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ABSTRACT

This thesis describes a theoretical and experimental investigation of the intensities,
linewidths, and frequencies of radiation by an atom in an optical resonator. It is found that
the atom's spontaneous emission rate may be enhanced or inhibited, depending on the
tuning of the resonator, and its transition frequencies shifted. A simple classical description
of these effects is given in which the atom is modelled as a dipole oscillator whose radiated
field is reflected back onto itself by the resonator's mirrors. A more rigorous and detailed
quantum mechanical description is also given, and it is found that for the case of a weakly
excited two-level atom, the quantum and classical calculations agree.

Two separate experiments are carried out. In the first, an atomic beam of ytterbium passes
between the mirrors of a confocal resonator and is excited by a single mode cw dye laser on
the 1S0 - 3P1 transition, and the intensity of radiation by the atoms into the cavity modes is
recorded as a function of cavity tuning. The spontaneous emission rate of the atoms into the
cavity modes is enhanced or inhibited by a factor of the order of the resonator's finesse
when the resonator is tuned or detuned from the atomic resonance, respectively. This is the
first observation of cavity-modified spontaneous emission by atoms in a resonator at visible
wavelengths. The total spontaneous emission rate is modified by only about 2%, because
the solid angle: subtended by the cavity mirrors is small. This change in total spontaneous
emission rate is indirectly verified by a measurement of the intensity of fluorescence out the
sides of the resonator.

In the second experiment, barium atoms are excited near the center of a concentric optical
resonator, and the center frequency and linewidth of the 1So - 1P1 transition is studied as a
function of resonator tuning. Shifts in the transition center frequency, due to radiative level
shifts, and changes in linewidth, due to enhanced and suppressed spontaneous emission,
are observed. The total spontaneous emission linewidth is increased by 20% and decreased
by 8%. This is the first demonstration of both line narrowing and broadening and
frequency shifts arising from vacuum radiative effects in a spectroscopic experiment.

The experimental conditions are very precise: two-level atoms are excited by a single cw
dye laser, and competing decay channels and nonradiative effects are absent. Therefore a
direct comparison between theory and experiment can be made, and it is found that good
agreement is obtained.
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CHAPTER I

INTRODUCTION AND SURVEY.

I.A. Spontaneous Emission and Level Shifts in Cavities.

The decay of an excited atom by spontaneous emission is the most fundamental

consequence of the coupling of an atom to the radiation field. Spontaneous emission is

intimately connected with every aspect of optical physics - blackbody radiation, optical

absorption and scattering, optical pumping, and radiation pressure - involving the

interaction between atoms and radiation. As first pointed out by Einstein(l), spontaneous

emission must occur if thermal equilibrium between atoms and their surroundings is to be

maintained. The explanation of spontaneous emission by quantum electrodynamics(2)

(QED) was one of the first successes of this theory, and is one of the most important

reasons why it is accepted as the theory of light and matter.

Because of the fundamental nature of spontaneous emission, we tend to view it as an

unavoidable and unchangeable phenomenon. Generally, we think of the radiative lifetime

of an atomic state as a property only of that particular state; for instance, we say that the

"lifetime of the Na 2P3/2 state" is 16 ns. But as was first pointed out by Purcell,(3) a

radiative lifetime may depend not only on the atomic state, but on the surrounding

environment as well. In particular, Purcell pointed out that an atom in a resonant cavity of

quality factor Q and volume V has a spontaneous emission rate given by

Fv = 3Q X3
S=4x2 V 3 free , (1.1)

where X is the emission wavelength and Ffree the spontaneous emission rate in free space.

For the low order modes of cavities, V -~ 3, so the spontaneous emission rate is enhanced

by a factor of order Q.

Spontaneous emission may also be inhibited by a cavity. For example, if an atom is

placed in a cavity whose lowest order mode has a frequency much higher than the atomic

frequency, then in the limit of infinite Q, there is no mode available at all for decay; the

spontaneous emission rate is zero. Essentially, the wave emitted by the atom cannot "fit"

into the cavity. For the case where the cavity Q is finite, it can be shown that the radiation

is inhibited by a factor of the order of 1/Q. (4)



Experimentally, enhanced and inhibited spontaneous emission were initially somewhat
difficult to observe. The first work in this area was by Drexhage.(5) He studied the

fluorescence lifetime of a monomolecular layer of dye molecules deposited over a thin
dielectric layer on top of a metal substrate. For dielectric layer thicknesses of much less
than a wavelength, the flourescence lifetime was lengthened over that for thicker layers.

More recently, there has been a great deal of interest in this area, mainly stimulated by
the development of techniques for studying the interaction of Rydberg atoms with
microwave cavities. Kleppner(4) first proposed that inhibited spontaneous emission might
be observed using these techniques. Shortly after this, both enhanced(6) and inhibited(7)
spontaneous emission were observed, as well as a number of other related effects.(8-13)

In all of these atom-cavity experiments, the wavelength of the radiation was very long,
in the millimeter or microwave range; no studies were carried out in the visible. Yet clearly
such studies would be of great interest, since it is only at visible wavelengths that the rates
of spontaneous emission typically become significant when compared with other
processes. Working in the visible also has important experimental advantages, including
the ability to detect single photons, and the absence of thermal excitation of the radiation
field. It is also generally easier to obtain high signal-to-noise ratios in visible experiments,
so finer details of the theory may be examined.

The reason for the absence of such experiments in the optical range appears to be that it
was felt the cavity size must always be of the order of the wavelength. For instance,
Filipovicz et al(14) argued using Purcell's result (1.1) that since any practical optical
resonator must have 3 << V, the enhanced emission rate would always be small in spite of

the high Q of optical cavities.

However, in this thesis we point out that it is possible to observe enhanced spontaneous
emission at visible wavelengths. Of course, Purcell's result is correct, in as much as it
applies to a single mode. But in certain resonator geometries, a large number of resonator
modes have the same resonant frequency. In this case the combined effect of all the modes,
when tuned to the atomic resonance, is sufficient to significantly enhance the spontaneous
emission rate. Conversely, when all the modes are detuned the radiation may be
significantly suppressed.



Eq. (1.1) is also correct only if the volume V is interpreted not as the actual volume of
the resonator, but as the "effective mode volume" Veff, which is weighted by the inverse of

the square of the field amplitude at the atom's position. For example, it is easy to show that
if the atom is located precisely in the center of a spherical resonator of radius a >> X, the

atom interacts with only with the lowest order transverse mode of the sphere, and that the
effective volume of this mode is Veff = 3X2a/2ic. This is much less than the volume
V = 4na3/3, and takes into account a strong focussing of the field onto the atom. Since the
Q of this resonator is 4na/A(1-R), where R is its reflectivity, we obtain from eq. (1.1) that
Fcav/free = 2/(1-R), which can easily be much greater than 1. Therefore, the effect of the

resonator on the atom's radiation can be dramatic, even though V >> X3 and the interaction

is with only a single mode.

An effect closely related to spontaneous emission is the radiative level shift. Here too,
the subject is of great importance to optical and atomic physics. The most significant
example of this is Bethe's calculation(15) of the Lamb shift, in which he demonstrated that
the observed splitting between the hydrogen 2slt2 and 2pi/2 states is essentially radiative in
character. The calculation of such level shifts provides another important test of QED.

In principle radiative level shifts should also be modified in a cavity.(16-18) However,
there has been much less attention focussed on this issue, since this effect is generally
much more difficult to observe experimentally, at least for the Rydberg atom-microwave
cavity case. The reason is that the size of the shift scales in proportion to the spontaneous
emission rate of the transitions affected by the cavity, which is very small (- 102 s-1) for
Rydberg atoms. For example, Dobiasch and Walther( 17) have estimated that in a waveguide
configuration, with a cutoff wavelength of 0.5 mm, the change in the Lamb shift of the 23s
state of hydrogen is only about 100 Hz, or about 2x10 -10 of the 23s-24p transition

frequency. This must be detected against a linewidth of at least 26 kHz which arises from

the decay of the atoms back down to lower levels. The effect can be made larger by
decreasing the plate spacing of the waveguide, but this can only be carried so far before
nonradiative shifts due to the Van derWaals interaction between the atoms and the cavity
walls become important.( 9)



As was the case for spontaneous emission, the possibility of studying radiative level
shifts in the optical regime has been largely ignored. But the optical regime presents several
advantages for the observation of radiative frequency shifts. First, the effect scales in
proportion to the much larger decay rate (- 108 s-l1). Also, this decay rate can be the only

broadening mechanism, so that the size of the effect and the linewidth are of the same
order. Finally, nonradiative effects are negligible in the large open resonator.



I.B. Physical Interpretation of Cavity Effects on Spontaneous Emission.

I.B.1. Vacuum Fluctuations and Radiation Reaction.

Physically, spontaneous emission may be interpreted as arising from the effect of
"vacuum fluctuations". Since the expectation value of the dipole moment of an atom in a
pure excited state is zero, it cannot radiate classically. But the quantized electromagnetic

field carries a zero-point energy of fico per mode, and associated with this energy is a

randomly fluctuating electric field. This field couples to the atom, inducing a dipole
moment and causing it to radiate. Thus, spontaneous emission may be viewed as
"stimulated by, vacuum fluctuations". Note that this interpretation is inherently quantum
mechanical; there is no sensible classical explanation for a "noisy vacuum".

Alternatively, spontaneous emission may be interpreted as arising from the effect of
"radiation reaction". If the atom has a dipole moment, its optically active electron is

accelerating, and therefore radiates. Associated with this radiated field is a component

reacting back onto the electron, producing a force on it which accounts for the energy loss.

The objection that the atom in a pure excited state has no dipole moment may be overcome
by our noting that the expectation value of the square of the dipole moment is nonzero; i. e.

the atom does have randomly fluctuating dipole moment. Note that this interpretation of

spontaneous emission can be consistent with a classical electromagnetic field.

The extent to which one or the other of these interpretations is correct has been the

subject of considerable debate.(20-24) Milonni, Ackerhalt, and Smith have pointed out that

the interpretation depends in some sense of the ordering of certain commuting

operators.(22) For one choice of ordering, both spontaneous emission and the level shift

can be interpreted as arising from radiation reaction alone.(21) It is also possible to choose

an ordering which attributes the level shift entirely to vacuum fluctuations, but there is no

ordering in which spontaneous emission can be interpreted in terms of vacuum fluctuations

alone. More recently, Dalibard, Dupont-Roc, and Cohen-Tannoudji have presented a very
compelling argument for a particular ordering of operators.(24) Assuming this choice is
correct, both vacuum fluctuations and radiation reaction are essential. They find that half
the downward transition rate of an excited state atom is due to vacuum fluctuations, and
half due to radiation reaction. Surprisingly, they find that a ground state atom also radiates



energy into the vacuum due to the effect of radiation reaction, which is balanced by the

absorption of energy from vacuum fluctuations.

Thus even for the spontaneous emission of an atom in free space, the physical

interpretation is somewhat problematic. Nevertheless, it is always useful to have a simple

physical picture of a process, which in this case is provided by either vacuum fluctuations

or radiation reaction.

I.B.2. Effect of the Cavity.

To describe the effect of a cavity on spontaneous emission, two approaches are

generally used. In the first, one solves for the normal modes of the field, and obtains a

solution in terms of an expansion in these normal modes. A different set of normal modes

is obtained in a cavity, due to the boundary conditions imposed by the reflecting surfaces.

From this point of view, changes in spontaneous emission are attributed to "changes in
mode density". For example in free space there are pfree(c) = Vo)2I/ 2c3 modes per unit

frequency, whereas for a single cavity mode there is essentially one mode per cavity
linewidth Acoc; i. e. Pcav(o)) - 1/Aoc = Q/cc. According to Fermi's golden rule, the decay

rate of an unstable state is proportional to the density of modes, so we expect that the ratio

of the decay rate of the atom in the cavity to that in free space is given by

Pcav/Pfree - Q.X3/V, in agreement with eq. (1.1).

The mode density point of view is more naturally associated with a physical
1

interpretation in terms of vacuum fluctuations: because there is a zero point energy of .hO

per mode, an increase in the mode density will be accompanied by an increase in vacuum

fluctuations, and therefore the decay rate increases. This situation is illustrated in Fig. 1.1.

Figure 1.1(a) shows the atom in free space. The vacuum fluctuations are uniform in

frequency and in space. Figure 1.1(b) shows the atom in a parallel plate cavity, assumed to
be tuned to the atomic resonance (e.g. the plate spacing is Lt2). The vacuum fluctuations

are very much enhanced in the cavity, due the the increased mode density associated with

the cavity resonance. Only noise at the cavity resonance frequency is illustrated; at other

frequencies the noise is reduced inside the cavity.
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Fig. 1.1. Vacuum fluctuation interpretation of cavity-modified spontaneous emission.

(a) Atom in free space. (b) Atom between parallel plates.

The second approach to the problem of cavity modified spontaneous emission is to view

it as an interference phenomenon. This point of view is illustrated in Fig. 1.2, for the case

of an atom between parallel plates. In free space, the atom radiates a wave ED which

escapes to infinity. But in the cavity the directly radiated wave is only partially transmitted

through the mirror, and to this transmitted direct wave ED we must coherently add the

contribution of a series of waves ERi transmitted through the cavity mirrors after one or

more reflections from them. This situation is illustated in Fig. 1.2(b), for a plate spacing of
V/2. The cavity is tuned to resonance, so the fields interfere constructively, and the

radiation is enhanced.

This intereference point of view corresponds to a Green's function or image method

solution of the problem: the mirrors produce an infinite chain of image dipoles, and the

field at any give point is obtained by summing over the contributions from the dipole and

all its images. Milonni and Knight(25) have pointed out that there is an interesting quantum

mechanical interpretation of this. A photon arriving at a given point carries no information

as to whether it came from the atom or one of the fictitious image atoms. Therefore the

effect may be thought of as a Dicke superradiance or subradiance(26) of the atom together

with all of its images.
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Fig. 1.2. Interference picture of cavity-modified spontaneous emission.

(a) Atom in free space. (b) Atom between parallel plates.

This interference picture is more naturally associated with a physical interpretation in

terms of radiation reaction. Normally, the radiation reaction experienced by the atom is

associated with its electron's acceleration at the current instant of time. But in the cavity, the

field radiated at past times is reflected back onto the atom, adding to or subtracting from the

radiation reaction field, and producing a net increase or decrease in the decay rate

depending on the tuning of the cavity.

I.B.3. Possibility of Using Large-Sized Cavities.

The previous section discussed the case of an atom in a plane parallel cavity with a

spacing less than a wavelength. Clearly, as the plate spacing becomes greater than a

wavelength, the effect of the cavity will be very much diminished. This is because the

phase shift associated with the round trip path difference between parallel sets of light rays

varies rapidly with angle, as illustrated in Fig. 2.3(a). The interference is constructive at

some angles, but destructive at others, so the radiated power averaged over all angles is

unaffected. Also, note that the radiation reaction field is weak because the wave diverges

greatly before it is reflected back onto the atom.
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Fig. 1.3. (a) Large plane-parallel cavity. The phase shift between parallel sets of light rays
is a function of the angle. (b) Large concentric cavity. The phase shift is
constant.

This does not imply that large-sized resonators cannot be used. All one has to do is to
"bend around" the mirror as in the concentric resonator illustrated in Fig. 1.3(b). In this

case, the phase shift is a constant function of the angle. The contribution of the reflected
field to radiation reaction is now very strong, due to the tight focussing of the field back
onto the atom.

Actually, the illustration of Fig. 1.3(b) holds only if the atom is located precisely at the
center of the resonator. However, in chapter II we will show that these same properties

apply so long as the atom is displaced from the center by a distance much less than ,
where L is the: spacing between the mirrors. We also discuss the confocal resonator, which
has properties similar to that of the concentric.

An interesting question is how large the cavity can be. Clearly as the cavity becomes
very large, retardation will play a major role. We defer a discussion of this issue until
chapter VI, but for now we mention that as long as the round trip time in the cavity is less
than the spontaneous emission lifetime, retardation effects do not play an important role.

• %

\U/



I.B.4. High Q Limit.

The previous discussions have been phrased in terms of "decay rates" and "level shifts".

This presupposes that the Wigner-Weisskopf approximation(2) is valid; i.e., that the

spontaneous decay is to a continuum of final states. For a low Q cavity this limit applies,

because the atom essentially interacts with only the center of the broad cavity lineshape.

However, if the atom interacts with only a single cavity mode, then as the Q is increased

the mode eventually becomes so sharp that the Wigner-Weisskopf treatment breaks down.

We refer to this limit as the high Q or ideal cavity limit.

The interaction of a two level atom with a single lossless cavity mode was first treated

by Jaynes and Cummings.(27) They show that if at t = 0 the atom is in its excited state and

the cavity mode contains exactly n photons, then the probability for the atom to be found in

the excited state at a later time t is

Pe(t) 4(n+l)g2 cos2(k1 A2 + 4(n+l)g 2 t), (1.2)
A2 + 4(n+l)g 2  J

where A = co - 0•c is the atom-cavity detuning and

g = vf (1.3)

is the atom-cavity mode coupling constant, with g the atomic dipole matrix element. This

formula looks very much like the usual semiclassical result for Rabi oscillations,( 28) but

surprisingly the Rabi cycling behavior persists down to the vacuum state n = 0.

For A = 0 and n = 0, corresponding to a resonant cavity mode initially in the vacuum

state, we find that

Pe(t) = cos 2(gt) . (1.4)

Rather than exhibiting exponential decay, the excitation oscillates sinusoidally between the

atom and the cavity! This result makes some physical sense: the atom emits a photon into

the cavity, which cannot leave the cavity due to the high Q, and is eventually reabsorbed by

the atom. This behavior is referred to as the "vacuum Rabi oscillation".

The boundary between the high and low Q limits is determined by the relative values of
the coupling constant g and the cavity linewidth Aoc = ,oJQ. For AOc >> g the cavity

damping is so large that its damps out the vacuum Rabi oscillation and we are in the low Q,
Wigner-Weisskopf limit. The condition Acc << g gives the high Q limit. For AWc << g

but Q still finite, the decay rate of the energy out of the cavity actually is proportional to



1/Q. Thus there is an intermediate value of the Q at which the decay rate of the energy from

the atom-cavity system is a maximum.

The behavior of a single atom interacting with an ideal cavity mode in the vacuum state

has never been studied experimentally, which unfortunately remains the case in the present

work as well. This situtation is commented on in chapter VI.



I.C. Survey of Recent Studies of Cavity-Modified Radiation.

As already :mentioned, the first experimental observation of inhibited spontaneous

emission was that of Drexhage,(5) who studied radiation by dye molecules near a

conducting surface. Most of the experimental work, however, has involved Rydberg atoms

in microwave cavities. Enhanced spontaneous emission of Rydberg atoms in a cavity was

observed by GCoy, Raimond, Gross, and Haroche,(6) and the first observation of inhibited

spontaneous emission of an atom in a cavity was that of Hulet, Hilfer, and Kleppner.(7) A

closely related effect, inhibited spontaneous absorption of blackbody radiation, was studied

by Vaidyanathan, Spencer, and Kleppner.(8) Other interesting related Rydberg atom-cavity

experiments were the observation of the "collective absorption" of blackbody radiation(9),

superradiance of atoms in a cavity,(10) a "one atom maser",( 11) the "quantum collapse and

revival" of Rabi oscillation by atoms in a cavity,( 12) and two photon maser action.(13)

Inhibited spontaneous emission has also very recently been observed on an infrared

transition of Cs atoms passing between two parallel plates spaced by less then one-half of

the infrared wavelength.( 30) A similar experiment has been carried out with a dye solution

between two mirrors.(31) Also, Gabrielse and Dehmelt(32) have observed inhibited

spontaneous emission of cyclotron radiation by electrons in a Penning trap.

Theoretically, the first suggestion that spontaneous emission might be modified in a

cavity appears to have been that of Purcell.(3) This effect was referred to by Townes and

Schawlow in their book on microwave spectroscopy.(33) Interest in this subject was

renewed in an article by Kleppner.(4) The general subject of radiation by atoms between

conducting plates or near conducting boundaries has received a considerable amount of

theoretical attention, including articles by Kastler,(34) Milonni and Knight,(25) Barton,( 16)

Agarwal,(35) Liitken and Ravndal,( 18) and Arnouldus and George.(36) Other articles on

spontaneous emission in cavities include those of Parker and Stroud,(37) who explicitly

considered the effect of finite retardation time, and Barut and Dowling(38), who described

the problem from the "self energy" formulation of QED. Various authors have speculated

about the existence of other cavity effects, such as on the electron g-factor and mass.(39-4 1)

The interaction between an atom and a cavity in the high Q limit was first considered by

Jaynes and Cummings.(27) This problem was reconsidered by Sanchez-Mondragen,

Narozhny, and Eberly, who calculated the spectrum of the radiation in the cavity.(42)

Recently Lewenstein, Mossberg, and Glauber,(43) and Lewenstein and Mossberg(44)



calculated the spectrum of fluorescence of a driven atom in a cavity. They made the point

that a "dynamical" suppression of spontaneous emission may take place. The proper
inclusion of cavity damping in the theory has received relatively little attention. One

exception is the work of Sadchev,(45) who accounted for the damping using reservoir

theory as developed by Lax,(46) and calculated the time dependent behavior of the atom in

the cavity at values of Q intermediate between the high and low Q cases. This problem has

recently been addressed from a mode density point of view.(47) There have as yet been no

experimental observations of the time-dependent or spectral properties of a single atom in

an ideal cavity in the absence of blackbody photons.

The interaction between one or more atoms in a cavity has been proposed as a means for

the generation of nonclassical electromagnetic fields. For instance, the generation of

squeezed states(48) or number states(49) has been discussed.

The question of cavity-induced level or frequency shifts has been discussed in many of

the above articles, including those by Barton,( 16) Dobiasch and Walther,(17) and Liitken

and Ravndal.( 18) Also, Chance, Prock, and Silbey discussed the frequency shift of a dipole

oscillator near a conducting surface from a classical point of view.(50) There has as yet been

no experimental observation of a cavity-modified radiative level shift other than the present

work. A related effect, the frequency shift of a dipole resonance in metal island films

spaced a small distance from a reflecting surface, has been observed by Holland and

Hall.(51)



I.D. Contributions of the Present Work.

The purpose of this thesis is to carefully study the radiative decay and level shifts of

atoms in an optical resonator. These studies are fundamentally different from previous

atom-cavity experiments, in that we monitor both the natural linewidth and the center

frequency of a transition and are able to detect changes in both. Also, the size of the

resonator is much larger than a wavelength, and visible transitions are studied for the first

time. As mentioned earlier, experiments in the optical regime are important, because

spontaneous emission occurs at more significant rates than at longer wavelengths.

Furthermore, since our experimental conditions are quite unique, it is possible that effects

not observed in long wavelength experiments might be observed in ours.

Two separate experiments are carried out. The first experiment studies the spontaneous

emission rate ,of excited ytterbium atoms in a confocal resonator. As is well known, the

transverse modes of this resonator are degenerate, and therefore many modes are

simultaneously brought into and out of resonance as the resonator is tuned. In this

experiment we observe, for the first time, enhanced and inhibited spontaneous emission by

atoms in a resonator at visible wavelengths. We find that the spontaneous emission rate into

the resonator modes is enhanced and inhibited by a factor of 1/(l-R) - 40 relative to the free

space rate into the same solid angle, where R is the reflectivity of the mirrors. The changes

in the total rate are small, about +1.5% and -0.6%, because the solid angle subtended by

the mirrors is small. Therefore no direct observation is made of a change in the lifetime,

natural linewidth, or radiative level shift. However, we are able to indirectly verify the

change in total spontaneous emission rate in an experiment which measures the intensity of

fluorescence emitted out the sides of the cavity.

The second experiment studies the center frequency and natural linewidth of the

ISo - 3P1 transition of barium atoms in a concentric resonator. We directly observe, for the

first time, changes in the natural linewidth of a transition due to enhanced and inhibited

spontaneous emission. We also observe, for the first time, shifts in the frequency of a

transition due to radiative level shifts. The changes are much larger than in the ytterbium

experiment because the resonator subtends a much larger solid angle: the natural linewidth

of 19 MHz increases by 20% and decreases by 8%, and the transition frequency shifts by

about 1.5 MHz.



There has been a great deal of theoretical attention to cavity modified decay rates and
shifts, but none of it is immediately applicable to the case of an open, optical resonator. We
remedy this deficiency by presenting calculations of the spontaneous emission rate and
level shift of atoms in confocal and concentric optical resonators. Both a classical and a
quantum mechanical calculation are presented, and the results are found to agree.

Our experimental conditions are very precise: two-level atoms are excited by cw dye
laser radiation, and competing decay channels and nonradiative effects are absent. The
signal to noise ratio is very high, so we are able to measure each effect fairly precisely. We

find that good agreement between theory and experiment is obtained. This is in contrast to
most previous atom-cavity experiments, in which it was observed that the spontaneous
emission rate was enhanced or inhibited, but there was no quantitative comparison with the
theory.

To summarize, in this thesis the following new contributions are presented:

(i) First observation of enhanced and inhibited spontaneous emission by an atom at
visible wavelengths.

(ii) Identification of a new regime of cavity modified spontaneous emission, in
which the size of a resonator is much larger than a wavelength.

(iii) First direct observation of a change in the natural linewidth of a transition, due

to enhanced and inhibited spontaneous emission.

(iv) First observation of a cavity-modified radiative level shift.

(v) Development of the classical theory of decay rates and frequency shifts of an
atom in an optical resonator, and the quantitative comparison of the theory and
experiment.



CHAPTER II.

CLASSICAL THEORY OF RADIATION BY A DIPOLE

IN AN OPEN OPTICAL RESONATOR.

In this chapter we study the classical problem of radiation by a dipole in an open optical

resonator. The treatment is essentially that illustrated in Fig. 1.2; i.e., we model the atom as

a classical dipole, and find the field outside the cavity by superposition of the directly

transmitted wave with a series of reflected waves. We also calculate the field reflected back

onto the dipole, and this "reaction" field is found to account for both the modification of its

decay rate and for a frequency shift. This picture provides a simple and physically intuitive

model of spontaneous emission by an atom in a resonator.



II.A Radiation by a Dipole in Free Space.

II.A. 1 Radiated Field and Intensity of the Free Dipole.

We first review the radiation by a dipole in free space. Consider a classical dipole

consisting of an electron of charge e and mass m harmonically bound to a point rd by a

force Fb = - Kx where K is the force "spring constant" and x is the displacement of the

electron relative to rd. Neglecting the effect of radiation damping, the motion of the

electron is given by x(t) = xoe-io)ot, where xo is a constant vector and oO = -Rm/ the

oscillation frequency.

This oscillating electron has a dipole moment d(t) = ex(t) = doe-iwot, where do = exo.

Assuming that Ix01 << , where X = 2tc/o0o is the emission wavelength, the oscillating

electron can be treated as essentially a point dipole located at the position rd. This dipole

gives rise to a radiated field(52)
oJO2  eiklIr-rdI

Efree(r,t) =- 2 ((ndxd)xnd) Ir-rd (2.1)

where nd is a unit vector in the direction of r - rd , and it is assumed that Ir - rdl >> X. (See

Fig 2.1.) If also Irl >> Irdl , the field is approximately given by,

Efree(r,t) = - ((nxd)xn) eiklr-rdl , (2.2)

where n is a unit vector in the direction of r. If we further assume that the three

components of d are in phase, so that the dipole is linearly polarized, then the radiated

power per unit solid angle is

--r- EE* = Idl 2 sin2O , (2.3)
d ree 8 8nc3

where 0 is the angle between d and r. The total power radiated by the dipole is

Pfre J =d Idl 2. (2.4)

4n

This result holds true for arbitrary polarization.



r-rd

Fig. 2.1. Field radiated by a dipole in free space.

II.A.2 Radiation Reaction Field and the Abraham-Lorentz Equation.

Since energy is being carried away by the radiated field, it is evident that the electron

must be doing work against some force other that the conservative force Fb. This force is

provided by the "radiation reaction field", i.e. the field produced at the position rd due to

the electron itself. It is interesting to note that for a truly point electron, a completely

satisfactory account of radiation reaction has never been given.(53) The difficulty arises in

the divergence: of the Coulomb field of the electron at short distances, resulting in an

infinite self-energy contribution to the electron mass. In order to circumvent such

difficulties it is generally assumed that the electron has a finite size, or equivalently, that
only the modes of the electromagnetic field up to some maximum frequency oax can

couple to the electron.

A useful form for the self-field of the oscillating electron has been given by Stroud and

Jaynes.(20) They find that the electron self-field can be written as
t

Efree(r,t) = jGfree(r,t;rd,t')d(t')dt' , (2.5)
-00

where the Green's function Gfree(r,t;rd,t') is given at the position r = rd by



4 max

Gfree(rd,t;rd,t') = -4_3 do c osinco(t-t')
3xc3

4 a (sinOmax(t-t')0
=3-- i  -l , (2.6)

3c3 (t-t') 4

and where the upper cutoff frequency omnax is taken very large, but not so large that 8m
(defined below) is greater than m. Note that since omax is very large, only past times
t' > t - (1/onax) which are very close to t will contribute significantly to Efree. Inserting the

expression for Gfee into eq. (2.5) gives
2 "" 4Omax

ERRfee(t) = Efree(rd,t) = d(t) 3 d(t). (2.7)

Using this result, we can now write down the equation for the bound electron:

mbarex + Kx = eERR, (2.8)

which can be rewritten as,
4 2e 2 ..,

(mbare + T8m)x + Kx = 3c3 . (2.9)

Here mbare is the "bare" electron mass, i.e., the electron mass in the absence of any
consideration of the electromagnetic field, and

8m c2 = e2 hnax- = h Oax (2.10)

where a = e2/hc is the fine structure constant. It may easily be demonstrated that 8m is
nothing more than the Coulomb self-energy contribution to the electron mass, and as such
it should already be regarded as having been included in the observed electron mass
m = mbare + (4/3)8m. This point is emphasized in the treatments given by Jackson( 53) and
by Dalibard, Dupont-Roc, and Cohen-Tannoudji.(24) However, in certain treatments of this
problem the term 8m itself is interpreted as giving rise to a radiative or "Lamb" shift.(20, 23)

(The factor of 4/3 is a spurious consequence of the noncovariant cutoff procedure used in
eq. (2.6); this discrepancy is removed in more rigorous treatments.(53))

Substituting for m, eq. (2.9) can be written as,
m(X - C x) = Fb, (2.11)

or in our case as,
x •+ x = rx x. (2.12)

Eq. (2.11) is known as the Abraham-Lorentz equation. Here the parameter
, = 2e2/3mc3 = 6.26 x 10 -24 s is a characteristic time, which in the classical theory of the
electron is of the order of the time taken for light to travel across the finite electron radius



ro = e2/mc2. The motion of the electron will be strongly damped if the period of oscillation
T > t ; otherwise, it will be weakly damped. In the optical range o 'r << 1 and therefore

the damping is always weak.

The solution to eq. (2.10) can be written as x = x0eat, where a is given, correct to
second order in o0r, by

r
a = " i(ooo + Am) , (2.13)

where

c= 2 2e2 (2.14)3mc3
and

5 5 e4Co03
AC= - 032 = - - . (2.15)

For the sodium D-lines, coo = 3.2 x 1015 s-1 (o•0r = 2.0 x 10 -8), resulting in
F = 6.4 x 107 s-1 (F/2i = 10 MHz) and Ao = - 0.8 s-1 (Ao/2bc = - 0.13 Hz). It is
interesting to note that this value for r is precisely the observed value. (This is because the

oscillator strength for this transition equals 1.) The frequency shift in this model is of
second order in Ozt and is extremely small. It is of the same character (proportional to
I72/o0) as that observed for any damped classical oscillator.



II.B. Field Radiated by a Dipole in an Optical Resonator.

II.B. 1 Effect of a Symmetrical Optical Resonator on a Radiating Dipole

Consider a dipole at the position rd in a symmetrical optical resonator of length L = 2a,
consisting of mirrors M1 and M2, each of diameter 2b, and of reflectivity R1 and R2, and
radius of curvature +Rc and -Rc, respectively (Fig. 2.2). We assume that the mirrors are

lossless, so that the transmission coefficients of M1 and M2 are given by T1 = 1 - RI and

T2 = 1 - R2 , respectively, and we also define the quantitites rl = "J•-, tl = --1", r2 = 4R,

and t2 = .VTj We take the z-axis to coincide with the resonator's optical axis, with the
origin O exactly halfway betwen the two mirrors, and we take the x-axis in the direction of

the dipole's displacement from the resonator axis, so that rd = Zdz + xdx. The focal lengths

of M1 and M2 are fl = +Rc/2 and f2 = -Rc/2, respectively, where the mirror radius or focal
length is considered to be positive if the center of curvature lies in the - z direction. We
assume throughout that Irdl << a, and also that the dipole is linearly polarized in the x-y
plane. We also assume that b << a so that the light propagating between M1 and M2 may
be treated in the paraxial approximation. (Terms of order (b/a)3 may be neglected.) This
also implies that the vector nature of the field may be neglected, for the part of the field
propagating between M1 and M2.

In order to calculate the total power radiated by the dipole, we integrate the intensity

passing through a spherical surface S centered on the origin whose radius we take for
convenience to be a + 8a (Sa << a), i.e., a spherical surface passing just outside M1 and

M2. The spherical surface divides naturally into three parts: S1, the part lying just outside

Ml, S2, the part just outside M2, and Sside, the remainder of the sphere. SI, S2, and Sside
subtend solid angles Af 1, Afl2, and AMside, respectively, where AKQ1 = AL2 - 4xb2/L2

(b << L), and AilI + Af 2 + Afside = 4n.



Sside

T1~-
2b

Sside

Fig. 2.2. Dipole in a symmetrical optical resonator.

Consider first the power radiated through Sside. Clearly, the power per unit solid
angle into AMside will be unchanged from free space, provided that any radiation reflected

by mirrors M1 and M2 is contained entirely in AG1 and AG2 and does not "spill over" into

Afside. A necessary condition for this to be the case is that the resonator must be stable.

For the symmetrical two mirror resonator the stability crtierion can be written as(54)
2a

0<11 _ 1 (2.16)Rc
In addition, it is necessary that the Fresnel number F = nb2AL >> 1, that zd << a and

xd << b, and that Re 5 2a, as discussed below. From eq. (2.16), we see that the two limits

of stability are Rc = +o, which corresponds to a plane parallel resonator, and Rc = +a,

which corresponds to a concentric resonator.

If we assume these requirements are satisfied, then the total power Pside passing through

Sside is simply the total free space power Pfree minus the power p~ ordinarily emitted into
AQ1 and AL2. Note that, from eqs. (2.3) and (2.4),

(dP 3 1 (2.17)
Pfree = ( A v = ALcav Pfree, (2.17)

(0=i/2)

where
MAcav = A0I + A22 = 8xb2/L2 . (2.18)

Therefore,



Pside = Pfree 1 - -L Acav]. (2.19)

Again, in this equation it has been assumed that the dipole is oriented at right angles to the

cavity axis (so the radiated intensity is peaked in the direction of the mirrors), and that the

solid angle subtended is small.

In order to calculate the power emitted through St and S2, we must take into account not
only the field emitted by the dipole and transmitted through Ml or M2, but also the fields

arriving at S1 or S2 after having first been reflected from M1 and M2 one or more times and
then transmitted. If on the average, there is a net constructive or destructive interference

among these waves, the power radiated by the dipole will be enhanced or inhibited.

For arbitrary mirror focal length, this effect is generally very small. This is because the
phase of the interference pattern varies rapidly across the mirror aperture, resulting in many
regions of constructive and destructive interference, and in the average over all these
regions the effect is washed out. However, for certain mirror radii of curvature, the phase
of the interference may be essentially constant over the entire mirror aperture, so that a large
net enhancement occurs when the interference is constructive, and an inhibition when it is

destructive. These special radii arise whenever the resonator has the property that the light
emitted by the dipole is refocussed back onto itself after n round trips of the resonator
(n = 1, 2, 3 ... ). This property may be understood by our noting that any ray emitted by

the dipole will return to it after n round trips, and that the round trip accumulated phases of
all such rays are identical. Associated with this "ray degeneracy" is a degeneracy of the
corresponding Hermite-Gaussian modes(54) of the resonator.

Mirror radii of curvature having this property are tabulated in table 2.1, for n = 1 to 4.

The radii at which such degeneracies occur are given by the formula

1 + tan2 (n)2
- = , (2.20)

2tan I)

where s is an integer. This formula may be derived by calculating the change in resonance
frequency of a Hermite-Gaussian resonator mode when the transverse mode index changes
by one unit,(54) and requiring that it be equal to snc/nL. Note that we have included the

plane parallel resonator in table 2.1, since the Hermite-Gaussian modes of a nearly plane-
parallel resonator do become degenerate in the limit that the mirror radius of curvature goes



to infinity. However, the "spot size" of these modes also diverges to infinity; i.e. the

modes consist of essentially plane waves with an infinitely slow transverse spatial

modulation. Therefore their mode volume is infinite, and the plane parallel resonator is not

interesting from the point of view of enhanced and inhibited spontaneous emission. Of

primary interest are the two simplest cases other than plane parallel: n =1, or the concentric

resonator, and n = 2, the confocal resonator.

