
A Time and Space Sharing Scheduler

for Multiuser Parallel Machines

by

Geoffrey R. Gustafson
S.B., Computer Science and Engineering (1995)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

© Geoffrey R. Gustafson, MCMXCVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document

in whole or in part, and to grant others the right to do so.

Signature of Author

Department of Electrical Engineering and Computer Science
May 28, 1996

C ertified by
1Larry Rudolph
Visiting Research Scientist

.1/ Thesis Supervisor

C ertifi ed byArvind

Charles W. and Jennifer C. J4 ns n Professor of Computer Science and Engineering
"1'J .A . Thesis Supervisor

A ccepted by ,.

IFrederic R. Morgenthaler
... •.....r Chairma D artment Committee on Graduate Theses

OJU TC H N9L9G6

JUN 1.1 1996 Eng.

LIBRARiES

A Time and Space Sharing Scheduler for Multiuser Parallel Machines

by

Geoffrey R. Gustafson

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 1996, in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

A scheduler can be written to manage parallel jobs on a collection of processors running
commercial operating systems. The Jump-StarT scheduler written for MIT's StarT archi-
tecture performs this function. The scheduler can accept or decline job requests, based on
available resources and system load. The scheduler uses space sharing to map jobs to sets
of processing elements, and time sharing to manage multiple threads on individual proces-
sors. Thread termination is detected and scheduling is adjusted accordingly. Users interact
with jobs through a local proxy process that provides standard I/O stream connection to
the parallel jobs, and which can be terminated to force job termination.

Thesis Supervisor: Larry Rudolph
Title: Visiting Research Scientist

Thesis Supervisor: Arvind
Title: Charles W. and Jennifer C. Johnson Professor of Computer Science and Engineering

Table of Contents

1 The Jum p-StarT Scheduler .. 11
1.1 M anaging Parallel Jobs .. 11
1.2 Design Objectives .. 12
1.3 Background .. 13
1.4 D ocum ent Overview .. 16

2 The Job M anagem ent System .. 17
2.1 Design Constraints ... 17
2.2 Job Class Scheduling Strategy ... 20
2.3 Job Control System Design..23
2.4 PRUN Program Design..29
2.5 H ost Job M anager Design..30
2.6 N ode Job M anager Design...31

3 The I/O System .. 33
3.1 Providing Standard I/O .. 33
3.2 I/O M odule Design Overview .. 35
3.3 Front End Process .. 38
3.4 H ost I/O M anager .. 41
3.5 N ode I/O M anager ... 43

4 Other D esign Issues ... 47
4.1 Socket Port M anagem ent ... 47
4.2 M odularity..49
4.3 Security .. 50
4.4 M onitoring ... 51
4.5 Error H andling and Fault Tolerance .. 52

5 Conclusion ... 57
5.1 Results..57
5.2 Sum m ary .. 58

A ppendix A Im plem entation Issues...59
A .1 Preventing Race Conditions...59
A .2 Organization of Files..60
A .3 Code Structure and Sim ilarities ... 61

Bibliography ... 65

List of Figures

Figure 1.1: Jump-StarT System .. 15
Figure 2.1: Job M anagement System .. 26
Figure 2.2: Host Strategy Interface...31
Figure 3.1: I/O System .. 37
Figure 3.2: Sample FEP Output..39

List of Tables

T'Fable 2.1: Processor Allocation..27
Table 2.2: Thread/Process Associations...27
Table 2.3: PRUN Command Line Switches ... 29

Chapter 1

The Jump-StarT Scheduler

A flexible, extendable, and efficient time and space sharing scheduler for managing paral-

lel jobs can be built on top of existing operating systems. The design and implementation

of the Jump-StarT scheduler for the StarT-Voyager and StarT-Jr parallel machines sup-

ports this thesis. This chapter introduces the responsibilities of the scheduler, outlines the

goals that motivate the design of the scheduler, examines related work, and provides an

overview of the remainder of the document.

1.1 Managing Parallel Jobs

The scheduler's role in the machine is essentially to manage parallel jobs. This includes

receiving job requests, accepting or declining them, arranging for the execution of the

accepted jobs, and then controlling when each job runs. The scheduler must recognize

when jobs are finished, and provide users with ways to view job status and to force job ter-

mination if necessary.

Certain parameters are specified by the user when submitting a job, such as the num-

ber of processors required by the job. The scheduler uses these parameters to determine

whether or not the new job can be accepted, given the status of the machine and informa-

tion about the jobs that are already scheduled.

Once a job is accepted, the scheduler is responsible for selecting the processors on

which to execute the job. The scheduler selects the processors by considering the load on

the system, and the flexibility provided by time and space sharing.

The parallel machine can be shared in both space and time. Space sharing is accom-

plished by mapping jobs to a subset of processors. It allows small jobs to be spread out

among the available processors. Time sharing allows multiple job threads to run on the

same processor, and is accomplished by switching between the threads at regular intervals.

When jobs are running, the scheduler is responsible for managing the time sharing on

each processor. It directs the attention of each processor to one of its assigned job threads

at a time. The job thread that is currently in control of the processor is the hot thread, and

the other threads are cold threads. The scheduler decides when each thread should become

hot, and how long it should remain hot.

The scheduling of job threads can be either coordinated or uncoordinated. Uncoordi-

nated scheduling is inefficient because hot threads are forced to block when they try to

communicate with cold threads. Gang scheduling is a coordinated method: all the threads

in a job are hot at the same time. Thus, gang scheduling reduces the amount of communi-

cation blocking and improves CPU utilization [7].

1.2 Design Objectives

Several goals must be kept in mind in the design and implementation of the scheduler, in

addition to accomplishing the purposes outlined above. The primary goal in designing the

scheduler is flexibility. This includes making it easy to modify or replace the system's

scheduling strategy. The scheduler code can also be made portable between various ven-

dor-specific Unix operating systems. This is particularly useful in that the scheduler can be

developed before details of the target operating system are known.

Another important goal is to provide an intuitive interface to the parallel machine. A

reasonable model is to make the user interface as much like that of a normal Unix unipro-

cessor system as possible. The Jump-StarT scheduler provides support for standard input,

output, and error streams to support this model. In the StarT systems, normal socket com-

munication and NFS are available to the parallel jobs; no explicit support from the sched-

uler is necessary. To further enhance the familiar interface, each parallel job has an

associated proxy process [11] running on the user's local machine. If this job is terminated

by the user, the parallel job will be terminated as well.

Secondary goals are efficiency and scalability. To support the goal of efficiency, the

parallel machine nodes should spend as little time doing scheduling as possible, so that the

resources can be productive for user computation. Although targeted for a 32-node

machine, the Jump-StarT scheduler was designed to be scalable beyond that level, given

that certain expectations from the operating system could be met.

1.3 Background

Parallel job schedulers have typically been implemented with custom operating systems or

with significant extensions to existing operating systems. The novelty of this thesis is in

suggesting that a scheduler can be built on top of off-the-shelf operating systems.

Jump-StarT is the job scheduler for MIT's StarT-Voyager and StarT-Jr parallel

machines. The StarT-Voyager parallel machine consists of commercial PowerPC 604

microprocessor nodes running AIX, connected by a fast Arctic network [3] for message

passing. A special Network Interface Unit supports very low latency for message passing

and also supports distributed shared memory: both SCOMA and NUMA. The StarT nodes

are also connected to an Ethernet, which can be used for standard TCP/IP communication.

StarT-Voyager has grown out of the StarT-NG project [5]. The StarT-Jr parallel machine is

based on Pentium microprocessor nodes running Linux, and also uses the Arctic network.

Jump-StarT can be compiled for AIX or Linux with no modifications.

1.3.1 System Assumptions

Jump-StarT is designed to run on a parallel machine and a single host machine. The host

acts as the user's gateway to the parallel machine. Standard I/O between the user's

machine and the parallel machine is routed through the host, so a connection to the host is

maintained throughout the entire execution of a parallel job. The host is a single point of

failure for the system, but there is nothing special about the host machine itself. If it fails,

it can be replaced by any Unix workstation. This is unlike the Cray T3D, which must have

a Cray Y-MP to act as a host.

Jump-StarT assumes that each node of the parallel machine is running its own Unix

operating system, so that scheduler modules can run on each node. Each node must have

its own IP address, the basis for communication with the host. Each node must also have a

unique node ID, between 0 and n-1 on a n-processor machine, that can be communicated

to the scheduler modules running on the node.

The Jump-StarT scheduler does not support job migration; each job thread executes to

completion (or forced termination) on its assigned processing element. Some schedulers

allow job threads to migrate to different processors over the course of their execution. A

scheduler for networks of workstations at the University of Wisconsin is an example [13].

The Jump-StarT scheduler treats all processing elements equally: a job's threads may

be mapped to any subset of the machine's processors. An accepted job is given its

requested number of processor threads and cannot obtain more during the course of execu-

tion. However, thread termination need not be coordinated. The scheduler reacts to each

thread's termination independently.

The Jump-StarT scheduler does not currently consider resources other than processors

in its scheduling decisions. Some schedulers consider usage of resources such as memory

to influence the scheduling process [15].

1.3.2 Socket Communication

For the sake of portability, Jump-StarT uses Unix sockets and pipes for all communica-

tion. Pipes are unidirectional and can only be used to communicate with another process

on the local machine. Sockets are bidirectional and can communicate across the network.

