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Abstract

In this thesis a strategy for treating outliers and missing data was developed and tested
for large, multivariate manufacturing data sets. Three case studies using data from a
web process, a batch process, and an assembly process showed the utility of simple visual
displays of the data for identifying and characterizing the main features of the data set
(including outliers, missing data, drifts, periodicities, excursions, and clustering) during
initial exploratory analysis.

The assembly process case study provided data with both partially missing and com-
pletely missing observations. Plots of the observation number and variable number for
each missing value showed patterns which aided in characterizing the missing data. Filling
out the partially missing observations with robust maximum likelihood estimates was an
effective precursor to multivariate methods for detecting the main features of the data.

Plots of robust normalized distances from the mean for each observation proved useful
for detecting observations which were isolated outliers or members of excursions. Plots
showing the principal components and measurement variables on which these observations
were extreme gave additional insights which were useful for interpreting the outliers.

Scatter plots of principal components of the data revealed features of the data such
as gross outliers, clusters, drifts, and excursions. Comparing plots of standard principal
components with plots of robust principal components of the mean and covariance showed
that each type of plot highlighted different features in the data.

The most successful treatment for outliers and missing data depended on the main
features of the data set learned from the initial exploratory analysis, engineering knowledge
of the process, and the type of analysis being done on the data. For example, isolated outliers
reflecting poor quality products would be included for process-to-product modelling, but
would be removed for inherent variation modelling.

Thesis Supervisor: David H. Staelin
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Context of Research

The research described in this thesis is part of a larger effort of Research Group 4 of the

Leaders for Manufacturing (LFM) Program. The LFM Program is a joint effort between

leading manufacturing companies and the Massachusetts Institute of Technology. The goal

of Research Group 4 is to develop statistical analysis tools for rapidly understanding and

improving manufacturing processes and products.

This thesis addresses the issues of outliers and missing data in manufacturing data.

Other topics addressed by Research Group 4 include time-series analysis, process-to-product

modelling, and real-time mean shift detection.

1.2 Organization of Thesis

This thesis begins with the statement of the problem in Chapter 2. Chapter 3 discusses

the strategy for dealing with outliers and missing data in historical data sets. Chapters

4, 5, and 6 give the details of three case studies using manufacturing data sets from three

different processes: a web process, an assembly process, and a batch process. Chapter 7

wraps up the thesis with a discussion of the results of the research as well as suggestions

for possible future research in this area.



Chapter 2

Problem Description

2.1 Background

Many companies seek to improve the quality of their products and the efficiency of their

manufacturing processes by statistically analyzing process and product data. Missing data

and outliers are two issues that commonly arise during the data analysis.

2.1.1 Outliers

Definition of Outliers

According to Barnett and Lewis, an outlier is "an observation (or subset of observations)

which appears to be inconsistent with the remainder of the data" [1, p. 7]. A key point

to make here is that outliers are defined relative to the main population-not in terms of

possible causes. Seeking a cause for outliers is a separate issue. The following paragraphs

define terms related to some of the causes of outliers.

Causes of Outliers

Some outliers may be contaminants. Contaminants are those observations which are not

"genuine members of the main population" [1, p. 7]. For instance, if the main population

was a sample of the heights of women, the height of a man in the sample would be a

contaminant whether or not it was distinguishable from the other measurements. Thus, a

contaminant need not be an outlier. An example of a contaminant in the manufacturing

context is a product made by a broken machine in the midst of products made by a working



machine.

Erroneous data is another example of contamination. Erroneous data are those observa-

tions with measurement or recording errors. For instance, recording equipment may switch

two digits of a measurement. Again, erroneous data may not show up as outliers.

A third possible explanation of outliers is the presence of unusually extreme members

of the main population. Most manufacturing processes are very complicated with many

factors contributing to the variation of the process. These many factors may occasionally

combine to produce an outlier even though the observation is not a contaminant.

Finally, some observations may be declared outliers because the assumed model for the

data may be incorrect. For example, a data set assumed to have a normal distribution may

have several distinct clusters of observations. A new set of outliers may be defined relative

to a new model which assumes each cluster has a normal distribution.

Effects of Outliers

Outliers can cause a statistical analysis to give misleading results. For example, summary

statistics such as the sample variance can be greatly inflated by a few extreme values. If

these outliers are contaminants, the sample variance will not be an accurate estimate of the

variance of the main population.

Outliers can also affect process modelling. An outlying contaminant that is not detected

may seriously skew many modelling techniques which seek to minimize the mean-squared

error of the model residuals.

In the context of process monitoring, outliers may cause false alarms. If outliers reflecting

erroneous data occur frequently, the time required to detect a process excursion may be

greater.