Rc/L Name s n Mode Spacing (Hz) ro•L/2x

0.5000 Concentric 1 1 c/2L 0
0.585:8 3 4 c/8L 0.644
0.666'7 2 3 c/6L 0.760
1.000 Confocal 1 2 c/4L 1.00
2.000 1 3 c/6L 1.32
3.414 1 4 c/8L 1.55
-0 Plane-Parallel 0 1 c/2L co

Table 2.1. Mirror radii of curvature that give rise to degenerate mode spectra in the two

mirror resonator of length L, for n = 1 to 4. Also tabulated are the mode

spacings and the spot size ro (HW1/e of field amplitude) of the TEM00 mode.

Only the resonators with 1/2 < Rc/L < 1 confine all the radiation incident upon the

mirrors. This includes the concentric and confocal cases. For Rc/L > 1, some of this

radiation is initially lost out the sides of the resonator, but the radiation remaining after n

round trips remains confined. The exception is the plane parallel resonator, for which all of

the radiation eventually escapes out the sides.

II.B.2. Propagation of Uniform Spherical Waves Between Curved Mirrors.

Consider a uniform spherical wave with center of curvature rc incident upon one of the

mirrors M, positioned at z = a. We consider the case where the center of cuvature is only

slightly displaced from the z-axis by an amount IxcI << la - zcl. The incident wave can be

written as Ei(r,t) = Ei(r) e-iot, where

Ei(r) = = I E(a) e ±iklr - r (2.21)



where +ik corresponds to an outgoing wave (from the center of curvature) and -ik
corresponds to an ingoing one, and EO(a) gives the overall amplitude and phase of the
wave. In the paraxial approximation, eq. (2.21) can be written as,

1 a2(z))(z-zc) + 2 + a(z)x]_ ik[(1 -y2p(z )
la-zclEi(r) = Iz- EO(a) e (2.22)

where Rc(z) = z - zc is the wavefront radius of curvature and a(z) = -xc/(z-zc) is the

wavefront angle of tilt at the z-axis. Here +ik corresponds to a wave propagating in the +z
direction and -ik to one propagating in the -z direction, the wavefront curvature is taken as
positive if the center of curvature lies in the - z direction, and a(z) is taken as positive if the

line passing through the points (0,0,z) and rc has positive slope in the x-z plane.

When the incident wave Ei impinges upon the mirror M, it gives rise to a transmitted
wave Et = tEi and a reflected wave E'. It may easily be seen this reflected wave is a new
uniform spherical wave given by,

1 x2+ 2Sik[(1 -1a'2 (z))(z-zo') + + a'(z)x]

E'(r) =- I EO'(a) e (2.23)

where the parameters of the new wave are given by,
zc' = a - Rc'(a) (2.24a)

xc( =  a- (2.24b)
a - zc

and
zo' = 2a - zc , (2.24c)

where

Rc'(a) = (a-z)-f (2.24d)

and as before Rc'(z) = z - zc', a'(z) = -xc'/(z - zc'), and the wave has center of curvature

rc' = zc'z + xc'x. In addition it is implicitly understood that E'(r) = 0 at points outside the

geometrical boundary of the wave.

It is evident that this description of the field by a uniform spherical wave is only an
approximate one, since it neglects the diffraction of the wave by the sharp boundary of M.
For a nearly plane wave in the near field of M, these effects will be negligible. However it
is necessary to be somewhat more cautious in applying this approximation to the region
near the geometric focal point rc of a converging spherical wave. This problem is treated by
Born and Wolf,(55) and we review the main results here. We consider a spherical wave



emerging from an aperture of radius b located at z = a and converging to a focus at its

center of curvature rc, and we assume Ircl << lal. The main results can then be stated as

follows:

(i) The intensity is symmetrical about the geometric focal plane z = zc (except for

the slight tilt of the geometric boundary if xc * 0). In the far field the incident

wave is well approximated by the form EO(r) e -ikir - rcl, and the wave diverging

past the focus by Eg(r) e +iklr -rcl, except for an extra phase factor (point (iii)

below).

(ii) The intensity in the focal plane can be written as,

I(zc, p) = 2J(kbp/a) 1 Io, (2.25)
L kbp/a i

where p = "(x-xc) 2 + y2 and IO = c IE(rc)12 is the intensity at the focal
8n

point. By conservation of energy, if the field at z = a has magnitude IE(a)l, then
00

c-(nb2)IE(a)12 = I(zc,p)2npdp. (2.26)

Noting that (56) q = , eq. (2.26) gives,
0

kb2

IE(rc)l = -~ IE(a)l. (2.27)

(iii) The phase of the field is not related simply to the phase of the input field by

0 = ±klr - rcl but undergoes an additional phase shift upon propagation through

the focus (the "Gouy phase shift"). In particular, if the phase of the incident

wave is

O(z<zc) = -kir - rcl + 40 , (2.28)

then the phase of the wave at the focal point is,

(rc) = 0- , (2.29)

and the phase of the wave transmitted past the focal point is,
O(z>zc) = kir - rcl + (0 - x. (2.30)

The relations (2.21) - (2.30) summarize all the properties necessary to calculate the

effect of the resonator on the radiated field.



II.C. Field Radiated by a Dipole in a Confocal Resonator.

In this section we calculate the cavity part of the fields generated by a dipole in a

confocal resonator, in which the radii of curvature of M1 and M2 are +2a and -2a,

respectively. It will be seen that the fields generated correspond to two nearly plane wave

components, which we label as E(2) and E(4), and two stongly focussed spherical wave

components, which we label as E(1) and E(3), as illustrated in Fig. 2.3.

H.C. 1. Power Radiated into the Cavity.

We first consider the wave emitted by the dipole towards M1. Using eqs. (2.1), (2.21),

and (2.22), we can write the wave incident upon M1 as

E(I = +EO(r) e +iklr - rdl

+ ik[(1 - )(z-zd) + 2- d x]2 7z)
(2.31)

(2.32)

= +EO(r) e
where

002d
E(r)=- c2rc 2,

L =2a - 1

Fig. 2.3. Fields radiated by a dipole in a confocal resonator, showing the four types of

emitted waves, E(1), E(2), E(3), and E(4).



Upon striking M1 this wave is divided into a transmitted component

E(1)1 = +tlEO(r) e +iklr - rdl (2.33)
1,1

and a reflected component,

- ik[(1 - )(z+zd-L) +2a2/zd a

EL, 1 = -rlEO(a) e (2.34)

where we have used the reflection conditions of eqs. (2.23) and (2.24) together with the

fact that xd << b << a. This reflected wave is a nearly plane wave with a slight tilt. When
it reaches M2, it will have a diameter which may be slightly larger than 2b, and it may in
addition be shifted slightly off to one side of the mirror, causing a clipping effect on the
wave by M2. However, the first effect will be negligible provided that zd << a, and the
second provided that xd << b, as previously assumed. In addition, the reflected wave has a
sharp edge. We can neglect the diffraction of this wave by the sharp edge upon propagation
from M1 to M2 provided that the Fresnel number F = tb2/XL of the resonator is large. This

insures that M2 is in the near field of M1 and the only effect of diffraction a slight
modulation of the field near the boundary of the geometric shadow. We note that this
condition is compatible with the paraxial approximation; together the two conditions can be

written as,

4Fa << b << a. (2.35)

Upon reaching M2 the wave is again divided into a transmitted component,

- ik[(1 - a1 )(z+zd-L) -2a + ax]

E2 = -rlt2EO(a)e (2.36)

and a reflected wave,

+ik[(1 - )(Z-Zd+2L) + 2(Z-Z)

E(,I = -Sgn(z)REO(r) e

= -Sgn(z)REO(r) e2ikL e +Sgn(z)iklr -ril, (2.37)

where R = rlr2 , and
+1, z > zd

Sgn(z)= , z < zd (2.38)



This is a spherical wave converging to the focal point ri = +zdz - xdx, i.e. the light is

imaged onto a point directly opposite the z-axis from the dipole. Also note the prescence of

the Gouy phase shift via the factor Sgn(z).

Following along further, when E R( impinges upon M1 it is again divided into a

transmitted component,
E(,1 = -tlREO(r) e2ikL e +iklr- ril, (2.39)

and a reflected wave,

- ik[(1 - )(z+z )+zd-3L) - xd2a2/ - x]

E(4) = +rlREO(a) e (2.40)L,1

which is again a nearly plane wave with a slight tilt, opposite tilt, opposite to E(2). Finally, E(4) strikes

M2, producing a transmitted wave,

- ik[(1- 1() 2 )(z+zd-3L) - x2 +y2  x]

E,1 = +t2rlREO(a) e (2.41)

and a reflected wave,

+ik[(l - )(z-Zd+4L) + 2(-z) x]

E(1),2 = +Sgn(z)R 2Eo(r) e

= +Sgn(z)R 2Eo(r) e4ikL e +Sgn(z)iklr - rdl. (2.42)

We see that after two complete round trips of the resonator, the wave focuses exactly
back down onto the dipole at rd, and that the field diverging past the dipole is identical to

the first emitted wave, apart from the factor R2e4ikL, which accounts for the attenuation and

phase shift of the wave upon the two round trips in the resonator.

It is now quite clear what is going to happen: as the wave continues to bounce back and

forth between the two mirrors, it will produce upon every 2(n+1)th round trip a
contribution to the field E)  R2e4ikLE which is identical to the contribution E)

i,n+1 i,n i,n

from the (2n)th round trip, apart from the factor R2e4ikL. Thus the total field for any one of
the particular waves is,



E = E (1 + R2e 4 ikL + R4e8ikL+. )

= E 1 (2.43)
i,1 1 - R2e4ikL 

(2.43)

The same situation is true for the reverse direction of propagation around the resonator.

A wave E(1) is emitted by the dipole, which divides into a transmitted component E(1)
L,1  2,1

and reflected component E(4) This reflected wave is nearly plane, and upon striking M1

it is divided into a transmitted component E (4) and reflected component E( 13 This
1,1 LI

reflected wave focusses onto the image point ri and subsequently strikes M2, producing a

transmitted wave E(3) and reflected wave E(2) As before, this wave is nearly plane, and
2,1 L,I

upon striking M1 it divides into a transmitted wave E(2) and a reflected wave E(1)
S,1 L,2'

which again focusses back down upon the dipole and again reproduces E(1) times the

phase factor R2e4ikL.

Taking all these contributions into account, we may easily show that the total field to the

right of M1 can be written as,

=E(1 + E(2) + E(3) + E(4) (2.44)

where

E(1)(r) = +tlEO(r) e +iklr - rdl- (2.45)
1d1 - R2e4ikL

1fxd"2 x 2+y2  Xd
+ ik[(l - ~ )(z+zd+3L) - 2 a2/z  ax]

E (1(r) = +tlr2REO(a) e
1

x 1 - R2e4ikL (2.46)

E()(r) = -tlREo(r) e2ikL e +ikIr - ril1 -R24ik (2.47)1 - R2e4ikL(2.4)

and



I (Zxd z ) +  MX+ ik[(l - )(+zd+L) - 2a2d a

E()(r) = -tlr2E0(a) e

X 1 - R2e4ikL (2.48)

A very similar expression is obtained for the field to the left of M2.

The power passing through S is simply given by,

P1= JdAI1 , (2.49)
S1

where

I IE(1)12 + IE( 2)12 + IE( 3)12 + IE (4)21 =8x

+ IE)IE0 .I ei(i-0j) (2.50)

isj
and where E() = IE(1 ei'i . The contribution from the cross terms will be nonzero only if

the integral of the phase factors over S is nonzero:

I dA ei(oi(r) - j(r)) # 0 , (ij) . (2.51)
SI

In particular, we need to be concerned about possible interference between the spherical

waves E1) and E 1, and also between the plane waves E(2) and E(4~. In both of theseS1 1

cases ei(Oi'j) = e ±(2ikL + ik(2xda)x). Since x varies in the integral (2.49) over a range of
order [-b,b], the phase difference 0 = ~i - Oj varies over the range [-4rxdb/ba, +4xrxdb/a],

i.e. over a total range A0 - 8MlxdbAa. If the range of this phase difference Aý >> 27, i.e. if
Xa

xd >> : , (2.52)

then the integral of eq. (2.49) oscillates rapidly over many cycles and therefore averages to

zero. Obviously such terms as fdAE (2) E(1)* then also average to zero.
S1

Therefore, provided that xd >> ka/4b, the cross terms of eq. (2.49) can be ignored,

giving simply,



(2.53)Ii = I + 1 +1 + 4)

where

I = -IE(
1 8

and similarly for I1

P1 = - (nb2)8n

12
1

C•cTi

8x IEO(a)12  1
(1-R2)2 + 4R 2sin 22kL '

1), and I(4). Thus we obtain for the power emitted through S 1i,

IE(a)l TI(1 + R2 + R2 + R2 R2)
(1-R2)2 + 4R2sin22kL

Similarly, the power transmitted through S2 can be shown to be,

P2 = - (xb 2 ) IE(a)1 T( + R2+ R+ RR R2)
8P2 (1-R 2 )2 + 4R 2 sin2 2kL

Writing the total power emitted through S and S2 as Pcav
1 + R2 1

Pcav = Pfree 1 - R2 4R2
1 + (1-R sin2 (2kL)

(1-R )2

= Pl + P2, we find finally,

(2.57)

which can also be written as,
41 + Fcf

Pcav = Pfree 1 + Fcfsin2 (2kL) '

where pfee was defined in eq. (2.17) and the parameter Fcf is given by
Fcf = 4R2/(1 - R2)2.

(2.58)

(2.59)

We see that the power radiated by the dipole just follows the Airy function lineshape of
the cavity. For the case where 1/(1-R) >> 1, the maximum radiation rate is given by

Pcav(max) = 1 R Pfree

and the minimum radiation rate is given by

Pcav(min) = (1 - R) Pfrz.

(2.60)

(2.61)
Thus the cavity enhances and inhibits the radiation rate by a factor of
1/(l-R), relative to the radiation rate by the free dipole into the same solid angle.

II.C.2 Special Case: Dipole on the Cavity Axis.

In the foregoing discussion, we assumed that X(a/4b) << x << b. However it may be
that xd f X(a/4b); in this case the interference terms in eq. (2.50) must be taken into

account. In particular suppose xd = 0. Then in this case,

(2.54)

(2.55)

(2.56)



S+ -) - rdl 1- Re 2ikLE1 + E = +tlEO(r) e +iklr -rd R ikL (2.62)

and
x2+v2

+ ik[(z+zd+L) -

(4)1 - Re2ikL
E + E1 = -tlr2EO(a) e 1- R2e4ikL ' (2.63)

and
I1 = c~ (IE() +E(3)1 2 + IE(2) +E(4)12 )

8n 1 L 1 1 1 E

+ - ((E +E )(E + E(4))* +(E + E() )*(E(2) + E(4)  (2.64)
8n 1 1 1 1 -1 1

It is easy to show that the cross terms in eq. (2.64) do not contribute to the integral of
eq. (2.49) provided that b2 >> XL, as has been already assumed. Therefore,

Pl =  (,b 2) IEO(a)12 (TI + T1R2) 11 - R2e4ikL 2  (2.65)

and similarly
c+1 - Re2ikL)2

P2 = (inb2) IEO(a)12(T2 + T2RI) 1 - R2e4 ikL 2 ' (2.66)

which gives,
1+R 1

Pcav = Pfree 1 - R 4R (2.67)
1 + cos2kL

(1-R)2

This result should be compared with that of eq. (2.57) for the case xd >> X(a/4b). It is

seen that the effective length of the resonator is L rather than 2L, corresponding to a free

spectral range that is twice as great, and that the effective round trip loss is R rather than

R2, corresponding to peaks that are twice as high. These effects can both be understood by

our noting that the field is now reproduced after every one round trip, rather than every
two. Note that the condition xd < L(a/4b) is essentially the requirement the the focussed

spots at rd and ri coincide.

Points lying along the axis of the confocal resonator are therefore special points, in that

dipoles located there radiate according to eq. (2.67) rather than (2.57). Note that in general
X(a/4b) is a very small distance, and that the dipole is allowed to be located in a much larger

region satisfying only xd << b. If in an experiment many dipoles are randomly distributed
in this much larger volume, then the overwhelming majority of them will behave according



to the off-axis conditions, and we can neglect the type of behavior given by eq. (2.67). We
will assume this is the case from here on.

II.C.3 Total Radiated Power.

The total power emitted by the dipole is simply the sum of the power radiated out the
side, given by eq. (2.19), and the power emitted out the ends. Assuming the on-axis

behavior can be neglected, the power emitted into Si and S2 is given by eq. (2.58), so

that we obtain for the total power

Pcav = Pfee 1 + 1 +Fc - 1 Acav . (2.68)
1Pcav=Pfre 1 1 + Fcfsin2(2kL) 1 8n

For 1/(1-R) >> 1, the maximum total radiation rate is given by

Pcav(max)= P 1 + (1 - ) R LAcav , (2.69)

whereas the minimum total rate is given by

Pcav(min)= Pf 1 - iAcav] . (2.70)

From these results, we see that to significantly suppress the total radiation rate, it is
necessary for the resonator to subtend a large solid angle. However, to significantly
enhance the radiation rate, it is only the product of 1/(I-R) and the solid angle that must be
large. Thus, a small solid angle cavity can have a significant effect on the total rate if its
finesse is sufficiently high.



II.D. Fields Radiated by a Dipole in a Concentric Resonator.

In this section we calculate the fields generated by a dipole in a concentric resonator, for

which the radii of curvature of M1 and M2 are given by +a and -a, respectively. In this case

the generated fields are somewhat simpler than in the confocal case, consisting of two

strongly focussed standing spherical waves, which we label as E(1) and E(2), as illustrated

in Fig. 2.4.

II.D. 1.Power radiated into the cavity.

M2 MI

L = 2a

Fig. 2.4. Dipole in a concentric resonator.

The calculation of the power p,,a = Pl + p2 is very similar to the preceeding section.

The dipole illuminates M1 with a field E(1) 1, producing a transmitted wave E( 1) and a

reflected wave E(2). This reflected wave is a converging spherical wave focussed ontoL,1

an image point ri = -rd which is now directly opposite the origin from rd. Upon striking

M2, the wave is again divided into a transmitted component E and a reflected

component E(1) which now refocusses down upon the dipole at rd. Thus in the

concentric cavity the field reproduces itself after every one round trip, rather than every

two, and it can easily be shown that the field E( ) diverging past the dipole is given by
two,2



E(1) = Re2ikL E(1) This corresponds to a round trip attenuation by the factor R and aR,2 - R,1'

round trip phase shift of 2kL. Therefore in a manner similar to the confocal case, each type
of wave is given by a sum over the contributions of many round trips as,

E = EO, (1 + Re2ikL+ R2e4ikL +.. )
1 i1I

= E1 (2.71)
i,1 1 - Re2ikL

Similarly in the reverse direction, the wave emitted by the dipole towards M2 is E(1)L,1'
which divides into a transmitted wave E(1) and a reflected wave E(2)  This reflected

2,1 R,1

wave reaches M1 and divides into an additional transmitted wave E(1) and reflected wave
1,1

E(1), and so on.

With the above considerations in mind, we can show that the field to the right of M1 is

given by,
El = E(1) + E1, (2.72)

where

E(1) = tiEO(r) eiklr-rdI 1 (2.73)1 1 - Re2ikL ' (2.73)

E = tlr2Eo(r) eikL eiklr+rd 1 (2.74)1 1 - Re2 ikL

and EO(r) is defined in eq. (2.32).

The field to the left of M2 is given by,
E2 = E(1 + E( , (2.75)

where

1 - Re2ik (2.76)
2 = t2EO(r) elkl-rdi 1 -R ik ,Re

and

E(2 = t2rlEO(r) eikL eiklr+rdl 1 (2.77)21 - Re2 ik L

The power enmitted through S is again given by eq. (2.49), where now
I1 = ~(IE(l)12 + IE)12 + E(1)*E(2)1 + )E 1* ) . (2.78)



In a manner similar to the previous section, the cross terms will contribute to the integral of

eq. (2.49) only if

SdA ei(4 1(r) - 42(r)) 0 , (2.79)
S1

where again E() = IE0 eii .This phase difference

(01 - 2) = 2+ zd + - x + constant. The maximum value of

(x2 + y2)/z2 on S1 is b2/a2 and the maximum value of (x/z) is (b/a) . Thus in the integral

(2.49) the contribution of the cross terms vanishes if
2  (2.80a)

zd >> (b

xd >> . (2.80b)

If we assume that one or the other of the conditions (2.80) is satisfied, then we can

neglect the cross terms in eq. (2.78), giving,

P c = -(tb2) IE(a)12  T1 + R 1T2  (2.81)
81•c (1-R) 2 + 4Rsin2 kL '

and similarly,

P2 = (cb2) IE(a)12  T2 + R2T 1  (2.82)
8n2 (1-R) 2 + 4Rsin2 kL

We thus obtain the result,
1+R 1

Pcav = Pfreel1 - R 4R sin2k(2.83)
1 + sin2kL

(1-R)2

which can also be written as,
41 + F

Peav = Pfree 1 + Fsin2kL ' (2.84)

where the parameter F is given by
4R

F = (2.85)(1 - R)2

These results should be compared with eqs. (2.57) - (2.59) for the confocal resonator, it

is seen that the results are essentially the same, except that 2L is replaced by L, and R2 is

replaced by R. In the case that 1/(1-R) << 1, the maximum and minimum powers emitted

into the cavity are given by



Peav(max) =1 R Pfe (2.86)

and

av(min) 2 Pree (2.87)

In this case the radiation is enhanced or inhibited by a factor of 2/(1-R), depending on the
tuning of the resonator.

II.C.2 Special Case: Dipole at the Exact Center.

We now consider the case where zd X,(a/b)2 and xd 2X(a/4b). Note that these

conditions correspond to the overlapping of the dipole and image focal spots. In particular
we consider xd = 0 and zd = 0. Then it may easily be shown that the total power pev is
given by,

(1-R2) + [r2(1-RI) + rl(l-R2)]cos(kL)
Pcav = Pfree (1-R) 2 + 4Rsin2 (kL)

If R1 = R2, then
l+r 1

P Pr1 - + s4r in2(kL/2) (2.89)
(1-r)2

This result should be compared to eq. (2.83) for the case where the dipole is displaced
from the exact center of the cavity. It corresponds to an effective length 1/2 rather than L,
so that the free spectral range is c/L, and a "round trip loss" of r rather than R. In the case
R1 * R2 eq. (2.88) does not simplify to an equation of the form (2.89), and in fact residual
peaks with a spacing of c/2L remain halfway between those given by (2.88).

Points lying very near the exact center of the concentric resonater are therefore special
points, in that a dipole positioned there radiates power according to eq (2.88) rather than
eq.(2 .83). However, the extent of these points zd . X(a/b)2 and xd < X(a/4b) is generally

very small. If in an experiment dipoles are distributed randomly over a much larger range,
then only a small fraction will be sufficiently near the center to exhibit the behavior of
eq. (2.88), so that this special case can be neglected.



II.C.3 Total radiated power.

The power radiated by the dipole into the cavity is therefore given by eq. (2.84), and

combining this result with eq.(2.19), we find that,

Pcav=Pfree[1 + [ +Fsin2(kL )  1] 3Afcav (2.90)

Again, this result shows that in order to obtain a large inhibition of spontaneous emission,

a large solid angle is necessary, but that a large enhancement can be obtained with a
moderate solid angle if the cavity finesse is sufficiently large.

II.C.4. Field Inside the Cavity.

In the next section regarding radiation reaction, the field inside the resonator will be of
interest. This can be written as

(1) (2)
E=E (1) +E , (2.91)

where E(2)= E(2) + E(2) , with

E(2) = -Sgn(z) rlEO(r) e+ikL e-Sgn(z)iklr+rdI - (2.92)1 - Re 2i kL (2.92)

and

E(2) = +Sgn(z) r2EO(r) e+ikL e+Sgn(z)iklr+rdl 1 (2.93)R1 - Re2ikL (2.93)

This corresponds to a standing spherical wave with a focus at -rd. (There will be a slight
leftward or rightward propagation of energy if R1i R2.)

To calculate E , we have to be slightly careful , since the directly emitted wave E,1R,1

exists only to the right of the dipole and E(1), exists only the the left We may writeE (1)

as,

E(1) = E(1) + E(1) + E•1) (2.94)0 R L'

where
E( = E(,1 + E(1 = Eo(r) eiklr-rd (2.95)

gives the contribution of the directly emitted wave, and



E + E L = 2iEO(r) 1 -Re2i kL sinr-rdl), (2.96)

the contribution of all the reflected waves. E can be written as,

E - E(r) Re2ikL ikir-'rd + E(r) 1 e+ikhr-rdl (2.97)
1-Re2ikL + 1Re2ikL

Note that we can identify an ingoing and outgoing component of the wave inside the
resonator. It is easy to verify that the difference between the intensity of the outgoing wave
and that of the ingoing wave leads again to the result (2.83) for the power radiated into the
cavity.

The expression (2.97) is not valid at points in the near field of the dipole, and in
particular it is not valid at the position of the dipole rd. This point will be discussed
presently in section II.E in connection with the radiation field at the dipole.



II.E. Radiation Reaction Field and the Decay Rate and Frequency Shift of a Dipole in an

Optical Resonator.

In the previous sections we have calculated the fields radiated by a dipole in a confocal

or concentric optical resonator, assuming that the dipole oscillates continuously according

to d = doe-io0t. As was the case for free space, this is a very good approximation as long
as coot << 1. Nevertheless it is clear the the electron must be doing work against some force

FRR = eERR, and that this force must be modified in the presence of the resonator. In this

section we calculate the field ERR in the cavity and show how the electron's motion is

modified relative to free space. We will carry out the calculation for the concentric case; the

confocal case is identical except that R should be replaced by R2 , L by 2L, and F by Fcf.

II.E.1. Green's function for the Dipole Self Field.

In order to see how the modified electron motion comes about, we reconsider the

expression (2.5) for the field ERR in terms of the Green's function G(rd,t;rd,t'). Physically

this Green's function gives the contribution to the field E(rd,t) at the position rd and time t

due to the oscillating dipole moment d(t') of the dipole at the position rd at time t'. It is

apparent that this is exactly what we have calculated in the previous sections: the field is

expressed as a sum over waves which have undergone multiple reflections, which

correspond to contributions from the dipole's oscillations at a discrete set of past times

separated by the cavity round trip time.

To make this point more transparent, consider the field E(lrd) + Elrd) at the dipole's

position, which gives the contribution of all the waves reflected back onto the dipole after

one or more round trips. The wave imcident from the left can be written as,

E(r) = -E(r) 1 - Re2ikL eiklr-rdl, (2.98)

Hence the contribution of this wave to the field at rd is given by,

(rd,t) = + 2a2c3 do(Re2 ikL + R2e4ikL + R48ikL + ... ) e-i(ot, (2.99)

where we have used eq. (2.27) to express the amplitude of the field E(rd) at the dipole in

terms of the the amplitude of the field E(la) at the mirror, multiplied by a factor of -i to



account for the -7/2 phase shift as given by eq. (2.29), substituted for EO(a) from

eq. (2.32), and re-expanded the sum over powers of Re2ikL.

Equation (2.99) was derived assuming that the dipole was oscillating continuously as
doe-iCot, and each term in the expanded sum (Re2ikL)n corresponds to a contribution from
the dipole's oscillation n round trips earlier. More accurately, the term wo3doRne2inkLe-iot

should actually have been written as
003doRne2inkLe-it0t => -o-R n d(t-2nL/c). (2.100)

This expresses the contribution of a particular term explicitly in terms of the acceleration of

the electron at the retarted time tr = t - 2nL/c. Thus we can write the Green's function for

the contribution to the field at rd as,

G (rd,t;rdt') = +ia23 2 Rn(t'-(t-2nL/c)) (2.101)
1r=l

Note that if we assume d(t) = doe-io t ,

t

E(1(rd,t) = fG((rd,tt;rdt')(t')dt' , (2.102)
-00

as it should. Similarly there is a contribution E(ýrd,t) to the field at rd, and it is easy to

show that Erd,t) = E~rd,t) , and therefore the total Green's function for the reflected

waves is G(1)(rd,t;rd,t') = 2G((rdtrd-t').

It is apparent that this is not the complete contribution to the reaction field, since we
have yet to take into account the first emitted wave E(. Note, however, that we can always

write the total radiation field as an integral of the form (2.5), and we choose in the present
case to break the integral up into two parts as,

to t
ERR,cav(t)= JGcav(rd,t;rd,t')d(t')dt' + jGcav(rdt;rd,t')d(t')dt' , (2.103)

-00 to

where t-c/L < to < t and also t-to >>1/oma . The function G(1)(rd,t rd,t') contributes only

for times t' < to. In the integral over times t' > to, the Green's function cannot involve the
cavity since the time difference t - t' is too short for the dipole to "know" about the cavity.
Therefore it must be that the Green's function for times t' > to is given by the free space
Green's function of eq. (2.6), and since this function does not contribute for times t < to,
we can write the total Green's function as,



Gcav(rd,t;rd ,) = Gfe(rdt;rdt) + 2G (rdt;rdt') .

This means that the effect of the cavity is simply to add a contribution to the free space

radiation reaction field. This contribution is nothing more than the field which is reflected

back onto the dipole by the mirrors.

II.E.2 Modified Abraham-Lorentz Equation.

Using eq. (2.104), the radiation reaction field can be written as,

2 4max" b2 o ZR"(t-nc). (2.105)
ERR,cav(t) = dt) - d(t)- 2i Rnd(t-2nL/c) . (2.105)

t 3c 3  a2c3 =1

The modified Abraham-Lorentz equation is obtained by substituting this form of ERR into

eq. (2.8). We can show that a solution to this equation, correct only to first order in coor, is
obtained by substituting for d(it) the approximate form -o02d(t) and for d(t-2nhlc) the

approximate form -o02dOe2inkL e-io(ot. The resulting equation is
.. b2e2 Re2ikL

a+s O2 T + C002(l-i Re2kL = 0.(2.106)x + o02 + 2(1 - a2mc3 1 - Re2ikL) x = 0 (2.106)

We solve this equation by substituting x = x0eat, where a is approximately -io0,

obtaining,
a 2 + 0)02c a + 0)02 (1 - A) = 0, (2.107)

where,

b2 e2coo Re 2ikL
a2mc3 1 - Re2ikL

Thus, correct to first order in wor,

a =- 2 - ioo(1 + A) . (2.109)

Note that A can be rewritten as
A=2 (3 i(Rcos2kL -R2 ) - Rsin2k L

8A= x (1-R) 2 + 4Rsin 2kL

Substituting this expression in (2.109) then gives,

a = - - i(oo + Ao) , (2.111)

where

(2.104)



F= Ffree 1 + Fsin(kL 1 -Aca v  , (2.112)
1 + Fsin 2 (kL) 8n

and
A Tfree Fsin2kL (2.113)

o A(2.113)
4 (8n 1 + Fsin2 kL

and
2e202
2free = 0023 (2.114)
3mc3

Equations (2.112) and (2.113) give the classical prediction for the decay rate and

frequency shift of the dipole oscillator. We see from eq. (2.112) that the extra contribution

to the radiation reaction force from the reflected field exactly accounts for the modified

energy radiation rate (2.83). Note that the frequency shift is now of first order in the
damping parameter oW0. This frequency shift is therefore distinct from the usual type of

shift associated with damping. Also note that, in order to obtain these results, it is essential

to take into account the effect of the free space part of the radiation reaction field, and also

that of the "Gouy phase shift". These results are plotted in Fig. 2.5. The decay rate

essentially follows the lineshape of the cavity, whereas the frequency shift displays a

repeating odd resonance behavior as the cavity is tuned. Both the modification to the decay

rate and the shift scale in proportion to the solid angle and to the free space decay rate. The

interpretation of these results is fairly simple. The field radiated by the dipole is reflected

back onto it by the cavity mirrors. This field has an absorptive or out of phase component

which accounts for the modified decay rate, and an in phase or dispersive component

which accounts for the frequency shift. As the cavity length is tuned, the phase of this

reflected field is tuned, oscillating between absorptive and dispersive and producing the

behavior illustrated in Fig. 2.5.
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Fig. 2.5. Decay rate F and frequency shift Ao of a dipole oscillator in a concentric

resonator, as a function of resonator tuning. The cavity length decreases from

left to right.



II.E Radiation by a Dipole in a Resonator of Large Solid Angle.

In the previous sections it has been assumed that the resonator subtends a small solid

angle. This insured the validity of the paraxial approximation and allowed us to neglect the

vector nature of the field. In this section we explore the case where the solid angle may be

large.

II.F. 1. Dipole in a Spherical Confocal Resonator.

SL >1
Fig. 2.6. Illustration of the breakdown of the "ray degeneracy" in the confocal resonator.

We first consider the case of a dipole in a spherical mirror confocal resonator. For

simplicity we assume the dipole is located at the exact center of the resonator, as illustrated

in Fig. 2.6. As mentioned earlier, the "mode degeneracy" of the confocal resonator may be

understood from the ray optical point of view by our noting that every ray emitted by the

dipole returns to it after one round trip, and that the round trip path of all such rays is

identical. Each of these self-reproducing ray paths corresponds roughly to a "mode", and

the frequency of each of these "modes" is determined by requiring that the round trip path

be an integral number of wavelengths. The fact that the ray path lengths are equal insures

that all of these "modes" have the same frequency. For this property to hold out to a large

angle, it may be seen by elementary geometry that the ideal mirror shape is parabolic.

However, in general, the mirror surfaces are spherical. The deviation of the spherical



surface from the ideal parabolic one gives rise to a breakdown of the mode degeneracy at

large angles.

The ray optics of a spherical mirror confocal resonator have been reviewed by

Hercher,(56) we give the main results here. Consider a ray striking the mirror at a distance x

from the resonator axis. The deviation of the spherical surface from the parabolic one is

given by A = 8 L3 . Thus the total round round trip path in the spherical confocal resonator

is shorter than that of the parabolic by an amount 8A. This gives rise to a resonant

wavelength according to the relation nX = 4(L - 2A) , which implies that the resonator is

characterized by a radially dependent resonance frequency,

v(x) = v0 1 + L , (2.115)

where vo = nc/4L is the resonant frequency for the paraxial rays, and n is the order of

interference. This radial dependence limits the useful mirror radius in a manner that

depends on the resonator finesse: the mirror will only be useful out to a radius xo such that
the frequency shift Av0 = v(xo) - vo is less than or equal to one half the fringe width Avcav

= Avfsr/Fcf, where Avfsr = c/4L is the free spectral range of the cavity and

F cf= 7r-I/ 2(1 - R) the confocal resonator finesse. This gives

x0 = (L3X/2F )1/4 (2.116)

as the maximum useful radius of the mirror. If the resonator is tuned to a resonance with

the paraxial rays, xo is the radius at which the intensity falls to one-half of its value on the
axis. Note that x0/L = (X/2LF) 1/4 << 1.

If we are only concerned with inhibiting radiation by the dipole a slightly larger radius
xl = (L3X/2) 1/4 is useful, since the condition for the ray path to be nonresonant is less

critical than the condition for resonance. If the resonator is tuned so that the paraxial rays

are exactly halfway between two resonances, then xl is the radius of the first fringe of

constructive interference.

The limitation imposed on solid angle by this "spherical aberration" effect is of course

not fundamental. By use of parabolic confocal mirrors the ray degeneracy continues to hold

to as large an angle as desired, at least for some small region of source points near the

center of the resonator. The concentric resonator also does not suffer from this deficiency,

since in this case the spherical surface is exactly the correct one to maintain the ray



degeneracy. Since, in practice, spherical mirrors are much easier to produce than parabolic,
the concentric resonator will be preferable if a large solid angle is desired.

II.F.2.Ray Optics of the Concentric Resonator.

Fig 2.7. Ray propagation in a concentric resonator.

In this section we examine the ray propagation in a concentric resonator, which is
nothing more than a section of a sphere. Suppose the dipole is located at a point A at a
distance A from the center, 0, of a spherical resonator of radius a, and emits a light ray

which strikes the surface of the sphere at a point B (Fig. 2.7). Let the x-y plane be defined

by the points OAB, and let the y-axis lie along the line OA and the x-axis perpendicular to

OA and passing through O. Now the light ray reflects from B to a point C almost directly
across the sphere, and is subsequently reflected back towards the center of the sphere,
crossing the y-axis at a point D. We wish to calculate the distance A', of D from O. Let 0

denote the angle between OB and the x-axis.



Now (see Fig. 2.7) c = AcosO and d = AsinO so that

c AcosO
tano = a--- s (2.117)

a-d =a-Asine

It is a simple exercise in geometry to show that

3 = ZCOD =•- + + 24 (2.118a)

and

c= ZODC = -0-3. - 3 (2.118b)

The law of sines applied to ACOD gives

cos(0+2) (2.119)b= a, (2.119)
cos(0+34)

so that by applying the law of cosines to ACOD we obtain,

A'2 = a2 + b2 - 2abcoso, (2.120)

which, using eq. (2.119) may be simplified to give,

A' = asino
cos(0+34)

A(1 + tan24)
= - (2.121)

(1 - 3tan 2 ) - (1 - tan2 4)sin0

This expression may be expanded in powers of (A/a) to give,

A' = A(1 + 4( •in0 + 4 )2(1 + 3sin2o) + .. . (2.122)

There are two requirements for the ray degeneracy to hold:

(i) The point D should coincide with the point A, to within a distance of )/2F

( X/2 if we are only concerned with the off-resonance condition).

