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Abstract

Models are widely accepted as useful tools in the understanding of the groundwater
environment. This study uses a physically based computer model to investigate vari-
ous hypotheses concerning the migration of aviation gasoline from a surface spill. The
site considered is the F'S-1 site at the Massachusetts Military Reservation, Cape Cod,
Massachusetts. Between 1955 and 1970, aircraft maintainance at the FS-1 site caused
between 400,000 and 1 million gallons of aviation gasoline to be released into the soil.
Field investigation has detected a relatively small area that has been impacted by
this source. Uncertainty exists over many of the factors which would govern the fate
and transport of contaminant from such a spill. These were investigated using the
model developed for the site. Biodegradation was found to be the predominant factor
in influencing the extent of contamination emanating from this source area. It was
concluded that the development of a model for this site was useful in two ways: it
enabled examination of various assumptions, and the model predictions can be used
to help direct future field investigations.

Thesis Supervisor: David Marks
Title: Professor, Department of Civil and Environmental Engineering
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Chapter 1

Introduction

Over recent years mathematical models, implemented in computer code, have
emerged as a useful tool to help us understand and predict the processes occurring in
the subsurface environment. The most widely accepted have been physically based
models which combine conservation principles with constitutive relationships such as
Darcy’s and Fick’s laws[17]. This type of model has been used extensively in a wide
variety of applications from water management studies to groundwater contaminant

assessment.

The complex nature of the subsurface environment presents the greatest challenge
in the development of successful groundwater models. Although the classical ground-
water flow and solute transport equations are reasonably accurate representations of
the actual processes, problems are encountered when trying to apply them to real-
world situations. Uncertainties arise due to the inaccessibility of this environment
and the ensuing scarcity of data, heterogeneity over scales smaller than those con-
sidered in a typical groundwater model, physical and chemical interactions among
the various phases present, the long time scales involved, and the difficulty of ex-
tending laboratory results to the field. However McLaughlin et al.[17] conclude that,
although models may not be able to give us completely accurate predictions, they
can give us a qualitative insight into a particular situation. This in turn can better

our understanding of the processes occurring.
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One particular application of models has been in the area of groundwater contami-
nation. Models have been used to assess the migration of contaminants from a source,
both to test hypotheses about the processes occurring and to predict future plume
migration. This study uses modelling techniques to investigate a case study of this
type. The problem addressed is one where there is comprehensive data on groundwa-
ter flow, but very little about the actual extent of contamination and factors affecting
the fate of pollutants in the groundwater. Various hypotheses concerning these fac-
tors are considered, and a numerical model is used to test their respective outcomes.
Consideration of this case study will enable us to comment on the widely accepted

view that a modelling approach can be useful in such a situation.

The site to be considered is one of the many sites of potential environmental con-
cern at the Massachusetts Military Reservation (MMR) on Cape Cod. This site,
referred to as the FS-1 Study Area, has been identified as potential source of envi-
ronmental impact due to the aircraft maintenance activities which were performed at
the site between 1955 and 1967. These activities resulted in the release of aviation
gasoline(AVGAS) into the soil, which is thought to have migrated down to the water
table and contaminated the groundwater. This study uses the DYN modelling pack-
ages developed by Camp Dresser and McKee[3][4] to gain an insight into the fate of
the AVGAS released at this site.

1.1 Site Background

MMR occupies approximately 22,000 acres on western Cape Cod (see Figure 1-1).
Military activity at MMR dates back to 1911, with the heaviest use being since 1935.
Operations have been of two general types: (1) mechanized army training and maneu-
vers; and (2) military aircraft operations, maintenance, and support. An Installation
Restoration Program has been instigated at MMR as part of the U.S. Department of
Defense program to investigate and remediate potential problems related to suspected

past releases of toxic and hazardous materials at its facilities. This program has iden-

11
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tified a total of 77 sites at MMR as possible sources of environmental contamination.
The sites that have been identified are typical of military bases, including fire training

areas, landfills, chemical spills, and fuel spills. The FS-1 Study Area is one such site.

1.2 FS-1 Study Area

1.2.1 Location and History

The FS-1 Study Area is located along the southeastern boundary of the base,
east of the main aircraft runways (see Figure 1-2). The study area consists of two
concrete paved aircraft turnarounds branching one to the east, and one to the west
of Taxiway E. From 1955 to 1967, the 551st Airborne Early Warning and Control
Wing (AEW&C) assigned to MMR was responsible for maintaining EC-121 Constel-
lation Aircraft in the air at all times. Maintainance activities included testing aircraft
fuel dump valves at this site. During the test, the aircraft’s four dump valves were
opened, which resulted in the dumping of an estimated 100 to 250 gallons of AVGAS
per episode. Firefighting crews who witnessed the tests washed the dumped AVGAS
into the soils around the pavement so that fuel vapours would not be present when
the tow vehicle returned to remove the aircraft. As the aircraft aged, the frequency
of the testing was increased. Later, in an effort to limit the quantity of wasted fuel,
barrels were used to collect the dumped fuel. Records of AEW&C fuel management
practices have since been lost; therefore, a complete inventory of the amount of AV-

GAS discharged is unknown. It was estimated that fuel dump valve testing released

a maximum of 400,000 to 1 million gallons of AVGAS at the FS-1 Study Area.

1.2.2 Previous Investigations

Following the identification of FS-1 as a site of potential environmental concern
through a record search by Metcalf and Eddy (1983), the site has been explored
by test pitting and borings performed by R.F. Weston (1985) and by Jordan (1989

and 1990). These investigations confirmed the presence of groundwater contamination

13
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extending from the study area, with benzene, toluene, xylene and lead being detected.
The Remedial Investigation conducted by E.C. Jordan Co.[7] further characterized
the groundwater contamination. Impact to downgradient groundwater quality was
evident at least up to a distance of 1,800ft from the Western Aircraft Turnaround,
although the maximum downgradient extent of the regulated fuel volatile organic
compounds (i.e., BTEX) was only approximately 500ft downgradient. Beyond this
other chemical indicators of AVGAS impact were detected, including the presence
of lead, tentatively identified fuel-related compounds, and reduced dissolved oxygen

levels.

The Remedial Investigation raised various questions about the fate of the AVGAS
released at the FS-1 Study Area. The extent of contamination detected was small
compared to the amount of AVGAS thought to have been released into the soil. It
has been suggested that a significant amount of biodegradation has been occurring, as
indicated by the low dissolved oxygen concentrations detected at the study area, and
that this is limiting the extent of the plume. However, there is also the possibility
that under anoxic conditions, biodegradation may slow, and “slugs” of degradable
chemicals may be transported by advection within the aquifer. A particle tracking
model for a conservative contaminant was developed to determine the direction a
detached slug may be transported. The result is shown in Figure 1-3. Further stud-
ies were suggested into the biodegradation of fuel-related compounds at FS-1. At
present an extensive groundwater sampling program using the Geoprobe is being
implemented. The objectives of this study are to confirm the vertical and horizontal
extent of groundwater contamination and low DO concentrations known to exist near
the FS-1 source area, and to determine the presence or absence and extent of low DO
concentration downgradient of FS-1 and evaluate low DO zones for BTEX and total

petroleum hydrocarbons.
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Figure 1-3: Results from the Particle Tracking Model
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1.3 Purpose and Scope

This project attempts to model the transport of AVGAS from the FS-1 source
area using the DYN modelling packages developed by Camp Dresser and McKee
Inc. Various hypotheses concerning the uncertain factors affecting this migration
are considered. It is hoped that this analysis will help us determine the relative
importance of these factors, and that the conclusions reached will help guide future

field investigations.

In preparation for attempting to model this site, a study area characterization
(Chapter 2), and assessment of the chemicals of concern (Chapter 3) are carried
out. Chapter 4 discusses the processes which determine the fate and transport of
the AVGAS, and attempts to determine the dominant migration pathways. The
numerical model used in the study is introduced in Chapter 6, and Chapter 7 outlines
the development of the model for this site. Finally the results are assessed, and various

conclusions made.
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Chapter 2

Study Area Characterization

2.1 Climate

Cape Cod has a temperate climate with precipitation distributed year round. The
average annual precipitation is about 48 inches, and annual groundwater recharge
is reported as being in the range of 17 to 23 inches/year[2]. The one year 24-hour
rainfall event is about 2.7 inches. These figures indicate a high potential for runoff and
erosion, however this is minimized due to the highly permeable surface soils and low
topographic gradient. Hence the contamination migration from the site is primarily

via groundwater pathways.

2.2 Geology

The surficial geology of Western Cape Cod is dominated by depositional processes
associated with glacial activity during the Wisconsin period (7,000 to 85,000 years
ago). A series of glacial advances and retreats resulted in the deposition of the
Buzzards Bay Moraine and the Sandwich Moraine along the western and northern
edges of this area. Between the two moraines lies a broad outwash plain. It is on this
plain that the FS-1 Study Area is located. Sediments which form this outwash plain
were carried by rivers flowing off the ice sheet, and hence tend to have a uniform

grain-size. Thus the area is characterized by highly permeable soils. Fine-grained,

18



glaciolacustrine sediments and basal till are present below the outwash plain at the
base of the unconsolidated sediments. Figures 2-1 through 2-3 show the horizontal

and vertical distribution of glacial sediments.