In Unix socket communication [4], both a client and server program allocate a socket,

which can be described as an endpoint of communication. The server program binds its

rendezvous socket to a port number that it chooses. When the client connects to the server,

the server sees a connection request on its rendezvous socket. If it accepts the connection,

the server receives a new connection socket. Many connection sockets can be established

through the single rendezvous socket.

If the server tries to bind its socket to a port number that is already in use by another

program on the same machine, the bind fails. The server is free to try another port number.

However, to establish a connection, a client program must know the port number that the

server has used. If the client is set to use a particular port number, but the server was

unable to bind to that port, the client will be unable to connect. Jump-StarT solves this

problem in a robust way.

Parallel Machine Host Machine

0

0

S

Figure 1.1: Jump-StarTSystem. Each thick box represents a single processor. Each shape within a
box is a scheduler module running on the processor. Nodes are labeled with their node IDs. Users
may be running other processes (not shown) on their local User Machines. Job threads (not shown)
run along with the Node Managers on each node of the parallel machine.

Node 0

Node N-1
Node Node

I/O Job
Mgr Mgr

User Machine

FEP FEP

User Machine

PRUN PRUN
FEP FEP

1.4 Document Overview

The Jump-Start scheduler consists of program modules that run on (i) the nodes of the par-

allel machine, (ii) the single host machine, and (iii) local user workstations. The system is

illustrated in Figure 1.1. The Host Job Manager, Node Job Managers, and PRUN program

make up the job management system. The Host I/O Manager, Node I/O Managers, and

Front End Processes make up the I/O system. The Master process provides global services

to the other scheduler modules.

Chapter Two looks at the job management system and the design of the supporting

modules. Chapter Three examines the design of the scheduler's I/O system and explains

why it is necessary. Chapter Four covers some secondary issues about the scheduler

design, such as socket port management. Chapter Five summarizes the results of the

project. Appendix A provides an overview of implementation concerns.

Chapter 2

The Job Management System

The most important function of a parallel job scheduler is to create jobs and manage their

use of system resources. The part of the scheduler that performs this function is the job

management system. Section 2.1 examines various scheduling strategies and derives

design constraints for a flexible job management system. Section 2.2 introduces a schedul-

ing strategy based on job classes. Section 2.3 develops the design of Jump-StarT's job

management modules from the design constraints. The remaining sections look at each

module individually.

2.1 Design Constraints

The design of the job management system is driven primarily by the flexibility goal. Flex-

ibility is needed to cover the range of scheduling strategies that can be implemented. This

section considers several different scheduling strategies and their implications for the

design of the system. A good survey of the spectrum of schedulers has been produced by

Feitelson [8].

An extremely simple scheduling strategy can use space sharing without time sharing:

only one job thread is assigned to a processor at a time. Such a system maintains a list of

the free processors. Upon the arrival of a job request, the system simply checks the num-

ber of free processors. If there are enough, it assigns some processors to the job and

removes them from the free list. Otherwise, the job is declined. Upon termination of a pro-

cessor's job thread, the system returns the processor to the free list. The Loadleveler

scheduler for the IBM SP2 uses simple space sharing. The EASY scheduler for the SP2

also uses simple space sharing, with backfilling [12].

A simple space sharing strategy can be implemented with a single centralized job

manager. Scheduler software at each node only needs to execute job threads and inform

the job manager when the current thread terminates.

The functionality of the system can be improved by allowing a job to be queued, if

sufficient resources are not available for it to run when it is submitted. Such a system will

still use purely centralized control. However, there are major disadvantages to having only

one job thread running on a processor at a time. For example, the system can only effi-

ciently support batch jobs. An interactive job running on such a system would have exclu-

sive control of the processors to which it was assigned, but use only a small fraction of

their computational power, thus wasting resources.

With time sharing, greater resource utilization can be achieved. Multiple interactive

jobs can run for short, alternating intervals, providing each with the short response time

and modest computational resources needed. Batch jobs can be mixed with interactive

jobs, perhaps by alternating periods of good response time for the interactive jobs with

periods of poor response time when the batch jobs would be given large time slices.

After adding this complexity to the system, it becomes desirable to let the nodes them-

selves take charge of scheduling their own job threads, so that the central job manager

does not become a bottleneck. Local job managers at each node can assist in the schedul-

ing process. For instance, job threads can be executed in an uncoordinated manner by

local job managers, thus requiring no communication among the local job managers and

little communication with the central job manager. But uncoordinated scheduling leads to

inefficiencies when job threads try to communicate [10].

Efficiency can be improved by using a coordinated strategy such as gang scheduling.

Gang scheduling [7, 10, 14] relies on the premise that on a time sharing parallel machine,

there are sets of threads which communicate much more frequently with each other than

with threads outside the set. Thus it improves efficiency to ensure that every thread in such

a set (or gang) is running at the same time on the various processors, so that communica-

tion delays are minimal. These sets can be determined by dynamic monitoring of commu-

nication [9], but a simple approximation, without the overhead of low-level monitoring, is

to assume that the threads of a single job behave as such a set. Gang scheduling has been

implemented for SGI IRIX systems [2] and the Tera MTA [1].

A coordinated scheduling strategy can either be fully distributed among local job man-

agers, eliminating the central job manager, or use a hybrid of centralized and distributed

techniques. A fully distributed method for implementing gang scheduling is Distributed

Hierarchical Control [6], where the nodes are organized into a binary tree. Each node has

its local job manager, but a node with children also has job management responsibility for

the subtree rooted at the node. A job is assigned to a particular subtree big enough to run

the job, based on system load across comparable subtrees. The node responsible for that

subtree ensures that the threads of the job execute together by communicating with its

child nodes.

Distributed Hierarchical Control completely removes the scheduling burden from the

central job manager and distributes it across the nodes. It also makes use of communica-

tion between the nodes. This is advantageous on the StarT machines because the fast mes-

sage passing layer can be used for the communication, although this makes the code less

portable to other systems. The binary tree structure is useful for any strategy that needs to

broadcast the same data to many nodes.

Another method of supporting gang scheduling returns more control to the central job

manager, combining the use of centralized and distributed control. With this method, the

central job manager would not simply give local job managers a thread to execute, but

give them a scheduling pattern to follow. Assuming clock synchronization between the

nodes, by coordinating a starting time for the pattern, thread gangs could be scheduled

together as desired. This does have the problem of making the central job manager more

of a bottleneck, and thus reducing scalability. However, since the central job manager can

reside on the host machine, this method reduces the computation done on the parallel

nodes, leaving more CPU cycles for user job threads. Since the scheduling pattern given to

each local job manager is different, there is no need to broadcast data, and therefore inter-

node communication through a binary tree is unnecessary.

The Jump-StarT system is designed to allow a wide range of strategies to be explored.

The extra communication paths necessary for Distributed Hierarchical Control have not

been added, but could be without significant effort. The next section covers a particular

way of designing a scheduling strategy. In Section 2.3, the design of the Jump-Start job

management system will be explained. The various software modules implied by the

above discussion will be given names and their roles and interaction will be clarified.

2.2 Job Class Scheduling Strategy

An interesting way to address the scheduling problem is to classify jobs based on signifi-

cant characteristics like interactivity and priority. Each job is assigned to a particular class

and the scheduler treats jobs of each class differently. This section examines the questions

involved in scheduling based on job class, and offers Jump-StarT's answers.

2.2.1 Creating Job Classes

First, there must be a set of job classes to choose from. As an example, consider a set of

two classes: batch and interactive jobs. The batch jobs require long time slices but can be

delayed until off-peak hours to get most of their service. The interactive jobs are opti-

mized for response time and must be given frequent, short time slices. These are important

distinctions that the scheduler can use to affect the time and space sharing of the machine.

Jump-StarT allows job classes to be defined and configured by a system administrator.

The information specified for each job class includes priority level and the required fre-

quency, length, and regularity of time slices. The system administrator also decides how to

divide the system up among the different job classes. For example, batch jobs could be

given 60% of the machine and interactive jobs, 40%. This guarantees that under heavy

load, the interactive jobs as a whole will be given 40% of the CPU time. If a particular

class does not need its entire share of time, the remainder will be divided among the other

job classes according to the same ratios.

2.2.2 Assigning Job Classes

Another issue surrounding job classes concerns the point in time at which a particular job

will be assigned to a class. The user could select the job class at submission time. The

scheduler could determine the job's class by monitoring its initial resource usage. Or the

job class could even be dynamic, changing as the job's resource usage changes over time.

Since Jump-StarT is to be portable it is simplest to allow the user to select the job class. If

priority based classes are used, this might require limiting the classes available to particu-

lar users.

2.2.3 Job Parameters

In addition to the information associated with a job's class are other job-specific parame-

ters used by the scheduler. Deciding which parameters should be part of the job class and

which should be specified separately for each job is not a simple issue. This should be

explored further when data about real jobs can be gathered.

Among the job-specific parameters are the required number of processors, total CPU

time required per processor, and a deadline for the job. These and other parameters will be

discussed in Section 2.4, where Jump-StarT's job submission program is explained.

2.2.4 Determining Acceptance and Assigning Nodes

The decision of whether to accept or decline a requested job should be based on knowl-

edge of system load. If all the processors are to be treated equally in a pool of computa-

tional resources, then the processor nodes should be considered in order of increasing load

expected during the time that the job will run. A practical way to enact this rule is to com-

pute the amount of free processing time each node expects to have before the deadline of

the requested job. If there are enough nodes with sufficient free processing time, the job

should be accepted. Otherwise, it must be declined, perhaps with a suggestion of what the

deadline would need to be for the job to be accepted.