(ii) Provided that condition (i) is satisfied, the path length of all possible paths
ABCA should be the same to within V2F (X2 for the off-resonance case),

regardless of the initial angle 0.

We consider first point (i). Now sine 5 1, so that A' - A < 4A2/a. The condition (i) can

thus be written as,

A•5 •L . (2.123)81F



Next consider point (ii). Assuming that condition (i) is satisfied, D coincides with A,
and the round trip path length Lrt = AB + BC + CA. Now A = (0,A), B = (a cosO, a sine),

and C = (-a cos(0+24), -a sin(0+20)). Thus

AB= 1 - sin0 + L cos20) (2.124a)

BC = 2 1 - 1)cos20 (2.124b)
2 5A

CA = l1 + (y)inO + 5a• cos 20) (2.124c)

accurate to second order in (Aa), so that

Lrt = 4a + 2a cos20 = 4a + 2a( a sin2V, (2.125)

where N = (t/2) - 0 is the approximate angle between the atomic displacement along the x-

axis and the light ray propagation direction. The maximum difference between path lengths

is 2a( , so that condition (ii) becomes simply,

A < 4 ' , (2.126)

which is essentially the same as condition (i).

II.F.3. Radiation by a Dipole in a Concentric Resonator of Large Solid Angle.

According to the results of the previous section, the light rays emitted by a dipole in a

concentric resonator will always return to it after one round trip, and the ray degeneracy

will hold out to a large solid angle, provided that the dipole is displaced from the center of

the resonator by an amount A < Va/4F .This suggests that the results of sections II.D

and II.E may be generalized to the large solid angle case. A similar result also applies to the

parabolic confocal resonator, however, we concentrate here on the concentric resonator

since it is the one easier to realize in practice.



Fig. 2.8. Concentric Resonator of Large Solid Angle.

Consider a concentric resonator composed of two circular mirrors subtending a total
solid angle AL-cav, as ilustrated in Fig. 2.8. In order to analyze this large solid angle case,

we may view the reson ator as being divided in some arbitrary into a number of
"elementary resonators" Rn, each subtending some solid angle Aln, where each of these

"elementary resonators" is taken to have a size sufficiently small that the paraxial

approximation holds, and sufficiently large that its Fresnel number is large. In this case the

resonators Rn are effectively decoupled from each other, and the analysis of sections II.D

and II.E may be applied separately to each, except that it must be kept in mind that the

direction of the field generated in each section is perpendicular to the ray direction, and that
its magnitude is reduced by the factor sinOn' (c.f. eq (2.2)), where On' is the angle between

the dipole and the "axis" of the nth elementary resonator. The total radiated intensity is
therefore reduced by the factor sin2On'. Therefore, since the power ordinarily emitted by

the dipole into free space is scaled by the same factor, the power p, radiated by the dipole
continues to be given by eq. (2.84) even in the large solid angle case, where Pfr. is simply
the power ordinarily emitted into the solid angle Afav in the absence of a resonator. The

result for the total power can be written as,

Pcav = fre[ I + i i] f(Acav)] , (2.127)
l1 + 1 + Fsin2(kL)

where f(Acav) is the fraction of the power ordinarily emitted by the free dipole into the
solid angle "cav .



The quantity f(Mav) may easily be calculated for the case of a concentric resonator
composed of circular mirrors of subtending a half anlge OM , and a dipole linealry polarized

perpendicularly to the cavity axis. Note that cose' = sinO sinh (Fig. 2.8) , so that

sine' = 1 - sin2e sin24. Thus the power ordinarily emitted by the dipole into the solid
angle Adcav is given by

2n OM

pfreeM) = c3 Idl2 2- Jd4 sine dO (1 - sin 2O sin22)

= •idl2 (1 - cos0M - cos30M , (2.128)

and therefore,

f(RAcav) = Pfree) 1 - -cosM - cos30M . (2.129)

Similar considerations hold for the calculation of the radiation reaction force experienced
by the dipole. Again the field generated in each of the "elementary resonators" may be
treated in the same manner as in section II.D and II.E, except that the direction of the field
is normal to the light rays and the magnitude of the field is reduced by the factor sinOn'.

The resultant field experienced by the dipole is obtained by superposition over the
contributions of each of the "elementary resonators". Since only the component of the field
parallel to the dipole contributes to the radiation reaction force, each of these contributions
is again weighted by the factor sine'n; i.e. the magnitude of the reaction force contributed
by each element of the resonator scales as sin2en'.

The net result is that eqs. (2.112) and (2.113) can be rewritten in the large solid angle
case as,

F=r[ 1 + El 1 i (- 1 f(Afcav) , (2.130)1 + Fsin2(kL)

and

Ao = f f(M cav) Fsin2kL
4 1 + Fsin2kL

These results are essentially the same as those obtained earlier, in eqs. (2.112) and (2.113),
and plotted in Fig. 2.5, where for small solid angle f(M~cv) = (3/8x)AIcav. We note that
there is no reason, in principle, that we cannot obtain f(A.cav) = 1. Therefore, the total
radiation rate could be enhanced or inhibited by a factor of 4-1 + F = 2/(1 - R).



CHAPTER III

QUANTUM THEORY OF RADIATIVE DECAY AND LEVEL SHIFTS
OF AN ATOM IN AN OPTICAL RESONATOR.

In this chapter we develop the theory necessary to describe the decay rate and frequency

shift of radiation by an atom in a cavity from a quantum mechanical point of view. The

description is given in terms of the Wigner-Weisskopf approximation, which is appropriate

whenever the atom decays into a continuum of modes. Quantum mechanically, the atom
decays by spontaneous emission of a photon, and the frequency shift of the emitted
radiation is due to a radiative level shift. This level shift is associated with the emission of

virtual photons by the excited atom, and is closely related to the Lamb shift.

One problem which we encounter in the treatment of an open optical resonator is that it

is difficult to identify a complete set of normal modes in which to quantize the field. In this

chapter we present an approximate treatment, based on the idea of an "effective mode
density", and find that the results agree with the classical theory and with experiment. For

the case of a complete spherical resonator a complete set of modes can be easily identified;

an exact theoretical treatment for this case is given in section III.C.



.II.A. General Theory of Radiative Decay in the Wigner-Weisskopf Approximation.

In this section we review the general theory of radiative decay and level shifts in the

Wigner-Weisskopf approximation. We then apply this theory to the decay of an atom into

free space, and into a single damped cavity mode. In connection with the free space level

shifts, we also briefly discuss the effect of mass renormalization and the free-space Lamb

shift.

III.A. 1. Field Quantization.

We begin by reviewing the quantization of the electromagnetic field. The classical vector

potential A must obey the wave equation
1 a2A

Vx(Vx A) + c2 t2 = 0. (3.1)
c2 at2

and in addition must satisfy any boundary condition which may be imposed by reflecting
surfaces. We can write the solution to eq. (3.1) as

A(r,t) = XAX(r,t) = X(Ax~ x(r)e-iO)x t + AX*QX*(r)e+i(.t) , (3.2)

where Ix(r) satisfies the equation
V x (V x I),(r)) + kk2 IX(r) = 0, (3.3)

along with any boundary conditions that may be imposed, where kk = o)A/c, and where X
symbolizes a set of indices which uniquely specify the corresponding solution Ox(r). In

general it is possible to construct a complete, orthogonal set of solutions to eq. (3.3) such

that

f Xl(r)-1 X2*(r) d3r = S11X2AXz, (3.4)

and such that eq. (3.2) represents the most general possible solution for A(r,t). The
quantity AX gives the overall normalization (volume integral of I41l2) of the mode X.

In the Coulomb gauge, for which V-A = 0, the fields are given by,
E(r,t) = -- A = ikX(AIDX(r)e-iXXt - AX*(X*(r)e+i)x.t) (3.5)

B(r,t) = V x A = (AX(Vx (I (r))e-iO)xt + AX*(Vx(IX*(r))e+iOXat) . (3.6)

The energy in the field is simply,



1 k+ 2 k)2
HF = (IE12 + B12)d3r = f 2  l&AJ2d3r = £ - IAl 2AX, (3.7)8x 4n ; 27

where IE12 denotes a time average of IEl2, and similarly for IB12 and IAl2 . If we make the

substitution ( x ~1/2
Ax = - (o)QA + iPX), (3.8)

the field energy may be rewritten as,

HF = (Px2 + ) 2Q 2). (3.9)

This expression is identical with the Hamiltonian of a harmonic oscillator of unit mass.

In order to quantize the field, we assume that according to eq. (3.9) each field mode may be

treated as equivalent to a quantum mechanical harmonic oscillator, i.e. we assume that PX
and QO may be replaced by their corresponding quantum mechanical momentum and

A A
position operators px and q :

Px -- pX (3.10a)
A

Qx - qx (3.10b)
A A

We may also define the new operators ax and a;t as
A 1 1/2 A A
ax =-1 ) (coxqx + i px) (3.11a)

2hmxJ
A 1 1/2 A A
axt-I (coxqx - ip) (3.11b)

This implies that the quantities Ax and AX* should be replaced by the corresponding

operators
(27i0~ 1kol /2 A

AX - ax (3.12a)

AX* 2 ;Rl)2 x a . (3.12b)

Substituting for AX and AX*, we may write the expressions for the field operators,
(2~ xhc2 1/2 /2 A

A(r) = (axx(r) + axtfx*(r)) (3.13)
E(r) = A(r) (3.14)

E(r) = -i (2x) (axbx(r) - axhtx*(r)) (3.14)



B(r) = (aXVxX(r) + atVx(DX*(r)). (3.15)

These operators have been expressed in the Schroedinger representation, in which the

operators are time-independent, and all time dependence is carried by the state vectors. The

details concerning the transformation of the operators and the state vectors between various

representations is reviewed by Loudon(29).

Finally, we note that the Hamiltonian can be written as
A 1

HF = hoM(nX + ), (3.16)

A AA

where n X = akt at is the number operator. The eigenstates of the electromagnetic field

satisfy the eigenvalue equation
1 1

HFInXl, nX2,...) = ((nXl+1)hcol + (n) 2+,)hroX 2 + "') Inl 1, nX2, ... ). (3.17)

We let I {nk)) Inx1, n%2, ... ) denotes the state in which there are nXl photons in mode
A A

X1, nx2 photons in mode X2, and so on. The operators ax and aXt operate on the field

eigenstates as follows:

aax ilnXl, nz 2,...,n"i,... ) = •~i In 1, n 2 i-1,...,n-1,... ) (3.18a)
A

a~itInkX, nX2,...,nX,... ) = nXi+l Ink1, nX2,...,n i+1,... ); (3.18b)
i.e., their effect is to "destroy" or "create" one quantum of energy in the mode ki,

respectively.

III.A.2 Atom-Field Interaction.

The atomic eigenstates are determined from the atomic Hamiltonian HA by the

eigenvalue equation
HAII) = EIII) . (3.19)

In this equation, I is a set of quantum numbers that uniquely specifies the state II); the set of

all such states may be assumed to form a complete orthonormal basis set of atomic states.
The general atom-field state may be written in terms of the basis states II; {nx)), where

II;{nx)) denotes a state in which the atom is in the state II) and the field in the state I{nx)).

The total Hamiltonian of the atom-field sytem is given by



H = HA + HF + HI, (3.20)
where HA and HF are the atom and field Hamiltoninans, respectively, and where HI gives
the interaction energy between the atom and the field, and may be written as(58)

HI = -2p'A(ra) (3.21)me

where p is the momentum operator of the optically active electron and operates only on the

atomic part of the wavefunction, and where A(ra) is the vector potential operator given by
eq. (3.13), evaluated at the position of the atom ra. Of particular interest are the matrix
elements of HI between the state IE;0) and the state II; X), where IE,0) denotes that the atom

is in the state IE) and the field is in the vacuum state (no photons present), and II; X) denotes

that the atom is in the state II) and that the field has one photon in the mode X This matrix

element is given by,

HiX = (I; Mi H I E; 0) = (I; Xi HI IE; 0) = (II p IE) . (XI A(ra) 10). (3.22)

Using eqs. (3.13), (3.18a), and (3.18b), we find that

HIE = - /2  fi*(ra) =-ihg* *, (3.23)

where

g1 CEI' ,X(ra) , (3.24)

and we have used the relationship that(58)

PIE =  r IE , (3.25)

where PIE = (IlplE) and mIE = (II• IE) are the matrix elements of p and the electric dipole

operator p between the state II) and IE).

The quantity gX has a simple physical interpretation. If a classical field contains "one
quantum" of energy ho in the mode X , then the amplitude of the electric field at the atom
is Eo = (8x•hio/A;x)lV x(ra). Thus, for o•_=- ozE, eq. (3.24) can be rewritten as

2gX = IE.*Eo/h, so we see that 2g; may be interpreted as the Rabi frequency of the atom in

the "field of one photon". For the case of a single mode, this is the same quantity g referred

to in section I.B.4.



IIl.A.3 Decay Rate and Energy Level Shift of an Atom in the Wigner-Weisskopf
Approximation.

In the absence of the interaction HI, a state IE; 0) is an exact eigenstate of the

Hamiltonian. This means that if an atom is initially in an excited state IE), it will never

spontaneously jump down to some lower state II), or vice versa, as illustrated in

Fig. 3.1 (a). However, in the presence of the interaction HI, the state IE; 0) is no longer a

true eigenstate, and this accounts for two distinct effects. First, the state IE; 0) becomes

unstable and can decay to the state II; X) by the emission of a photon into the mode X at a

rate F. Second, the state IE, 0), which is still approximately an eigenstate, appears to be

slightly shifted in energy by an amount h&o (and similarly for the other atomic states).

Fig. 3.1(b) shows the atomic level structure in the presence of the atom-field interaction.

(a) 
(b)

t~s-T ~\E)

II> 10

Fig. 3.1. Atomic energy level structure. (a) Atomic levels in the absence of the atom-field

interaction. (b) Atomic levels including the effect of the atom-field interaction.
For simplicity only the state IE) and one of the states II), and only the decay and

shift of IE), are shown.

The mechanisms responsible for the decay and shift of an atomic level are illustrated in

Figs. 3.2(a) and 3.2(b), respectively. For the case of spontaneous emission, the atom is
initially in the state IE) and emits a photon into the mode IX), simultaneously making a
transition to some lower state II) and remaining there for an extended period of time. This

photon is a "real" photon, so the overall process must conserve energy. For the case of the
radiative level shift, the atom is initially in the state IE), emits a photon into the mode X and

simultaneously jumps into some other state II), but then quickly reabsorbs the photon,

Ity - -



returning to the state IE) and remaining there for an extended period of time. This "virtual"

photon emission, since it occurs over a very short time, need not rigorously conserve
energy. Note that according to this picture, the "state" IE) is a "dressed" atom-field state, in

which the atom is most of the time in the state IE), but is part of the time separated into an

"atom + virtual photon" state. To be more precise, when we refer to the atom in the "state"
IE), including the effect of the atom-field interaction, we actually mean the eigenstate of the

total Hamiltonian of eq. (3.20) which is most nearly IE;O) in character, and becomes

identical to IE;0) in the limit of vanishingly small interaction.

(a) (b)

IX)

Fig. 3.2. Diagramatic representation of radiative processes. (a) Spontaneous emission of

a real photon. (b) Virtual photon emission, associated with the radiative level
shift.

Ideally, we would like to find the exact eigenstates IYn) of the total Hamiltonian H.

These eigenstates could then be used as a convenient basis set to solve any interesting
problem. For example, we could suppose the system is initially in the state IE; 0) and

expand this initial state as a superposition of the eigenstates In%). The time evolution of the

wavefunction IP(t)) could then be simply obtained in term of the eigenstates times their

corresponding phase factors. The quantity I(E;01P(t))I2 would then give the probability for

the atom to remain in the state IE), and the energy of the eigenstate In) which is most

nearly IE;0) in character would give the apparent energy of the "state" IE).



For simple problems involving an atom and a single cavity mode (e.g., in the ideal
cavity case treated in section 1.B.4), this is in fact a reasonable procedure. However, in
general the atom interacts with an infinite number of modes with a continuous spectrum of
eigenfrequencies, and the exact diagonalization of the total Hamiltonian is impossible. In

such cases one usually resorts to the approximate method first used by Weisskopf and
Wigner(2). An excellent discussion of the calculation of decay rates and level shifts in the
Wigner-Weisskopf approximation is given by Sakurai( 58), and we review the main results
here.

We supose that at the time t = 0 the system is in the state IE; 0), and that its state at a later
time t can be written as

IT(t)) = cE(t)eiWEt IE; 0) + " 7 clX(t)e-i(q + °')XI; 1X), (3.26)
I X

where OE = EE/h and or = Ei/h. More general field states in which more than one photon is

excited are neglected because they are of higher order in the atom field coupling strength,
which is small. This implies that our calculation will be valid only to lowest order in e2

(e = charge of the electron). The time evolution of IP(t)) is given by the Schroedinger

equation,

HI'(t)) = ih[ If(t)). (3.27)

Substituting the form (3.25) for IT(t)) into eq. (3.27), and taking the projection from the
left with (E; 01 and with (I; Xl, we obtain the amplitude equations

ih = cEHID e-(EI -(M) (3.28)

iF = X c IHIXE* e+i(mEI - )Ot) , (3.29)

where O = COE - "I.

At this point, we make the following heuristic guess for the form of cE(t):
CE(t) = e-iAE t.  (3.30)

This is motivated by the fact that, since the coupling is weak, the state IE; 0) should still be

at least approximately an eigenstate of the Hamiltonian, with a perturbed energy
EE'= h(oE+AoE). This implies that IY(t)) = e-i(OE+AOE)4E; 0), and thus the form (3.30)
for cE(t). Note that in general AOE will have both a real and an imaginary part. Thus

If(t)) = e-i(oE +Re(AOM))t e+Im(AoE)t IE; 0). (3.31)

The probability for the atom to remain in the state IE) is simply
PE(t) = I(E; 01Y(t))12 = e+2Im(AE)t = e-t . (3.32)



Thus, the apparent energy shift &o and the decay rate F of the atom in the state IE) are given

by
80 = Re(AoE) (3.33)

F = -2Im(AOE) (3.34)

Substituting the form (3.30) for CE(t) into eq. (3.28) leads to
1 e-i(EI + AcoE - )t - 1 (335)

cIl(t) = - HIhE (3.35)
h (OEI +AE -O)

Substitution of this form of clX into eq. (3.31) leads to the following self-consistent

equation for AOE:

S(OEI + AWE -COX(3.36)
I 1 H2 1(El E - M)

Since we are calculating AoE only to first order in e2, we may drop the AoE from the right

hand side of eq. (3.36) and taking the limit cot >> 1, and making use of the identity
l1 - ei x t  1

lim = -ixS(x), (3.37)

t -- oo

we obtain finally,
F = 2n 1 IgCg28((OEI - COX)) (3.38)

I,

1
8 = ~ 12 EI - X) (3.39)

These two equations (3.38) and (3.39) are the essential results of the Wigner-Weisskopf

theory. Note that eq. (3.38) is equivalent to Fermi's "Golden Rule". Also note that, as
expected, the delta function in the expression for F insures that the spontaneously emitted

photons conserve energy, whereas for the shift &o a range of photon energies can

contribute.

l.A.3 Free Space Spontaneous Emission Rate and Level Shift.

In this section we apply the results of the previous section to the case of free space.

Since there are no boundary conditions to satisfy, it is most convenient to take plane wave
normal mode functions which satisfy periodic boundary conditions on a cube of edge L and



volume V = L3 . The free space limit is obtained as V o . The normal mode functions are

given by

bik(r) = Eik eikr , (3.40)

where the values of k allowed by the boundary conditions are
2x:

k = - (nxx + nyy + nzz) ; nxny, nz = 0, ±1, ±2,..., (3.41)

and where eik is a unit vector giving the polarization of the mode. The vector Eik must

satisfy Eik-k = 0, so the are two independent polarizations (i = 1,2) for each allowed value

of k. We see that in this case X = {i, nx, ny, nz} is the set of indices necessary to uniquely

specify a mode. The normalization constant Aik is given by

Aik = IJflik(r)12 d3r = V, (3.42)

and the coupling constant gik is given by

gik = • ( •h/2 ( lE ik eik'ra . (3.43)

The sum over allowed photon modes X involves a sum over the allowed values of k. In the
limit as V-o, the sum over a discrete set of modes goes over to a continuous limit

according to the usual prescription

Y --> Jd-Jdk p(k), (3.44)
k

where p(k), the number of modes per unit frequency per unit solid angle, is given for our

free-space modes by
V4k2

Pfree(k) = Pfree(.mk) = (3.45)
(2xt) 3c3

Thus, using eqs. (3.38), (3.39), (3.42), and (3.43), the decay rate and shift of the atom in
the level IE) may be written as

I = 2 J Ij 72 jd Ikre&,2 (dXl(k) 8 (I ,-O k) (3.46)
Ii r2 V f

f= JdE4dft IElikI (2xho d d(k) 1(3.47)
I 1 h2  Vi J (OEI- Wk

Substituting for p(k) = pfree(k), and using the result that(58)

Sfdk IlEI'ikI2 = 8x I••El 2 , (3.48)
1

we find the familiar result that



Ffree = X 4II 2w ,3  (3.49)
3hc3

where the sum over I is restricted to values such that "o < oWE. Also, performing the

integration over solid angle, and substituting for pfree(k) in eq. (3.47) we find that

Jk(max)

1 3-2 c f laEI2Ok
&free -= :2  IElI2 d Eo , (3.50)S C3fc3 J EI- k

I 0

where ok(max) is some upper limit of integration, and the sum over I runs over all the

atomic states.

It is apparent that the result (3.50) for the frequency shift diverges in proportion to the
upper limit wk(max) of the integration and therefore does not produce a well-defined

answer. Nevertheless eq. (3.50) will serve as a completely adequate expression for the

calculation of the frequency shift of an atom in a cavity. This point will be discussed

presently in connection with the free-space Lamb shift, and in the following sections.

III.A.4 Mass Renormalization and the Free Space Lamb Shift.

The result (3.50) for the shift for the free space level shift of an atom clearly diverges.

This difficulty was resolved by Bethe(15), who applied the idea of mass renormalization to

the calculation of the Lamb shift of atomic hydrogen. Basically, mass renormalization

consists of subtracting from the result (3.50) a contribution which should be regarded as

having already been included in the free electron mass. To see how this works, note that a

free electron also interacts with the electromagnetic field according to diagrams which are

strictly analogous to Figs. 3.2(a) and 3.2(b). In this case the states of the electron are

normalized plane wave states Ip), where (rip) = eip*r//VhV. The diagram analogous to

Fig. 3.2(a) describes the radiative damping of the electron's kinetic energy, and the

diagram analagous to Fig 3.2(b) describes the shift in energy of the free electron. This shift

is also given by eq. (3.39), where now gX = -iHp)p'/h, where the matrix element is now

given by(58)

Hp' =m P.Yik* 8p'+k, p, (3.51)
VO~k



where we have assumed the plane wave states IX) = li,k) for the field. Thus using

eq. (3.51) to substitute for gx in eq. (3.39) we find that the energy of the free electron is

shifted by an amount

&,(elec) = 2 dik Ip'eik*I2fdok p(k) 1 (3.52)hm2V 1 0k2
where we have used eq. (3.44), together with the fact that for nonrelativistic energies the
energy denominator is given by wE - "O - k = -ok. Substituting for the free-space density

of modes from eq. (3.45), this can be rewritten as

oree(elec) 2 e2  max  2 = Cp2, (3.53)
3x hm2c3

where

2 e2 0o(max)
C = . (3.54)

3x7 hm2c3

This shift in energy causes a shift in the apparent mass of the electron from mbare to mobs,
where mbare is the electron mass in the absence of any interaction with the electromagnetic
field. However, this effect should be regarded as having already contributed to the atomic

Hamiltonian, because the kinetic energy of the electron was written as p2/2mobs, using the

observed electron mass. In order to avoid counting this effect twice, it is necessary to

subtract it off from the value of the shift already calculated. Thus the "observed" atomic

level shift is given by

Smobs =- 28O - I - IE) = &0 - C(EI p2 IE). (3.55)

Using the completeness relation for the atomic states, together with eq. (3.25) the "mass

renormalization term" can be rewritten as
(Ok(max)

(El - 2 1E) = IEl 12  d(Ok w EI2  (3.56)

I 0

Thus, substituting this expression and eq. (3.50) into eq. (3.55), we find that
Ok(max)

1 2-•d EI3
5wobs =  tEi12 d(Ok oE , (3.57)

h c WEI - (Ok
I 0

where the sum over I runs over all atomic states.

This expression is much more well-behaved than (3.50), diverging only logarithmically.
It is therefore very insensitive to the exact value of Wk(max). Without going into any further

details, we merely remark that Bethe, arguing that f,(max) should be taken as mc2,



evaluted the result (3.57) for the s-states of hydrogen.(15) For the 2s state, he calculated a
shift of &o0 bs(2s)/2x = +1040 MHz, whereas the experimentally observed value is(59)
+1057 MHz. This was a very important result, as it showed that the Lamb shift is a
radiative effect, that it is basically a low-frequency non-relativistic effect, and that it can be
calculated quite accurately using the Wigner-Weisskopf formalism, together with the idea
of mass renormalization.

It should be noted that the mass renormalization term does not display any resonant
behavior for t =- oEI. In all of the freqeuncy shifts to be discussed in this thesis, what we

are interested in is not the absolute frequency shift &•cav of the atom in the cavity, but the
difference Awcav = R4*av - &ofee between the shift with the atom in the cavity and the shift

with the atom in free space, since that is the quantity we can measure. In every case to be
discussed here, the only effect of the cavity is to modify the atom-cavity mode coupling in
the vicinity of an atomic resonance. Because of this, mass renormalization has no effect on
the relative frequency shift Ameav.

III.A.5 Spontaneous Emission by an Atom into a Single, Damped Cavity Mode.

In this section we present a simple, heuristic calculation which allows us to obtain the
spontaneous emission rate and frequency shift of a two-level atom interacting with a single,

damped cavity mode. This model has been previously discussed by Filpovicz et al(14), and
is a very good approximation to a Rydberg atom interacting with a single mode of a

microwave cavity(6), and may also be a good approximation to the spontaneous emission of

an atom in an optical resonator, if a large number of degenerate modes can be treated as an
"effective single mode". Our starting point is eqs. (3.38) and (3.39). The upper level of
the atom is IE), and the single lower level we denote by IG). We also make the heuristic

assumption that the damped single mode may be described as having an "effective mode
density" Pcav()) (modes per unit frequency) of "one mode" distributed in frequency
according a Lorentzian lineshape of width Jc/2Q, where Q is the quality factor of the
resonator mode, and o• its resonant frequency. Thus

Pcav(O) = 1 x 1 2Q) (3.58)
X (CO - Oc)2 + (Oc/2Q) 2

Eqs. (3.38) and (3.39) may thus be rewritten as
Fav = 2X Ig)l2 Pcav(COE) (3.59)



&Ocav = I1 2 r Pcav() . (3.60)
J OEG - C

Substituting for gX from eq. (3.24), and for Peav(w) from eq. (3.58), we find

8Tcav QIPEGI2 (c (2aJ2Q)2  (3.61)
ShVeff (\ J (OEG o Oc) 2 + (cm2Q) 2

4xQIgEGI2 (..G (OEG - Coc)(oc/2Q)

hVe O~4 J (OEG - c)2 + (c/2Q) 2  (3.62)
where, for simplicity we have assumed that the dipole moment gEG is parallel to the field

E(ra). Also we have defined a new quantity, the "effective mode volume", by

Veff = (3.63)
IbQ)(ra)12

Note that

flDx(r)12 d3r = IOX(ra)12 Veff. (3.64)

Thus if the magnitude of the normal mode function COX(r) is uniform, as it is in the plane

wave case, then the effective mode volume is equal to the actual volume of the resonator. If

however, the magnitude squared of the normal mode function is greater at the atomic
position ra than its average magnitude squared, the effective mode volume Veff is smaller

than V, expressing the fact that the field energy is more concentrated on the atom than if the

mode were uniform in intensity.

For the case of the resonator exactly on resonance, Ok = wEG, the result for Fcav may be

written in terms of Ffree:

Tcav ) ee . (3.65)

This is just the result that was pointed out by Purcell(3): if a cavity is operated in a low
order mode, then Veff- V 7,3, and therefore the spontaneous emission rate is enhanced by

a factor of the order of the cavity Q when the cavity is tuned to the atomic resonance.
Similarly it may be shown that if the cavity is tuned such that EG << ok, so that the cavity
mode is far above the atomic resonance, the spontaneous emission rate of the atom is
inhibited by a factor of the order of 1/Q.

The results (3.61) and (3.62) are plotted in Fig. 3.3. The essential features to notice are
that the spontaneous emission rate follows the Lorentzian lineshape of the cavity, being
very much enhanced on resonance, and inhibited off resonance. The frequency shift has a

dispersive lineshape, with the level shifting to the red when the cavity mode is tuned to the



blue, and vice versa. This feature may be understood by noting that the atom-cavity system

behaves very much like two coupled oscillators: the atom-cavity mode coupling pushes

their eigenfreqencies apart.
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Fig. 3.3. Spontaneous emission rate and level shift of a two level atom interacting with a

single damped mode. The cavity length decreases from left to right.

There are a number of issues which we have not fully addressed - the shift of the state
IG), the shift of IE) and IG) relative to their free-space values, and the possible effect of the

mass renormalization. These issues will be addressed more fully in the following section

III.B, in which the frequency shift of an atom in a concentric resonator is calculated.

However, the net result is that this model of an atom interacting with a single cavity mode

contains all the essential physics of the problem and also gives quantitatively correct

results, provided that the field can be interpreted as effectively a single damped mode.

rCOJ



III.B. Spontaneous Emission by an Atom in a Concentric Optical Cavity.

In this section we present a calculation of the spontaneous emission rate and level shift

of an atom in an open concentric optical resonator. The approach is similar to that of
section III.A.5, in that we model the damped optical cavity by means of an "effective mode
density". Results obtained for the decay rate and frequency shift of a two-level atom agree
with the classical model of chapter II.

III.B.1. Heuristic Model for the Cavity Mode Density.

In this section we discuss the "mode density" of a concentric optical resonator. Just as
in chapter II, the resonator is composed of two spherical mirrors of radius of curvature a,
separation L = 2a, reflectivity R, and a circular cross section of diameter 2b, as illustrated
in Fig. 3.4. We denote the solid angle subtended by the mirrors as Afcav and the
remaining solid angle as ADside.

C avity
Modes

Fig 3.4. Concentric optical resonator, showing the division of the complete set of modes
into "sideways modes" and "cavity modes".
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Ideally, we would like to find normal mode functions of the type Q((r), which satisfy

the wave equation (3.3), satisfy the boundary conditions on the mirror surface, and form a

complete, orthogonal set. The solution for the decay rate and level shift could then be

obtained in terms of these functions by use of eqs. (3.38) and (3.39). Unfortunately, for

the case of an open resonator, the important problem of defining such a complete set of

orthogonal modes has not been solved.(60) Even the rigorous solution for one mode can be

a difficult problem,(61, 62) and once found, the modes of open resonators may not even be

orthogonal.(60 ) For radiation propagating at small angles to the resonator axis in stable

resonators, Hermite-Gaussian beam modes can be defined(54 , 62-64), which have the

property that they satisfy the wave equation and that their phasefront matches the mirror

boundary. However, the Gaussian beam solutions are not valid for light propagating at

large angles, are not valid when the "mode" spills over the edge of the mirror, and also do

not include the sideways going modes. Worse yet, they diverge in the limit of a concentric

resonator (the waist size goes to zero and the spot size on the mirror goes to infinity). The

most comprehensive study of open resonator modes appears to be that of Vaynshteyn(62),

but even in this work a complete, orthogonal set of mode functions, which includes both

modes confined by the cavity, and sideways-going modes, is never defined.

In order to describe the open concentric resonator it is therefore necessary to resort to

some approximate method. In this section we argue that the open concentric resonator may
be modeled in a heuristic manner by defining an "effective mode density" Pcav(k) to

account for the effect of the cavity in eqs. (3.46) and (3.47). In order to do so, we note that
if the Fresnel number F = nb2/XL of the resonator is large, it should be possible to divide

the complete set of modes into "sideways modes" and "cavity modes", as illustrated in

Fig. 3.4. Clearly, the spontaneous emission out the sides of the resonator must be largely

unaffected by it; we can account for this by defining pcav(k) = pfree(Ok), if k points into the

sideways part of the solid angle A-Oside.

The "cavity modes" describe the spontaneous emission of the atom into the cavity part

of the solid angle. Now if the cavity had perfectly reflecting mirrors, the concentric cavity

would be described by almost perfectly sharp modes having a discrete set of
eigenfrequencies on = nnrc/L. This conclusion may be reached from either the ray optics

point of view presented in chapter II, associating a "mode" with each ray direction, or from

a Hermite Gaussian mode point of view. Therefore the "mode density" of such a resonator
would consist of a series of evenly spaced 8-function spikes. In the presence of resonator

damping, we can think of each of these modes being "spread out" according to the cavity



lineshape function L(c). We can account for this by defining the effective mode density to
be Pcav(k) = pfree(o)L(cok), if k points into the resonator part of the solid angle. Now for

the atom displaced from the center by a distance much less than L/F, we know from
chapter II that the cavity lineshape function is given by L(w) = C/(1 + Fsin2 (L/Uc)),
independent of the direction k of the "mode" in the resonator, where C is some
normalization constant. This constant may be determined by demanding that the
spontaneous emission rate of the atom agree with the free space rate in the limit as L -+ **.
This implies that

oo+nxc

L(o) = - L(co)do = 1; (3.66)
nic

and, using the relation(56)

=x (3.67)1 + Fsin2x = - F '
0

that C= -1 +F .

Thus, we find that the resonator can be modeled by the effective mode density

Pree(ok) , k in Afide
Pcav(k) = (3.68)

pfree(Ok) L(Ok) , k in AMav
where

L([) = 1 (3.69)
1 + Fsin2(0L/c)

lI.B.2. Concentric Cavity Spontaneous Emission Rate and Level Shift.

We can use our model for the "effective mode density" of the concentric cavity to

calculate the spontaneous emission rate and level shift of an atom in a concentric resonator,
by substituting the form (3.68) for pcav(k) into the expression (3.46) and (3.47) for F and

&S. In this section we make the futher simplifying assumption that only one of the states
III) a IG) lies lower in energy than the state IE), but we allow for the possibility that there
may exist other higher lying states IIn), as illustrated in Fig. 3.5.
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Fig. 3.5. Atomic Level Structure.

Thus

Fcav = 2 E dGQkdok Igikl2pfree(O)k)8(O)EI -

I 1 ACside

+ 27rE fdkfdOk Igikl2pfree(O)k)L(Ok)6 (EI - Ok)
I 1 A2cav

= 2 Y, Z IdQkfdOk Igik 2 pfree(Ok) 5(wEl - )
1 4x

+ 2 E. fdgkfdO)k Igikl2 pfree(Ok)(L()k) - 1)6 (WEI- Wk), (3.70)
I 1 Ancav

where f denotes an integration over the full solid angle Afside + MAfcav. Substituting
41c

from eq. (3.43) for gik, and from eq. (3.45) for Pfree, eq. (3.70) may be rewritten as,

Fcav = free[1l + (L(OEG) - l)f(AM av)], (3.71)

where

419EGI20EG3
Ffree =  (3.72)

3hc3

is the free space result for the spontaneous decay rate from IE) to IG), and

Y, dQk I19EG'Eik 12

f(A.cav) = 1 Acav (3.73)
1fidfk IrEG'ik12i 4R



is the fraction of the free-space spontaneous emission rate ordinarily emitted into the solid
angle Acav. Note that with the definition (3.73) for f(ALcav), the result (3.71) applies
regardless of the polarization of PgEG.

For the case that the dipole is linearly polarized perpendicular to the resonator axis,

eq. (3.73) becomes,

fdfk IpEGI2 sin 2 e'

f(Ai-cav) = av = 1 - cosM -c cos3 0M, (3.74)
4dfk ItEGI2sin2o'
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where as in section II.F.3, 0' is the angle between gEG and k, and OM is the half angle

subtended by the mirror.

We see that the result (3.71) for the decay rate of the excited atom is identical with the
classical result (2.130). This correspondence will be discused further in chapter VI.