2.3 Regional Hydrogeology

MMR is located over a U.S. Environmental Protection Agency-designated sole
source aquifer. The aquifer is unconfined, and is recharged by infiltration from pre-
cipitation. The top of the groundwater mound within the western Cape Cod ground-
water system is located beneath the northern portion of MMR. Groundwater flow
is generally radial from this mound. The lateral boundary of the aquifer is formed
by the ocean on three sides, with groundwater discharging into Nantucket Sound on
the south, Buzzards Bay on the west, and Cape Cod Bay on the north. The eastern
boundary is formed by the Bass River which is at some distance from the areas of
interest. The interpretive map of groundwater surface produced from water level data

gathered in March 1988 is shown in Figure 2-4.

The aquifer is characterized by highly permeable, stratified glacial deposits. There
is a gradual transition from coarse- to fine-grained sediments with depth. In the
southern part of MMR, the highly permeable sediments extend to about 200ft be-
low ground surface (BGS), below which significantly finer-grained sediments which
may be of the lacustrine origin are present to a depth of approximately 350 ft BGS.
Although the Groundwater Remediation Strategy Report[2] suggests that this finer
material may be considered the bottom of the aquifer, this study will include all ma-
terial down to the bedrock in the aquifer. In the southern portion of MMR hydraulic
conductivities in the coarser-grained sediments vary between 160 to 380ft/day[2]. The
hydraulic conductivity of the lacustrine sediments is 10 to 50 times lower then the
outwash[2]. Due to the stratification of the sediments horizontal hydraulic conduc-
tivity is likely to be greater than the vertical hydraulic conductivity. However, the

degree of anisotropy is typically influenced by the presence of fine-grained sediments

19
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within the strata. Because of the paucity of silt in the outwash sediments, anisotropy

may not be as high as would be expected from the observed stratification.

Kettle hole ponds, depressions of the land surface below the groundwater table, are
common on the outwash plain. These ponds influence the direction of the groundwater
flow in a manner similar to large-scale aquifer heterogeneities. This is evident in the
strong changes in the slope and direction of the regional water table in the vicinity

of such ponds.

Field studies have shown that piezometric head varies little with depth, apart from
in the vicinity of a kettle hole pond. Here the vertical hydraulic gradients are of a
similar or greater magnitude than the horizontal hydraulic gradient in the aquifer.
These vertical gradients are sufficient to cause groundwater flowing at depth below

the water table to discharge to the pond.

Rainfall recharge is observed to cause groundwater flow to have a slight downward

component, although the flow is predominantly horizontal.

2.4 Local Geology and Hydrogeology

The local groundwater flow direction at the F'S-1 study area is predominantly from
north to south. However Johns pond, Ashumet pond, and the Quashnet River all
significantly affect the general flow regime. The effect of the Quashnet River and
the neighbouring cranberry bogs is of particular interest since the upper reaches
of the river lie directly downgradient from the FS-1 source area. Its effect on the
groundwater flow regime is considered in the Southeast Region Groundwater Operable
Unit Remedial Investigation Report[1]. The river drains water from Johns Pond,
however this outlet is controlled by a man-made structure, and is commonly blocked
for months when water is not needed for cranberry bog operations. The river is thus

primarily groundwater fed along nearly its entire length. The river induces upward
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vertical head gradients in the groundwater, which produces a flux into the stream.

This flux is approximately 0.2 ft?/s in the upper reaches (first 0.7 miles) of the river.

2.5 Aquifer Characteristics

Hydraulic Conductivity To assess hydraulic conductivity at the FS-1 source area,
rising-head tests were performed at seven monitoring wells by Jordan (1989)[7]. Hy-
draulic conductivities were calculated using the Horslev method, and ranged between
136 and 240ft/day. Well screens were located between 60 and 80ft BGS, hence these
conductivities are applicable to the coarse-grained sediments at shallow depths. No
tests were made at greater depths. In-situ tests for hydraulic conductivity were
also performed at several monitoring wells further downgradient near the Quashnet
River[l]. These tests characterized the hydraulic conductivity throughout a signifi-
cant portion of the aquifer. Hydraulic Conductivity was found to vary between 18
and 123ft/day, with a noticeable decrease of conductivity with depth. The ratio of
horizontal to vertical hydraulic conductivities has been found to be between 2:1 and

5:1[14].

Porosity The effective porosity of the outwash material is estimated to be between

0.35[1] and 0.39[14] which is typical of sandy, stratified glacial deposits.

Dispersivity The large-scale natural gradient tracer tests performed in this aquifer
by Le Blanc et al.[14][8] yielded field-scale values of dispersivity for a non-reactive
contaminant. The movement of the tracer was monitored using a three-dimensional
sampling network for about 280m of travel distance. Spatial moments were used to
calculate the mass, mean position, and variance for 16 views of the spatial distribution
of the non-reactive tracer (bromide). Although there appeared to be a developing dis-
persion process in the first 26m of distance traveled, the longitudinal dispersivity then
remained constant at a limiting value of 0.96m. The calculated transverse horizontal

dispersivity was 1.8cm, and transverse vertical dispersivity was 0.15cm.
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Chapter 3

Contaminant Assessment

3.1 Contaminants of interest

Aviation gasoline, the contaminant released at the FS-1 Study Area, is made
by blending various proportions of distillate stocks such as naphtha, gasoline and
kerosene. It is very similar in composition to the later JP-4 Jet Fuel. The individual
major components representing at least 0.1% by weight in one JP-4 sample are given
in Table 3.1. The predominant organic chemical structures present include aromatic
hydrocarbons, straight-chained alkanes, and cyclic hydrocarbons. The gasoline may
also contain traces of species containing nitrogen, oxygen or sulphur, and also some
trace inorganic elements. Additives may also be added to the fuel as anti-oxidants,
metal deactivators, corrosion or icing inhibitors, or electrical conductivity agents. AV-
GAS differs from JP-4 in that tetraethlyl lead is often added to increase the octane
number of AVGAS. Due to the lack of available data for AVGAS, this study shall
assume the composition of AVGAS is approximately as given in Table 3.1, with the

inclusion of tetraethyl lead.

The factors affecting the fate of contamination, that is solubility, volatility, sorption,
and degradation, will vary between constituents, and hence the relative concentrations
of the constituents will vary with time and distance from the source. In general, the

aromatic compounds tend to preferentially partition into a liquid phase, while more
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volatile constituents favour a vapour phase. Compounds which will dissolve easily
in water will tend to migrate faster from the source area, and hence the compounds
which present the most likely hazard to downgradient water supply wells are the

aromatics, in this case benzene, toluene, ethylbenzene and xylene (BTEX).

Table 3.1 gives estimated values for the chemical properties of each of the ma-
jor constituents. From this we can see that the least retarded constituents (lowest
octanol-water partition coefficients) while be Isobutane and then Benzene. Isobu-
tane is a gas at ambient temperature, and so we can assume that any present will
vaporize as soon as the AVGAS is released. Hence it is benzene which will migrate
furthest from the source, due to it’s relatively high solubility in water. Other rela-
tively mobile constituents are toluene (K,,=2.69), ethylbenzene (K,,=3.15) and the

xylenes( K,,=3.13 to 3.20).

Any tetraethyl lead present in the AVGAS will be highly immobile since it sorps
strongly to soil. Any lead that has been solubilized is expected to be predominantly

in the lead (II) species.

The degradation rates will also vary between the constituents of AVGAS, depending
on their chemical structure. For hydrocarbons in groundwater, the primary mecha-
nism of degradation will be by microorganisms. Estimates of degradation rates are
not available for all the constituents of AVGAS. However, Table 3.2 gives a range of
estimates for several of the constituents. It can be seen that the aromatics exhibit
a wide range of biodegradation rates, with benzene tending to be the least rapidly
degraded. Tetraethyl lead is rapidly degraded. Information on the growth rate of bac-
terial species can lead us to a qualitative understanding of the biodegradation rates of
other constituents. The shorter-chained alkanes (up to Cg) are utilized by relatively
few bacterial species and so will tend not to be biodegraded. Conversely, utilization of
long-chained alkanes is widespread among microorganisms, and n-alkanes with 10-18
carbons are utilized with the greatest frequency and rapidity. Hence biodegradation

rates of these compounds will tend to be high[9]. The cyclic alkanes are also subject
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Compound Estimated Half Life[12] || Biodegradation Rate
ty (days) k (day™')

Low High Fast Slow
Benzene 10 730 0.070 0.001
Toluene 7 28 0.099 0.025
Ethylbenzene 6 228 0.116 0.003
Xylenes 14 365 0.050 0.002
Tetraethyl lead || 14 56 0.050 0.012
Cyclohexane 56 365 0.012 0.002

Table 3.2: Estimated Degradation Rates of Selected AVGAS Constituents

to biodegradation. The most persistent compounds will be those that are least sus-
ceptible to biodegradation. This assessment of the relative biodegradability of the
constituents of AVGAS leads to the conclusion that the most persistent compounds
will be benzene, and the short-chained alkanes. The short-chained alkanes, however,
are not considered as great a threat to downgradient water supplies since they are

much less soluble, and hence less mobile.

