coders were

instructed to label these deictic eye gestures as "non-gaze-aversion".

During the process of labeling and segmentation of the six video sequences from

our user study, the three coders labeled 114, 72 and 125 gaze aversion gestures. The

variation between coders is not that surprising since gaze gestures are subtle. We

decided to define our ground truth as the intersection of all three coders, for a total

of 72 gaze aversion gestures.

The average length of gaze aversion gestures was 1.3 seconds. Since all verbal

answers from the users were a short "yes" or "no" response, waiting an extra two

seconds for an answer may be too long for the embodied agent. Without any visual

feedback recognition, the dialogue manager could potentially identify silence as a

sign for misunderstanding and would repeat the question or ask the user if he/she



understood the question.

On average, our six participants made gaze aversion gestures twelve times per

interaction with a standard deviation of 6.8. Since 100 questions were asked during

each interaction, on average 12% of the time, people made a gaze aversion gesture

that was labeled by all three coders. In our experiment, most gaze aversions were

gestures where the participant was thinking about their answer. Since our dialogue

manager was relatively simple, few gaze aversion gestures had the purpose of keeping

the avatar from interrupting the human participant (i.e. holding the floor). We

anticipate that with a more complex dialogue manager and a better speech recognizer,

human participants would express an even greater amount of gaze aversion gestures.

Our results suggest that people do make gaze aversion gestures while interacting

with an ECA and that it would be useful for an avatar to recognize these patterns.

A gaze aversion gesture while a person is thinking may indicate the person is not

finished with their conversational turn. If the embodied agent senses the aversion

gesture, it can correctly wait for mutual gaze to be re-established before taking its

turn.

2.3 Physical Embodied Interfaces

2.3.1 Mel: Effects of Head Nod Recognition

Following the observation that human participants were head nodding naturally dur-

ing the user study described in Section 2.1.2, this section presents a user study ad-

dressing the effects of head nod recognition with human-robot interaction1 .

Experimental Study

Participants held one of two conversations with the robot, one to demonstrate either

its own abilities or to demonstrate collaboratively the IGlassware equipment. During

these conversations people nodded at the robot, either because it was their means

'This work was done in collaboration with Candace Sidner, Christopher Lee and Clifton Forlines.
This section excerpts from the paper originally published at HRI 2006 [92].



for taking a turn after the robot spoke (along with phrases such as "ok" or "yes" or

"uh-huh"), or because they were answering in the affirmative a yes/no question and

accompanied their linguistic "yes" or "ok" with a nod. Participants also shook their

heads to answer negatively to yes/no questions, but we did not study this behavior

because too few instances of "no" answers and head shakes occurred in our data.

Sometimes a nod was the only response from the participant.

The robot was equipped with a stereo camera and head gaze was estimated us-

ing the AVAM approach described in Section 2.2.3 while head nod detection was

performed using the discriminative approach described in [67]. The robot used the

conversational system and architecture described in [84, 90]. Head nods were re-

ported from the sensorimotor subsystem to the vision system in the same way that

other gestures (for example, looking at an object) were measured.

A total of 49 participants interacted with the robot. None had interacted with

our robot before. Most had never interacted with any robot. One participant had

an abbreviated conversation because the robot mis-recognized the user's intention

and finished the conversation without a complete demo. However, the participant's

conversation was long enough to include in the study. Thirty-five participants held

the IGlassware demo with the robot and fourteen participants held the self demo

where Mel explains its own capabilities.

The participants were divided into two groups, called the MelNodsBack group

and the MelOnlyRecognizesNods group. The MelNodsBack group had fifteen partic-

ipants who were told that the robot understood some nods during conversation; they

participated in a conversation in which the robot nodded back to the person every

time it recognized a head nod. It should be noted that nodding back in this way is

not something that people generally do in conversation. People nod to give feedback

on what the other one has said, but having done so, their conversational partners

only rarely nod in response. When they do, they are generally indicating some kind

of mutual agreement. Nonetheless, by nodding back the robot gives feedback to the

user on their behavior. Due to mis-recognition of nods, this protocol meant that the

robot sometimes nodded when the person did not nod.



IGlassware Self Total
MelNodsBack 9 6 15
MelOnlyRecognizesNods 6 8 14
NoMelNods 20 0 20

Table 2.2: Breakdown of participants in groups and demos.

The MelOnlyRecognizesNods group had fourteen subjects who held conversations

without knowledge that the robot could understand head nods, although the nod

recognition algorithms were operational during the conversation. We hypothesized

that participants might be affected by the robot's nodding ability because 1) when

participants nodded and spoke, the robot took another turn whereas without a re-

sponse (verbal and nod), the robot waited a full second before choosing to go on and

similarly, 2) when participants responded only with a nod, the robot took another

turn without waiting further. Again mis-recognition of nods occurred, although the

participants received no gestural feedback about it. The breakdown into groups and

demo types is illustrated in Table 2.2.

These participants are in contrast to a base condition called the NoMelNods group,

with 20 subjects who interacted with the robot in a conversation in which the robot

did not understand nods, and the participants were given no indication that it could

do so (see Section 2.1.2). This group, collected in 2003, held only the IGlassware

equipment conversation with the robot.

Protocol for the study: The study was a between-subjects design. Each partic-

ipant was randomly pre-assigned into one of the two nodding conditions (that is, no

subjects had conversations in both nodding conditions). Video cameras were turned

on after the participant arrived. The participant was introduced to the robot (as Mel)

and told the stated purpose of the interaction (i.e. to have a conversation with Mel).

Participants were told that they would be asked a series of questions at the completion

of the interaction. Participants were also told what responses the robot could easily

understand (that is, "yes", "no", "okay", "hello", "good bye", their first names, and

"please repeat"), and in the case of the MelNodsBack condition, they were told that

the robot could understand some of their nods, though probably not all. They were
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Figure 2-7: Overall Nod Rates by Feedback Group. Subjects nodded significantly
more in the MelNodsBack feedback group than in the NoMelNods group. The mean
Overall Nod Rates are depicted in this figure with the wide lines.

not told that the robot would nod back at them when they nodded. Participants

in the 2003 study had been told the same material as the MelOnlyRecognizesNods

participants.

When the robot was turned on, the participant was instructed to approach Mel.

The interaction began, and the experimenter left the room. Interactions lasted be-

tween 3 to 5 minutes. After the demo, participants called in the experimenter and

were given a short questionnaire, which was not relevant to the nodding study.

Results and Discussion

The study used a between-subjects design with Feedback Group as our independent

variable, and Overall Nod Rate, Nod with Speech Rate, and Nod Only Rate as our

three dependent variables. In total, 49 people participated in the study, fifteen in the

MelNodsBack group, fourteen in the MelOnlyRecognizesNods group. An additional

twenty participants served in the NoMelNods group.

A one-way ANOVA indicates that there is a significant difference among the three
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Figure 2-8: Nod with Speech Rates by Feedback Group. Again, subjects nodded with

speech significantly more frequently in the MelNodsBack feedback group than in the

NoMelNods group.

feedback groups in terms of Overall Nod Rate (F2,46 = 5.52, p < 0.01). The mean

Overall Nod Rates were 42.3%, 29.4%, and 20.8% for MelNodsBack, MelOnlyRecog-

nizesNods, and NoMelNods groups respectively. A post-hoc LSD pairwise comparison

between all possible pairs shows a significant difference between the MelNodsBack and

the NoMelNods groups (p=0.002). No other pairings were significantly different. The

mean Overall Nod Rates for the three feedback groups are shown in Figure 2-7.

A one-way ANOVA indicates that there is also a significant difference among the

three feedback groups in terms of Nod with Speech Rate (F2,46 = 4.60, p = 0.02).

The mean Nod with Speech Rates were 32.6%, 23.5%, and 15.8% for the MelNods-

Back, MelOnlyRecognizesNods, and NoMelNods groups respectively. Again, a LSD

post-hoc pairwise comparison between all possible pairs of feedback groups shows a

significant difference between the MelNodsBack and NoMelNods groups (p=0.004).

Again, no other pairs were found to be significantly different. The mean Nod with

Speech Rates for the three feedback groups are shown in Figure 2-8.

Finally, a one-way ANOVA found no significant differences among the three feed-
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Figure 2-9: Nod Only Rates by Feedback Group. There were no significant differences
among the three feedback groups in terms of Nod Only Rates.

back conditions in terms of Nod Only Rate (F2 ,46 = 1.08, p = 0.35). The mean Nod

Only Rates were much more similar to one another than the other nod measurements,

with means of 8.6%, 5.6% and 5.0% for the MelNodsBack, MelOnlyRecognizesNods,

and NoMelNods groups respectively. The mean Nod Only Rates for the three feed-

back groups are shown in Figure 2-9.

These results above indicate that under a variety of conditions people will nod at

a robot as a conversationally appropriate behavior. Furthermore, these results show

that even subjects who get no feedback about nodding do not hesitate to nod in a

conversation with the robot. We conclude that conversation alone is an important

feedback effect for producing human nods, regardless of the robot's ability to interpret

it.

The two statistically significant effects for nods overall and nods with speech that

were found between the NoMelNods group and the MelNodsBack group indicate that

providing information to participants about the robot's ability to recognize nods and

giving them feedback about it makes a difference in the rate at which they produce

nods. This result demonstrates that adding perceptual abilities to a humanoid robot

1~



that the human is aware of and gets feedback about provides a way to affect the

outcome of the human and robot's interaction.

2.4 Non-embodied Interfaces

In this section, we explore how visual feedback can be used to improve interactive

interfaces with no on-screen character. The most common examples of this type of

interface are the graphical interfaces used by modern operating systems and personal

computers. Instead of using an on-screen character, these interfaces rely on visual

objects (widgets) like dialogue boxes to communicate a warning or ask a question.

While the medium may be different, it would be interesting to find out if visual

feedback can also be used for this type of interface. The following section presents

our user study with gesture-based interactions.

2.4.1 Gesture-based Interactions

Head nods and head shakes are natural gestures commonly used during face-to-face

interaction. Inspired by research with human-ECA interactions [90, 69], we propose

using head gesture-based controls for two conventional windows interfaces: dialog

boxes and document browsing.

Dialog boxes are special windows that are used by computer programs or by the

operating system to display information to the user, or to get a response if needed

[113]. We will focus our attention on two types of dialog boxes: notification dialog

boxes and question dialog boxes.

Notification dialog boxes are one-button windows that show information from

an application and wait for the user to acknowledge the information and click a

confirmation button. During human-to-human interactions, the process of ensuring

common understanding is called grounding [22]. Grounding is also present during

interactions with embodied conversational agents, and human participants naturally

head nod as a non-verbal feedback for grounding [69]. From these observations, we

can expect human participants to naturally accept head nodding as a way to answer



notification dialog boxes.

Question dialog boxes are two-button windows that display a question from the

application and wait for positive or negative feedback from the user. This type of

dialog box includes both confirmation and rejection buttons. If we look again at

interactions that humans have with other humans or with embodied agents, head

nods and head shakes are a natural way in many cultures to signify positive and

negative feedback, so untrained users should be able to use these kinds of interfaces

quite efficiently.

An interesting characteristic of notification and question dialog boxes is that quite

often they appear while the user is performing a different task. For example, some

email clients will notify the user of new email arrivals using a dialog box saying

"You've got mail!". Another example is operating systems and applications that

question the user about installing software updates. In both cases, the user may

already be working on another task such as reading emails or browsing a document,

and want to answer the dialog box without changing focus. Answering a dialog box

using a head gesture makes it possible for users to keep keyboard and mouse focus

undisturbed.

Based on our observations, we hypothesize that head gestures are a natural and

efficient way to respond to dialog boxes, especially when the user is already perform-

ing a different task. We suggest a gesture-based interface design where notification

dialog boxes can be acknowledged by head nodding and question dialog boxes can be

answered by head nods or head shakes.

Similarly, people use head nods as a grounding cue when listening to information

from another person. We conjecture that reading may be similar to listening to infor-

mation, and that people may find it natural to use head nod gestures to turn pages.

We design a prototype gesture-based page-forward control to browse a document and

evaluate it in a user study as described below.



Figure 2-10: Experimental setup. A stereo camera is placed on top of the screen to

track the head position and orientation.

Experimental Study

The physical setup consists of a desk with a 21" screen, a keyboard, and a mouse. A

stereo camera was installed on top of the screen to track the head gaze and recognize

head gestures (see Figure 2-10). This camera was connected to a laptop that ran the

head gesture recognition system. The recognition system sends recognition results to

the main application, which is displayed on the desktop screen in a normal fashion.

No feedback about the recognition results is shown on this screen.

We designed our experimental system to evaluate the two gesture-based widgets

described in Section 2.4.1: dialog box answering and document browsing. The main

experiment consisted of two tasks: (1) reading a short text and (2) answering three

related questions. Both tasks were performed under three different experimental

interaction phases: conventional input only, head gesture input only and user-selected

input method. For each interaction, the text and questions were different. During

both tasks, dialog boxes would appear at different times asking a question or stating



new information.

The reading task was designed to replicate a situation where a person reads an

informal text (,-3 pages) using a document viewer like Adobe Acrobat Reader. At

startup, our main application connects to Acrobat Reader, using Component Object

Model (COM) technology, displays the Portable Document File (PDF) and waits for

the user input. When the participant reached the end of the document, he/she was

instructed to close Acrobat Reader and automatically the window for the second task

would start. The document browsing widget was tested during this task.

The writing task was designed to emulate an email writing process. The interface

was similar to most email clients and included the conventional fields: "To:", "CC:",

"Subject:" and the email body. A "Send" button was placed in the top left corner.

The questions were already typed inside the email as if the participant was replying

to a previous email.

The dialog boxes appearing during both tasks were designed to replicate reminders

sent by a calendar application (i.e. Microsoft Outlook), alerts sent by an email client,

and questions asked during impromptu moments about software updates or assistant

help. Four to eight dialog boxes would appear during each experiment. The position

and text displayed on the dialog box changed between appearances. Participants were

asked to answer each dialog box that appeared on the screen. Two types of dialog

boxes were displayed: one "OK" button and two "Yes/No" buttons.

Both tasks were repeated three times with three different experimental interaction

phases. During the first interaction, the participants were asked to use the mouse

or the keyboard to browse the PDF document, answer all dialog boxes and reply to

the email. This interaction phase was used as a baseline where participants were

introduced to both tasks and they could remember how it feels to interact with

conventional input devices.

Between the first and second interaction, a short tutorial about head gestures for

user interface was performed where participants practiced the new techniques for dia-

log box answering and document browsing as described in Section 2.4.1. Participants

were free to practice it as long as they wanted, but most participants were ready to



start the second phase after one minute.

During the second phase, participants were asked to browse the PDF document

and answer dialog boxes using head nods and head shakes. During the email task,

participants had to use the keyboard for typing and could use the mouse for navigating

in the email, but they were asked to answer any dialog box with a head gesture. This

interaction phase was designed to introduce participants to gesture-based widgets.

During the third phase of the experiment, participants were told that they could

use any input technique to perform the browsing and email tasks. This interaction

was designed so that participants could freely choose between keyboard, mouse, or

head gestures. In contrast to the previous two phases, this phase should give us an

indication of which interaction technique or combination of techniques is preferred.

This phase was also designed to compare the accuracy of the head recognizer

with the judgement of a human observer. For this reason, during this third phase of

the experiment a human observer was recognizing intentional head nods from each

participant in a Wizard-of-Oz manner. The vision-based head gesture recognizer was

still running during this phase and its results were logged for later comparison.

The study was a within-subject design, where each participant performed more

than one interaction phase. A total of 19 people participated in our experiment.

All participants were accustomed to using the keyboard and mouse as their main

input devices and none of them had used head gesture in a user-interface before.

Twelve participants completed the first two conditions and only seven participants

completed all three conditions because of a problem with our log files. Each condition

took two to three minutes to complete on average. All participants completed a short

questionnaire about their experience and preference at the end of the experiment.

The short questionnaire contained two sets of questions where participants were

asked to compare keyboard, mouse, and head gestures. The first set of questions

focused on document browsing while the second set addressed dialog box answering.

Both sets had the same structure: two questions about efficiency and natural interac-

tion followed by a section for general comments. Each question asked the participant

to grade all three types of user interfaces (keyboard, mouse, and head gesture) from
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1 to 5 where 5 is the highest score. The first question asked participants to grade the

input techniques on efficiency. The second question asked participants to grade the

input techniques on how natural it was.

Results and Discussion

In this section, we first present the results of the user study, discuss its implication,

and finally present results about context-based recognition.

We analyzed the choices each participant made during the third phase of the

experiment. During this part of the experiment, the participant was free to decide

which input device to use. Figure 2-11 shows how participants decided to answer

dialog boxes and browse documents. For the dialog boxes, 60.4% of the time they

used a head gesture to answer the dialog box while using mouse and keyboard only

20.9% and 18.6% respectively. For document browsing, 31.2% of the time they used
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a head gesture to answer the dialog box while using mouse and keyboard only 22.9%

and 45.8% respectively.

Using a standard analysis of variance (ANOVA) on all 7 subjects who participated

to the third phase, results on the dialog box answering widget showed a significant

difference among the means of the three input techniques: p = 0.060. Pairwise com-

parisons show a significant difference for pairs gesture-mouse and gesture-keyboard,

with respectively p = 0.050 and p = 0.083, while the pair mouse-keyboard showed no

significant difference: p = .45. Pairwise comparisons for the document browsing show

no significant difference between all pairs, with p = 0.362, p = 0.244, and p < 0.243

for gesture-mouse, gesture-keyboard, and mouse-keyboard respectively.

We compared the results from vision-based head gesture recognizer with the

Wizard-of-Oz results on three participants. The vision-based system recognized 91%

of the head nods with a false positive rate of 0.1. This result shows that a vision-only

approach can recognize intentional head gestures, but suggests the use of contex-

tual information to reach a lower false positive rate. Context-based recognition is

discussed later in Chapter 4.

We also measured the qualitative results from the questionnaire. Figure 2-12

shows how 19 participants scored each input device for efficiency and naturalness

when interacting with dialog boxes. The average scores for efficiency were 3.6, 3.5 and

4.2, for keyboard, mouse, and head gestures respectively. In the case of naturalness,

the average scores were 3.4, 3.7 and 4.2.

Figure 2-13 shows how 19 participants scored each input device for efficiency and

naturalness for document browsing. The average scores for efficiency were 4.3, 3.8 and

2.6, for keyboard, mouse and head gestures respectively. In the case of naturalness,

the average scores were 4.1, 3.9 and 2.7.

One important fact when analyzing this data is that our participants were already

trained to use mouse and keyboard. This previous training affected their choices.

The results from Figures 2-11 and 2-12 suggest that head gestures are perceived as

a natural and efficient way to answer and acknowledge dialog boxes. Participants

did not seem to appreciate as much the head gesture for document browsing. Some



Figure 2-12: Survey results for dialog box task. All 19 participants graded the natu-
ralness and efficiency of interaction on a scale of 1 to 5, 5 meaning best.

participants stated in their questionnaire that they wanted to have a more precise

control over the scrolling of PDF documents. Since the head gesture paradigm only

offered control at the page level, we think that this paradigm would apply better to

a slide-show application like PowerPoint.

An interesting fact that came from our post-analysis of the user study is that

some participants performed head shakes at the notification dialog box (the dialog

box with only "OK"). This probably means that they did not want to be disturbed

at that specific moment and expressed their disapproval by a head shake.

This user study with gesture-based interactions shows that head nods and head

shakes can be useful visual feedback for non-embodied interfaces. Human participants

naturally used head gestures over conventional input devices like keyboard and mouse

when answering dialog boxes. In the following section, we summarize our findings

about visual feedback recognition for interactive interfaces.
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Figure 2-13: Survey results for document browsing task. All 19 participants graded

the naturalness and efficiency of interaction on a scale of 1 to 5, 5 meaning best.

2.5 User Study Summary

We are interested in visual feedback that human participants perform naturally when

interacting with an interactive system. We also want to find out what visual feedback,

if recognized properly by the system, would make the interactive interface more useful

and efficient.

The user studies presented in this chapter give us a better understanding of what

facial feedback can be useful for interactive systems. In this section, we investigated

four types of visual feedback: head gaze, eye gaze, head gestures and eye gestures.

Head Gaze As shown in the Look-to-Talk experiment and in previous work [61,

109], gaze is an important cue in multi-party conversation since human participants

naturally turn their head toward the person, avatar or device they want to talk to.