Outliers vs. Bad Products

In the manufacturing context, a key subset of the observations are those which correspond to

products with unacceptably poor quality (bad products). Since a bad product is specified

independently of the data set, it is not necessarily an outlier. In fact, the entire main

population may consist of bad products while the outliers have high quality.



2.1.2 Missing Data

Definition of Missing Data

The issue of missing data is straightforward-some of the entries in the data matrix are

missing. Some observations are partially missing while others are completely missing.

Little and Rubin's Statistical Analysis with Missing Data [5] is a good general reference for

dealing with partially missing observations.

Causes of Missing Data

Data may be missing for any number of reasons but several common ones include:

* Measurement equipment failed to record a value.

* Data was lost during the storage process.

* The product was pulled from the manufacturing line before measurements were taken.

Effects of Missing Data

The presence of missing data represents a loss of information which can complicate many

statistical procedures. Even with modified methods, the results of a statistical analysis may

be biased if the mechanism leading to missing data is misunderstood. [5, p. 9]

2.1.3 Manufacturing Data

Types of Manufacturing Data

Manufacturing data are as diverse as the processes from which they come, but the following

characteristics are relevant to choosing methods of analysis:

1. Observation Type

* univariate-one variable per observation

* multivariate-more than one variable per observation

2. Variable Type(s)

e measurements of physical parameters such as temperature



* coordinates such as time or location

* categorical variables such as batch or model number

* identification variables such as serial numbers

3. Data Collection Type

* historical data from regular process operation

* real-time data from regular process operation

* data from design of experiments

Most manufacturing data sets have multivariate observations and several types of variables.

Types of Analysis

Statistical analyses of manufacturing data generally fall into one of the following categories:

1. Process-to-Product Modelling

* specifies relationships between process parameters and product quality

* based on historical data sets

* used for determining desirable operating region(s)

2. Inherent Variation Modelling

* describes the unavoidable variation for a given region of operation

* based on historical data sets

* used as the basis for statistical process control

3. Control Settings to Process Modelling

* specifies relationships between control settings and process parameters

* based on historical data sets

* used for understanding and improving process control

4. Statistical Process Control

* monitors the process for the occurence of unusual events



* based on real-time data

* used to detect process problems and poor quality product

5. Time-Series Analysis

* describes how the process or product changes over time

* based on real-time data or historical data sets

* used to characterize process events and variation

Outliers and missing data may need to be treated differently for these different types of

analysis.

2.1.4 Current Approaches

Much research has been done in recent years on analysis methods relevant to manufacturing

data including methods for dealing with outliers and missing data. The following paragraphs

describe several sources related to outliers and missing data.

Outliers in Statistical Data, 3rd Edition by Barnett and Lewis [1] discusses many sta-

tistical methods for the identification and accomodation of outliers including the following:

1. Univariate samples (from several probability distributions)

2. Multivariate samples (from several probability distributions)

3. Linear models

4. Time-series models

5. Directional data

The issue of missing data is not addressed.

Multivariate Analysis by Krzanowski and and Marriott [2] discusses many techniques

for multivariate data analysis in general. Several suggestions are given for detecting and

treating outliers and missing data.

Little and Rubin's Statistical Analysis with Missing Data [5] discusses how to deal with

partially missing observations. The issue of potential outliers in additional to partially

missing observations is addressed in a paper by Little. [4]



A paper by MacGregor and Kourti [6] gives an overview of methods for implementing

statistical process control in multivariate manufacturing processes. Included in the paper

are suggestions for treating outliers in process-to-product modelling, historical data analysis,

and inherent variation modelling.

2.2 Problem Statement

The problem addressed in this thesis is the development and testing of a strategy for treating

outliers and missing data in large, multivariate, manufacturing data. The primary focus will

be on the initial exploratory data analysis of historical data sets. The results of applying this

strategy will be a better understanding of the nature of the data as well as some protection

against the negative effects of outliers and missing data.



Chapter 3

Strategy

3.1 Introduction

According to Krzanowski and Marriott, analysis of data should begin with an initial in-

vestigation aimed at identifying the "main features" of the data such as clustering and

outliers.[2, p. 43] Other features common in manufacturing data include time-series be-

havior (drifts, periodicity, excursions), missing data, and skewed distributions. After the

features are identified, the main analysis can proceed in an informed manner.

The basic strategy for dealing with outliers and missing data in the initial exploratory

analysis of historical manufacturing data sets is shown in Figure 3-1.

Data
Set
Summary

Missing
Data
Analysis

Initial Analysis
Outlier of Other
Analysis Features

Figure 3-1: Flowchart for the initial exploratory analysis of historical manufacturing data
sets.

Each of these steps is discussed in the remainder of this chapter.