Hence we can conclude that the constituent of AVGAS that is of most concern will
be benzene, due to its high solubility and relatively low susceptibility to biodegrada-

tion.

3.2 Observed distributions

The most extensive field investigation of FS-1 was undertaken during the Remedial
Investigation(7]. Both the residual contamination in the soil near the source, and the
groundwater contamination at the source and downgradient were investigated. Sum-
maries of the results, along with an interpretive groundwater contamination profile

from the Groundwater Remediation Strategy Report[2], are included in Appendix A.

The results indicate that there is residual fuel-related contamination of the soil at

both turnarounds, although a different set of compounds was found at each source
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area. The soils beneath the Western Aircraft Turnaround exhibit greater residual
contamination with lead, tetraethyl lead, and total petroleum hydrocarbons being
detected in deep soils just above the water table. At the Eastern Aircraft Turnaround
several tentatively identified (that is, non-regulated and therefore not specifically
tested for) alkane isomers commonly related with fuel products were detected in the
soil just below the water table. The compounds detected included methylated isomers
of octane, hexane, cyclohexane, and pentane, and heptane. Except in these deep soils,
there was no evidence of residual contamination due to AVGAS in the unsaturated

sands.

Fuel-related compounds were detected in groundwater samples from both source ar-
eas, though to a much lesser extent at the Eastern Aircraft Turnaround. Toluene and
xylene were detected up to 200ft downgradient of the Western Aircraft Turnaround,
and benzene was detected in one monitoring well, 500ft downgradient. The detection
of lead, fuel-related tentatively identified compounds (including methylated isomers
of butane, pentane, hexane, heptane, octane, cyclohexane, and cyclopentane), and
low dissolved oxygen levels indicating biodegradation has taken place, suggest a zone

extending up to 1,800ft downgradient that has been impacted.

The Remedial Investigation concludes that the Western Aircraft Turnaround is the
major source area, with significant amounts of fuel-related constituents still persist-
ing in the capillary zone and high levels of regulated fuel-related compounds being

detected in the groundwater.
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Chapter 4

Migration of AVGAS from FS-1

This chapter will consider the processes which determine the fate and transport
of the AVGAS released at the FS-1 Study Area. The migration of AVGAS away
from the source area can be described by considering the processes occuring at three

distinct stages. These are:
e contaminant present on the surface
e transport through the unsaturated zone

e transport in the saturated zone

The fate of each constituent of AVGAS in each of these stages will vary depending
on the physical and chemical properties of the compound, and the characteristics of
the environment it is in. The model developed by this study will quantatively assess
the migration of AVGAS within the groundwater. However we must also assess the
behaviour of the AVGAS prior to reaching the water table in order to predict the
rate in which contaminant arrives at the water table to determine the input into this
model. This assessment will also help us determine the likely composition of the

contaminant which reaches the groundwater.
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4.1 Source Assessment

AVGAS was released at the FS-1 Study Area as a result of testing the fuel dump
valves of the aircraft being maintained at the site. During this test the valves were
opened for a short time, and fuel was dumped directly onto the ground below. In
assessing the probable extent of contamination from the source area it is necessary to
ascertain how much fuel was dumped in this procedure, and how often aircraft were
tested at this site. As previously mentioned, records of this procedure have been lost,
and so we must infer this information from the interviews with personnel involved in
the testing, and from known specifications of the aircraft. Each aircraft is known to
have had 3 dump valves per wing, the flow rate through which was 37.5 gpm. From
the interviews it was judged that approximately one aircraft was tested per day during
the period testing took place at this site (1955 to 1967). Using this information, and
the assumption that the valves were left open for 30 seconds (consistent with the
description of the vavles being left open for a minimum amount of time), the volume
of AVGAS dumped per episode is estimated as 112.5 gallons. Hence over the 12 years
of testing a total of about 500,000 gallons of AVGAS was released at F'S-1. This is
judged to be the most logical case scenario. Other more conservative calculations
yvield an estimate of the total amount of AVGAS released to be up to about 1 million

gallons.

4.2 Migration from the Source

Once the AVGAS has been released into the environment there are several potential
migration routes the constituents may follow. Figure 4-1 summarizes these routes. It
is not necessarily true that all the contaminant will follow one particular route, in fact
it is likely that there will be some partitioning between the different routes. To fully
quantify the exact partitioning between these routes would require a detailed model
of each stage of migration. This is beyond the scope of this study. However we can

qualitatively determine the likely partitioning by considering the physical properties
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AVGAS released onto surface

/

\

to groudwater

or diffuses up
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PURE PRODUCT
EVAPORATES DISSOLVES WASHED INTO
SOIL
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PRODUCT PARTIALLY
DISSOLVES DISSOLVES
Lost to \
Atmosphere ,
2-PHASE FLOW 3-PHASE FLOW
through through
unsaturated zone unsaturated zone
partitioning between partitioning between
soil, water and soil, water, pure product
vapour phases and vapour phases
SOIL WATER VAPOUR PURE PRODUCT
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Water Table

Slowly dissolves
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Figure 4-1: Potential Routes of Migration of the Contaminant
On release into the environment there are several potential routes the constituents of
AVGAS may follow. Partitioning between these routes will depend on the chemical

properties of the constituents.
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of the various constituents.

4.2.1 Contaminant Present on the Surface

AVGAS released during the testing would probably have landed on the asphalt
of the aircraft turnarounds. This is a reasonable assumption given the size of the
turnarounds, and also the presence of the firefighters, whose task was to prevent the
fuel evaporating by washing it away from the testing area. If the AVGAS had fallen
onto the dirt surrounding the turnarounds this task would have been unnecessary
since infiltration into the soil would prevent significant evaporation. If the AVGAS
did fall onto asphalt, there would have been no immediate infiltration, and hence the
potential for rapid evaporation is high. In fact if the released AVGAS had been left
undisturbed on the asphalt, it would only take in the order of an hour for the entire
slick to evaporate (see calculation in Appendix C). This was not the case, however,

since firefighters were on hand specifically to prevent this occuring.

Water added by the firefighters would have had the dual effect of dissolving a por-
tion of the AVGAS | whilst washing the remaining pure product towards the soil. The
process is also likely to induce some increased evaporation since it will increase the
surface area of the contaminant (both dissolved and pure product) and the relative
wind speed to this surface. Hence there will be an initial partitioning between con-
taminant which evaporates, and thus escapes to the atmosphere, contaminant which
is dissolved, and pure product which is washed into the soil along with the water.
This partitioning will depend on the physical properties of the constituents, given in
Table 3.1. The highly volatile constituents, such as butane and isobutane which are
gases at atmospheric temperatures, are likely to evaporate more rapidly than they
would dissolve, and hence will not migrate to the groundwater. The detection of
dimethylbutane (one of the more volatile constituents) in the groundwater suggests
that the application of water was successful in it’s attempt to limit the occurrence
of evaporation, and in fact most of the constituents will have been washed into the

soils before significant evaporation could take place. Thus we conclude that the loss
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of contaminant due to evaporation from the surface is a relatively small effect.

The partitioning between contaminant that dissolves and that which remains as
pure product will depend on the solubilities of each of the constituents. The more
soluble constituents, such as the aromatic hydrocarbons (benzene, toluene, ethylben-
zene and xylene), will tend to dissolve readily, whereas the less soluble constituents,
such as the longer chained alkanes (octane, nonane etc.) may remain as pure product.
The fraction of AVGAS which dissolves will depend on the quantity of water added by
the firefighters. Unfortunately the exact procedure followed by the firefighters during
the testing is not known. A possible scenario is that four hoses were used to wash
down the area for a period of 10 minutes during and after the time when the dump
valves were open. This would result in a total of 10,000 gallons being added to the
area (see calculation in Appendix C). This would dissolve approximately 3.6% of the

spilt AVGAS. The more soluble constituents would be preferentially dissolved.

Contaminant entering the unsaturated zone is thus likely to be both pure product
and in an aqueous solution. The majority of the contaminant will exist as pure
product, consisting of the less soluble constituents such as the longer-chained alkanes
and cyclic alkanes. The dissolved fraction of the contaminant will primarily consist

of the aromatic hydrocarbons and the short-chained alkanes.

4.2.2 Migration through the Unsaturated Zone

As the contaminant migrates through the unsaturated zone there is a continuous
exchange of contaminant between the different possible phases as shown in Figure
4-1. Pure product may dissolve or evaporate. Dissolved contaminant may evaporate
or undergo adsorption. Contaminant that has evaporated and is thus existing in a
vapour phase may redissolve, and finally contaminant that has become sorped to the
soil particles may desorp as water continues to flush past. The movement of the
contaminant through this zone is thus a three-phase problem, with pure product, and

contaminated water and air all free to migrate. To quantify this process a model
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would not only have to consider the relative motions of each of these three phases,
but also the partitioning kinetics. A frequent assumption is that an equilibrium
partitioning between each of these phases is reached within a much shorter timescale
than the migration process. Hence the fraction of the contaminant present in each

phase would remain relatively constant.