For an interactive system, to recognize this kind of behavior can help distinguish if

the speaker is addressing the system or not. During a meeting scenario, an embodied
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agent like Sam (see Section 2.2.1) can help the participants when directly triggered.

Also, head gaze can determine if the speaker is talking to the avatar or to another

person.

Head gaze is also an important cue for estimating the attention of the user and

can help to recognize whether the participant understood the last explanation. Mack,

described in Section 2.1.1, is an example of such a system, where the head gaze is

used to determine grounding by observing if the user also looked at the map when

pointing to it. In the interactive system described Sections 2.1.2 and 2.3.1, Mel uses

head gaze to know if the user looked at the pointed object, the iGlassware.

Eye Gaze Eye gaze and head gaze are usually correlated and most observations

made for head gaze also apply to eye gaze. Estimating both head and eye gaze can be

used by an interactive system to know when someone is talking to it. When trying to

estimate the focus of attention of the user, it is particularly useful to estimate the eye

gaze of the participant if the targets are close to each other (i.e. small field-of-view).

The "conversational tooltips" experiment described in Section 2.2.2 suggests that

head gaze can be used to estimate the focus of interest of the user. If the targets were

closer to each other, the use of eye gaze would definitely improve the accuracy of the

system.

Head Gestures Head nodding is a natural gesture for grounding. Even when in-

teracting with an avatar who cannot recognize head nods, human participants did

perform head nods (see Section 2.1.2). The user study described in Section 2.3.1

shows that people head nod more often when the interactive interface is able to

perceive gestures and gives feedback of it awareness. This result demonstrates that

adding perceptual abilities to a humanoid robot that the human is aware of and gets

feedback about provides a way to affect the outcome of the human-robot interaction.

In our experiment with gesture-based interactions (see Section 2.4.1), we showed

that head nods and head shakes can be useful for non-embodied interfaces. Hu-

man participants naturally used head gestures over conventional input devices like



keyboard and mouse when answering dialog boxes.

Eye Gestures In Section 2.2.3, we presented a user study where human participants

naturally performed gaze aversion gestures when interacting with an embodied agent.

A gaze aversion gesture while a person is thinking may indicate the person is not

finished with their conversational turn. If the embodied agent senses the aversion

gesture, it can correctly wait for mutual gaze to be re-established before taking its

turn.





Chapter 3

Visual Feedback Recognition

Visual feedback such as head nodding and gaze aversion are naturally performed by

human participants when interacting with an embodied agent. As discussed in the

previous chapter, the recognition of visual feedback can improve the performance of

embodied and non-embodied interactive interfaces. In this chapter, we describe our

algorithms for accurate, online head gaze, eye gaze, head gesture and eye gesture

recognition using a monocular or stereo camera.

Estimating head gaze accurately for an extended period of time without drifting is

a great challenge. In Section 3.1, we present a new Adaptive View-based Appearance

Model (AVAM) that can be acquired online during tracking and used to accurately

estimate head gaze over a long period of time'. The main novelty of our approach

relies on the fact that estimating the pose of a newly acquired frame will also improve

the quality of the view-based appearance model. Given that the head gaze path

crosses itself during tracking, our AVAM model will be able to estimate the user gaze

with bounded drift.

In Section 3.2, we present our approach for eye gaze estimation based on a pre-

acquired view-based appearance model. The eye appearance model was built using

eye images from 16 subjects looking at 35 different targets under different lighting

conditions. With our approach, eye gaze estimation can be performed from low

'This work was done in collaboration with Ali Rahimi. It was originally published at CVPR
2003 [66].



resolution images. Our approach is user independent and can handle glasses and

changes in lighting condition.

In Section 3.3, we introduce a new algorithm for visual gestures recognition, the

Frame-based Hidden Conditional Random Field (FHCRF). Given the estimated head

gaze and eye gaze, our FHCRF model can accurately recognize and discriminate

visual gestures like head nodding and gaze aversion from other natural gestures. Our

discriminative model learns both sub-gesture patterns and the dynamics between

gestures to achieve better performance. In our results we demonstrate that using the

FHCRF model for visual gesture recognition outperforms models based on Support

Vector Machines (SVMs), Hidden Markov Models (HMMs), and Conditional Random

Fields (CRFs).

3.1 Head Gaze Tracking

Accurate drift-free head gaze tracking is an important goal of many computer vision

applications. Traditional models for frame-to-frame head gaze tracking accumulate

drift even when viewing a previous pose. In this section we present an adaptive view-

based appearance model that can use existing two-frame registration algorithms to

track objects over long distances with bounded drift.

The adaptive view-based appearance model maintains views (key frames) of the

object under various poses. These views are annotated with the pose of the head, as

estimated by the tracker. Tracking against the appearance model entails registering

the current frame against previous frames and all relevant key frames. The adaptive

view-based appearance model can be updated by adjusting the pose parameters of

the key frames, or by adding or removing key frames. These online updates are

non-committal so that further tracking can correct earlier mistakes induced into the

model.

View-based models can capture non-Lambertian reflectance (e.g. specular reflec-

tion on a shinny surface) in a way that makes them well suited for tracking rigid

bodies. We show that our appearance model has bounded drift when the object's



pose trajectory crosses itself. We compare our pose tracking results with the orien-

tation estimate of an Inertia Cube2 inertial sensor [46]. On a Pentium 4 3.2GHz, our

tracker implementation runs at 25Hz.

The following section discusses previous work on head gaze tracking. In Sec-

tion 3.1.2, we describe our adaptive view-based appearance model. In Section 3.1.3,

we show how to recover the pose (translation and rotation) of the head given the cur-

rent AVAM. In Section 3.1.4, we show how we populate and adjust the appearance

model after each frame was tracked. Section 3.1.5 presents the monocular- and stereo-

view registration algorithms tested with our AVAM model. Then, in Section 3.1.6 we

discuss our head gaze tracking experiments. The generality of our approach is demon-

strated by tracking the 6 degree-of-freedom (DOF) pose of an object from another

object class.

3.1.1 Related Work

Many techniques have been proposed for tracking a user's head based on passive visual

observation. To be useful for interactive environments, tracking must be accurate

enough to localize a desired region, robust enough to cope with illumination and

scene variation, and fast enough to serve as an interactive controller. Examples of

2-D approaches to face tracking include color-based [115], template-based [52] and

eigenface-based [39] techniques.

Techniques using 3-D models have greater potential for accurate tracking but

require knowledge of the shape of the face. Early work presumed simple shape models

(e.g., planar [10], cylindrical [54], or ellipsoidal [5]). Tracking can also be performed

with a 3-D face texture mesh [88] or 3-D face feature mesh [114].

Very accurate shape models are possible using the active appearance model method-

ology [26], such as was applied to 3-D head data in [11]. However, tracking 3-D active

appearance models with monocular intensity images is currently a time-consuming

process, and requires that the trained model be general enough to include the class

of tracked users.

Many different representations have been used for tracking objects based on ag-



gregate statistics about the subject, or they can be generative rendering models for

the appearance of the subject. Trackers which model the appearance of the subject

using aggregate statistics of their appearance include [9] and [74]. These use the dis-

tribution of skin-color pixels to localize the head; the distribution can be adapted to

fit the subject as tracking goes on. To recover pose, these techniques rely on charac-

teristics of the aggregate distribution, which is influenced by many factors, only one

of which is pose. Thus the tracking does not lock onto the target tightly.

Graphics-based representations model the appearance of the target more closely,

and thus tracking can lock onto the subject more tightly. Textured geometric 3D

models [55, 5] can represent the target under different poses. Because the prior 3D

shape models for these systems do not adapt to the user, they tend to have limited

tracking range.

Deformable 3D models fix this problem by adapting the shape of the model to the

subject [48, 63, 20, 29]. These approaches maintain the 3D structure of the subject

in a state vector which is updated recursively as images are observed. These updates

require that correspondences between features in the model and features in the image

be known. Computing these correspondences reliably is difficult, and the complexity

of the update grows quadratically with the number of 3D features, making the updates

expensive [48].

Linear subspace methods have been used in several face tracking systems. [40]

models the change in appearance due to lighting variations and affine motion with

a subspace representation. The representation is acquired during a separate train-

ing phase, with the subject fronto-parallel to the camera, and viewed under various

lighting conditions. Cootes and Taylor track using a linear subspace for shape and

texture [27). The manifold underlying the appearance of an object under varying

poses is highly non-linear, so these methods work well with relatively small pose

changes only.

In this section, we introduce the Adaptive View-based Appearance Model for head

gaze tracking. Our model represents the subject with a subset of the frames seen so far

in the input sequence. These key frames are annotated with their estimated pose, and



collectively represent the appearance of the subject as viewed from these estimated

poses. Our algorithm runs online, operates without prior training, and does not use

an approximate shape model for the subject.

3.1.2 Adaptive View-Based Appearance Model

Our adaptive view-based model consists of a collection of pose-annotated key frames

acquired using a stereo camera during tracking (Figure 3-1). For each key frame, the

view-based model maintains the following information:

M8 = {1., Z,, x8}

where I, and Z, are the intensity and depth images associated with the key frame s.

It is important to note that the depth image Z, can be estimated either directly from

a stereo camera or from a 3D model. The latter approach is favorable when tracking

using monocular images. Section 3.1.5 describes our algorithm for view registration

with a 3D ellipsoid model of the head.

The adaptive view-based model is defined by the set {M•1... Mk, where k is

the number of key frames. We model the pose of each key frame as a Gaussian

random variable whose distribution is refined during the course of tracking. x, =

[ Tx TY T z Qx QY Qz ] is a 6 dimensional vector consisting of the translation

and the three euler angles, representing the mean of each random variable. Although

in this chapter we use a rigid body motion representation for the pose of each frame,

any representation, such as affine, or translational, could be used. The view-based

model also maintains the correlation between these random variables in a matrix Ax,

which is the covariance of these poses when they are stacked up in a column vector.

While tracking, three adjustments can be made to the adaptive view-based model:

the tracker can correct the pose of each key frame, insert or remove a key frame.

Adding new frames into this appearance model entails inserting a new M, and

upgrading the covariance matrix. Traditional 3D representations, such as global mesh

models, may require expensive stitching and meshing operations to introduce new



frames.

Adaptive view-based models provide a compact representation of objects in terms

of the pose of the key frames. The appearance of the object can be tuned by updating

a few parameters. In Section 3.1.3, we show that our model can be updated by solving

a linear system of the order of the number of key frames in the model. On the other

hand, 3D mesh models require that many vertices be modified in order to affect a

significant change in the object representation. When this level of control is not

necessary, a 3D mesh model can be an expensive representation.

View-based appearance models can provide robustness to variation due to non-

Lambertian reflectance. Each point on the subject is exposed to varying reflectance

conditions as the subject moves around (see Figure 3-1). The set of key frames which

contains these points capture these non-Lambertian reflectances. Representing similar

non-Lambertian reflectance with a 3D model is more difficult, requiring that an albedo

model be recovered, or the texture be represented using view-based textures.

The following section discusses how to track rigid objects using our adaptive view-

based appearance model.

3.1.3 Tracking and View-based Model Adjustments

In our framework, tracking and pose adjustments to the adaptive view-based model

are performed simultaneously. As the tracker acquires each frame, it seeks to estimate

the new frame's pose as well as that of the key frames, using all data seen so far. That

is, we want to approximate the posterior density:

p(xt, xM I Y ..-), (3.1)

where xt is the pose of the current frame, yl..t is the set of all observations from the

registration algorithm made so far, and xM contains the poses of the key frames in

the view-based model, XM = {xl ... Xk}.

Each incoming frame (It, Zt) is registered against several base frames. These base

frames consist of key-frames chosen from the appearance model, and the previous
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Figure 3-1: The view-based model represents the subject under varying poses. It also
implicitly captures non-Lambertian reflectance as a function of pose. Observe the reflection
in the glasses and the lighting difference when facing up and down.

X



Algorithm 1 Tracking with an Adaptive View-based Appearance Model
for each new frame (It, Zt) do

Base frame selection: Select the nb closest keyframes from the model and
include the previous frame (It-l, Zt- 1, xt-1) as a base frame
Pair-wise registration: For each base frame, compute the relative transforma-
tion yt between the current frame and the base frame (see Section 3.1.5)
Pose uptate: Simultaneously update the pose of all keyframes and compute the
current pose xt by solving Equations 3.3 and 3.4 given the pair-wise registrations

{yt}
Keyframe selection: Add new frame (It, Zt, xt) to the keyframe model if no
keyframe exists around this pose zt

end for

frame (It-, Zt- 1). The registration is performed only against key-frames that are

likely to yield sensible pose-change measurements. Note that with monocular cam-

eras, the intensity image It is used for pair-wise registration using the ellipsoid-based

registration algorithm described in Section 3.1.5 and then the depth image Zt is cre-

ated by projecting the ellipsoid into the image using the estimated pose. The next

subsections discuss how these key-frames are chosen, then show how pose-change es-

timates are modelled as Gaussians and finally how pose-changes are combined using a

Gauss-Markov update. The generic tracking procedure with an adaptive view-based

appearance model is given in Algorithm 1.

Selecting Base Frames

Occlusions, lighting effects, and other unmodeled effects limit the range of many

registration algorithms. For example, when tracking heads, our 6 DOF registration

algorithm returns a reliable pose estimate if the head has undergone a rotation of

at most 10 degrees along any axis. Thus to obtain reasonable tracking against the

appearance model, the algorithm must select key-frames whose true poses are within

tracking range of the pose of the current frame.

To find key-frames whose pose is similar to the current frame, we look for key-

frames whose appearance is similar to that of the current frame. This assumes that the

primary factor governing appearance is pose. We compute the change in appearance

between those two images, and tentatively accept a key-frame as a base frame if



the change in their appearances is within a threshold. To compute the appearance

distance, the intensity images of the frames are aligned with respect to translation.

The L2 distance between the resulting images is used as the final appearance distance.

This scheme works well if there is a one-to-one mapping between appearance and

pose. Head gaze estimation usually fall in this category. In some situations, different

poses may yield the same appearance. This happens with objects with repetitive

textures, such as floor tiles [87] or a calibration cube all of whose sides look identical.

To disambiguate these situations, key-frames that sufficiently resemble the current

frame are chosen as base frames only if their pose is likely to be within tracking range

of the current frame [66].

Modelling Results Pairwise Registration

Once suitable base frames have been chosen from the view model, a registration

algorithm computes their pose difference with respect to the current frame (see Sec-

tion 3.1.5 for our monocular- and stereo-view registration algorithms). In this section,

we model the observation as the true pose difference between two frames, corrupted

by Gaussian noise. This Gaussian approximation is used in the following section to

combine pose-change estimates to update the distribution of Equation 3.1.

The registration algorithm operates on the current frame (It, Zt), which has un-

known pose xt and a base frame (I,, Z,) acquired at time s, with pose x,. It returns

an observed pose-change estimate yt. We presume that this pose-change is probabilis-

tically drawn from a Gaussian distribution .N(yt xt - xz, Aylxx ) . Thus pose-changes

are assumed to be additive and corrupted by Gaussian noise.

We further assume that the current frame was generated by warping a base frame

and adding white Gaussian noise. Under these circumstances, if the registration

algorithm reports the mode of

E(yt) = IIIt(d + u(d; yt)) - Is(d)112,
deR

where d is the 2d-coordinates of a pixel in region of interest R and u(d; yt) is the image-



based flow, then the result of [82] can be used to fit a Gaussian noise model to the

reported pose-change estimate. Using Laplace's approximation, it can be shown that

the likelihood model for the pose-change xt -xz can be written as A/(yj'x -x ,, A~lzX),

where

AlX = 2E (y). (3.2)
E(ya) 2 y

Updating Poses

This section shows how to incorporate a set of observed pose-changes into the posterior

distribution of Equation 3.1. By assuming that these observations are the true pose-

change corrupted by Gaussian noise, we can employ the Gauss-Markov equation.

Suppose that at time t, there is an up-to-date estimate of the pose xt-1 and of the

frames in the model, so that p(xt-1, XM yl..t-_) is known. Denote the new pose-change

measurements as yl..t = {yL..t-1, Y- 1, y,,, yM2 , . . .}, where M1 , M2 ,... are the indices

of key frames selected as base frames. We would like to compute p(xt, aXM I ..t).

The update first computes a prior for p(xt ly..t-1) by propagating the marginal

distribution for p(xt-llyi..t-1) one step forward using a dynamical model. This is

similar to the prediction step of the Kalman filter.

The variables involved in the update are xt, the previous frame pose xt-1 and

the key-frames chosen as base frames XM1, XM2, etc. These are stacked together in a

variable X:

-Xt Xt-1 XM 1 XM 2 .T.

The covariance between the components of X is denoted by Ax. The rows and

columns of AXd corresponding to the poses of the key-frames are mirrored in AM.

Together, X and Ax completely determine the posterior distribution over the pose of

the key-frames, the current frame, and the previous frame.

Following the result of the previous section, a pose-change measurement yt be-



tween the current frame and a base frame in X is modeled as having come from:

t = CX + w,

where w is Gaussian with covariance Av zz. Each pose-change measurement y' is used

to update all poses using the Kalman Filter update equation:

[A•w] = [A ] +CT A-XC (3.3)
Xnew = A"w [A~f old + C Alxy (3.4)

After individually incorporating the pose-changes yt using this update, Anew is the

mean of the posterior distribution p(t, zt-1, Mlyi..t) and Cov[Xne,] is its variance.

This distribution can be marginalized by picking out the appropriate elements of Anew

and A ew.

Now that we have shown how to estimate the pose of the current frame given an

adaptive view-based appearance model, in the following section we demonstrate how

to populate and modify the AVAM after each pose estimation.

3.1.4 Acquisition of View-Based Model

This section describes an online algorithm for populating the view-based model with

frames and poses. After estimating the pose xt of each frame as per the updates of

previous section, the tracker decides whether the frame should be inserted into the

appearance model as a key-frame.

A key-frame should be available whenever the object returns to a previously visited

pose. To identify poses that the object is likely to revisit, the 3 dimensional space of

rotations is tesselated into adjacent regions maintaining a representative key-frame.

Throughout tracking, each region is assigned the frame that most likely belongs to it.

This ensures that key-frames provide good coverage of the pose space, while retaining

only those key-frames whose pose can be determined with high certainty.



The probability that a particular frame belongs to a region centered at z, is:

Pr[xt E B(x,)] = j xN(x zt, At)d, (3.5)

where B(x) is the region centered around a location x, and At is the pose covariance

of the current frame and can be read from AM.

If this frame belongs to a region with higher probability than any other frame so

far, it is the best representative for that region, and so the tracker assigns it there.

If the frame does not belong to any region with sufficiently high probability, or all

regions already maintain key-frames with higher probability, the frame is discarded.

The above criteria exhibit three desirable properties: 1) frames are assigned to

regions near their estimated pose, 2) frames with low certainty in their pose are

penalized, because the integral of a Gaussian under a fixed volume decreases with the

variance of the Gaussian, and 3) key-frames are replaced when better key-frames are

found for a given region.

When a frame is added to the appearance model, X and Am must be updated.

This involves creating a new slot as the last element of X and moving the first

component of X (which corresponds to xt) to that slot. These changes are similarly

reflected in Am. The slot for xt in X is initialized to zero. This new xt is initially

assumed to be very uncertain and independent of all frames observed so far, so its

corresponding rows and columns in Am are set to zero. Following these operations,

the updates from the previous section can be applied to subsequent frames.

3.1.5 Pair-wise View Registration

As discussed in Section 3.1.3, our adaptive view-based appearance model relies on

a view registration algorithm to estimate the relative motion between two frames.

Given the current frame and a base frame, the registration algorithm estimates the

pose change yt between these frames. In the following two subsections we describe

two registration algorithms. The first algorithm uses as input both intensity and

depth images (computed from stereo images) to estimate the transformation between



two frames. The second algorithm uses intensity images and a simple ellipsoid 3D

model of the head to estimate the relative motion using images from a monocular

camera.

If stereo information is available, the stereo-view registration algorithm has sev-

eral advantages to the monocular algorithm. The stereo-based approach is potentially

more robust to motion in the background (e.g., a second person moving in the back-

ground) since the segmentation provided from the depth image can easily be used to

remove such outliers. Also, the depth information helps distinguish between small

rotation and small translation. Most of the experiments in this thesis were done using

the stereo-view registration algorithm.