3.2 Data Set Summary

A basic understanding of the data set is needed before the initial investigation starts. Useful

information to know about the data set includes:

1. Type of process (batch, continuous, etc.).

2. Number of recorded observations.

3. Number and types of variables.

3.3 Missing Data Analysis

3.3.1 Missing Data Detection

Missing data is detected and characterized first since it can complicate the detection of other

features. Partially missing observations are usually detected while loading the data, but

completely missing observations may be harder to detect. Sometimes completely missing

observations can be discovered by scrutinizing identification variables such as serial numbers

or plotting the variables versus time.

3.3.2 Missing Data Characterization and Interpretation

Missing data can be characterized in terms of the variable number and observation number

for each missing value. Patterns of missing data (such as several consecutive observations

missing the same measurements) may emerge. Combining this information with engineering

knowledge of the process and measurement system should provide an understanding of the

cause of the missing data.

3.3.3 Treatment of Missing Data

The treatment of missing data depends on the type of analysis being conducted and the

mechanism causing the missing data. Little and Rubin [5] describe maximum likelihood

approaches for data sets with partially missing observations. Other possibilities for dealing

with data containing partially missing observations include the following:

1. Remove the partially missing observations.



2. Remove the partially missing variables.

3. Remove a combination of observations and variables such that the number of retained

measurements is maximized. An example of a "greedy" algorithm used to pick which

observations and variables to remove is the following. For a given number n, remove

the n variables with the most missing measurements and then remove the remaining

partially observed observations. Find the maximum number of retained measurements

as n ranges from 0 to P (the total number of variables).

Completely missing observations can either be ignored (for outlier detection and process-

to-product modelling) or filled in with estimates based on earlier and later observations (for

time-series modelling). In any case, missing data represents a loss of information, and the

causes of missing data should be eliminated if possible.

Estimating the covariance matrix and mean in the presence of partially missing obser-

vations is one example of the accomodation of missing data. The solution to this problem

is to use the EM algorithm described by Little and Rubin. [5, ch. 7]

The EM algorithm is a two step iterative procedure for obtaining the maximum like-

lihood estimates of the sample covariance matrix and the sample mean. For an assumed

normal distribution, the EM algorithm proceeds as follows:

1. Starting state: initially use estimates based on the completely recorded observations.

2. E: estimate the missing values based on the current estimates of the mean and covari-

ance matrix and keep track of the variance of the estimates.

3. M: compute new maximum likelihood estimates based on the filled-in data set and

add corrections to the covariance matrix to take into account the use of estimates.

4. Stopping state: stop when the largest percentage change in any of the parameters is

less than some number like 1%.

The method for computing the estimates is least squares estimation based on the

recorded values:

Xij,miss =- Xj,miss + Smiss,obsSobs (Xj,obs - Xj,obs)



where t is the current iteration. The corrections to the new estimate S are based on the

variance of the least squares estimator:

Serror = Smiss - Smiss,obsSobs- 1 miss,obs

Many times the variables in manufacturing data are highly correlated and Sobs is sin-

gular. In that case, the least squares estimator can be based on a modification of the

pseudoinverse. Sobs can be decomposed as

Sobs = QAQT

where Q contains orthonormal eigenvectors of Sobs and A is a diagonal matrix containing

the eigenvalues of Sobs. The inverse of Sobs is then

S- = QA-'1Q T

When an eigenvalue in A is less than a threshold value (say 10-12), the corresponding

element in A-' is set to zero. This basically amounts to projecting the data onto the

subspace spanned by a subset of the principal components, inverting the matrix, and then

projecting back to the original space.

3.4 Initial Outlier Analysis

3.4.1 Outlier Detection

If there are N observations with P measurements, each observation could be thought of as

a point in P-dimensional space. Thus, potential outliers are those points which "stick out"

from the main cluster of points. One way to measure the extremeness of a given observation

is to order the observations according to a measure of its distance from the mean. [1, p.

306]

Typical manufacturing data sets contain many different types of measurements with

different units and scales. Since multivariate measures of distance are combinations of all

the measurement variables, each variable should be scaled to eliminate the effect of the

choice of units and to give each variable equal weight. [2, p. 78] Usually, the variables are



normalized to unit variance, but there are other possibilities for scaling. For example, if

the variance of the inherent random 'noise' for a variable is known, the variable could be

normalized to unit noise variance.

One measure of distance commonly used for find outliers in manufacturing data is the

univariate number of standard deviations from the mean:

Z =xij - Xj
zii = -

Si

where xij is the value of variable j for observation i, 5j is the sample mean of variable j,
and sj is the sample standard deviation of variable j. All observations with zij > K for

a given constant K lie outside a P-dimensional cube centered at the sample mean. This

approach will work fine for identifying gross outliers (just make K large) but will probably

be misleading and less effective when the variables are correlated as in most manufacturing

data sets.