The presence of pure product will have the effect of increasing the time it takes for
contaminant, both in aqueous and non-aqueous phases, to reach the water table. In
this three-phase flow, water is the wetting fluid, AVGAS is the non-wetting fluid with
respect to water, but the wetting fluid with respect to air, and air is the non-wetting
fluid. As they move the three phases will interfere with one another thus inhibiting
flow to a certain degree. The relative permeability of the soil matrix, and hence
the velocity of flow, will depend on the relative saturations of each phase. Flow of
aqueous or non-aqueous phase liquid will only occur once the residual saturation has

been exceeded.

As the contaminant travels downwards through the unsaturated zone, sorption to
the soil particles will occur. This partitioning will depend on the properties of the
constituent considered. Constituents with a high octanol-water partitioning coeffi-
cient (K,,) will tend to sorp more readily onto the soil particles. Table 3.1 gives
values of K, for each of the constituents. This sorption has the effect of retarding
the rate of transport of contaminant down to the water table. This process will also
reduce the rate at which contaminant is added to the groundwater, since the sorption
reduces the concentration in the infiltrating water. Sorption is noncompetitive[6],
with many nonpolar chemicals able to partition between water and the available vol-
ume of natural organic matter at the same time without interfering with each other.
However, the soil underlying the FS-1 source area has been found to have a very low
organic carbon content (fo,. = 0.0001), and hence it is likely that there is a limit to
the amount of contaminant that can sorp onto this soil. The source at FS-1 is contin-

uous over a long period of time, and hence a state may be reached where no further
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sorption is possible. In this case, the dissolved contaminant will migrate through the
unsaturated zone unretarded. After testing has ceased contaminant will undergo des-
orption from the soil as uncontaminated rainwater seeps through this zone. Also, the
recharge due to precipitation will mobilize the residual pure product present in the
soil pores. This is consistent with the lack of detection of hydrocarbons in the soils
of much of the unsaturated zone, which indicates that there is no longer any AVGAS
sorped onto these soil particles. These two processes will have caused a continuing

source after the testing ceased.

Contaminant will also be removed from the infiltrating water and pure product
via the process of evaporation. Contaminant existing in the vapour phase may get
trapped between the soil particles, however, it’s eventual fate will be to escape up-
wards to the atmosphere. Following the same reasoning described in the consideration
of evaporation from the surface, we can conclude that the amount of contaminant lost

by this process is likely to be relatively small.

On reaching the water table, contaminant that is in the aqueous phase will en-
ter the groundwater directly, whereas the pure product will form a layer of floating
non-aqueous phase liquid in the capillary fringe. This floating product may then be
dissolved into the groundwater beneath it, acting as a secondary source of contami-
nation. It will result in a slower addition of contaminant to the groundwater than if
the contaminant were already in the aqueous phase when it reached the water table.
As previously discussed the fraction of contaminant arriving at the water table in the
aqueous phase is likely to consist of the most soluble constituents of AVGAS such as
the aromatics, whereas the pure product will consist of the less soluble constituents.
Hence the more soluble constituents will contaminate the groundwater immediately,
whilst there is a delay before the groundwater becomes contaminated by the less

soluble constituents.

Hence the dominant migration pathway of the constituents of AVGAS from FS-1

is as a non-aqueous phase liquid seeping downwards through the unsaturated zone,
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forming layer of floating product in the capillary fringe, and subsequently dissolving
into the groundwater. Of more concern, however, is the fraction of contaminant that
was dissolved on the surface and hence reached the water table as an aqueous solution.
This fraction will contaminate the groundwater directly and so will have had longer to
migrate from the source area. After testing ceased, contaminant that had sorped onto
the soil particles of this zone will desorp as clean rainwater infiltrates, and provide
a continuing source. The continuing source will also be contributed to by residual

contamination being flushed out of the pores by recharge.

4.2.3 Migration in the Saturated Zone

Once the contaminant is dissolved within the groundwater it will migrate as dic-
tated by the flow field at the point of injection. At the FS-1 Study Area the direction
of groundwater flow is from north to south, and so contaminant will migrate in a
southerly direction. Recharge due to precipitation will induce a slight downwards
drift of the contaminant plume with distance from the source. As in the unsaturated
zone, there will be some partitioning of contaminant between the groundwater and
the soil particles. Again, this sorption will cause the migration of AVGAS to be

retarded, and so reduce the current extent of contamination.

Biodegradation of the contaminant may occur at any of the stages of migration of
AVGAS after its release into the atmosphere. The rate of biodegradation will vary
for each constituent, and will depend on that constituent’s chemical structure. It
will also depend on the amount of oxygen available to support the process. This
can often be a limiting factor of biodegradation within groundwater. For example,
Chiang et al.[5] found that if the dissolved oxygen level drops below about 2 mg,
aerobic biodegradation of BTEX will cease. Field results show, however, that in this
aquifer the average dissolved oxygen level is well above this limiting value. Oxygen
deficiency will only become a limiting factor in areas where significant biodegrada-
tion has occurred, consuming the dissolved oxygen, as was found at the FS-1 source

area. Biodegradation will have the effect of reducing the total volume of contaminant
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present in the aquifer at the current time.

The dissolved oxygen level is also a good indicator of whether biodegradation has
occurred in particular part of the aquifer. The process of biodegradation consumes
oxygen, and hence if the DO level is found to be below the average level detected
in the aquifer, it can be inferred that biodegradation has occurred there. Chiang et
al.[5] found there to be an inverse correlation between contaminant concentration and
biodegradation. A similar inverse correlation was found within the plume emanating

from FS-1. Hence we can infer that biodegradation has been occuring to some extent.

4.3 Summary

The above discussion qualitatively describes the likely migration routes of AVGAS
after release at the FS-1 Study Area. It is thought that loss of contaminant by evap-
oration both from the surface and whilst migrating through the unsaturated zone
will be a relatively small effect. Contaminant is likely to enter the unsaturated zone
both as pure product and as an aqueous solution, with both migrating downwards to
the water table. Sorption will act to retard the migration through the unsaturated
zone. Pure product reaching the water table will form a floating layer and will subse-
quently be either biodegraded by microorganisms or slowly dissolved by the moving
groundwater. Contaminant that has migrated down through the unsaturated zone in
the aqueous phase will enter the groundwater directly, and will hence have longer to
migrate downgradient and so is of more concern when considering the safety of the
downgradient monitoring wells. After testing has ceased, desorption from the soil par-
ticles in the unsaturated zone and mobilization of residual contamination will act as
a continuing source. Migration away from the source area will follow the groundwater

flow field, with the contaminant undergoing sorption and biodegradation.

Figure 4-2 shows the dominant migration pathways from the initial release of AV-
GAS onto the surface. The initial partitioning of AVGAS is between dissolved and
pure product, both of which enter the soil. This partitioning will depend on the
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amount of water added by the firefighters. The flow through the unsaturated zone is
then a three-phase flow with continuous exchange of contaminant between soil, water,
pure product and vapour. Contaminant will reach the water table in two ways: ei-
ther as an aqueous solution, which enters the groundwater directly, or as pure product

which slowly dissolves into the groundwater.

The greatest hazard to downgradient water supplies is presented by the constituents
which migrate through the unsaturated zone in an aqueous solution,and therefore
enter the groundwater directly. These will be the more soluble constituents. As
we saw in Chapter 3, the most soluble constituent that is not a gas at atmospheric
temperature (and therefore is not lost by evaporation) is benzene. Consideration of
the extent of the benzene plume will thus reveal the furthest extent of contaminant
from the source area. The most likely migration pathway of benzene is shown by
the bold lines on Figure 4-2. It is thought that all the benzene in the AVGAS is
completely dissolved at the surface due to its high solubility. Thus it enters the soil
as an aqueous solution. Uncertainties arise at every stage of its migration. However,
the uncertainty in its migration once it reaches the groundwater can be reduced to
three factors: the strength and duration of the source of benzene at the water table,
which will be determined by its migration through the unsaturated zone; the rate at
which biodegradation occurs; and the amount by which it undergoes sorption out of

the groundwater. These three factors will determine the extent of the benzene plume.
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Chapter 5

Numerical Models

The governing equations of groundwater flow, and of contaminant transport are
formulated by considering the conservation of mass, along with constitutive relation-
ships such a Darcy’s and Fick’s laws. The classical groundwater flow equation may

be written as

s, oh 0 [Ki oh

o aX, ]a—)&—J] + f(Xi,t) (5.1)

where the piezometric head, A, is the dependent variable, and the specific storage
S and hydraulic conductivity tensor K are coefficients which describe the aquifer’s
capacity to store and conduct water. The function f(X;,t) accounts for point singu-

larities, such as pumping from a well.