The result for the level shift &ocav may be written as
)Ok(max)

8&Oav= 7 dk i Jdcok Igikl2pfrer(W 1
S1 A•side 0 EI- -k

(Ok(max)

+ f •1 dk dJdok Igikl2pfree(ok)L(ok) 1 (3.75)
Ii AIcav O EI - Ok

where as before ok(max) is some upper limit of integration. It is apparent that this

expression for the level shift diverges in proportion to ow(max), just as was the case in

eq. (3.50) for free space. However, in the experiments what we will be able to measure is
not the absolute level shift 8 cav, but only the difference Aocav = &Ocav - &Ifree between

the shift of the atom in the cavity and the shift of the atom in free space. Substituting from
eq. (3.43) for gik and from eq. (3.45) for Pfree, this quantity may be written as

ok(max)

1 C OEI20)
A 4ay = ~1  dGklEIEikl2  Sr' •"ok-2 (L( k)-1). (3.76)

3  1 Acav OEI - Ok

Note that only the "cavity modes" contribute to the difference in frequency shifts, because
the sideways modes contribute equally to the free-space shift and the cavity shift. Also note
that the factor (L(Wo - 1) takes into account the difference between the density of modes in
the cavity and free space, the former being proportional to L(Wk) and the latter to 1. In

order to further evaluate eq. (3.76) note that the fractional change of the function



f(o) k in an interval A0 f is given by
OEI - Ok

d = =EI-- + 1 Akf (3.77)

Al () dk d :EI - )k Ok EI- (k)
Thus a fractional change in f of order unity occurs for Af/f - 1, or

A(kf ~ k(0k - COEI) (3.78)

OWE
The function g(ok) = (L(ok) - 1) changes periodically with a period

Aokg = itc/L. Thus if Aokf >> Aokg, or

(ok(Ok - COEI) EC
>>'L- ' (3.79)

(OEI
the factor f(Ck) in the integrand of eq. (3.76) varies very little over many periods of the

function g(ok) in the integrand. We may therefore approximate f(Wk) as constant over some
interval Aok, so that

oo+ACk ( +A)ok

fdak EI (L(Ok)- 1) J0 f d (L(ok)- 1)
0oo

- OEI2 (0 AOk(L(O)- 1)) = 0, (3.80)
(OEI- COO

where the region of integration must satisfy ixc/L << Ack << oo, and L(c) = 1 is the

cycle average value of L(Ok), as in eq. (3.66). From eq. (3.80) it is evident that there is no

contribution to the difference in frequency shifts A•oav from any interval of frequency

[CO, co + AOk] for which the magnitude of the detuning oWE - Ok is much greater then a

free spectral range nc/L. In particular consider the higher lying states II) * IG). Then OEI is

negative, and the magnitude of the detuning I(OEI - okl is always much greater then tc/L.

Therefore there is no contribution to the difference in frequency shifts from terms in

eq. (3.76) such that I # G.

Next consider the remaining contribution from the term I = G. We can write eq. (3.76)

as:



(EG-A(Ok

A1ocav =  1[dQklEG*Eik2 d (ok (L((Ok)-1)
47g2hc3 1 A fcav OEG -Wk

O(EG+A()k (Ok(max)

+ fdo)k (L(ok)-1) + fdok W 2 (L(0k)-1) , (3.81)
(OEG - (Ok (OEG - (Ok

(OEGA-Ok COEG+A~k

where again xc/L << Aok << WEG. By the same argument that led up to eq. (3.80), the first

and third integrals on the right are equal to zero. Also note that,
OEG+AOk WEG+A(Ok

dk OEG ( OEG3  dk = 0. (3.82)
OEG - Ok OEG - Ok

OEG-AO~k (OEG-AO)k

by the antisymmetry of the integrand about the point ok = coEG. Therefore, the difference in

frequency shifts is given by
OEG+A(Ok

AcOcav = f(AQcav )free d(k 1 L(Ok) , (3.83)
27E (OEG - (Ok

OEG-Afk

where we have used the relations (3.72) and (3.73), together with the fact that ok t oEG,
x = AoL/c, and 0 = oEGL/c, we can rewrite the frequency integral as,

OEG+A k

(dO k 1 L(k) - - = -I1, (3.84)
OEG - (Ok 1 + Fsin 2 (x + )

OEG-A(Ok -0

where the limits of the integral may be extended to ±+0, since Aok >> Ic/L, and since only

values of Ixl - 1 contribute significantly to the integral. The integral I1 is evaluated in

appendix 1, with the result that
S= -Fsin(24) (3.85)

2(1 + Fsin 2o)

Therefore, combining eqs. (3.83), (3.84), and (3.85), we find that

f(Afcav) Fsin(2oLEG/c)
Af 4 1 + Fsin2 (OEGL/c)

Again, we find exact agreement with the classical result (2.131). However, our physical
interpretation of the effect is now very different. In the classical model, we thought of the

atom as being much like a classical dipole oscillator, and when we put the oscillator in the

cavity, some of its emitted radiation was reflected back onto it, causing an additional

contribution to its radiation reaction force which shifted its natural frequency. In the present



model, we think of the atom and the field as a combined quantum mechanical system,

whose energy levels are shifted slightly as the resonator enhances the interaction between

certain cavity modes and the atom, and inhibits others. When we probe the transition with a

laser, the level shift of the excited state shows up as a frequency shift. This question of

interpretation will be discussed further in chapter VI.

The results (3.71) and (3.86) for Fcav and &ocav have been illustrated in Fig. 2.5.

Again, note that for F >> 1, the spontaneous emission rate is enhanced by a factor of
approximately 4-W'f(A)cav) when the cavity is on resonance, and inhibited by a factor of

1/(1 - f(Afcav)) when the cavity is off-resonance. The shift displays a repeating

dispersive-shaped behavior, vanishing when a cavity resonance is tuned exactly to the

atomic resonance, and when the atomic resonance is exactly halfway between two cavity

resonances. Also, the level shifts to the blue when the nearest cavity mode is tuned to the

red, and vice-versa.

The result (3.86) may be understood from the form (3.76) of the integral for Aocav. In

free space, the mode density is essentially constant over a small range of frequency near
resonance, so the integrand p(OcW/((oEi - ok) is antisymmetric about resonance, resulting in

no net contribution to Acocav from a small region of frequency near resonance. This

corresponds to equal numbers of virtual photons emitted slightly above and below

resonance. In the cavity, however, the effective mode density may be enhanced by a cavity
resonance slightly to one side of the atomic resonance. In this case the integrand is no
longer antisymmetric, and a net contribution to Aocav results. In this case the virtual photon

emission is favored to the one side of resonance. Only if a cavity resonance is tuned exactly

to the atomic resonance, or the atomic resonance exactly halfway between two cavity

resonances, is the mode density symmetrical about resonance, and the contribution to the

frequency shift equal to zero.

In applying the form (3.75) of the level shift Ocav to the calculation of Acoav given by

eq. (3.76), we have left out the mass renormalization term, which we know was important

to giving us the correct value of the free-space shifts. In principle this mass renormalization
term might also be modified in a resonator and therefore contribute to A0cav. That is, we

should actually have written that



Aocav(obs) = 'fCcav - [(E -2 P E) }

= 2m - 2 c
- {8o free - [(El -IiE) fre . (3.87)

We can calculate the energy shift of a free electron in the cavity by substituting for pcav(k)

in eq. (3.52):
Ok(max)

8oav(elec)= h2 e 4fdnk Ip'Ejik*I2  d o)k -1
hm2V I 47c (2n) 3c3 k)i2

21re 2  Fd*1 (Ok(max) V) -1

hm 2V 1 Aicav (2x)3c3 0jk2

= free(elec), (3.88)

where the second term is equal to zero, by the same argument leading up to eq. (3.80).
Therefore

AcOav(obs) = G&Ocav - C(EI p2 IE)) - (&Ofree - C(EI p2 IE)) = AOcav . (3.89)

We see that the mass renormalization term, even though it is very important for the
calculation of the absolute level shift ctav, has essentially no effect on the difference in
frequency shifts Aocav. As mentioned earlier, this is because the only important effect of

the cavity is to modify the mode density in the vicinity of an atomic resonance, whereas the
mass renormalization term exhibits no resonance behavior.

One further point is that in our experiments we will actually not measure the level shift
Aocav directly, but only the transition frequency from IG) to IE), which includes the level
shifts of both IG) and IE). Now for the level IG) we can write an expression analogous to
eq. (3.75) for Acocav(G),

()k(max)

AcOcav(G) - IdIdklPGI'Eikl2  dok 2k (L(ok)-l), (3.90)
47A2 hc3 I 1 Acav ()GI - Ok

where the sum over I now denotes a sum over all the atomic states other than IG), including
IE). However if IG) is the atomic ground state, o)GI < 0 for all I. Therefore, according to
eq. (3.80), AOcav(G) = 0; i.e. there is no shift in the energy of the ground state in the

cavity, relative to its energy in free space. This means that if we probe the transition from
IG) to IE), the measured shift in transition frequency will consist only of the shift Aoav in
the energy of the excited state IE).



III.C. Spontaneous Emission of an Atom into a Complete Spherical Cavity.

In this section we calculate the spontaneous emission rate and level shift of an atom in a

complete spherical cavity. As mentioned earlier, the normal mode functions of the sphere

are well-known and therefore this problem may be treated exactly, without any recourse to

arguments based on an "effective mode density". In order to take into account the cavity

damping, we follow an approach similar to that used in laser physics(65), and suppose that

the partially reflecting sphere is embedded in a much larger perfectly reflecting sphere. We

solve the for the eigenmodes of the combined small/large sphere system; the limit of the

partially reflecting sphere in free space is then obtained as the radius of the large sphere

tends to infinity. As in the previous section, we consider an atom with the level stucture
illustrated in Fig. 3.5, with only a single level IG) lower in energy than IE).

M.C.1. Boundary Conditions and Normal Mode Functions.

Fig. 3.6. Atom inside a partially reflecting sphere of radius a, embedded in a larger

perfectly reflecting sphere of radius d.

The spherical cavity system is illustrated in Fig. 3.6. The small sphere S has a radius a

and a reflectivity R, and the large sphere S2 has a radius d >> a, is perfectly reflecting, and

is concentric with S 1. Similar to the approach of Ref. 65, we suppose that the sphere S

may be modeled as a spherical dielectric shell of negligible thickness t and dielectric



constant E such that rl = et. Thus the space inside S2 has a spatially dependent dielectric

constant
e(r) = 1 + T1 8(r - a). (3.91)

Of course in reality the boundary of S1 may be more complex, but the more complex

boundary conditions resulting from a more realistic model of the reflecting surface will

modify the calculation in only a trivial way, and therefore may be neglected.

Now the field inside the sphere must satisfy the wave equation
Vx(VxDX(r)) + (1 + rl 6(r - a))kX2 4tD(r) = 0. (3.92)

This equation follows from the macroscopic Maxwell equations, making use of the
constitutive relation

D(r,t) = E(r) E(r,t) , (3.93)

and expressing the E as a Fourier sum according to eq. (3.5). The normal modes X must

satisfy eq. (3.94) together with the boundary condition that the tangential component of E
vanish at the surface of the outer, perfectly reflecting sphere:

i(r=-d) x P = 0. (3.94)

The solutions of eq. (3.92) may be expressed in terms of solutions in the separate
regions 0 < r < a ("region I") and a < r < d ("region II") which satisfy the wave eqation in

vacuum (3.3), together with auxiliary boundary conditions at r = a. These conditions are

obtained by integrating eq. (3.94) across the boundary. Now from the Maxwell eq.
V*D = 0, it follows that

V.E(r) l 8'(r-a)V-40.(r) = - Q -.F, = - r-a) (3.95)
E(r) 1 + rl•(r-a)

Thus, making use of the identity
Vx(VxDX,(r)) = V(V*4D(r)) - V20D(r). (3.96)

eq. (3.92) may be rewritten as

V2 4~(r) + V(DXI(r) 1l 8'(r-a) + (1 + 1r 8(r-a))k,20X(r) = 0 . (3.97)
1 + r18(r-a)

Taking the scalar product of this equation with the unit vector A gives,

V(VD~ 0) + r il '(r-a) + (1 + 1r 6(r-a))k, 2400 = 0. (3.98)
r Do 1 + Tri(r-a)

Consider a small "Gaussian pillbox" of area AA having faces on each side of S at radii a+

and a., where a+ and a. are infinitesimally greater than or less than a, respectively.
Integrating eq. (3. ?8 ) over this volume results in



a+

r AA -r d 5'(r-a)dA nV(eO + AA dr 1'(r-a) + AAlkX20•O(a) = 0, (3.99)
DO 1 + ri8(r-a)a-

where the first integral has been evaluated using Gauss' theorem, and where n is an
outward normal unit vector. Noting that the second integral vanishes by the antisymmetry
of the integrand, this may be further evaluated to give

a a = -7rkX2 q)X(a) , (3.100)F'-la+ - 'a-

The same result applies to the 0 component of O, so that the auxiliary boundary

conditions may be written as,
1 D(a+) = D(D(a.) (3.101)

a+XT - a a_ = -TkX2IXT(a) (3.102)

where 'XT = 0)XbP + (),$ is the transverse part of OX, and the continuity equation

(3.102) follows from an application of Stoke's theorem to the integration of the Maxwell
1aB

equation VxE = - around a small loop surrounding the boundary. There is also a

slightly different boundary condition which applies to the derivative of the radial part of
(DX, but in our problem the fields at the boundary are entirely transverse and so we will not

need to consider this condition.

The solution to the wave equation (3.3) in regions I and II may be written as(66)
D(r) = Mml(r) or O(r) = Nml(r), where

Mml(r) = A-1I(1+1) Cm/1(0,)ji(kXr) + B l(l+ 1) Cml(0s,)nl(kXr) (3.103)

and

Nml(r) = C l(l+1)1 j/(kXr)P(0) + l(l+lkr [rj(kr)]Bm/(,) )

+ Dl(l+ (kr)P 1 d [mrnl(khr)]Bml(0,))} (3.104)

where, A, B, C, and D are arbitrary constants, jj(x) is the spherical Bessel function of
order 1, and nl(x) is the spherical Neumann function of order 1. Cmri, Pml, and Bm'l are the

vector spherical harmonics of order m and 1, which are given by
Pm/(6,4) = r X(0,4) (3.105a)

Bm(6,4) = VXm ,) = xCm(0,) (3.105b)

Cm(0,) = Vx(rX(e,%,)) = -rxBml(0,4), (3.105c)



and where
XM(0,0) = eimt PT(cose) (3.106)

is the ordinary spherical harmonic of order I and m. The superscipt a = e or o denotes that
either the even or odd part of the function is to be taken; i.e. Xml= Xi + iXml, where

Xme and Xi 1 are real and where Xmi is any one of the functions Pmi, Bml, or Cmm.
(Throughout this section, we adopt the notation of Morse and Feshbach.(66))

In order that the separate solutions in region I and H satisfy the continuity condition
(3.101) it is necessary that they have the same angular dependence. Since the functions

Cm, and BI 1 form a complete orthogonal set of functions on the unit sphere,(66) this

implies that the solution in region II must be of the same type (M or N) and of the same

order 1, m, and a as the solution in region I. Thus each normal mode will be specified by

the set of indices X = {q, a, m, 1, n), where q = h for the M-type modes and q = e for the

N-type modes, and n is an integer which labels the values of k) allowed by the boundary

conditions.

Consider first the M-type modes. We may write the solutions to the complete boundary

value problem as

Mmn(r) , r a

•mn(r) = (3.107)

M n(r) , a<rrd

where

Mfn(r) = A1(+ )Ctm(0,4)jl(kr) (3.108a)

MI n(r) = C 41(I+ 1) Cml(0,O)jl(khr)

+ Dan4l(l+l) Cml(0,O)nl(kgr) , (3.108b)

and where we are neglecting the solution proportional to nl(r) in region I because the

solution must be finite at the origon.

At this point it is convenient to make use of the fact that k,%a >> 1, for modes X which

contribute significantly to the decay rate and shift. Then the asymptotic forms for j/(x) and

nl(x), valid for x >> 1, 12 may be expected to hold to a high degree of accuracy for x = khr

and r - a:



j(x) - sin(x- -  (3.109a)

1 lt
nt(x) - 1 cos(x - -) . (3.109b)

thus the solutions for kr >> 1, 12 become

Maln(r) = Ah I'N 1(+1) Cm(,(09,) sin(kkr - )  (3.110a)

M I n(r) = Cmn +) Cml(0,) sin(kxr - )

- Dhn l(l+1) Cam(0),) k1 cos(khr - l)

= Ehl n• (l+ C(0,) - sin(kr + a• n) , (3.110b)

Applying the boundary condition (3.94) gives than = -kxd, and thus
Mal n(r ) = Ehn Cm/(, k sin(k(r-d)) . (3.111)

The continuity condition (3.101) therefore implies that

Amna sin(ka - ) = Emnha sin(kX(a-d)), (3.112)

and the condition (3.105) gives

E ncos(k(a-d)) - Ah ncos(ka-) = -kAh nsin(ka-) (3.113)

where, consistently with the approximation (3.109), it is legitimate to drop the terms down
by a factor of 1/k)a.

Equations (3.112) and (3.113) may be satisfied only if k, satisfies the eigenvalue
equation

tan(ka - -)
tan(kX(d-a)) = (3.114)

rlk;tan(k)a -) - 1

We label the nth root of the equation by khln; note that the values of the roots do not depend
on a or m. Provided eq. (3.114) is satisfied, we find that Ah n is related to Eah a by

Aha "lit
ain = tan2(k1na +2Lha J (3.115)
mEmi n g tan2(khlna-) + (LkhIntan(khina-•) - 1)2

After some algebraic manipulation, we find that is possible to write the right hand side of
this equation in a somewhat more convenient form: letting

lxtx = khina-T and A=-khln, we find that



(A ha N"-
mlnt 41 + F
ha = (3.116)
Eml j  1 + Fsin2(x + )

where
2

tan(20) = - (3.117)
A

and

F= 2AA2 + 4 (3.118)
(4A2 + 4 -A)2

We next examine the solution to the eigenvalue equation (3.114). Let the function
tan(ka-(1/•2))f(k) = and the function g(k) = tan(k(d-a)). The allowed eigenvalues of

Atan(ka-(Ix/2)) - 1

k occur at the intersection points f(k) = g(k). Now f(k) and g(k) are both periodic, f(k) with
period x/a and g(k) with period x/(d-a). Since d >> a, there are many periods of g(k) for

each period of f(k). The function f(k) is mostly nearly equal to l/L, except near the points

kq = (n + - 1+ -tan-1, where it diverges to ±co. In each period of g(k), g(k) assumes

all values monotonically from -co to +oc. Thus there will in general be one eigenvalue

g(k) = f(k) in each period of g(k), except for once in each period of f(k) at the point kq,
where there are two eigenvalues in a period of g(k). Thus there will be a nearly uniform
discrete spectrum of eigenvalues separated by Ak = x/(d-a) = x/d; i.e., for each value of
m, 1, and a, there will be a density of

p(o) = d (3.119)

eigenvalues per unit frequency. In the limit d-+oo, the eigenvalue spectrum becomes

continuous, so that expressions involving a sum over n go over to a continuous limit

according to the prescription

Y f((Ohln) -- d Jdwo f(o) . (3.120)
n Icc

The coupling constant for the mode (I, n is given according to eq. (3.26) by

he n= EI aCin hln 2  1/2 . (3.121)
rn= AE mincb mha) Im

Since the resonator is spherically symmetric, we may without loss of generality define the
z-axis to lie along the atom's displacement vector ra; the x- and y-axes may be chosen
arbitrarily. Thus ra = raz and 0a = 0. For 0 = 0 it is easy to show that

90



Cm1(0,) =

Cml1(0,) =

S 2 8ml Y
(12+ 1) 8ml x.
2 8 mX

Thus
=he he =4(1+1)

mcn(ra) = Amn(-sml 2 j/(khznra)) Y

ho ho hoI(+1)
mlhn(ra) = Amin(+ m l  2 jl(khlnra)) x,

where we must use the exact form of jl(khinra), since it is not necessarily true that
khinra >> 1, 12. The normalization constant is given by

a

Ahn - IA la2d ICalmin mlnj mi r2dr 1(1 + 1)jl 2 (khlnr)

+ IEh 2fdICm2 fr2dr (1+ 1)(khlnr)2 sin2 (kh(r-d)) (3.124)

In the limit d- oo, the first integral may be neglected, since it remains finite whereas the

second integral increases without limit. Noting that
d

d-a ddr sin 2(khln(r-d)) = d-a da
and that(66)

(3.125)

jdlCm 2 = fdIBml/ 12 m4n 1 (I + m)!
= Emr2 1 + 1 (1- m)!

where

1, m=O
em=

S2, m>O

we find that

ha lh n  d (1(1 + 1))2 Eh a 1211n khn 2 (21+ 1) ml n

and thus

Igmn12 = 8mlEly 2  l 2 (21+1) jI2(khlnra)
1+Fsin2(khlna-T +4)

41 +F

1+Fsin2(khlna--" +)

where eqs. (3.116) has been used.

(3.122a)

(3.122b)

(3.123a)

(3.123b)

(3.126)

(3.127)

(3.128)

(3.129a)

, (3.129b)hgm 1n2 = 2 (+1j2knaý

Igmnl j m~x~k 2-'c2d ")(21+1) jl2(khlnra)



The quantity Igm, n12 is plotted vs. n in Fig. 3.7. It is seen that there is essentially a

continuum of modes of constant density p, and that the magnitude squared of the coupling

constant is modulated by the cavity lineshape. This modulation in the coupling constant is

due to the buildup of the field inside the small cavity for modes that resonate with it. Thus

from this point of view, the change in spontaneous emission rate is not due to a "change in

mode density", but to an enhancement of the interaction of the atom with certain modes.

I~ 2

Fig. 3.7. Magnitude of the coupling constant squared vs. n.

It should be emphasized that the form (3.12 1) of the coupling constant is valid only for

modes with 2 << k.a, due to our use of the approximate forms (3.113) for ji(x) and nl(x).
For 12 k;,a, a more exact expression for ji and nj must be used. The primary effect of this

is to introduce a phase shift which causes the peaks of the Airy functions in eqs. (3.12~9) to

be shifted. However, it is easy to show that for ra << ; , the coupling coefficients for
P2 > k.a are vanishingly small. This may be confirmed by directly examining the function

ji(kra) for kXra << 214X < 1. Also, it may be understood as a consequence of angular

momentum conservation. The angular momentum of one photon in the mode I is 15. Since

the intrinsic angular momentum of the photon is i, the only way for the atom to excite the
mode 1 is through the orbital angular momentum of the emitted photon. For a displacement
of ra, the maximum available orbital angular momentum is lmax = rah k,. Thus for

ra << , the maximum angular momentum which can be excited satisfies



Imax2 << kka, as required. This means that the theory being developed in this section is

valid only if ra << -ýXa.

We next explore the boundary value problem for the N-type modes. We can write the

normal mode function as
Nlmn(r) , 0 5 r 5 a

man(r) = (3.130)

In(r) , a<rrd

where

NOI(r) = -A [l(l+ (kr)Pm( ) + r)]Bmin mIen 1. Mml+r . ) /( ,0)]

(3.131a)

N (r) = C en [l(l+ ikr jl(kXr)P ml(,4) + rj(kr)]Bm l

ea [1(1+1 1))kk--:r ;j(kr)PXintl(kr) =(O
+ D n[l(l+1 nl(kkr)Pml(O,0)+ /rn(kIr)]Bm/,)

(3.131b)

where we can neglect the ni(kr) part of the solution in region I because the mode

amplitude must be finite at the origin. As before the asymptotic forms of j/(x) and nl(x) will

be valid for x >> 1, 12, so that for r - a, d, we find

N n(r)= -A n'l(l+) cos(kr - )B•/(,) (3.132a)

NaIm(r) = 1T
Nml n(r) = C nl(l+1))1 cos(khr - I)Bm( ')

1e 1 I
+ Dm +1)l(l+)- sin(k)r - 2 )Bml(0,) , (3.132b)

where terms down by a factor of 1/k)r may be neglected. Applying the boundary condition
(3.94) at r = d, these equations may be rewritten as,

N (r) = A + sin(k/r - ))Bm(0,4) (3.133a)min min kr kr

NH \(r) 1 E n()+kr sin(kX(r - d))Bm1(0,,) . (3.133b)

The N-modes are also transverse at r = a, so the solutions in region I and II are related by

the auxiliary boundary conditions (3.101) and (3.102). Proceeding exactly as before, we

find that kX must satisfy the eigenvalue equation,
(/+l))

tan(ka - 2 )
tan(kX(d-a)) = (3.134)

rTktan(ka - (l+ ) - 1



Apart from a phase shift of n/2, this is exactly the same as the earlier equation (3.114), and

therefore it also gives rise to an essentially uniform discrete mode spectrum having
p(co) = d/itc solutions per unit frequency. We label the nth solution of eq. (3.134) as keln.

Also proceeding as before, we find that
ha(Amln n

Ehamlnf
S1 +F

2(k (1+ 1)I1 + Fsin2(ke/na - T-+ )

where F and 4 are as defined earlier in eqs. (3.117) and (3.118).

The coupling constant is given by

gml n= gEI' ln(ra) (2tO EI2  1/2
SfinOelnAmin)

For ra = raz, 0a = 0, it can be shown that

Pmt(0,4) = ae8 mO z

Bm,(0,4)) =

B l,(0,4) =

qeen(ra) =

neo(ra) =

41(1 +1)
2 ml x

1(1 +1)
2 ml Y.

-Amn 8mo 1(l+1 n (kelnra)z

+ ) _1 rj(kelnr)] r]

-Aeo [ml 1 ) 1 [-(kelnr)]-A nm l 2 kelnra rjlkelnr)]r=r

Proceeding as before, we find that the normalization constant is given by

Aea d 4x (l1 + 1) (l+m)! IEe 12ml n 2keln2 Em (2 1 + 1) (1-m)! min

Thus, combining the results of eqs. (3.135), (3.136), (3.137), and (3.138), we find that

(l+l)n ;
1+Fsin 2(kelnal+---- +0)

+ 8ml EIx2( i)elntOEI2

2fic2d

m• Oeln 2  1+1 jl2(kelnra)
8 mEIz f ( +1)(21+1) (kenra)2" 27cd (ena

21+1) (kelnra)2 rjl(kelnr)]] (3.140a)

(3.135)

Thus

(3.136)

(3.137a)

(3.137b)

(3.137c)

(3.138a)

(3.138b)

Ig ee 12 2
Ig;ml nl

(3.139)



eo 2 4I +F 2Igmln = (ll) 8mlEIy2

1+Fsin2(keIna I+ + )

x (21+1) rl(kelnr)]r (3.140b)(kelnra)2  r-ra

III.C.2. Spontaneous Emission Rate.

The spontaneous emission rate and level shift are given by eqs. (3.38) and (3.39),
which in the present case may be written as

Fcav = 27 (gighnj2 ~nl2) - n)
I yn

+ 2_,X C C (Ilgnl2 + Igenl2 + Ig nl2) (OnE - (eln)
I n

= Th + Fe (3.141)
a =  _ . . Ig n 2 + Ig • 12

I l n 0EI- Ohln
+Iglee 2 + Ige 12 + Ig, 12

I n WEI - Oeln

= SOh + &Oe . (3.142)

where Th and Fe denote the first and second terms on the right hand side of eq. (3.141),

and similarly for &Ohand &oe.



The term Fh may be evaluated by substituting for Igq~5n 2, and making use of eq. (3.120):

41g +E F f IY2ThlnOEI2 2
Fh= 2n (gEIx2+Ey 2)  1 2•lIc2d I (khInra)ln_ 0- hin)

n a2(1+Fsin2(khlna- +) 2c2d

I 2 (IEIx2 +0EIy 2 ) d do 1 +F 2• 1(krla)8(O)EI-O)

Ec2d evenc 1+Fsin 2(ka + 4)

+ do 1 + F (kra)((OEG-O)

7c 1+Fcos 2(ka + )
1 odd

COEG3(EGx2+EGy 2) 1 + F 2(kEra)
hc3  1 +Fsin2 (kEGa + 4) 1 even

+ N(1 +F + 4 12 (kEGra) , (3.143)
1+Fcos2(kEGa + ) I odd

where

4ll(x) = 2-+1 jl(x) . (3.144)

Similarly, we may show that

Fe = { 41 + F [EGz2 22(kEGra) + (tEGx2+EGy2) 32(kEGra)]
Fc3  1+Fcos 2(kEGa + 4) 1 even

+ 41 + F [EGz2 22(kEGra) + (IEGx2+EGy2) 32(kEGra)] }, (3.145)
1 +Fsin2 (kEGa + o) I odd

where
1

421(x) = 421(l+1)(21+1) xjl(x) (3.146)

and

t3l(x) = 4ý1 [j1 - (P) ] (3.147)

Therefore, we obtain finally,

F e • 1 + F ( -EGz2 1 2 (kEcGra)
fic 3  1+Fcos2 (kEGa+4) 1 even

+ (gEGx2+ 4EGy2)[ X 12 kEua)+ E 32 (kEGra)])
I odd I even

1+F (lEz 2  2(kEc ra)

1+Fsin2(kEGca+) 1 odd

+ (pxEGx2+EGy2)[ 12(kEGca)+ • 32 (kEGra) ]) ". (3.148)
l even l odd



Now Fcav depends on the atomic displacement via the factors :i/j2. These sums have

been evaluated numerically. They take on simple values at ra = 0 and for kEcra >> 1. For

ra = 0,

S12(0)= 1 12(0)= ( 32 (0 ) = 2 412(0) = 0 (3.149a)

l even I even I even I odd

22 (0 )
_ 

=  2 (0 ) =  ' (3.149b)
l odd I odd

Substituting in eq. (3.148), we obtain the spontaneous emission rate for the atom at the

exact center of the sphere:

Fcav(ra-0) = Ffree (3.150)
1+Fsin2(kEGa-+)

where Ffree is given by eq. (3.72). In the other simple limit x = kEGra >> 1, we obtain

S22(x) =  22(x) =  (3.151a)
1 even I odd

C 32 (x ) =  3 2 1 (3.151b)
I even I odd

I12(x) = 12(x)= (3.151c)
I even I odd

Thus, substituting in eq. (3.148), we obtain after some algebra,

Fcav(ra>>AEG) = Ffree , (3.152)
1+Fsin2(2kEGa+20)

where
F2

F = 4(1 + F2) (3.153)

This is in good correspondence with the result (3.86) derived earlier, with
f(Acav) = 1. The phase shift 20 arises from a phase shift on reflection from the thin

dielectric film, which was neglected earlier. Also note that, as in section II.C.2, the exact

center of the sphere is a special point at which the spontaneous emission rate vs. cavity

tuning exhibits a lineshape with a free spectral range that is twice as great, and a finesse

half as great, as a point slightly displaced from the center.



III.C.3. Level Shift.

We next turn to the calculation of the expression for the level shift Wcav. The

contribution of the M-type modes may be written as

(S0h =F I ( n (EIx 2+gEI2) 01+F (h11 2 (khlnra)

I n In 2Ocd EI-Ohln1+Fsin2(khlna-T + )

df do 41+2F COE?{O> 2= i_ d ý/I+F ) (gEIx2+gEly2 12(kra)I 1 even rc O~EI- 1+Fsin2(ka+O) 2fidc2

d C dw 1F(2 w 2+ l oo +F ((IEI2t(x 2+gEiy2) 112(kra). (3.154)
I 1 odd KC JEI-c 1+Fcos 2(ka+-) 2fidc2

Similarly, the contribution of the type N modes is,

d do 41 + F E2
We = . d2 [ 9EIz2212(kra)

I e •leven sc dOEI-o 1+Fcos2(ka+) 2d2

+ (9REIx2 +lEiy2)-3/a

+I 1 d r o 4 1+ F ( )2 2(kr
I 1 odd lec EI-o) 1+Fsin 2(ka+-) 2L EIdc 2 (a

+ (CEIx2+.EIy2)32,(kra)]. (3.155)

The total shift Ocav = &Oh + &Oe clearly diverges in proportion to the upper limit of

integration. However, what we are interested is not the total shift, but only the difference in

level shifts Aocav = Wocav - %free. Substituting for ofree from eq. (3.50), we find

- 2nfic3 J toEI-o

X [ (.EIx 2 + EIy 2) I (L(ka+)4~1/2 (kra) + L(ka+•)4313 2(kra))
1 even

+ I (L(ka+04)ll12(kra) + L(ka+0)4 3/2(kra))
1 odd

+ .EIz 2 { L(ka++) 212X2(kra) + I L(ka+0)42
1
2(kra) - 3 IClEI 2 ] , (3.156)

leven Iodd

where now L(x) = ' +F/(1+Fsin2x). We first examine the contribution of terms with

I # G. For these terms, by the same argument leading up to eq. (3.80), it is permissible to

replace L(x) by its average value L(x) = 1, and thus



ACocav, I#G = IG2 "2 d 0 ((.tEx2 + .Eiy2)j (112 (kra) + 4312 (kra))
I•G27rfic3 f (OEI-O 1

+ IEIz2 / 4312(kra)- 3 .IgE1I2 . (3.157)

Using the "summation" formula for the Bessel functions,(56) it may easily be shown that

S(S112(x) + 312 (x)) = 4 (3.158a)

=122 (X) = , (3.158b)

irrespective of the value of x. Substituting into eq. (3.157), we find the that there is no
contribution to the difference in level shifts Aocav from terms with I * G. By the same

argument, we also find that for the remaining term with I = G, there is no contribution to
Acav from frequencies o far from resonance.

Thus only the term I = G, and only a limited range of frequencies near oEG contributes

significantly to Accav. Also, recall that according to eq. (3.82), the contribution of this

limited range of frequencies to the free-space shift is equal to zero. Therefore the quantity
Aocav is equal to the quantity mocav, where it is understood that only the term I = G is

included, and that the integration is to be carried out over a range of frequencies which is
large compared to xc/a, but small compared to 0)EG. Noting that 03 and 11/(kra) are

essentially constant over the range of integration and therefore may be removed from the

integral, we thus obtain, for the contibution of the M type modes to Awcav

(I)EG3(IEGx2+tEGy 2) r 2A(Oh = 1OEG3(gEGx2+9EG2) f 14 12(kEGra) [-11(ka,#')]
2Xfic 3  1 even

+ 1 12 (kEGra) [-II(ka,4')] }
I odd

SC(EG E (Gx2+gEGy 2) 2 2 (ka) Fsin(2(kEGa+0))= ( 31 21(kEGra)
21fic3  I even 2(1 + Fsin2 (kEGa+o))

- I12(kEGra) ntFsin(2(kEca+O)) , (3.159)
1 odd 2(1 + Fcos2 (kEGa+o))

where 0' = kEGa + 0, and 0" = kEGa + 0 + it/2. Similarly we may show that the

contribution of the N-type modes to Aocav is
EG3  22 -IFsin(2(kEGa+))

Acoe = [.tz2 2 (kEGra) + (~x2+gy2)4 3 (kEGC,)] -2E Fsin(2(kEGa+0))
2xfhc 3 I even 2(1 + Fcos2(kEGa+o))

+ 2 Fsin(2(kEGa-+)) } . (3.160)
S[z2 2(kEGra) + (x2 2) (kEra)]2(1 + Fsin2(kE(a+())

1 odd 2(l + Fsin2(kEGa ))



Thus

G= 3  Fsin(2(kEa+-))A(Oav ([2fic3  2(1 + Fsin2(kEGa+4))

x (Rzt2 ~22(kEGra) + (J1x2+ l ~2)a 12(kEGra) + 3 2(kEGCra)))]
I odd I even I odd

S Fsin(2(kEma+))
-2(1 + Fcos2 (kEGa+o))

x (pz2 y2 2 (kEGra) + (x2+1 y2 )[ 4l/2(kEGra) + 1432(kEGra))] (3.161)
1 even I odd I even

Again we consider the special case ra = 0. Using eq. (3.150), we find

Ffree Fsin(2(kEcGa))
A~kav(ra=0) = 1 + Fsin(2(kEa+)) (3.162)1 + Fsin2(kEGa+o)

We also consider the limit kEGra >> 1. In this case, we may obtain, after some algebraic

manipulation
Ffree F'sin(4(kEGa+4))

Acav(ra>> ) = "--- 1 + F'sin2(2(kEGa+O)) (3.163)

Again, this is in exact agreement with the previous result (3.86), for f(Mcav) = 1.

From these results it is seen that the spontaneous emission of an atom near the center of

the sphere may be derived rigorously (within the limit of validity of the Wigner-Weisskopf

approximation) without any recourse to arguments based on an "effective mode density".

The results obtained are in exact correspondence with those obtained earlier, substantiating
that point of view, at least in the limit as f(A)cav) -+ 1.This calculation clarifies why the
Wigner-Weisskopf approximation may be applied in a low-Q cavity: because the cavity has
loss, it is coupled to the outside world, and when the field is quantized in the modes of the
"sphere plus outside world", the mode density forms essentially a smooth continuum.
Therefore the Wigner-Weisskopf treatment holds provided that the interaction of the atom
with these modes is not too sharply modulated by the cavity.
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CHAPTER IV

EXPERIMENTAL STUDIES OF YTTERBIUM ATOMS

IN A CONFOCAL RESONATOR.

In order to test the effects of an optical resonator on spontaneous emission, experiments

were carried out on a sample of ytterbium atoms in a confocal optical resonator. Substantial

changes in the partial spontaneous emission rate of the atoms into the cavity modes were

observed. In addition, an indirect measurement confirmed the existence of a small change

in the total spontaneous emission rate. These experiments confirmed the validity of the

basic concepts presented in chapters II and III, and laid the groundwork for more

comprehensive experimental studies to be presented in chapter V.
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IV.A. Experimental Description.

IV.A.1 Ytterbium Level Structure.