Stereo-view Registration Algorithm

The registration parameters are computed in several steps: First the centers of mass

of the regions of interest Rt and R, are aligned in 3D translation. This translational

component is then refined using 2D cross-correlation in the image plane.. Finally, a

finer registration algorithm [64] based on Iterative Closest Point (ICP) [19, 6] and

the Brightness Constancy Constraint Equation (BCCE) [44] is applied. ICP finds

corresponding points between two 3D point clouds and tries to minimize the error

(usually the euclidian distance) between the matched points. BCCE provides a con-

straint on the motion parameters between two intensity images without requiring

correspondences.

The correlation step provides a good initialization point for the iterative ICP and

BCCE registration algorithm. Centering the regions of interest reduces the search

window of the correlation tracker, making it more efficient.

The ICP algorithm iteratively computes correspondences between points in the

depth images and finds the transformation parameters which minimize the distance

between these pixels. By using depth values obtained from the range images, the

BCCE can also be used to recover 3D pose-change estimates [42]. Combining these

approaches is advantageous because BCCE registers intensity images whereas ICP

is limited to registering range imagery. In addition, we have empirically found that



BCCE provides superior performance in estimating rotations, whereas ICP provides

more accurate translation estimates.

To combine these registration algorithms, their objective functions are summed

and minimized iteratively. At each step of the minimization, correspondences are

computed for building the ICP cost function. Then the ICP and BCCE cost functions

are linearized, and the locally optimal solution is found using a robust least-squares

solver [45]. This process usually converges within 3 to 4 iterations. For more details,

see [64].

Monocular-view Registration Algorithm

We initialize the head gaze tracker using using a 2D face detector based on Ad-

aboost [110]. The 3D ellipsoid model is then fit to the face based on the width of the

detected face and the camera focal length. From this model, the depth image for the

first frame Zo can be computed by applying ray-tracing to the 3D model.

Given a base frame I, Z, and the current image It (note that we can't compute

the depth Zt until we compute the pose for this frame), the transformation between

the two frames is estimated using a two step process as described in the previous

section. First, correlation is used to estimate the 2D translation between the base

frame and the current frame. This initialization point is then use as a start point for

our iterative version of BCCE (also known as the Normal Flow Constraint [97]).

At each iteration, the transformation between the two frames is computed by

minimizing the BCCE and then the base frame is warped for the next iteration. The

iterative algorithm stop when the maximum number of iterations is reached or if the

correlation between the warped base frame and the current frame is smaller then a

threshold. The position and orientation of the ellipsoid model are updated based on

the estimated motion and the depth image Zt is computed using ray-tracing.



3.1.6 Experiments

This section presents three experiments where our adaptive view-based appearance

model is applied to tracking objects undergoing large movements in the near-field

(-,lm) for several minutes. All three experiments use the stereo-based registration

algorithm (described in Section 3.1.5) to track the object and create an appearance

model. The monocular view registration algorithm was tested independently during

the user study with gaze aversion described in Section 2.2.3. In the first experiment,

we compare qualitatively 3 approaches for head pose tracking: differential tracking,

first frame as keyframe and our adaptive view-based model. In the second exper-

iment, we present a quantitative analysis of our view-based tracking approach by

comparing with an inertial sensor Inertia Cube3 . Finally, we show that the view-

based appearance model can track general objects including a hand-held puppet. All

the experiments were done using a Videre Design stereo camera [30].

Head Pose Tracking

We tested our view-based approach with sequences obtained from a stereo camera [30]

recording at 5Hz. The tracking was initialized automatically using a face detector

[110]. The pose space used for acquiring the view-based model was evenly tesselated

in rotation. The registration algorithm used about 2500 points per frame. On a

Pentium 4 3.2GHz, our C++ implementation of the complete rigid object tracking

framework, including frame grabbing, 3D view registration and pose updates, runs at

25Hz.

Figure 3-2 shows tracking results from a 2 minute test sequence. In this sequence

the subject performed head rotations of up-to 110 degrees and head translations of

up-to 80cm, including some translation along the Z axis. We compared our view-

based approach with a differential tracking approach which registers each frame with

its previous frame, concatenating the pose changes. To gauge the utility of multiple

key-frames, we show results when the first frame in the sequence is the only key-frame.

The left column of Figure 3-2 shows that the differential tracker drifts after a
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Figure 3-2: Comparison of face tracking results using a 6 DOF registration algorithm.
Rows represent results at 31.4s, 52.2s, 65s, 72.6, 80, 88.4, 113s and 127s. The thickness of
the box around the face is inversely proportional to the uncertainty in the pose estimate (the
determinant of xt). The number of indicator squares below the box indicate the number of
base frames used during tracking.
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Figure 3-3: Head pose estimation using an adaptive view-based appearance model.

short while. When tracking with only the first frame and the previous frame (center

column), the pose estimate is accurate when the subject is near-frontal but drifts when

moving outside this region. The view-based approach (right column) gives accurate

poses during the entire the sequence for both large and small movements. In this test

sequence the tracker typically chose 2 to 3 base frames (including the previous frame)

to estimate pose.

Ground Truth Experiment

To analyze quantitatively our algorithm, we compared our results to an Inertia Cube2

sensor from InterSense[46]. Inertia Cube2 is an inertial 3-DOF (Degree of Freedom)

orientation tracking system. The sensor was mounted on the inside structure of a

construction hat. Since the Inertia Cube2 estimates orientation by sensing gravity and

the earth's magnetic field, its orientation estimates along the X and Z axis (where Z

points outside the camera and Y points up) are mostly driftless; however, its estimates

along the Y axis can suffer from drift. InterSense reports an absolute pose accuracy

of 3°RMS when the sensor is moving.

We recorded 4 sequences with ground truth poses using the Inertia Cube2 sensor.

The sequences were recorded at 6 Hz and have an average length of 801 frames

(~133sec). During recording, subjects performed head rotations of up-to 125 degrees



Pitch Yaw Roll Total
Sequence 1 2.880 3.190 2.81' 2.970
Sequence 2 1.730 3.860 2.320 2.780
Sequence 3 2.560 3.330 2.800 2.920
Sequence 4 2.260 3.620 2.390 2.820

Table 3.1: RMS error for each sequence. Pitch, yaw and roll represent rotation around
X, Y and Z axis, respectively.

and head translations of up-to 90cm, including translation along the Z axis. Figure

3-3 shows the pose estimates of our adaptive view-based tracker for the first sequence.

Figure 3-4 compares the tracking results of this sequence with the inertial sensor. The

RMS errors for all 4 sequences is shown in Table 3.1. Our results demonstrate that

our tracker is accurate to within the resolution of the Inertia Cube2 sensor.

General Object Tracking

Since our tracking approach doesn't use any prior information about the object when

using the stereo-based view registration algorithm, our algorithm works on different

object classes without changing any parameters. Our last experiment uses the same

tracking technique described in this chapter to track a puppet. The position of the

puppet in the first frame was defined manually. Figure 3-5 presents the tracking

results.

Our results show that using adaptive view-based appearance model we can ro-

bustly track the head pose over a large range of motion. As we will see in the following

section, for eye gaze estimation, the range of motion is smaller and a pre-acquired

view-based appearance model is sufficient for estimating eye gaze.

3.2 Eye Gaze Estimation

Our goal is to estimate eye gaze during multimodal conversation with an embodied

agent. To ensure a natural interaction, we want a recognition framework with the

following capabilities:

* User-independent
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Figure 3-5: 6-DOF puppet tracking using the adaptive view-based appearance model.

* Non-intrusive

* Automatic initialization

* Robust to eye glasses

* Works with monocular cameras

* Works with low resolution images

* Takes advantage of other cues (e.g., head tracking)

Eye gaze tracking has been a research topic for many years [117, 62]. Some recent

systems can estimate the eye gaze with an accuracy of less than a few degrees; these

video-based systems require high resolution images and usually are constrained to

small fields of view (4x4 cm) [73, 18]. Many systems require an infra-red light and

filtered camera [118, 43]. In this section we develop a passive vision-based eye gaze

estimator sufficient for inferring conversational gaze aversion cues; as suggested in

[116], we can improve tracking accuracy by integration with head pose tracking.

As discussed earlier in Chapter 2, one of our goals is to recognize eye gestures

that help an ECA to differentiate when a user is thinking from when a user is waiting



Figure 3-6: Example image resolution used by our eye gaze estimator. The size of
the eye samples are 16x32 pixels.

for more information from the ECA. We built an eye gaze estimator that produces

sufficient precision for gesture recognition and works with a low-resolution camera.

Figure 3-6 shows an example of the resolution used during training and testing.

Our approach for eye gaze estimation is a three-step process: (1) detect the loca-

tion of each eye in the image using a cascade of boosted classifiers, (2) track each eye

location over time using a head pose tracker, and (3) estimate the eye gaze based on

a view-based appearance model.

3.2.1 Eye Detection

For eye detection, we first detect faces inside the entire image and then search in-

side the top-left and top-right quarters of each detected face for the right and left

eyes, respectively. Face and eye detectors were trained using a cascaded version



Figure 3-7: Experimental setup used to acquire eye images from 16 subjects with
ground truth eye gaze. This dataset was used to train our eye detector and our gaze
estimator.

of Adaboost [110]. For face detection, we used the pre-trained detector from Intel

OpenCV.

To train our left and right eye detectors, we collected a database of 16 subjects

looking at targets on a whiteboard. This dataset was also used to train the eye

gaze estimator described in Section 3.2.3. A tripod was placed 1 meter in front of

the whiteboard. Targets were arranged on a 7x5 grid so that the spacing between

each target was 10 degrees (see Figure 3-7). The top left target represented an eye

direction of -30 degrees horizontally and +20 degrees vertically. Two cameras were

used to image each subject: one located in front of the target (0,0) and another in

front of the target (+20,0).

Participants were asked to place their head on the tripod and then look sequen-

tially at the 35 targets on the whiteboard. A keyboard was placed next to the

participant so that he/she could press the space bar after looking at a target. The

experiment was repeated under 3 different lighting conditions (see Figure 3-8). The



Figure 3-8: Samples from the dataset used to train the eye detector and gaze estima-

tor. The dataset had 3 different lighting conditions.

location and size of both eyes were manually specified to create the training set.

Negative samples were selected from the non-eye regions inside each image.

3.2.2 Eye Tracking

The results of the eye detector are sometime noisy due to missed detections, false-

positives and jitter in the detected eye location. For these reasons we need a way to

smooth the estimated eye locations and keep a reasonable estimate of the eye location

even if the eye detector doesn't trigger.

Our approach integrates eye detection results with a monocular 3D head pose

tracker to achieve smooth and robust eye tracking, that computes the 3D position

and orientation of the head at each frame. We initialize our head tracker using the

detected face in the first frame. A 3D ellipsoid model is then fit to the face based

on the width of the detected face and the camera focal length. The position and

orientation of the model are updated at each frame after tracking is performed.

Our approach for head pose tracking is based on the Adaptive view-based appear-

ance model (described in the previous section) and differs from previously published

ellipsoid-based head tracking techniques [4] in the fact that we acquire extra key-

frames during tracking and adjust the key-frame poses over time. This approach

makes it possible to track head pose over a larger range of motion and over a long

period of time with bounded drift. The view registration is done using an iterative

version of the Normal Flow Constraint [97].

Given the new head pose estimate for the current frame, the region of interest



(ROI) around both eyes is updated so that the center of the ROI reflects the observed

head motion. The eye tracker will return two ROIs per eye: one from the eye detector

(if the eye was detected) and the other from the updated ROI based on the head

velocity.

3.2.3 Gaze Estimation

To estimate the eye gaze given a region of interest inside the image, we created two

view-based appearance models [77, 68], one model for each eye. We trained the

models using the dataset described in Section 3.2.1, which contains eye images of 16

subjects looking at 35 different orientations, ranging [-30,30] horizontally and [-20,20]

vertically.

We define our view-based eigenspaces models P• and P,, for the left and right eye

respectively, as:

P = { Vi, Eil

where I~ is the mean intensity image for view i, Ei is the eye gaze of that view and Vi is

the eigenspace matrix. The eye gaze is represented as e = [ Rx RY ], a 2-dimensional

vector consisting of the horizontal and vertical rotation.

To create the view-based eigenspace models, we first store every segmented eye

image in a one-dimensional vector. We can then compute the average vectors i =

SZ,>= Ii and stack all the normalized intensity vectors into a matrix:

To compute the eigenspaces Vi for each view, we find the SVD decomposition Ii =

Ui Di VT .

At recognition time, given a seed region of interest (ROI), our algorithm will

search around the seed position for the optimal pose with the lowest reconstruction

error e!. For each region of interest and each view of the appearance model i, we find



the vector t'i that minimizes:

e = li, - - w- i2 ,  (3.6)

The lowest reconstruction error e! will be selected and the eye gaze ej associated with

the optimal view i will be returned. In our implementation, the search region was

[+4,-4] pixels along the X axis and [+2,-2] pixels along the Y axis. Also, different

scales for the search region were tested during this process, ranging from 0.7 to 1.3

times the original size of the ROI.

Gaze estimation was done independently for each seed ROI returned by the eye

tracker described in the previous section. ROIs associated with the left eye are pro-

cessed using the left view-based appearance model and similarly for the right eye. If

more then one seed ROI was used, then the eye gaze with the lowest reconstruction

error is selected. The final eye gaze is approximated based on a simple average of the

left and right eye gaze estimates.

3.2.4 Experiments

To test the accuracy of our eye gaze estimator we ran a set of experiments using the

dataset described earlier in Section 3.2.1. In these experiments, we randomly selected

200 images, then retrained the eye gaze estimator and compared the estimated eye

gaze with the ground truth estimate.

We tested two aspects of our estimator: its sensitivity to noise and its performance

using different merging techniques. To test our estimator's sensitivity to noise, we

added varying amounts of noise to the initial region of interest. Figure 3-9 shows

the average error on the eye gaze for varying levels of noise. Our eye gaze estimator

is relatively insensitive to noise in the initialized region of interest, maintaining an

average error of under 8 degrees for as much as 6 pixel noise.

We also tested two techniques to merge the left and right eye gaze estimates: (1)

picking the eye gaze estimate from the eye with the lowest reconstruction error and

(2) averaging the eye gaze estimates from both eyes. Figure 3-9 also summarizes the
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Figure 3-9: Average error of our eye gaze estimator when varying the noise added to
the initial region of interest.

result of this experiment. We can see that the averaging technique consistently works

better than picking the lowest reconstruction error. This result confirms our choice

of using the average to compute eye gaze estimates.

The eye gaze estimator was applied to unsegmented video sequence of all 6 human

participants from the user study described in Section 2.2.3. Each video sequence

lasted approximately 10-12 minutes, and was recorded at 30 frames/sec, for a total

of 105,743 frames. During these interactions, human participants would rotate their

head up to +/-70 degrees around the Y axis and +/-20 degrees around the X axis, and

would also occasionally translate their head, mostly along the Z axis. The following

eye gesture recognition results are on the unsegmented sequences, including extreme

head motion.

It is interesting to look at the qualitative accuracy of the eye gaze estimator for

a sample sequence of images. Figure 3-10 illustrates a gaze aversion gesture where



Figure 3-10: Eye gaze estimation for a sample image sequence from our user study.
The cartoon eyes depict the estimated eye gaze. The cube represents the head pose
computed by the head tracker.

the eye gaze estimates are depicted by cartoon eyes and the head tracking result is

indicated by a white cube around the head. Notice that the estimator works quite

well even if the participant is wearing eye glasses.

3.3 Visual Gesture Recognition

Visual feedback tends to have a distinct internal sub-structure as well as regular

dynamics between individual gestures. A gesture with internal substructure means

that it is composed of a set of basis motions combined in an orderly fashion. For

example, head-nod gesture has an internal sub-structure that consists of moving the

head up, down then back to its starting position. Furthermore the transitions between

gestures are not uniformly likely. For example, the head-nod to head-shake transition

is usually less likely than a transition between a head-nod and still gesture.

In this section, we introduce a new visual gesture recognition algorithm which

can capture both the sub-gesture patterns and the dynamics between gestures. Our

Frame-based Hidden Conditional Random Field (FHCRF) model is a discriminative

approach for gesture recognition'. Instead of generatively modeling each gesture

independently as would Hidden Markov Models [111, 33], the FHCRF model focuses

'This work was done in collaboration with Ariadna Quattoni.



on what best differentiates visual gestures. Our results show that this approach can

accurately recognize subtle gestures such as head nods or eye gaze aversion.

Also, our approach offers several advantages over previous discriminative models.

In contrast to Conditional Random Fields (CRFs) [56], it incorporates hidden state

variables which model the sub-structure of a gesture sequence, and in contrast to pre-

vious hidden-state conditional models [79] it can learn the dynamics between gesture

labels and can be directly applied to label unsegmented sequences.

The CRF approach models the transitions between gestures, thus capturing ex-

trinsic dynamics, but it lacks the ability to learn the internal sub-structure. On the

other hand, sequence-based HCRF models (as shown in Figure 3-11) can capture in-

trinsic structure through the use of intermediate hidden states but cannot learn the

dynamics between gestures. Sequence-based HCRFs model disjoint gesture segments

and were trained and tested with segmented data.

We propose a frame-based HCRF model that combines the strengths of CRFs and

sequence-based HCRFs by capturing both extrinsic dynamics and intrinsic structure.

It learns the extrinsic dynamics by modeling a continuous stream of labels per frame,

and it learns internal sub-structure by utilizing intermediate hidden states. Since

frame-based HCRFs include a label variable per observation frame they can be natu-

rally used for recognition on un-segmented sequences; thereby, overcoming one of the

main weaknesses of the sequence-based HCRF model.

By assuming a deterministic relationship between class labels and hidden states,

our model can be efficiently trained. Our results demonstrate that FHCRF models

for context-based recognition outperform models based on Support Vector Machines

(SVMs), HMMs, or CRFs.

3.3.1 Related Work

Recognition of head gestures has been demonstrated by tracking eye position over

time. Kapoor and Picard presented a technique to recognize head nods and head

shakes based on two Hidden Markov Models (HMMs) trained and tested on 2D coor-

dinate results from an eye gaze tracker [49]. Kawato and Ohya developed a technique



for head gesture recognition using between eye templates [50]. Compared to eye gaze,

head gaze can be estimated more accurately in low resolution images and can be

estimated over a larger range [65]. Fugie et al. also used HMMs to perform head nod

recognition [33]. They combined head gesture detection with prosodic recognition of

Japanese spoken utterances to determine strongly positive, weak positive, and nega-

tive responses to yes/no type utterances. HMMs [81] and related models have been

used to recognize arm gestures [12] and sign languages [1, 96].

Recently many researchers have worked on modeling eye gaze behavior for the pur-

pose of synthesizing a realistic ECA. Colburn et al. use hierarchical state machines

to model eye gaze patterns in the context of real-time verbal communication [25].

Fukayama et al. use a two-state Markov model based on amount of gaze, mean dura-

tion of gaze, and gaze points while averted [34]. Lee et al. use an eye movement model

based on empirical studies of saccade and statistical models of eye-tracking data [57].

Pelachaud and Bilvi proposed a model that embeds information on communicative

functions as well as on statistical information of gaze patterns [76].

A significant amount of recent work has shown the power of discriminative models

for specific sequence labeling tasks. In the speech and natural language processing

community, Conditional Random Field Models (CRFs) [56] have been used for tasks

such as word recognition, part-of-speech tagging, text segmentation and information

extraction. In the vision community, Sminchisescu et al. [94] applied CRFs to classify

human motion activities (i.e. walking, jumping, etc) and showed improvements over

an HMM approach. Kumar et al. [53] used a CRF model for the task of image

region labeling. Torralba et al. [103] introduced Boosted Random Fields, a model

that combines local and global image information for contextual object recognition.

An advantage of CRFs are that they can model arbitrary features of observation

sequences and can therefore accommodate overlapping features.

When visual phenomena have distinct sub-structure models that exploit hidden

state are advantageous. Hidden-state conditional random fields (HCRFs), which can

estimate a class given a segmented sequence, have been proposed in both the vision

and speech community. In the vision community, HCRFs have been used to model
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Figure 3-11: Comparison of our model (frame-based HCRF) with two previously
published models (CRF [56] and sequence-based HCRF [38, 112]). In these graphical
models, xj represents the jth observation (corresponding to the jth frame of the
video sequence), hj is a hidden state assigned to xj , and yj the class label of xj
(i.e. head-nod or other-gesture). Gray circles are observed variables. The frame-
based HCRF model combines the strengths of CRFs and sequence-based HCRFs in
that it captures both extrinsic dynamics and intrinsic structure and can be naturally
applied to predict labels over unsegmented sequences. Note that only the link with
the current observation xj is shown, but for all three models, long range dependencies
are possible.

spatial dependencies for object recognition in cluttered images [79] and for arm and

head gesture recognition from segmented sequences [112]. In the speech community

a similar model was applied to phone classification [38]. Since they are trained on

sets of pre-segemented gestures, these sequence-based HCRF models do not capture

the dynamics between gesture labels, only the internal structure. In both [38, 112],

sequence-based HCRFs were applied to segmented sequences, leaving segmentation

to a pre-processing step.