Contaminant transport can be described by the Advection-Dispersion-Reaction

(ADR) Equation, which can be written as

oc  ,oC _ 0 |, 9, (5.2)
ot " Yax; _ ox; |MVax;| T ‘

where 7 is taken symbolically as the mass produced (or consumed) per unit volume of
water per unit time, C is the solute concentration, « is the dispersivity coefficient, and
v is the local flow velocity. If the only processes contributing to the production term,

r, are sorption and biodegradation, and if we model biodegradation by a first-order
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model, this equation becomes

8C v 8C a[ vac}_@ 5.9

o " RoX, oxX,|*Rox;| R
where R is the retardation factor due to sorption, and k is the first-order decay

coefficient.

For some simple scenarios these equations can be solved analytically, however most
situations are too complex to take this approach, and we must look to a numerical
solution. The general motivation behind a model is to approximated the continuous
solution of a given differential equation by solving algebraic equations for a finite
number of discrete values of the solution. The basic idea underlying most groundwa-
ter models is to split the region under consideration into a finite number of discrete
sub-regions (elements) and write local equations for flux in terms of the dependent
variable (head for groundwater flow, and conconcentration for contaminant transport)
at selected points (nodes) on the boundary of the element by making some assump-
tions about the variation of the variable across the element. One of two methods can
be used to formulate these local equations, either a Finite Difference method, or a
Finite Element method. These local equations can then be solve simultaneously to
yield values of the dependent variable at each node. This process can be repeated
for each timestep in a transient problem. The inputs to this type of model will be
the boundary conditions, the parameters of the governing equations and some “initial

guess” of the distribution of the dependent variable.

5.1 Dynflow, Dyntrack and Dynplot

This study uses the DYN modelling system to develop a model of the contaminant
transport from the FS-1 source area. This system consists of three components,
Dynflow, Dyntrack and Dynplot. Dynflow is a three-dimensional flow code based on
the governing equations of flow in a porous media, Dyntrack provides a simulation

of three-dimensional contaminant transport driven by the flow field generated by
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Dynflow, and Dynplot is an interactive visualization tool used in both model creation

and to view the results generated by Dynflow and Dynplot.

Dynflow uses the finite element method to solve the groundwater flow equations.
This method is seen to be preferable to the finite difference method since the element
geometry is more flexible and hence it enables us to cope with irregular boundary
geometries. However, this method can prove to be more complicated to apply, and

requires more sophisticated grid generation capacity.

Dyntrack does not solve the governing equations of contaminant transport directly,
but rather utilizes the “Random Walk” method, which follows discrete amounts of
contaminant mass as they move through the aquifer. This Lagrangian method consid-
ers a statistically significant number of particles injected into the groundwater, each
with an associated weight, decay rate, and retardation rate. At each timestep the
translation of a particle has two components. The first component is deterministic,
and simulates the advection of the particle as driven by the groundwater flow field.
If the particle is retarded, this factor is included into the deterministic translation.
The second component is probabilistic, and simulates the dispersion of the particles.
The weight of the particle is also decreased over the timestep if biodegradation is

occurring. The weight of the particle at the end of the timestep is given by

Wit+sty = Wiezp(—kdt) (5.4)

where 6t is the length of the timestep. The probability density function for the
location of a particle yields the concentration distribution. At any time, the concen-
tration in a given element can be calculated by summing the mass of all the particles

in that element and dividing by the volume of the element.

The advantages of using this particle tracking method over the more traditional
Eulerian methods are that the solution is stable, there is no numerical dispersion,

and no “overshoot” (negative concentrations) can occur. Above all it is often a much
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quicker method since there is no large system of equations to solve, and coarser
discretization in space is allowed. It does, however, have two disadvantages in that
it does not solve for concentrations directly, and that there are no “hard” criteria
to select the number of particles used to model a particular plume. The number of
particles must be selected by a trial and error method and relies upon the experience

of the modeller.

5.2 Model Parameters

The success of a model depends largely on the selection of suitable values for the
parameters introduced in the governing equations. These parameters vary over scales
smaller than those considered in a typical groundwater flow problem. It is, however,
impossible to fully characterize this small-scale variability of the parameters and hence
we use regionalised effective parameters{17]. This method accounts for large-scale
spatial variations by separating the region under consideration into smaller regions of

constant effective parameters which average out the effects of local variability.
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Chapter 6

Model of FS-1

6.1 Conceptual Model

Prior to developing the numerical model of transport of AVGAS within the sat-
urated zone, it is helpful to consider a conceptual model of the processes that are
occuring. This section outlines the conceptual model of both the flow field and
the contaminant migration, developed from the discussion of aquifer characteristics,
chemicals of concern, history of the spill, and migration of the contaminant from the
surface discussed in Chapters 2 through 4. In particular, it is necessary to determine
the migration pathway of the constituents to be modelled, in order to quantify the

source strength of these constituents at the water table.

6.1.1 Flow Field

Extensive field investigation of the western part of Cape Cod led to the interpretive
water table profile presented in Figure 2-4. This study will refer to this map, rather
than the original field data, in its assessment of the flow field. This is judged to be
more accurate than using a small subset of the data that this map was created from.

Consideration of the full data set is beyond the scope of this study.

From Figure 2-4 we see flow is predominantly north to south in the area of FS-1.

The average head gradient for the region of interest is approximately 0.0025. Most
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contaminant transport will take pace in the layer of stratified fine to coarse sand and
gravel which extends to 120ft below the ground surface. Taking the representative
hydraulic conductivity for this material to be 200ft/day, and an effective porosity of

0.35, the pore velocity would be 1.43ft/day.

Flow within the aquifer is predominantly horizontal, apart from in the vicinity of
surface water bodies. The surface water of interest in this particular case is the Quash-
net River. This stream is primarily groundwater fed and so we would expect upward
head gradients in the aquifer near the stream, producing a discharge of groundwater
into the stream. Since the stream is fairly shallow, it is expected that discharge will
only occur from the upper part of the aquifer, whilst the deeper groundwater under-
flows the stream and continues downgradient. The magnitude of the discharge from
the aquifer along the length of the stream can be inferred from the plot of stream-
flow at various points along the stream (Figure 6-1[1]). The total discharge from the

aquifer into the stream is between 11.3cfs and 15.8cfs.

6.1.2 Contaminant Migration

The fate and transport of AVGAS away from the FS-1 source area was discussed
in Chapter 4. We saw that there are several potential migration pathways, and the
partitioning between these is complex. It was concluded that the greatest threat to
the downgradient water supplies came from the more soluble constituents of AVGAS.
These will have either been dissolved on the surface by the water added by the
firefighters, or will be quickly dissolved at the groundwater interface. This study will
thus consider the migration of the most soluble constituent (after those which are
gases at atmospheric temperature) of AVGAS, that is, benzene. Various hypotheses
concerning the uncertain properties which determine the migration of the benzene,
as outlined in Section 4.3, are considered. Toluene is also modelled, since several
detections of toluene were made at FS-1 allowing us to fully characterize the extent

of the toluene plume. This will enable us to verify the model.
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Figure 6-1: Streamflow measured at selected sites along the Quashnet River. 1990-91
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The primary source area was determined in Section 3.2 to be the Western Aircraft
Turnaround. The most logical case scenario for the testing procedure, described in
Section 4.1, estimated that approximately 112.5 gallons were spilled at this site each
day for the period between 1955 and 1957. Benzene constitutes on average 0.5% by
weight of this amount, hence the mass of benzene released is 1.6kg/day. The dumped

AVGAS was promptly washed off the asphalt by attendant firefighters.

As discussed in Chapter 4, contaminant will enter the unsaturated zone in both
the aqueous and non-aqueous phases. It is possible that benzene will occur in both
these phases. However, due to its relatively high solubility, for the purposes of this
study it is assumed that the benzene is completely dissolved at the surface. The
benzene will thus migrate downwards at the velocity of the infiltrating water. Since
this is a three-phase flow situation, the rate of infiltration will depend on the relative
saturation of each of the three phases: water, pure product, and air. Transport
downwards is driven by gravity and the vertical gradient of tension head, for each
phase. However, since the testing occurred continuously over a long period of time,
we can conclude that these relative saturations will reach a steady state where they
are constant throughout the unsaturated zone beneath the area of impact. In this
case the infiltration is driven purely by gravity. Hence, vertical flux of water, quqzer

is given by

Quater = K(Swater) (61)

The recharge rate, q, is taken as constant and is determined by the amount of water
the firefighting crews used to wash the AVGAS off the turnaround. This was estimated
in Section 4.2.1 to be in the region of 10,000 gallons/day. Hence the recharge rate, q,
is approximately 0.059ft/day, which yields the value of K(syater) to be 0.059ft/day
also. In order to estimate the infiltration velocity of the water, we need to determine
the relative saturation of water, syqer-. One possibility is to use our calculated value
for the conductivity, K, which is dependent on syqter, along with known relationships

of conductivity versus saturation for three-phase problems. However, in this case, we
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know that the relative saturation of pure product to water is likely to be small, due
to the respective volumes of each of these released at the surface (the volume of water
entering soil is 10,000 gallons/day, whereas pure product entering the soil would be
less than 112.5 gal/day). Thus as a first approximation we ignore the presence of the
pure product, and consider only a two-phase situation (see Appendix C). This would
imply that the relative saturation of water is 20%. Hence the infiltration velocity of

the water (g/n.s) is 0.84ft/day.