The job should be assigned to particular nodes in the same way. Again, since each

node is treated equally in the processor pool, the least loaded processors can be used. With

the job class model, there are also issues to consider about compatibility between jobs.

The job class ratios present the challenge or whether the ratios should be fulfilled prima-

rily through time or space sharing.

Batch jobs need long time slices, which limits the response time of interactive jobs

being time shared on the same processors. Interactive jobs can run more successfully with

other interactive jobs on the same processors than with batch jobs. This indicates that

space sharing between job classes is important. On the other hand, when a 32-node

machine is available, users should be able to have 32 threads in a batch job and not just

60% of 32. There needs to be time sharing between job classes, but when possible it will

be avoided.

2.2.5 Managing Running Jobs

A portable job scheduler running on existing Unix systems has two ways to control jobs:

by stopping and restarting the job threads as their time slices end and begin, or by using

the priority scheme of the underlying Unix scheduler. Each technique requires only the

knowledge of each of the job thread PIDs and permission to make the right system calls.

This permission is available to the scheduler because it runs under root privileges.

Stopping and starting the jobs has the advantage of yielding better control of time

slices to the parallel scheduler. This is done by sending SIGSTOP and SIGCONT signals

to each job thread. Using the priority levels has the advantage that Unix will allow other

processes to run while the hot thread is blocked. This is accomplished with the

setpriority () system call.

2.3 Job Control System Design

This section develops the design of the Jump-StarT scheduler's job control modules. A

central job manager is the module which handles job requests, possibly communicating

with the other managers to decide whether to decline or accept a certain job request. The

local job managers are responsible for maintaining the time sharing of the local processor

between threads. Depending on the scheduling strategy, the local job managers might

merely obey a scheduling pattern set up by the central job manager, or take part in making

the scheduling decisions themselves.

2.3.1 Job Thread Identification

A parallel machine has n processor nodes. From the point of view of the scheduler, each

node has an identification number, called the node ID, ranging from 0 to n-1. This node ID

is fixed and known by each node before the scheduler even starts up, as part of the node's

configuration. This is necessary so that nodes can be distinguished by the Master process,

introduced in Section 4.1.

Each parallel job has a unique parallel job ID, or PJID. The scheduler assigns one to

each job when it is accepted, starting from PJID 1. The threads within a job all have the

same PJID but are distinguished by their rank. The rank of each thread is also assigned by

the scheduler, and ranges from 0 to n-1 for an n-thread job. Thus the PJID and rank

uniquely specify a particular job thread on the machine. Each thread on a given node has a

different PJID, and each thread in a given job has a different rank. Each thread also has a

local Unix process ID, or PID, as on any Unix system. These PIDs are unique on a given

node, but not across nodes.

2.3.2 Job Submission Interface

The most visible element of the job management system is its interface with users, espe-

cially for job submissions. The required parameters for a job request depend on the under-

lying scheduling strategy. Some possible parameters are the number of processors a job

will need, its job class or priority, the amount of memory and swap space required for each

thread, the amount of CPU time it expects to use on each processor, and a deadline by

which the job should be completed.

Of all these parameters, only the number of processors is a necessity in Jump-StarT.

Each accepted job is allocated its requested number of nodes, and a thread is executed on

each node. Although some threads may terminate before the job completes, once begun a

job is not allowed to create a new thread.

The amount of memory and swap space are not used in the current scheduling strategy.

An improved strategy might use them to try to minimize cache interference and swapping

through context switches. For example, a job using a lot of memory might be given longer

time slices at longer intervals, to keep the job from spending all its time swapping in its

data.

Specifying the amount of CPU time expected and a deadline allow the scheduler to

accept or decline jobs based on load. If the scheduler accepts a job, it is indicating that it

expects to be able to give the job the desired amount of CPU time before the deadline.

Once the job is accepted, the scheduler will not accept other jobs that would keep the orig-

inal job from finishing on time. On the other hand, if the job is declined, the user needs to

specify a later deadline or find another machine.

One problem with the simplicity of this behavior is that it treats all users equally. If

Bill Gates walks in with a job that needs to run today, he might have to wait while an

intern's Parallel Tetris game, already scheduled, has the machine fully loaded. There is

also an issue when a job uses more than its requested CPU time. Different strategies might

either continue to schedule the job or terminate it.

When a job request is submitted, it must include the filesystem pathname of the job's

object file, and possibly command line arguments. All this job request information could

be provided in several ways; for example, through command line parameters or by filling

out a form in an X application. For simplicity, Jump-StarT uses a command line program,

realizing that a fancier interface could always be provided as a front end. The command

line program is called PRUN, for parallel run.

2.3.3 Job Control Modules

The PRUN program must submit its job request to a server to find out whether the job is

accepted or declined. This server is the central job manager. The scheduler is designed to

run in an environment where there is a host machine separate from the parallel machine.

Thus it is useful to put the central job manager on the host machine, where its computation

time does not interfere with parallel jobs. We refer to the central job manager as the Host

Job Manager, and the local job managers as Node Job Managers.

Figure 2.1 illustrates the arrangement of the significant modules and connections in

the job management system. In this example, one user executed a four processor job. Then

one user executed a two processor job. A third user executed a two processor job followed

by a one-processor job. Table 2.1 contains the Host Job Manager's processor allocation

Parallel Machine

Figure 2.1: Job Management System. Solid lines with solid arrows denote permanent socket con-
nections. Dashed lines denote temporary socket connections. Lines with hollow arrows denote
transfer of execution. Thick boxes represent single processors. Processes running on the machines
are denoted by labeled shapes inside the boxes. The ovals are parallel job threads, labeled with
thread PJID and rank. FEPs are part of the I/O system discussed in Chapter Three, and are num-
bered with the PJID of the job they are associated with. Note that Node Job Managers maintain no
connections to the job threads.

data for this example. Table 2.2 shows the data that Node Job Managers must maintain,

which associates each parallel job thread with the actual Unix PID it is running under.

2.3.4 Scheduling Strategy Interface

To make it easy to modify the system's scheduling strategy, the strategy code is separated

from the main control code by a modular interface. This interface is a set of strategy func-

tions that must be written to implement a particular strategy. The strategy functions are

event-driven: the Job Managers only call the strategy functions when certain events occur.

Host Machine User Machines

Table 2.1: Processor Allocation. These are the data that the Host Job Manager maintains for the
example shown in Figure 2.1. Each parallel job is associated with the nodes on which its threads
are running. This data reacts dynamically to the state of the job threads. If the thread on Node 2 for
the job with PJID 0 terminates, the X will be removed from the corresponding cell.

Table 2.2: Thread/Process Associations. These are the Node Job Manager's associations between
the logical PJID and thread rank of a parallel job thread, and the actual Unix PID of each thread on
the local processor. Data shown corresponds to two of the nodes from the example in Figure 2.1.
The specific PID values shown are unimportant but indicate the order in which the jobs were exe-
cuted, because a typical Unix system assigns PIDs sequentially.

One strategy function must be invoked when a job request is received, which provides

the strategy with the job request parameters. The strategy decides whether or not to accept

the job by consulting its data structures, which it updates each time a strategy function is

invoked.

When a job is accepted, another strategy function is invoked to assign the job to spe-

cific processing nodes. The strategy function returns a list of the nodes, after updating

strategy data structures.

Node 0 Associations Node 2 Associations

Unix UnixPJID Rank PJID Rank i
PID PID

1 0 783 1 2 638

2 0 787 3 0 645

3 0 794

PJID Node 0 Node I Node 2 Node 3
0 X X X X
1 X X
2 X X
3 X

Other strategy functions are used to update the schedule. The schedule needs to be

updated each time a job thread terminates, so that the strategy can take advantage of the

decrease in load. A strategy function is provided to do this. Some strategies need to be

updated at fixed time intervals, because they rely on aging data like the CPU time used by

each job thread. Another strategy function is provided to update the schedule based on

elapsed time.

Currently, the scheduler's strategy interface is not general enough; the interface as it

stands is presented in Section 2.5. One lack of generality is that the strategy does not

decide when the schedule will be updated; instead, the updates occur at preset intervals.

The strategy functions should be able to set a timer that will cause the schedule to be

updated at specified intervals.

A more general interface would support communication between the strategy code at

the host and the nodes. This would allow strategy-specific data to be shared instead of

only the data that the Job Managers always exchange. This communication can be pro-

vided in an event-driven manner. A function could be provided to send a strategy message

from inside the strategy functions. This function would use of the underlying Job Manager

socket connections. When a strategy message arrives at a Job Manager, the manager

would call another strategy function to receive the message. Separate host and node ver-

sions of the functions would be provided.

At the node level, a strategy function should be provided to update data after thread

termination. Another function would operate on a timer to control context switching. In

this function, the strategy would communicate with the hardware to register a new thread

as hot and the old thread as cold.

Part of the difficulty in keeping the scheduler modular is that the very parameters

accepted for the job by PRUN are strategy-specific, as indicated earlier. So not only the

Host and Node Job Managers, but even the PRUN program must often be altered to

change the strategy. To ameliorate this problem, strategy-specific job parameters, such as

the job class, could be separated from the standard ones that the Host Job Manager always

requires, such as a filesystem pathname for the job's executable object file.