Sutton et al. [100] presented a dynamic conditional random field (DCRF) model

whose structure and parameters are repeated over a sequence. They showed results for

sequence segmentation and labeling where the model was trained using loopy belief

propagation on a fully-observed training set. As stated by the authors, training a

DCRF model with unobserved nodes (hidden variables) makes their approach difficult

to optimize.

In this section we develop a discriminative gesture recognition algorithm which

incorporates hidden-state variables, can model the dynamics between gestures, can be

trained efficiently, and can be directly applied to unsegmented sequences. As depicted

....Ty
yl



in Figure 3-11, our model includes a gesture label variable for each observation in a

discriminative field which links hidden state variables; we call the resulting model

a Frame-based Hidden-state Conditional Random Field (FHCRF). Our frame-based

HCRF model combines the strengths of CRFs and sequence-based HCRFs in that it

captures both extrinsic dynamics and intrinsic structure.

We train our model on labeled data, yielding a classifier which can be run directly

on unsegmented visual sequences. We have found that restricting our model to have

a deterministic relationship between observed gesture frame labels and hidden states

significantly simplifies model training, but is still powerful enough to dramatically

improve recognition performance over conventional discriminative sequence methods.

The proposed algorithm has a similar computational complexity to a fully observable

CRF.

3.3.2 Frame-based Hidden-state Conditional Random Fields

Several problems in vision can be thought of as discrete sequence labeling tasks over

visual streams. We focus on problems where the goal is to predict a class label at

each point in time for a given sequence of observations. In the case of human gesture

recognition, a sequence of video frames is given and the goal is to predict a gesture

label per frame. We are interested in visual sequences that exhibit both structure

within each class label (i.e. intrinsic structure) and distinct transitions between class

labels (i.e. extrinsic dynamics).

FHCRF Model

Our task is to learn a mapping between a sequence of observations x = {xl, x2,..., -Xm

and a sequence of labels y = {yi, y2, ... , Ym}. 1 Each yj is a gesture label for the jth

frame of a video sequence and is a member of a set Y of possible gesture labels, for

example, y = {head-nod, other-gesture}. Each frame observation xj is represented

by a feature vector q(xj) E Rd, for example, the head velocity at each frame.

'Note that the sequence length m can vary, and did vary in our experiments. For convenience
we use notation where m is fixed. Variable sequence lengths lead to minor changes in the model.



Our training set consists of n labeled sequences (xi, Yi) for i = 1...n, where each

Yi = {Yi,1, Yi,2, ..., Yi,m} and each xi = {xi,1 ,2, i,2..., i,m}. For each sequence, we also

assume a vector of "sub-structure" variables h = {hi, h2, .. -, h,}. These variables

are not observed on the training examples and will therefore form a set of hidden

variables in the model. Each hj is a member of a set 'H of possible hidden states.

Given the above definitions, we define a latent conditional model:

P(y 1 x, 0)= P(y,h x, 0) = P(y I h, 0)P(h I x, 0). (3.7)
hE'Hm hER-tm

where 0 are the parameters of the model.

Our model assumes that there is a deterministic relationship between frame-based

labels yj and hidden states hj. Given a frame-based label yj, the states that a hidden

variable hj can take are constrained to a subset -Yj of possible hidden states. In other

words, the label yj partitions the space of possible hidden states X. For example,

suppose that we have only 3 hidden states per label. Then for a frame with label

head-nod, the subset of possible hidden states will be 7 head-nod = {1, 2, 3} while a

frame with label other-gesture will be constrained to the subset '-other-gesture

{4, 5,6}.

Figure 3-12 shows a two-class classification example where internal and external

structure of the signal was learned automatically. In this example, hidden states 1,2

and 3 are associated to the gesture label while hidden states 4, 5 and 6 are associated

to label non-gesture. This example is discussed in more detail later in this section.

This deterministic relationship between y and h is formally expressed as:

P(y I h, ) = 1 if Vh y e (3.8)
0 otherwise

Using the above relationship we can rewrite Equation 3.7:

P(y I x, ) = P(h x, 0) (3.9)
h:Vhj E4yj



We define P(hlx, 0) using the usual conditional random field formulation, that is:

P(hl x, 0) = (xO)exp ( OkFk(h, x) (3.10)

where the partition function Z is defined as

Z(x, ) = Iexp ( Ok.Fk(h,x))
h (k

, Fk is defined as

Fk(h, x) =
j=1

and each feature function fk(hj_l, hj, x, j) is either a state function Sk(hj, x, j) or a

transition function tk(hj-l, hj, x, j). State functions Sk depend on a single hidden

variable in the model while transition functions tk can depend on pairs of hidden

variables.

Learning Model Parameters

Following previous work on CRFs [53, 56], we use the following objective function to

learn the parameter 0*:

L(O) = logP(y, i, I 8) -1 81~ 2 (3.11)

The first term in Eq. 3.11 is the log-likelihood of the data. The second term is the

log of a Gaussian prior with variance a2 , i.e., P(O) , exp (2• 110||2).

We use gradient ascent to search for the optimal parameter values, 0* = arg maxe L(0),

under this criterion. Given the deterministic relationship between y and h, the gra-

dient of our objective function L(O) with respect to the parameters Ok associated to

a state function sk can be written as:

fk (hj_1, hj, X, j),

•v



=L(O) P(h = a y,x,O)sk(j, a,x) - P(hj = a,y' x,)sk(j,a,x) (3.12)
j90k ,a y',j,a

where

SP(h I x, 0)
P(hj = a I y, x, 0) h:hj=aAVhj(313)

E P(h Ix,) (3.13)
h:VhjE'-yj

Notice that given our definition of P(h|x, 0) in Equation 3.10, the summations in

Equation 3.13 are simply a constrained versions of the partition function Z over the

conditional random field for h. This can be easily shown to be computable in O(m)

using belief propagation [75], where m is the length of the sequence.

The gradient of our objective function with respect to the parameters Ok associated

to a transition function tk can be derived the same way. The marginal probabilities

on edges necessary for this gradient, P(hj = a, hk = b I y, x, 0), can also be computed

efficiently using belief propagation. Thus both inference and training are efficient

operations using our model. In our experiments, we performed gradient ascent with

the BFGS optimization technique. All the models required less than 300 iterations

to converge.

Inference

For testing, given a new test sequence x, we want to estimate the most probable

sequence labels y* that maximizes our conditional model:

y* = arg max P(y I x, 0*) (3.14)

where the parameter values 0* were learned from training examples. Using Equa-

tion 3.9, the previous equation can be rewritten as:



y* = arg max 1 P(h I x, 0) (3.15)
h:Vhi•ET-i

To estimate the label yj of frame j, the marginal probabilities P(hj - a I x, 9)

are computed for all possible hidden states a E 'H. Then the marginal probabilities

are summed according to the grouping of the hidden states subsets '-,, and the label

associated with the optimal subset is chosen. As discussed in the previous subsection,

the marginal probabilities can efficiently be computed using belief propagation. Note

that the sum of the marginal probabilities is an approximation to Equation 3.15, but

using this approach instead of computing the Viterbi path has the advantage that we

can vary the decision threshold and plot ROC curves for each model.

Feature Functions

In our model, 'HI x 'HI transitions functions tk are defined one for each hidden state

pair (h', h"). Each transition function is expressed as,

t1 if hj-1 = h' and hj = h"

0 otherwise

It is worth noticing that the weights Ok associated with the transition functions

model both the intrinsic and extrinsic dynamics. Weights associated with a transition

function for hidden states that are in the same subset 'H, will model the substructure

patterns while weights associated with the transition functions for hidden states from

different subsets will model the external dynamic between gestures.

The number of state functions, sk, will be equal to the length of the feature vector,

€, times the number of possible hidden states, 'HI. In the case of head gesture

recognition where the rotational velocity (yaw, roll and pitch) is used as input, the

length of our feature vector, 4, will be 3 dimensions per frame. If our model has 6

hidden states (3 per label) then the total number of state functions, sk, (and total

number of associated weights, Ok) will be 3 x 6 = 18.
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Figure 3-12: This figure shows the MAP assignment of hidden states given by the
frame-based HCRF model for a sample sequence from the synthetic data set. As we
can see the model has used the hidden states to learn the internal sub-structure of
the gesture class.

Synthetic Example

We illustrate how our frame-based HCRF model can capture both extrinsic dynamics

and intrinsic structure using a simple example. A synthetic data set was constructed

containing sequences from a gesture and non-gesture class. Subsequences belonging

to the gesture class consist of three sub-gesture samples simulating the beginning,

middle and end of the gesture. These samples are created by sampling from three

Gaussian distributions in a deterministic order. The non-gesture subsequences are

generated by picking k samples from a mixture of seven Gaussians, where k is the

length of the subsequence, picked at random between 1 and 10.

Both the training and testing data sets consisted of 200 1-dimensional sequences of

variable length (30-50 samples per sequence). Synthetic sequences were constructed

by concatenating subsequences where the class of each of the subsequences was ran-

domly picked between the gesture and non-gesture classes.

Given this data set we trained both a frame-based HCRF model with three hidden

states and a CRF. The CRF model was only able to recognize 72% (equal error rate) of

the test examples with this simple synthetic data set, while our frame-based HCRF

model has perfect performance. Figure 3-12 shows the sequence of hidden labels
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assigned by our frame-based HCRF model for a sequence in the testing set. As this

figure suggests the model has learned the intrinsic structure of the class using one

of its hidden states to recognize each of the sub-structures. A model that can learn

internal sub-structure and dynamics has the potential to outperform a model that

cannot. In the following section we show an experiment on a non-synthetic gesture

recognition data set.

3.3.3 Experiments

We want to analyze the performance of our FHCRF model for visual feedback recog-

nition with different types of interactive systems. In our experiments we focus on

head and eye gestures. Our datasets came from three user studies described in Chap-

ter 2: (1) head gestures when interacting with a physical avatar (Section 2.3.1), (2)

head gesture-based widgets for a non-embodied interface (Section 2.4.1), and (3) eye

gestures for interaction with a virtual embodied agent (Section 2.2.3).

In this section, we first describe all three datasets used in our experiments, then

present the models used to compare the performance of our FHCRF model, and

finally we give more explanation on the methodology used during our experiments.

Datasets

MelHead This dataset consisted of head velocities from 16 human participants inter-

acting with Mel, the interactive robot described in Section 2.3.1. These participants

were part of the MelNodsBack group. Each interaction lasted between 2 to 5 minutes.

Head pose tracking was performed online using our adaptive view-based appearance

model described in Section 3.1. At each frame (-25Hz), the tracker logged with

timestamps the 3D position and orientation of the head.

Human participants were video recorded while interacting with the robot to obtain

ground truth labels including the start and end points of each head nod. From these

ground truth labels, each frame was assigned to one of the two labels: head-nod or
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other-gesture. A total of 274 head nods were naturally performed by the participants

while interacting with the robot. All other types of head gestures (i.e. head shakes,

look away, no motion,...) were labeled as other-gestures.

WidgetsHead This dataset consisted of head velocities from 12 participants who

interacted with the gesture-based widgets described in Section 2.4.1. As for the first

dataset, the head pose was also estimated using the adaptive view-based appearance

model described in Section 3.1. The video sequences were manually annotated for

ground truth. Each frame was labeled as either head-nod or other-gesture. From

this dataset of 79 minutes of interaction, 269 head nods were labeled. All other

types of head gestures (e.g. head shakes, look away, and no motion) were labeled as

other-gestures.

AvatarEye This dataset consisted of eye gaze estimates from 6 human participants

interacting with a virtual embodied agent as described in Section 2.2.3. Our goal

is to recognize gaze aversion gestures from video sequences. Each video sequence

lasted approximately 10-12 minutes, and was recorded at 30 frames/sec, for a total

of 105,743 frames. During these interactions, human participants would rotate their

head up to +/-70 degrees around the Y axis and +/-20 degrees around the X axis, and

would also occasionally translate their head, mostly along the Z axis. The following

eye gesture recognition results are on the unsegmented sequences, including extreme

head motion.

For each video sequence, eye gaze was estimated using the view-based appearance

model described in Section 3.2.3 and for each frame a 2-dimensional eye gaze estimate

was obtained. The dataset was labeled with the start and end points of each gaze

aversion gestures. Each frame was labeled as either gaze-aversion or as other-gesture

which included sections of video where people were looking at the avatar or performing

deictic gestures.
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Models

In our experiments, our FHCRF model is compared with three other models: Con-

ditional Random Field (CRF), Hidden Markov Model (HMM) and Support Vector

Machine (SVM). Note that for HMM we tested two configurations: HMM with a

sliding window (referred to as HMM in the results section) and concatenated HMM

(referred to as HMM-C).

Conditional Random Field As a first baseline, we trained a single CRF chain

model where every gesture class has a corresponding state label. During evaluation,

marginal probabilities were computed for each state label and each frame of the

sequence using belief propagation. Note that we used marginal probabilities instead

of computing the Viterbi path to be consistent with the FHCRF output. Also, the

marginal probabilities are used to create ROC curves where we vary the decision

threshold. The optimal label for a specific frame is typically selected as the label

with the highest marginal probability. In our case, to be able to plot ROC curves

of our results, the marginal probability of the primary label (i.e. head-nod or gaze-

aversion) was thresholded at each frame, and the frame was given a positive label if

the marginal probability was larger than the threshold.

During training and validation, the objective function of the CRF model contains

a regularization term similar to the regularization term shown in Equation 3.11 for

the FHCRF model. This regularization term was validated with values ranging from

0.001 to 1000 on the logarithmic scale.

Support Vector Machine As a second baseline, a multi-class SVM was trained

with one label per gesture using a Radial Basis Function (RBF) kernel. Since the

SVM does not encode the dynamics between frames, the training set was decomposed

into frame-based samples, where the input to the SVM is the head velocity or eye

gaze at a specific frame. The output of the SVM is a margin for each class. This

SVM margin measures how close a sample is to the SVM decision boundary. The
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margin was used for plotting ROC curves.

During training and validation, two parameters were validated: C, the penalty

parameter of the error term in the SVM objective function, and 7, the RBF kernel

parameter. Both parameters were validated with values ranging from 0.001 to 1000

on the logarithmic scale.

Hidden Markov Model As a third baseline, an HMM was trained for each gesture

class. Since HHMs are designed for segmented data, we trained each HMM with

segmented subsequences where the frames of each subsequence all belong to the same

gesture class. This training set contained the same number of frames as the one

used for training the 3 other models except frames were grouped into subsequences

according to their label. As we stated earlier, we tested two configurations of Hidden

Markov Models: an HMM evaluated over a sliding window (referred to as HMM

in our experiments) and concatenated HMMs (refered to as HMM-C). For the first

configuration, each trained HMM is tested separately on the new sequence using a

sliding window of fixed size (32 frames). The class label associated with the HMM

with the highest likelihood is selected for the frame at the center of the sliding window.

For the second configuration, the HMMs trained on subsequences are concatenated

into a single HMM with the number of hidden states equal to the sum of hidden states

from each individual HMM. For example, if the recognition problem has two labels

(e.g., gesture and other-gesture) and each individual HMM is trained using 3

hidden states then the concatenated HMM will have 6 hidden states. To estimate the

transition matrix of the concatenated HMM, we compute the Viterbi path of each

training subsequence, concatenate the subsequences into their original order, and

then count the number of transitions between hidden states. The resulting transition

matrix is then normalized so that its rows sum to one. At testing, we apply the

forward-backward algorithm on the new sequence, and then sum at each frame the

hidden states associated with each class label. The resulting HMM-C can seen as a

generative version of our FHCRF model.

During training and validation, we varied the number of states from 1 to 6 and

104



the number of Gaussians per mixture from 1 to 3.

Frame-based Hidden-state Conditional Random Fields Our FHCRF model

was trained using the objective function described in the previous section. During

testing, to be able to plot ROC curves, we computed the marginal probabilities for

each label as shown in Equation 3.15.

During training and validation we validated two parameters: the number of hidden

states per label and the regularization term. We varied the number of hidden states

from 2 to 6 states per label. The regularization term was validated with values ranging

from 0.001 to 1000 on the logarithmic scale.

Methodology

For all three datasets, the experiments were performed using a K-fold testing approach

where K sequences were held out for testing while all other sequences were used for

training and validation. This process is repeated N/K times, where N is the total

number of sequences. For the MelHead, WidgetsHead and AvatarEye datasets, K

was 4, 3 and 1 respectively. For validation, we did a holdout cross-validation where

a subset of the training set is kept for validation. The size of this validation set

was equal to 4, 3 and 1 for the MelHead, WidgetsHead and AvatarEye datasets

respectively. The optimal validation parameters were picked based on the equal error

rate for the validation set.

To reduce the training time and have a balanced training set, the training dataset

was preprocessed to create a smaller training dataset with equal number of gesture

and non-gesture subsequences. Each gesture subsequence included one ground

truth gesture from the training dataset. Since the goal was to learn the transition

between gestures, the gesture subsequences also included non-gesture frames before

and after the ground truth gesture. The size of the gap before and after the gesture

was randomly picked between 2 and 50 frames. Non-gesture subsequences were

randomly extracted from the original sequences of the training set. Every frame in

the non-gesture subsequences had the same non-gesture label. The length of these
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(a) W=O (b) W=2
SVM---- CRF
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Figure 3-13: ROC curves for theMelHead dataset. Each graph represents a different
window size: (a) W=0, (b) W=2, (c) W=5 and (d) W=10. The last graph (e) shows
the ROC curves when FFT is applied on a window size of 32(W=16). In bold is the
largest EER value.
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Model W=O W=2 W=5
SVM 66.0% (p=0.0014) 66.3% (p=0.1271) 69.3% (p=0.1665)
CRF 55.3% (p=0.0007) 53.2% (p=0.013) 57.4% (p=0.0222)
HMM 69.6% (p=0.1704) 69.5% (p=0.0876) 70.4% (p=0.3361)
HMM-C 69.8% (p=0.0577) 66.9% (p=0.0491) 66.1% (p=0.0194)
FHCRF 75.9% 74.0% 75.1%

W=10
74.8% (p=0.4369)
56.3% (p=0.1156)
73.7% (p=0.7358)
70.8% (p=0.6518)
72.4%

rr i (vv=1u)
73.6% (p=0.5819)
69.8% (p=0.0494)
68.4% (p=0.4378)
70.4% (p=0.4429)
73.4%

Table 3.2: Accuracy at equal error rate for different window sizes on the MelHead
dataset. The best model is FHCRF with window size of 0. Based on paired t-tests
between FHCRF and each other model, p-values that are statistically significant are
printed in italic.

subsequences varied between 30-60 frames. The resulting training set had the same

number of gesture and non-gesture subsequences which is equal to the number of

ground truth gestures in the original training set.

Each experiment was also repeated with different input feature window sizes. A

window size equal to zero (W=0) means that only the velocity at the current frame

was used to create the input feature. A window size of two (W=2) means that the

input feature vector at each frame is a concatenation of the velocities from five frames:

the current frame, the two preceding frames, and the two future frames.

3.3.4 Results and Discussion

In this section, the results of our experiments for head gesture and eye gesture recog-

nition are presented. We compared all four models (SVM, CRF, HMM and FHCRF)

on three datasets. For the ROC curves shown in this section, the true positive rates

were computed by dividing the number of recognized frames by the total number of

ground truth frames. Similarly, the false positive rates were computed by dividing

the number of falsely recognized frames by the total number of non-gesture frames.
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Figure 3-14: Accuracy at equal error rates as a function of the window size, for dataset
MelHead.

MelHead

In the MelHead dataset, the human participants were standing in front of the robot,

and were able to move freely about their environment, making this dataset particu-

larly challenging.