The lowest lying electronic states of ytterbium are illustrated in Fig. 4.1(a).(67) Yb has a
1S0 ground state, and the first resonance transition at 555.6 nm is to the 3P1 excited state,
which has a lifetime of rsp = 875 ns.(68) This singlet to triplet transition is electric-dipole

allowed because there is a small admixture of the higher lying 1P1 state in the 3P1 state. Yb
has seven naturally occuring isotopes, including five even isotopes all having nuclear spin
zero, and two odd isotopes, 171Yb with a nuclear spin of 1/2, and 173Yb with a nuclear
spin of 3/2. The isotopic and hyperfine structure of the 1SO - 3P1 transition is shown in

Fig. 4.2. Of particular interest is the 174Yb isotopic component: since this isotope has zero
nuclear spin and is well-resolved from the other components, it forms an ideal, two-level
system, as illustrated in Fig. 4.1(b). All of the experiments described in this chapter are
carried out on this component of the 555.6 nm Yb transition.

174Yb is chosen for the experiments because it has a convenient wavelength for dye-
laser excitation, forms an ideal, two-level system, and is relatively easy to vaporize. The
unusually long lifetime of the 3P1 state is actually something of a disadvantage, albeit a
small one. However, this long lifetime would be a great advantage if these experiments are

to be extended into the time domain. Such possible extensions are discussed in chapter VL

SI \

6s6p
3P

R62 IS1

)b(

m = -1 0 +1 3

555.6 nm

Sle
0 m = 0 0

Fig 4.1. Yb level structure. (a) Lowest lying electronic states. (b) Ideal two-level system
formed by the 174Yb 1SO - 3P 1 transition.
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Relative
Compt. Isotope Fupper Frequency

(MHz)

a 173Yb 7/2 -2389
b 171Yb 1/2 -2131
c 176yb 1 -955
d 174 Yb 1 0
e 172Yb 1 1001
f 170yb 1 2288
g 173Yb 5/2 2313
h 168Yb 1 3656
i 17 1yb 3/2 3804
j 173yb 3/2 3810

Fig. 4.2. Isotopic and hyperfine structure of the 1SO - 3P1 transition of atomic Yb. This

data displays the absorption of a high density atomic beam of Yb; these lines are

about 10 times broader than in the experiments described in this chapter. The

component identifications and relative frequencies are from reference 69.

IV.A.2 Lasers and Optical Layout.

The overall experimental layout is illustrated in Fig. 4.3. The central component of the

experiment is a vacuum chamber containing an Yb atomic beam source and the confocal

resonator structure.

Tunable, single mode radiation at 555.6 nm is provided by a Coherent model CR699-21

ring dye laser with Rh 10 dye, pumped by 6W of all lines blue-green radiation from a

Coherent model 52 argon ion laser. Typical dye laser output power at 555.6 nm is

250-500 mW, with a bandwidth of approximately 1 MHz. Laser frequency diagnostics are

provided by splitting part of the dye laser into the spectrum analyzer SA.

In order to line up the confocal cavity, part of the dye laser output is picked off by the

beam splitter BS1, forming a "cavity probe beam". This beam is focussed into the cavity by

collimator COLL1 and subsequently reflected off the movable mirror M3 into the

photodiode PD. When alignment of the cavity is complete, the cavity probe beam is

blocked off by beam stop BST2, and mirror M3 is flipped back out of the beam path.
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VacuumDiffusion
Dl, C hamber

M

LPMT

PMT

Model 52
Argon Ion
Laser

CR699-21
Dye
Laser

BST BS2 BSI Dar

Fig. 4.3. Experimental layout. BSP: beam steering post; BS: beamsplitter; BST: beam

stop; SA: spectrum analyzer, COLL: collimator, POL: polarizer, SBC: Soleil-

Babinet compensator, M: mirror, OFB: optical fiber bundle; L: lens; A: aperture;

F: interference filter. PMT: photomultiplier tube; PD: photodiode.

The laser beam which pumps the Yb atoms ("pump beam") is picked of by beamsplitter

BS2. It then passes through the combination of the two Glan-prism polarizers POL1 and

POL2 and the Soliel-Babinet compensator SBC, which functions as a variable attenuator.

The pump beam is then focussed into the atomic beam by the combination of collimator

COLL2, which is an ordinary collimator, and COLL3, which is a cylindrical lens

collimator. The combination of.COLL1 and COLL2 allows the pump beam to be focussed

to a line; the beam waist sizes at the atoms were adjusted to 2.5 mm (FWHM of intensity)
parallel to the resonator axis, and 180 gm (FWHM of intensity) perpendicular to the axis.

The pump beam is polarized perpendicularly to the resonator axis, and taking the laser

polarization direction to be the quantization axis, the laser therefore excites only a pure,
two-level, Am = 0 transition, as illustrated in Fig. 4.1(b).
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Flourescence emitted by the atoms follows the two beam paths leading up to
photomultiplier tubes PMT1 and PMT2. A light tight box is placed around these optics to
shield the photomultiplier tubes from background light.

IV.B.3. Atomic Beam.

The atomic beam system is illustrated in Fig 4.4. The oven consists of a 304 stainless
5 11 1"steel tube 6 8 long by y outside diameter by .020" wall thickness which is filled with

8-10 g of Yb metal, and crimped flat 12- long at each end. The oven is heated resistively

by flowing an AC current of approximately 150 A through it, delivered through two copper
leads which clamp onto the crimped part of the oven. The atoms escape through a
D = 0.41 mm diameter hole drilled near the center of the oven; the stainless steel wall near
the hole is thinned down to .006" thick with an end mill before the hole is drilled. The oven

temperature Toven near the hole is measured by a chromel-alumel thermocouple spot welded
directly to the oven.

Fig. 4.4. Atomic beam system.

The oven current returns through a copper cold shield which is concentric with the
oven. This results in a minimal (<< 1 Gauss) magnetic field outside the shield, as verified
directly with an AC gaussmeter. The oven leads and cold shield are water cooled to prevent
excessive heating of the apparatus by the oven.
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The atomic beam is collimated to a width of 1 mm by an slit placed 10 cm from the
oven, and to a height of 100 pm by a slit placed 11 cm from the oven. The collimated beam

flows through the center of the confocal cavity at a distance of X = 15 cm from the oven.

The 100 gpm slit is mounted in such a way that it can be translated vertically and rotated

slightly while the beam is running.

It was found that this tube oven design provided a simple, reliable way to produce an

Yb atomic beam. The typical oven current of 150A produced an oven temperature as

measured by the thermocouple of approximately Toven = 900 OC. It was found that the flux

of Yb from the oven corresponded to a vapor pressure that is characteristic of a temperature

Tyb about 300 OC lower that Toven. Thus, at Toven = 900 OC, Tyb = 600 OC, corresponding

to a vapor pressure of(70) P = 4 x 10-4 atm, a source density of

no(cm -3) = 7.32 x 1021 P(atm)/Tyb(oK) = 3 x 1015 cm-3, and a mean free path of

o0 = 1/noo = 6 x 10-2 cm, where o = 50 A2 is the collision cross section. Since the hole

diameter is D = 4.1 x 10-2 cm, this corresponds to a source pressure near the effusive limit.

The mean thermal speed of the atoms is u = 42kBTovednM = 2.4 x10 4 cm/s, where kB is

Boltzmann's constant and M = 2.9 x 10-22 g is the mass of an Yb atom. The flux is
1 gD2

On •' nou -' 5 x 1016 s-1, or in terms of mass flow, about 5 x 10-3 g/hr. This

corresponds to a 174Yb density in the cavity of n= a=On/uX2 = 1 x 109 cm-3, where

a = .31 is the natural isotopic abundance of 174Yb.

The vacuum chamber was pumped out by a Varian M-2 2" diffusion pump attached to

the source region via a 3" pipe. When a new oven was heated for the first time, the

background pressure in the chamber soared to above 10
-4 torr, then settled back down after

about an hour. Typical operating background pressures were in the range of

1 - 4 x 10-6 torr, as measured by a Bayard Alpert ionization gauge attached to the source

region. On some occasions running the beam actually improved the vacuum to values as

low as 5 x 10-7 torr, presumably due to a gettering effect.

In order to tune the laser to the proper frequency and to align the laser and atomic beams

properly, the following procedure is used. First, the pump laser beam is introduced into the

chamber while the atomic beam is running, and the laser is slowly scanned in frequency

until fluorescence is observed. This fluorescence is easily visible by eye. The pump laser

beam is then blocked off and the cavity probe beam is adjusted to a spot size of about
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0.2 mm and introduced into the cavity. After verifying that the cavity probe beam is aligned
to the axis of the cavity, the height and tilt of the100 Wm slit are adjusted until the atomic

beam is best aligned with the probe beam, as verified by the visible line of fluorescence.
Next the pump beam is introduced back into the chamber, so that two separate lines of
fluorescence become visible. The position and angle of the line of fluorescence induced by
the pump beam is adjusted until it overlaps with the line of fluorescence induced by the

cavity probe beam, and the alignment is complete.

The size of the pumped volume of atoms, determined by the intersection of the atomic
and pump laser beams, is approximately Az = 1.5 mm along the cavity axis, Ay =140 tpm
in the vertical direction, and Ax = 180 ipm in the along the atomic beam propagation
direction. However, the atoms remain excited for a somewhat greater distance along the
atomic beam propagation direction, because they drift for a distance of ursp = 210 jgm
during their lifetime. Thus the atoms are excited over a net distance of about Ax = 400 pm
in this direction, so that the interaction volume is V = 8 x 10-5 cm3, and the total number of
174Yb atoms in this volume is N = nV = 2 x 105.

Because the natural linewidth 2free/2x = 180 kHz of the Yb resonance line is so small,
the atomic beam is still Doppler broadened. The Doppler width as seen by the cavity probe

Az+D ku
laser is approximately AvDz(Calzc) = = 5.5 MHz, while that seen by the pump laser

is ADy(calc) y+D ku = 1.6 MHz. In practice linewidths of Av(obs) - 5-10 MHz areX 27n
observed for both of these, since there is a contribution of 0.4 Mhz/mrad from
misalignment broadening, and of 1-2 MHz from laser frequency jitter. One further point
which should be emphasized is that the interaction of the atoms with the noncentral parts of
the cavity is Doppler broadened by as much as AD(max ) •. Mku/2l = 35 MHz, where
0M = 0.080 rad is the half-angle subtended by the cavity mirrors.

IV.A.4. Optical Resonator.

The optical resonator is very similar in construction to an ordinary spectrum analyzer.

The structure consists of a .1 outside diameter machined brass cylinder that is designed to

fit inside the 12- inside diameter walls of the vacuum chamber. Slots cut into the sides of8
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the cylinder allow the atomic and laser beams, the optical fiber bundle OFB, and a movable

beam stop BST1 to pass through. One of the mirrors M1 is mounted on a large cylindrical

piezo-electric transducer PZT which provides for the tuning of the cavity. The PZT requires

about 25 V to generate a displacement of /4. The other end mirror M1 is mounted on a

cylinder which slides smoothly inside the larger cylinder and can be locked into place.

Mechanically the resonator was not as rigid or as finely adjustable as might be desired.

However, it was very simple to construct, easily fit inside the existing vacuum system, and

was sufficiently to stable to hold a good alignment for the several hours required to take

data.

The confocal resonator mirrors Ml and M2 were standard Coherent spectrum analyzer

mirrors model 240M-2-B. They have a radius of curvature of 5.00 cm, corresponding to a

separation of L = 5.00 cm and to a free spectral range of Avfs = c/4L = 1500 MHz.

Apertures placed over each mirror restrict their clear diameter to 2b = 4.0 mm. The

measured transmission of M1 is T1 = 2.8±0.1 %, and that of M2 is T2 = 1.8±0.1 %.

Assuming negligible absorption and scattering loss, this gives R = ;R-IWR2 = 0.997, and a

finesse Fcf(calc) = 7r4R/2(1-R) = 68 and a fringe width

Avcav (calc) = AvfsrIFcf(ClC) = 24 MHz.

The cavity is aligned using the cavity probe beam and photodiode detector. The rough

alignment of the cavity is accomplished with three adjustment screws at each end of the

cavity. The cavity is adjusted to confocal spacing by sliding the small cylinder holding Ml

until the observed transmission of the cavity vs. cavity tuning displays a degenerate mode

spectrum with a spacing c/4L. The spot size of the probe laser is set to about 0.5 -1.0 mm

for this procedure, so as to excite many transverse modes and give good sensitivity to the

correct confocal spacing. This part of the procedure must be carried out with the vacuum

sytem open.

The fine adjustment of the cavity probe laser to the resonator axis is accomplished by

translating and tilting the cavity probe beam, using the mirror mounts on the two beam

steering posts BSP1 and BSP2, until a mode spectrum with a free spectral range of c/2L is

observed. This occurs because the mode spectrum of spacing c/4L consists of a set of

spatially symmetric modes of spacing c/2L, alternating with a set of spatially antisymmtric

modes, also of spacing c/2L.(M) When the symmetrical gaussian beam is exactly aligned to

the axis of the cavity, the antisymmetric modes disappear. It is also possible to "mode

match" the laser beam into only antisymmetric modes, but this can be avoided by verifying
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that the transmitted laser beam consists of only one spot rather than two. Note that that this

procedure is in effect the same as aligning the cavity, since tilting the mirrors slightly
merely has the effect of redefining the optical axis.(n)

The fringe width of the aligned cavity depends on the spot size of the probe laser. For

small spot sizes (< 0.5 mm), fringe widths of 22.5-25.0 MHz are observed. This is limited

entirely by the mirror transmission, and thus absorption and scattering losses are small

(< 0.2% per surface). For larger spot sizes, the finesse was significantly lower, primarily

due to the spherical aberration effect discussed in section II.F. 1. For L = 5 cm, this

aberration effect limits the "spot size" for constuctive interference to a radius
xO = (XL3/27)1/4 = 0.85 mm, and for destructive interference to a radius

xl = ()L 3/2) 1/4 = 2.4 mm. These points are further discussed in section II.F.1 and in the

article by Hercher.(57) Note that our mirror clear diameter of 4.0 mm is considerably larger

than 2x0 but is less then 2xi, so as to exclude the first fringe of constructive interference

when the cavity is off resonance. (We have also verified that this fringe is not present

experimentally.)

IV.A.5. Fluorescence Imaging and Detection.

L F L PMT2

PZT M2 Ml Ll A F L2 PMT1

Fig. 4.5. Schematic diagram of fluorescence collection optics.

The fluorescence collection optics are shown in Fig. 4.5. Fluorescence emerging from
the sides of the resonator is collected at an angle of 370 to the pump beam by the 1/4"

diameter optical fiber bundle OFB at a distance of 3/4" from the atoms. Light emerging

from the optical fiber bundle is collected by an f/0.8 aspheric lens, passes through an
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interference filter, and is refocussed by a second aspheric lens onto photomultiplier tube
PMT2.

Fluorescence emerging through M1 passes through a series of baffles and is focussed
by lens L1 onto the aperture A. This aperture is positioned at the image I of Ml, which is
produced by L1 with a magnification of 1.0, and is therefore equivalent to an aperture
placed at Ml. Fluorescence passing through the aperture is then refocussed by a lens,
through an interference filter, onto photomultiplier tube PMT1. These optical elements are
aligned using the cavity probe beam.

The interference filters are 10 nm bandpass filters centered at 560 nm, tilted by 120 in
order to angle tune their bandpass center to 556 nm. The pair of aspheric lenses in front of
PMT2 has the important effect of reducing the angle of divergence of the light passing
through the filter to within its limited acceptance angle.

PMT1 and PMT2 are Hamamatsu R1635-02 3/8" diameter bialkalai-cathode
photomultiplier tubes. These are chosen for their low dark count rate, high sensitivity, and
conveniently small size.

The signal from PMT1 gives a measure of the spontaneous emission rate of the atom
into the cavity. In order to calibrate this against the free space rate into the same solid angle,
a movable beam stop BST1 may be inserted between the atoms and M2, thus removing the
effect of the cavity. This calibration may be carried out by taking into account the
transmissions of the two mirrors. Since the power emitted through each mirror is
proportional to its transmission, the photon counting rate Ycav(1) of PMT1 with the cavity

open is given by

Ycav(1) =4 1 T2 Ycav, (4.1)

and its counting rate Ib(1) with the cavity blocked is

-l(1') = 111 T1Tfree, (4.2)

where y•av is the spontaneous emission rate of the atom into the cavity (emitted through
both mirrors), Tyfee is the free space rate into the same solid angle, and Tj is the detection
efficiency. If we define the quantity Yfree(l) by

free() T1 + T2 'Y l(1) =-- 1R (1) (4.3)

it will be correctly normalized so that
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Tcav(' )  ¥'cav
-= - (4.4)

That is, if the observed counting rate ycav(1) is taken as a measure of the spontaneous

emission rate of the atom into the cavity, the quantity y-ree(l) is normalized correctly so as to

give the equivalent free space rate into the same solid angle.

IV.A.6. Electronic Control and Data Acquisition.

The experimental control and data acquisition electronics are illustrated in Fig. 4.6. For

most of the measurements, only the connections shown as solid lines were made. In this

configuration, the light intensity falling on PMT1 is measured as a function of resonator

tuning, while the pump laser frequency is locked to the 174Yb resonance line. The

additional connections shown as dashed lines were added for the sidelight modulation

measurements described in section IV.C.

The light signal falling on PMT1 is detected in photon counting mode. PMT1 generates
negative going pulses of 1.5 - 4 mV amplitude and 1 ns duration into a 50 Q load. These

pulses are amplified by three stages of a EG&G AN-302 quad amplifier to minus

100-300 mV in amplitude and 3 ns duration. The signal is then processed by an
EG&G T105/N discriminator, which rejects pulses smaller than 70 mV, and outputs a

standard NIM pulse for each input pulse greater than 70 mV. The signal is then processed

by a NIM-TTL converter and recorded by a 20 MHz counter in a DEC LSI 11/23
microcomputer. In order to avoid pulse pile-up error, the count rate is always kept below

about 106 counts/s.

The cavity is scanned in frequency by applying a voltage ramp to the PZT, generated by

the computer via an A/D converter and high voltage amplifier. The voltage ramp proceeds

in 1024 steps; at each voltage output value the computer records the number of photocounts

from PMT1 for a prescribed period of time (usually about 50-400 ms). The data is then

processed by the computer to show the number of photocounts per second vs. cavity

tuning.

The laser has a short term frequency stability of 1 MHz, but can drift by an amount

comparable to the residual Doppler width of the beam during the time taken to complete a

scan. In order to avoid this difficulty, the laser frequency is locked to the 174Yb transition
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by a slow servo loop. This is accomplished by leaving the 699-21 dye laser locked to its
own internal reference cavity and controlling its frequency by applying a signal to its
external scan input. This signal contains a voltage dither generated by a PAR 121 lock-in
amplifier operating in the internal reference mode. The laser scan range is set to 1 GHz,
with the 174Yb resonance somewhere near the center, and the dither is adjusted so as to

produce a 2 MHz peak-to-peak oscillation in the laser frequency at a 400 Hz rate. This

frequency oscillation will induce an oscillation in the intensity of fluorescence detected by
PMT2 if the laser center frequency is off to one side of the Yb transition center frequency.

This oscillation is detected by the lock in amplifier, producing at its output a dispersive
error signal which is fed into an integrator in the "lock box". The output of this integrator is
summed with the voltage dither and applied to the laser external scan input. The lock-in and
"lock box" controls are adjusted so that the integrator accumulates additional voltage as

necessary to drive the error signal to zero, producing a stable lock.
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Fig. 4.6. Experimental control and data acquisition electronics. For most of the

experiments, only the connections shown as solid lines were made; the

additional connections shown as dashed lines were made only for the sidelight

modulation measurement.
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IV.B. Experimental Results for the Cavity Spontaneous Emission Rate.

IV.B.1. Results for the Spontaneous Emission Rate vs. Cavity Tuning.

The experimental results are presented in Fig. 4.7. Traces (a) - (c) show the observed

counting rate vs. cavity tuning, with an aperture diameter of 1.0 mm and a laser pump
power of 60 CgW. Trace (a) shows the observed count rate ycav( ) with the cavity open, and

trace (b) shows the calibration of the free space rate yf=(1) obtained by multiplying the

count rate with the cavity blocked T1(1) by the factor 2/(Tl+T2). Trace (c) shows the count

rate with the cavity open and the laser detuned from resonance; this data is just the

background counting rate and demonstrates the absence of scattered laser light from the

system.

In plotting the data of Fig. 4.7, two corrections have been applied to the data. First, the
background counting rate of 30 counts/s has been subtracted from ycav(1) and l(1).

Second, the data with the cavity blocked has been corrected for a small error in the focus of

lens L1. This focus had initially been adjusted by measuring the distances with a ruler. But

by directly observing the image of Ml, it was later discovered the aperture A was

approximately x = 0.6 cm behind the image of Ml. As illustrated in Fig. 2.3, there are two

contributions to the field outside Ml: a collimated plane wave and a diverging spherical

wave. In deriving eq. (4.4), it was implicitly assumed that the two waves have the same

diameter. But this is only true at the surface of Ml. It is easy to show that at a distance x
behind M1, ~cav(1)/bl(1) is further increased by a factor of

= 1 + ( + 1i (4.5)

where a = UL2 = 2.5 cm is the distance from the atoms to the mirror. Substituting for a and

x, we find that 5 = 1.29. Thus the data yfree(l) of Fig. 4.7b were futher multiplied by

= 1.29 to compensate for this effect.

In a subsequent run of the experiment, the focus of L1 was carefully set by directly

observing the image of M1. In this case, good agreement between theory and experiment
was obtained without any correction factor 4.
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Fig 4.7. Observed counting rate as a function of cavity tuning. For traces (a) through (c)

the aperture size was 1.0 mm; for (e) and (f) it was 4.0 mm. (a) Cavity open.

(b) Normalized count rate with the cavity blocked, showing the equivalent free

space rate into the same aperture as (a). (c) Cavity open but laser detuned from

resonance. (d) Theoretical fit (dotted line). (e) Cavity open. (f) Normalized

count rate with the cavity blocked, showing the free space rate into the same

aperture as (e).
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As expected, the spontaneous emission rate into the cavity is dramatically changed by
the resonator tuning. Note that the data is plotted on a logarithmic scale and spans nealy
three orders of magnitude. The maximum enhancement factor ycav(eh)/yfe = 19, and the

maximum inhibition factor Yfrejycav(inh) = 42. The enhancement factor is smaller than the

expected value of 1/(1-R) = 43.5, because of broadening of the resonance due to Doppler

shifts and mirror surface aberrations. Off resonance, the radiation is inhibited by a factor of

1/(1-R), as expected.

The data of Fig. 4.7 show the sharpest peaks that were observed. Reducing the aperture

size further to 0.4 mm produced almost identical results. Presumably this is due to the fact

that the atoms themselves are distributed over a finite size region of about 0.4 mm, and

therefore unavoidably interact with the central 0.5 - 1.0 mm of the mirror.

Traces (e) and (f) of Fig 4.7. show the results obtained with an aperture size equal to the

clear mirror diameter of 4.0 mm. Trace (e) shows the counting rate with the cavity open,

and trace (f) shows the counting rate with the cavity blocked, multiplied by
2/(Tl+T2) = 43.5, thus showing the free space rate into the same aperture as (e). In this

case the enhancement factor is only equal to 4.3, which is much less then that observed for

only the central part of the mirror. This is due to the much worse mirror aberration over the

larger aperture. However, the inhibition factor is 34.6, which is still nearly equal to

1/(1-R). Again, this is because the condition for resonance is much more critical than the

condition to be off resonance.

IV.B.2. Analysis and Discussion.

Ideally, according to eq. (2.57), the data should be fit by the function

ycav(1) = Yfree(l" 11 , (4.6)
1 + ( "Rsin2(2kL)

where we have used the fact that 1-R << 1, and have assumed the correspondence
y = p/ico. However, this formula was derived assuming no Doppler broadening or mirror

surface aberrations are present. In the presence of such aberrations we may think of the
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cavity as having a "distribution of resonance frequencies", corresponding to the different
parts of the mirror. A simplified model of the actual lineshape can be given as a convolution
of the ideal lineshape (4.6) over this distribution:

v) )1 f()d (4.7)" ...L f(6)d8cav(1) = () ( ) 1+ sin2(2k(L•sin +8)) (4.7)

where 8 is a parameter coresponding to the deviation of the mirror surface from the ideal
shape, and f(S) is a normalized distribution function for the values of 8.

Trace (d) of Fig 4.7 shows a fit to the data by eq. (4.7), using the measured values of
1/(1-R) = 43.5 and of yfree(l) = 1.73 x 104 counts/s, where f(8) was taken as a normalized

gaussian distribution of width 0o

f(S) = 1 e-(8/8)2 , (4.8)

and where So was adjusted to produce a good fit to the data at 80 = 2.9 x 10-7 cm = 1/192.
In terms of the cavity resonance frequency Vn = nc/4(L+6), this corresponds to a width of

Svn = Vn(Wn-L) = 32 MHz, for Vn = c/X. A good fit to the data is obtained, and the value of

SVn = 32 MHz is quite reasonable, given a spot size on the mirror of 1 mm.
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IV.D. Indirect Measurement of the Change in the Total Spontaneous Emission Rate.

Acording to eq. (2.68), we expect that the total spontaneous emission rate of the atom in

the cavity should be given by

Fav = Fee1 + Acav , 1 (4.9)
'\reel } 8n J

where we have assumed the correspondence F = P/ico, and that (l-R) << 1, and again
Acav = 8xb2/L2 is the solid angle subtended by both cavity mirrors. Also, Ycav and free

refer to the spontaneous emission rates into the full cavity aperture. Fcav has a maximum
value of

F (Ycav(enh) 3rcav(enh) = rfree 1 + 1 - Alcav , (4.10)

and a minimum value

Fcav(inh) = Ffree1 + cav 1 i-  .ca . (4.11)

In our case, 3 A)cav = 0.0048, and from the data of Fig.4.7 (e) and (f),8n
,ycav(enh)/free = 4.3, and Tcav(inh)/free = .025. We thus expect that the total rate will increase

AYienh) p(enh)_ -Ffre

by the fractional amount = +1.6% when the resonator is on
Ffree rfree

A"(inh) p(inh) - free
resonance, and decrease by the fractional amount _ - = -0.5% when

T1ee Ffree

the resonator is detuned from resonance. This corresponds to changes in the natural

linewidth of +2.8 kHz and -0.8 kHz, or to changes in lifetime from 875 ns to 889 ns and to

871 ns, when the resonator is tuned on or off resonance, respectively. Unfortunately, these

changes are too small to be detected easily.

We can, however, indirectly verify these changes in the total rate by measuring the

intensity of spontaneous emission out the sides of the resonator. This intensity Iside,

measured by PMT2, is simply proportional to the number of excited atoms ne. Under
conditions of weak excitation, ne = R12n0/TFcav, where no is the total atomic population, and

R12 = oDI/fico is the average rate of induced transitions, with oD the absorption cross-

section and I the average laser intensity. Therefore, a fractional change AFcav/cav in the

total spontaneous emission rate should be accompanied by a fractional change in the

sideways intensity of
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AIside - -Ae A- . (4.12)'Isidnene Fcav

A phase-sensitive detection technique may be used to detect this small change in

sideways intensity. For this measurement, the additional connections shown as dashed

lines in Fig. 4.6 are added. As before, the laser is locked to the 174Yb transition via the

400 Hz oscillation frequency servo-loop, and and the computer records the data vs. a

cavity scan voltage output by its D/A converter. In addition, a 35 Hz, 12.5 V pk-pk square
wave modulation is superimposed on the PZT scan voltage, and the signal from PMT2 is

monitored for a change in fluorescence intensity at 35 Hz by a second lock-in amplifier

(Stanford Research SR510). Clearly if Iside is independent of cavity tuning, no signal will
be detected. However, suppose that, as expected, Iside depends on the cavity tuning ok, as

illustrated in Fig 4.8(a). Then, at a particular value of the cavity scan voltage, Co oscillates

between two values oc(l) and oj(u), as illustrated in Fig. 4.8(b). This in turn produces the

signal Iside vs. time t shown in Fig. 4.8(c). As a function of cavity scan voltage, )c(1) and

oc(u) tune smoothly together past the peaks in Iside vs. co. This will produce the lock-in

output voltage illustrated in Fig. 4.8(d).

Any change signal detected by the lock-in is read into the computer via an A/D
converter. The peak amplitude of this signal referred to the lock-in input is AV/F2 , where

AV is the amplitude of the square wave input signal corresponding to AI. The value of

Alside/Iside = AV/Vo can be determined by measuring the signal ampitude Vo corresponding

to I0 on a calibrated oscilliscope plug-in. Note that this technique will not be separately
sensitive to the values of AIside(enh) and AIside(inh), but only to the total difference

Alside = Alside(enh) - Alside(inh) between the intensities with the cavity on resonance and off

resonance.
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Fig. 4.8. Modulation of the sideways intensity Iside induced by modulation of the cavity
tuning. (a) Anticipated form of Iside vs. the cavity tuning wc. (b) ok vs. time t.

(c) Iside vs. t corresponding to (b). (d) Lock in output voltage vs. Wcc(u).

The results of the experiment are illustrated in Fig. 4.9, for a pump power of 10JW. As

expected, the change signal vs. cavity tuning displays the behavior predicted by
Fig. 4.8(d). The peak amplitude of the signal is AIsidellside = -2.2 ± 0.2 %. That the sign of

the change was correct was verified by applying a much smaller sinusoidal modulation to

the cavity and observing the sign of the resulting dispersive-shaped output signal. The

observed value is in excellent agreement with the value of
(AIside(enh) - Alside(inh))/Iside = -2.1 % predicted on the basis of the on-axis data. We may

therefore claim to have verified, indirectly, that the total spontaneous emission rate is

changing as expected.
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AISide/ISide

+2%

+1%

0

-1%
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0 CAVITY TUNING (MHZ) 4UUU

Fig. 4.9. Observed modulation in the sideways intensity vs. cavity tuning. The positive

going peaks (above dashed lines) are an artifact of the modulation technique
used to record the data. The level of zero change is not measured but is inferred

from the on-axis data of Fig. 4.7.
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CHAPTER V

MEASUREMENT OF THE RADIATIVE LEVEL SHIFT
AND SPONTANEOUS EMISSION LINEWIDTH

OF BARIUM ATOMS IN A CONCENTRIC RESONATOR.

In the previous experiment, the changes in the total spontaneous emission rate were very

small, and could only be detected in an indirect manner. Clearly, it would be desirable to

directly measure the change in the total spontaneous emission rate, either by a direct

measurement of the lifetime, or by a measurement of the natural linewidth. It would also be

desirable to measure the radiative level shift, which was presumably too small to measure

in the Yb experiment.

In the Yb experiment, these effects were small for two reasons. First, both of them scale

in proportion to the natural linewidth, which was only 180 kHz for Yb. Secondly, these

effects scale in proportion to the fraction of spontaneous emission intercepted by the cavity
mirrors, which was limited in the previous experiment to f(AfIcav) = .005 by the spherical

aberration effect.

In order to circumvent these difficulties, new experiments studying the linewidth and

transition frequency of the 1So - 3P1 transition of atomic barium in a concentric resonator

were carried out. This transition was chosen for its relatively large natural linewidth of
free/2x = 19 MHz, and because a two level system may be obtained. Also, as emphasized

in section II.F, the concentric resonator geometry allows for a much large solid angle with
spherical mirrors. In most of the experiments discussed in this chapter, f(Acav) = 0.106

was obtained. Thus the product freef(Ac av) was increased by a factor of more than

2,000.

In the experiment, both the shift in transition frequency associated with the radiative

level shift, and the changes in linewidth were directly observed. The results were found to

be in good agreement with the theory presented in chapters II and III.
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V.A. Experimental Description.

Although the experiment was similar in principle to the previous one, in practice the

experiment required extensive modification and was more difficult to carry out. This

included the enlargement of the vacuum system to accomodate an improved resonator

structure, and the addition of a second interaction region outside the cavity. In this section

the experimental apparatus is described, with particular attention paid to the modifications

from the Yb experiment.

V.A. 1. Barium Level Structure.

The lowest lying energy levels of atomic barium are illustrated in Fig. 5.1(a). The

ground state is 1SO, and the first allowed transition is to the 1PI excited state, with a

wavelength of 553.5 nm.(71) The level structure is slightly complicated by the presence of a

branching transition from the 1P1 state to the metastable ID2 state, but the transition

probability to this state is about 400 times less than the transition probability back to the

ground state,(72) so it can be neglected for our purposes. The IP1 - 1SO decay rate is(73)

free2lx = 19 MHz.

(a) (b)

" Tsp=8.4ns m = -1 0 + 1

pm

D
2

-
I Q

553.5 nm

6 le
0 o

m =0

Fig. 5.1 Barium level structure. (a) Lowest lying electronic states. (b) Ideal two-level

system formed by the 138Ba component of the 1S0 - 3P1 transition.

The isotopic and hyperfine structure of the ISO - 3P1 transition is shown in Fig. 5.2.

Barium has five naturally occuring isotopes, the most common of which is 138Ba, with an
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abundance of 72%. The three even isotopes have nuclear spin I = 0. The two odd isotopes
each have nuclear spin I = 3/2, so that their 1pl states are split into three hyperfine levels
having Fupper = 5/2, 3/2, and 1/2. Of particular interest for our purposes is the
138Ba component of the line, labelled "a" in Fig. 5.2. Since its nuclear spin is

I = 0, it has a nondegenerate level structure. Also, this component is resolved from the
137Ba 1So(F=3/2) -- 1P1(F=5/2) component (labelled "b") by 65 MHz; less than 1% of the

intensity of the 138Ba component is due to the contribution of this 137Ba component.

Therefore, the 138Ba 1S0 - 3pl transition effectively forms and ideal, two-level system, as
illustrated in Fig. 5.1(b).

Relative
Compt. Isotope Fuppr Frequency

(MHz)

a 138Ba 1 0
b 137Ba 5/2 65
c 135Ba 5/2 105
d 136Ba 1 125
e 134Ba 1 140
f 137Ba 3/2 260
g 135Ba 3/2 305
h 135Ba 1/2 535
i 137Ba 1/2 555

Laser Frequency (100 MHz/Div)

Fig. 5.2. Isotopic and hyperfine structure of the S10 - 3P1 transition of atomic barium.

The component identifications and relative frequencies are from references 74

and 75.

V.A.2. Concentric Optical Resonator.

The most important modification to the experiment was the substitution of the concentric

resonator for the confocal. As emphasized in section II.F, this geometry has the advantage

that, with readily available spherical mirrors, the cavity can subtend a large solid angle and

still maintain the "mode degeneracy" over its full aperture. However, one problem with the

concentric resonator configuration is that the usual types of resonator construction
employed for confocal or plane parallel cavities are completely unsuitable for use as a

concentric cavity. Therefore it was neccessary to design and build a new type of resonator
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explicitly for use as a concentric resonator. This new type of cavity proved to be a key to

the success of the experiment.

One difficulty with the concentric cavity is that the requirements on resonator stability

and adjustability are much more stringent than for the confocal or plane parallel resonator.

This is because the centers of curvature of the two mirrors must coincide to within

tolerances of the order of a wavelength in all three dimensions: there is no "redefining of

the optical axis", and the spacing has to be exactly right. The difficulty of meeting these

alignment tolerances was studied with a pair of spherical mirrors mounted near concentric

spacing in Aerotech mounts. Even with these high quality mounts, it was very difficult to

obtain a good concentric alignment. The concentric cavity geometry is very sensitive not

only to mirror tilt, but also to the sideways translation of the mirrors. Therefore, the usual

structures employed for flat plate interferometers are not suitable for this purpose, since

they are typically rather sloppy with respect to sideways translation of the mirrors.

A second difficulty with the concentric cavity configuration is the need to focus the light

into and out of the cavity with low f-number lenses. This implies that the resonator

aperture should be clear out to the solid angle subtended by the mirrors, and also that the

input and output lenses should be mounted very near the cavity mirrors so that they are not

inordinately large. In practice this means that the input and output lenses should be

mounted as an integral part of the resonator structure. Again, this is a requirement which

the usual types of resonator strucures are not able to meet.

In order to circumvent these difficulties, a structure designed specifically for use as a

concentric resonator was constructed, as shown in Fig. 5.3. A four rod structure is chosen

for its rigidity, and consists of two 1" thick by 6 1/2" wide by 6 3/4" high aluminum

endplates clamped onto four 1" diameter invar rods. Attached to one of the endplates is an

aluminum ring, via a .010" thick by 5 1/4" outside diameter by 4 3/4 " inside diameter

phosphor bronze "washer". This washer is secured to the endplate at three points 120 0

apart, and to the aluminum ring at another three points 120 o apart and offset by 60 O from

the first. The separation between the aluminum ring and the end plate is controlled by three

differential screws with submicron resolution (Klinger model BD17-04), which lift the ring

from the plate until it feels a restoring force from the phosphor bronze washer.
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Attached to the opposite endplate is a second aluminum ring via three PZT stacks, each

consisting of six 3/4" diameter by .076" thick disk PZTs (Vernitron PZT-5A). The PZT
stacks provide a net displacement of X/2 for 120 V.