2.4 PRUN Program Design

The PRUN program can be executed from any machine with permission to run parallel

jobs. That is to say, when the PRUN program connects to the Host Job Manager, the IP

address of the machine from which PRUN connected is known. The address is validated

with a configuration file that specifies the machines authorized to initiate jobs.

The PRUN program takes a host of command line arguments for the various job

parameters, shown in Table 2.3. After all the switches and their arguments, a filesystem

path to an executable object file must be specified. This path must either be absolute, or

relative to the current directory. That is, the PATH environment variable will not be

searched to find the program. After the executable path there can follow command line

arguments that will be given to the program. As always, wildcard characters are expanded

Switch Argument Meaning

-p n n is the number of processors the job requires

-m n n is the number of MB of RAM required per node

-s n n is the number of MB of swap space required per node

-t h:m or m h hours and m minutes of CPU time required per node

-d h:m or m job deadline is h hours and m minutes from now

-c s s is a string denoting the job class

Table 2.3: PRUN Command Line Switches. This table shows the command line switches which
specify job parameters in the PRUN program. The argument letters h, m, and n denote integer
arguments, and the letter s denotes a string argument. The megabyte values specified with the -m
and -s switches are not used in the current scheduling strategy.

by the shell before the PRUN command gets them. Thus, they will be resolved with

respect to the local file system, and not the parallel machine's file system.

Once the PRUN program gets all these parameters, it checks them in certain ways. For

instance, if more processors are requested than exist in the system (a constant which is

now compiled into the scheduler), PRUN will report the error. Assuming the parameters

make sense and are complete, PRUN connects to the Host Job Manager and submits the

job request. If the job is declined, it informs the user and exits. If the job is accepted, the

PRUN program receives the PJID of the new parallel job from the Host Job Manager, and

calls the exec () function to execute the Front End Process (see Chapter Three), passing

the PJID as a parameter. Thus, the standard input, output, and error of the Front End Pro-

cess are those of the replaced PRUN process.

2.5 Host Job Manager Design

There is a single Host Job Manager in the scheduler which runs on the host machine. It

maintains several server sockets, for (i) PRUN connections, (ii) Node Job Manager con-

nections, and (iii) a client connection to the Host I/O Manager (see Chapter Three). Upon

initialization, the Host Job Manager considers the parallel machine to have no active pro-

cessors. Thus if a PRUN request comes in, which of course would ask for at least one pro-

cessor, it will decline the request. The Host Job Manager considers a node to be active

only once a connection is established with its Node Job Manager.

Figure 2.2 shows the basic interface between the Host Job Manager and the scheduling

strategy compiled into the Host Job Manager. The Host Job Manager calls upon the sched-

uling strategy is to decide whether or not each job will be accepted. If the strategy says to

accept the job, the Host Job Manager assigns an a identifier to the job, its parallel job ID,

Accept Job?

'x Yes/No
iI __ _ __ _ _ __ _ _ __ _ _Job 1 Job

Requests / Deadlines
,- -Assign Job to Nodes ,

List of Nodes
Host Host
Job Scheduling

Manager Schedule Request Strategy
New Schedule

Activ CPU 'Active Job Thread Terminatedt\Threads , a Time I

, New Schedule 's Used ,

Figure 2.2: Host Strategy Interface. The Host Scheduling Strategy is a set of functions in the Host
Job Manager which are called upon certain events. The arrows show the request and reply pairs
that make up the interface. The Host Job Manager handles job requests and maintains data on the
active threads in the system. The Host Scheduling Strategy tracks the job deadlines and CPU time
used by each thread.

or PJID, and sends it to the PRUN process. Otherwise, the Host Job Manager informs the

PRUN process that the job is declined.

Next, the Host Job Manager invokes another strategy function that decides which

nodes will execute the threads of the new job. It receives a list of selected nodes, and sends

job start-up information to the Node Job Manager on each selected node.

According to some strategy-specific rule, the Host Job Manager will at certain inter-

vals, or based on certain messages from Node Job Managers, call a strategy function that

allows the strategy to adjust the schedule. When a job thread terminates, the Host Job

Manager is informed by a Node Job Manager, and calls another strategy function to adjust

the schedule.

2.6 Node Job Manager Design

The Node Job Manager is present on every node of the parallel machine. It maintains one

client connection to the local Node I/O Manager and one to the Host Job Manager.

Regardless of the scheduling strategy, the Node Job Manager's basic purpose is to manage

the activity of job threads running on its node.

When the Node Job Manager starts up, it makes a connection to the Host Job Manager,

and sends the local node ID. Then it waits to receive new job threads from the Host Job

Manager. It also creates a connection to the local Node I/O Manager, which will be intro-

duced in the following chapter.

For various technical reasons, the Node Job Manager does not directly create job

threads, nor directly detect their termination. These functions are carried out by the Node

I/O Manager. The Node Job Manager only interacts with the Node I/O Manager at the

time of job thread creation and termination. The functions of the two Managers are dis-

tinct all throughout job thread execution, so they are separated into two modules.

The Node Job Manager is responsible for controlling each thread on the node. It main-

tains a correspondence between the parallel job ID (PJID) and the local Unix process ID

(PID). The Node Job Manager may send signals to the process, set its priority in the local

Unix scheduler, or do whatever is demanded by the scheduling strategy.

When a job thread terminates, the Node I/O Manager notifies the Node Job Manager.

At this point, the Node Job Manager calls a scheduling strategy function to revise the

schedule. It also passes on the PJID and rank of the job thread that terminated to the Host

Job Manager, so that changes can be made to the global schedule.

Chapter 3

The I/O System

One of the main objectives of the scheduler is to provide an intuitive interface to the paral-

lel machine, both for users and programmers. A good way to do this is to make the parallel

computer seem as much like a normal Unix uniprocessor system as possible. One aspect

of this is to ensure that I/O can be performed in traditional ways.

The purpose of any program is to produce output of some kind and communicate it in

some way: a program that communicates nothing could just as well be left unexecuted.

Many programs also accept input of some kind. This makes I/O services a significant con-

cern of a parallel computer system. Section 3.1 shows why providing traditional I/O ser-

vices is a burden of the scheduler. Section 3.2 develops the design of scheduler modules to

support these I/O services. The remaining sections detail the behavior of the individual

modules needed for this support.

3.1 Providing Standard I/O

Output from a program can be communicated in many ways, and input can come from

many sources. Some examples of output destinations are tty terminals, X windows, files,

pipes, and sockets. Similarly, some input sources are keyboards, mice, files, pipes, and

sockets. To use most of these sources and destinations, a program must set up connections

using a certain set of system calls.

However, Unix provides each process with basic input and output through the standard

input, output, and error streams. Unix process management makes these streams available

to each process automatically. Thus, these are a uniquely supported form of I/O and the

scheduler should extend the support to the parallel realm if possible.

To see how this will be done, first consider a sequential program's standard input

stream. By default, the input comes from the keyboard through the shell in which the pro-

gram was executed. Alternatively, the user can redirect the standard input to a file source,

from which the program reads data as if it were being typed at the keyboard. The input

goes from a single source (keyboard or file) to a single destination.

However, a parallel job has a number of threads running on different processor nodes.

User input to such a job has a different meaning then it did in the single processor case.

Here are three ways to deal with multiple destinations for the standard input. A user's

input could be sent to all threads of a job. This would mean that each thread would see the

exact same standard input stream over the course of execution. Another solution is that an

arbitrary thread could be chosen as the input thread, through which all input would be

exclusively directed. It would be the task of this thread to distribute the data as necessary.

Finally, the scheduler could provide some way for the user to specify which thread certain

input was intended for, allowing each thread to receive an independent input stream.

Now consider the opposite problem of mixing multiple threads with a single standard

output stream. Once again there are three obvious choices. Analogous to broadcasting the

input is to expect identical output streams. That is, each thread must produce the same out-

put in the same order. This seems wasteful at best, because the output from all but one

thread could be ignored. A second option is for one job thread to be dedicated as the out-

put thread, and be the only one which could successfully use its standard output and stan-

dard error. Although this may be fine for standard output, it is awkward for standard error.

Finally, every thread could be allowed to use its output streams if the output could be

merged into one stream from the user's perspective.

Jump-StarT attempts to support all alternatives. Each thread is given independent stan-

dard input, output, and error streams. To determine which thread input is intended for, and

merge output from various threads, the input and output are tagged with a rank number

unique to each thread in the job. An n-processor job has threads of rank 0 through n-1. A

simple I/O filter can then provide the desired options. One example would be a filter that

creates a window for each thread and removes the output tags, displaying the output from

each thread in its own window. Input from any window could be invisibly tagged with the

correct rank number associated with that window.

3.2 I/O Module Design Overview

The discussion of the I/O system behavior in the previous section led to the decision that

each job thread would have independent standard input, output, and error streams. The

user interacts with the parallel machine through the host, and expects input to the parallel

job to come from a local keyboard, and output to go to a local screen. So something must

be done to connect the I/O streams of each job thread to the local machine.

First, there must be some process running on the local machine, with its own standard

input, output, and error. Since the user must run a program to submit a job request in the

first place, that program can become the necessary I/O handling process, after a job has

been accepted. The I/O handling process is known as the Front End Process (FEP). The

FEP functions as a proxy for the parallel job: if it is terminated by the user, the parallel job

should be terminated as well [11].

