THE EFFECTS OF SURFACE ROUGHNESS ON
STAGNATION-POINT HEAT TRANSFER DURING
IMPINGEMENT OF TURBULENT LIQUID JETS
by
LAURETTE A. GABOUR
S. B., Mechanical Engineering

Massachusetts Institute of Technology, 1991

Submitted to the Department of Mechanical Engineering
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE IN MECHANICAL ENGINEERING
at the
Massachusetts Institute of Technology
February 1993

© Massachusetts Institute of Technology 1993
All rights reserved

Signature of Author e -
Department of Mechanical Engineering
F N January 15, 1993
Vd
Certified by

John H. Lienhard V
Adsociate Professor of Mechanical Engineering
Thesis Supervisor

Accepted by. -

Ain A. Sonin
Chairman, Department Committee



THE EFFECTS OF SURFACE ROUGHNESS ON
STAGNATION-POINT HEAT TRANSFER DURING
IMPINGEMENT OF TURBULENT LIQUID JETS

by
LAURETTE A. GABOUR

Submitted to the Department of Mechanical Engineering
on January 15, 1993 in partial fulfillment of the
requirements for the degree of
Master of Science in Mechanical Engineering

ABSTRACT

Jet impingement cooling applications often involve rough surfaces,
yet few studies have examined the role of wall roughness. Surface
protrusions can pierce the thermal sublayer in the stagnation region
and increase the heat transfer. Here, the effect of surface roughness
on the stagnation-point heat transfer of an impinging unsubmerged
liquid jet is investigated. Experiments were performed in which a
fully-developed turbulent water jet struck a uniformly heated rough
surface. Heat transfer measurements were made for jets of
diameters 4.4 - 9.0 mm over a Reynolds number range of 20,000 -
84,000. Results are presented for nine well-characterized rough
surfaces with root-mean-square average roughness heights ranging
from 4.7 - 28.2 microns. Measured values of the local Nusselt
number for the rough plates are compared with those for a smooth
wall and increases as high as 50 percent are obtained. Heat transfer
in the stagnation zone is scaled with Reynolds number and a
roughness parameter. For a given roughness height and jet diameter,
the minimum Reynolds number required to increase heat transfer
above that of a smooth plate is established. The effect of nozzle-to-
target spacing is also investigated.
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NOMENCIATURE

Rom: I

B radial velocity gradient, 20U/ or
B" dimensionless radial velocity gradient, 2(d; / u, )(dU/ or)

C, skin friction coefficient
¢, heat capacity
d nozzle or pipe inner diameter
d, jet diameter
f friction factor
8 gravitational body force
gh, Bernoulli energy loss
distance between top of plenum and nozzle outlet

H

k heat transfer coefficient

I current supplied by generator
K

loss coefficient
K, acceleration parameter
k roughness element height
k* roughness Reynolds number, ku"/ v
nondimensional roughness height, k/d,

thermal conductivity of the impinging liquid

>

k, sand grain roughness size
k, thermal conductivity of the heater material
L length of nozzle

I distance between nozzle outlet and target plate
I, heated length of heater sheet

I, nozzle-to-target separation for onset of splattering



viscous length scale

Nusselt number based on jet diameter, g,d; / k,(T, —T,)
measured Nusselt number based on temperature at back of
heater, q,d; / k,(T, - T,)

Prandtl number

turbulent Prandtl number

gauge pressure

volume flow rate of jet

measured flow rate of jet used to calibrate rotameters
flow rate of jet as read on rotameters

wall heat flux

resistance of heater sheet

friction Reynolds number,\/fRe,

Reynolds number of jet, u,d,/ v

radial coordinate

Stanton number

sublayer Stanton number

platinum resistance thermometer temperature
thermocouple temperature

mercury-in-glass thermometer temperature

incoming jet temperature

film temperature, (T, +T,)/2

measured temperature at back of heater
wall temperature

heater sheet thickness

radial velocity just outside boundary layer
friction velocity, \z, /p



u, bulk velocity of impinging jet, 4Q/ nd;
u; roughness function
w, width of heater sheet
We, jet Weber number, puid;/ o
x thermocouple voltage

z distance normal to the wall

Greek Letters
6, thermal boundary layer thickness

7]

<

viscous boundary layer thickness

dynamic viscosity

< &

Kinematic viscosity, u/p

liquid density

Q

surface tension

shear stress at wall

{ti

» dimensionless group used to scale jet splatter,
We, exp(0.971/+We, -1/ d)

¢ heater sheet conduction correction factor relating Biot number
to Nusselt number, ¢, / k4,
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CHAPTER 1

INTRODUCTION

Liquid jet impingement is an attractive method for cooling
surfaces owing to its high heat transfer coefficients. Among its
numerous industrial applications are the hardening and quenching of
metals, tempering of glass, and cooling of turbine blades and
electronic components. Surface roughness of these materials can
play a significant role in the heat transfer, and thus should not be
neglected. Hot rolled steel has an average roughness height of 12.5 -
25 um, (Kalpakjian, 1985) while turbine blades can have roughness
protrusions ranging from 1.5 - 11 um (Taylor, 1989). Wall roughness
on the order of only a few microns in height, such as those
mentioned, can significantly increase the heat transfer by disrupting
the thin thermal boundary layer at the stagnation point. Numerous
investigations of the fluid flow and heat transfer beneath an
impinging jet can be found in the literature, yet the effect of wall

roughness has received little or no attention.
1.1 PREVI R HNE TUDIE

The first experimental investigation of the effects of surface
roughness on fluid flow was that of Nikuradse (1933), who measured
pressure drop and velocity profiles for water flowing in pipes
roughened by sand grains. He defined three regimes of fully

developed flow in terms of a roughness Reynolds number:
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hydrodynamically smooth, transitionally rough, and fully rough. The
roughness Reynolds number is defined as a dimensionless roughness
height, £*:

Kt =—= (1)

where u is the friction velocity, k, is the size of the sand grains, and
v is the kinematic viscosity. In the hydrodynamically smooth
region, the roughness elements lie within the viscous sublayer and
the surface behaves as if it were smooth, with the friction factor only
dependent on the Reynolds number. In the transitionally rough
region, the roughness elements protrude through the sublayer and
the friction factor depends on both the roughness and the Reynolds
number. Fully rough flow occurs when the roughness elements
protrude into the turbulent core, essentially destroying the viscous
sublayer, and the friction factor depends only on the roughness,

independent of the Reynolds number. The limits of these regimes

are defined by:
Hydrodynamically smooth: k" <5
Transitionally rough: 5<k*<70
Fully rough: k*>70

Based on Nikuradse’s work, Schlichting (1936) introduced an
equivalent sand grain roughness defined as the ‘Nikuradse’ sand
grain size producing the measured friction factor at a given Reynolds

number in the fully rough regime. He determined this value for a
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variety of surfaces by conducting experiments on fully developed
flow in a channel with a well-defined rough upper wall. He
specifically investigated the effects of roughness shape, height, and
density.