Figure 3-13 displays the ROC curves of the four models after training with different

window sizes. The last graph of Figure 3-13 shows the performance of all four models

when trained on input vectors created by applying an FFT filter over a window of size

32 (W=16). Table 3.2 provides a summary of Figure 3-13 and displays the recognition

rate at which both the true positive rate and the true negative rate are equal. This

recognition rate (true positive rate) is known as equal error rate (EER). A paired

t-test was performed between the FHCRF model and all three other models. The

p-values are shown in Table 3.2 next to the equal error rates for the SVM, CRF and

HMM models. The difference between FHCRF and SVM is statistically significant

at W=0 but is not statistically significant for W=10 which is when SVM accuracy is

slightly higher then FHCRF. Figure 3-14 shows a plot of the EER values displayed
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False positive rate False positive rate

(a) w=o (b) W=2

0 0.2 0.4 0.6
False positive rate False positive rate

(c) W=5 (d) W=10

Figure 3-15: ROC curves for the WidgetsHead dataset. Each graph
different window size: (a) W=0O, (b) W=2, (c) W=5 and (d) W=10.

represents a

in Table 3.2 as a function of the window size for each model.

In Table 3.2, the largest EER for all the models and all window sizes is the FHCRF

model with a window size of 0. As expected the FHCRF model performs quite well

even when given a small window size. This is a direct result of the FHCRF model's

capability to simultaneously model the intrinsic and extrinsic dynamics of the input

signal. With only the velocity of the current frame as input, the FHCRF is able to

outperform other models with input vectors that are 10 to 20 times larger. This makes

FHCRF more suitable for online applications where knowledge for future frames is

not available.
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Model W=O W=2 W=5
SVM 53.1% (p=0.0109) 65.5% (p==0.0107) 74.7% (p=0.129)
CRF 67.0% (p=0.1161) 66.8% (p=0.0076) 68.1% (p=0.083)
HMM 64.5% (p=0.0546) 63.2% (p=0.0071) 69.03% (p=0.0016)
HMM-C 68.9% (p=0.0132) 72.1% (p=0.0716) 76.9% (p=0.4142)
FHCRF 73.7% 80.1% 79.6%

W=10
77.5% (p=0.4953)
70.07% (p=0.1338)
71.3% (p=0.3359)
79.2% (p=0.2751)
75.2%

W=15
77.8% (p=O.0484)
71.7% (p=0.6592)
69.6% (p=0.6616)
73.8% (p=0.9377)
69.3%

Table 3.3: Accuracy at equal error rate for different window sizes on the WidhetsHead
dataset. The best model is FHCRF with window size of 2. Based on paired t-tests
between FHCRF and each other model, p-values that are statistically significant are
printed in italic.

WidgetsHead

Figure 3-15 shows the ROC curves of the four models after training with different

window sizes. Table 3.3 displays the equal error rates (EER) for each ROC curve

in Figure 3-15. A paired t-test was performed between the FHCRF model and all 3

other models. The p-values are shown in Table 3.3 next to the equal error rates for

the SVM, CRF and HMM models. For a window size of 2, the difference between the

accuracy of FHCRF and every other model is statistically significant. Figure 3-16

plots the EER values of Table 3.3 as a function of the window size for each model.

By looking at Figure 3-16, we can see that for this dataset, the FHCRF works

best with a small window size between 2 and 5. Again the FHCRF outperforms the

other models, even when they are using a larger window size.

AvatarEye

Figure 3-17 shows the ROC curves of the four models after training with different

window sizes. Table 3.4 displays the equal error rates (EER) for each ROC curve

in Figure 3-17. A paired t-test was performed between the FHCRF model and all 3

other models. The p-values are shown in Table 3.4 next to the equal error rates for
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Figure 3-16: Accuracy at equal error rates as a function of the window size, for dataset
WidgetsHead.

the SVM, CRF and HMM models. We can see in Table 3.4 the FHCRF outperforms

all three other models for both window sizes. Figure 3-18 shows a plot of the EER

values displayed in Table 3.4 as a function of the window size for each model. Note

that a problem with memory allocation made it impossible to run the experiment

with W=10.

The AvatarEye dataset had only 6 participants and 77 eye gestures. We can see

in Figure 3-18 how this small dataset affects the FHCRF model when the window

size increases. This effect was not as prominent for larger datasets, as observed in

Figures 3-16 and 3-14. Even with this small dataset, FHCRF outperforms the three

other models with a maximum accuracy of 85.1% for a window size of 0.

3.4 Summary

In this chapter we presented and evaluated new algorithms for recognizing head

gaze, eye gaze, head gestures and eye gestures. For head tracking, we introduced
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0.8 1

Figure 3-17: ROC curves for theAvatarEye dataset. The ROC curves are shown for
a window size of 0 (a), 2 (b) and 5 (c).
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Model W=0 W =2 W=5
SVM 68.4% (p=0.0055) 71.4% (p=0.03 05) 70.7% (p=0.7954)
CRF 79.9% (p=0.1548) 83.6% (p=0.8234) 72.8% (p=0.6 7 5 6 )
HMM 80.0% (p=0.1086) 79.4% (p=0.308) 78.0% (p=0.0273)
HMM-C 72.0% (p=0.021) 68.3% (p=0.0301) 69.0% (p=0.7916)
FHCRF 85.1% 82.9% 70.0%

Table 3.4: Accuracy at equal error rates for different window sizes on the AvatarEye
dataset. The best model is FHCRF with window size of 0. Based on paired t-tests
between FHCRF and each other model, p-values that are statistically significant are
printed in italic.

a new tracking approach that utilizes an adaptive view-based appearance model.

This tracker registers each incoming frame against the key-frames of the view-based

model using a two-frame 3D registration algorithm. Pose-changes recovered from

registration are used to simultaneously update the model and track the subject. The

approach was successfully tested on a real-time 6-DOF head tracking task using stereo

cameras and observed an RMS error within the accuracy limit of an attached inertial

sensor. During all our experiments, the tracker had bounded drift, could model non-

Lambertian reflectance and could be used to track objects undergoing large motion

for a long time.

Our approach for eye gaze estimation is based on a pre-acquired view-based ap-

pearance model. The eye appearance model was built using eye images from 16

subjects looking at 35 different targets under different lighting conditions. The main

advantages of this technique are that it can estimate eye gaze from low resolution

images, our approach is user independent, and handle glasses and changes in lighting

condition.

For both head and eye gesture recognition, we presented a new model for simul-

taneous segmentation and labeling of gesture sequences. Our frame-based HCRF is

a latent state discriminative model that is designed to capture both intrinsic and

extrinsic sequence dynamics. Our proposed approach incorporates hidden state vari-

ables which model the sub-structure of a gesture sequence. In contrast to previous

hidden-state conditional models it can also learn the dynamics between gesture labels

and be directly applied to label unsegmented sequences. One advantage of our model
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Figure 3-18: Accuracy
AvatarEye.

at equal error rates as a function of the window size, for dataset

is that it can be efficiently trained by using standard belief propagation techniques.

We evaluated our FHCRF model on the tasks of head and eye gesture recognition

from unsegmented video streams. By modeling latent sub-structure the FHCRF can

learn to label unsegmented sequences with high accuracy even when using simple

velocity features.
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Chapter 4

Visual Feedback Anticipation:

The Role of Context

During face-to-face conversation, people use visual feedback to communicate relevant

information and to synchronize rhythm between participants. When people inter-

act naturally with each other, it is common to see indications of acknowledgment,

agreement, or disinterest given with a simple head gesture. When recognizing such

visual feedback, people use more than their visual perception. For instance, knowl-

edge about the current topic and expectations from previous utterances help guide

recognition of nonverbal cues. Our goal is to enable computer interfaces with the

ability to perceive visual feedback gestures, and to exploit contextual information

from the current interaction state when performing visual feedback recognition.

In Chapter 3 we presented a head pose tracking system which can return the

position and orientation of a user's head through automatic passive observation. We

showed how we can use a view-based appearance model to estimate the eye gaze

of a user, and we described a new method for recognition of visual gestures using

discriminatively trained statistical classifiers. In this section we show how the use of

contextual information proves critical when incorporating visual feedback recognition

in conversational dialogue interfaces and in traditional window-based graphical user

interfaces.

When interacting with a computer in a conversational setting, dialogue state can
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provide a useful context for recognition. In the last decade, many embodied conver-

sational agents (ECAs) have been developed for face-to-face interaction, using both

physical robots and virtual avatars. A key component of these systems is the dialogue

manager, usually consisting of a history of the past events, a list of current discourse

moves, and an agenda of future actions. The dialogue manager uses contextual in-

formation to decide which verbal or nonverbal action the agent should perform next

(i.e., context-based synthesis). Contextual information has proven useful for aiding

speech recognition: in [58], a speech recognizer's grammar changes dynamically de-

pending on the agent's previous action or utterance. In a similar fashion, we have

developed a context-based visual recognition module that builds upon the contex-

tual information available in the dialogue manager to improve performance of visual

feedback recognition (Figure 4-1).

As shown in Section 2.4.1, visual gesture recognition can also be useful for non-

conversational interfaces. A perceptive interface sensitive to head gesture can lead

to more natural notification and navigation interactions. Computer interfaces often

interrupt a user's primary activity with a notification about an event or condition,

which may or may not be relevant to the main activity. Currently, a user must shift

keyboard or mouse focus to attend to the notification, page through the displayed

information and dismiss the notification before returning to the main activity. Requir-

ing keyboard or mouse events to respond to notifications can clearly cause disruption

to users during certain activities or tasks. In Section 2.4.1, we explored two types

of head gesture-based window controls: dialog box acknowledgment/agreement, and

document browsing. The first allowed a user to effectively accept or reject a dialog

box or other notification window by nodding or shaking their head. The second com-

ponent allowed a user to page through a document using head nods. For both types

of gesture-based window control, contextual information from the system events (i.e.

keystrokes or mouse events) can improve recognition of visual gestures.

In this chapter, we present a prediction framework for incorporating context with

vision-based head gesture recognition. Contextual features are derived from the ut-

terances of an ECA or the event state of a traditional user interface. Figure 4-1 shows
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Head
shake

Figure 4-1: Contextual recognition of head gestures during face-to-face interaction
with a conversational robot. In this scenario, contextual information from the robot's
spoken utterance helps disambiguating the listener's visual gesture.

an example where our framework allows us to correctly predict that a glance is not

as likely to occur as a head shake or nod. Based on the fact that robot's spoken

utterance contains the words "do you" and ends with a question mark, our contextual

predictor anticipates a head nod or a head shake. If the vision-based recognizer saw

a gesture that looks like a head shake or a head glance, then the multi-modal inte-

grator will correctly recognize the gesture as a head shake. Figure 4-3 presents our

framework for context-based gesture recognition.

Context has been previously used in computer vision to disambiguate recognition

of individual objects given the current overall scene category [104]. Fugie et al. com-

bined head gesture detection with prosodic recognition of Japanese spoken utterances

to determine strongly positive, weak positive and negative responses to yes/no type

utterances [33]. To our knowledge, the use of dialogue or interface context for visual

gesture recognition has not been explored before for conversational or window-based

interaction.

In the following sections we describe the contextual information available in con-
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versational dialogue systems and traditional window interfaces, our approach to context-

based gesture recognition using a discriminative classifier cascade, and our experi-

ments in recognizing head and eye gestures using contextual information.

4.1 Context in Conversational Interaction

As shown in Chapter 2, some visual feedback is naturally performed by users, and

recognizing these types of feedback can improve the performance of the interactive

interface. We discussed in Section 2.1.2 how human participants when interacting

with a robot or an ECA often nod without speaking any phrases [7, 92]. For reliable

recognition of visual feedback, people use knowledge about the current dialogue dur-

ing face-to-face conversational interactions to anticipate visual feedback from their

interlocutors. Our goal is to equip computer interfaces with the ability to similarly

perceive visual feedback gestures. As depicted in Figure 4-1, knowledge of an ECA's

spoken utterance can help predict which visual feedback is most likely.

We can use a conversational agent's knowledge about the current dialogue to

improve recognition of visual feedback (i.e., head gestures, eye gestures). Figure 4-2

shows a simplified architecture which captures modules common to several different

systems [69, 84]. The dialogue manager merges information from the input devices

with the history and the discourse model. The dialogue manager contains two main

sub-components, an agenda and a history: the agenda keeps a list of all the possible

actions the agent and the user (i.e., human participant) can do next. This list is

updated by the dialogue manager based on its discourse model (prior knowledge)

and on the history. Dialogue managers generally exploit contextual information to

produce output for the speech and gesture synthesizer, and we can use similar cues

to predict when user visual feedback is most likely.

We extract information from the dialogue manager rather than directly accessing

internal ECA states. Our proposed method extracts contextual features from the

messages sent to the audio and gesture synthesizers. This strategy allows us to extract

dialogue context without any knowledge of the internal representation. Therefore, our
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Figure 4-2: Simplified architecture for embodied conversational agent. Our method
integrates contextual information from the dialogue manager inside the visual analysis
module.

method can be applied to most ECA architectures.

We highlight four types of contextual features easily available from the dialogue

manager: lexical features, prosody and punctuation, timing, and gesture displays.

Lexical features Lexical features are computed from the words said by the embodied

agent. By analyzing the word content of the current or next utterance, one should

be able to anticipate and distinguish certain visual feedback gestures. For example,

if the current spoken utterance starts with "Do you", the listener will most likely

answer using affirmation or negation. In this case, visual feedback in the form of a

head nod or a head shake is likely to occur (as shown in Figure 4-1). On the other

hand, if the current spoken utterance starts with "What", then it is less likely to see

the listener head shake or head nod; other visual feedback gestures (e.g., pointing)

are more likely.

Prosody and punctuation Prosody can also be an important cue to predict gesture

displays. We use punctuation features output by the dialogue system as a proxy

for prosody cues. Punctuation features modify how the text-to-speech engine will

pronounce an utterance. Punctuation features can be seen as a substitute for more

complex prosodic processing that is not yet available from most speech synthesizers.
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A comma in the middle of a sentence will produce a short pause, which will most likely

trigger some feedback from the listener. A question mark at the end of the sentence

represents a question that should be answered by the listener. When merged with

lexical features, the punctuation features can help recognize situations (e.g., yes/no

questions) where the listener will most likely use head gestures to answer.

Timing Timing is an important part of spoken language and knowledge about when

a specific word is spoken or when a sentence ends influence visual feedback. This

information can aid the ECA to anticipate visual grounding feedback. For example,

people tend to naturally head nod to the speaker when a pause occurs. The timing

of these pauses is important for visual feedback recognition. In natural language

processing (NLP), lexical and syntactic features are predominant. In contrast, for

face-to-face interaction with an ECA, timing is also an important feature.

Gesture display Synthesized gestures are a key capability of ECAs and they can

also be leveraged as a context cue for gesture interpretation. As described in [17],

visual feedback synthesis can improve the engagement of the user with the ECA. The

gestures expressed by the ECA influence the type of visual feedback from the human

participant. For example, if the agent makes a deictic pointing gesture, the user is

more likely to look at the location that the ECA is pointing to.

The dialogue manager sends the next spoken utterance, a time stamp and an ap-

proximated duration to the visual analysis module. The next spoken utterance con-

tains the words, punctuation, and gesture tags used to generate the ECA's actions.

The utterance information is processed by the contextual predictor to extract the lex-

ical, punctuation, timing, and gesture features. Approximate duration of utterances

is generally computed by speech synthesizers and made available in the synthesizer

API.
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4.2 Context in Window System Interaction

We investigate the use of context-based visual feedback recognition to interact with

conventional window system components. In Section 2.4.1, we presented a user study

with two gesture-based window controls: dialog box acknowledgment/agreement, and

document browsing. Our results suggest that head gestures are a natural and effi-

cient way to respond to dialog boxes, especially when the user is already performing

a different task. With the proposed approach, notification dialog boxes can be ac-

knowledged by head nodding and question dialog boxes can be answered by head

nods or head shakes.

With a window system interface, there are several sources of potential errors

with a gesture-based recognition system. We use contextual features to distinguish

between visually confounded states and reduce false positives during the interaction

with conventional input devices. Contextual features should be easily computed using

pre-existing information in the user interface system.

For traditional, window-based interfaces, the interaction context is defined by the

event state of the user interface system. We highlight two types of contextual features

easily available from the window manager: input device events and display events.

Input device events Recent events from a conventional input device like the key-

board or the mouse can help to determine whether a head gesture is voluntary or

not. For example when people search for their cursor on the screen, they perform

fast short movements similar to head nods or head shakes, and when people switch

attention from the screen back to the keyboard in order to place their fingers on the

right keys, the resulting motion can appear like a head nod. These types of false

positives can cause difficulty, especially for users who are not aware of the tracking

system.

Display events Knowledge from what is displayed on screen can help predicting

when a user's input is more likely. A simple example of such a contextual feature
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Images

Figure 4-3: Framework for context-based gesture recognition. The contextual pre-
dictor translates contextual features into a likelihood measure, similar to the visual
recognizer output. The multi-modal integrator fuses these visual and contextual like-
lihood measures. The system manager is a generalization of the dialogue manager

(conversational interactions) and the window manager (window system interactions).

is the time since a dialog box was displayed. This contextual feature can help head

gesture recognition because the user's input is most likely after such an event but also

because people respond to a dialog box usually after reading its content ('2.5 second

delay in our experiments). So the time since the display event can be as important

as the event itself.

These contextual features can be easily computed by listening to the input and

output events sent inside the message dispatching loop of the application or operating

system (see Figure 4-3).

4.3 Context-based Gesture Recognition

We use a two-stage discriminative classification scheme to integrate interaction con-

text with visual observations and detect gestures. A two-stage scheme allows us the

freedom to train the context predictor and vision-based recognizer independently, po-

tentially using corpora collected at different times. Figure 4-3 depicts our complete

system.

Our context-based recognition framework has three main components: vision-

based recognizer, contextual predictor and multi-modal integrator. In the vision-
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based gesture recognizer, we compute likelihood measurements of head gestures. In

the contextual predictor, we learn a measure of the likelihood of certain visual ges-

tures given the current contextual feature values. In the multi-modal integrator, we

merge context-based predictions with observations from the vision-based recognizer

to compute the final recognition estimates of the visual feedback.

The input of the contextual predictor is a feature vector xj created from the

concatenation of all contextual features at frame j. Each contextual value is a real

value encoding a specific aspect of the current context. For example, one contextual

feature can be a binary value (0 or 1) telling if the last spoken utterance contained a

question mark. The details on how these contextual features are encoded are described

in Section 4.4 for both conversational interfaces and window system interfaces.

The contextual predictor should output a likelihood measurement at the same

frame rate as the vision-based recognizer so the multi-modal integrator can merge

both measurements. For this reason, feature vectors xj should also be computed

at every frame j (even though the contextual features do not directly depend on

the input images). One of the advantages of our late-fusion approach is that, if the

contextual information and the feature vectors are temporarily unavailable, then the

multi-modal integrator can recognize gestures using only measurements made by the

vision-based recognizer. It is worth noting that the likelihood measurements can be

a probabilities (as output by FHCRFs) or a "confidence" measurement (as output by

SVMs).

As shown in 4-3, the vision-based gesture recognizer takes inputs from a visual

pre-processing module. This module performs two main tasks: tracking head gaze and

estimating eye gaze. To track head gaze, we use the adaptive view-based appearance

model (AVAM) described in Section 3.1. This approach has the advantage of being

able to track subtle movements of the head for a long periods of time. While the

tracker recovers the full 3-D position and velocity of the head, we found features

based on angular velocities were sufficient for gesture recognition. To estimate eye

gaze, we use the view-based appearance model described in Section 3.2. The eye gaze

estimator uses the input image as well as the head gaze estimate to compute the eye
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gaze of the user. The eye gaze estimates and head rotational velocity are passed to

the vision-based gesture recognizer.

The multi-modal integrator merges context-based predictions with observations

from the vision-based recognizer. We adopt a late fusion approach because data ac-

quisition for the contextual predictor is greatly simplified with this approach, and

initial experiments suggested performance was equivalent to an early, single-stage in-

tegration scheme. Most recorded interactions between human participants and con-

versational robots do not include estimated head position; a late fusion framework

gives us the opportunity to train the contextual predictor on a larger data set of

linguistic features.

Our integration component takes as input the margins from the contextual predic-

tor described earlier in this section and the visual observations from the vision-based

head gesture recognizer, and recognizes whether a head gesture has been expressed by

the human participant. The output from the integrator is further sent to the dialogue

manager or the window manager so it can be used to decide the next action of the

ECA or to trigger the window-based interface.