The two resonator mirrors M1 and M2 are actually mounted onto aluminum cylinders of

3" I.D. which project back into a hole cut into each endplate. Inside of these cylinders are

mounted f/1.2 camera lenses L1 and L2 (Canon FD50 1.2) which are used to focus light

into and out of the cavity. In order to line up the cavity, it is very important that lens L1
focus the light so that the rays cross within - 10 grn of the center of the cavity. Lenses L1

and L2 have a resolution of 100 lines/mm, which is sufficient to insure this is the case.

This resonator design proved to be very sucessful. The three differential screws

provided for a "coarse" adjustment of the cavity, while the three PZT stacks provided for a

very sensitive fine adjustment of the three degrees of freedom of the resonator. The flexure

type mounting allowed for both tilt and a net translation of M2 along the resonator axis, but

was very rigid with respects to sideways translation. Using this resonator it was found that

a good concentric alignment could easily be achieved and maintained.

The cavity mirrors had a radius of curvature of a = 2.5 cm, and were coated with a thin

aluminum film of reflectivity R = 0.65. This corresponds to a separation of L = 5.00 cm, a
free spectral range AVfsr = 3000 MHz, a finesse F (calc) = nA7R/(1-R) = 7.2, and a fringe

width Avcav(calc) = Avfsr/F = 420 MHz. The mirror substrate was 0.8 cm thick, and the

back surface had a radius of curvature of 3.3 cm, which is concentric with the reflecting

surface. This is very important, since otherwise the mirror substrate would act as a lens,

and the resulting aberrations would in effect ruin the resolution of the input lens L1,

making alignment of the cavity impossible.
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Phn~nhar Bronze

Fig. 5.3. Concentric Optical Resonator. The drawing is to scale, and shows the
placement of the cavity mirrors M1 and M2, camera lenses L1 and L2,

piezoelectric transducers PZTs, and the intracavity aperture A.

The clear diameter of the mirrors is 3.3 cm, which corresponds to a half angle
subtended by the mirrors of OM = 420, and to a solid angle of

Akiav/4x = 1 - cosOM = 0.257. Assuming that the atomic dipole is oriented perpendicular

to the cavity axis, so that eq. (3.74) applies, this implies that the mirrors intercept a fraction
f(Acav) = 0.340 of the total spontaneous emission. The f/1.2 camera lens subtends a half

angle of OL = 22.60, which corresponds to AfQJ/4x = .078. Thus the lens illuminates only

the central 30% of the solid angle subtended by the mirror.

For most of the measurements carried out in this chapter, an aperture A was placed in
the cavity which subtended a half angle of 0 = 220, so that the effective clear diameter of

the mirror was 1.88 cm, and the fraction of spontaneous emission intercepted by the
mirrors was f(Afcav) = .106, where again we assume eq. (3.74) applies. This insured that

the lenses L1 and L2 were able to view the entire solid angle subtended by the cavity.

The cavity is aligned by illuminating it with a laser through the input lens L1, and
adjusting it and the focus of the incoming laser while simultaneously viewing the
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transmitted beam. When the cavity and the cavity probe beam are perfectly aligned, the

entire aperture becomes uniformly bright when the cavity is tuned to resonance, and

uniformly dark off resonance. Concentric rings indicate a cavity spacing which is slightly

too long or too short; straight or curved bands indicate a mirror tilt.

Once the cavity is aligned to concentricity, it is tuned by a small linear displacement of

M1. A typical scan of the total transmitted intensity vs. cavity tuning is shown in Fig. 5.4.
The linewidth of the central fringe is about 500 MHz, which is broader than Avcav(calc)

because of surface aberrations. Also note that the finesse degrades significantly with a

displacement of only a few fringes. This occurs because we are tuning the cavity by
controlling the mirror separation only, when actually what is desired is to tune the mirror

radii; i.e. the rays at the edge of the mirror "tune" differently than rays between the center

of the mirrors. The behavior illustrated in Fig. 5.4 is characteristic of the resonator when it

is very well aligned: it is actually possible to identify which fringe is the closest to

concentric spacing. In general an effort is made to stay within one fringe of this spacing

during the experiment, although in practice the spacing may have been off by two or three

fringes.

Transmitted
Laser
Intensity

(Arb. units)

Cavity Tuning (i FSR/Div)

Fig. 5.4. Probe laser transmission vs. cavity tuning.

Another difficulty with the concentric resonator geometry is that it places a very tight

restriction on the displacement of the atoms from the center of the resonator. Recall from
eq. (2.125) that the round trip path length of a ray initiating at a displacement of A is given

by
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2A2

Lt = 4a + -- sin2 s , (5.1)

where N is the angle between the atomic displacement vector and the light ray direction, as

illustrated in Fig. 2.7. Noting that the resonance frequency associated with a particular ray

is Vn = nc/Lrt, we find that the ray starting from a displacement of A is shifted in frequency

with respect to the concentric rays by

8v =- sin 2V . (5.2)
2,a 2

This frequency shift is plotted in Fig. 5.5 for X = 554 nm, a = 2.5 cm, and N = 900 and

N = 220. For atomic displacements perpendicular to the resonator axis, the shift in

resonance frequency is closely described by the V = 90 o curve. For displacements along

the cavity axis, V lies between 0 ' and 22 o.

-0 P, 1000

MHz

800

600

400

200

ft

0 20 40 60 80

A, Am

Fig. 5.5. Frequency shift vs. atomic displacement A, for X = 553.5 nm,

a = 2.5 cm, and N = 90 0 and N = 22 o.

In order that these frequency shifts not significantly affect the results of the experiment,

they should not exceed the linewidth of the cavity. If we take as a criterion that the largest

shift not exceed the cavity half width, this implies that the atoms should be confined to a
displacement of less than 22 apm perpendicular to the cavity axis, and less than 60 pmn

parallel to it. This small interaction volume implies that only a small number of atoms can

be excited at any one time, resulting in a small signal. This is partly compensated for by the

rapid decay rate of barium. Also note that the distance by which the atoms drift during their
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lifetime may be important. Again, the short lifetime of barium is an advantage, since the
atoms only drift a distance of ursp E 2 pm.

V.A.3. Atomic beam and interaction regions.

For the concentric cavity experiments the atomic beam apparatus was modified as

illustrated in Fig. 5.6. A much larger vacuum vessel consisting of a 12" diameter by
12" high stainless steel cylinder was added to house the resonator structure. Also, a

modification of the source region allows the atomic beam source position to be adjusted

while the beam is running.

The atomic beam is collimated by a 1 mm diameter aperture Al at a distance of 19.3 cm

from the source, and intercepted by a beam ("reference beam") from the cw dye laser, and
then recollimated by a second aperture A2 of 25 pm diameter at a distance of 28.1 cm from

the source. The atomic beam propagates an additional 0.2 cm from A2, where it is

intercepted by a second beam ("pump beam") from the same laser. Two regions of excited

atoms are thus created, one ("region 1") outside the cavity near A1, and a second

("region 2") inside the cavity near A2. The aperture A2 is mounted in such a way that it can

be translated while the beam is running.

For convenience, throughout this chapter we shall adopt the following coordinate

system. The origin of coordinates is taken at the precise center of the resonator, with the

x-axis lying along the atomic beam propagation direction, the y-axis in the vertical direction

(parallel to the pump beam propagation direction), and the z-axis along the cavity axis.

The pump beam is focussed to a diameter of approximately 20 pm. The atoms in

region 2 are therefore confined to a volume of approximately
V = XI x (12.5 ipm)2 x 20 pm = 1.0 x 10-8 cm 3. This is sufficiently small that the frequency

shifts associated with the atomic displacement are small.

The tube oven source is filled with about 6 g of barium and is heated typically to about
Toven = 930 OC with an oven current of 165 A. In this case the atoms escape through a

D = 1.0 mm diameter hole. For the barium tube ovens, it appeared that the effective
temperature TBa of the barium was about 250 OC colder than Toven. Thus TBa = 680 OC,

which was sufficient to produce a vapor pressure of(70) Po - 5 x 10-6 atm, corresponding
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to a source density of no = 4 x 1013 cm-3, and to a flux of atoms of On = 2 x 1015 s-1. The
mass flow is about 2 x 10-3 g/hr, and the mean thermal velocity u - 2.4 x 104 cm/s. The

source flow is purely effusive.

Fig 5.6. Atomic beam apparatus. M: mirror, L: lens; B: baffle; OFB: optical fiber bundle;

Al and A2: atomic beam collimation apertures, BSTl: movable beam stop.

Region 2 lies in the center of the concentric resonator, the dashed lines indicate

the position of its rods and endplates. Also illustrated are the x, y, and z

directions referred to in the text.

The 138Ba density in region 2 is approximately n = aDn/xuX2 = 2 x 107 cm-3, where

a = .72 is the isotopic abundance of 138Ba and X = 28.3 cm the distance from the source,

so that the average number of atoms in region 2 is N = nV = 0.2. Therefore a maximum of

about NrFrew2 = 1 x 107 photons/s will be scattered by the atoms, implying that with our

detection efficiency of l =- 2 x 104, only about 2000 counts/s will be detected.
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This means that an extremely high sensivity is required. To detect these small signal

levels a small background light level is necessary. This is accomplished by means of a set a

blackened light baffles at the windows to the chamber, at the entrance to the (glowing)

source chamber, and surrounding the interaction regions. Also, in order to avoid scattered

laser light, both beams are absorbed by a piece of black glass tilted at Brewster's angle

inside of a "beam dump". These measures were sufficient to reduce the background

counting rate of PMT2 and PMT3 to several hundred counts/s.

The larger volume and greater number of components in the chamber were a significant

load on the vacuum pump. In particular, the two camera lenses could not be used as

purchased inside of the vacuum system. These were dissasembled, as many extraneous

parts as possible were discarded, and all grease removed from the focussing mechanisms

and replaced with vacuum grease. With this modification, the entire system could be

pumped down to about 6 x 10-6 torr after 24 h of pumping.

Several problems were encountered in the operation of the barium beam. First, at oven
temperatures Toven around 1000 'C, significant beam density variations were observed,

which seemed to be associated with melting and freezing of the barium. (The barium
melting point is 725 OC.) Also, at background pressures above 5 x 10-6 torr, significant

beam density variations were observed that seemed to be associated with background

pressure fluctuations. It was found that these variations could be eliminated by running the

experiment at lower background pressures of about 2 x 10-6 torr, which could be achieved

by first pumping on the chamber for several days, then running the beam at an oven
temperature of 1000 'C for several hours, and then turning the oven back down to 930 OC

for the experiment. It did not seem to be possible to obtain a steady beam at very much

higher temperatures.

V.A.4. Lasers and Optical Layout.

The overall experimental layout is illustrated in Fig. 5.7. In this case the CR699-21 dye

laser with Rh! 10 dye was pumped by 6W of 514.5 nm radiation from a Coherent CR18

argon ion laser. The dye laser output is split off by beamsplitters to form three separate
beams: the "reference beam", the "cavity probe beam", and the "pump beam".
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The reference beam is used to pump the atoms in region 1, and is adjusted to a diameter

at the atoms of 1 mm by the collimator COLL1, and to a power of about 2 gW. This gives

a peak intensity of I = 0.2 mW/cm 2 << Is.

The cavity probe beam is expanded 60x by the combination of lenses L5 and L6, and

after passing through an aperture A forms a beam about 5 cm in diameter of uniform

intensity. This beam is used to align the cavity; the cavity lineshape may also be measured

by reflecting the transmitted beam from the movable mirror M3 into the photodiode PD.

During the experiment this beam is blocked off by the beamstop BST2 and the mirror M3 is

flipped back out of the way.

The pump beam is used to pump the atoms in region 2. This beam must be attenuated by

seven orders of magnitude. The two beamsplitters BS1 and BS2 provide for some initial

attenuation of the intensity. This beam then passes through the combination of the two

polarizers POL2 and POL3 and the Soliel-Babinet Compensator SBC, which provide a

further adjustable atteuation. The collimator COLL2 adjusts the spot size of the beam to at a

lens L4 of f =: 25 cm focal length which is mounted above the interaction region; this lens in

turn focusses the beam onto the atoms. The spot size at L4 was carefully studied using a

0.15 mm pinhole and a power meter; it was found to have a radius (half width of the

intensity at 1/e point) of Ax = 0.205 cm in the x-direction, and of Az = .275 cm in the

z-direction. The lens will therefore focus the pump beam to spot sizes (HW1/e of intensity)

of Ax' = Xf/2xtAx = 8.5 gm and Az' = Xf/2xAz = 11 p.m in the x and z directions,

respectively. The power of the pump beam was set to P = 0.02 g.W, which corresponds to

a peak intensity of I = P/tAxAz = 6.8 mW/cm 2.
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Fig. 5.7. Optical layout for concentric cavity experiments. BSP: beam steering post;

BS: beamsplitter; ND: neutral density filter; COLL: collimator, WP: waveplate;

POL: polarizer, I: iris; BST: beamstop; A: aperture; L: lens; F: interference filter,
PMT: photomultiplier tube; PD: photodiode; SA: spectrum analyzer,
SBC: Soliel-Babinet compensator, OFB: optical fiber bundle.
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As an independent test of the width Az' of the focussed pump beam, the width of the of

the scattered flourescence intensity vs. the displacement of the lens L4 in the z-direction
was recorded at various heights (y position) of this lens. The observed widths were
consistent with a Gaussian beam of waist size (HW1/e of intensity) of 11 p.m, and the

observed minimum width of 30 p.m (FWHM) was consistent with the convolution of the

pump beam and atomic beam widths. This procedure was also used to carefully position

the focus of the lens L4.

Both the reference beam and the pump beam are linearly polarized in the x-direction.
This implies that only a single Am = 0 transition is excited, as in Fig 5.1(b). Also, the

atomic dipole is oriented perpedicularly to the atomic beam, so that the formula (3.74) for

the fraction of spontaneous emission intercepted by the cavity mirrors applies.

The fluorescence from the atoms in region 1 is collected by the optical fiber bundle

OFB 1, and is detected by PMT1 in the same manner as described in section IV.A.6.

Similarly, the fluorescence emitted from the sides of the cavity in region 2 is collected by

optical fiber bundle OFB2 and detected by PMT2. A third photomultiplier PMT3 detects the

light emitted through the end mirror M2 of the cavity. This light is collected by the camera

lens L2, then passes through a second lens L3, an iris 12, another interference filter F, and

finally another iris I1 mounted in front of PMT3.

As before, a movable beam stop BST1 may be inserted between the atoms and the

cavity mirror M1, thus removing the effect of the cavity. This enables the signal with the

cavity blocked to be used as a calibration of the free space spontaneous emission rate. The

transmission coefficient of each mirror is T = 0.09, so there is a loss coefficient of

L = 1 - R - T = 0.26, which must be taken into account. The spontaneous emission rate of

the atom into the cavity includes not only the part ya(T) transmitted through the mirrors but

the part ycav() absorbed by the mirror:

ycav =: ay + av(L), (5.3)

where

Ycav (  = •-T a;av Yv ) = ~TPav . (5.4)

The actual counting rate detected by PMT3 with the cavity open is

Ycav) = Ycav 7T+L• Ycav, (5.5)

whereas the counting rate with the cavity blocked is
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Ybl(1) = TYfree, (5.6)

where 11 is the detection efficiency. Thus the quantity

Yfree(1) = T+Ybl(1)= l'bl(1) (5.7)

is correctly normalized so that

Ycav(1) Ycav (5.8)
Yfree(l) Yfree

The quantity yfree(l) may therefore be taken as a measure of the equivalent free space rate

into the same solid angle as Ycav(l).

V.A.5 Electronics and Data Acquistition.

The experimental control and data acquisition electronics are illustrated in Fig. 5.8. The

signals from both PMT2 and PMT3 are detected by photon counting electronics as

described in section II.A.6, except that the NIM pulses from the discriminator are now fed

into a BI RA model 2101 dual 40 MHz scaler/timer in a CAMAC crate. This crate is

controlled via. a GPIB interface by an IBM-XT microcomputer. Also, the pulses from

PMT2 are amplified by two Avantek AWL-500M amplifiers, with a -20 dB attenuator in

between to limit the total gain. The photocurrent from PMT1 is processed as an analog

signal by a Keithley 150B microammeter and read into the computer via an A/D converter.

The three PZT stacks are controlled by a "PZT control box" and three HV power

supplies (Kepco ABC) operated in voltage programming mode. The gain of each HV

supply is adjusted to compensate for differences in the responses of the three PZT stacks.

The control box allows the voltage on each PZT stack to be independently adjusted for

cavity alignment, and there is also an offset control which allows for an additional voltage

to be applied to all three PZT stacks, causing a net linear displacement of the mirror. This

displacement voltage may also be controlled via an external scan input.

The normal configuration of the experiment is indicated by the solid lines. The cavity

tuning is set to some fixed value, and the computer simultaneously records the signal from

all three PMTs as a function of laser frequency. This laser tuning is controlled via its

external scan input by a D/A converter.
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Fig. 5.8. Data acquisition system. For the linewidth and lineshift measurements, only the

connections shown as solid lines are made. The fluorescence intensity as a

function of cavity tuning may also be studied; in this case the D/A is

disconnected from the dye laser external scan input and the additional

connections shown as dashed lines are made. Also, either one of the

discriminator outputs may be processed by a ratemeter and displayed on an

oscilliscope (not shown).

Alternatively, the experiment can be run in a mode similar to that of the Yb experiment,

as indicated by the dashed lines. In this mode the laser frequency is locked to the
138Ba resonance line by the same technique described in section II.A.6, and the computer
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records the signal from all three PMTs as a function of cavity tuning. The laser frequency

lock loop is also very useful during system alignment.

V.A.6. Alignment procedure.

The most difficult aspect of the experiment is the alignment of the cavity, atomic beam,

and laser beams. The only practical way that was found to accomplish this alignment is the

following procedure, which can take many hours when starting from scratch.

First, the cavity is lined up using the cavity probe beam as described in section V.A.2.

The components between the cavity and PMT3 are also lined up using this beam, with the

lens L3 adjusted so that probe beam comes to a focus at the center of the iris Il mounted on

PMT3. Next, the cavity probe beam is blocked off, the atomic beam is turned on, and the

laser frequency locked to the 138Ba line using the fluorescence signal from region 1. Next,
the lens IA is removed or defocussed, and the much wider pump beam centered in the

cavity. If no fluorescence is observed in region 2, it indicates that the oven hole and

apertures Al and A2 do not lie in a straight line. If this is the case, the oven is moved

around in a two-dimensional search until fluorescence in region 2 is detected by PMT2.

This fluorescence cannot be seen by eye and must be monitored using the photon counting

system. Once the fluorescence is detected in region 2, the lens IA is put back into the pump

beam, and the pump beam translated in the z direction until it intersects the atomic beam, as

registered by the reappearance of fluorescence.

The next step of the alignment is to position the atoms to the axis of the cavity. This is

accomplished by first locating the position of PMT3 and I1 at which the fluorescence

emitted by the atoms passes through I1 and is detected. By reintroducing the cavity probe

beam into the system and observing the spot to which it now focusses 11, the distance and

direction by which the excited atoms are displaced from the cavity axis may be determined.

The atoms aren repositioned by translating the aperture A2 and the pump beam. This

procedure is iterated until the image of the atoms on I1 coincides with the focal spot of the
cavity probe laser. It may also be necessary to move the oven occasionally during this

procedure.

At this point this iris 12 is closed down to a small fraction of the full aperture, a

repetitive ramp voltage is applied to the cavity, and the count rate of PMT3 displayed on an
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oscilliscope vs. cavity tuning. Fine adjustments are made to the position of the excited

atoms until a modulation in the count rate vs. cavity tuning is evident. Next the iris 12 is

opened all the way up, and the modulation becomes very weak. This modulation is peaked

up by moving the atoms along the cavity axis, by simultaneously displacing A2 and the
pump laser along the cavity axis. (It may be convenient to do this by opening up the iris 12

in stages.) Again, it may be necessary to move the oven during this procedure.

Eventually, a strong modulation in the count rate of PMT3 vs. cavity tuning will be

observed with the iris 12 all the way open. At this point, the cavity alignment, oven

position, aperture A2 and pump beam postions are all adjusted to optimize the size of the

signal and to give the deepest modulation possible, and the alignment is complete.
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V.B. Experimental Results - Cavity Spontaneous Emission Rate vs. Cavity

Tuning.

The experiment was first carried out in a manner similar to that of the ytterbium

experiment, i.e. the laser frequency is locked to the 138Ba resonance, and the flourescence

intensity out the end and out the sides of the cavity is recorded as a function of cavity
tuning. The results of this experiment are shown in Fig. 5.9. Trace (a) shows the count rate
cav(l) for light emitted out the end of the cavity with the cavity open, and trace (b) shows

the calibration of the free space rate into the same solid angle yfr(l). Trace (c) shows the

counting rate for light emitted out the sides of the cavity with the cavity open, recorded
simultaneously with trace (a). Finally, trace (d) shows the count rate for light emitted out
the sides of the cavity, with the cavity blocked, thus showing the free space rate into the

same solid angle as (c).

In plotting the data, two corrections have been applied. First, the background counting
rate (observed with the laser detuned from resonance) of 150 counts/s for (a) and (b), and

of 480 counts/s for (c) and (d), was subtracted from the raw data. Second, the signals are

normalized by the intensity recorded by PMT1 to correct for small changes in laser intensity

and atomic beam density.

Just as in the Yb case, the spontaneous emission rate of the atom into the cavity is
enhanced when a cavity mode is tuned to the 138Ba resonance, and inhibited when it is

detuned. The observed enhancement factor is approximately 2.0, and the observed

inhibition factor approximately 3.1.

The intensity of light emitted out the sides out the cavity displays a modulation with

cavity tuning, as in the Yb case. In this case, however, the amplitude of the modulation is

much larger, about 35%, so that the modulation may be observed directly, without the use

of a lock-in technique. Also, by comparing the data (c) with the data (a), the sign of the

modulation may be directly determined: the intensity out the sides of the cavity decreases

when the spontaneous emission rate into the cavity incareases. Again, this is due to the fact
that the excited state population decreases, due to an increase in the total decay rate. Finally,
by comparing the data (c) with the corresponding free space intensity of trace (d), the
absolute change in the total spontaneous emission rate may be determined. It is evident
from this data that the total spontaneous emission rate is increased when the cavity is on
resonance, and decreased when the resonator is off resonance.
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Fig. 5.9. Detected photon counting rate vs. cavity tuning. (a) Rate emitted out the end of

the cavity, cavity open. (b) Calibration of the free space rate into the same solid

angle as (a). (c) Intensity out the sides of the cavity, cavity open. (d). Intensity

out the sides of the cavity, cavity blocked.



V.C. Experimental Results - Spontaneous Linewidth and Frequency Shift

The results of the previous experiment, like those of the Yb experiment, give only an

indirect measure of the total rate, and no measure at all of the frequency shift. In this

section we present direct measurements of the linewidth and frequency shift of the

1SO - 1P1 transition of the 138Ba atoms in a concentric resonator.

In this experiment, the cavity tuning is held fixed and the fluorescence intensity from all

three channels is simultaneously recorded as a function of laser frequency. A typical set of

such data is shown in Fig. 5.10. The top trace (a) shows shows the fluorescence intensity

from region 1, detected by PMT1, the second trace (b) shows the fluorescence intensity out

the ends of the cavity, detected by PMT3, and the third trace (c) shows the fluorescence

intensity out the sides of the cavity, detected by PMT2.

For each such set of data, the peak intensity I, width W (full width at half maximum),

and center frequency co are measured for the signal from region 1 (Iref, Wref, and (Oref), for

that out the ends of the cavity (lend, Wend, and oend), and for that out the sides of the cavity

(Iside, Wside, and (Oside). From these measurements we also calculate the differences

Awend = oend - o-ef and Acoside = oside - cOref between the center frequency of the atoms in

the cavity and those in region 1.

There may, exist a shift in center frequency between region 1 and region 2 even if the

cavity is blocked, due to a slight difference in the residual Doppler shift. This shift occurs

because each laser beam may not be perfectly perpendicular to the atomic beam, so that a

small component of the atomic velocity appears along the laser beam propagation direction.
In order to correct for this effect, we first measure the shifts Awsideo and Awndo obtained

with the cavity blocked. These are always found to be equal to within experimental error,
we denote their average as Ato. We then subtract this contribution to the shift from the

shifts with the cavity open, defining the new quantities Atoend' = AC)end - ACo0 and

A(side' = AOside - Awo0. These new quantities give only the part of the shift induced by the

cavity, with any Doppler effect subtracted out.

142



Fluorescence

Intensity

(Arb. units)

x104

counts/s)

(x103

counts/s)

Laser Frequency (20 MHz/Div)

Fig. 5.10. Fluorescence intensity vs. laser tuning recorded by the three detectors, at a fixed
cavity tuning.
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The experiment is then repeated at a succession of equally spaced cavity tunings.
Ideally, Iref, Wref, and ()f should be the same for all cavity tunings. Actually, Oref (i.e. the

position of %hf with respect to the scan voltage input to the dye laser) drifts by several

MHz from one scan to the next, due to a drift in the internal frequency reference of the dye
laser. This is the primary reason for including region 1: the fluorescence from these atoms
provides an accurate frequency calibration of the free space atomic resonance frequency to
which the resonance frequency of the atoms in the cavity may be compared. In addition, Iref
varies by about 2% from one scan to the next, due to variations in dye laser power and
atomic beam density, and Wref varies by about 5%, due to variations in the frequency scan
rate associated with drifts in the dye laser internal frequency reference. We use these values
of Iref and Wref to obtain corrected values of Iside' = Iside/fI, lend' = lendrlI,

Wside' = Wside/lW, and Wend'lW at each cavity tuning. Here lI = Iref/Irf and

11W = Wre/Wref, where Iref and Wref and the values of Iref are Wref averaged over all cavity

tunings.

The results of the experiment are shown in Fig. 5.11. In this set of data the intracavity
aperture was in place, restricting the half angle of the mirrors to 220, and the fraction of
spontaneous emission intercepted by the mirrors to f(Afcav) = 0.106. The top set of data

(a) shows the observed peak height lend, the second set (b) shows the observed peak

height Iside', the third set (c) shows the observed linewidths Wend' and Wside', and the last
set (d) shows the observed shifts Aoend' and AO)side', all as functions of cavity tuning. The

Doppler shift was Aolo/2x = +1.8 MHz in this case. The staight line in data set (a) shows

the height Ifto = Iend0/(1 - R), where lendo is the observed peak height with the cavity

blocked; multiplying this quantity by 1/(l-R) gives the effective free space intensity into the

same solid angle Ifeeo. The straight lines in data sets (c) and (d) give the height Iside0 and

the width W0 observed with the cavity blocked. (These values of Ifreeo, Isideo, and Wo are
based on an average of three scans with the cavity blocked.) The width Wo = Tfree + To

contains a contribution F0/2r = 5.0 MHz to the broadening from sources other then the

natural linewidth. This may be attributed to laser frequency jitter of approximately 1 MHz,
a Doppler width of at least (D/X)ku/2n = 1.5 MHz, and a contribution from transit time
broadening of approximately u/2gAx' = 4.4 MHz.
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Fig. 5.11. Peak intensities, linewidths, and lineshifts of the fluorescence emitted by the
atoms in the cavity, as a function of cavity tuning. The cavity length decreases
from left to right.
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Fig. 5.12. Results of a second run of the experiment, again showing the peak intensities,

linewidths, and lineshifts of the fluorescence emitted by the atoms in the cavity,

as a function of cavity tuning.
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A similar :set of data from a different run of the experiment is shown in Fig. 5.12. In

this case the intracavity aperture was also in, and the observed Doppler part of the shift was
Aoo0/2x = 0.0 MHz. A greater number of cavity tunings was taken with the cavity open,

and the values of Iendo, Isideo, and Wo were based on an average of ten scans with the
cavity blocked. In this case Wod27 = 25.6 MHz implies a slightly larger additional

broadening of FWo/2i = 6.6 MHz. The most likely explananation for the slightly greater

broadening is that some extra Doppler broadening was present due to pump beam

misalignment.
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V.D. Analysis and Discussion.

The data presented in Figs. 5.11 and 5.12 clearly displays the behavior anticipated by

the theory presented in chapter II and chapter II. When the cavity is tuned to resonance, as

evidenced by the peak in the intensity Iend, the linewidth of the transition increases, relative

to free space, and when the cavity is detuned from resonance it decreases. This

measurement of a change in linewidth provides a very direct confirmation of a change in the

total spontaneous emission rate. In addition, there exists a frequency shift that exhibits

exactly the expected behavior: when the cavity is exactly tuned to resonance or halfway

between resonances, the shift vanishes, and when the nearest cavity mode is tuned to the

blue, the transition shifts to the red, and vice versa.

The data of Figs. 5.11 and 5.12, traces (a) and (b), is equivalent to that of Fig. 5.9; i.e.,

it displays the peak intensity out the end or side of the cavity as a function of cavity tuning.

The peak intensity Iside out the side of the cavity is proportional to ne, the average number

of atoms in the excited state, whereas the intensity lend out the ends of the cavity is
proportional to neycav. Again, ycav is the partial spontaneous emission rate of the atom into

the cavity and according to the theory of section III.B should be given by

ycav = freeL(AEG). Under conditions of weak excitation, ne = no(aI/hico). In contrast to the

Yb case, the Ba transition is homogeneously broadened, and the cross section
a = 8xkgLt2/(fi(F+Fo)) is no longer independent of the total spontaneous emission rate F.

Thus ne o, 1/(F(F+F0)), rather than simply 1/F.

Taking these factors into account, we therefore expect that the experimentally measured

quantities should be fit by the functions
I o Efree(Ffree + Fo)

Iside = Iside0  (5.9)
Fcav(Fcav + Fo)

Ffree(Ffree + Fo)
lend' : Io rf0  L(oEG) (5.10)

Fcav(Fcav + Fo0)

Wend' = Wside' = (Fcav + Fo) (5.11)

AC)end' = AwOside' = AOcav , (5.12)

where, according to eqs. (3.71) and (3.86)

Fcav F= free(1 + (L(OEG) - 1)f(Acav)) (5.13)
Acav = Ffree 4 1 Fsin(2oEol/c) (5.14)

4 1 + Fsin2 (EGL/c)

and where
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L(E ) = 1 (5.15)
1 + Fsin2(OEGL/c)

Note that, since the variation in the excited state population is substantial, it is important to

take into account its effect on lend', as well as on Iside'.

Equation (5.13) simply expresses the fact that the observed width should consist of the
sum of the natural linewidth, plus whatever other contributions To to the broadening may

be present. (Clearly these other sources do not depend on whether the cavity is blocked or

unblocked.) Also, we expect that the observed shift with Doppler effects subtracted off
should be simply given by the calculated shift AOcav.

The curved line in each set of data of Fig. 5.11 shows the fit by the functions of
eqs. (5.9) - (5.12). The known value of Ffree/27 = 19.0 MHz, and the measured values of

f(A2cav) = .1L06, Fod2i = 5.0 MHz, and of Iend° and IfreeO were used. The parameter F

was adjusted to produce a good fit to the data at F = 8.0.

Ideally, the data should be fit with the value of F = 21.0 calculated on the basis of mirror

reflectivity. However, in the derivation of Eqs. (5.9) - (5.12), it was assumed that the

mirrors have 'perfectly shaped surfaces, that the atoms are located exactly at the center of the

cavity, and that Doppler shifts are negligible. If these conditions are not satisfied, the cavity
lineshape function L(co) must be modified. In general these effects will broaden the peaks

in L(o) and reduce the amplitude of its modulation. As a first approximation, these effects

may be accounted for by a reduced value of F.

The ideal cavity linewidth (FWHM) is Avcav(calc) = 2AvFsR/7C'W-= 420 MHz. The

linewidth corresponding to the "observed" value of F = 8.0 is Avcav(obs) = 680 MHz,

which corresponds to an additional 260 MHz of broadening. This can be accounted for

from the three. sources of broadening mentioned previously. First, even with the cavity

perfectly aligned and illuminated by a laser, the observed linewidth is 500 MHz. Thus,

there is an additional 80 MHz of broadening which may be attributed to mirror surface
aberrations. Second, the atoms are distributed over a region of 20 gtm extent, and may not

be exactly aligned to the center of the cavity. Thus there will a distribution of values of A of

order ± 10 gm, which according to Eq. (5.2) corresponds to an additional broadening from

this source of about 40 MHz. Finally, the atoms have a mean thermal velocity of

u = 2.4 x 104 cm/s. Although this results in no Doppler shift for the light rays striking the
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portion of the mirror forming a stripe in the y-z plane, the remainder of the mirror does see
the atomic resonance as Doppler shifted, by an amount ±kusin0, where 0 is the angle
between the light ray and the y-z plane. The maximum value of 0 is 220, and if we take half
that angle 0 = 110 as "average" angle subtended of the light rays, we find that the atom-
cavity interaction will experience a broadening due to this effect of (ku/2t)sin0 = 80 MHz.

The sum of these three contributions is 200 MHz, which is close the the "observed" value
of 260 MHz. Therefore, the value of F = 8.0 used to fit the data is quite reasonable, being

of a proper magnitude to take into account these additional sources of broadening.

The total magnitude of the change in the spontaneous emission rate may calculated from

the function (5.13), or read off directly from the linewidth data. On resonance, we observe
that the total rate increases by the fractional amount of
(NI+F - 1)f(A•cav) = 4.0 MHz/19 MHz = +21%. Off resonance, it is inhibited by a factor

1
of (-I1- 1)f(AQcav) = -1.34 MHz/19 MHz = -7.1%. This compares with the values of

+39% and -7.9% expected on the basis of the ideal limit F = 21.
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V.E. Experimental Results for Very Large Solid Angle.

Throughout most of the experiments, the intracavity aperture A was installed in the
resonator, which restricted the resonator solid angle to that subtended by the lenses L1 and
L2. This insured that the detector PMT3 was able to record the fluorescence from the full
solid angle over which the spontaneous emission is modified. However, in principle it
should be possible to observe much larger changes in the linewidth and and shift by
removing the aperture. In this case, the cavity subtends a half angle OM = 420,
corresponding to f(AZ,av) = 0.34, which is 3.2 times as large as the previous value. Thus

all else being equal, we would expect on the basis of the previous results to see an increase
of the natural linewidth of +12.8 MHz, a decrease of - 4.3 MHz, and shifts of ± 4.3 MHz.

The results of the experiment with the aperture removed are illustrated in Fig. 5.13. In
this case the shift Ao0o/2x = +0.4 MHz and r0/2l = +6.0 MHz. It is apparent that no

dramatic increases in the linewidth change or shift are observed; at most these quantities
increase by perhaps 30%. It also is not possible to obtain a good fit to all four sets of data
simultaneously. A reasonable fit to the lower three sets only may be obtained with a very
much reduced value of F. The solid curves in Fig. 5.13 show the fit obtained for F = 1.6,
where again the measured values of f(ALav) = 0.34, Ff, To, Ifo, and Iside0 are used.

It is possible to obtain a better fit if both f(Acav) and F are taken as adjustable parameters;
the dotted curve shows the fit obtained for F = 6.0. and f'(Alav) = 0.15.

The discrepancy between the theory and the experiment cannot be ascribed only to the
increased Doppler broadening experience by the parts of the cavity outside the view of
PMT3. Taking the "average angle" subtended by the mirror as 0 = OM/2 = 210, we find
that the Doppler broadening is of the order of 160 MHz, which is less than the ideal cavity
linewidth of 420 MHz, and is very much less than the amount necessary to account for the

broadening seen in the data of Fig. 5.13.
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Fig. 5.13. Results the experiment with the full cavity aperture open, corresponding to
f(Aczav) = 0.34.
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The discrepancy is also probably not due to poor alignment of the part of the cavity not
viewed by the lens. The cavity was first aligned using the visible central part of the cavity;
this procedure is very sensitive and should produce an alignment which is almost exactly
right for the mirror as a whole. Then, the modulation of the sideways intensity vs. cavity
tuning was displayed on an oscilliscope and an exhaustive search was made for cavity and
atom alignments which improved the depth of the modulation. In no case was a significant
improvement over the results shown in Fig. 5.13 obtained.

The most likely explanation for the discrepancy is that the outer parts of the mirror

deviate from the ideal spherical shape. This would cause those parts of the mirror to exhibit
alternating bands of constructive and destructive interference, the effect of which would
average to zero, and essentially limit the useful solid angle of the mirror to only the central,

spherical part. Note that the detector PMT3 cannot see the outer parts of the mirror, and
therefore the first set of data end only records the light from the "good part", whereas the

other three sets of data measure the effect of the cavity as a whole. From this point of view
the quantity f(A2cav) can be viewed as the size of the "effective cavity aperture", and F

as the "effective finesse" of the cavity over this aperture.

Ideally, one would like to obtain a lens which views a much larger solid angle.
Unfortunately, there is no commercially available lens which has a significantly larger
aperture than the camera lenses used, and also has the required resolution and back focal
length. An f/0.78 lens (0L = 32.50; f(Alcav) = 0.22) which can meet these criteria has

been designed(76) and may be soon added to the experiment; the design of a significantly

larger aperture lens meeting these critera appears to be a formidable task.
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V. F. Effect of Atomic Displacement.