Numerous studies of heat transfer in rough pipes, channels, and
boundary layers have been carried out, but only a few investigations
will be touched upon here. Experimental investigations on the heat
transfer characteristics of rough surfaces began with the pipe flow
experiments of Cope (1941) and Nunner (1956). Dipprey and
Sabersky (1963) studied the heat transfer and friction characteristics
of distilled water flowing in rough tubes at various Prandtl numbers.
They conducted experiments on one smooth and three rough pipes
with three dimensional roughness elements resembling closely-
packed sand grains. Roughness-induced increases in the heat
transfer coefficient of up to 270% were reported. Studies conducted
at Stanford by Healzer (1974), Pimenta (1975), Coleman (1976), and
Ligrani (1979) concentrated on air flow over a single rough surface
consisting of hemispheres in a staggered, dense array. Their main
focus was on heat transfer in the transitionally rough and fully rough
turbulent boundary layer. Hosni, Coleman, and Taylor (1990) also
investigated boundary layer heat transfer in the transitionally rough
and fully rough regimes. They presented Stanton number and skin
friction coefficients for air flow over one smooth and three rough
surfaces composed of hemispheres in a staggered array.

In another context, Taylor (1989) reported that the turbine blades
on the Space Shuttle Main Engine have an RMS roughness of 15um,
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which causes the Stanton number to double over that for the smooth
case where the boundary layer thickness is about 0.5 mm.
Literature on impingement heat transfer to rough surfaces is
almost nonexistent. The first known study is that of Trabold and
Obot (1987) who examined the effects of crossflow on impingement
heat transfer of multiple air jets to rough surfaces composed of
repeated ribs. They found that roughness elements had an adverse
effect on the heat transfer coefficient with intermediate crossflow,
but for maximum crossflow they noticed an improvement in the
downstream section, dependent on the open area and jet to target
spacing. More recently, Sullivan, Ramadhyani, and Incropera (1992)
investigated the use of extended surfaces to augment heat transfer
for the cooling of electronic chips. Submerged FC-77 jets of various
diameters were used to cool one smooth and two roughened spreader
plates attached to simulated electronic circuit chips under the full
range of hydrodynamically smooth to fully rough conditions. Since
the local heat transfer coefficient varies along the impingement plate,
often exhibiting a secondary peak downstream which fell outside the
range of the unaugmented surface for the larger diameter jets,
smooth spreader plates that were large enough to encompass this
peak increased the heat transfer. However, since the spreader
plates were 2mm thick, there is some ambiguity as to the true value
for the local heat transfer coefficient. A unit thermal resistance,
which accounted for conduction through the plate as well as
convection at the surface, was shown to decrease by as much as 50%
for the smooth plates and 80% for the roughened plates. For the

rough surfaces, heat transfer enhancement increased with increasing
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jet diameter, which led to their conclusion that Reynolds number, as
opposed to the flow rate, was the parameter that had the strongest
influence on heat transfer, with the resistance data for all nozzles
nearly collapsing when plotted as a function of Reynolds number for
a given surface (Sullivan, 1991).

The shape, height, and spacing of roughness elements can
influence the effectiveness of the roughness. Gowen and Smith
(1968) examined the friction factor and Stanton number in eight
tubes with different roughness shapes. Roughness was produced by
gluing or soldering a wire mesh, a screen, and copper balls to the
surface. In the fully rough regime, increases in the friction factor as
large as 355% over that of a smooth plate were obtained, while
differences as large as 106% were noticed between the different
roughnesses. For ethylene glycol at Pr = 14.3, increases in the
Stanton number reached a maximum of 100% over that for a smooth
wall, while differences of up to 61% were obtained between the
rough tubes. A study by Scaggs, Taylor, and Coleman (1988)
concentrated on the effects of roughness size, spacing, and shape on
the friction factor. They investigated nine uniformly rough surfaces
made up of large hemispherical, small hemispherical, and conical
roughness elements, each at three distinct element spacings. By
comparing data for the large and small hemispherical elements at the
same spacing, they found that doubling the size of the elements
increased the friction factor by 150%. They also obtained the
unexpected result that for the same roughness diameter to height

ratio, the friction factors for the conical and large hemispherical
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elements were essentially identical, with differences falling within

the experimental uncertainty.

1.2 THEORETICAL BACKGROUND

Since most of these previous studies were concerned with
roughness effects on friction factor and Stanton number, it is
instructive to examine in more detail the effect of roughness on these
variables. White (1974) gives the following relationship for the

friction factor for turbulent pipe flow:

RIS Re,/f _
77 ok saRe 7 (2)

where d is the pipe diameter. This expression shows the strong
influence of k, /d and is valid in the smooth, transitional, and fully

rough regimes. For flow over a smooth wall the skin friction

coefficient is defined as:

¢, =L-—"% (3)

where t, is the wall shear stress, U is the radial velocity, and p is

the liquid density.
White (1974) presents the following relationship for the

stagnation-point wall shear stress:

1, =0. 46384,uBr\/—§ (4)
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where pu is the dynamic viscosity, r is the radial coordinate, and
B=20U / or is the radial velocity gradient.! This corresponds to a skin

friction coefficient of:

2v
C, =1.85536,]— 5
f \’ Ur (5)

For turbulent flow over a smooth wall, the Stanton number is

obtained from the law of the wall as:

C, 12

St= 6
1.07+12.7(Pr*” - 1),/C, 1 2 (6)

The first term in the denominator is an outer layer thermal
resistance, while the second is a sublayer resistance. For fully rough

turbulent flow over a rough surface the expression becomes:

C, /2

" +4/C, 12](178t,)~Prasf] (7

where Pr, is the turbulent Prandtl number, St, is the sublayer
Stanton number, and u; is a general roughness function determined
for each roughness shape. The first term in the denominator is again

an outer layer thermal resistance, while the second term resistance is

INakoryakov, Pokusaev, and Troyan (1978) left out the radial coordinate in this
expression and present a dimensionally incorrect equation for the skin
friction coefficient for turbulent flow at the stagnation point.
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now controlled by the roughness. Taking «; = 8.48 for sand grains

as obtained by Dipprey and Sabersky (1963) for the fully rough
region, Wassel and Mills (1979) obtain the sublayer Stanton number

as:

Sth =Z§k+ “Pro# (8)

for Pr, = 0.9.

The present study concentrates on rough-wall stagnation-point
heat transfer beneath an impinging turbulent liquid jet.
Consequently, standard rough wall theory can not be applied
directly. As previously mentioned, typical roughness scaling

depends on the friction velocity, «*, which is defined as

w= | e 9)
p

Nakoryakov, Pokusaev, and Troyan (1978) made friction
measurements beneath an impinging jet and found the wall shear
stress in the stagnation zone to be linearly proportional to r, the
radial distance from the point of jet impact, reaching a maximum at
2r/d; =16 where d; is the jet diameter. With the shear stress
approaching zero at the stagnation point, the scaling in Equation (9)
becomes ineffective. Since the stagnation zone flow field is
characterized by the strain rate or the radial velocity gradient,

B=29U/ dr, we choose a viscous length scale:

20



(10)

and new velocity scale:

(11)
u~vvB

to compensate for the zero shear stress. Taking B=1.832u,/d, where

u, is the incoming jet velocity (Liu, Gabour, and Lienhard, 1992) and

rewriting Equation (10):

d2
I, = | ~ || Y| < 0.739dRe?* = 5, (12)
20U/ dr \1.832\ du,

we see that the new viscous length scale is proportional to a viscous

boundary layer thickness.