We experimented with two approaches for discriminative classification: Frame-

based Hidden-state Conditional Random Fields (FHCRF) and Support Vector Ma-

chines (SVMs). Our goal was to show how our approach generalizes to different

learning algorithms. The contextual predictor and the multi-modal integrator were

trained using these algorithms.

FHCRF Using our FHCRF model, the likelihood measurement for a specific gesture

g (i.e. head-nod or non-gestures) is equal to the marginal probability P(yj =

g I x, 0*). As described in the subsection Inference of Section 3.3.2, this probability

is equal to the sum of the marginal probabilities for the hidden states part of the

subset F-g:

P(yj=gl x, 0*)= C P(hl x, 0*)  (4.1)
h:Vhj E-g

where x is the concatenation of all the feature vectors xj for the entire sequence
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and 0* are the model parameters learned during training. When testing offline, the

marginal probabilities are computed using a forward-backward belief propagation

algorithm. To estimate the marginal probabilities online, it is possible to define x as

the concatenation of all feature vectors up to frame j and use the forward-only belief

propagation algorithm. Note that our experiments were done offline on pre-recorded

video sequences.

SVM Using Support Vector Machine (SVM), we estimate the likelihood measurement

of a specific visual gesture using the margin of the feature vector xj. During training,

the SVM finds a subset of feature vectors,called support vectors, that optimally define

the boundary between labels. The margin m(xj) of a feature vector xj can be seen

as the distance between the xj and the boundary, inside a kernel space IC. The

margin m(x3 ) can easily be computed given the learned set of support vectors Xk, the

associated set of labels Yk and weights Wk, and the bias b:

I

m(x) = ykWkK(Xk, Xj) + b (4.2)
k=1

where 1 is the number of support vectors and K(xk, Xj) is the kernel function. In our

experiments, we used a radial basis function (RBF) kernel:

K(xk, Xj) = e- llx k-x jll 2  (4.3)

where y is the kernel smoothing parameter learned automatically using cross-validation

on our training set.

4.4 Contextual Features

In this section we describe how contextual information is processed to compute fea-

ture vectors xj. In our framework, contextual information is infered from the input

and output events of the system manager (see Figure 4-3). The system manager is a

125



generalization of the dialogue manager (conversational interactions) and the window

manager (window system interactions). In this type of architecture, the system man-

ager receives input events from external modules or devices (e.g., a keystroke event

or a mouse click event) and sends events to other modules (e.g., the next spoken

utterance or dialog display event).

We tested two approaches to send event information to the contextual predictor:

(1) an active approach where the system manager is modified to send a copy of

each relevant event to the contextual predictor, and (2) a passive approach where an

external module listens at all the input and output events processed by the system

manager and a copy of the relevant events is sent to the contextual predictor. In

the contextual predictor, a pre-processing module receives the contextual events and

outputs contextual features. Note that each event is accompanied by a timestamp

and optionally a duration estimate.

In our framework, complex events are split into smaller sub-events to increase the

expressiveness of our contextual features and to have a consistent event formatting.

For example, the next spoken utterance event sent from the conversational manager

will be split into sub-events including words, word pairs and punctuation elements.

These sub-events will include the original event information (timestamp and duration)

as well as the relative timing of the sub-event.

The computation of contextual features should be fast so that context-based recog-

nition can happen online in real-time. We use two types of functions to encode con-

textual features from events: (1) binary functions and (2) ramp functions.

A contextual feature encoded using a binary function will return 1 when the event

starts and 0 when it ends. This type of encoding supposes that we know the duration

of the event or that we have a constant representing the average duration. It is well

suited for contextual features that are less time sensitive. For example, the presence

of the word pair "do you" in an utterance is a good indication of a yes/no question

but the exact position of this word pair is not as relevant.

A ramp function is a simple way to encode the time since an event happened.

We experimented with both negative slope (from 1 to 0) and positive slope (from 0
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to 1) but did not see any significant difference between the two types of slopes. A

ramp function is well suited for contextual features that are more time sensitive. For

example, a dialog box is most likely to be answered shortly after it is displayed.

The following two sub-sections give specific examples of our general framework

for contextual feature encoding applied to conversational and non-conversational in-

terfaces. In Section 4.4.1, we describe how contextual information from the dialog

manager is encoded and show an example of the output from the contextual predictor

after learning to anticipate head nods and head shakes. In Section 4.4.2, we describe

how we encode the input and output events from the window-based interface to create

contextual feature vectors.

4.4.1 Conversational Interfaces

The contextual predictor receives the spoken avatar's spoken utterance and auto-

matically processes them to compute contextual features. Four types of contextual

features are computed: lexical features, prosody and punctuation features, timing

information, and gesture displays. In our implementation, the lexical feature relies

on extracted word pair (two words that occur next to each other, and in a particular

order) since they can efficiently be computed given the transcript of the utterance.

While a range of word pairs may be relevant to context-based recognition, we

currently focus on the single phrase "do you". We found this feature is an effective

predictor of a yes/no question in many of our training dialogues. Other word pair

features will probably be useful as well (for example, "have you, will you, did you"),

and could be learned from a set of candidate word pair features using a feature

selection algorithm.

We extract word pairs from the utterance and set the following binary feature:

fdo yOU" 1 if word pair "do you" is present
0 if word pair "do you" is not present

The punctuation feature and gesture feature are coded similarly:
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1 if the sentence ends with "?"

0 otherwise

{ 1 if a "look left" gesture happened during the utterance
flook-left =

0 otherwise

The timing contextual feature ft represents proximity to the end of the utterance.

The intuition is that verbal and non-verbal feedback most likely occurs at pauses

or just before. This feature can easily be computed given only two values: to, the

utterance start-time, and Jt, the estimated duration of the utterance. Given these

two values for the current utterance, we can estimate ft at time t using:

1 it-to ift<to±+Jftt W 6t
0 if t > to + 6t

We selected our features so that they are topic independent. This means that

we should be able to learn how to predict visual gestures from a small set of inter-

actions and then use this knowledge on a new set of interactions with a different

topic discussed by the human participant and the ECA. However, different classes of

dialogues might have different key features, and ultimately these should be learned

using a feature selection algorithm (this is a topic of future work).

The contextual features are evaluated for every frame acquired by the vision-based

recognizer module. The lexical, punctuation and gesture features are evaluated based

on the current spoken utterance. A specific utterance is active until the next spoken

utterance starts, which means that in-between pauses are considered to be part of

the previous utterance. The top three graphs of Figure 4-4 show how two sample

utterances from the MelHead dataset (from the user study described in Section 2.3.1)

will be coded for the word pair "do you", the question mark and the timing feature.

Figure 4-4 also displays the output of our trained contextual predictor for an-
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Figure 4-4: Prediction of head nods and head shakes based on 3 contextual features:
(1) distance to end-of-utterance when ECA is speaking, (2) type of utterance and
(3) lexical word pair feature. We can see that the contextual predictor learned that
head nods should happen near or at the end of an utterance or during a pause while
head shakes are most likely at the end of a question.
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ticipating head nods and head shakes during the dialogue between the robot and a

human participant (MelHead dataset). Positive margins represent a high likelihood

for the gesture. It is noteworthy that the contextual predictor automatically learned

that head nods are more likely to occur around the end of an utterance or during a

pause, while head shakes are more likely to occur after the completion of an utterance.

It also learned that head shakes are directly correlated with the type of utterance (a

head shake will most likely follow a question), and that head nods can happen at the

end of a question (i.e., to represent an affirmative answer) and can also happen at

the end of a normal statement (i.e., to ground the spoken utterance).

4.4.2 Window-based Interface

For non-conversational interfaces, such as window-based systems, we exploit two fea-

tures of interface state commonly available through a system event dispatch mecha-

nism: dialog box display and mouse motion. The time since the most recent dialog

box display, mouse motion and button press event is used as input for the contextual

predictor. Such a system event can significantly reduce potential false positives that

would otherwise occur using only visual features.

We defined two contextual features based on window system event state: fd and

f,i, defined as the time since a dialog box appeared and time since the last mouse

event respectively. These features can be easily computed by listening to the input

and display events sent inside the message dispatching loop of the application or

operating system (see Figure 4-3). We compute the dialog box feature fd as

fd Cd if no dialog box was shown

t - td otherwise

where td is the time-stamp of the last dialog box appearance and Cd is a default

value if no dialog box was previously shown. In the same way, we compute the mouse

feature f, as
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fm(t) = C, if no mouse event happened

t - tm otherwise

where tm is the time-stamp of the last mouse event and Cm is a default value if

no mouse event happened recently. In our experiments, Cd and Cm were set to 20.

The contextual features are evaluated at the same rate as the vision-based gesture

recognizer.

4.5 Experiments

We designed our experiments to demonstrate how contextual features can improve

visual feedback recognition under the same two axes described in Chapter 2: embod-

iment and conversional capabilities. Our datasets include interactions with a robot,

an avatar and a non-embodied interface. We also experimented with different types of

visual feedback: head nods, head shakes and eye gaze aversion gestures. Finally, we

tested our context-based recognition framework (described in Section 4.3) with two

classification algorithms (SVM and FHCRF) to show the generality of our approach.

The experiments were performed on three different datasets: MelHead and Eye.

For the MelHead dataset, the goal is to recognize head nods and head shakes from

human participants when interacting with a robot. For the WidgetsHead dataset,

the goal is to recognize head nods from human participants when interacting with

gestures-based widgets. For the AvatarEye dataset, the goal is to recognize eye

gestures (gaze aversion) from human participants when interacting with a virtual

agent. For the MelHead and WidgetsHead datasets, multi-class SVMs were used to

train and test the contextual predictor and multi-modal integrator while FHCRF

models were used for the AvatarEye dataset. Our goal for using both SVM and

FHCRF is to show how our context-based framework generalizes to different learning

algorithms.

The following section describes each dataset in more details. Then, Section 4.5.2

explains our experimental procedure. Finally, Section 4.5.3 presents our results and
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discussion.

4.5.1 Datasets

MelHead This dataset consisted of 16 human participants interacting with Mel, the

interactive robot described in Section 2.3.1. The user study consisted of two different

scenarios and the 16 participants were randomly assigned to one or the other. In

the first scenario, the robot interacted with the participant by demonstrating its own

abilities and characteristics. Seven participants interacted with this scenario. In the

second scenario, the robot described an invention called iGlassware (-340 utterances).

Nine participants interacted with this scenario. The sequences from the first scenario

were used for training while the second scenario was used for testing.

The robot's conversational model, based on COLLAGEN [84], determined the

next activity on the agenda using a predefined set of engagement rules, originally

based on results from a human-human interaction study [91]. Each interaction lasted

between 2 and 5 minutes. For ground truth, we hand labeled each video sequence

to determine exactly when the participant nodded or shook his/her head. A total

of 274 head nods and 14 head shakes were naturally performed by the participants

while interacting with the robot.

The contextual cues from the dialogue manager (spoken utterances with start time

and duration) were recorded during each interaction and were later automatically

processed to create the contextual features, as described in Section 4.4.1.

Head pose tracking was performed online using our adaptive view-based appear-

ance model described in Section 3.1. The rotational velocity signal from the head

gaze tracker was transformed into a frequency-based feature by applying a windowed

Fast-Fourier Transform (FFT) to each dimension of the velocity independently us-

ing a 32-sample, 1-second window. The vision-based head geasture recognizer was a

multi-class SVM trained on a previous dataset [67]. This vision-based recognizer was

run online during each interaction and the results were logged with the contextual

cues.
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WidgetsHead This dataset consisted of 12 participants who interacted with the

gestures-based widgets described in Section 2.4.1. The video sequences were manually

annotated for ground truth. Each frame was labeled as either a head-nod or other-

gesture. From this dataset of 79 minutes of interaction, 269 head nods were labeled.

All other types of head gestures (i.e. head shakes, look away, no motion,...) were

labeled as other-gestures.

The contextual cues from the window system (input and output events with time-

stamps) were recorded during each interaction and were later automatically processed

to create the contextual features, as described in Section 4.4.2.

As for the MelHead dataset, the head pose was also estimated using the adaptive

view-based appearance model described in Section 3.1. The vision-based gesture

recognizer was also a multi-class SVM [67]. This head geasture recognizer was run

online during each interaction and the results were logged with the contextual cues.

AvatarEye This dataset consisted of 6 human participants interacting with a virtual

embodied agent as described in Section 2.2.3. Each video sequence lasted approxi-

mately 10-12 minutes, and was recorded at 30 frames/sec, for a total of 105,743

frames. During these interactions, human participants would rotate their head up to

+/-70 degrees around the Y axis and +/-20 degrees around the X axis, and would

also occasionally move their head, mostly along the Z axis.

The dataset was labeled with the start and end points of each gaze aversion

gestures. Each frame was labeled either as gaze-aversion or as other-gesture which

included section of video where people were looking at the avatar or performing de-

ictic gestures. As for the MelHead dataset, the contextual cues from the dialogue

manager (spoken utterances with start time and duration) were recorded during each

interaction and were later automatically processed to create the contextual features

necessary for the contextual predictor. Section 4.4.1 shows how the contextual fea-

tures are automatically computed.

For each video sequence, the eye gaze was estimated using the view-based appear-
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ance model described in Section 3.2.3 and for each frame a 2-dimensional eye gaze

estimate was obtained. The eye gaze estimates were logged online with the contex-

tual cues. For this dataset, the vision-based recognizer is a FHCRF model trained

and validated offline on the same training and validation sets used for the contextual

predictor and the multi-modal integrator.

4.5.2 Methodology

Our hypothesis was that the inclusion of contextual information within the visual

gesture recognizer would increase the number of recognized head nods while reducing

the number of false detections. For each dataset, we tested three different configura-

tions: (1) using the vision-only approach, (2) using only the contextual information as

input (contextual predictor), and (3) combining the contextual information with the

results of the visual approach (multi-modal integration). In the rest of this section,

we describe how we trained the contextual predictor and the multi-modal integrator

for each dataset.

One experimental goal with the MelHead dataset was to see if we can train our

contextual predictor and multi-modal integrator with one scenario and test it with a

different scenario. For this reason, we split the 16 sequences into two sets based on

the scenario. The training and validation set had seven participants while the testing

set had 9 participants. Validation was performed using a K-fold cross-validation

approach.

For the experiments with the WidgetsHead and the AvatarEye datasets, we used

a leave-one-out testing approach where one sequence is held out for testing while all

other sequences are used for training and validation, and this process is repeated

for each sequence. For both datasets, we did K-fold cross-validation and afterward

retrained the model on all training sequences using the optimal set of parameters.

SVMs were used with the MelHead and WidgetsHead datasets to train the contex-

tual predictor and multi-modal integrator. Two parameters were validated for each

SVM: C, the penalty parameter of the error term in the SVM objective function, and

y, the parameter for the RBF kernel. Both parameters were validated with values
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ranging from 0.001 to 1000 on logarithmic scale.

FHCRF was used with the AvatarEye dataset to train the contextual predictor

and multi-modal integrator. We validated two parameters for each FHCRF model:

the number of hidden states per label and the regularization term. We varied the

number of hidden state from 1 to 4 states per label. The regularization term was

validated with values ranging from 0.001 to 1000 on the logarithmic scale.

The AvatarEye training sets were preprocessed to create a smaller training set

with equal number of gesture and non-gesture subsequences. Each gesture sub-

sequence included one ground truth gesture from the training dataset. Since we are

interested in learning the transition between gestures, these gesture subsequences

also included non-gesture frames before and after the ground truth gesture. The

size of the gap before and after the gesture was randomly picked between 2 and 50

frames. Non-gesture subsequences were randomly extracted from the original se-

quences of the training set. Every frame in these non-gesture subsequences had

the same non-gesture label. The length of these subsequences varied between 30-60

frames. The resulting training set had the same number of gesture and non-gesture

subsequences, which is equal to the number of ground truth gestures in the original

training set.

The training set for MelHead and WidgetsHead datasets were preproceseed to

create a smaller training set with an equal number of gesture and non-gesture

frames. Since SVMs do not model the dynamics between frames, the number of

the subsequences does not matter as much as the number of frames. Gesture and

non-gesture samples were randomly picked from the original training set to have

the same number for both class labels.

4.5.3 Results and Discussion

In this section, we first present and discuss the results from the head gesture exper-

iments with MelHead and WidgetsHead datasets, then show the results for the eye

gesture experiment with the AvatartEye dataset.
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MelHead

Figure 4-5 shows the head nod recognition results for a sample dialogue. When only

vision is used for recognition, the algorithm makes the first mistake at approximately

t = 101s by detecting a false head nod; visual grounding is less likely during the

middle of an utterance. By incorporating contextual information, our context-based

gesture recognition algorithm is able to reduce the number of false positives.

We computed the true positive rate using the ratio between the number of detected

gestures and the total number of ground truth gestures. A head gesture is tagged

as detected if the detector triggered at least once during a time window around the

gesture. The time window starts when the gesture starts and ends k seconds after

the gesture. The parameter k was empirically set to be the maximum delay of the

vision-based head gesture recognizer (1.0 second). For the iGlass dataset, the total

numbers of ground truth gestures were 91 head nods and 6 head shakes.

The false positive rate is computed at a frame level using the ratio between the

number of falsely detected frames and the total number of non-gesture frames. A

frame is tagged as falsely detected if the head gesture recognizer triggers and if this

frame is outside any time window of a ground truth head gesture. The denominator

is the total of frames outside any time window. For the iGlass dataset, the total

number of non-gestures frames was 18,246 frames and the total number of frames for

all 9 interactions was 20,672 frames.

Figure 4-6 shows head nod detection results for all 9 subjects used during testing.

The ROC curves present the detection performance for each recognition algorithm

when varying the detection threshold. The area under the curve for each technique

are 0.9482 for the vision only, 0.7691 for the predictor and 0.9678 for the integrator.

Figure 4-7 shows head shake detection results for each recognition algorithm when

varying the detection threshold. The area under the curve for each technique is 0.9780

for the vision only, 0.4961 for the predictor, and 0.9872 for the integrator.

Table 4.1 summarizes the results from Figures 4-6 and 4-7 by computing the true

positive rates for the fixed negative rate of 0.1. Using a standard analysis of variance
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Figure 4-5: Context-based head nod recognition results for a sample dialogue. The
last graph displays the ground truth. We can observe at around 101 seconds (circled
and crossed in the top graph) that the contextual information attenuates the effect
of the false positive detection from the visual recognizer.
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Figure 4-6: Dataset MelHead.
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0.7 0.8 0.9 1

Head nod recognition curves when varying the detection

Vision Predictor Integrator
Head nods 81% 23% 93%

Head shakes 83% 10% 98%

Table 4.1: True detection rates for a fixed false positive rate of 0.1.

(ANOVA) on all the subjects, results on the head nod detection task show a significant

difference among the means of the 3 methods of detection: F(1, 8) = 62.40, p < 0.001,

d = 0.97. Pairwise comparisons show a significant difference between all pairs, with

p < 0.001, p = 0.0015, and p < 0.001 for vision-predictor, vision-integrator, and

predictor-integrator respectively. For the head shakes results, a larger number of

samples would be necessary to attain statistical significance.

WidgetsHead

To analyze the performance of the context-based head gesture recognizer described in

Section 4.3 with non-embodied interfaces, we compared the vision-based recognizer
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Figure 4-7: Dataset MelHead.Head shake recognition curves when varying the detec-
tion threshold.

with the multi-modal integrator. Figure 4-8 shows the average head nod detection

results for the vision-only technique and the context-based recognizer.

Online, when participants were recorded, the average false positive rate from the

vision-based system was 0.058 and the recognition performance was 85.3%. For the

same false positive rate, the context-based approach recognized on average 91.0%

of the head nods. A paired t-test analysis over all tested subject returns a one-

tail p-value of 0.070. Figure 4-8 shows that adding contextual information to the

recognition framework does reduce significantly the number of false positives. These

results also show that our context-based recognition algorithm can also work with

non-conversational interfaces. Adding the input and output events from the window

system inside the visual feedback recognition algorithm significantly improved the

performance.
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Figure 4-8: Dataset WidgetsHead. Average ROC curves for head nods recognition.
For a fixed false positive rate of 0.058 (operational point), the context-based approach
improves head nod recognition from 85.3% (vision only) to 91.0%.

AvatarEye

The AvatarEye dataset was designed to see if we can recognize visual gestures other

than head gestures and also to see if our context-based recognition framework can

also be applied to a different classification algorithm. This dataset of 6 human partic-

ipants interacting with an on-screen avatar was used to train three FHCRF models:

vision-based recognizer, contextual predictor and multi-modal integrator. Our goal is

to recognize eye gaze aversion gestures using the estimated eye gazes from the algo-

rithm described in Section 3.2. The contextual features were computed from spoken

utterances of the avatar as described in Section 4.4.1.