In terms of a probability model, the measurements from manufacturing data sets are

usually assumed to arise from a multivariate normal distribution. A natural measure of

extremeness in this case is in terms of P-dimensional ellipsoids of constant probability. An

appropriate statistic is
P 2

d?= =lR-z Z it
i1 Ci

where zi is the vector of zij for observation i, R is an estimate of the correlation matrix, puj

is the value of principal component i for observation j, and ci is the variance of principal

component i. All observations with di > K for a constant K lie outside an ellipsoid centered

at the origin with axes along the principal components determined by R. The statistic d,

can be called the "normalized" distance since it is equivalent to computing the Euclidean

distance after the principal components have been normalized to unit variance.

One difficulty with outlier identification is that the very statistics used to detect outliers

can be distorted by the outliers. To overcome this problem, outlier-robust estimates z*, s*,

and R* can be used in place of the usual estimates of the mean, standard deviation, and

correlation matrix for scaling the data and computing zi*j and di 2.

Barnett and Lewis discuss many possibilities for robust estimates of the mean, variance,

and covariance matrix. [1, p. 273-283] In this thesis, robust estimates of the mean and

standard deviation were obtained by symmetric 5% trimming for the initial scaling of the



variables. This means that the values for each variable were sorted, and the estimates were

based on the measurements remaining after the largest 5% and smallest 5% of the values

were removed.

Estimates of the correlation matrix can be distorted by the presence of observations

which break the correlation pattern of the data in addition to the presence of very extreme

values. In this thesis, robust estimates were obtained with a 2 step trimming procedure.

The first step in arriving at the robust estimate R* is to get an initial estimate R*

based on the observations remaining after the gross outliers are removed. Observations

with zij > 10 are considered gross outliers.

The next step is to detect the observations with di 2 > K (with d&2 computed using

R*) as the next tier of outliers. The values of di 2 should be plotted for each observation,

and K should be chosen to identify the observations with distinctly larger di 2 than the

majority. Ideally the value of K should be chosen based on the probability distribution

of d 2i , but that option is impractical for high-dimensional manufacturing data sets with

unknown numbers of outliers and missing measurements. For this thesis, the value of K

was chosen based on a visual display of di2 for each observation. The final estimate R* is

based on the observations which remain after both the gross outliers and the next tier of

outliers are removed.

Another scenario which must be considered is the presence of missing data in addition

to the possibility of outliers. Little suggests an approach combining the EM algorithm

to accomodate the missing data with a maximum likelihood type estimator (M-estimator)

to accomodate potential outliers. [4] However, Barnett and Lewis mention difficulties with

M-estimators for high-dimensional data. [1, p. 275-281] For the case studies in this thesis,

robust estimates were computed as follows:

1. * and s*-estimates based on 5% symmetric trimming of the recorded measurements

for each variable.

2. R*-four step process

(a) Remove observations with z4 > 10.

(b) Estimate R* and t* with the EM algorithm discussed in the previous section on

missing data analysis.



(c) Remove observations with d 2 > K where K is determined as in the previous

paragraph.

(d) Estimate R* and * with the EM algorithm.

3.4.2 Outlier Characterization

Observations with extreme values of di 2 can be characterized in terms of the original vari-

ables on which they are extreme if any. A measurement is considered extreme if zij > 2.

Patterns of outliers may emerge from this information. For example, several outliers may

be extreme on the same subset of variables-implying that they may have the same cause.

Another example is a group of outliers which have the same value for a categorical variable.

For example, the categorical variable could be carrier number, and all products held by a

broken carrier could be outliers.

Outliers can also be characterized in terms of the principal components on which they

are extreme. An outlier may be extreme on one of the principal components while not being

extreme on any of the original variables.

3.4.3 Interpretation of Outliers

Based on knowledge of the specific process under consideration and the outlier characteri-

zation, the cause of each extreme value is investigated. Observations which are outlying on

many variables probably reflect something happening in the process. Outliers on only one

variable may be measurement or recording errors. According to MacGregor and Kourti [6,

p. 406], the outliers which are extreme only on principal components with low variances

may very well be random "noise".

3.4.4 Treatment of Outliers

The treatment of outliers depends both on the type of analysis and the probable causes of

the outliers. The following are several types of analysis and the corresponding treatment of

outliers:

1. Process-to-product model

* remove clearly erroneous observations

* consider modelling distinct groups of outliers by themselves



2. Inherent variation model

* remove clearly erroneous observations

* remove any outliers with an assignable cause

* remove any outliers thought to correspond to bad product

3. Time-series analysis

* replace clearly erroneous observations with estimates

* remove effects of outliers with assignable causes not of interest

3.5 Analyzing Other Features

3.5.1 Detecting other features

Visual inspections of multivariate data general fall into three categories:

1. Plots of original variables.

2. Plots of projections of the data.

3. Plots of computed statistics.

These visual inspections are meant to detect possible features in the data which may then

be scrutinized in greater depth.