Another difficulty with this scaling lies in the structure of the
rough wall boundary layer. Roughness elements can pierce the
sublayer and lower the thermal resistance, thereby increasing the
heat transfer. However, there is no guarantee of a turbulent outer
layer; the role of free stream turbulence may simply be to disturb
this thin sublayer. If roughness destroys the sublayer, the fully
rough flow condition may be solely dependent on the wall material
and roughness size, shape, and spacing, as opposed to being limited

by an outer layer mixing process.
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Other deviations from rough wall turbulent boundary layer theory
are a result of the highly accelerated flow near the stagnation point.
A nondimensional acceleration parameter,k,, is normally defined as:

For an impinging jet it is instructive to rewrite this expression as:

(e e)

where B’ is the nondimensional velocity gradient:

. .d.oUu
B =2-L1"= 1
u or (15)

For K, 2 3 x 10-6 the boundary layer tends to relaminarize (Moffat
and Kays, 1984). Taking B'=1.832 (Liu et al., 1992), Equation (14)
suggests that the boundary layer will remain laminar for r/d; £0.25
if Re, < 5.8 x 106. While this is valid for flow over a smooth wall, the
addition of roughness still does guarantee a disturbed boundary

layer at the stagnation point, even for an incoming turbulent jet.

1.3 SMOOTH WALL JET IMPINGEMENT STUDIES

Many previous investigations have dealt with the fluid flow and
heat transfer characteristics at the stagnation point of an impinging

liquid jet, but just a few will be mentioned here. For a laminar jet,
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Liu et al. (1992) present the following correlation for the stagnation-

point Nusselt number:

Nu, = 0.745Re*Pr"? (16)

to an accuracy of +5%. They also found theoretically that

Nu, = 0.601(Re,B*)"*Pr'"? (17)

for Pr 2 3.0. For a turbulent jet, Lienhard, Liu, and Gabour (1992)
suggest the following relationship:

Nu, =1.24Re}*Pr'" (18)

which was obtained over a Reynolds number range of 20,000 -
62,000 and has an accuracy of +10%. Based on data over a Reynolds
number range of 4000 - 52,000, Stevens and Webb (1991) present a

dimensional equation:

Nlld = 2-67Reg.567pr0.4(l/ d)—0.0336 (uf / d)—0.237 (19)

where [ is the nozzle-to-target spacing. They also present the

dimensionless relation:

=0.11
Nu, = 1.51Reg"“Pr°'4(é) (20)
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Equation (19) fit their data with an average error of 5% while
Equation (20) had an average error of 15%. Pan, Stevens, and Webb

(1992) give a correlation of

B. 0.5
Nu, =0.69(Red-5-) pro (21)

where they measured B’/2 to be 1.5 for a fully-developed nozzle
configuration with L/d = 30 and I/d = 1 where L is the length of the
nozzle. This expression was only verified over a Reynolds number
range of 16,600 - 43,700.

Stevens, Pan, and Webb (1992) present data for the turbulence
level in jets issuing from four different types of nozzles at a single
nozzle-to-target spacing of 1/d = 1. However, with the exception of
the fully-developed pipe nozzle, turbulence was most likely
established by the plenum’s turbulence, rather than the nozzle. For
the fully-developed pipe nozzles they found an essentially constant
turbulence level of 5% for z/d > 0.15 where; is the distance normal
to the wall. This value is taken as the amount of turbulence
encountered in the jets employed in this study.

Lienhard et al. (1992) and Bhunia and Lienhard (1992) present
data on splattering of turbulent impinging liquid jets. They both find
that the amount of splatter is governed by the magnitude of surface
disturbances to the incoming jet. Lienhard et al. (1992) scale their
splattering data for a Weber number range of 1000 - 5000 and
nozzle to target separations of //d = 7.6 - 26.4 with a nondimensional

group, o:
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w=We,,exp( 0.971 l] (22)

1/We d d
where We, is the jet Weber number:

2
We, =”—“;ﬂ (23)

with o the surface tension. The condition presented for onset of
splatter is @ > 2120 or We, < 2120 for any nozzle-to-target spacing.
Heat transfer at the stagnation zone was found to be essentially
independent of w. Bhunia and Lienhard (1992) present the
following correlation for the onset of splatter for a Weber number
range of 130 - 31,000 and nozzle-to-target separations of I/d = 3 -
125:

l 100
2= 24
d 1+4x10°We?’ (24)

where onset is defined as the point at which 5% of the incoming

liquid is splattered.

1.4 PRESENT FOCUS

This investigation is concerned with the fact that many surfaces
which require impingement cooling are rough, while the existing heat
transfer correlations apply to flat, smooth surfaces. Experiments

were performed to characterize wall roughness effects on heat
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transfer beneath a turbulent free liquid jet impinging normally
against a flat, constant heat flux surface. Stagnation-point Nusselt
numbers were measured for various Reynolds numbers, jet
diameters, and wall roughnesses. As a baseline for comparison,
smooth wall data were also taken under the same conditions. A
correlation is given for the boundary between the hydrodynamically
smooth and transitionally rough regimes. The effect of nozzle-to-

target separation on Nusselt number was also investigated.
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CHAPTER 2
EXPERIMENTAL APPARATUS AND PROCED

Experiments were performed to determine the local Nusselt
number at the stagnation point of an impinging turbulent liquid jet
for a variety of jet diameters, Reynolds numbers, and wall
roughnesses. The experimental apparatus is illustrated schematically
in Figure 1 and consists of a flow loop and an electrically heated
target plate. A fully-developed, turbulent water jet impinges
vertically downward and strikes a uniformly heated, flat, rough
surface on which heat transfer temperature measurements are made.
With the exception of a few experiments on the effect of nozzle-to-
target spacing, the spacing is held constant at /4 = 10.8.

The water supply is maintained at a constant level in a 55 gallon
insulated drum. The temperature is allowed to reach a steady value
before any measurements are made. Cold water between 12 - 16°C
is used in an attempt to raise the heat transfer and lower the
experimental uncertainty in the Nusselt number, as well as to create
a narrow Prandd number range of 8.2 - 9.1.