Since each job thread is an actual Unix process running under the Unix operating sys-

tem of its node, it already has standard input, output, and error. The simplest way to con-

nect the Front End Process to the I/O streams of the job threads might be to make socket

connections for standard input, output, and error between the FEP and each thread. How-

ever, for a 32-node job, this would mean 96 socket connections to the FEP. Since file

descriptors are a limited resource to a Unix process (often only 64 are available), this is

not a very scalable design.

Instead, the three streams can be multiplexed together on one socket connection,

where each string being sent is tagged as either input, output, or error. Since this requires

filtering the I/O streams before they leave the parallel node, there must be a scheduler

module present on each node to perform this function. This module is known as the Node

I/O Manager. Input and output from all threads on a node are filtered through the local

Node I/O Manager.

Perhaps the obvious next step would be to connect an FEP to each Node I/O Manager

on which its job has a thread running. This would mean each Node I/O Manager would

have one socket connection for each thread on the node, and each FEP would have one

socket connection for each thread in its job. This complexity in the FEP and Node I/O

Manager can be removed by adding a central I/O manager, through which all communica-

tion flows: a sort of router for the standard input, output, and error of all jobs.

Jump-StarT uses a central I/O manager, which runs on the host machine. This Host I/O

Manager maintains one connection to each Node I/O Manager, and one connection to

each FEP. It routes input from an FEP to the correct Node I/O Manager, and output from a

Node I/O Manager to the correct FEP. If the FEP terminates prematurely, this is observed

by the Host I/O Manager, which receives an EOF on its connection to the FEP. Thus, this

information is immediately available in a centralized place, which can orchestrate the ter-

mination of all the job threads. Figure 3.1 shows the modules and connections of impor-

tance to the I/O system.

In retrospect, there may not have been enough justification for adding the Host I/O

Manager. The total number of socket connections between the Node I/O Manager layer

and the FEP layer is greatly reduced, but all the remaining ones radiate from the single

Parallel Machine

Figure 3.1: 1/0 System. Thin lines with solid arrows represent socket connections. Thick lines
with solid arrows represent three one-way pipe connections. Lines with hollow arrows represent
transfer of execution. Thick boxes represent single processors. Significant processes running on
the machines are denoted by labeled shapes inside the boxes. The ovals are parallel job threads,
labeled with thread PJID and rank.

Host I/O Manager. Thus the Host I/O Manager is a bottleneck. Since I/O is expected to be

infrequent, it may not be a computational bottleneck, but again the file descriptor limit

may become a barrier to scalability. If the host machine runs a Unix that allows many file

descriptors per process, this would not be a problem. The AIX machine used for most of

the development work for this thesis, for instance, allowed 2000 descriptors per process.

Moreover, a Unix system can be reconfigured to support more descriptors. Thus, our

choice should work fine.

Host Machine User Machines

3.3 Front End Process

The Front End Process is provided as the user's basic tty interface to a parallel job, and as

a proxy for the job. Keyboard input to the FEP is interpreted as standard input to the paral-

lel job. The standard output and standard error of the parallel job are displayed to the user

through the corresponding streams of the FEP. If the user terminates the FEP, the parallel

job will be terminated. When the parallel job completes execution normally, the FEP exits

as well.

3.3.1 User I/O Interface

The Front End Process is executed as a result of a successful job request. The user submits

a job request with the PRUN program, and if the job is accepted by the scheduler, the

PRUN process executes the Front End Process. The FEP maintains a single socket con-

nection, as a client of the Host I/O Manager. All communication about signals and stan-

dard input, output, and error, occurs through this connection.

If any of the parallel job threads send output through standard output or standard error,

the output is routed through the system to the FEP. The type (normal or error output) is

specified as well as the rank of the thread it came from. Each thread in a job has a unique

rank: a number from 0 to n-1 in a job with n threads. After receiving output, the FEP dis-

plays on the proper stream (standard output or standard error) the rank, followed by a

colon, a newline character, and the output text. Thus output from different threads can be

distinguished by the user. Figure 3.2 shows an example of FEP output.

This output strategy was designed with the idea that FEP output could be piped to an

output filter program that would display the output in any way the user would prefer. For

instance, such a filter could open a window for each thread's output and separate them

itself without displaying the rank tags.

Figure 3.2: Sample FEP Output. This is an example of FEP output from a fictional program which
finds row vector solutions to some matrix problem. The solution space is divided up between four
threads, with ranks 0 to 3. Each thread reports any solutions it finds along the way and then reports
the number of solutions found. All three solutions are found by the thread of rank 3. When output
is received from the same thread, the rank tag is not specified again, as shown in the second set of
output produced by thread 3.

Similarly, the user can give keyboard input through the FEP. The user should type the

rank of the thread that the input should be sent to, followed by a colon, and the desired

input string. The input will be routed to the proper thread and placed in its standard input

stream.

In the current implementation, the input will be sent when the user hits Enter, and any

further lines of input will need to be tagged again with a rank. This means the C library

functions like gets () and scanf () will work as normal in a parallel job, but character-

based functions like getchar () will not. When the user types 'a', that character will

not reach the parallel job thread until the user finishes the line of text.

Finer granularity of input presents problems, but could be provided if necessary. The

system could pass along every character as it is typed. This would require a new way of

specifying which thread input is intended for. Perhaps a special keypress would let the

user change the target thread. For instance, pressing Ctrl-A, 2, Enter might reset the input

destination to the thread of rank two. From then on, each character typed would be sent to

thread two until another Ctrl-A was reached. However, with this fine granularity, a sub-

stantial number of messages would be generated within the scheduler. If many users were

running interactive jobs like this at once, it could severely impact performance.

3.3.2 Manual Job Termination

The FEP acts as a proxy for the actual parallel job. When the last job thread terminates, the

FEP is notified and execution ends, returning the user to the shell prompt like any com-

mand-line program. Similarly, if the FEP is terminated, the actual parallel job will be ter-

minated as well.

In the current implementation, there are three ways that the FEP's termination can lead

to the termination of the parallel jobs. The first case is that the user gives the FEP the inter-

rupt keystroke (usually Ctrl-C). This causes a SIGINT signal to be sent to the FEP. When

the FEP receives that signal, it will exit and the system will send a SIGINT to each of the

parallel job threads, so they can handle the signal as desired. If the parallel job threads

choose to ignore the signal, they will be killed (with SIGKILL) after a certain time, since

the FEP is no longer connected.

In the third case, the FEP might receive another signal that causes termination, such as

SIGTERM or SIGHUP, usually because of a user kill command. If so, the FEP will exit,

and the system will send a SIGTERM to each parallel job thread, regardless of the actual

signal received. This is done since most terminating signals are not appropriate to send on

to the parallel job, because they denote that something went wrong with the execution of

the FEP, not the parallel job. If it is decided in the future that any other signals should be

passed on to the parallel threads, they would need to be handled in the same way as SIG-

INT. Again, if the parallel threads choose to ignore the signal, they will eventually be

killed because the FEP has terminated.

Finally, the FEP might terminate without warning. This would happen if the FEP

receives a SIGKILL signal, which cannot be caught, or an unknown signal that is not han-

dled. In this case, the Host I/O Manager will see that its socket connection is closed to the

FEP. Since it did not receive a termination message from the FEP, it will assume the worst

and instruct the system to send SIGKILL to each parallel job thread.

3.4 Host I/O Manager

The Host I/O Manager runs on the host machine. All input comes through it to be routed

to the correct node. All output comes through it to be routed to the correct FEP. The Host

I/O Manager maintains three server sockets. One is for FEP connections, one is for Node

I/O Manager connections, and the last is for a single connection to the Host Job Manager.

When the Host I/O Manager starts up, it is merely listening for connection requests on

its three server sockets. The Host Job Manager and each Node I/O Manager will connect

when they start up. It expects the Host I/O Manager and at least one Node I/O Manager to

be connected before any FEP will try to connect, because otherwise, no job should have

been accepted in the first place.

When a new parallel job is accepted, the first thing that happens to the Host I/O Man-

ager is that a new FEP makes a connection request. Once the connection is accepted, the

FEP sends the PJID it has been given by the Host Job Manager. The Host I/O Manager

associates the PJID with the connection to the FEP in its data structures, and then reports

the PJID to the Host Job Manager to confirm that such a job has been accepted. If the Host

Job Manager can confirm the job, it will begin job execution; otherwise, it will report the

error to the Host I/O Manager, which will then remove the FEP data it recorded, and dis-

connect from the FEP.

Once a Node I/O Manager executes a job thread, it informs the Host I/O Manager,

reporting the thread's PJID and rank. The Host I/O Manager checks to see that it has an

FEP connected with that PJID. Then it adds an entry under that PJID, associating the

given thread rank with the Node I/O Manager connection that the information came from.

All future input directed to that thread rank will need to be sent over this same Node I/O

Manager connection.

When a job thread produces output on either standard output or standard error, the

Node I/O Manager passes it along to the Host I/O Manager, along with the job PJID and

thread rank. The Host I/O Manager then finds the FEP connection associated with that

PJID in its data, and sends the output along to the FEP.

When input is received from the user, the FEP sends it on to the Host I/O Manager,

along with the job PJID and thread rank it is intended for. The Host I/O Manager checks

its data to see if a thread of that rank is recorded for the given PJID. If not, an invalid rank

error is reported to the FEP. If there is such a thread, the input is passed along to the Node

I/O Manager on the connection associated with that rank.