First, the variables are plotted by observation number or time to get a feel for the

nature of the data. Also, the variables can be superimposed on the same graph to reveal

features that occur in several variables simultaneously. (The variables may need to be

scaled and centered so they can be easily compared.) Several features to look for include

outliers, excursions, drifts, periodic time behavior, clustering, and skewed distributions.

Two- or three-dimensional scatter plots are also investigated for meaningful combinations

of variables such as spatial coordinates.

The principal components are orthogonal projections of the data based on the covariance

or correlation matrix. The first principal component is the projection of the data which

has the largest variance. The second principal component is the projection with the largest

variance subject to the constraint that it must be uncorrelated with the first principal

component, and so on.



The following procedure can be used to compute the principal component values for

each observation:

1. Decompose the covariance (or correlation) matrix of the measurement variables:

S = QAQT

where Q is an orthonormal matrix with the eigenvectors of S for columns, and A is a

diagonal matrix containing the eigenvalues of S.

2. Create Q. by reordering the columns of Q so that the first column of Q. is the

eigenvector corresponding to the largest eigenvalue of S, the second column of Q. is

the eigenvector corresponding to the second largest eigenvalue of S, and so on.

3. Compute the principal component values pi from xi (the measurements for observation

i):

pi = Q x,

The text by Krzanowski and Marriott contains some discussion of principal components in

addition to an alternate procedure for computing them. [2, Ch. 4]

Plots of the first few principal components either with respect to time or each other

usually show the source(s) of greatest variation in the data. Features typically captured by

the first few principal components include excursions, clustering, and drifts.

The definition of the principal components is determined by the correlation matrix.

Thus, a robust version of the correlation matrix may be used to get a robust set of prin-

cipal components. A method of getting such a robust correlation matrix has already been

described in the context of outlier detection. The interpretation of the robust principal

components is that they capture the variation in the main population while the standard

principal components capture the variation in the complete data set. In general, both types

of principal components should be computed and any differences should be investigated.

Finding interesting projections of the data is the problem addressed by the field of

projection pursuit. [2, p. 92-100] Most of these methods try to find the optimum of some

criterion (such as nonnormality) over all possible projections of a given dimension.

Another method which results in projections of the data is partial least squares (PLS).

PLS provides projections of the data onto a set of orthonormal vectors much like principal



components, but the PLS projections are chosen to best predict the variation in another

data set rather than to best explain the variation in the original data set. [6, p. 407]

3.5.2 Feature Characterization

If the data set has clusters, an investigation is undertaken to see if any combination of the

categorical variables explains the clusters. For instance, each cluster in data from a batch

process may correspond to a different batch number. If the clusters are not explained by the

categorical variables, the original variables which show the clustering should be investigated.

Time-series features in manufacturing data may include drifting, periodicity, mean shifts,

and excursions. These features are characterized according to the principal components and

original variables on which they appear, as well as start and stop times, frequency content,

amplitude, shape, and regularity.

If certain variables appear to have a skewed probability distribution, the first step is

to understand the type of measurement the variable represents. If the variable is a mea-

surement of a physical quantity such as temperature or pressure, the direction of skewing

should be useful in understanding the cause. On the other hand, measurements of length or

distance and discrete counts may naturally tend to have skewed distributions. The variables

which naturally skewed distributions may be transformed before further processing. [2, p.

59-64]

3.5.3 Treatment of Features

As with the treatment of outliers and missing data, the treatment of the other features

in the data depends on the type of analysis being conducted and the interpretation of the

features.

For instance, both process-to-product modelling and control settings to process mod-

elling seek to model all excursions, clusters, and outliers which reflect genuine process op-

erating regions. Thus, these features should be retained while outliers due to measurement

errors should be removed. On the other hand, inherent variation modelling focuses on one

operating region, and all observations from other operating regions should be removed. [6,

p. 412]

Time-series analysis usually requires an iterative approach. Gross outliers may need

to be replaced with estimates before a drift is characterized. The drift may need to be



subtracted from the data before a periodic component can be characterized, and so on.

3.6 Other Approaches

Some other methods besides those discussed in the preceding sections were initially con-

sidered but were not pursued in depth. The two primary methods in this category were

ordered interpoint distances and Andrews' curves [2].