A high pressure pump, capable of delivering 40 gpm at 70 psi
directs the water through either of two carefully calibrated
rotameters which are connected in parallel. The liquid flow rate was
varied from 1.55 - 10.1 gpm, allowing experiments in a Reynolds
number range of 20,000 - 84,000 where the Reynolds number is
defined by:
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Re, =L (25)

The jet velocity, «,, is determined from the flow rate, Q, as:

u, =22 (26)

- 2
ndj

The water then enters the top of the plenum, passes out of a
nozzle attached at the bottom, and issues into still air. A 76.2 cm
long PVC pipe with an inner diameter of 15.24 cm is sealed with
plates at both ends and functions as the plenum. To dampen
disturbances from the incoming flow, the plenum contains an inlet
momentum breakup plate, as well as honeycomb flow straighteners
(for full details see Vasista, 1989). A Bourdon-type pressure gauge
is attached to the top plate of the plenum, while the bottom plate has
an opening to attach interchangeable nozzles. Pressure at the top of
the plenum is converted to pressure at the nozzle exit, from which
the jet velocity is calculated, as described in Appendix A. A platinum
resistance thermometer is located in the plenum and is used to
determine the inlet water temperature, T,.

The nozzles used to produce the liquid jets were made from tubes
of diameters 4.4, 6.0, and 9.0 mm which were soldered to threaded
caps for easy attachment to the plenum. The insides of the tubes
were carefully deburred to create smooth inner walls (k/d = 0) so
that the highly disturbed surfaces of the jets can be attributed
exclusively to turbulence. The tubes are 70 - 110 diameters long in

order to ensure fully-developed turbulent flow at the outlet.
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Contraction of these turbulent jets is less than 1.5 percent, so the
mean jet diameters can be approximated by the nozzle diameters.
The tube diameters were measured with precision calipers and have
estimated uncertainties of £0.2%, +0.7%, and +0.5% for the 4.4, 6.0,
and 9.0 mm nozzles, respectively.

The jet impinges normally onto an electric heater which consists
of a 0.1016 mm thick 1010 steel shim stretched over an insulation
box and clamped firmly between copper bars which serve as
electrodes. Details of the heater are shown in Figure 2. The jet
strikes a 3.81 cm wide by 7.62 cm long section of the heater. The
steel shim is held under tension by springs at both ends to ensure a
flat target surface, free from vibration or deflection. Compressed air
is directed into the insulation box to keep the back of the heater free
from water. The water that flows off the heater is collected in a
plexiglass box and directed to a drain since it is warmer than that
obtained directly from the faucet.

A 3.4 cm2 central portion of the steel shim was roughened by
scoring the surface in four directions, as shown in Figure 3(a), in an
attempt to simulate natural roughness. The ease of fabricating these
surfaces contributed to the choice of this type of roughness. The
distance between roughness troughs is less than 1 mm in all cases.
Nine rough surfaces with RMS roughness heights ranging from 4.7 -
28.2 um and one smooth surface with an RMS roughness of 0.3 ym
are used as the target plates. Roughness measurements are
described below.

The leads from a low voltage, high current (15V, 1200 amp)

generator are attached to the copper bus bars of the heater to
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produce a voltage across the shim. Current supplied by the
generator was determined from the voltage drop across a shunt
(which gives a drop of 50 mV for 1200 amps). Knowledge of the
power supplied to the heater, together with the effective heater area
are used to calculate the heat flux. Currents as large as 415 amps
were supplied to the heater, corresponding to a maximum heat flux
of 130 kW/m2. Heat dissipation to the copper bars could be
neglected due to the thinness of the sheet and the low temperature
differences encountered.

The wall temperature is measured by three 0.076 mm iron-
constantan (type J) thermocouples, all located at the stagnation point
for greater accuracy, as shown in Figure 3(b). The thermocouples
were attached to the back of the steel shim and electrically isolated
from it by 0.06 mm thick Kapton tape. Radiative loss and convective
backloss by natural convection for the heater were estimated to be
negligible. Since the convective backloss is so small due to the low
temperatures involved, the temperature drop through the Kapton
tape is negligible.

During the experiments, ten voltage readings were taken for each
thermocouple and averaged to reduce random error. The average of
the voltages from the three thermocouples was used to calculate the
wall temperature. The thermocouples were also calibrated with the
heater power off before and after each run to reduce systematic
errors. The incoming jet temperature obtained by the thermocouples
under isothermal conditions was in agreement with that obtained
from the platinum resistance thermometer in the plenum to within

the reading errors of the instruments, verifying that the bulk
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temperature change of the jet as it travels from the plenum to the
target is negligible.
The temperature measurements are used to calculate a measured

Nusselt number as:

Nu 9 (27)

" k(T —~T;)

where ¢, is the heat flux, k, is the thermal conductivity of water, 7,

is the temperature measured at the back of the heater, and 7, is the

inlet water temperature. Since the thermocouples are located on the
back of the steel shim, the vertical conductive temperature drop
through the sheet, 7, - T, =q,t/ 2k,, must be taken into account when
determining the true Nusselt number. This correction is quite
important at the stagnation zone since the heat transfer coefficient is
so large. Liu, Lienhard and Lombara (1991) relate the measured

Nusselt number to the true Nusselt number by:

Nu
Ny =———m
YT =N, 12) (28)
where ¢ relates the Biot number to the true Nusselt number:
tk
¢= k 2. (29)

where : is the thickness of the heater sheet and &, is the thermal

conductivity of the steel shim. In reducing the data, corrections as
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large as 10% were applied.

All liquid properties are evaluated at the film temperature,
Ty, =(T,+T,)/ 2 and obtained from Touloukian (1970). Uncertainties
were calculated by a procedure described in detail in Appendix B.
Nusselt number uncertainty ranged from +7.5% to +10%, while

Reynolds number uncertainty was +5%.
2.1 CALIBRATI PROCEDUR

The two rotameters were calibrated by measuring the time
required for a given volume of water to pass through the flow loop.
The same test was repeated three times at each flow rate to reduce
precision uncertainty. Calibration curves can be found in Appendix
A. As another check, the pressure read from the gauge at the top of
the plenum was used to calculate the jet's velocity and corresponding
flow rate, as described in Appendix A. Uncertainty in the volumetric
flow rate reached a maximum of +3.2%, corresponding to a maximum
uncertainty in the jet velocity of +3.5%.

The three thermocouples and the platinum resistance
thermometer were calibrated by comparison to a mercury-in-glass
thermometer which could be accurately read to +0.05°C. These
devices were placed in water baths of various temperatures in a
Dewar in order to create an environment with a constant
temperature, free from room air currents. Ice point was used as a
final reference. The platinum resistance thermometer could be

accurately read to +0.1°C, while thermocouple voltages could be read
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to £0.001 mV, corresponding to £0.02°C. After calibration, the three
devices agreed to within the reading errors of each instrument.