Note that no matter how many job threads (from different jobs with different PJIDs)

are running on a node, there is only one connection between the Node I/O Manager and

the Host I/O Manager. Since the PJID is distinct between each thread on a node, this is

used to identify the correct thread from the Host I/O Manager.

In the current implementation, the Host I/O Manager knows nothing about how many

threads there are in a job. It accepts those which it is informed about by Node I/O Manag-

ers. Their rank numbers need not be contiguous or complete. When it informs the FEP of

invalid thread rank, it really just means that if there is such a thread, it hasn't been

reported.

When a job thread terminates, the Node I/O Manager informs the Host I/O Manager,

which then removes the association it had for that thread rank. If the user tries to send

input to that thread, the FEP will be told the thread rank is invalid. When all the threads

have terminated, the Host I/O Manager is informed by the Host Job Manager, which does

know exactly how many threads were executed. Then the Host I/O Manager tells the FEP

of the job termination, and disconnects from it. When the last termination message (either

from the Node I/O Managers or the Host Job Manager) arrives, the data for that job is

completely removed.

If the FEP catches a terminating signal, it informs the Host I/O Manager before termi-

nating. The Host I/O Manager then instructs the Host Job Manager to terminate the job.

Similarly, if the FEP disconnects without warning, the Host I/O Manager instructs the

Host Job Manager to kill the job. Either way, the Host I/O Manager records that the FEP is

disconnected, to avoid sending it further output, but leaves its data alone otherwise, to be

cleaned up by the termination messages that will arrive later, when the job threads are

killed.

3.5 Node I/O Manager

A separate Node I/O Manager runs on each node of the parallel machine. It maintains one

server socket, intended for a single connection from the local Node Job Manager. It main-

tains one client socket connection to the Host I/O Manager. For each job thread running on

the local node, it has three pipe connections, for standard input, output, and error.

When the Node I/O Manager starts up, it connects to the Host I/O Manager, but sends

no data to it. It listens for a connection request from the Node Job Manager, and once this

connection is made, it waits for the Node Job Manager to send it a job thread to execute.

Job threads are executed by the Node I/O Manager, so that it can connect the job

thread's standard input, output, and error to itself through pipes. The Node I/O Manager

receives the executable path, user/group IDs, current directory, command-line arguments,

and environment variables from the Node Job Manager. It sets up three new pipes, and

forks off another process. The child process rewires its standard input, output, and error, to

the correct ends of the pipes, closes the other ends, and executes the new job thread. The

Node I/O Manager closes its unused ends of the pipes, and sends the PID of the child pro-

cess to the Node Job Manager, along with the PJID and thread rank. Then it informs the

Host I/O Manager of the new thread with its PJID and rank. It also maintains data struc-

tures tracking the association between a thread's PJID and rank, and its three pipe connec-

tions.

When threads are running on the node, the Node I/O Manager is waiting for data from

the Node Job Manager, the Host I/O Manager, or any of the output or error pipes con-

nected to the various job threads. From the Node I/O Manager it expects more job threads

to execute. From the Host I/O Manager, it expects input from the user of one of its threads.

From the threads themselves it awaits output or termination.

When input is received from the Host I/O Manager, it is tagged with the PJID of the

destination thread. The Node I/O Manager searches its data for the given PJID, and sends

the input to the pipe connected to that thread's standard input, as recorded in the data

structure.

When output is received from a thread on a certain pipe, the Node I/O Manager

searches its data for that pipe and find the associated PJID and rank. It sends these along

with the output, tagged with the type (standard output or standard error), to the Host I/O

Manager.

In the current implementation, when an EOF has been received on both the standard

output and standard error pipes, the Node 1/O Manager informs both the Node Job Man-

ager and the Host I/O Manager that the thread has terminated. The EOF on each pipe

really just indicates that those pipes are closed. Instead, the Node I/O Manager should

catch SIGCHLD signals to determine when its child processes have terminated.

Chapter 4

Other Design Issues

There are many other issues which have been considered in the design of the Jump-StarT

scheduler. Section 4.1 looks at the issue of flexible socket communication in the system

through port management. Section 4.2 expresses some aspects of the scheduler's modular-

ity and the resulting advantages. Section 4.3 explains some security issues and solutions.

Section 4.4 considers how the system can monitor jobs and provide status information.

Finally, Section 4.5 examines the need for global error handling and fault tolerance in the

scheduler.

4.1 Socket Port Management

The various modules in the scheduler communicate through many socket connections as

mentioned in the previous chapter. Each connection is made with one module acting as a

server and one as a client. To connect via sockets, the client has to know both the IP

address (or DNS name) of the machine where the server resides, and the port number on

which the server is listening for connections. This section explains how the scheduler

modules know these two pieces of information for each connection they make.

Socket connections between modules on the same machine can be made by connecting

to "localhost" and thus only need the right port number. This covers the connection

between each Node I/O Manager and Node Job Manager, and between the Host I/O Man-

ager and Host Job Manager. In each case, the I/O Manager maintains a server socket and

the Job Manager connects to it as a client, through localhost.

In the current implementation, the only connections between modules that do not

reside on the same machine are connections to the Host I/O and Job Managers. Thus only

the name of the host machine needs to be well-known across all scheduler modules. This

machine name is stored in configuration files like .njmgrrc for each program. Yet this still

doesn't explain how the client knows the correct port number.

The simplest way for clients to know the correct port number is to have the number

hard-coded into the scheduler. To change the number, the program would need to be

recompiled. This presents a problem if the desired port number happens to be in use when

a server tries to set up its socket. Client sockets are assigned port numbers sequentially by

the system, much like the PIDs assigned to new Unix processes. If one of these client

sockets happens to be assigned to the server port number the scheduler is hard-coded to

use, its socket creation will fail. Thus a more satisfactory technique is needed.

To solve this problem, a socket port manager is provided in the scheduler, called the

Master process. The Master process is the only program in the system with a fixed, well-

known port number1 . The Master process is intended to run on the host, because if its

machine crashes, no new jobs can be created until the scheduler is restarted. When each

scheduler module starts up, it creates its server sockets on whatever ports it can. It does

this by trying one; if the bind () call fails, it tries the next one; and so on, until one

works. Then the module connects to the Master process on its known port, identifies

which type of module it is, and reports each of the port numbers it has bound to server

sockets. Node modules also provide their node ID, so they can be distinguished from each

other. Then the Master process responds by reporting the port numbers that the module

will need for its client connections.

1. To further improve reliability, a small, ordered group of known ports could be used here. If the
Master process could not bind to the first port it would try the others. When connecting to the Mas-
ter process, a module would try each port in succession until it connected. Then it would have to
verify somehow that it had connected to the Master process and not some other program that had
already taken the port.

If any of the servers that the module will try to connect to haven't reported to the Mas-

ter process yet, the Master process will instead return an error. Then the module sleeps for

a while and tries again. In this way, the processes don't have to coordinate to start up, but

the necessary start-up order will be imposed by the Master process. As an example, say

the Node Job Manager needs to make a client connection to both the Host Job Manager

and the Node I/O Manager. If either has not registered with the Master process when the

Node Job Manager checks in, it gets an error, waits, and tries again until it succeeds,

which will only happen when both have properly registered themselves.

Each scheduler module must now know both the port the Master process is using, and

the machine on which the Master process is running. Currently, the port is a compile-time

constant and the machine is stored in a configuration file for each module.

4.2 Modularity

The scheduler code attempts to be modular in spite of the C language. This is to help make

it understandable to a wide audience, easier to use debugging tools, and easier to update.

The scheduler is organized into cooperating programs. Each has its own responsibilities

and interacts with the other programs in standard, defined ways.

For example, the Node I/O Manager and Node Job Manager each run on every node of

the parallel machine. They could be merged into one program. But each has a very differ-

ent function. The Node I/O Manager processes all output from the node's job threads, and

directs the appropriate input to them. The Node Job Manager is in charge of sharing pro-

cessor time among the node's job threads. Two practically unrelated aspects of job man-

agement are handled by two different node managers. The two managers communicate

only when a thread is created and when a thread terminates. Thus there is no great penalty

for separating the managers. Yet by doing so, the code for each is made dramatically more

understandable.

The data structures manipulated by each of the scheduler modules are also designed in

a modular way. Each moderately complex data structure has a set of associated functions

that add, look up, and remove data, thus providing an abstract interface. If the underlying

data structure is changed, only these functions need to be updated.

4.3 Security

A parallel machine is an expensive resource is and it needs to operate in a secure manner.

A machine's owners do not typically wish to serve the computing needs of just anyone on

the Internet that attempts to submit a job. Thus there is an issue of validating the users.

In order to establish a socket connection, the client must know the server's IP address,

or at least the DNS name. When a server accepts a connection, it learns the IP address of

the client that connected. This provides a simplistic method of validating clients. When a

connection is accepted, the server validates the IP address. The server looks at a configura-

tion file which lists IP addresses, hostnames, IP address masks, and NIS maps. Any

machine from which parallel job requests are to be allowed should be available on the list

in some fashion. The server validates the connected IP address with each entry in the con-

figuration file. If no entries prove the validity of the IP address, the connection is then

closed and ignored.