As the benzene travels through the unsaturated zone it may undergo sorption to
the organic carbon in the soil particles. This would act to retard the migration of
the benzene, with the apparent velocity being given by velocity/retardation factor.
As discussed in Section 4.2.2, a state will be reached where no further sorption is
possible. When this case has been reached, benzene will migrate at the velocity of
the infiltrating water, that is, 0.84ft/day. Hence the benzene will take 60 days to
reach the water table. This delay time for transport through the unsaturated zone is
small compared to the total time period being considered (1955 to present day) and

so can be neglected.

As previously discussed, this estimate of travel time assumed that the effect of the
pure product was negligible. The effect of the pure product would be to increase the
travel time. It is likely that, even if this were taken into consideration, the travel
time would continue to be small compared to the total time period being considered.

Hence it is not necessary to quantify this effect.

As benzene migrates to the water table, it will be biodegraded by any microor-
ganisms present in the water. This will reduce the mass of benzene which arrives
at the water table. The range of biodegradation rates of benzene found in litera-
ture are given in Chapter 3. Taking a relatively conservative biodegradation rate of
0.001day ™!, the mass loss in the unsaturated zone would be 100g/day. Hence the

magnitude of the benzene source at the water table is 1500g/day.

51



Once the contaminant has reached the water table it is transported away from the
source area by the groundwater flow in the aquifer. It is assumed to be a passive
source, that is it does not alter the existing groundwater flow pattern. As it migrates,
it will again undergo both sorption and biodegradation. Using the retardation factor
for benzene given in Chapter 3, the apparent velocity, and hence the farthest down-
gradient extent of benzene can be estimated. The pore velocity of the groundwater
was found in Section 6.1 to be approximately 1.43ft/day, hence the apparent velocity
of the benzene is calculate as 1.35ft/day. Hence the farthest possible downgradient
extent of the plume would be around 19,000ft.

6.2 Model Development

6.2.1 Discretization

In order to carry out the Finite Element analysis, we first need to generate a three-
dimensional grid to define the nodes to be considered. The horizontal grid used in the
numerical simulations is shown in Figure 6-2. The extent of the grid was determined
by physical features which provided convenient boundaries. The vertical discretization
is determined by the choice of stratigraphy. Due to the absence of any borings deep
enough to capture the stratigraphy in the vicinity of FS-1, a uniform stratigraphy
was assumed. This is consistent with the cross-sections of the aquifer presented in
the Groundwater Remediation Strategy Report[2]. The east end of cross-section BB’
(Figure 2-3) was used to determine the elevations of the five layers used. Details of

the model stratigraphy can be found in Table 6.1.

6.2.2 Flow Simulation

DYNFLOW was used to simulated the flow field in the area surrounding FS-1. The
aim was to reproduce observed heads measured in the aquifer, and particular to
reproduce the interpretive water table profile of Figure 2-4. The results were also

calibrated to the known discharges into the Quashnet River. Since the flow field
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Layer Elevation | Soil description
(ft. MSL)
Layer 1 | -220 to -200 | Basal Till

Layer 2 | -200 to -150 | Fine to Medium Sand, Trace Silt

Layer 3 | -150 to -70 | Find Sand with Silt (Lacustrine)

Layer 4 | -70 to-10 | Fine to Medium Sand, Trace Silt

Layer 5 | -10 to 108.3 | Stratified Fine to Coarse Sand and Gravel

Table 6.1: Model Stratigraphy

produced will be used in the simulation of contaminant transport over a long period
of time, a steady state simulation was performed, that is heads are invariant with

time.

Boundary Conditions

The boundary conditions for the flow simulation were fixed such that the pattern of
head contours of Figure 2-4 was reproduced. The northern part of the west boundary
is a no flow boundary taken perpendicular to the head contours of the interpretive
map of the groundwater surface. The southern part of this boundary is taken as a
fixed head defined by Johns Pond and the Childs River. The east boundary is taken
as a fixed head defined by the Mashpee Pond and River. The south boundary was
chosen to coincide with a head contour, and is taken as a fixed head. The nodes on the
north boundary are defined as fixed heads to reproduce the pattern of head contours
predicted by the Figure 2-4. In reality, neither the north, nor south boundary would
truly behave as a fixed head boundary, however they are positioned far enough up

and down gradient from the area of interest for this inaccuracy to not be apparent.

The Quashnet River, which flows initially east out of Johns Pond, and then south,
also imposes a boundary on the flow field. It is included in the model as a fixed head
boundary, with the heads being determined from the USGS topographic map of the

area.
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Layer | Groundwater Flow Properties || Transport Properties

KI Ky Kz Ne ay, ar a

ft/day | ft/day | ft/day ft ft
1 1 1 0.2 0.35 || 3.15 | 0.06 0.1
2 150 150 30 0.35 ]| 3.15 { 0.06 0.1
3 3 3 0.6 |0.35]| 3.15]0.06 0.1
4 150 150 30 0.35 || 3.15 | 0.06 0.1
5 200 200 40 0.35 || 3.15 | 0.06 0.1

Table 6.2: Flow and Transport Properties

Input Parameters

The parameters required by DYNFLOW in the flow simulation are the hydraulic
conductivities in each direction for each layer, the effective porosity of the material,
and the recharge due to precipitation. The specific storage is not required since we
desire a steady state solution. Due to the limited amount of field data, values of
hydraulic conductivity typical to the region were used. These values will then be
verified in the calibration part of model development. All the layers were assumed
to be isotropic in the horizontal direction, and a vertical anisotropy ratio of 1:5 was
used.

The parameters used for each layer of the model are detailed in Table 6.2, where
K,;, Ky, and K, are the hydraulic conductivity in the two horizontal directions
and the vertical direction, and 7, is the effective porosity. A constant recharge of

0.0046ft /day was used, consistent with the climate of the region.

Calibration

The flow model was calibrated in two ways. First, boundary conditions were ad-
justed such that the water table profile of the model coincided with that predicted
by the interpretive map. Secondly, the discharge from the aquifer into the Quashnet
River was checked against the field data of stream discharge with distance from the
streams head at Johns Pond. This second method of calibration will verify both the

choice of hydraulic conductivity for the most superficial layer, and also the fixed heads
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Distance Measured Model Predicted
Downstream From Increase in Discharge Increase
Johns Pond (cfs) in Discharge
(miles) 5/10/90 | 11/2/90 | 2/22/90 | 7/17/91 (cfs)

0.1 to 0.7 6.2 6.6 4.3 3.6 4.38

0.7 to 2.8 5.4 4.3 3.8 3.6 6.63

2.8 to 3.0 0.7 1.2 0.7 0.8 1.16

3.0 to 3.5 2.8 14 24 2.0 0.95

Table 6.3: Measured and Model Predicted Discharge into the Quashnet River with
Distance Downstream from Johns Pond

at the river.

Results

The piezometric head contours produced are shown in Figure 6-3. A good match
with the interpretive water table contours of Figure 2-4 was obtained. The head
distribution produced is uniform with depth of the aquifer, except in the vicinity of
the Quashnet River, as seen in Figure 6-4. The total discharge into the Quashnet
River predicted by the model is 13.1cfs. This is within the range of that inferred from
the field data. The comparison of the discharge into the river predicted by the model
to that measured in the four rounds of field investigations is detailed in Table 6.3.
Here it becomes apparent that the model does not accurately reproduce the measured
discharge into the stream when we consider it section by section. However it should
be noted that calculation of the model predicted discharge is highly dependent on
the node positions, and so the margin of error in these quantities is considered to be

acceptable.

6.2.3 Contaminant Transport Simulation
Model Inputs

As discussed in the conceptual model, the contaminant transport model will ini-

tially be run for toluene, adopting a most logical case scenario. The model will then
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RUN | Compound | Source | Continuing Source | Retardation | Biodegradation
Strength Decay Rate Factor Rate
g/day day™! day™!
1 Toluene 973 NONE 1.16 0.025
2 Benzene 1500 NONE 1.06 0.001
8 Benzene 1000 4x 1073 1.06 0.001
4 Benzene 1600 NONE 1.06 0
5 Benzene 1185 NONE 1.06 0.005
6 Benzene 1500 NONE 1 0.001

Table 6.4: Inputs to Contaminant Transport Model

be run for benzene for various scenarios, in order to investigate some of the factors

over which there is uncertainty.

The model requires various input parameters, relating to both the transport prop-
erties of the aquifer, and of the compound in question. These parameters are: dis-
persion in the longitudinal and transverse directions (o and ar), and an estimate of
the vertical anisotropy ratio (a); source strength; decay rate of any continuing source;
biodegradation rate of the compound; and retardation factor for the compound. The
parameters relating to the transport properties of the aquifer are given in Table 6.2.
These values for dispersivities are those obtained from the large scale field experi-
ment conducted in this aquifer[14], and are so the uncertainty associated with this

parameter is low. Table 6.4 details the inputs used for the various runs of the model.

Results

Figure 6-5 shows the model results for toluene. The plume is predicted to extend
approximately 300ft downgradient. The results show that the plume is confined near
to the source area. This is due to the high degree of sorption and biodegradation that

toluene is believed to undergo.