As a check on the heat flux measurements, leads were placed
directly inside the copper bus bars to measure the voltage drop
while varying the current from 200 - 415 amps for flow rates from
1.4 - 10.6 gpm for each of the ten heater sheets. To ensure that the
contact resistance of the leads was negligible, the leads were moved
to the opposite side of the sheet and the voltage measurements were
compared, agreeing to within +0.5%. From the voltage and current
measurements, the resistance of the heater sheet was determined for
each run. An average resistance of 2.25 mQ was established for all of
the sheets, while individual measurements differed from this value
by less than £0.5%. Using this resistance, heat flux is calculated

from:

4y =7 (30)

where [ is the current supplied by the generator, R is the resistance
of the steel shim, I, is the length of the heater, and w, is the width of

the heater. Uncertainty in the heat flux was an average of +4.2%.

2.2 RACTERIZATI

The nine rough surfaces were characterized by a root-mean-

square average roughness as obtained from profiles of the surfaces.
A DEKTAK 3030ST with a 2.5um radius stylus was used to make the
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measurements. The DEKTAK is a surface texture measuring system
that makes measurements electromechanically by moving the
sample in a straight line beneath a diamond-tipped stylus. The
DEKTAK was carefully calibrated by scanning a standard 1 micron
step and making the necessary adjustments to obtain the correct
reading. A scan length of 10 mm and a stylus force of 30mg was
used. Ten profiles were generated for each surface at intervals of 0.5
mm across the length of the sheet. An RMS roughness height was
calculated for each profile based on an average of 50 roughness
peaks and troughs, and the ten squared RMS values were averaged.
Due to the finite radius of the stylus, the path traced as it scans the
surface is smoother than the actual roughness of the surface.
However, since the blade used to score the surfaces was triangular
with a maximum width of 160um, we believe that the stylus was
able to accurately resolve the roughness heights. Care was taken
during the experiments to ensure that the jets were centered over
the area that was used for the surface profiles. The roughness
measurements were repeated after the experiments were completed
to ensure that the steel shims had not sufficiently rusted to cause
changes in their roughnesses. A few representative plots are shown

in Figures 4 - 5.
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Figure 3: Heater surface: (a) Scoring pattern used to fabricate rough
surfaces. (b) Thermocouple locations on the back of the
heater sheet.
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CHAPTER 3

ERIMENTAL
1 L T

The effect of nozzle-to-target spacing on the smooth wall
stagnation-point Nusselt number is shown in Figure 6 for the 4.4 mm
nozzle over an I/d range of 0.9 - 19.8. Over this range, the Nusselt
number increases by 5% at a Reynolds number of 63,650, while it
decreases by 8% at 27,300, and remains essentially constant at
48,250. However, these slight deviations fall within the uncertainty
of the experimental data. Stevens et al. (1991) noticed a slight
decrease in the stagnation-point Nusselt number with increasing
nozzle-to-target spacing for low Reynolds numbers, as expressed in
Equations (19) and (20). For a 4.1 mm nozzle they report a 12%
decrease in the Nusselt number over essentially the same //d range
as employed in this study, but at a smaller Reynolds number of
10,600. However, since the Nusselt number was found to be
essentially independent of //d in this study, a single nozzle-to-target
spacing of //d = 10.8 was employed for the remainder of the
experiments.

While splattering of these jets will not occur at the stagnation
point, it is still interesting to examine the onset of splatter, which will
lower the cooling efficiency of the jet further downstream. Using

Bhunia and Lienhard’s (1992) correlation for the onset of splatter
(Equation (26)) , splattering will begin at , /d = 0.7, 2.6, and 31.1 for
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the 4.4 mm diameter jet at Reynolds numbers of 63,650, 48,250, and
27,300, respectively. Based on this result, most of the data
presented in Figure 6 for the higher Reynolds numbers are for
splattering jets, while the lower Reynolds number data are for
nonsplattering jets over the full //d range investigated. For Il/d =
10.8, splattering will begin at Reynolds numbers of 35,530, 41,490,
and 50,815 for the 4.4, 6.0, and 9.0 mm diameter jets, respectively.
The smooth wall Nusselt number data for the three nozzles are

plotted in Figure 7 and are well represented by:

Nu, = 0.278Re**Pr"” (31)

to an accuracy of about +3%. While the Prandtl number was held
constant at 8.3, the standard high Prandtl number exponent of 1/3
was adopted. Since the Reynolds number exponent is typically 1/2,
the data can be fit by:

Nu, = L.191Re}*Pr'"? (32)

to an accuracy of £10% as shown in Figure 8. Figure 9 compares the
0.5 and 0.633 Reynolds number exponents by examining the slope on
a log-log plot of Nusselt number vs. Reynolds number. While an
exponent of 0.5 may work for Reynolds numbers less than 35,000,
0.633 clearly is the appropriate choice for the data. Since Equation
(31) yields the best fit of the data, it will serve as the baseline for

comparison to the rough wall results.
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The present smooth wall correlation is compared to those of
Lienhard et al. (1992) and Pan et al. (1992) in Figure 10 for a Prandtl
number of 8.3, as used for all the smooth wall data in this study. The
laminar jet prediction of Liu et al. (1992) is included for comparison.
Lienhard et al.’s (1992) correlation was only verified over a Reynolds
number range of 20,000 - 62,000; the present correlation differs by
from it by a maximum of 20% at 20,000 and by only 3% at 62,000.
Over Pan et al.’s (1992) narrower Reynolds number range of 16,600-
43,700, the present correlation differs by 8% at 20,000, up to 20% at
43,700.

2 R H WALL RESULT

The RMS average roughness values for the ten surfaces are given
in Table 1. For convenience the surfaces are labelled S1 - S10, with
S1 being the smooth surface and S10 the roughest.

The Nusselt numbers for the ten surfaces are presented in Figures
11 - 13 as a function of jet Reynolds number for the 4.4, 6.0, and 9.0
mm diameter jets, respectively. Experimental values used to
generate these plots can be found in Appendix C. As expected, the
Nusselt number increases with increasing wall roughness for each
diameter, with surface S10 producing the highest Nusselt number in
all cases. The effect of roughness is clearly dependent on Reynolds
number and jet diameter.

In general, the Nusselt number data for each surface tend to lie on
distinct lines, with slope increasing as roughness increases, with the

exception of surfaces S1, S2, and S3 in Figure 13. The data from the
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latter surfaces lie on essentially the same line, implying that the
roughnesses of S2 and S3 are ineffective for increasing heat transfer
for the 9.0 mm nozzle. Apparently the roughness elements do not
protrude through the thermal sublayer, causing the surfaces to
behave as if they were smooth. At Reynolds numbers higher than
examined for these surfaces, the transitionally rough regime may be
reached, in which the roughness elements do pierce the sublayer,

thereby causing the data to stray from this line.

i

SURFACE | RMS ROUGHNESS |
ﬁ‘; |

Table 1: RMS average roughness heights for the ten heater surfaces.
Uncertainties in the RMS roughness heights range from
4.5 - +9%
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With the exception of surfaces S7 - S10 for the 4.4 mm nozzle, and
surfaces S9 and S10 for the 6.0 mm nozzle, the Nusselt number data
tend to collapse to the smooth wall curve at the lower Reynolds
numbers. Presumably these few exceptions do collapse at a lower
Reynolds number, but owing to the limited Reynolds number range
employed in this study, this presumption can not be verified.
Alternatively, these surfaces may have roughness elements that are
greater in height than the thermal sublayer for all Reynolds
numbers, thereby destroying the thermal sublayer and operating
under fully rough conditions for all Reynolds number. However, this
is not likely, as discussed below.