This validation is most useful in the Host Job Manager, for checking the incoming

PRUN job request connections. It can also be used by each of the Host Managers, to

ensure that the accepted connections are from actual machine nodes as expected.

An additional security concern is that I/O be routed correctly. An FEP should not be

able to send input to any job other than its own. This is guaranteed because the Host I/O

Manager maintains an association between each PJID and the one FEP connection associ-

ated with that PJID. Input from an FEP is sent only to the job with the associated PJID. If

another FEP tries to connect with the same PJID, it will not be accepted. Similarly, output

from the threads of a job with a particular PJID will be routed only to the FEP associated

with that PJID.

Since the parallel machine runs a Unix operating system on each node, the system

inherits security benefits from Unix. One example is memory protection, which is pro-

vided to the parallel job threads as processes under each node's Unix system. On the other

hand, the system is only as secure as that of its underlying Unix operating systems. Any

encryption, for instance, is up to the individual application.

4.4 Monitoring

One of the secondary roles of the scheduler is to provide data to users about the jobs, or

record it for monitoring purposes. The most crucial data that it should provide is informa-

tion on job status. Other data could include the amount of standard I/O bandwidth being

used by the parallel jobs, or statistics on machine usage levels at different times of the day.

4.4.1 System and Job Status

The status information can be provided through the implementation of a PSTAT program.

Like PRUN, this program would connect to the Host Job Manager, perhaps to the same

port. Instead of making a job request, PSTAT would request information about the status

of the system or of running jobs.

System status information could include things like the number of nodes that are cur-

rently running and their node IDs. This would be useful for locating hardware and soft-

ware failures. The Master process could contact each scheduler module, requesting

acknowledgment. Any modules that did not respond would be reported by the PSTAT pro-

cess.

In reporting information on the jobs currently running, PSTAT would behave much

like the Unix ps command. It could accept the same basic parameters and report on either

one user's jobs, a particular job, or all the jobs in the system. Among the data it could

report for each job are the process PJID, the executable name, the number of processors

currently being used, and the name of the machine where the FEP is running. More infor-

mation could be provided when a single job is queried, such as the node IDs of the nodes

on which the job is running, the CPU time used on each node. In addition, it could report

information specific to the scheduling strategy like deadline, job class, or current share of

each node's CPU.

The PSTAT program has not yet been implemented.

4.4.2 Usage Statistics

Data could also be collected to monitor the usage of the system or of certain modules. One

example would be to record the number of bytes of input and output sent through the Host

I/O Manager. This would provide information on whether I/O is a serious bottleneck in the

system. Another example is that the scheduler could record of the CPU utilization of each

node at five-minute intervals. These data could be used to improve the performance of the

scheduler by adjusting the behavior of the scheduling strategy accordingly.

4.5 Error Handling and Fault Tolerance

A parallel machine is an expensive, powerful resource. Parallel jobs typically require sig-

nificant computational power and time, because otherwise they would be written for a

much more common and affordable uniprocessor workstation. Because the jobs often

need to run for long periods of time, the machine itself must be very stable and the soft-

ware that is managing the jobs must be stable as well. These facts lead to the consideration

of fault tolerance issues in the scheduler. The scheduler should be written with all kinds of

failures in mind, and be able to overcome them whenever possible.

Consider what will happen if a single node of the parallel machine is suddenly lost due

to a hardware failure or loss of power. All the job threads running on that node are lost.

The simplest good behavior would be for the scheduler to terminate all the remaining

threads of each job that have lost a thread, on the assumption that the jobs themselves can

not recover from such a fault. The scheduler would then report the failure to the users

through the Front End Processes of the jobs. Note that any job which did not lose a thread

would still be running as if nothing happened. The scheduler would then remove the node

from its processor pool. When the node recovers, its scheduler modules would be exe-

cuted again and the node would be added back into the pool.

A better solution could be much more difficult to implement. Such a solution could

involve a way to inform each job about its lost thread. The fault tolerant jobs would have

to register with the scheduler as being capable of dealing with node faults. Then, in such a

situation, the scheduler would report the lost thread to each of the remaining job threads.

The job might request that the scheduler execute the lost thread again on another available

node, or the remaining threads could assume the work of the lost thread somehow. The lat-

ter approach would require a significant change in the programming model used.

4.5.1 Global Error Handling

A variety of errors can occur in the scheduler modules. With each system call that is made,

there is a host of possible error values. Many can be avoided with properly working code.

But many more are a result of uncontrollable problems with the operating system. If han-

dled correctly, many errors will have effects on the scheduler as a whole, requiring modifi-

cations to data in multiple modules. The error recovery process therefore needs to be

handled by a global error manager, which can communicate with any of the scheduler

modules. A convenient place to put such an error manager is in the Master process in the

proposed scheduler design. The Master process is the first central place where the pres-

ence of each scheduler module is detected. It keeps track of all the ports for the other mod-

ules, so it has the necessary data to communicate with any of them.

Global error management would require a set of unique error codes to be compiled

into all the scheduler modules. Each distinct error type would be given a different number,

and the error manager would base its error recovery process on the error type. To handle

some errors, the error manager would need to contact the reporting module and request

data. Then it would send instructions to the affected modules.

The errors to be reported need to be chosen carefully, to keep the error manager from

being flooded by reports while trying to respond to them. Whenever possible, a given error

should be detected and reported by only one module.

Global error management has not yet been implemented.

4.5.2 Module and Data Stability

Beyond the detailed error handling of a global error manager, something is needed to

recover from the abnormal termination of a module. One such method is to provide a

shadow process for each scheduler module. A shadow process lurks in the background

while a server module is running. If the module process dies, the shadow process restarts

it. Unix provides a convenient way to implement such a mechanism. When a scheduler

module starts up, it can fork off a copy of itself to do the real work. The parent process

then acts as the shadow process. It does no computation, but executes the wait () system

call. If the child terminates, the wait () function returns and the shadow process is ready

to fork again and bring the module back up.

A key element in using the shadow processes successfully is to maintain each mod-

ule's state in a stable way. The Host I/O Manager records plenty of data, but it all has to do

with maintaining socket connections; there is really no state. If the Host I/O Manager died

and was restarted by its shadow process, all its clients could reconnect. The Host I/O Man-

ager's data would be rebuilt through all the connections that would be made. Other mod-

ules do have state, though. The Node Job Managers, for instance, keep track of the PIDs of

each of the node's job threads. If the Node Job Manager died, and this data was lost, the

Node Job Manager could no longer manipulate the node's processes through signals and

priority settings.

Therefore, for those modules with actual state data, the shadow process would only be

of value if the data could be recorded in a stable manner. A possible way implement this

stable data is to save it to disk each time it is updated. The data could be saved under two

alternating filenames. Then, when the shadow process restarts the module, the module

would look at the two file timestamps, and read from the most recently saved file. If any

errors are encountered, the other file would be used. If both files are corrupt, the data

would be lost and the same problem would exist. But this would be unlikely, and the mod-

ule would usually recover.

These shadow processes and stable data practices have not yet been implemented.

Chapter 5

Conclusion

5.1 Results

The basic Jump-StarT scheduler developed so far was written in less than 5000 lines of C

code. It exhibits most of the behavior described in this document, but the job class model

of scheduling has yet to be implemented. The code is scalable to more than 32 processors,

but I/O through the single Host I/O Manager would become a major bottleneck if used

intensively by applications.

Jump-StarT uses socket connections for all its communication, rather than the fast net-

work layer that will be present in the StarT machines, because its communication is done

directly between the host and each node. It appears that this will be sufficient for a sched-

uling strategy that runs based on schedule patterns supplied by the Host Job Manager, pro-

vided that the scheduling rounds are long enough. If communication was occurring

between the nodes in a more complex scheduling strategy, there might be significant bene-

fits to using the message passing layer.

In designing the Jump-StarT scheduler, most of the effort went into refining the sys-

tem's flexibility. The load characteristics and I/O usage of applications in the system as it

will ultimately run are still unknown. This meant there were always trade-offs between

efficiency and flexibility. It was often unclear which goals were most important in a cer-

tain context.

The data structures and abstraction layers were also constantly refined. All the sched-

uler modules behave similarly in some respects. They act as servers, waiting to process

incoming messages. Yet their differences made it difficult to find common ground while

they were being written. It was only after they were fully implemented that the commonal-

ity could be seen clearly, and then parametrized functions created to greatly simplify the

code.

Some design issues that arose well into the implementation required widespread

changes. For instance, deciding to create the Master process for socket port management

meant replacing all the socket initialization code in each module.

Often the easiest way to produce a certain effect on a system is not the portable way.

The system was designed to rely only on functions that were available on both the AIX

and Linux systems. It is amazing how different the "standard" C library can seem under

different versions of Unix.

5.2 Summary

It is possible to write a parallel job scheduler that works on top of unmodified operating

systems. A common underlying structure can be given to the scheduler to allow experi-

mentation with scheduling strategies. Such strategies can use both centralized and distrib-

uted job control, and support a job class model. Standard input, output, and error streams

can be provided in the parallel execution environment as an extension of the sequential

computing environment.

Appendix A

Implementation Issues

This appendix covers issues in the specific implementation of the scheduler developed in

preparation for this thesis. Section A. 1 covers some race condition issues in job creation

and termination. Section A.2 describes the organization of the code for these executables

into various files. Section A.3 covers the structure of the code, and the similarities

between the different programs.