The ordered interpoint distances methods represents each observation with a curve based

on the ordered distances between the given observation and all the other observations in the

data set. Thus, the value of the curve at point n for a given observation is the Euclidean

distance between that observation and its nth nearest neighbor. The motivation for using

ordered interpoint distances plots was to detect outliers and clustering in the data. The

reason this method was not pursued was that the robust normalized distance from the

mean was more effective for detecting outliers, and scatter plots of principal components

were more effective at detecting clusters.

Andrews' curves also represent each observation with a curve. The value of each point

of the curve can be thought of as a 1-dimensional projection of the data. [2] Andrews' curves

were not pursued because there was no reason to suppose that the projections given by the

Andrews' curves would reveal the main features in the data better than the 1-dimensional

projections given by the principal components.

3.7 Summary

The initial data analysis of a historical data set provides information about the main features

of the data. This information serves as a springboard for further investigation of the data.

Features of interest include outliers, missing data, time-series behavior, clustering, and

variables with skewed probability distributions.



Chapter 4

Web Process Case Study

4.1 Data Set Summary

The data for this case study came from a continuous web process for producing long sheets

of product packaged as rolls. The first data set contains data from a scanner which recorded

information about spot defects in the product. The second data set contains in-line settings

and measurements. Both data sets were recorded over the same time period.

The data sets are summarized in Table 4.1. For the scanner data, each observation

corresponds to one defect detected by the scanner, and the two categorical variables are

the roll number and defect type. The identification variable for the in-line measurements

specifies the observation number, and some of the in-line measurement variables are switch

settings or statistics computed from the measurements.

Table 4.1: Web Data Summary
Data Set Observations Variables

Name
Scanner 14961
In-line 2880

ID Categorical Time Location Measurement
0 2 1 2 4
1 0 1 0 359

4.2 Scanner Data

4.2.1 Missing Data Analysis

The scanner data did not contain any partially missing observations. Completely missing

observations were practically impossible to detect since the observations were not recorded



regularly but rather whenever a defect arrived. Defects were recorded only while a roll was

being produced so there are some relatively long time intervals with no recorded defects.

4.2.2 Initial Outlier Analysis

Outlier Detection

Figure 4-1 shows the robust normalized distance di 2 (discussed in Chapter 3) for the mea-

surement variables of each observation. A large excursion in the middle of the data is clearly

visible. Another smaller excursion occurs after the large one.
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Figure 4-1: Robust normalized distances for the scanner data.

Outlier Characterization and Interpretation

Investigation of the observations with the largest values of di 2 revealed that the majority

of them were of the same defect type. It turned out that part of the definition of the defect

types related to the size of the defect. Since the measurement variables predominantly

measured defect size, it was not surprising that the observations with the largest normalized

distance from the mean were mostly of the largest defect type. However, it was interesting

that the largest defects seemed to appear in only two sections of the data instead of sprinkled

throughout the data set.

(



Treatment of Outliers

Since the nature of the excursions in Figure 4-1 was known to be related to size, all the

observations were kept and investigated for further features.

4.2.3 Analyzing Other Features

Detecting Other Features

Since there were only nine variables, each variable was individually plotted. One feature

which surfaced from this initial investigation was that the majority of the defects (over

8000) were from roll 29. Another feature was that defects tended to occur in the same

locations across the web, forming streaks down the web (see Figure 4-2). Note also the

streaks across the web near times 30 and 58.
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Figure 4-2: Defect location across the web versus time.

Plotting principal components failed to reveal additional features. The first principal

component revealed basically the same information as the three highly correlated measure-

ments of size, while the second principal component showed the position across the web.



Feature Characterization

First, the relatively large number of defects in roll 29 were investigated. The initial problem

was to determine where and when the defects occurred. To that end, the defects were plotted

by position across the web versus time as shown in Figure 4-3. This plot revealed several

evenly spaced streaks across the web at the end of

between the streaks.
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Figure 4-3: Defects at the end of roll 29.

The next problem was to understand the nature of the defects in the streaks across

the web in roll 29. Which types of defects occured in these streaks? Table 4.2 shows the

distribution of the defects by defect type. Further investigation showed that the defects

sprinkled between the streaks were of types 44 and 45. Also, defects of types 42, 43, 46,

and 94 were found in each streak and were not confined to specific positions across the web.

Table 4.2: Streaks in Roll 29
DefectType 35 42 43 44 45 46 47

Number of Defects 1 2354 902 23 22 3479 1362

The next feature to characterize was the streaking along the web corresponding to the

defects which occurred at the same position across the web. Plotting the positions of the

defects across the web versus time showed that these streaks continued throughout the data
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collection time period. A count of the number of defects in each streak revealed that there

were ten streaks with more than 100 defects (one streak had 1449 defects) and another six

with more than 50 defects.