Figure 4-9 shows the average gaze aversion recognition results for the vision-only

technique and the context-based recognizer. We can see a clear improvement between

using only vision versus using both the vision and the contextual information. To

evaluate the statistical significance of this results, we show in Table 4.2 three different
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Figure 4-9: Dataset AvatarEye. Average ROC curves for gaze aversion recognition.
For a fixed false positive rate of 0.1, the context-based approach improves head nod
recognition from 75.4% (vision only) to 84.7%.

measurements: (1) true positive rate for a fixed false positive rate of 0.1, (2) equal

error rate, and (3) area under the curve. Each measurement is shown for the vision-

based recognizer, the contextual predictor and the multi-modal integrator. The p-

value shown next to the vision-based recognizer and the contextual predictor are

results from a paired t-test analysis with the multi-modal integrator. It is worth

noticing that the difference between the multi-modal integrator and the vision based

recognizer is statistically significant for all three measurements: true detection rate

at 0.1, equal error rate and area under the curve. For a fixed false positive rate of

0.1, the detection performance improves from 75.4% for the vision-only recognizer to

84.6% for the multi-modal integrator.
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Measurements Vision Integrator
True detection rate at 0.1 75.4% (p=0.0452) 84.56%

Equal error rate 84.7% (p=0.0363) 89.7%
Area under the curve 0.927 (p=0.0412) 0.958

Table 4.2: Dataset AvatarEye. Three analysis measurements to compare the perfor-
mance of the multi-modal integrator with the vision-based recognizer.

4.6 Summary

Our results show that contextual information can improve user gesture recognition

for interactions with embodied conversational agents and interactions with a win-

dow system. We presented a prediction framework that extracts knowledge from the

spoken dialogue of an embodied agent or from the user-interface system events to

predict which visual gesture is most likely. We applied our context-based recognition

framework to both head gesture and eye gesture recognition and observe statistical

improvement in both cases. By using simple lexical, punctuation, gesture and timing

context features, we were able to improve the recognition rate of the vision-only head

gesture recognizer from 81% to 93% for head nods and from 83% to 98% for head

shakes. Similar improvements were shown when performing context-based recognition

during window system interactions. Our experiments with eye gaze aversion recog-

nition showed an improvement from 75.4% to 84.6% when merging conversational

cues with the vision observations. We also showed that our context-based recogni-

tion framework is general enough to be applicable to SVM classifiers and FHCRF

classifiers.
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Chapter 5

Conclusion

In this thesis, we introduced new concepts and models that provide human-computer

interfaces with the ability to perceive visual feedback. Based on our user studies with

virtual and physically embodied agents, we investigate four kinds of visual feedback

that are naturally performed by human participants when interacting with interactive

interfaces that improve the user experience: head gaze, head gestures (head nods and

head shakes), eye gaze and eye gestures (gaze aversions).

We presented the Adaptive View-based Appearance Model, a new user independent

approach for head gaze estimation which merges differential tracking with view-based

tracking. Our results showed that AVAM can track the user's head gaze under large

head motion (head rotations of up-to 110 degrees and head translations of up-to

80cm) for a period of several minutes and keep a bounded error under 3 degrees.

We introduced the Frame-based Hidden-state Conditional Random Field model,

a new discriminative model for visual gesture recognition which can model the sub-

structure of a gesture sequence, learn the dynamics between gesture labels and can

be directly applied to label unsegmented sequences. Our results showed that the

FHCRF model outperforms previous approaches (i.e. SVM, HMM and CRF) when

using a small window size, with equal error rate recognition accuracies of 80.1% and

85.1% for head and eye gesture respectively.

Finally, we introduced the concept of visual feedback anticipation where contextual

knowledge from the interactive system is analyzed online to anticipate visual feedback
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from the human participant and improve visual feedback recognition. By using simple

lexical, punctuation, gesture and timing context features, we were able to improve

the recognition rate of the vision-only head gesture recognizer from 81% to 93% for

head nods and from 83% to 98% for head shakes. Our experiments with eye gaze

aversion recognition showed an improvement from 75% to 85% using context.

These new models were implemented in a real-time visual feedback recognition

library for interactive interfaces (called Watson) that can recognize head gaze, head

gestures, and eye gaze using the images of a monocular or stereo camera. The user

guide of this recognition library is provided as Appendix A. Watson has been down-

loaded by more then 70 researchers around the world and was successfully used by

MERL, USC, NTT, Media Lab and many other research groups.

5.1 Future Work

As future work, we would like to test our FHCRF model with other visual gesture

recognition tasks such as arm gesture recognition. Even though we applied our model

to visual gesture recognition, FHCRF is a general discriminative classification tech-

nique that can be applied to other non-vision problems. It will be interesting to test

the FHCRF model with other sequence labeling problems that exhibit intrinsic and

extrinsic sequence dynamics such as phoneme recognition and activity detection.

We also plan to carry out more research with our context-based visual recognition

framework. As a first step, we will test our framework with a larger set of contextual

features. For example, a larger set of features can be constructed using a conversa-

tional interface by considering all the possible word and word pair features computed

from the ECA's spoken utterances. In the natural language processing community

CRFs have been successfully used for performing text classification using a large num-

ber of input features. Similarly, we expect that our FHCRF model will be able to

learn salient contextual features when trained using a large input feature set.

In our framework, contextual features from a conversational agent are computed

from its current spoken utterance. This is a general approach for contextual feature
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extraction that is applicable to a wide variety of dialogue system architectures. An

interesting extension of our work is the use of contextual features taken from the

internal state of the dialogue manager. With this approach, the contextual features

are more directly related to the goals of the avatar; for example, the avatar's goal

may be for the user to look left at an object of interest or to ask the user what to do

next.

In Chapter 4, we showed that contextual information improves visual feedback

recognition. While this improvement was statistically significant, it will be interesting

to see how this improvement translates when evaluating the engagement between a

human participant and an avatar. As noted in some our early user studies (e.g.,

look-to-talk), accurate visual feedback recognition improves the user experience. A

user study that compares interactive interfaces built with and without context-based

recognition will give us a better understanding of the usefulness of visual feedback

anticipation.

One of the main novelties of our approach is that we use contextual knowledge from

the avatar to improve visual feedback. A complimentary approach to our framework

is the pure multi-modal approach where audio and video streams from the user are

combined to improve recognition. Examples of these types of approaches are audio-

visual speech recognition and the use of prosody from the user's speech to improve

head gesture recognition [33]. Another interesting avenue of future work is to explore

ways to generalize our approach to include extra modalities such as speech and user

prosody.
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Appendix A

Watson User Guide

In this appendix, we present the user guide of our real-time visual feedback recognition

library. This library, called Watson, can estimate head gaze, eye gaze and head

gestures from a live camera (monocular USB or stereo camera) or from pre-recorded

sequences.
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Copyright

Developed by the Vision Interface Group at the Computer Sciences and Artificial
Intelligence Laboratory, MIT, Cambridge, Massachusetts.

Permission to use, copy, or modify this software and its documentation for educational
and research purposes only and without fee is hereby granted, provided that this copyright
notice and the original author's names appear on all copies and supporting documentation.
If individual files are separated from this distribution directory structure, this copyright
notice must be included. For any other uses of this software, in original or modified form,
including but not limited to distribution in whole or in part, specific prior permission must
be obtained from MIT. These programs shall not be used, rewritten, or adapted as the
basis of a commercial software or hardware product without first obtaining appropriate
licenses from MIT. MIT makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.
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Watson is a keyframe-based tracking kbrary that uses stereo or
monocular images to track the position and orientation of a rigid object.

his guide presents the functionalities and characteristics of Watson tracking

library[1]. Watson has been originally created to estimate the position and
orientation of the head using a stereo camera but the current version also work with
monocular cameras. The current version can track for a long period of time with

bounded drift the 6 degrees-of-freedom of the head. Also, the tracker can be reconfigured
to estimate the pose of any rigid object and to estimate ego-motion when the background is
static.

To get good precision and reduce the possible drift, Watson implements Adaptive View-
based Appearance Models technique described in [2] which acquires keyframes of the object
online during the tracking. These keyframes represent the object in different pose. When
the trajectory of the object crosses one of the recorded keyframe, the pose estimation
algorithm will take in account the pose of the keyframe. The pair-wise pose estimation is
done using a hybrid technique [3] that combines Iterative Closes Point and Normal Flow
Constraint The complete system can track object for a long period of time with bounded
drift.

The following chapter explains the installation procedure for the tracking library. Chapter 3
explains the different parameters of the software. Chapter 4 presents the network protocol

used to communicate with Watson via TCP/IP sockets.
........
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used to communicate with Watson via TCP/IP sockets.
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Installation
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Setup Programs
Main setup
The core installation file watson-x.xx.exe will copy on your machine the following
components:

* Watson\bin: Watson demo program (Watson.exe) and DLLs necessary to run the
application;

* Watson\Classifier: Features for the frontal and side-view face detectors as well as
the eye detectors;

* Watson\HMMs: Learned Hidden Markov Models (HMMs) for head nods and
head shakes detection;

* Watson\SVMs: Learned Support Vector Machines (SVMs) for head nods and head
shakes detection;

* Watson\EigenSpaces: Learned eigen spaces for eye gaze estimation;

* Watson\include: Include files for the C++ interface;

SWatson\ib: Libraries for the C++ interface;

* Watson\Samples: Samples programs for Watson C++ interface;
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* Watson\Sequences\SRI: Configuration files for running the tracker online with a
Videre Design stereo camera.

* Watson\Sequences\USB: Configuration files for running the tracker online with a
USB monocular camera.

* \Watson\Sequences\ExempleStereo: Pre-recorded stereo video sequence. This
sequence can be used to test if the installation of the demo program has been done
correctly or to run the tracker with different settings.

* \Watson\Sequences\ExempleAVI: Pre-recorded monocular video sequence. This
directory shows how to use Watson to track the head position and orientation from
a AVI movie file

Before to be able to run Watson online (directly from a stereo camera), you will need to
setup your stereo camera and calibrate it. The following section explains how to do it when
you are using a Videre Design stereo camera.

Libraries installed

Watson has been coded to take takes advantage of the MMX and SSE capacity of the
Pentium 3 and Pentium 4. When you install the demo program, different DLLs are copied
in the \Watson\bin directory

* Intel Integrated Performance Primitives 5.1

* Intel Math Kernel Library 8.1.1

* Intel Open Source Computer Vision Library 1.0

* Small Vision System 4.3a

* GLUT 3.7

If you already installed one of those libraries on your computer and have problem to run
Watson, you should check your PATH variable to be sure that there is no conflict between
different versions.

We use Qt as our GUI interface because of its speed, simplicity and compatibility with Linux
(and now Macintosh too!). We use the version 3.2.3 of Qt. For 3D display we use OpenGL
and its extension, GLUT 3.7.

Software updates
When you are updating Watson, most files will be replaced with the newest version. For the
sub-directories of \Watson\Sequences, only the files ParamWatson.cfg will be updated. For
this reason, you should put all your personalized parameters in ParamWatsonUser.cfg. This

155



WATSON

way you will be able to use the latest default parameters from ParamWatson.cfg but keep
your personalized parameters.

Monocular Camera Calibration
USB camera
Starting with version 2.0, Watson can now track the head pose using a normal USB webcam.
To optimize the tracking, some parameters most be set in the control panel of your USB
camera. The most important setting to change is the automatic brightness and gain
parameters. This parameter should be turned off so that the brightness doesn't change
during the recording. This will improve the performance of the optical flow estimation
during tracking.

Stereo Camera Calibration
Videre Design

The tracking system has been extensively tested with the Mega-D stereo camera from Videre
Design. Recently, the system has been modified to handle the new DCS model from the
same company. The following paragraphs will give you some guideline on how to setup the
cameras, for more information, please refer to the user guide installed with the Small Vision
System.

The first step is to install the Small Vision System (SVS) using the setup file svs42d.exe.. To
be able to install the library, you will need a valid license number (please contact Videre
Design if you don't have it). It is preferable to install the library before you plug the stereo
camera for the first time since the driver of the camera is installed with the SVS library.
When you plug your camera in your firewire card the driver setup should start automatically.

When SVS is installed, you need to specify which type of camera you have. If you have a
Mega-D, you should run the batch files \svs42\bin\setup_megad.bat and Start->Programs-
>Watson->Setup cameras->MegaD. If you have a DCS, you should run the batch files
\svs\bin\setup_dcs.bat and Start->Programs->Watson->Setup cameras->DCS. Now you
are ready to calibrate your camera.

To start the calibration, run the program \svs\bin\smallvcal.exe. If your installation worked
correctly, you should be able to start grabbing images by setting the Input to Video and
pressing the button Continuous. You should see the left and right image displayed. Now
press the menu button Calibrate... to start the calibration. The software uses 10 images of a
check board to estimate the intrinsic and extrinsic parameters of the camera. Please read the
SVS manual for details on the calibration procedure. When the calibration is done, save your
calibration file in the directory \Watson\Sequences\SRI\. A good name for the calibration
file is calib-xxxxx.ini where xxxxx represents the serial number of your camera.
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The last step before to be able to grab directly from the stereo camera using Watson demo
program, is to modify the parameters files of Watson so it use your new calibration file. To
do so, open the file \Watson\Sequences\SRI\ParamWatsonUser.cfg, search the field
CONFIG_FILENAME: and modify its value to be the name of your calibration file (calib-
xxxxx.ini). Now you are ready run Watson directly from your stereo camera!

Other stereo cameras

Watson tracking system has been also tested on Digiclops stereo cameras but unfortunately
the demo program (Watson.exe) can only run with Videre Design stereo cameras. To use
Watson tracking library with other stereo camera, please look at the C++ interface described
in Chapter 6.
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IMain software functionalities
Watson tracking system can be run online or offline. When the program starts, Watson
automatically looks in the current directory for two parameter files: ParamWatsonUser.cfg
and ParamWatson.cfg. These files, as described in the following chapter, contain all the
default and user-defined parameters necessary for running the tracker. Watson should be
started in a directory where ParamWatson.cfg (ParamWatsonUser.cfg is optional) is present.

Grabbing and Tracking
Watson automatically switch between grabbing and tracking when the Autolnit (CTRL+A)
option is activated. To start continuous grabbing press F2 and to stop it press F4. With
Autolnit activated, as soon as a face is detected in the image, the tracker will start. At each
time step a frame is grabbed, segmented and finally the pose of the object is estimated.

Load Sequence
To load a prerecorded sequence from the demo program, you can select Load Sequence in
the Files menu and click on the "ParamSeq.cfg" representing the sequence you want to load
(for example \sequences\ExempleStereo\ParamSeq.cfg). This file contains all the
calibration information for the sequence. As explained in the next chapter, this process can
be automated by modifying the ParamWatsonUser.cfg to point on a specific ParamSeq.cfg.

Output console
The output console gives you some information about the pose estimate (rotation and
translation) of the object as well as the results from the head nods detector. The top frame
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shows the absolute pose of the object The translation is displayed in millimeters and the
rotation is displayed in degrees. The variance gives an idea of the accuracy of the pose. The
middle frame represents the displacement between the previous frame and the current frame
(velocity of the object). The third frame shows the approximate center of the object (also in
millimeters). The last frame shows the results from the head nods and headshakes detectors.
The numbers below each button represent the confidence of each detector.

Position, Orientation and Coordinate system

The referential coordinate system is set on the left camera for stereo cameras. It is a
right-handed coordinate system where the Z axis point behind the camera, the Y axis
point below the camera and the X axis point on the left side (when looking at the
camera).

The position returned by the tracker represents the distance between the center of the
object and the center of the left camera. The orientation returned by the tracker
represents the rotation between the first tracked frame and the current frame. When
using the Auto-initialization option, the tracker will start only if it finds a frontal face.
Since the first tracked frame is a frontal view, each following frame will be relative to the
frontal view.

To compute the absolute orientation of the object, you must apply the rotation [rx, ry,
rz] to the initial orientation (frontal view. [0,0,-1]). The rotation notation used by
Watson is based on a rotation axis and a rotation around this axis. The norm of the
vector a=[rx, ry, rz] represents the amount of rotation in radian. The normalized vector
represents the axis of rotation. You can change the notation to a rotation matrix by
applying this equation [R] = [I] + sin(angle)[-axis] + (1-cos(angle))[-axis] 2 (see [4] for
more details). Finally, the absolute orientation can be computed by applying the rotation
matrix to the frontal view: orientation = [R]*[0,0,-1].

Parameter console

The parameter console gives a visual interface for most of the parameters of the tracker.
You can find a description of those parameters in the following chapter. Also, the complete
list of parameters can be found in the file ParamWat son. cfg.

Main shortcut keys
F2 - Start continuous grabbing/tracking (also on the toolbar);

F3 - Start continuous grabbing/tracking and record images on disk(also on the toolbar);

F4 - Stop grabbing/tracking (also on the toolbar);

F5 - Show current intensity image;

F6 - Show current depth image;
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F7 - Show keyframe intensity image;

F8 - Show keyframe depth image;

CTRL+ I - Switch to No Display mode (no OpenGL display);

CTRL+ 2 - Switch to 2D mode;

CTRL+ 3 - Switch to 3D mode;

CTRL+ 0 - Switch between 3D modes: Frontal view or Top View;

CTRL+ A - Activate/deactivate the autoinitialization;

CTRL+P - Show/hide the Parameter console;

CTRL+O - Show/hide the Output console;

CTRL+L - Load a new sequence;

CTRL+R - Reload the current sequence;
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Parameter Files

Thednprg,7w sya tdifa to anat sfeflt gsof W5Iron

Files description
The tracking parameters are kept in 3 different files: ParamWatsonUser.cfg,
ParamWatson.cfg and ParamSeq.cfg (or ParamSeqDirect.cfg). ParamWatson.cfg contains
the default parameters for the tracker as well as some parameters for the display. You
should not modify this file directly since your changes will lost next time you update Watson.
Instead, you should enter the parameters you want to modify inside ParamWatsonUser.cfg
since this file is never updated by the Installer. ParamSeq.cfg contains all the parameters
relative to the grabbing. The parameter files are separated by sections:

* [SECTIONWATSON]: This is the main section of the parameter files. It sets
some high-level parameters and specifies the path of other parameter files like
ParamSeqDirect.cfg.

* [SECTION NETWORK]: Set the networking options (client and server) of the
demo program.

* [SECTION_HEAD_NODS]: This section sets parameters related to the HMMs
(Hidden Markov Model) and SVMs (Support Vector Machines) trained for head
nods and head shakes detection.

* [SECTION_MAP_BUILDER]: This section sets the parameters for the keyframes
acquisition process. You can set how those keyframes will be acquired (tessellation
or clustering) and the gap between each acquired keyframe.

* [SECTION_TRACKER_DIRECTOR]: This section specifies which tracker is
activated, sets some main tracking parameters (MATCH_FUNCTION: and
UPDATE_POSE:) and let you print some debug information like poses, velocity
and center of mass.

161



WATSON

* [SECTION_TRACKER_ICP]: Detailed parameters for the default tracker (ICP).
Those parameters should be only changed by "advanced" users.

* [SECTIONINIT_TRACKER]: Set some parameters for the tracking initialization
and reinitialization.

* [SECTIONSIMPLE_TRACKER]: This section sets parameters for the image
segmentation. The setting of those parameters will influence the tracking
initialization since only segmented pixels will be used for initialization.

* [SECTION_3D_MODEL]: This section sets parameters for the ellipse matching
algorithm used during monocular tracking.

* [SECTIONRECORDER]: Set the default values for the recording option.

* [SECTION_OPEN_GL]: Set the display options of the demo program.

* [SECTIONSEQUENCE]: This section, found usually in ParamSeq.cfg or
ParamSeqDirect.cfg, specifies the parameters related to the grabbing/stereo process.
Some parameters like SIZE_ROI are used for tracking/segmentation purpose.

* [SECTION_FILES_GRABBER]: This section is used for pre-recorded sequences.
It gives all the details about the file format and the camera used to record that
sequence. You will usually find this file in ParamSeq.cfg.