A.1 Preventing Race Conditions

When a job is created in the scheduler, the Host Job Manager reports the new job's PJID to

the requesting PRUN process. The PRUN process then executes an FEP, which connects

to the Host I/O Manager. Meanwhile, the Host Job Manager goes about executing the job

on the chosen nodes. Immediately after executing a job thread, the Node I/O Manager

reports the new thread to the Host I/O Manager. If the Host I/O Manager gets this report

before the FEP is connected, it will think that the new thread is invalid, because it has not

yet found out about that job PJID at all.

There are probably other ways to handle this problem, but one is to ensure that the job

threads are not executed until the FEP has connected to the Host I/O Manager. This is eas-

ily done by making the Host Job Manager wait until it knows the FEP is connected before

going about executing the job. To know this, it must receive a message from either the

FEP itself or the Host I/O Manager.

Similar challenges arise when a job terminates. When a job terminates normally, each

of its threads terminate one by one. As each thread terminates, its parent process, the local

Node I/O Manager, finds out and reports the termination to both the Host I/O Manager and

the Node Job Manager. The Node Job Manager passes it on to the Host Job Manager.

In the current implementation, the Host I/O Manager does not have first-hand knowl-

edge of how many threads are in a job. All it knows is how many threads have set up I/O

through the Node I/O Managers. Even when all the threads it has seen have disconnected

it can't be sure there aren't more threads which haven't even connected yet. So the Host

Job Manager sends the Host I/O Manager a message when all the threads have terminated.

Only when the Host I/O Manager has received all the individual thread termination mes-

sages and the job termination message does it completely remove the job from its data.

Under abnormal termination, the user either forces termination or something goes

wrong with the FEP that necessitates job termination. In this case, the Host I/O Manager

notifies the Host Job Manager which notifies all concerned Node Job Managers, which

effect the termination of the individual job threads.

There is now an issue about data structures getting cleaned up correctly, when they can

be receiving termination messages from both directions. To solve this problem, the system

does not believe that the threads are terminated until it receives the actual termination

messages that originate from the Node I/O Managers. The Node I/O Managers are not

informed about the forced termination; therefore, they go ahead and send termination mes-

sages as if the termination was normal. The system uses these to know when to clean up

data, so it always happens in the same way.

A.2 Organization of Files

There are currently seven distinct executables in the scheduler. These are the Master pro-

cess, the PRUN process, the Front End Process, the Host I/O Manager, the Host Job Man-

ager, the Node I/O Manager, and the Node Job Manager. Each of the scheduler

executables has a corresponding C file which contains the main () function for the pro-

gram. These files are master.c, prun.c, fep.c, hiomgrc, hjmgr.c, niomgr.c, and njmgrc.

Some of these files have associated header files, only for the purpose of cleaning up the C

file itself. In other words, all of the functions in these files are helper functions, and are not

called by any other programs.

All the functions used by more than one program are found in the scheduler library.

This consists of one file called schedlib.c, which contains no main () function. There are

several header files associated with the scheduler library: msg.h, masterh, parmutil.h, and

sockutil.h. These contain function declarations for sets of functions found in schedlib.c,

grouped by category. The msg.h functions allow a program to send and receive the stan-

dard scheduler messages. The masterh functions allow a program to communicate with

the Master process. The parmutil.h functions are utilities for dealing with command line

parameters and environment variables. The sockutil.h functions are utilities that simplify

the creation of sockets. Thus a program that uses the standard messages but doesn't deal

with command-line parameters would include msg.h, but not parmutil.h.

A.3 Code Structure and Similarities

The program code for the scheduler modules is very similar in structure. The PRUN pro-

cess is the most unique, because all it does is find out whether or not the job is accepted,

and then it either terminates or executes the Front End Process. The rest of the programs

act as servers, processing incoming messages, and behave much alike.

The main modules all start up in the same way. First, each program sets up a global

buffer. Whenever the buffer is going to be written into, the program calls an increase-

Buf fer () function which checks to make sure the buffer will be big enough for the data

and increases it if not.

Next, each program sets up all its initial network connections. Those programs that

have server sockets all use the same function, prepareRendezvousSocket (), to

create the socket, bind it to a port, and begin listening for connection requests. Each pro-

gram calls the function in a loop, iterating over different port numbers until one is found

that is not in use. Once all the server sockets are prepared, the program sends the port

numbers to the Master process. Most of the programs also expect to receive one or more

port numbers back from the Master process, which they need for their client socket con-

nections.

If the required port numbers are not available yet, the Master sends an error, and the

program waits for a time and tries again. When the program gets a successful response

from the Master process, it goes on to set up its client connections, if any. For this, each

program uses the function prepareClientSocket ().

Each of these programs then uses the C Library function select () to wait for mes-

sages on all of their sockets at once. To prepare for the function call, each program adds all

its server and client sockets to a file descriptor set. The select () function will return if

any of the rendezvous sockets have connection requests waiting to be accepted, or if any

of the connection sockets have data waiting to be read.

From there, each program determines which type of event caused the select to return.

If it was a connection request, the accept () function is called and the resulting connec-

tion socket is added to the file descriptor set. If it was data available, then helper functions

are called to process the message based on who sent it. For instance, the Host Job Manager

has three such processing functions: processPrunMsg (), processHioMsg (), and

processNjMsg (). They handle messages from a PRUN process, the Host I/O Man-

ager, and a Node Job Manager, respectively.

Since these programs are all supposed to run forever as daemons, they loop indefi-

nitely on this cycle of calling select () and processing a message. Of the programs

mentioned, only the FEP ever terminates without an error, when its job has terminated. So

the structure of all these programs is very much the same.

The mechanisms for communication between modules are also very standardized.

Functions named sendMsg (), sendExistingMsg (), and recvMsg () in the sched-

uler library are used in all modules, so that reading and writing to socket streams can be

robust without being difficult to use. These message functions all use a common message

header and the length of variable data following the header is defined in the header. The

header is converted by the send functions to network order, and back to host order by the

receive function. The send functions ensure that the entire message is sent, unlike the

underlying write () library function they use.

References
[1] G. Alverson, S. Kahan, R. Korry, C. McCann, and B. Smith, "Scheduling on the Tera

MTA". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L.
Rudolph (eds.), Lecture Notes in Computer Science, Vol. 949, pp. 19-44. Springer-
Verlag, 1995.

[2] J. M. Barton and N. Bitar, "A scalable multi-discipline, multiple-processor scheduling
framework for IRIX". In Job Scheduling Strategies for Parallel Processing, D. G. Fei-
telson and L. Rudolph (eds.), Lecture Notes in Computer Science, Vol. 949, pp. 45-69.
Springer-Verlag, 1995.

[3] G. A. Boughton, "Arctic Routing Chip". In Parallel Computer Routing and Communi-
cation: Proceedings of the First International Workshop, PCRCW '94, K. Bolding and
L. Snyder (eds.), Lecture Notes in Computer Science, Vol. 853, pp. 310-317. Springer-
Verlag, 1994.

[4] Chris Brown, UNIX Distributed Programming. New York: Prentice Hall, 1994.
[5] D. Chiou, B. Ang, Arvind, et al., "StarT-NG: Delivering Seamless Parallel Comput-

ing". In Parallel Processing EURO-PAR '95, S. Haridi, K. Ali, and P. Magnusson
(eds.), Lecture Notes in Computer Science, Vol. 966, pp. 101-116. Springer-Verlag,
1995.

[6] D. G. Feitelson and L. Rudolph, "Distributed hierarchichal control for parallel process-
ing". Computer 23(5), pp. 65-77, May 1990.

[7] D. G. Feitelson and L. Rudolph, "Gang scheduling performance benefits for fine-grain
synchronization". J. Parallel & Distributed Comput. 16(4), pp. 306-318, Dec 1992.

[8] D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems.
Research Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.

[9] D. G. Feitelson and L. Rudolph, "Coscheduling based on runtime identification of
activity working sets". Intl. J. Parallel Programming 23(2), pp. 135-160, Apr 1995.

[10] D. G. Feitelson and L. Rudolph, "Parallel Job Scheduling: Issues and Approaches".
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), Lecture Notes in Computer Science, Vol. 949, pp. 1-18. Springer-Verlag, 1995.

[11] A. Hori, H. Tezuka, Y Ishikawa, N. Soda, H. Konaka, and M. Maeda, "Implementa-
tion of gang-scheduling on workstation cluster". In Job Scheduling Strategies for Par-
allel Processing II, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes in Computer
Science (to appear). Springer-Verlag, 1996.

[12] D. Lifka, "The ANL/IBM SP scheduling system". In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes in Com-
puter Science, Vol. 949, pp. 295-303. Springer-Verlag, 1995.

[13] J. Pruyne and M. Livny, "Parallel processing on dynamic resources with CARMI". In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), Lecture Notes in Computer Science, Vol. 949, pp. 259-278. Springer-Verlag,
1995.

[14] P. G. Sobalvarro and W. E. Weihl, "Demand-based coscheduling of parallel jobs on
multiprogrammed multiprocessors". In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes in Computer Science,
Vol. 949, pp. 106-126. Springer-Verlag, 1995.

[15] J. Torrellas, A. Tucker, and A. Gupta, "Evaluating the performance of cache-affinity
scheduling in shared-memory multiprocessors". J. Parallel & Distributed Comput.
24(2), pp. 139-151, Feb 1995.