Differences between the smooth and rough wall data become more
pronounced as jet diameter decreases, with results for the 4.4 mm
nozzle in Figure 11 showing the largest roughness effects. For
example, at a Reynolds number of 40,000 there is a 32% increase in
the Nusselt number for S10 over S1 for the 4.4 mm nozzle, while at
the same Reynolds number the increase is 27% and 14% for the 6.0
and 9.0 mm nozzles, respectively. At a Reynolds number of 66,000,
the increases rise to 47%, 34%, and 23%, respectively. This effect
can be explained by examining the thermal boundary layer
thickness:

df
' = L 12p.a/3
Re,“Pr

(33)

where the standard Reynolds number exponent of 1/2 is adopted.

As jet diameter decreases, boundary layer thickness decreases.
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Similarly, as Reynolds number increases, boundary layer thickness
decreases. The heat transfer enhancement characteristics of a given
roughness depend on how deeply the roughness elements protrude
into the thermal sublayer. Thus, a thinner thermal boundary layer
allows the roughness elements to protrude further, and increases
their effect.

Figures 14 - 22 show the increase in the Nusselt number obtained
by decreasing the jet diameter for each of the nine rough surfaces.
The plots contain results for all three jet diameters and are
presented in order of increasing roughness. As previously
mentioned, for a given roughness height, the smaller diameter jets
have a thinner thermal boundary layer and the roughness elements
have a greater effect on the heat transfer, piercing deeper into the
thermal sublayer. These differences in the Nusselt number for the
different diameter jets become more pronounced as the roughness
increases.

As discussed, heat transfer enhancement depends on the ratio of
roughness height to thermal boundary layer height, k/6§,. The
measured thermal boundary layer height is determined from the

smooth wall Nusselt number expression in Equation (31) by noting
that Nu, =4,/ §,, yielding:

3.60d ’
P = S
d

(34)

Based on this thermal boundary layer height, £/ §, ranges from 0.19 -

4.11 for this study. Since the roughness heights were never much
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larger than the thermal boundary layer thickness, it is likely that
fully rough conditions were not achieved.

The ratio between the rough wall and the smooth wall Nusselt
number is plotted as a function of k/§, in Figures 23 - 25 for the 4.4,
6.0, and 9.0 mm nozzles, respectively. The data do not lie on the
same curve for any diameter, and there is a distinct horizontal shift
noticed between the diameters. As expected, this is not the correct
scaling. Apparently roughness tends to displace the thermal
boundary layer upward, creating an additional thermal resistance so
that &/ §, itself cannot scale the Nusselt number.

For the fixed wall material and roughness shape employed in this
study, the dimensional equation for the heat transfer coefficient in

the rough wall thermal boundary layer can be written as:

h=£(k,.d;.pc,..up.k) (35)

where ¢, is the heat capacity. Dimensional analysis was performed,

revealing four pi groups, from which we see:

Nu, =f(Red,Pr,—§—] (36)

i

where k/d, is a roughness parameter we call £*. Since the Prandtl

number was held essentially constant in this study, we can focus on
the two remaining parameters. The Nusselt number is plotted as a
function of Reynolds number in Figures 26 - 37 for a given value of

k. At a given Reynolds number, the Nusselt number is the same for
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a given value of k', lending confidence that no other parameters are
involved in the Nusselt number dependence. This also verifies that
the nine rough surfaces are geometrically similar and differ from
each other only by their roughness heights. Figures 38 - 40 compare
the magnitude of the Nusselt number for a few values of k°, while
Figure 41 encompasses the full range of * investigated, with the
individual data points left out for clarity. These figures clearly show
that the Nusselt number increases with increasing values of k.
Figures 26 - 37 were compared to Figure 7 to determine the
criterion for transition from hydrodynamically smooth to
transitionally rough flow. Departure from smooth wall behavior was
defined by the Reynolds number at which the rough wall Nusselt
number became 10% larger than the corresponding smooth wall
Nusselt number. Some of the constant k" curves were extrapolated to
lower Reynolds numbers to determine this value since they appeared
to be in the transitionally rough regime for the entire Reynolds
number range investigated. Figure 42 shows this transition
Reynolds number as a function of k. Based on this figure, we
estimate that the flow will remain in the hydrodynamically smooth

regime for

Re, <12.191k " (37)

after which the flow may be considered transitionally rough.
Since the Prandtl number was held constant for the experiments,

its role in the transition criterion is not clear from the data.
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However, if we assume that Equation (37) is in the form of a /5§,

threshold and §, < Pr'”’, we obtain:
1/3
k™= (ﬁ) kK
Pr

for other Prandtl numbers much greater than 1. This suggests that

(38)

Pr=8.3

the flow will remain in the hydrodynamically (or at least thermally)

smooth region for:

k'Re}™Pr'® <12.050 (39)

Since the thermal boundary layer is so thin, if the flow is thermally
smooth, it should also be hydrodynamically smooth. If we use the
thermal boundary layer thickness obtained from our smooth wall

correlation (Equation (34)) we can get a k/§, criterion for smooth

wall behavior:

i <3.35 Re;0.0S (40)

)

!

This corresponds to k/ 6, < 1.35 - 1.52 for the Reynolds number range

employed in this study. If instead we assume that Equation (37) is
in the form of a k/ 6, threshold with 6, = §,Pr'”* we get:

* <1655Re; (41)

1)

v
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which corresponds to k/6, < 0.67 - 0.75 for the present Reynolds

number range. This is in contrast to the usual shear-layer sublayer

result of

*

uk
\%

k"=5£v= <5 (42)

for smooth wall behavior. Differences between Equations (41) and
(42) most likely lie in the definition of §,.