According to eq. (5.2), a displacement of the atoms from the center of the cavity should

have a significant effect on the experimental results. This includes both a shift in the

apparent resonance frequency of the cavity and a significant increase in the broadening of

the atom-cavity interaction. This broadening is due to both the effect of the distribution of
atomic positions and to the variation of the angle V at which the light rays are striking

various parts of the mirrors.

In order to test this, an experiment was carried out in which the position of the excited

atoms was deliberately displaced from the center of the cavity. The experiment was carried

out in a manner similar to that of the Yb experiment; i.e., the laser frequency was locked to

the center of the 138Ba resonance line, and the fluorescence intensity lend emitted out the

ends of the cavity, and the fluorescence intensity Iside out the sides of the cavity were

recorded as a function of cavity tuning. The intracavity aperture A was in place during these

measurements. Again, note that the intensity Iend is essentially a direct measure of the

partial spontaneous emission rate of the atoms into the cavity, whereas the intensity Iside is
a measure of the change in the total spontaneous emission rate I, according to the

approximate relation 2AF/T _ - Alside/Iside.

The results of the experiment are illustrated in Fig. 5.14. The atoms were first aligned to

the center of the cavity as carefully as possible; the resulting modulation in the intensities

Iside and Iend are shown in the top set of data. Then, the lens L4 was displaced in the

x-direction by calibrated amounts, thus displacing the excited atoms by the same amount.

The successive data sets in Fig. 5.14 show the results obtained for displacements of
A = 10 p.m, 20 pm, 40 gm, 60 gpm, 80 p.m, and 120 p.m.

During these measurements, the cavity length was drifting slightly due to thermal

expansion. In order to correct for this, after the last set of data the atoms were returned to

the center of the cavity, and the amount by which the peaks drifted from their position in

the first data set was measured. Then, assuming that the drift was a linear function of time,

the amount by which the cavity length had drifted for each of the traces in Fig. 5.14 was

calculated, and the data for each trace was offset from the previous ones to compensate for

that drift. The staight vertical line through all the data sets indicates the the cavity length at
which the central peak occured for A = 0.
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Fig. 5.14. Fluorescence intensity as a function of cavity tuning, at various diplacements A
of the atoms from the center of the cavity. Left hand column: Intensity Iend out
the end of the cavity. Right hand column: Intensity Iside out the side of the
cavity. In each scan, the cavity length increases from left to right.

The displacement clearly has a dramatic impact on the modification of the spontaneous
emission rate. Even for a displacement of only 10 pm, there is a discernable degradation in

the depth of the modulation of the spontaneous emission rate. For a displacement of
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60 pm, the modulation is the spontaneous emission rate is noticably reduced, and at a
displacement of 120 pm, it has practically vanished.

The broadening which is evident in the data of Fig. 5.14 may be attributed to two
sources. First, since the frequency shift 6v = - cA2/2)a 2, where sin2 =- 1, a distribution in

the values of A of width dA causes a distribution in the frequency shifts of width

c(dA)dA(5v) = - A (5.16)
ha2

In our case dA = 17 mm is set by the width of the pump laser beam. Second, there is a

distribution of angles V, ranging in our case from y = 680 to V = 900. This gives rise to a

width in the frequency shift of approximately
cA2

dy(8v) • (sin2900 - sin27y), (5.17)
2Xa2

where Y'is the "average" angle V. If we take i = 790, this gives

dV(8v) = .036 x cA2/2Xa 2. In our case the broadening is primarily from the distribution of

atomic positions. For example, at A = 40 pm, we obtain dA(8v) = 588 MHz and
dy(6v) = 25 MHz. Note that A = 40 pm is the displacement at which the broadening is of

the order of the cavity linewidth, which appears consistent with the data.

In addition to the broadening effect, the peaks also appear shifted to shorter cavity

lengths. This can be interpreted on the basis of eqs. (5.1) and (5.2): the resonance
condition is that the ray path length Lt must be equal to an integer number of wavelenths X,

so in order to compensate for the additional path length introduced by the atomic

displacement, the mirrors must move a little closer together. The arrows in Fig. 5.14 show

the positions of the peaks predicted by eq. (5.2). Reasonable agreement is obtained with

the observed shifts; the small discrepancy is presumably arises because the cavity drift was

not exactly linear in time.

The data of Fig. 5.14 emphasize in a very dramatic way the importance of a well-

localized, carefully positioned sample of atoms. In fact, these data are very much like what

one sees during system alignment, and similar behavior is observed for displacements in

the y and z directions. It should also be emphasized that the only reason that significant
modulation is observed for displacements as large as 80 pm is that the atomic sample is

small. If the sample size itself was as large as 80 pm, very little modulation would be

observed. (This was in fact the case in preliminary experiments, in which the size of the

sample was chosen too large.)
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CHAPTER VI

DISCUSSION AND CONCLUSION.

In the preceding chapters, it has been demonstrated that the emission rates, linewidths,

and frequencies of radiation by an atom may be modified when the atom is placed in an

optical resonator. It was found that such effects may be interpreted from both classical and

quantum-mechanical points of view. In this chapter we discuss a number of issues which

are raised by these results, mention applications in which such effects may be important,

and finally discuss several possible directions for future research.
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VI.A. Classical vs. Quantum Interpretation.

We have seen that the results of our experiments may be interpreted equally well from

two very different points of view: a simple classical picture, and a more detailed and

rigorous quantum mechanical picture. In the classical picture, the atom is viewed as

equivalent to a classical dipole oscillator. The radiation emitted by the dipole is reflected by

the cavity mirrors and refocussed onto the atom; this produces an additional radiation

reaction force on the dipole which accounts for its modified decay rate and for a shift in its

natural frequency. On the other hand, in the quantum picture, the atom together with all

modes of the radiation field must be viewed as a combined quantum-mechanical system.

The atom-field coupling gives rise to a shift in the energy levels of the system, and if

energy is initially stored in the atom alone, to a decay of energy from the atom to the field.

An optical cavity modifies this atom-field coupling, and therefore also modifies the decay

rate and level shift. This level shift appears as a shift in the resonant frequency of

transitions between two levels.

In view of the fact that the result from the classical picture agrees with that of the

quantum mechanical one, the question arises as to what extent the classical point of view is

correct, and how necessary it is to give a quantum mechanical description. Of course, the

simplest answer to this question is that the classical model fails in all of the usual ways

associated with free space radiation: it cannot account for the discrete oscillation frequencies

of the atom, and in general gives the wrong value of the total decay rate. Even if one

somehow accounts for these discrete frequencies in a semiclassical way, it cannot explain

the radiation by an atom in a pure excited state, while simultaneously accounting for the

stability of the atomic ground state.

Even if these issues are swept under the rug, the classical picture fails in another way, as

illustrated in Fig. 6.1. Suppose an atom has a resonance transition in the blue from level
IG) to level IE1) and a second resonance transition in the red from level IEI) to level IE2),

and suppose this atom is placed in a cavity which reflects blue light and transmits red light.
According to the quantum mechanical description, the level IE1) is shifted slightly in energy

due to a change in the atom-field coupling for frequencies near the blue resonance.
Therefore the frequency of the red transition from IE1) to IE2) is also slightly shifted. It

would be very difficult to account for this shift from any classical or semiclassical point of

view, since the cavity doesn't even reflect the red light.
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Fig. 6.1. Failure of the classical model.

Therefore, the classical model must be regarded as an incomplete picture at best.

Nevertheless, it does contain an element of truth, particularly for a the case of a weakly

excited two-level atom. This is because the weakly excited two level atom does behave

essentially as a classical dipole oscillator, if account is taken of "oscillator strength" of the

atom.(76) Further, the radiation from a two-level atom very nearly in its ground state is
coherent (i.e., its phase follows from that of the expectation value of the atomic dipole
moment), and has an amplitude which is correctly given by the classical dipole formula.(77)

Therefore, it is not surprising that the classical picture gives the correct result for this case,

whereas it fails for more general cases, such as that illustrated in Fig. 6.1.
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VI.B. How Big Can the Cavity Be?

An important conclusion of this thesis is the the wavelength of the emitted radiation does

not set the scale for the maximum size of a cavity that can significantly influence the total

radiation rate of an atom. This naturally leads to the question of what does determine the
upper limit on the size of the cavity.

The simplest case to consider is that in which some mechanism other then pure radiative
broadening, such as Doppler or collision broadening, limits the linewidth of the atoms to a
minimum value ya. Clearly in this case the cavity will have an effect only so long as the free
spectral range Ao)fsr = xc/L is greater than ya. This implies that

L < nc/ya (6.1)

must be satisfied. If it is not, then many cavity modes lie within the atomic linewidth,
effectively forming a continuum of modes whose effect is the same as free space.
Mathematically, this can be included in the Wigner-Weisskopf theory by adding a factor iya
to the atom field detuning oEG - Ok.

A more fundamental limit concerns the case in which the broadening of the transition is

purely radiative. In this case the question of how large the cavity can be is somewhat more
subtle, so in order to simplify the following discussion we restrict our attention to the case
of a complete spherical cavity. Many of the same conclusions apply to open resonators as
well.

We consider that a two-level atom with excited state IE) and ground state IG) is located

near the center of a complete spherical cavity of diameter L and reflectivity R. According to

the theory of section HI.C, provided the atom is displaced from the enter of the sphere by a

distance ra such that <<ra << •j-i-it interacts only with the lowest order transverse

modes of the sphere, whose frequencies are degenerate, with values On = nxc/L, where n

labels the value of a radial mode index. It is easy to demonstrate that, at a fixed value of

cavity tuning, the combined effect of all transverse modes having resonance frequency
cn is equivalent to that of an "effective single mode" of mode volume Veff = 3 2WlJ4i at

this same frequency. From here on we shall refer to these "effective single modes" simply
as the "cavity modes". We suppose that the atom-cavity system is initially in the state IE;0);

i.e. the atom is excited and the field is in the vacuum state. Its state at a later time t can be

written as,

160



00

I'P(t)) = ao(t)e-i0otlE;0) + 1 an(t)e-i(ntlG;n), (6.2)
n=1

where the state: IG;n) denotes a state in which the atom is in the ground state and one photon

is in the nth mode. In the same manner that was discussed in section III.A, this leads to the

amplitude equations

an = -g ao e+i((n - OEG)t (6.3a)

ao = I g an e-i((On-'EG)t, (6.3b)

where

g = = ee (6.4)

is the atom field coupling constant for each of the cavity modes and c)EG is the unperturbed

transition frequency between IE) and IG), and Ffree the usual free space decay rate.

We focus on the solutions to eqs. (6.3) in the case where one of the cavity modes, say
for n = p, is exactly resonant (op = O'EG), and first consider the case where all the modes

with n # p are weakly excited and may be neglected. As discussed in section I.B.4, the

interaction between the atom and the pth single mode will follow two types of behavior,
depending on the relative values of g and the cavity linewidth Yc = c(1-R)/L. The effect of

cavity damping may be included in an approximate way in eqs. (6.3) by adding a

phenomenological damping constant; doing this and neglecting all but the pth mode, we

find that

Is + ~a + 82 ao = 0. (6.5)

This equation has the solution ao = eat, with

o= -it+t 4 - 4g2 . (6.6)

For the low Q limit g << yc, this can be written as

lao(t)12 = e -cavt, (6.7)

where

cav = 2 R free (6.8)
Yc

This is just the previous result for cavity enhanced spontaneous emission. For the high Q
limit, g >> yc, the solution becomes

lao(t)12 = cos2 (gt) , (6.9)

which is just the result for the vacuum Rabi oscillation referred to earlier.
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Consider now what happens as the size of the cavity is varied, with its reflectivity held
fixed. Since g o 1/TE and Yc mc 1/L, it follows that g/Tyc o • -, and therefore the

interaction of the atom with a single cavity mode always eventually reaches the high Q
limit, for the cavity size sufficiently large. The boundary between the two regimes occurs
for g = Yc, which is equivalent to

rcav =: 47c . (6.10)
In other words, the boundary between the high and low Q regimes occurs when the

enchanced spontaneous emission rate of the atom into the cavity is of the order of the cavity

linewidth.

We next consider under what conditions the adjacent cavity modes (n # p) will be

excited. According to eqs. (6.3a), the solution for early times for an (n * p) is given by

lan(t)I2 = 4g2 sin2((cOn - )t/2) (6.11)
((On - 00)2

where for sufficiently early times ao 1 i. Taking the time average of the lan(t)I2 and

summing over all n • p, we find

n la3(t)12 A sr , (6.12)

where Acfsr =-: c/L is the spacing between adjacent cavity modes. We see that the

combined effect of all the adjacent cavity modes will be small provided that g << AOfsr.

This condition may be rewritten as
L 2x- << n- (6.13)c Ffree

In other words, the boundary between the single and multimode excitation occurs when the

round trip time of light in the cavity is of the order of the free-space lifetime. Note that,
since Acofsr > yc, the boundary between the high and low Q regimes always occurs in the

single mode limit, as previously assumed.

From these considerations, we see that the behavior of the radiating atom in the cavity

may be divided into four distinct regimes, depending on the cavity size, as illustrated in
Fig. 6.2. For very small L (L << X), the cavity has no modes available at all near moEG, and

the spontaneous emission rate is inhibited. In this case, the atom may be anywhere inside

the resonator. This is the regime which has been previously studied.
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Fig. 6.2. Four regimes of spontaneous emission in a spherical cavity.

For larger size cavities (X < L < 2c(l-R)2/fr ), enhanced and inhibited spontaneous

emission in the low Q limit is obtained, as has been discussed extensively in this thesis.

Throughout this region, the atom interacts with one of the cavity modes at a time, and

cavity damping plays an essential role. From the point of view of section II.C, the atom

interacts with many "modes of the universe", and the Wigner-Weisskopf approximation

holds, in the sense that these "modes of the universe" form a smooth continuum. The total

spontaneous emission rate follows the lineshape of the cavity.

For still larger L satisfying 2c(1-R)2/Ffe < L < 2rc/free, the individual cavity modes

become so sharp that the Wigner-Weisskopf approximation breaks down. Again, the

boundary between this region and the previous one is that the enhanced spontaneous

emission rate of the atom exceeds the cavity linewidth. For cavity sizes near the lower limit
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2c(1-R)2/Ifree, the interaction of the atom is still essentially with a single mode, and we

have "spontaneous emission" in the high Q limit; i.e. vacuum Rabi oscillation. However,
as the cavity size approaches the upper limit 2xc/Ifre, the atom begins to excite multiple

modes of the cavity, resulting in a complex, high Q, multimode behavior. The extent of the

high Q region depends on the reflectivity of the cavity. For very lossy cavities there is very

little gap between the onset of the high Q limit and the onset of multimode behavior,

whereas for very high finesse cavites, the high Q region extends very far into the single

mode region. For 1/(1-R) > 2c/LT fee, the cavity finesse is so high that the high Q region

extends all the way through to the small cavity limit, and there is no low Q behavior for any

cavity size.

Finally, for L > 2xc/Tree (i.e., the cavity round trip time greater then the free space

lifetime), the cavity modes become so closely spaced that many cavity modes are excited by
the atom. In this case we are essentially back to the free space Wigner-Weisskopf limit.
Whereas in the low Q limit the "modes of the universe" formed a smooth continuum, now
the cavity modes themselves form a smooth continuum, and therefore the spontaneous
emission rate does not follow the lineshape of the cavity. However, even in this regime it

does not follow that the atom returns entirely to its free space behavior. This is because the

equally spaced cavity modes remain coherently phased (assuming no cavity loss). This
implies that at later times a rephasing of the atom-field wavefunction may occur in such a
way the the excitation returns to the atom. Simply put, the wave emitted by the atom will
eventually reflect off of the sphere, return back to the atom, and reexcite it. However, for

times short compared to the cavity round trip time, the discrete nature of the cavity mode
density is not apparent, and the behavior is essentially the same as free space.

From these considerations, we see that there are several answers to our question of
"how big can the cavity be?" depending on what exactly is meant. If the question is when
enhanced and inhibited spontaneous emission no longer occur in the sense discussed in this
thesis, the limit is L = 2c(1-R)2/rfee. On the other hand, if the question is when the

behavior of the atom returns essentially to the free-space Wigner-Weisskopf limit,
excepting the fact that in a lossless cavity the atom may eventually be reexcited, then the
limit is L = 2rc/free. However, if the question is when there is no change from the free-

space behavior, then there is no natural limit on the size of the resonator.
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VI.C. Importance of Cavity-Modified Spontaneous Emission to Spectroscopy.

The most interesting potential application of cavity-modified spontaneous emission is
that it might be used to reduce the natural linewidth of a transition, giving increased
resolution without the loss in signal-to-noise ratio associated with other so-called

"subnatural" linewidth schemes.(78) An experimental arrangement for accomplishing this is

illustrated in Fig. 6.3. Atoms are placed near the center of a nearly complete spherical

cavity which is detuned from the atomic resonance. The atoms are pumped by laser

radiation introduced through a small hole in the resonator, and scattered fluorescence

leaking through the mirrors or through another small hole in the minrrors is detected as a

function of laser tuning. If desired, resonant build-up cavities could be used to enhance the
interaction of the atoms with the laser or with the detector.

T

Cavity

Fig. 6.3. Subnatural linewidth spectroscopy in a nearly complete spherical cavity.

Of primary importance in any such scheme are the frequency shifts introduced by the

resonator. We have demonstrated in this thesis that frequency shifts introduced by a cavity

may be very nearly equal to zero if the cavity is tuned with the atomic resonance halfway
between two cavity resonances. Therefore therefore the resonator may significantly reduce
the linewidth without introducing a shift. This important point has also recently been
emphasized by Dehmelt.(79) Of course, the effect of any holes or gaps, as well as mirror
aberrations must be carefullly understood and controlled if such a strategy is to be useful.
One further point that is that the radiative shifts we have been discussing are distinct from
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the shift introduced by the Van derWaals interaction of the atom with the cavity walls,

which have played a role in other experiments.( 19) We emphasize that in a large optical

resonator, such shifts are negligible.

Even when unintended, cavity effects may arise in spectroscopic experiments and may

be important. For example, build-up cavities are sometimes used to enhance the interaction

of laser light with a weak atomic transition, and can in principle introduce shifts.

Another example is trapped ion spectroscopy, in which the trapping electrodes may

inadvertently from an optical cavity. Shifts arising from such cavity effects must be

carefully evaluated if one is to have complete confidence in the result of such spectroscopic

experiments. Ordinarily, the solid angle and finesse of such inadvertent cavities is likely to

be small; the results of this thesis show that any shifts will be much less then the natural

linewidth. Nevertheless, they may be important, since it is not uncommon to "split" a

spectral line (locate its center to an accuracy much better then the linewidth). For instance,

in the next generation of the Cs atomic clocks, the line will be split by six orders of

magnitude.(80) Of course, radiative broadening does not play a very important role in the

Cs clocks, but it has been proposed that electronic transitions of trapped ions be used as a

frequency reference for an optical frequency standard,(81) in which case these radiative

effects may be very important.

In addition to its role in determining the natural linewidth, spontaneous emission may

also appear as a source of unwanted noise. For instance, the Schawlow-Townes limit on

the linewidth of a laser may be interpreted as due to the phase diffusion of the laser field

amplitude caused by randomly occurring spontaneous emission into the lasing mode.

Spontaneous ,emission may also occur as a source of unwanted noise in squeezed state

generation in a similar way. We do not give any detailed analysis here, but merely point

out that such spontaneous emission noise is not completely unavoidable, and may be

suppressed substantially if the cavity is detuned from the atomic resonance.
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VI.D. Possible Directions for Future Research.

VI.D. 1. Possible Discrepancy Between Wend and Wside.

In the data of Figs. 5.11-5.13, there is generally good agreement between theory and

experiment, if account is taken of the effects of broadening on the cavity finesse. However,

there is one experimentally measured quantity, Wend', which may exhibit some departure

from the theoretical curve. This is particularly noticeable in the data of figure 5.12. It seems

that the linewidth Wside' is generally in good agreement with the theoretical curve, but that

the linewidth Wend is slightly greater than Wside' when the nearest cavity mode is tuned to

the red, and slightly less than Wside' when the nearest cavity mode is tuned to the blue.

This effect is somewhat less noticeable in the data of Fig. 5.11 and Fig. 5.13, but still

seems to be present to some extent.

Unfortunately, the data is not of sufficient quality to definitively state that the linewidths

Wend' and Wside' differ. The error is due mostly to irregularity in the laser frequency vs.

input scan voltage, and also to some extent to poor signal to noise. The error could be

reduced by improving the stability of the laser and by taking several scans at each cavity

tuning and averaging the result.

This effect should be investigated further to determine if it is real. If so, it is certainly in

conflict with either the classical model or the simple Wigner-Weisskopf treatment given

earlier. There are several possible explanations for such an effect. First, it might occur
because the quantities W, Ato, and I are averaged over many atoms of different velocities

and positions, and since these atoms are weighted differently in each measured quantity,

these averaged quantities may not agree with a simple theory based on a homogeneous

sample of atoms. It is also possible that this discrepancy could arise from one of two more

fundamental sources (discussed further below). The first is that it may be some effect
related to the onset of the high Q regime: in our cavity g/2x - 40 MHz, whereas

dc/2Kx 500 MHz, so the vacuum Rabi frequency is not completely negligible. The second

is that it may Tbe some effect related to stimulated absorption or emission. In our theory, this

possibility was not taken into account, since the basis set did not include any states

containing more than one quantum of energy. But there is no reason the cavity cannot store

the spontaneously emitted photons, which could then give rise to stimulated emission or

absorption.
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VI.D.2. Larger Solid Angle Cavity.

It would be of great interest to see if one could achieve a truly substantial narrowing of

the natural linewidth by going to a much larger solid angle cavity. In the present

experiment, the observed decrease in linewidth was only about 10%, which constitutes a

reasonably convincing demonstration of narrowing, but is hardly worth the trouble from a

practical point of view. But there is no reason why the present cavity mirrors could not be

replaced by almost hemispherical mirrors, resulting in a much larger effect. Note that, since

inhibition only requires that the cavity modes be off resonance, only a modest finesse is

required.

The results of section V.E are a step in this direction and indicate an important difficulty

to be addressed: the lenses used to illuminate the cavity must be of imaging quality, but

subtend the largest possible solid angle. Otherwise, it is impossible to know when the

cavity is aligned and whether the part of the cavity outside the field of view is working

properly. It is likely that the design of these lenses and the alignment of the cavity will be at

least as difficult a problem as acquiring the mirrors themselves.

VI.D.3. High Q Regime.

It would be of great interest to study the behavior of a single atom interacting with a

single cavity mode in the high-Q regime. For the concentric resonator, the coupling

constant g between the atom and the "effective single mode" may be written as,

g = = freef(cav) (6.14)

where now Veff = 3X2L/4xf(ADcav) is the effective mode volume. Again, the high Q

regimes occurs for g > yc, where yc = c(l-R)/L is the cavity linewidth. In our case

g/2x = 40 MHz whereas yc = 500 MHz. Therefore, we are already approaching the high-Q

limit.

It should not be too difficult to increase g/yc further. Note that

g/Yc iVLf(Acav) / (1-R), so this ratio can be increased by increasing L, increasing
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f(Acav), or increasing the cavity finesse. Certainly it should not be too difficult to obtain a

cavity with a linewidth of tens rather than hundreds of MHz. One difficulty with this

experiment is that since we are now concerned with the resonant interaction of the atoms

and the cavity, the effects of mirror surface aberrations, drifts in cavity tuning and

alignment, transit time, Doppler broadening, and atomic displacement will begin to play a

crucial role. It order to do such an experiment properly it will probably be necessary to

obtain the very highest quality mirrors, and to use a slowed atomic beam to reduce transit

time and Doppler effects. In spite of these difficulties, such experiments would be of great

fundamental importance and are obviously worth pursuing. As one last point, we also

mention that time-dependent measurements in the high-Q regime could be very interesting.

VI.D.4. Spectrum of Spontaneous Emission of a Driven Atom in a Cavity.

In all of the work described in this thesis, the pump laser intensity was always kept

below saturation, and the total fluorescence intensity was studied. As emphasized in a

recent set of papers,(43,44) it would be of great interest to spectrally resolve the fluorescence

emitted by an atom in a cavity, particularly if the atom is driven by an intense laser field. In

this case the usual Mollow spectrum(82) is modified, and as emphasized by Lewenstein,
Mossberg, and Glauber,(43) a qualitatively differrent, "dynamical" suppression of

spontaneous emission may take place.

Our system presents the ideal opportunity to study such effects. In order to carry out

such experiments, it would be necessary to image the fluorescence emitted at right angles

from the atomic beam through a tunable Fabry-Perot etalon before detection by the

photomultiplier tube. Note that, since the the atoms constitute essentially a point sample,

the light can be directed through the Fabry-Perot fairly efficiently. The signal-to-noise ratio

decreases as the resolution of the Fabry-Perot is increased, but this could be compensated

for by an increased atomic beam flux. One further problem which would need to be

addressed carefully is the effect of spatial averaging over the Gaussian intensity profile of

the pump laser beam.
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IV.D.5. Effects of Stimulated Emission and Absorption , and the Single-Atom Laser.

A further interesting extension of this work is to consider under what conditions

stimulated emission or absorption may become important to the interaction between a single
driven atom and an optical cavity. Note that since the absorption cross section a = 3X2/2x,

the "effective gain" of a single atom in the cavity is Geff = 1- oL4Veff = 2f(Alcav), which

may easily exceed the cavity loss 1-R. In the case Geff > l-R, the single atom is optically

thick with respect to 1/(l-R) round trips of the cavity, and therefore the possibility of

stimulated effects must be considered.

Note that in our case, Geff = 0.2, whereas (1-R) = 0.35, so we are already near the

high gain limit. However, in our experiment, the atoms are only weakly excited, so the

average number of photons in the cavity is much less than one, and only spontaneous

emission is important. But for conditions of strong pumping, such effects could easily

become important, especially if an improved cavity is obtained.

An interesting question is under what conditions laser action by a single atom could be

achieved. In this case it is necessary to produce a steady-state inversion in some way. One

possibility is to cycle the atom around in a three-level system, as illustrated in Fig. 6.3.
The pump laser continually transfers population from the ground state IG) to the excited

state IE2), and provided the decay rates of the atom are favorable, lasing could be achieved

on the transition to an intermediate level IE1), which then decays down to the ground state.

Of course, the average inversion density of the atom will be less than 1, and the cross

section on the lasing transition will be reduced from 3X2/2n, so the conditions for lasing

will be more stringent than simply 2f(Acav) > (1 - R).
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Fig. 6.3. Scheme for producing a single atom laser.

This experiment has been analyzed further; the details are extensive and will not be

given here. The bottom line is that it appears to be a very difficult experiment, on the fringe

of possibility. Nevertheless, it would certainly be fascinating to obtain lasing action by a

single atom, and this possibility is definitely worth exploring further.

VI.D.6. Multiple Atoms Interacting with a Single Mode of an Optical Cavity.

Finally, we mention one further possibility for future research: the study of multiple

atoms interacting with a single mode of an optical cavity. In this case, it would be

necessary to couple the atoms to a specific cavity mode, such as the TEM00 mode of a

two-mirror resonator, since there is no way to force the "effective single modes" of atoms

in a degenerate cavity to overlap; i. e. the atoms would otherwise act independently.

Of course, in the case of low gain and the steady state, this is nothing more than an

ordinary laser. But other interesting effects, such as cavity superfluorescence( 10), and the

optical analogue of the micromaser(11) could be studied if the gain is sufficiently high and

the atomic linewidth sufficiently small. One interesting feature of the n-atom system is that

the vacuum Rabi frequency scales as g-4 .Therefore, by simply increasing the number of

atoms, it would be possible to study behavior in the high Q limit in a resonator that cannot

reach the high Q limit for a single atom.
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VI.E. Summary.

In this thesis, the intensities, linewidths, and frequency shifts of radiation by an atom in
an optical resonator were studied. A simple classical model was presented in which the
atom was viewed as a classical dipole oscillator whose motion is modified when its own
radiated field is reflected back onto it by the cavity mirrors. This model provided a simple
and physically intuitive description of such radiative processes. We also presented a more
rigorous quantum-mechanical treatment of radiation by an atom in a resonator, and found
that it basically agreed with the classical treatment in its predictions for the results of the
measurements carried out in this thesis. The quantum treatment was carried out in the
Wigner-Weisskopf approximation, and from this point of view, the cavity enhances the
interaction of the atom with certain mode frequencies, thereby modifying its spontaneous
emission rate and radiative level shift.

The intensity of fluorescence emitted by ytterbium atoms in a confocal resonator was
studied as a function of resonator tuning. For very small mirror spot sizes, the spontaneous
emission rate into the resonator aperture was found to be enhanced and inhibited by a factor
of roughly 1/(l-R), relative to the free space rate into the same aperture. For larger
apertures, the radiation was enhanced by much less, due to a kind of "spherical aberration"
effect. This limited limited the useful mirror aperture to a value such that the fraction of
spontaneous emission intercepted by the mirrors was 0.5%, and the change in the total
spontaneous emission rate was about 2%. Although the change in the total spontaneous
emission rate was small, it was detected indirectly by measuring small changes in the
intensity of fluorescence emitted out the sides of the resonator. It was emphasized that this
change in sideways intensity is due only to a change in the excited state atomic population,
and not to a "redistribution" of the spontaneous emission probability.

More extensive experiments were carried out using barium atoms in a concentric
resonator. Barium was chosen for its much greater natural linewidth, and the concentric
resonator allowed a much greater solid angle to be subtended, such that the cavity
intercepted 11% of the free-space spontaneous emission. In this experiment, changes in the
intensity of fluorescence were observed that were similar to those in the Yb experiment. In
addition, changes in the natural linewidth, due to enhanced and inhibited spontaneous
emission, and changes in the center frequency, due to radiative level shifts, were observed.
This was the first demonstration of the importance of such effects in spectroscopic
experiments. In general, good agreement between theory and experiment was obtained.
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Experiments were also attempted using a significantly larger solid angle, but these

produced dissapointing results, presumably because of poor surface quality of the mirrors

near their edges. An experiment was also carried out which studied the spontaneous

emission rate as a function of atomic position; this experiment illustrated the importance of

a small, well-localized sample of atoms.

The question of interpretation was discussed, and it was found that the classical

description must be regarded as incomplete, although the experiments carried out in this

thesis do not genuinely distinguish between the quantum and the classical theories. We also

discussed the question of how large a resonator can be, and still have an influence on

spontaneous emission. It was found that, in a sense, there is no limit on the size of the

resonator. Four regimes of spontaneous emission were identified. The first is the small

cavity limit which has been studied in almost all previous atom-cavity experiments, the

second is the large cavity, low Q limit which has been studied extensively here, and two

further regimes, the high Q and multimode regimes were discussed. Both of the latter two

regimes have not been studied experimentally. Finally, a number of directions for future

research were identified and discussed.

Perhaps the most interesting aspect of this research is that it forces us to rethink many

long-held assumptions regarding spontaneous emission and irreversible decay. Essentially,

we have shown in this thesis that when an atom radiates, the influence of that radiation is

not necessarily over when the wave leaves the vicinity (wavelength sized region) of the

atom. Only if the wave is ultimately absorbed will it have no further influence on the atom.

If it is not, it can always be reflected back onto it, and since the atom-field system is

evolving as a combined quantum mechanical system, this reflected field will remain

coherent with the atom and influence its radiation. This illustrates in an interesting way the

importance of dissipation to the natural linewidth. It is hoped that this thesis has shed some

new light on the problems of radiation by atoms in resonators, spontaneous emission, and

radiative level shifts, and will stimulate further investigation in this area.
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Evaluation of Frequency Shift Integral.

In this section we evaluate the integral
oo

= 4ýF1 + F
. 1 + Fsin 2(x + •)

-00oo

Xx+ 2 dx
x2 + A2 (A1.1)

for F 2 0 and in the limit as A -+0. The author is grateful to Eugene Gath for providing the

following solution.

First, write.
F

1 + Fsin2(x + ) = 1 + (1 - cos(2x + 20)).

Also, define
F

sinO 2 +F

= 24,

6 = 2A

x' = 2x .

(0 < 80 <)

(A1.2)

(A1.3)

(A1.4)

(A1.5)

(A1.6)

Then

I 41 + F

1I + .
2 -oo

1
- sin0cos(x' + 4)

dx'f dx'x'2 + 82
(8 - 0).

Dropping the prime on the dummy variable x', consider now
00oo

I2 x dx; ( -+ 0).
1 - sin0cos(x + ) x2 + 82

(A1.7)

(A1.8)

Recalling that the Fourier series decomposition of a function f(x) on the interval [a, a+2x]

may be written as
oo

aof(x) = + ' (ancos(nx)
n=1

a+2x
1

an= -- f(x)cos(nx)dx
7 a

+ bnsin(nx)) , (A1.9)

(Al.1Oa)
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a+2x
1

bn =- f(x)sin(nx)dx (Al.10Ob)
1: a

1
Choosing f(x) = and taking a = (2k-1)x; ke Z, we may easily show that

1 - sin0cosx

bn = 0 and that
1 ao

1 + ancos(nx) , (A1.11)
1 - sincosx n=l

where

2 f cos(nv)
an - dv. (A1.12)

i: 1 - sin0cosv
0

Substituting x -- x + 4 in eq. (A1.11) gives the desired result. Noting thatý,0

cos(nv) x cos0 -1cos(nv) dv - (os (A1.13)
1 - sin0cosv coso sinO

gives
2 (cos0-1an =• (A1.14)

coso sine

Consider
00oo

13= cos(n(x+ý)) x dx

-00

O0

=-2sin(n4) sin(nx) x2 + 2' dx. (A1.15)

0

Noting that(n)

Ssin(nx) x dx = e (Al.16)
x 2 + 8 2

0

we obtain,

13 = -ixsin(n4)e-8n ,  (A1.17)

and therefore
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12 ao
I2f(_0

-00>

ancos(n(x+t))

00

+
n=1

00

= I an(-Rsin(nn)e-8 n)

n=1

in ((1-cos0

coso0 k sine
n=u

1-cose
sinO e-ite-8 ).

Letting 8 -- 0, the series may be summed to obtain,

12 =

--xsinytane

1 - costsine

Therefore, noting that
1 + F

I= F I2; (8-*0),

F
and substituting for 4 = 2ý and sine = 2 + F we obtain finally,

-1Fsin(20)
I1 =

2(1 + Fsin2 )
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Appendix 2. Publication: "Coherent Ringing in Superfluorescence"

This appendix contains a reprint of the article "Coherent Ringing in Superfluorescence"

(D.J. Heinzen, J. E. Thomas, and M. S. Feld, Phys. Rev. Lett. 54, 677 (1985)). This

publication summarizes work which was carried out prior to the Yb and Ba experiments

described in the remainder of this thesis. In this work superfluorescence on an infrared
transition of rubidium atoms in a cell was studied. The results demonstrated that coherent

ringing is an intrinsic property of superfluorescence and that its absence in experiments is a
spatial averaging effect.
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Coherent Ringing in Superfluorescence

D. J. Heinzen, J. E. Thomas, and M. S. Feld
George R. Harrison Spectroscopy Laboratory and Department of Physics. Massachusetts Institute

of Technology, Cambridge, Massachusetts 02139
(Received 12 October 1984)

Superfluor.,cence emitted from small regions of the output face of an initially inverted medium
is found to exhibit ringing; this confirms that coherent ringing is an intrinsic property of super-
fluorescence. The system studied is a pure two-level Rb transition at A - 2.73 Am, prepared in a
cell by means of cw single-mode radiation. The Fresnel number of the sample is 1.7.

PACS numbers: 42.65.Gv, 32.50. +d

Superfluorescence (SF),' the collective radiation
damping of an initially inverted assembly of two-level
atoms, has been the subject of much experimental and
theoretical investigation since it was first discussed by
Dicke in 1954.2 Although there is now general agree-
ment between theory and experiment in many aspects
of this phenomenon; there is debate about the condi-
tions, if any, under which SF can exhibit oscillations or
ringing, and the exact nature of this ringing. This
Letter reports the results of new SF experiments which
view the radiation from a small spatially resolved re-
gion of the output face of the sample. The results
unambiguously demonstrate that ringing is a funda-
mental property of SF, and that the absence of ringing
in some SF experiments is primarily a spatial averaging
effect.