The next step was to investigate the streaks individually. There did not appear to be

any pattern in the arrivals of the defects in a given streak, and a X2 goodness-of-fit test [3,

p. 138-144] was performed to see if the number of defect arrivals in disjoint time intervals

followed a Poisson distribution. An acceptance of the Poisson distribution hypothesis would

imply that the defects arrived randomly in the sense that the number of defects arriving

in a given time interval could not be predicted. The results were inconclusive as shown in

Table 4.3.

Table 4.3: Test of Poisson distribution: streak along the web
Location Time Number of Acceptance/Rejection of Poisson distribution
of Streak Interval Intervals at a 1% level of significance

1.7750 T 2516 rejected
1.7750 5T 501 accepted
1.7750 10T 214 accepted

The types of defects in the streaks were also considered. It was found that the streaks

along the web consisted primarily of defect types 44 and 45 with one or two defects of other

types included occasionally. Were the defect types 44 and 45 related in some way? In each

of the streaks with the five largest number of defects, there were over twice as many defects

of type 44 than those of type 45 so there was no one-to-one correspondence. Additionally,

plots of defect type versus time revealed no repeated patterns suggesting that one type of

defect followed the other.

Interpretation and Treatment of Features

Over 80% of the defects are accounted for by the streaks across the web at the end of roll 29

and the ten largest streaks along the web. Possible explanations for these streaks include

protrusions on rollers or drips from machinery. These features are treated as the primary

focus of the data analysis since the goal of looking at this data was to understand the causes

for the defects.



4.3 In-line Data

4.3.1 Missing Data Analysis

The in-line data had no partially missing observations. Checking the sequence of sample

numbers revealed that there were no completely missing observations either.

4.3.2 Initial Outlier Analysis

Outlier Detection

Before computing the distance from the mean, the 29 measurement variables which were a

constant value throughout the time period were removed. These constant variables added

no information about the variation in the data, but they did make the correlation matrix

singular.

Figure 4-4 shows the normalized distance from the mean, d2 , for each observation. Two

excursions are the most prominent features in this plot. Also, there are several isolated

points which "stick out" as well as an outlier "cloud" which sticks above the main popula-

tion.
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Figure 4-4: Multivariate distance from mean.

Figure 4-5 shows the robust normalized distance from the mean, di 2, for each observa-

tion. This plot shows the two excursions as well as three very extreme outliers. It turned out

that these three observations contained the only three measurements which were different
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on an otherwise constant variable.

The majority of the values for the robust normalized distance from the mean are about

200 while the majority of the values for the standard normalized distance from the mean are

over 400. This occurred because the large excursion moved the estimate of the sample mean

away from the main population. This example shows the benefits of robust analysis-the

removal of the effects of a few extreme samples.
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Figure 4-5: Robust multivariate distance from mean.

Outlier Characterization

Figure 4-6 and Figure 4-7 compare d2 with di2 . The circled points in both plots are the

same observations and so are the asterisks in both plots.

The observations flagged by d 2 occur near the edges of excursions while the observations

flagged by d? seem to appear randomly throughout the time interval. Thus, the two statis-

tics give different results. The outliers at the edges of excursions have a straightforward

explanation, but the outliers found using d? need further investigation.

One way to characterize outlying observations is in terms of the principal components on

which they have extreme values. Figure 4-8 shows the principal component values greater

than two standard deviations from the mean for the observations with d2 > 650.

Principal component 321 seems to have an unusually large number of outlying values.

Also, the outlying values on principal component 321 seem to correspond to the outlier

I
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Figure 4-6: Normalized distance from the mean. The circled observations have d2 > 650
but di 2 < 250. Asterisks have di 2 > 250 but d2 < 650.
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Figure 4-8: Principal component values more than 2 standard deviations from
the observations with d2 > 650.

3000

the mean for

cloud under investigation. Figure 4-9 shows principal component 321. The circled points
specify the same observations as the circled points in Figure 4-6 and Figure 4-7. This one

principal component seems to explain the majority of the discrepancy between di2 and di2.
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Figure 4-9: Principal component 321. The circled observations have ci > 650 but di 2 < 250.

Each principal component is a linear combination of the measurement variables, so one

way to interpret a principal component is in terms of the variables with the largest weighting.

The loadings of each variable for principal component 321 are shown in Figure 4-10.

The dominant variables are variables 12 and 14-which are highly correlated. Thus,

d? picks out observations whose measurements on variables 12 and 14 are slightly different

while d' 2 does not.
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Figure 4-10: Principal component loadings.