As a result of the limited scope of the data, an estimate for

transition to fully rough conditions was not possible.
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Figure 6: The effect of nozzle-to-target separation, //d, on the
stagnation-point Nusselt number.
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Figure 8: Best fit of smooth wall data using typical Re};? scaling.
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Figure 12: Stagnation-point Nusselt numbers for the ten surfaces as a
function of Reynolds number for the 6.0 mm diameter jet.
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Figure 15: Stagnation-point Nusselt number as a function of
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Figure 17: Stagnation-point Nusselt number as a function of
Reynolds number for surface S5, k = 13.1 um, for the

three nozzles.
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Figure 20: Stagnation-point Nusselt number as a function of
Reynolds number for surface S8, k = 25.9 ym, for the
three nozzles.
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Figure 21: Stagnation-point Nusselt number as a function of
Reynolds number for surface S9, k¥ = 26.5 ym, for the
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Figure 22: Stagnation-point Nusselt number as a function of
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Figure 24: Proof that the rough wall Nusselt number relative to
smooth wall Nusselt number does not scale solely with
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Figure 26: Stagnation-point Nusselt number for ™ = 0.00052.
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Figure 27: Stagnation-point Nusselt number for " = 0.00070 -
0.00078.
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Figure 28: Stagnation-point Nusselt number for k™ = 0.00096 -
0.00107.
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Figure 29: Stagnation-point Nusselt number fork” = 0.00143 -
0.00157.
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Figure 30: Stagnation-point Nusselt number for™ = 0.00195.
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Figure 31: Stagnation-point Nusselt number forx" = 0.00218 -

0.00235.
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Figure 32: Stagnation-point Nusselt number for™ = 0.00288 -
0.00298.
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Figure 33: Stagnation-point Nusselt number fort” = 0.00313 -
0.00335.
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Figure 34: Stagnation-point Nusselt number fork™ = 0.00432 -
0.00442.
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Figure 35: Stagnation-point Nusselt number fork™ = 0.00457 -
0.00470.
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Figure 36: Stagnation-point Nusselt number fort" = 0.00589 -

0.00602.
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Figure 37: Stagnation-point Nusselt number fork™ = 0.00641.
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Figure 38: Stagnation-point Nusselt number fork™ = 0.00074,
0.00229, 0.00437, and 0.00641.
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Figure 39: Stagnation-point Nusselt number fork™ = 0.00103,
0.00195, 0.00323, and 0.00596.
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Figure 40: Stagnation-point Nusselt number fork” = 0.00052,
0.00147, 0.00293, and 0.00464.
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Figure 41: Stagnation-point Nusselt numbers for the full range of
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points are left out for clarity.
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CHAPTER 4
NCLUSION

Stagnation-point heat transfer to an unsubmerged turbulent
liquid jet impinging on a rough surface was investigated.
Experiments were performed to determine the local Nusselt number
at the stagnation point beneath a fully-developed turbulent water jet
impinging on a constant heat flux surface. The effects of nozzle-to-
target spacing, Reynolds number, and wall roughness were examined.
Results from nine well-defined rough surfaces were compared to
smooth wall data taken under the same conditions.

The effect of nozzle-to-target separation on the stagnation-point
Nusselt number for a smooth wall was found to be negligible over an
1/d range of 0.9 - 19.8, with any variations falling within the
experimental uncertainty of the data. Data for the stagnation-point
Nusselt number did not correlate well with the standard Re!? scaling;
rather, the smooth wall Nusselt number is well represented by
Nu, =0.278Re**Pr'’ to an accuracy of +3%.

Heat transfer can be significantly increased at the stagnation point
by the presence of roughness elements. Roughness protrusions
greater than a few microns in height can disrupt the thin thermal
boundary layer at the stagnation point and increase the heat
transfer. Heat transfer enhancement characteristics of a given
roughness depend on how deeply the roughness elements protrude
into the thermal sublayer. A thinner boundary layer allows

roughness elements to protrude further, thereby increasing their
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effect. Hence, heat transfer enhancement increases with increasing
Reynolds number and decreasing jet diameter due to the
corresponding thinning of the thermal boundary layer. Specifically,
the Nusselt number was found to scale with k/d; and Re,. Increases
in the Nusselt number over that of a smooth wall as large as 50%
were obtained.

At low Reynolds number, the surfaces examined behave as if
they were smooth. Departure from smooth wall behavior was
defined by the Reynolds number at which the rough wall Nusselt
number became 10% larger than the corresponding smooth wall
Nusselt number. Based on this definition, the data show that for
Re, <12.191k""" the flow will remain in the hydrodynamically smooth
regime, after which the flow may be considered transitionally rough.
More data is needed for Reynolds numbers less than 20,000 and
greater than 80,000, as well as for k/d, less than 5 uym and greater
than 30 um, to examine the hydrodynamically smooth and fully
rough regimes.

Since the Prandtl number was only varied over the narrow range
of 8.2 - 9.1, its exact influence is not known. However, assuming the
typical high Prandtl number exponent of 1/3, we believe that the

wall will behave as if it were smooth for k'Re%’’Pr'”’ <12.050. Further

investigation of Prandtl number effects would be useful.
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APPENDIX A: CALIBRATION

A.1 FLOW RATE

Flow rates less than S gpm were measured with an Omega FL-75A
rotameter, while the larger flow rates were measured with an Omega
FL-75C rotameter. Flow rates on the FL - 75A could be accurately
read to *0.05 gpm, while the FL - 75C could be accurately read to
+0.25 gpm. Primary calibration of the meters was performed by
measuring the time required for a given volume of water to pass
through the flow loop. This procedure has an estimated accuracy of
+2.5% due to resolution of the volume and time measurements.
Figure 43 is the resulting calibration curve for the FL-75A rotameter,

with the calibration equation:

0, =-9.8325x 107 +0.978690,, (43)

where @, is the measured flow rate in gpm and @, is the flow rate

read from the rotameter in gpm. The calibration curve for the FL-
75C rotameter is shown in Figure 44 and its corresponding

calibration equation is:

0, =1.1219+1.0279Q, (44)

where both flow rate readings are again in gpm.

Performance of the rotameters was checked by calculating the jet
velocity, u,, from the pressure in the plenum for a wide range of flow
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rates. As discussed in Gabour (1991), entrance and frictional effects
need to be considered when converting the pressure read from the
pressure gauge at the top of the plenum to the pressure at the exit of

the nozzle. Applying the energy equation over this region yields:
LYyl ,
(pg +ng)=(l+K+f:1-)(5puf) (45)

where p, is the gauge pressure, H is the distance from the top of the
plenum to the outlet of the nozzle, and K is the loss coefficient
associated with a reentrant pipe. The loss coefficients for the nozzles
employed in this study are K = 0.5, 0.5, and 0.63 for the 4.4, 6.0, and
9.0 mm nozzles, respectively (Blevins, 1984). The friction factor is

defined by the Darcy-Weisbach equation:

L_2gh
d u} (46)

where gh, is the energy loss. Combining Equations (45) and (46)

gives:

. (p, +psH)-(1+K )(-;-pui)

ghy, = 5 (47)
We define a new Reynolds number such that
2ok d3 0.5
R = [—(%] =+/fRe, (48)
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From the Colebrook formula,

0.25 7 (49)

I =T Tera 251
HT—J]

which corrects a typographical error in Gabour (1991). For the
smooth pipes used in this study, k/d = 0. Finally, this value for f is
used in Equation (45) to determine the velocity by successive
approximation. The flow rate is determined from the velocity and

agreed with the rotameter readings to within +39%.
A PERATURE

An Omega DP651 three-wire platinum resistance thermometer
was used to monitor the temperature of the water in the plenum. It
was carefully calibrated by comparison to a mercury-in-glass
thermometer, and the resulting calibration curve is shown in Figure

45, with the following calibration equation:

Ty, = 0.10408 + 0.99419T ;. +2.5323 X 1074 T2, (50)

where T,, is the temperature reading of the thermometer and 7,,, is
the corresponding platinum resistance thermometer reading. Both
temperatures are read in degrees Celsius.