Network parameters
The main way to communicate with Watson is via network. All the parameters related to
networking are usually set in the section [SECTION_ NETWORK] of
ParamWatsonUser.cfg. Watson supports 2 mode of communication: UDP (datagram) or
TCP (socket). Also, Watson can be used as a client, a server or both. In the client mode,
Watson can send information about the tracking results as well as the grabbed images. In
the server mode, Watson receives the images from the network instead of grabbing them
from camera or files.

Client mode
When setting up Watson in the client mode, you have to specify three kind of information:

* Which information do you want to be sent via network?

* In which format do you want the information?

* Which host will receive the information?

Currently, Watson can open up to 2 connections. This feature makes it possible to send the
results of the head nod detector to one computer while sending the results of the head pose
tracker to another computer. The parameter CONNECT_SOCKET: activate/deactivate
the connection number 1 and the parameter CONNECT_SOCKET2: activate/deactivate
the connection number 2.
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Information parameters

The parameter TYPE_INFO_SENT: (or TYPE_INFO_SENT2:) specify which type of
information will be sent to the connected computer. After the TYPE_INFO_SENT: tag,
you should enumerate all the information tag you want. Each tag must be separated by a
space and the line must end by the tag END. Here is a list of information tags available:

* INFO_LINKS: The details of each transformation computed during the tracking
will be sent (see Section 5 for more details about the format).

* INFO_PREVIOUS_LINKS_ONLY (can't be used with INFO_LINKS):
Equivalent to the velocity. This tag will send the transformation between each
consecutive frame (see Section 5 for more details about the format).

* INFO_POSES: Send the absolute pose of the head for each frame.

* INFO_SCREEN_COORDS: Send the estimated projection of the "nose" on the
screen. This option can be useful for moving the mouse cursor with your head.
The screen is supposed to be parallel to the camera. The parameter
SCREEN_POSITION: should be set adequately.

* INFO_CENTERS: The estimated center of mass of the object (in millimeters).

* INFO_HEAD_NODS: Send the results form the head nods detector.

* INFO_FRAME: Send Intensity image, depth image and frame info.

* INFO_INTENSITY: Send Intensity image only.

* INFO_DEPTH: Send Depth image only.

Also, the parameter SEND_MESSAGE_DURING_TRACKING_ONLY: can be set to
TRUE or FALSE depending if you want to always receive network message (FALSE) or
receive network messages only when the tracking is working (TRUE).

Format parameters

Each message sent via network is in ASCII format (at the exception of the images). A
header is sent before each message to specify which information will follow. To define the
format of those headers, you can use of those parameters:

* MESSAGE_PREFIX: Prefix used by every message (including images). This can
be used to identify the information coming from Watson.

* MESSAGE_LINKSSUFFIX This parameter specifies which text should follow
the MESSAGE_PREFIX: when a transformation is sent via network.
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* MESSAGE_POSES_SUFFIX: This parameter specifies which text should follow
the MESSAGE_PREFIX: when a pose is sent

* MESSAGE_NODS_SUFFIX: This parameter specifies which text should follow
the MESSAGE_PREFIX: when a head nods and head shakes detection results are
sent via network.

Host parameters

Three parameters should be set to specify the address of your host and the type of
connection:

* SOCKET_TYPE: (or SOCKET_TYPE2:) Can be TCP (for socket connection) or
UDP (for datagram or connection-less).

* PORT_CONNECTION: (or PORT_CONNECTION2:) This specify the port for
connection. Should be the same as your server (listener).

* NAMEHOST: (or NAME_HOST2:) This specify the name of your host. The
name can be an IP address (xxx.xxx.xxx.xxx) or a machine name (registered on the
DNS server).

Server mode
Watson can receive stereo images from a TCP/IP connection. To activate this option, you
must set the parameter CONNECT_SERVER: TRUE. The parameters PORT_SERVER.
and NAMESERVER: set the name of the client that will connect to Watson. Please refer
to section 5 for more details on the image format.

Remote commands
Starting with version 1.4, you can now remotely start and stop Watson. To do this, you
must connect to Watson (Client or Server mode) and send one of the following commands:

* REINIT: Used to start or restart the tracker. This command is equivalent to the
keyboard shortcut F2.

* RECORD: Used to start or restart the tracker and record images on the hard disk.
This command is equivalent to the keyboard shortcut F3.

* STOP: Used to stop the tracker. This command is equivalent to the keyboard
shortcut F4.

Each command name can be personalized using a prefix common to every commands
and a suffix specific to each command. The parameter COMMAND_PREFIX: sets the
common prefix to every command. By default, this parameter is an empty string. The
parameters COMMAND_REINIT_SUFFIX, COMMAND_RECORD_SUFFIX and
COMMAND_STOP_SUFFIX specify the suffix string for each command.
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Network Interface
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Server vs. Client
Watson demo program can receive and send information at the same time. Usually, the
information received would be tracking parameters, action commands like "Start Tracker"
or stereo images grabbed by another program. The information sent by Watson will usually
be tracking results like the head position and orientation, its velocity or the head nods and
shakes detection results. The current supported formats for network communication are
UDP (datagram) or TCP/IP sockets.

Client Protocol
When Watson acting as a client, the demo program will connect to a TCP/IP server (or
connectionless, UDP) and start sending information via the socket. If the connection to the
server is not initiated at the beginning, it will try to reconnect everytime a image is grabbed.
The name of the server, the type of the connection (UDP or TCP/IP) and the type of
information sent are all set in ParamWatson.cfg (please refer to chapter 4 for more details).
Two type of information can be sent: tracking results and stereo images.

Stereo images transfer
It is possible to use Watson to grab stereo images and send images to a remote system
(which could be another instance of Watson) via network. Please refer to the section on
Server Protocol for more details about the stereo images format.

Tracking results transfer
After processing each new frame, Watson can optionally send the tracking results via a
TCP/IP socket (or UDP datagram). As described in Chapter 4, Watson can send 3 types of
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tracking results: poses, links, and head nods detection results. All the information sent on
the socket will be in ASCII format.

Links format

A link represents the relative pose between two frames. During tracking, Watson computes
two kinds of links: link between 2 consecutive frames and link between the current frame
and a keyframe. As described in chapter 4, Watson can send all the links or only the
consecutive links (also called previous link). Each link is sent using the following format:

[LinkTag] [Ii] [12] [var] [tx] [ty] [tz] [rx] [ry] [rz]

where

* [LinkTag]: Tag sent at the beginning of each link message. This tag can be
customized in the parameter file (see chapter 4).

* [ I ] : Index of the previous frame

S[ 12 ] : Index of the current frame

* [var ]: Variance of the link

* [tx], [ty], [tz]: Translation between the previous frame and the current
frame (in mm)

* [rx ], [ ry], [rz]: Rotation between the previous frame and the current frame
(in rad)

See Chapter 3 for more details on the position and orientation format.

Poses format

The pose represents the position and orientation of the object in a given frame. The pose
information sent via network has the following format:

[PoseTag] [index] [variance] [tx] [ty] [tz] [rx] [ry] [rz]

where

* [Posetag]: Tag sent at the beginning of each pose message. This tag can be
customized in the parameter file (see chapter 4).

* [index] : Integer uniquely describing the frame

* [variance ] : Variance of the pose

* [ tx ] , [ty] , [ tz : Position of the object relative to the camera (in mm)

* [rx] , [ry] , [rz] : Orientation of the object relative to the frontal view (in rad)

See Chapter 3 for more details on the position and orientation format.
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Nods format

The pose information sent via network has the following format:

[NodsTag] [Index] [State] [LogNod] [LogShake]

where

* [Nodstag]: Tag sent at the beginning of each Nods message. This tag can be
customized in the parameter file (see chapter 4).

S[ index ] : Integer uniquely describing the frame

* [ State ] : State of the head nods and head shakes detector. Three possible states:

* 0: No head nods of head shakes detected

* 1 : A head nod has been detected

* -1 : A head shake has been detected

* [ LogNod ] : Log likelihood of the HMM trained to detect head nods.

* [ LogShake ]: Log likelihood of the HMM trained to detect head shakes.

Server Protocol
Stereo images transfer
It is possible with Watson to grab stereo images on a remote system and send the images via
network. Each stereo images received by Watson will be automatically processed when the
transfer is completed.

Frame Header

Each stereo image sent must have the following header (ASCII standard):

F [FrameTag] [FrameIndex] [Focal] [CX] [CY]

where

* [FrameTag] : describe the type of information following the header. Each item
following the header is represented by one capital letter. The order of each letters is
not important. Here are the different items possible:

* I : Intensity image for the referential camera

* Z : Depth image for the referential camera

* R : Intensity image of the referential camera

* 0 : Region of interest of the tracked object
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* P : Pose of the object relative to the camera

* [FrameIndex] : Integer uniquely describing the frame

* [Focal ] : Focal length of the referential camera (in pixel)

* [CX ] : Center of the image along the X axis (in pixel)

* [ CY ] : Center of the image along the Y axis (in pixel)

After the header, each item described [FrameTag] must be sent via the network
The order they are sent is not important but the frame will not be processed until all items
are received.

Image format

Each image sent have the following format (ASCII standard):

[ImageType] [Width] [Height] [BufferSize]

where

* [ImageType ] : describe the type of image. Here the different items possible:

* I : Intensity image for the referential camera;

* IC : Compressed intensity image for the referential camera (JPEG);

* Z : Depth image for the referential camera;

* ZC : Compressed depth image for the referential camera (ZIP);

* [Width] : Width of the image

* [Height] : Height of the image

* [Buf ferSi z e ] : Size of the (compressed, if specified) buffer (in byte)

Region of interest format

Each region of interest sent have the following format (ASCII standard):

ROI [offsetX] [offsetY] [width] [height] [nearZ] [farZ]

where

* [of fsetX] : Horizontal offset of the region of interest

* [ of f set Y ] : Vertical offset of the region of interest

* [width] : Width of the region of interest

* [height ] : Height of the region of interest

* [nearZ ] : Near boundary of the region of interest along the Z axis
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* [ far Z ] : Far boundary of the region of interest along the Z axis

Pose format

Each pose sent have the following format (ASCII standard):

POSE [variance] [tx] [ty] [tz] [rx] [ry] [rz]

where

* [variance ]: Variance of the pose

* [tx ] , [ty] , [ tz ] : Position of the object relative to the camera (in mm)

* [ rx ], [ ry ], [ rz ] : Orientation of the object relative to the frontal view (in rad)

See Chapter 3 for more details on the position and orientation format.
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Programming Interface
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Sample programs
Watson comes with three sample programs:

* SimpleSocket: Shows how to connect to Watson via TCP/IP or UDP and how to
receive tracking results. The TCP/IP example also shows how to start/stop
Watson demo program remotely;

* SimpleWatson: This program shows how to grab images, track the head and detect
head gestures using Watson DLL interface;

* WatsonFromFile: This program shows how to use Watson DLL interface to read
intensity and depth images from disk, insert them into Watson grabbing sequence
and track the head pose. This example can be extended to read images from a
custom stereo camera.

All three samples program can be found in the directory \Watson\samples\. To compile
them, you will need Microsoft Visual C++ .NET 2003 (msvc 7.1). For SimpleWatson and
WatsonFromFile, the working directory should be set to ..\..\Sequences\Exemple.

Software architecture
Watson comes with two dynamics libraries:
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* Watson.dll: This dynamic library contains all the functions related to grabbing and
tracking. This is the main library for interfacing with the 3D object tracker. The
internal structure of this library is described in the following subsections.

* NodsShakes.dll: This dynamic library contains specific functions for head nods
and head shakes detection. Tracking results from Watson can directly be used in
this library.

C++ Classes Overview
Main classes
The following classes are the main classes needed to interact with Watson:

Name Inherit from Description

CWatson Main interface for the head pose tracker.

CNodsShakes Main interface for the head gesture recognizer.

CSequence list<CFrame> Sequence of stereo images.

CFrame CIPLlmage3D Stereo image with associated pose, velocity and 3D mesh.

CIPLlmage3D Stereo image with mask and region of interest (ROI).

Transformation Rigid transformation (Rotation + Translation).

CIPLROI3D vipiRoi 3D region of interest.

viplmage Generic 2D image class (see following section)

vipiRoi 2D region of interest

CMesh 3D mesh.

CFaceMatch Results from the face detector.

viplmage Image Library

This library implements a generic image wrapper for different color mode and storage types.
It is based on the Image processing module of Intel Integrated Performance Primitives (IPP)
library. The complete library of viplmage can be downloaded on SourceForge.net.

Name Type Typical use

viplmage8uC1 unsigned char Grayscale images, mask images.

viplmage8uC3 unsigned char Color images

viplmage8uC4 unsigned char Color images with extra space for Alpha channel

viplmagel6sC1 unsigned short Disparity image
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I viplmage32fC1 I Float I Depth image, X coordinates and Y coordinates.

Parameter Classes
The following classes contain the thresholds and parameters needed to track and recognize
head gestures:

Name Associated Description
class

CParamWatson CWatson High level parameters for the head pose tracker.

CParamNodsShakes CNodsShakes Parameters for the head gesture recognizer.

CParamSeq CGrabSequence Grabbing parameters for the stereo camera and
model of the head (ROI).

CParamDirector CTrackerDirector Parameters for the online selection of keyframes and
merging of the tracking results.

CParamlnit ClnitTracker Initialization criteria for the head tracker.

CParamMap CMapBuilder Parameters for the insertion of new keyframes (view-
based appearance model).

CParam3DModel C3DModel Parameters for the ellipsoid matching algorithm.

CParamTrackerlCP CTrackerlCP Parameters for the core differential tracker.

CRecordParam CGrabSequence Record parameters for saving offline sequences.

CParamSimple CTrackerSimple Parameters for the face detection and segmentation.

Detailed Interface
The following subsections list and describe the member functions of the most important
classes.

CWatson

Grabbing images

* GrabNevFrame() : Utility function that automatically calls
AcquireImages, GetImages and InsertImages.

* AcquireImages(): Acquires the images from internal Grabber.

* GetImages(): Returns images acquired by the internal Grabber.

* InsertImages () : Crops the image (if necessary), compute ROI,
compute depth and insert frame inside the ImageSequence (calls
InsertFrame).
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* InsertFrame (): Inserts frame (intensity and depth) inside the
ImageSequence.

Stereo images can be grabbed automatically using the internal Grabber or inserted manually
using one of the Insert function. If you decide to use the internal Grabber (which supports
VidereDesign cameras and pre-recorded sequences), you should use the utility function
GrabNewFrameO. The functions AcquirelmagesO, GetImagesO and InsertImagesO
can be used if you want to multi-thread the processes of grabbing and stereo. If you decide
to insert manually your images (i.e. because you are using a different camera/stereo
algorithm), you should use InsertImagesO or InsertFrameO. InsertImagesO takes as
input the left and right images and compute the stereo internally. To work properly, you will
need a valid license of Small Vision System (SVS). If you already computed the stereo, then
you should use InsertFrameO to insert the depth image with its associated intensity image.

Tracking

* ProcessNewFrame() : Segments face, detects face (if activated)
and tracks head.

* SetMode (): Set tracking state of Watson (see description below).

* SetAutoDetection(): Activates the face detection for automatic
initialization of the head tracker.

* SetAutoReinit() : Set if the tracker should automatically
reinitialize when the user move too fast or not enough valid
pixels are present.

* SetRoi() :

Results

* GetCurrentFrame(): Returns current frame (with associated pose
and velocity).

* GetFrameSeq() :

* GetLinkList() :

* Reset(): Cleans the image sequence and the model (if autoClean

== true), and resets the tracker.
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Keyframes

* CleanMap(): Erases all the keyframes from the view-based
appearance model.

* SetAutoClean(): Set if the view-based appearance model should be
erased every time the tracker is reinitialized.

* GetMapSeq() :

* LoadMap() :

* SaveMap() :

Recording

* StartRecording ()

* StopRecording()

* LoadSequence ()

* SaveSequence ()

* ReloadSequence ()

Face detector

* GetNbFaceMatches ()

* GetListFaceMatches ()

* GetConmmonMask ()

* DrawBoxes

* getCountDown ()

Parameters

* GetParamWatson ()

* GetParamInit()
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* GetParamSimpleTracker ()

* GetParamRecorder ()

* GetParamMap ()

* GetParamDirector()

* GetParamICP()

CFrame

Images

* GetIntensitylmage ()

* GetIntensityRightImage ()

* GetColorImage()

* GetDepthImage ()

* GetXImage ()

* GetYImage ()

* GetMask()

* GetValidDepth()

Calibration

* BackProject()

* GetFocalLength ()

* GetImageCenterX()

* GetImageCenterY ()

* GetDeltaX()

* GetDeltaY()
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Pose

* GetPose()

* GetVelocity()

* GetRoi3D()

* GetCenterX()

* GetCenterY()

* GetCenterZ()

Pose

* GetFrameIndex()

* GetTimeStamp()

* isKeyframe()

Transformation

* GetEulerAngle ()

* GetRotationMatrix ()

* GetTranslation()

* GetPtrTransformationMatrix ()

* GetVariance ()

* ApplyTransform()

CNodsShakes

Detection

* InsertLink()

* Reset()

176



WATSON

* Enable ()

* IsEnabled()

Results

* GetCurrentState ()

* GetLLNods ()

* GetLLShakes ()

* GetCurrentTimeStamp ()
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Troubleshooting
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"Can't open frame grabber"
Problem

When starting Watson, a message saying "Can't open frame grabber"
DOS prompt and no intensity image (F5) or depth image (F6).

is displayed in the

Solution

This error message usually signifies that the stereo camera has not been installed properly.

* Check if the stereo camera is connected@. You should be able to see a red light
from the front of the stereo camera.

* For Videre Design cameras, SVS must be installed before plugging the camera. If
you have a Mega-D stereo camera, check the Device manager to be sure that the
camera is recognized as a PixelLinkTM imaging module.

* Be sure that you are using the appropriate svsgrab.dll file. If you have a Mega-D
you should run setup_megad.bat and if you have a DCS, you should execute the file
setup_dcs.bat.

"Can't start continuous capture"
Problem

When starting Watson, a message saying "Can't start continuous capture" is displayed in the
DOS prompt and no intensity image (F5) or depth image (F6).

Solution

This error message usually signifies that the camera is not responding.
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* Unplug and replug the camera. When a program stop during the grabbing process,
the camera must be reset.

Bad stereo images or blank stereo image
Problem

The stereo images (F6) looks noisy (or you get a blank image) but you get an intensity image
(F5).

Solution

This happens usually if you are using the wrong calibration.

* If you change the lens on your stereo camera or if you get a new camera, you should
always recalibrate the stereo camera. Please refer to SVS documentation for more
information on how to calibrate your camera.

* When calibrating the camera, be sure to use SVS42d.exe. Some older versions of
SVS may also work.

* Be sure that you modified the parameters file ParamSeqDirectcfg so it uses your
new calibration file. To do so, open the file, search the field
CONFIG_FILENAME: and modify its value to be the name of your calibration
file (calib-xxxxx.ini).

Tracker doesn't initialize

Problem

The images are grabbed properly but the head tracker never starts.

Solution

When in Auto-init mode, the head pose tracker initialize after it detected a face.

* Check that the auto-initialization is turned on. In the demo program, you can press
CIRL+A to toggle the auto-init option. In the parameter file, you can set the
option AUTO_INIT: TRUE.

* The Adaboost-based face detector uses parameter files placed in the directory
\Watson\Classifier. If you receive the error message "Cannot open file classifier.txt
to read." During the startup, this means that Watson could not find these files.

* The face detector checks for faces at different scales. You can increase the
parameter NUMBER_SCALE: 4 to a larger value so that closer faces are detected.

* When a face is detected, Watson checks that the face is inside a certain depth range.
You can modify this range of valid detection using the parameters
MIN_DEPTH _MASK and MAXDEPTHMASK
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Finally, Watson will initialize only after a face has been detected for a certain time.
You can reduce the number of frame detected using the parameter
NB_DETECT_BEFORE_INIT.

Bad head tracking results
Problem

The head is detected but doesn't seem to be tracked properly.

Solution

* Try to increase the gain of the camera. Sometime when the images are too dark, the
intensity gradient computed during the tracking become too noisy. Also, some
internal parameters for key-frame selection depend on the intensity of the image.

* Be sure that you are using the right calibration file. Watson comes with a default
calibration file (calib.ini) which should be replaced by the appropriate calibration file
that you created using SVS. The quality of the tracking will improve dramatically if
you use the right calibration file for your camera.

Watson crashes during grabbing/tracking
Problem

Watson crashes sometime on Pentium 4 HT.

Solution

* Turn off the hyper-thread option in your BIOS.
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