Figures 6-6 through 6-10 show the results for the various scenarios considered for

benzene. The results are shown in plan view, with the shaded contours indicating the
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concentration at the water table, and the open contours indicating the concentrations
at level 5 (approximately 70ft below the water table). These results will be discussed
in more detail in Chapter 7. Run 2 was considered the most logical case scenario,
with retardation of the benzene, moderate biodegradation and no continuing source.
The results from run 6, which considered the case of no biodegradation, also indicates

the direction any detatched undegraded “slugs” of benzene may have migrated.
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Chapter 7

Assessment of Model Results

7.1 Toluene

The large number of detections of toluene at FS-1 allow us to use this constituent
to verifv the model. As seen in the presentation of the results (Section 6.2.3) the
scenario considered as the most logical case produced a plume of toluene extending
300ft downgradient of the source, and having a peak concentration of 2166pg/¢. Field
investigations found the maximum extent of toluene to be 200ft with the peak con-
centration detected being 2500ug/¢. Thus our model shows a great deal of agreement

with the observed distributions.

It should be noted that a similar distribution could be obtained with differing
estimates of the source strength and biodegradation rate (an increased biodegradation
rate would reduce an increased source strength to a similar distribution). The only
way to truly verify the relative magnitudes of these two factors would be to monitor
the concentrations of toluene over time. Since we can assume that there is no longer
any addition of mass to the plume (toluene was not found in the capillary fringe),

this would yield a direct estimate of the biodegradation rate.
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7.2 Benzene

The results for benzene reveal the relative importance of the factors which deter-
mine its migration from the source. The best way to compare the effect of each of
these parameters is to view the plume in cross-section. The following discusses each

of the uncertainties associated with the migration of benzene in turn.

Continuing Source

One area of uncertainty in determining the extent of benzene from the source
area, was the possibility that not all the benzene entered the groundwater during the
same period as testing occurred, but that some acted as a continuing source after
testing ceased. One mechanism which would cause a continuing source would be the
desorption of benzene that had previously been sorped to the soil particles in the
unsaturated zone. Alternatively there is the possibility that some benzene reached
the water table as pure product, and hence its entry to the groundwater was delayed.

This was judged not to be the case in the conceptual model.

Figure 7-1 shows the model predictions of the plume distribution with and without
the assumption of a continuing source. The continuing source hypothesis assumed
that the entry of approximately one third of the benzene arriving at the groundwater
was delayed by the mechanisms described above. This is considered to be an extreme
case. The results presented assume a retardation factor of 1.06 and a biodegradation
rate of 0.001. The results showed only a small difference between the two scenarios,
with the extent of the plume being marginally reduced by the presence of the contin-

uing source. The peak concentration in the plume was also reduced from 25ug/¢ to

18ug/t.

Biodegradation

It is thought that some biodegradation of the plume is occuring. This is indicated

by the reduced dissolved oxygen levels along the plumes axis. However, the specific
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rate of biodegradation of benzene in this aquifer is not known. It is also thought
that this rate may not be constant in time and space. Therefore it is important to

understand the consequences of various biodegradation rates.

Figure 7-2 shows the extent of the benzene plume assuming various rates of biodegra-
dation. The cases of no biodegradation occuring, and a fast degradation rate of
0.005day~! are compared with a more conservative estimate of 0.001day~!. All these
cases are for a retardation factor of 1.06 and assume that there is no continuing source.
It is clearly shown that process of biodegradation is of considerable importance in de-
termining the extent of the plume. With a fast biodegradation rate the plume would
extend only 1500ft downgradient, whereas with a slightly slower rate the plume would
extend 6200ft downgradient. The case of no biodegradation is of particular concern,
since we see that the plume would migrate 14,200ft downgradient. Furthermore, the
Quashnet River has the effect of re-converging this plume, such that an area of high
concentrations is created 10,000ft downgradient from the source. Some of the plume
will discharge into the Quashnet River, while the rest will be diverted along its di-
rection of flow, but remain in the groundwater. Thus the hazard for downgradient

water supplies is high.

Retardation

It is thought that, although the organic carbon content of the soil is low, there
~will still be some retardation of the benzene plume due to sorption. However, due to
the relatively high solubility of benzene this will be a minor factor in determining the
extent of the plume. This is shown in Figure 7-3, in which the extent of the plume with
and without retardation is compared. Both of these cases assume a biodegradation
rate of 0.001day~!, and no continuing source. The figure shows that the effect of
retardation would be to reduce the current extent of the plume by less than 100ft.

This is a relatively small effect, as anticipated.
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Chapter 8

Conclusions

8.1 Plume Characterization

The fate and transport of aviation gasoline from such a release as occurred at the
FS-1 site depends on many factors. Chapter 4 discussed these factors, and qual-
itatively assessed the dominant routes of migration from this site. This chapter
concluded that the initial hazard to downgradient water supplies would come from
the more soluble constituents of AVGAS, and in particular, benzene. Benzene is
thought to be almost entirely dissolved by the water added by the firefighters to
prevent evaporation, and thus be transported through the unsaturated zone as an
aqueous solution. It will therefore contaminate the groundwater immediately on ar-
rival at the water table. It was suggested that three factors determine the current

extent of the benzene plume:

1. The source strength at the water table, and whether a continuing source existed

after testing ceased.
2. The rate at which biodegradation has been occuring.

3. The sorption of the contaminant to the soil matrix.

The magnitude of each of these factors is unknown.
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The relative importance of each of these factors was assessed using the computer
model developed for the site in Chapter 6. The model was used to predict the extent
of the plume for various biodegradation rates, with and without sorption, and for
two possible source scenarios. The results were then compared in Chapter 7. A
continuing source scenario caused the extent of the plume to be marginally reduced,
and the peak concentration in the plume to be reduced from 25ug/¢ to 18ug/¢. The
effect of sorption would be to retard the migration of the contaminant. It was seen
that with sorption the extent of the plume was reduced by less than 100ft. The
consequences of different assumptions of the rate of biodegradation were much more
marked. The model was run for three different assumptions of the biodegradation
rate: k = 0.005, k = 0.001, and no biodegradation (k = 0). The extent of the plume

from the source area was seen to range from only 1500ft up to 14,200ft downgradient.

Hence, neither the assumptions concerning the source, nor the sorption of benzene,
significantly affected the predicted contaminant distribution. Of the three factors
considered, biodegradation appears to be the dominant factor in controlling the
extent of the plume. Variation of the biodegradation rate by relatively small amounts
resulted in vastly differing predictions of the current distribution of contaminant. In
particular, in the case of no biodegradation occuring we saw that the plume would be
converged by the Quashnet River, and some contaminant would discharge into this
stream. High concentrations of benzene were predicted in the vicinity of the stream.
Thus biodegradation is the process that we need to investigate in order to determine

the hazard to downgradient water supplies from benzene.

The rate of biodegradation occuring will be dependent not only on the concentration
of the contaminant, but also on the local conditions of the aquifer. It will be dependent
on the availability of oxygen, and also on the presence of suitable microorganisms.
Thus it is aquifer specific. Hence the most accurate method of determining this
rate would be to undertake further field investigations to assess the concentration

distribution of benzene, and compare these results to those predicted by the model
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for various biodegradation rates. This would be possible with further characterization
of the plume near the source area. However, the effect of different biodegradation
rates is not so pronounced here. A more accurate method would be to determine the
maximum extent of the plume. This is seen to be the most obvious feature related

to the biodegradation rate.

Hence, we conclude that:

1. The initial hazard to downgradient water supplies comes from the benzene

present in the AVGAS.
2. The factor determining the extent of the benzene plume is biodegradation.

3. The rate of biodegradation of benzene is best assessed by determining the extent

of the plume by field investigation.

8.2 Usefulness of a Modelling Approach

The previous section has suggested that to determine the extent of the plume we
need to quantify the biodegradation occuring, and that the most accurate method
to do this is to determine the extent of the plume by field investigation. This would
appear to negate the usefulness of developing a model for the site. However, this

study has highlighted various benefits of such a model.

1. The computer model enabled us to quantatively examine each of our assump-
tions concerning the migration of a particular contaminant from the source.
This in turn aided us in assessing the relative importance of these assumptions,
and help indicate which parameter required further investigation. This would

not be possible from a purely intuitive approach.

2. The model also enabled us to predict the distribution of contaminant under
each set of assumptions. This will help direct future field investigations. Results

from these field investigations can then be fed back into the model to help assess
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some of the sources of uncertainty. This will further our understanding of the
processes occuring at the specific site, and enable consideration of the potential

risk associated with the contamination.

Hence this study has shown us that a computer model, such as the one developed,
has limited application unless in is developed in conjunction with field investigation
of the site. However, it can be a powerful tool when used concurrently with ongoing
field investigations. Each of these two processes can be used to drive the other.
In the particular case study considered, the model developed can direct future field
investigations, which in turn can be used to calibrate the model and allow us to assess
the biodegradation rate. This calibrated model can then be used to predict the future
behaviour of the plume, and hence the to determine the potential hazards associated
with it. Ongoing monitoring of concentration levels can be used to continuously verify

the model.