Thermocouple voltage is converted to temperature by:
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Tre = —0.48868252 +19,873.14503x — 218,614.5353x° +

(51)
11,569,199.78x" - 264,917,531 4x* +2,018,441,314x°

where T,. is temperature in degrees Celsius and x is the
thermocouple voltage in volts. Voltage readings from the three
thermocouples were converted to temperature and the temperatures
were averaged to obtain one value. The thermocouples were
calibrated under the same conditions as the platinum resistance
thermometer and their calibration curve is shown in Figure 46. The

resulting calibration equation is:

Ty, = 6.4419 %107 +0.99491T,. +2.9139 x 10~ T, (52)

where both temperatures are measured in degrees Celsius.
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Qy (gpm)
T

Figure 43: Calibration curve for Omega FL - 75A rotameter;
1 gpm = 6.3091 x 1075 m3/s.
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O, (gpm)

0, (gpm)

Figure 44: Calibration curve for Omega FL - 75C rotameter;
1 gpm = 6.3091 x 10°3 m3/s.
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Ty (°0O)

Tprr CO)

Figure 45: Calibration curve for the platinum resistance
thermometer.
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Ty (CO)

Tre (°0)

Figure 46: Calibration curve for the thermocouples
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APPENDIX B: UNCERTAINTY ESTIMATES

Experimental uncertainties are based on 95 percent confidence
levels. Using Equation (27), uncertainty in the measured value of the

Nusselt number is calculated from:

y 2 " 2 2 u 2 2
e o
Nu,, q. d, ky AT

where

e e

Uncertainty in the resistance of the heater sheet is £0.5%. The
length and width of the heater have uncertainties of +1.7% and
+3.3%, respectively. Uncertainty in the current is calculated for each
heat flux used, and was always less than +1%. Jet diameters were
measured with precision calipers and have uncertainties of +0.2%,
+0.7%, and +0.5% for the 4.4, 6.0, and 9.0 mm nozzles, respectively.
Uncertainty in the thermal conductivity of water is based on errors
resulting from linear interpolation of tabulated data, and is estimated
at +0.6%. Uncertainty in AT is +0.08°C.

From Equation (28), uncertainty in the true Nusselt number is

calculated from:
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&G e e
where

u, \ u Y u,,f2 usz u,,,’2
GROEGREGER (50

from Equation (29).

The thickness of the heater sheet was measured with a
micrometer and has an uncertainty of +3%. Two sets of tabulated
data on thermal conductivity of 1010 steel were compared
(American Society for Metals, 1983; Touloukian, 1970), giving an
uncertainty in the wall conductivity of +2%, which accounts for
linearly interpolating values. Uncertainty in { was calculated for
each data point, and was always less than *+3.7%, resulting in a
maximum uncertainty in the Nusselt number of +£10%.

Uncertainty in the Reynolds number is determined by:
uR% ’ Uy i 2 ’ u :
BSEGEOES 57

Uncertainty in the volumetric flow rate reached a maximum of
1+3.2%. Uncertainty in the kinematic viscosity was estimated at 3.6%
to account for errors from linearly interpolating tabulated data. This
resulted in an uncertainty of less than 5% in the Reynolds number.

The RMS roughness height, k, was calculated by averaging the

squared RMS values, k*, where we calculate uncertainty in &’ from:
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1, =1/u§k2 +u,2,k2 (58)

where U, is a bias uncertainty based on the calibration uncertainty

of the DEKTAK and up, is the precision uncertainty of the

measurement. Assuming a Gaussian distribution of the errors in
successive measurements of k> and using a t-statistic with a two
sided 95% confidence interval due to the small sample size, the

precision uncertainty is calculated from:

Up, = lo.os9 7;—26 (59)

where §, is the standard deviation of the measured &’ values and

hose= 2.262. Compared to the precision uncertainty, the bias

uncertainty was negligible. This resulted in uncertainties in the RMS

heights ranging from +4.5 - £9%.
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APPENDIX C: EXPERIMENTAL DATA

Table 2: Surface S1, smooth,
d; = 4.4 mm. d; = 4.4 mm,

Table 4: Surface S3, k=6.3um, Table 5: Surface S4, k=8.6um,
d, = 4.4 mm. d, = 4.4 mm,
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Table 6: Surface S5, k=13.1ym, Table 7: Surface S6, k=14.1ym,
d; = 4.4 mm. d; = 4.4 mm.

Table 8: Surface S7, k=20.1pm, Table 9: Surface S8, k=25.9um,
d; = 4.4 mm. d; = 4.4 mm,
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Table 10: Surface S9, k=26.5um, Table 11: Surface S10, k=28.2um,
d;, = 4.4 mm. d; = 4.4 mm.

Table 12: Surface S1, smooth,
d;, = 6.0 mm. Table 13: Surface S2,k=4.7um,

d, = 6.0 mm.
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20240 324.85
33420 418.12
42260 482.85
48085 541.46
55530 593.26
61795 641.31
67055 682.32
70405 713.78
| 74775 748.99
78395 779.78
Table 14: Surface S3, k=6.3um, 82630 809.71
d, = 6.0 mm, )
Table 15: Surface S4, k=8.6um,
d;, = 6.0 mm.
Re,
21560
32440
40175
48105
53260
61255
65115
69385
74525
77990
81165
Table 16: Surface S5, k=13.1um, 84255
d, = 6.0 mm.

Table 17: Surface S6, k=14.1um,
d, = 6.0 mm.
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472.67

559.25 u
630.37

688.13 |
741.82
792.10
829.46
859.95
888.32

ii
922.22

Table 18: Surface S7, k=20.1ym,
d; = 6.0 mm.

d; = 6.0 mm.

Table 21: Surface S10, k=28.2um,
Table 20: Surface S9, k=26.5um, d, = 6.0 mm.
d, = 6.0 mm.
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Nu,

26755 365.96
33935 418.60
41760 476.70
47675 516.46
50955 543.16
59610 590.98
64630 632.27
69425 657.54

Table 22: Surface S1, smooth,
d; = 9.0 mm.

Table 24: Surface S3, k=6.3um,
d;, = 9.0 mm.
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Table 23: Surface S2, k=4.7um,
d, = 9.0 mm.

—_—— —

Table 25: Surface S4, k=8.6ym,
d; = 9.0 mm.



Table 26: Surface S5, k=13.1ym, Table 27: Surface S6, k=14.1ym,
d; = 9.0 mm. d; = 9.0 mm.

Table 28: Surface S7, k=20.1ym, Table 29: Surface S8, k=25.9um,
d, = 9.0 mm. d; = 9.0 mm.
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Table 30: Surface S9, k=26.5um, Table 31: Surface S10, k=28.2um,
d; = 9.0 mm. d; = 9.0 mm.
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