In the initial SF experiment, on rotational transi-
tions in HF gas, 3 strong ringing was observed and attri-
buted to coherent Rabi-type oscillations similar to
those predicted in absorbers by Burnham and Chiao.'
However, in a subsequent series of studies in atomic
Cs,5 a regime of "single-pulse" SF was identified in
which ringing never occurred. Furthermore, the mul-
tiple pulses observed at the highest Cs densities were
attributed to effects of large Fresnel number and
cooperation length, and not to coherent processes.6

Mean-field SF theories7 predict smooth single
pulses, but these treatments assume the sample to
evolve uniformly along the SF propagation axis (i);
this assumption is incorrect since, inherently, the
high-gain medium of a superradiating sample is opti-
cally thick.1 Ringing in SF is expected on the basis of
uniform plane-wave solutions to the coupled
Maxwell-Schr6dinger (semiclassical) equations.9

These results show that SF ringing is due to energy
transfer: among longitudinal sections of the sample,
and is an essential feature of propagation in a high-gain
medium. Recent quantized-field treatments confirm
this expectation. 10. 11

The predictions of this plane-wave model must,
however, be.modified to include radial ("transverse")
variations in optical polarization and inversion densi-
ty.'2 These occur because the SF medium is inverted
by a laser pulse with a radially varying intensity distri-

bution. The sample may thus be considered as being
divided into a number of concentric shells of decreas-
ing density. The pulse profile and ringing period vary
from one shell to another because of their different
densities. In addition, the shells are coupled together
by diffraction. The extent of this coupling depends on
the sample's Fresnel number F-rro2/AL (ro and L
are tii: radius and length of the inverted medium, and
A is the SF wavelength), and is relatively small for
F Z 1. The output of the sample as a whole is the sum
of the radiation from each of the concentric shells, and
this "spatial averaging" washes out the ringing. 12

A recent theoretical analysis13 studies the combined
effects of quantum fluctuations and transverse varia-
tions in Cartesian geometry, and concludes that even
for F-- 1, the SF transverse intensity distribution is
"completely irregular," because of "short-scale fluc-
tuations" and "loose coupling between various por-
tions of the beam." This gives rise to the question of
whether coherent ringing can be observed at all, even
within a restricted aperture.

To test this we have performed experiments exam-
ining the emission from small regions of the output
face of an SF sample with F-- 1. The cell contains
atomic Rb vapor, and SF is produced at the
62P3/2 -- 62S1/ 2 transition, A - 2.73 1.m, inverted by a
pump pulse from a dye laser tuned to the
52S,/2- 62P3/2 transition of 7Rb (I - -), A,-420

nm IFig. 1(a)]. In order to obtain a pure two-level
system, required for unambiguous interpretation of
the results, the cell is placed in a 5000-G magnetic
field, uniform to better than 1 G. The magnetic field,
SF propagation direction (i), and linearly polarized
laser field are all mutually perpendicular. The laser is
tuned to the

52S, 12[M,,M,- - +, + ]-. 62P3/2[- -, + +]

transition, which is resolved from the nearest-
neighboring Zeeman c)mponent by 1300 MHz. This
level can decay only lo the 62S1/ 2[ - , + 1 level,
resulting in pure two-k wel SF.14

Controllable, reproc icible conditions are achieved
by use of stabilized cw ;ingle-mode dye-laser radiation
at ,X -420 nm to inv rt the sample [Fig. 1(b)]. An
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electro-optic shutter switches out a pump pulse of duration r from this beam. The pulse height is adjusted to pro-
vide w-pulse inversion of the (optically thin) pump transition for atoms along i (i.e., radial coordinate r = 0) with
axial velocity component v - 0.' 5 The inversion density per unit velocity interval is then given by

.I '(r.v).-. o
sin 2(ir exp[- (r/r,)2/2] I+ (k,v/r)2 exp[(r/r) 21) 1/ 2)

I + (k,vT/i)2exp (r/r.)2]

with. $'o the density of atoms in the ground state per
unit velocity interval, r, the I/e half-width of the
pump laser intensity, and k,= 2/A,.'16 The l/e radius
of n(r)-f .1'(r.v)dv is then ro=1.31rp. Both
velocity and spatial distributions of the inverted atoms
are thus well defined. In addition, only a narrow velo-
city group of atoms is excited, resulting in loig de-
phasing times, Ti', without the need for an atomic
beam: Equation (1) gives T* =-0.38(X/,,)T. From
Eq. (1), the total number of inverted atoms is

Nmf n(r)d3r-3.34.A'orr,• L(/k,T).

This is the first time that single-mode cw radiation
has been used to produce SF. The reproducibility of
our results is largely due to the precision of this
method of preparation.

in the experiments a 60-mW, T - 8 ns pump pulse is
focused to a waist of r,- 188 p.m in an L = 4 cm cell,
giving r0-245 pm, F- 1.7, and T2* = 20 ns. The SF
emission in the forward direction is collected by an
f/10 lens system and imaged onto an InAs photodiode
(Judson J12-LD, 250-g.m diam, 5-mA bias current).
Only a 50-pm region near the lead wire of the detector
exhibits fast response, so that great care is taken to en-
sure that all light is focused onto this area. This signal

(t
S

2.73

-- , Mt + )

J. L4i
J , m -- , mI - TZ I

2

(b) et

E/O Rb cell Ll P Ge L2 Det

FIG. 1. (a) Rubidium energy-level diagram, showing
relevant Zeeman sublevels. (b) Experimental arrangement.
SF emitted from the cell is collected by lens Ll, which im-
ages the output face of the sample onto plane P. A pinhole
may be placed at P if desired. The light then passes through
a Ge filter, and is refocused by L2 onto the detector.

is amplified and fed into a transient digitizer. The
overall response time of the system is 1.6 ns.

The optics are carefully designed to eliminate spher-
ical aberration in order to provide adequate spatial
resolution at the pinhole and adequate focusing on the
detector. A two-element CaF 2 lens images the output
face of the cell with a magnification of 1.0 onto a plane
in which a pinhole is inserted. The SF signal then
passes through a Ge filter which blocks the pump
light, and then through a three-element CaF 2 lens
which focuses the light onto the detector with a magni-
fication of .AY.

The left and right columns of Fig. 2 show data taken
for N= 5x 10' and 2.4x 10', estimated with 10% accu-
racy from depletion of the pump pulse. In each
column the top trace shows the pump pulse. The
second trace shows, on the same time scale, the SF
signal when all light in the forward direction is collect-
ed. In this case no ringing is observed, and the signals.
appear very similar to those of the Cs experiment.s Fi-
nally, in the lowest traces the pinhole has been insert-
ed into the beam. In this case the tail of the pulse is

Pump
Pulse

SF Signal
no pinhole

SF Siqnol
with pnhole

lime (nu)

FIG. 2. Pinhole experiment results. The inset circles,
drawn to scale, represent the relative diameters of pinhole
and sample. For three of the traces the vertical sensitivity
was increased by the factor shown to the left. Also shown in
the figure are the times TA and TB derived from theory.
Sample diameter d-2ro0 -490 Am. (a) N=S.Ox 10',
pinhole diameter 150 A m; (b) N - 2.4x 10' , pinhole diame-
ter 200 Mm.
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FIG. 3. Results of experiment in which a 150-Am pinhole
is translated in 100-#m steps across the image of the output
face of the sample. The inset circles show the relative size
and position of the sample and pinhole.

reduced dramatically and ringing is clearly observed.
Each trace records a single SF pulse. Shot-to-shot

fluctuations are small: Delay-time variations are
- 8% and pulse-height variations are -- 17%. The
fluctuations may be partly due to pump-intensity varia-
tions. The ringing shown in Fig. 2 was the strongest
observed. The ratio of the height of the second lobe
(above the tail) to the height of the first lobe varied up
to 0.13, with the average being about 0.06; nearly
every pulse showed some ringing.

Figure 3 presents a series of" SF pulses in which a
150-Mm pinhole is scanned across the laser beam in
100-aLm steps. The experimental conditions are identi-
cal to those in Fig. 2(a). These data make it clear that
the pulse shape is a strong function of position. To-
ward the edges of the beam the pulses are smooth with
relatively long delays, whereas toward the center of the
beam the pulses become larger, are delayed less, and
exhibit ringing similar to .hat in Fig. 2. Figure 3
makes it clear how, by sum ning toge;her of the pulse
shapes from all parts of the ,utput face, a smooth total
SF signal is obtained.

Because of the predictic k of Ref. 13 that the SF
transverse -intensity distribt .ion should be spatially ir-
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regular, one may question whether the ringing ob-
served, rather than being true coherent ringing, is in-
stead some kind of multiple pulsing or spiking. The
data clearly show that this is not the case. Examina-
tion of many single-shot traces shows that the ringing
period is very regular and not randomly fluctuating.
Further, this period is nearly exactly that predicted by
plane-wave theory: Using 0- 2/'N I x 10- 4, we
calculate 9 separations of TA - 32 TR and T =- 36 TR
between the first and second pairs of SF lobes, respec-
tively, with TR u-/2rrkkM

2nL. Is Using for n the value
n(0) estimated from Eq. (1) gives, for the experimen-
tal conditions of Fig. 2(a), TA - 5.6 ns and TB - 6.3 ns,
and for those of Fig. 2(b), TA - 11.7 ns and TB - 13.2
ns, in excellent agreement with the data.

We conclude that coherent ringing is an intrinsic
property of SF, and that its absence in experiments is
primarily a spatial averaging effect. The Cs experi-
ment s showed no ringing because the entire SF output
was observed, whereas it is likely that the HF experi-
ment- showed ringing because the detector viewed
only a small region in the near field of the beam.

Contributions of Dave Anderson, Burt Bernstein,
Igor Shumay, Carter Kittrell, Judson Infrared, and
Coherent, Inc. are gratefully acknowledged. This work
was supported by the MIT Laser Research Center and
the U.S. National Science Foundation under Grant No.
8313248-PHY. One of us (D.J.H.) is a Lester Wolfe
Predoctoral Fellow.
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Appendix 3. Publication: "Enhanced and Inhibited Visible Spontaneous Emission by
Atoms in a Confocal Resonator"

This appendix contains a reprint of an article which summarizes the ytterbium atom-

confocal resonator experiments (D. J. Heinzen, J. J. Childs, J. E. Thomas, and

M. S. Feld, Phys. Rev. Lett. 58, 1320 (1987)).
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Enhanced and Inhibited Visible Spontaneous Emission by Atoms in a Confocal Resonator

D. J. Heinzen, J. J. Childs, J. E. Thomas,(a) and M. S. Feld
George R. Harrison Spectroscopy Laboratory and Department of Physics. Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
(Received 5 December 1986)

We report the alteration of visible spontaneous emission by atoms coupled to the degenerate modes of
a confocal resonator. The partial emission rate into the resonator modes is enhanced by a factor of 19
when the resonator is tuned to the atomic transition frequency and inhibited by a factor of 42 when it is
detuned. This results in a fractional increase of 1.6% and decrease of 0.5%, respectively, in the total
spontaneous emission rate, which we verify by monitoring changes in the intensity of light emitted out
the sides of the resonator as it is tuned.

PACS numbers: 32.80.-t, 42.50.-p

It has long been recognized that the spontaneous-
emission rate of an atom in a resonator may be altered
from the free-space value, because of a change in the
density of modes. -3 Changes in spontaneous-emission
rates due to cavity-like effects were first observed in the
fluorescence of dye molecules deposited on a thin dielec-
tric layer over a metal substrate.4 Recently, several ex-
periments have demonstrated such effects in a true reso-
nator structure at long wavelengths: enhanced spontane-
ous emission of Rydberg atoms in a millimeter-wave cav-
ity,5 and inhibited spontaneous emission of cyclotron ra-
diation by an electron in a Penning trap6 and of a Ryd-
berg atom in a waveguide below cutoff.7 This Letter re-
ports the first observation of enhanced and inhibited
spontaneous emission by atoms in a resonator at visible
wavelengths.

The ratio of the spontaneous-emission rate into a sin-
gle resonant cavity mode of quality factor Q and volume
V to the total rate in free space is given by5

q--(3Q/4X2 )(13/V), where X is the emission wave-
length. A recent discussions that considers only a single
nondegenerate mode points out that one cannot hope to
observe cavity-enhanced spontaneous emission at visible
wavelengths because X3 < V. However, in certain reso-
nator geometries a large number of modes have the same
resonant frequency. In this case the enhancement-or
inhibition--may be significant. In our experiment,
atoms are excited near the center of a confocal optical
resonator. As is well known, 9 the transverse modes of
this resonator are degenerate, so that many modes are
simultaneously brought into and out of resonance as the
resonator is tuned.

In our experiment, the resonator linewidth is greater
than the linewidth of the atomic transition, and in addi-
tion, the atomic sample is of negligible optical thickness.
Under these conditions, the changes in spontaneous
emission may easily be understood as an interference
effect. Consider an atom near the center of a confocal
resonator of length L composed of mirrors M I and M 2
of reflectivities R, and R 2, both with aperture diameter

2b. The atom illuminates the cavity with dipole radia-
tion, producing a series of r-flected and transmitted
waves. The radiated power is obtained by adding togeth-
er the multiple contributions of these transmitted waves.
The ratio of y, the spontaneous-emission rate into the
cavity, to y,p, the free-space rate into the same solid an-
gle, is then given by

-. 1 1
YSp 1 -R +[1/(1 -R)12sin 2k•t &2..-

where R-(R1 R2)'/2, k-2xrA, and it is assumed that
(I -R) << 1. From Eq. (1), the maximum rate is .enh

Syp/( -R) and the minimum rate yinh -(1 -R)yrp.
For a AM -0 transition with polarization perpendicular
to the cavity axis, yp-(3/8x)rTpAn, where FSp is the
total free-space spontaneous-emission rate and Afi
- 8b 2/L the solid angle subtended by both cavity mir-
rors. Therefore, the total spontaneous-emission rate is
given by

r-mrs, 1+ (-L 1 -)An.7Psp 8z I
This gives [if we assume (1 -R)< 1]

[ 1 3 1
rch 'rs.1+ -1 3

h I-R 8x

and

Tinh - .sp I' 3 - 8K (3b)

The field in the resonator consists of a pair of plane
waves and a pair of tightly focused spherical waves, with
the atom situated at one focus. The field distribu ion at
the atom is then just the diffraction-limited focal pot of
the circular mirror aperture and has a radius , -XL/
2xrb. Thus the effective mode volume of the total :sona-
tor field is V-2na 2L -4LX 2/Afl, and using Q *2zL/
)(1l-R), we find r-v(3/8r)[1/(l -R)]Af, ex; :tly as
in Eq. (3a). From this point of view we see that I is in-

(3a)
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dependent of X/L and depends only on R and the solid
angle An. Note that, in contrast, for the case of a single
nondegenerate resonator mode a--•T, and An-- 1/L,
which is small, whereas in our case All can be very
large.

The experimental arrangement is shown in Fig. 1. An
atomic beam of Yb is intercepted by a beam from a cw
dye laser (Coherent model 699-21) tuned to the ISo-3p,
transition of Yb (rp-1.1x l06 s-') at 556 nm [Fig.
I(a)]. The excited atoms are positioned at the center of
a confocal mirror resonator, and are confined to a region
of size approximately 1.5 mm (along the resonator
axis) x0.4 mm x0.4 mm. The laser is linearly polarized
perpendicular to the resonator axis and is tuned to the
'74Yb isotopic component of the line. Since this isotope
has zero nuclear spin and is well resolved from the other
components, only a single AM -0 transition is excited.
The Doppler width of the atomic beam along the resona-
tor axis is 12 MHz. Th laser i........:idth of 1 MHz is
narrower than the Doppler width of the atomic beam as
seen by the laser, and the laser frequency is locked to the
center of the atomic resonance line in order to prevent it
from drifting during a scan. The density of the '74Yb is
< 2 x 10' cm - ; only a small fraction of the atoms are
excited by the laser.

The confocal mirrors have a separation of L -5.00
cm, corresponding to a free spectral range c/4L- 1500
MHz. Each mirror has a clear aperture of 2b -4 mm.
The measured transmissions of the mirrors are
T1 -- 2.8 ± 0.1% and T 2 - 1.8 ± 0.1%. The observed cav-
ity linewidth for small (0.2-0.3 mm) spot sizes is limited
by mirror transmission; from this we can determine

II I

(a) BS

PZTiN2 j

Laser Beam

(b) ..I

,J
V

Optical Fiber
, Bundle

X· Atomic

To
Beam

L1, PMT

PZT M2 M1 L1 A F L2 PMT

FIG. 1. Experimental apparatus. (a) Atomic-beam excita-
tion geometry, showing the relative orientation of the atomic
and laser beams, confocal resonator mirrors MI and M2. the
moveable beam stop BS, and the optical fiber bundle. (b) On-
axis optical configuration, showing the positions of the imaging
lens (L I), adjustable aperture (a), image of MI by L (I). in-
terference filter (F), lens (L 2), and photomultiplier tuber
(PMT).

that cavity losses are small (<0.2%/surface). Thus
1/(1 -R)52/(TI+T 2 )-43.5 +2. For larger spot
sizes (>1 mm), the peaks are broadened by aberrations
in the mirror surface, the most serious being spherical
aberration. For the cavity on resonance, this limits the
spot size for constructive interference to a radius' 0

(XL 3/F)/4-1 mm, with F-Kr/[2(l -R)] the resonator
finesse. For the cavity off resonance, the spot radius for
destructive interference, (L0/2)1/4-2.4 mm, is larger
because the resonance condition is less critical.

The fluorescence signal emerging through one of the
mirrors is collected by a lens and passed through an
aperture of variable size located at the image of MI
[Fig. I(b)]. The lens collects all the light emerging from
the cavity with a magnification of 1.0, so that the aper-
ture effectively behaves as if it were located at the output
mirror. The light then passes through an interference
filter, and is refocused by a lens onto a photomultiplier
tube (Hamamatsu R1635-02). The cavity is scanned by
applying a voltage ramp to the piezoelectric transducer
(PZT) on which M2 is mounted, and the resulting signal
is processed by photon counting electronics and stored by
computer.

In order to compare the cavity-modified spontaneous-
emission rate to the free-space rate, a movable beam stop
is inserted between the atoms and the mirror opposite the
detector, thus removing the effect of the cavity. Then,
by multiplying the counting rate with the cavity blocked
by 2/(T 1 + T2), the data are normalized correctly so that
the ratio of the signal with the cavity open to that with
the cavity blocked equals ylyp. We estimate the relative
accuracy of this calibration to be ± 20%.

The experimental results are plotted in Fig. 2. Traces
a-c show the data for an aperture diameter of I mm and
laser power of 60 pW. Trace a shows the signal with the
cavity open, and trace b shows the signal with the cavity
blocked, multiplied by 2/(TI+T 2), thus showing the
free-space counting rate into the same solid angle as a.
Trace c shows the counting rate with the resonator un-
blocked, but the laser detuned from the atomic reso-
nance; these data are just the background counting rate,
and demonstrates the absence of scattered laser light in
the system. In the plotting of a and b, the background
counting rate of 30 counts/sec was subtracted from each
trace, and a small correction was made for a known error
in the focus of L 1.

As expected, the spontaneous-emission rate into the
resonator modes is dramatically changed by tuning of
the resonator. The maximum enhancement factor is
y,,hy,sp --19 and the maximum inhibition factor
YspYinh -42. The enhancement is smaller than the ex-
pected value of 1/(1 -R) because of broadening of the
resonance due to Doppler shifts and mirror surface aber-
rations. Off resonance the radiation is inhibited by a
factor of 1/(1 -R), as expected. Trace d (dotted line)
shows the Airy function of Eq. (1), convolved with a nor-
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FIG. 2. Photon counting rate for light transmitted through
the cavity mirror, as a function of cavity tuning. Curves a-c,
light emitted through the center of the mirror. Curves e and f,
light emitted through the full mirror aperture. Curves a and e,
counting rate with the cavity open. Curves b and f, normalized
counting rate with the cavity blocked, showing the free-space
rate into the same aperture. Curve c, cavity open but laser de-
tuned from the atomic resonance. Curve d, theoretical fit (dot-
ted line).

malized Gaussian distribution of resonance frequencies
to take into account the broadening. The measured
values of Y,p-1.73x 104 counts/sec [from trace b] and
1/(1 -R)-43.5 were used, and the width of the Gauss-
ian (half width at Ile point) was chosen as 32 MHz to fit
the data.

The data for the full mirror aperture are shown in
traces e and f of Fig. 2. Trace e shows the signal with
the cavity open and f with the cavity blocked, multiplied
by 2/(T1+ T2). In this case, the enhancement factor is
4.3, which is much less than I/(1 - R) because of the
spherical aberration. However, the inhibition factor is
35, which is still nearly equal to /(1 -- R). These data
may be used to estimate the changes in the total
spontaneous-emission rate. Noting that A1i -4.0
x10 - 2 sr, we expect that Afr,h/F-+1. 6% and
Arinh/F- -0.5%, where Af-T-f sp. [Equation (2)
rather than Eqs. (3) must be used for these estimates.]

This change in total spontaneous-emission rate is ob-

FIG. 3. Fractional change in the intensity of light emitted
out the sides of the cavity, as a function of cavity tuning. The
alternate peaks of opposite sign (above dashed line) are an ar-
tifact of the modulation technique used to record the data.
The position Ald "-0 is determined from the on-axis data.

servaD•., as a chMnge ,, th, kntcasity Of te light eiilttr.

out the side of the cavity. This intensity, Iside, is simply
proportional to the population of excited atoms
n, *R 12no/F, where R12 is the average rate of induced
transitions by the laser, no is the total atomic population,
and we have assumed that R12<<r. Therefore, Al.id
ide "A/neln, -- Ar/F.

In order to observe this effect we applied a square-
wave modulation of one-half free spectral range ampli-
tude (750 MHz peak to peak) at 35 Hz to the cavity res-
onance frequency as it is tuned, and monitored the side-
light signal collected by the optical fiber bundle with a
lock-in amplifier. The pump power, 10 pW, was well
below saturation. The resulting change signal occurs
every one-half free spectral range and its maximum
value is the difference between Iside with the cavity on
resonance and Iside with the cavity off resonance.

The result is shown in Fig. 3. As expected, the fluores-
cence intensity decreases on resonance, corresponding to
an increase in the total spontaneous emission rate. (The
correct sign of the change was determined in a separate
experiment by our applying a small sinusoidal modula-
tion to the cavity resonant frequency and observing the
sign of the resulting modulation in the side-light signal.)
The total magnitude of the change is 2.2 ±+ 0.2%. This is
in good agreement with the value 2.1% predicted from
the on-axis data, consisting of an on-resonance decrease
of 1.6% and an off-resonance increase of 0.5%.

In our experiment the magnitude of the total change
in the spontaneous-emission rate is limited by spherical
aberration of the mirror
tion is not fundamental.
mirrors or spherical conw
effect could be observed.

It should be emphasi:
spontaneous-emission rat
merely a redistribution c
experiment. The reason
tuning, the phase of the

surface. However, this limita-
By use of parabolic confocal

entric mirrors, a much larger

:d that these changes in the
into the cavity modes are not
the intensity, as in a two-slit

i-. that, at any one resonator
nrerference in all directions is
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the same. However, if a plane-parallel"" ' 2 or other reso-
nator with a nondegenerate mode spectrum had been
used, the phase of the interference would vary with an-
gle, resulting only in a spatial modulation in the intensity
which would have little effect on the total rate. Also, it
should be emphasized that this is not a stimulated-
emission effect. Not only is the sample extremely opti-
cally thin (Doppler broadened absorption coefficient
S 10-"), but the inversion density is negative, so that
the system exhibits loss rather than gain.

In conclusion, we have demonstrated that visible spon-
taneous emission can be modified in a resonator with de-
generate modes. Our system has several advantages over
long-wavelength atom-cavity experiments.5 '7 The Yb
atoms may be excited with a single cw dye laser, result-
ing in stable, reproducible conditions and large SIN.
Also, in the visible, blackbody photons play a negligible
role, even at room temperature. Further, one may mea-
sure the state of both the atoms (from the side light) and
the field (from the axial light). Finally, the statistical
properties of the emitted visible radiation are much
easier to study than those of microwaves, because single
photons can easily be detected. The ability to suppress
spontaneous emission noise along a resonator axis may
prove useful in applications such as squeezed-state gen-
eration. By use of a much larger solid angle, it should be
possible to significantly reduce or broaden the natural
linewidth of an optical transition.
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Appendix 4. Publication: "Vacuum Radiative Level Shift and Spontaneous-Emission

Linewidth of an Atom in an Optical Resonator"

This appendix contains a reprint of an article which summarizes the barium atom-

concentric resonator experiments (D. J. Heinzen and M. S. Feld, Phys. Rev. Lett. 59,
2623 (1987)).
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Vacuum Radiative Level Shift and Spontaneous-Emission Linewidth
of an Ato.a in an Optical Resonator

D. J. Heinzen and M. S. Feld
G.R. Harrison Spectroscopy Laboratory and Department of Physics. Massachusetts Institute of Technology,

Cambridge. Massachusetts 02139
(Received 24 August 1987)

The center frequency and linewidth of the 'So-'P, resonance line of barium atoms placed near the
center of a concentric optical resonator are studied as functions of cavity tuning. Shifts in the transition
center frequency, due to radiative level shifts, and changes in linewidth, due to enhanced and suppressed
spontaneous emission, are observed. A QED calculation which explicitly includes the resonator mode
density gives good agreement with the data.

PACS numbers: 31.30.Jv, 32.70.Jz, 32.80.-t, 42.50.-p

The radiative decay and level shifts of atomic states
ai. w/!1 understood when the atom is in free space, be-
ginning with the work of Weisskopf and Wigner' for the
description of spontaneous emission and with Bethe's cal-
culation 2 of the Lamb shift for radiative level shifts. Re-
cently, much attention has focused on the changes in
spontaneous-emission rates which occur for an atom in a
cavity, and this has now been demonstrated experimen-
tally.3-" In addition to changes in spontaneous-emission
rates, it may be expected that radiative level shifts will
also be modified when an atom is placed in a cavity.8

This paper presents the first observation of changes in
the radiative level shift of an atom in a resonator. We
also directly observe, for the first time, changes in the
natural linewidth of a transition. A QED calculation,
which explicitly includes the resonator density of modes,
is presented and gives good agreement with the results.

The changes in radiative processes which occur in a
resonator may be attributed to a change in mode density.
In particular, the spontaneous-emission rate r and level
shift 6• of an atom in the excited state I E) are given
by 9

r-2rff IP EG' Eki
2 2X2hOk

2 8(wEG-o-k )P(Wk,k)dflkdwk,
A2  V

If 1ep(ok,k)dakdo•,
15 j h 2 V WEI -k

where it is assumed that IE) only decays to a single
lower state I G), and the sum is over all states of the
atom 11); hAmE --EE + hJow - El is the perturbed energy
difference between IE) and I), pEI the dipole matrix
element between those states, V the quantization volume,
and p(ak,k) the number of modes per unit frequency in-
terval per unit solid angle, and the integral includes a
sum over the two possible polarizations ek for each
k. Ordinarily free space is considered, for which
Pfree(w) -Vw' 2/(2x) 3c 3; the insertion of this into Eq. (1)
gives the familiar result ~ m-4poG1oG/3hc 3. The cor-
responding result for wfr~ diverges because the mass re-
normalization term has been neglected.9 However, in
our experiment we will only be concerned with the
difference A nA,--••-6morm between the shift with
the atom in the c; vity and that with the atom in free
space. For this difl :rence it may easily be seen that mass
renormalization is nimportant.

It has recently been demonstrated that changes in
spontaneous emiss )n can occur when an atom is placed
in an open optical esonator with degenerate modes.7 In
the present experir ient, atoms are placed near the center

of a concentric resonator of mirror separation L and
reflectivity R. Provided the atoms are displaced by a dis-
tance from the center less than ro[XL(1-R)] 12,
where X is the emission wavelength, the eigenfrequencies
of the resonator modes which interact with the atom are
completely degenerate. This means that the line-shape
function of the cavity as seen by the atoms is given by
the Airy function,

(1 +F)'/2
1+Fsin2 (woL/c)'

irrespective of the propagation direction of the mode k in
the resonator, where the parameter F-4R/(1-R)2 is
related to the finesse 5 by F-(25/zx) 2. From a ray-
optics point of view, this may be seen by our noting that
every ray emitted by the atom will return to it after one
round trip, and that the round trip phase of all such rays
is identical.

The effect of the resonator is to modify the mode den-.
sity over that part of the solid angle Atlmv controlled by
the resonator, with the mode density over the remaining
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solid angle Aflside unchanged. This may be accounted
for in Eqs. (1) and (2) by our making the replacement

.pfre.(o).£(w), k in An,,,
(,k) - pfr.(w), k in Aflside,

where the normalization of £(o) is chosen such that the
average mode density over one free spectral range is the
same as for free space. Substituting pa,(o,k) in Eq. (1)
gives

r.,-rrIl +[L(EG) - f(av))

where f(Ana,,) is the fraction of the total free-space
spontaneous emission ordinarily emitted into the solid
angle Anf,. For the case of circular mirrors-of half-
angle 0 and a Am -0 transition with polarization per-
pendicular to the cavity axis,

f(Ana,)- -I cos0- I cos 30.

If also 0<< 1, f(Ancav) - (3/8K)Anav. This result [Eq.
(5)] was derived from a different point of view in Ref. 7.

Referring now to Eq. (2), it is easy to see that the only
contribution to the difference in frequency shifts Amo.,
occurs near a resonance, ok woEG. Therefore, substitut-
ing in Eq. (2) for pa,(o,k) and prf(ao,k), we find

f(4f1a ,) Fsin(2wEGL/c)
4 l+Fsin2(EGLIc) (6)

Also, if IG) is the ground state, the shift in transition
frequency is entirely due to the level shift Awo,.

Physically, the level shifts are due to contributions
from the emission and reabsorption of virtual photons at
all possible frequencies. In free space, virtual photons
are emitted with essentially equal probability at frequen-
cies slightly above and below resonance, resulting in no
net contribution to the frequency shift from a small re-
gion of frequency near the atomic resonance. However,
in a cavity, the virtual photon emission may be enhanced
by a cavity resonance on one side of the atomic reso-
nance relative to the other, resulting in a net contribution
to the shift.

In the above it was assumed that the mirrors have per-
fectly shaped surfaces, that the atoms are located at dis-
tances r <<ro from the center of the cavity, and that
Doppler shifts are negligible. If these conditions are not
satisfied, they may be accounted for by modification of
the line-shape function L£(). In general, these effects
will broaden the peaks in f(€o) and reduce the ampli-
tude of its modulation.

The experimental apparatus is illustrated in Fig. 1. A
beam of barium atoms is collimated by aperture Al (1
mm diam) and intercepted by a beam from a cw dye
laser, and then recollimated by a second aperture A2 (25
pm diam) and intercepted by a second beam from the
same laser. The mean thermal speed of the atoms is
2.4x 104 cm/s. The laser is tuned near the 'So-'PI tran-

MI 2n""au M2 L L F PMT 32

FIG. I. Experimental apparatus. (a) Atomic-beam excita-
tion geometry. (b) View from side of cavity. PMTI, not
shown, detects light from optical fiber bundle OFBI. L, lens;
F, interference filter.

sition of 138Ba at X -553 nm. The 'P, state has a free-
space radiative linewidth of 19 MHz.' 0 Two regions of
excited atoms are thus created, one ("region 1") outside
the cavity, and a second ("region 2") inside the cavity.
The excited atoms inside the cavity are confined to a re-
gion extending -30 pm in each dimension, and are
carefully positioned at the center of the cavity. The laser
is linearly polarized perpendicular to the resonator axis,
and since the '38 Ba isotope has zero nuclear spin and is
reasonably well resolved from other isotopic components,
only a single Am -0 transition is excited. The laser
power in both beams is kept well below saturation; the
beam in region 2 is focused to a diameter of 30 pm and
has a power of 0.02 pW. The sideways fluorescence is
collected by optical fiber bundles OFBI and OFB2 and
detected by photomultiplier tubes PMTI and PMT2.

The concentric cavity mirrors MI and M2 have a ra-
dius of curvature of 2.50 cm, corresponding to L -5.00
cm and a free spectral range (FSR) AVFSR -c/2L -3000
MHz. Their clear diameter is 1.88 cm, so that 0-22*.
The mirrors are coated with a thin bare aluminum film
of reflectivity R -0.65, corresponding to F-21.2. The
fluorescence emerging through one of the mirrors is col-
lected by an f/1.2 camera lens and focused onto a third
photomultiplier tube PMT3. The cavity is carefully
aligned to concentricity with three independent pie-
zoelectric transducers attached to cavity mirror M . A
small (51 free spectral range) linear displacement of
M from this position tunes the cavity. In order to com-
pare the cavity-modified quantities to those in free space,
a movable beam stop BS may be inserted between the
atoms and the mi ror M 1, thus removing the effect of
the cavity.

In the experime t, the cavity tuning is held fixed and
the fluorescence Itensity from all three channels is
simultaneously rec ,rded as a function of laser frequency.
A typical scan fo: the fluorescence out the end of the
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FIG. 2. Spontaneous-emission intensity out the end of the
cavity vs laser tuning. The feature on the high-frequency side
of the transition is the next isotopic component.

cavity versus laser tuning is shown in Fig. 2. For each
such scan, the peak intensity I, width W (full width at
half maximum), and frequency shift Am' are measured
for the fluorescence out of both the ends of the cavity
(lend, Wend, and Am0nd) and the sides of the cavity (Iside,
Wside, and Aoside). Here AMa' A -- Awo, where Aw
-- m -Orfee is the difference between the center frequen-
cy a for the atoms inside the cavity (region 2) and the
center frequency wrf for the atoms outside the cavity
(region 1); Amo is the same quantity with the cavity
blocked."' The main purpose of region 1 is to provide an
accurate frequency reference for the measurement of
Am'. The experiment is then repeated at a succession of
different cavity tunings.

The results are summarized in Fig. 3. The top set of
data (a) shows the peak height lend, the second set (b)
shows the peak height Iside, the third set (c) shows the
widths Wend and Wside, and the last set (d) shows the ob-
served frequency shifts Aend and AmCide, all as functions
of cavity tuning. In each case the straight line shows the
same quantities Iside, lOnd, and Wo observed with the cav-
ity blocked, thus giving the free-space values of these
quantities. (Here I0nd was corrected for the attenuation
of the remaining mirror.) The width Wo*-fre+Fo con-
tains a contribution ro from a combination of transit-
time broadening, laser frequency jitter, and Doppler
broadening.

The curves for each set of data show a theoretical fit
by the functions,

lend d freefree + Fo) (OEG), (7)
trav,(rav, +ro)

Isid rrr(rree+ro)
sidc lside rcav(r ca+ro) ()

W -r ,+ro, (9)

Am' - AWav (10)

where rca, and Ao,,v are given by Eqs. (5) and (6),
frre-19 MHz, and the measured values of f(Anc.v)

4. U

3. 0

2. 0-

(a) o Iond

CAVITY TUNING (328 MHZ/DIV)

FIG. 3. Observed intensities, linewidths, and frequency
shifts as functions of cavity tuning. The cavity length de-
creases from left to right.

-0.106, Fo-5.0 MHz, and I nd and I.1de are used.12
The parameter F was adjusted, to produce the best fit to
the data, at F -8.0. This is somewhat less than the ideal
value; the reduced value takes into account the various
broadening mechanisms, as discussed earlier. Good
agreement with the theory is obtained.

There are a number of important features to notice
about the data. First, the intensity out of the sides of the
cavity decreases when the intensity out the ends of the
cavity increases. This decrease is not a "spatial redistri-
bution" of the spontaneous-emission probability. It
arises only because of a decrease in the excited-state
atomic population, caused by an increase in the total de-
cay rate r. 12 Second, the linewidth of the transition in-
creases or decreases in direct proportion to the total
spontaneous-emission rate. This confirms that the en-

2625

194

-

-

:~bh%
- - - - - - - - - ------ ·

(b) o Iside

VOLUMES9, NUMBER 23 PHYSICAL REVIEW LETTERS 7 DECEMBER 1987

Z 1.0
I--

..00

4.0

. 3.0

' 2.0
l--

30.

. 28.
z 5.
I26

3 24.
3
W 22.

-J 20.

2. 0

z 1.0

z .00
a.

-2. 0

-2. 0

r

A _



VOLUME 59, NUMBER 23 PHYSICAL REVIEW LETTERS 7 DECEMBER 1987

hanced and inhibited decay of the atoms is spontaneous
rather than stimulated. Finally, the radiative shift van-
ishes when the atomic resonance either coincides with a
cavity resonance, or is exactly between two cavity reso-
nances, and the transition shifts to the blue when the
nearest cavity mode is tuned to the red, and vice versa.
This may be understood by our viewing the atom as in-
teracting primarily with the nearest cavity mode; the
atom-cavity mode coupling pushes their eigenfrequencies
apart.

Several points should be emphasized. First, the laser
is not directly coupled into the cavity; the cavity perturbs
the atom, and the laser is only used to probe the atom.
Second, the experiment is carried out under true single-
atom conditions: The density of the beam is = 10- 109
atoms/cm3 , resulting in = 1-10 atoms in the resonator
at any given time. Further, even if several atoms are
preseni, they will not int:ract appreciably since the fo-
cused beam waists of the generated fields do not coin-
cide. As emphasized above, the net radiative lifetime has
changed, as the changes in linewidth confirm. Finally,
we note that the radiative level shifts of an atom may be
important in precision spectroscopy, if one hopes to use
suppressed spontaneous emission to narrow a spectral
line. Our experiment shows that, in the case of an open
degenerate optical resonator, the radiative level shift
vanishes when the greatest suppression occurs: when the
atomic frequency is between two cavity modes.

In conclusion, we have demonstrated that the energy
levels of an atom may be radiatively shifted by a change
in the density of vacuum modes of the field when the
atom is placed in a resonator. We have also directly
shown that, when the atom's spontaneous-emission rate
is enhanced or suppressed, the natural linewidth of the
transition increases or decreases in direct proportion.
We find that these effects are well described by a QED
calculation in which the mode density of free space is re-
placed by that of the resonator.
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