8.3 Recommendations

The conclusions from this modelling study allow us to make certain tentative rec-
ommendations concerning future investigation of this site. It should be recognized
that the model does not provide exact predictions of the plume distribution, but
rather explores the effect of various scenarios. The results suggest that the distribu-
tion of benzene detected in previous site investigations is not fully characteristic of the
benzene plume emanating from the FS-1 Study Area. The results imply that further
field investigation is necessary to determine the current extent of contamination. The
model can potentially be used to help direct these investigations. It appears that the
issue of immediate importance is the determination of whether contaminant has been
discharging into the Quashnet River. This is predicted by the model in the situation
where no biodegradation of the benzene is occurring in the aquifer. In this case,
the stream also has the effect of converging the plume such that high concentrations

would be present in the groundwater immediately underneath the stream. This would
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be extremely hazardous to the downgradient water supplies.

If this proves not to be the case, then the results would suggest that investigations
should be directed towards assessing the downgradient extent of the plume. Downgra-
dient wells should extend deep enough into the aquifer (at least 100ft below ground
surface), since the model results show us that the plume will sink significantly within
the aquifer. Once the extent of the plume has been determined, the model could be
used to predict the biodegradation rate, and the future hazards associated with the

plume.
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Appendix A

Observed Distributions
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Figure A-4: Interpretive Downgradient Groundwater Analvtical Resultys, FS-1 Study

Area
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Figure A-5: Interpretive Dissolved BTEX Impact Zone, FS-1 Study Area
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Figure A-6: FS-1 Interpretive Groundwater Contamination Profile
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Appendix B

Estimation Methods

This appendix details the estimation methods used to obtain values of the chem-
ical properties of the constituents of AVGAS listed in Table 3.1 in the cases where

experimental data was not available.

B.1 Vapour Pressure

The vapour pressure is defined as the pressure of the vapour of a compound at
equilibrium with its pure condensed phase, be it liquid or solid. It can be estimated
from the normal boiling point of the compound as outlined by Scharzenbach et al.[19].
For an organic compound the vapour pressure, p°, at temperature T, is related to its
boiling point, T3, by the following equation.

Ty

o Ty )
InP° = 19 (1 T) +85 (lnT> (B.1)

In which p° is in atmospheres, and both T and T} are in Kelvin.

B.2 Aqueous Solubility

The aqueous solubility is defined as the abundance of the chemical per unit volume
in the aqueous phase when the solution is in equilibrium with the pure compound in

its actual aggragation state (gas, liquid, solid) at a specified temperature and pressure.
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Since both K,, and solubility depend on the structure of the chemical, it is possible
to relate these two properties. Varies empirical relationships have been derived each

relating to different groups of organic chemicals. They are all of the form:

logK s, = —alogC2*(1,L) + b (B.2)

The regression constants, a and b, will depend on which particular group this

analysis is performed for.

This is commonly used as a method of estimating K, given experimental data for
the solubility. However for many of the constituents of AVGAS experimental data
is not available for either. The approach taken in this study was to estimate K,,
using method below, and then to use these relationships to determine the solubil-
ity. It should be noted that this dependence on estimation methods to determine
these quantities will result in the accruing of errors, leading to a fairly inaccurate re-
sult. However, this very approximate value will be sufficient to compare the relative

behaviour of each of the constituents.

The regression constants for the estimation equation for the groups of compounds

found in AVGAS are given in Table B.1.

Set of Compounds a b
Alkanes 0.81 | -0.20
Substituted benzenes | 0.86 | 0.75

Table B.1: Regression Constants for Linear Free-Energy Relationships Between
Octanol-Water Partition Constants and Aqueous Solubilities for Sets of Compounds
Found in AVGAS.
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B.3 Henry’s Law Constant

The Henry’s Law Constant, Ky, can be thought of as the ratio of a compound’s
abundance in the gas phase to that in the aqueous phase at equilibrium. If the
vapour pressure and the solubility of a particular compound are known (or have been

estimated), the Henry’s Law Constant can be estimated as

Pi P°
Ky=—~ B.3
=, Cset (B:3)

where p; is the partial pressure of the compound in air which is in equilibrium
with an aqueous concentration of the compound, C,,. This method of estimating the
Henry’s Law Constant assumes that Ky remains relatively constant with concentra-

tion.

B.4 Octanol-Water Partition Coefficient

The Octanol-Water Partition Coefficient of a compound can be estimated by con-
sidering its chemical structure. This methods attempts to express the free energy
of transfer of a compound in the octanol-water system as the sum of free-energy

contributions of the different parts of the molecule. Consequently, we have,

logKpy =Y fi+ Y F; (B.4)
i J

where f; values quantify the contributions arising from each building block i in
the chemical, and F} values account for any special ‘ntramolecular attraction. These
intramolecular interactions arise from the particular structure of a given compound,
and can be due to a number of factors, both geometric and electronic. Geometric
factors include effects caused by the existence of unsaturated bonds, flexing of the
molecule and branching. Electronic factors include the effect of polyhalogenation and

intramolecular hydrogen bonding.
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For more complex chemicals, it is possible to employ known logK,, values for

closely related compounds. Thus K,, can be estimated from

l0gKow(new) = logKpp(old) — Y. f+ > f— Y F+ ) F (B.5)

removed added removed added

Table B.2 gives the fragment constants necessary to estimate logK,,, and Table

B.3 gives the Intramolecular Interaction Factors.

Fragment f | f°

-C- 0.20 | 0.20
I

-H 0.23 ) 0.23
—CHj; 0.89 | 0.89

Table B.2: Fragment Constants Used in Estimation of logK,,. Note : The superscript
¢ indicates constant for substituents bonded to aromatic carbons.

Structural Feature Symbol | F Value

Skeletal Arrangement

Long-chain flexing Fu | (n-1)(-0.12)
Ring flexing F, (n-1)(-0.09)
Nonpolar chain branch | F, (-0.13)

Table B.3: Intramolecular Interaction Factors Used in Estimation of log K,
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Appendix C

Calculations

C.1 AVGAS released during testing

Most Logical Case Scenario Assume valves are left open a full 30 seconds with

all fuel being spilled directly on the pavement for one aircraft every day for 12 years.

13yrs x 365days = 4,745
6valves x 18.75gal/30sec = 112.5gal
4,745 x 112.5gal = 533, 800gallonsspilled

C.2 Evaporation of Spill

A rough estimation of the time it would take the entire slick to evaporate can be
made using a thin film model[11]. Such a model would predict that the evaporative

flux, J, is related to the chemical concentration in the air by the equation

J=v-C, (C.1)

where v is the piston velocity. The concentration of the chemical in the air can

be determine from its vapour pressure:

_r
C, = RT(MW) (C.2)
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where p° is the vapour pressure of the chemical, R is the universal gas constant,
T is absolute temperature, and MW is the molecular weight of the chemical. The

piston velocity can be approximated by the following equation

v(em/hr) = 1100v,(m/sec) (C.3)

where v,, is the wind speed.

So for the case of the aviation gasoline spilled at FS-1:

Vapour pressure of AVGAS, p° = 20mmHg = 0.0264atm.[13]
Average molecular weight MW = 165.4g/mol
Hence, at 20°C, J = 0.604g/cm?hr

Volume of spill = 112.5gallons = 15.04f13
Assuming spill thickness = 0.25in, area of slick = 722>

Rate of mass loss = 6, 754g/min

Mass of spill = 319,397¢

Time for entire slick to evaporate = 47.3minutes

C.3 Dissolved Fraction of AVGAS

A standard firefighting hose delivers water at the rate of 250 gallons/min (courtesy
of the Somerville Fire Department). Assuming four hoses were used for a period of

10 minutes, 10,000 gallons of water would be added to the area.

Solubility of AVGAS = 300mg/£[13]
Mass of AVGAS dissolved = 11, 3569

C.4 Source Area Recharge Rate
Assume area of impact = 1502 ft?
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Figure C-1: Water relative permeability vs. Saturation for a Sandy Soil[18]

Recharge Rate, ¢ = 0.059ft/day
Hence relative permeabilty, &k, = %g—; =2.95x 1074

From Figure C-1, water saturation s = 20%

C.5 Sources at Water Table

Mass of AVGAS released per day = 319, 397¢g

Time to reach water table = 60days

Toluene

1.33% by weight, mass of toluene released per day = 4,248g/day
Assuming biodegradation rate of 0.025day™?,
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mass of toluene reaching water table = 948¢g/day

Benzene

0.5% by weight, mass of toluene released per day = 1,597¢g/day
Mass of benzene reaching water table = 1,597ezp(—60k)

Continuing Source Conservation of mass, and source completion at current time

were assumed. In this case,

Q

(1 — e 26:360%k"y 1 134360 % Q, = 13 % 360 * Q (C.4)
kl

where Q,, magnitude of constant source at the water table between 1955 and 1967
is assumed to be 2/3 of Q, mass of compound released on the surface. The magnitude

of the decay constant, k' was found to be 4.2 x 107%.
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