Figure 4-11 shows the measurements more than two standard deviations from the mean

for observations with d2 > 650. The large excursion prior to observation 500 occurs on

the majority of the variables while the smaller excursion near observation 1300 occurs on

relatively few variables. The number of variables on which a feature occurs serves as an

upper bound to the dimensionality of that feature.
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Figure 4-11: Measurements more than 2 standard deviations from the mean
vations with d2 > 650.

for the obser-

Figure 4-12 shows the measurements greater than two robust standard deviations from

the mean for the observations with di 2 > 250. This plot shows many more outlying mea-

surements than Figure 4-11. The reason for this is that the larger excursion masked other

features by inflating the standard deviation estimates. Thus, the robust statistics seem to
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give a clearer picture of the nature of the outlying measurements in this case.
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Figure 4-12: Measurements more than 2 standard deviations from the mean for the obser-
vations with d!2 > 250.

Interpretation of Outliers

Knowledge of the process revealed that the excursions had an assignable cause. It turned

out that the excursions were more of a symptom of process maintenance than a prediction

of process problems. Engineering knowledge about variables 12 and 14 should determine

whether the outlier cloud in Figure 4-4 is meaningful or whether it represents random

"noise".

Treatment of Outliers

Since the postulated cause of the excursions is unrelated to normal process operation, prob-

ably the best thing to do is to remove the excursions before proceeding with any further

analysis. The outliers due to differences between variables 12 and 14 should probably be

treated as valid observations if it was determined that they represent random noise.
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4.3.3 Analyzing Other Features

Detecting Other Features

The principal components showed definite time-series behavior. For example, Figure 4-13

shows the first principal component values for each observation. A drift is clearly visible in

addition to a large excursion.
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Figure 4-13: First principal component.

Figure 4-14 shows the robust first principal component values. The drift is much more

pronounced in the robust first principal component than in the standard first principal

component. The reason for this is that the large excursion dominates the first several

regular principal components while the robust principal components are based effectively

on the remainder of the data set after the large excursion is removed. Again the benefits of

robust analysis are evident.

30

20

10

0

-10

-20

--300- 1OOS 500 1000 1500
Observation #

2000 2500 3000

Figure 4-14: Robust first principal component.
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Feature Characterization and Interpretation

The time-series behavior of the principal components can be characterized in terms of the

variables with the highest weights in determining the particular principal component. These

variables can then be plotted for visual inspection by someone familiar with the process.

Further steps require a time-series analysis.

Treatment of Features

The treatment of the time-series nature of the data depends on the type of analysis being

conducted. Inherent variation modelling would typically require that drifts and periodicities

be removed. Process-to-product modelling may call for no special treatment of the time-

series features.

Since the goal for this particular data set was to explore the nature of the web defects,

the features in the in-line data were compared (in terms of beginning and ending times)

with the patterns of the defects in the scanner data. The large excursions were found to

coincide with time periods when the scanner was turned off, but no correspondence between

the in-line features and the patterns in the defects was found.

4.4 Discussion

The initial analysis of the scanner data showed definite patterns in the web defects-streaks

along the web and across the web. Identifying and eliminating the causes of these patterns

would yield a great decrease in the number of defects.

Although no relationship was found between the features in the in-line measurements

and the patterns in the scanner data, the features in the in-line measurements may be

related to other quality measurements. A follow-on analysis should explore this possibility.



Chapter 5

Assembly Process Case Study

5.1 Data Set Summary

The data from this case study came from the split assembly process shown in Figure 5-1.

Dimensional measurements are taken on the two components (B and C) and on the final

product (A). The data sets include measurements for two product types (P1 and P2), each

produced on split assembly processes.
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Figure 5-1: Assembly process diagram

A description of the data sets is given in Table 5.1. The categorical variables specify



Table 5.1: Assembly Data Summary
Data Set Recorded Identification Time Categorical Measurement

Name Observations Variables Variables Variables Variables
P1-C 1175 1 6 4 12
P1-B 1231 1 6 4 13
P1-A 1229 1 6 3 75
P2-C 1241 1 6 4 14
P2-B 1301 1 6 4 15
P2-A 1300 1 6 3 69

Table 5.2: Missing Data Summary-Assembly Data
Data Set Completely Missing Partially Missing Completely Recorded Total

Name Observations Observations Observations Observations
P1-C 57 668 507 1232
P1-B 1 590 641 1232
P1-A 3 658 571 1232
P2-C 62 104 1137 1303
P2-B 0 473 830 1303
P2-A 3 737 563 1303

the path (the combination of machines such as B1-B3 or B1-B4) through the split process

as well as model number and carrier number.

5.2 Missing Data Analysis

5.2.1 Missing Data Detection

The initial process of loading the data revealed many partially missing observations. In

addition, a comparison of the identification numbers for the three data sets related to a

given product (such as P1-A, P1-B, and P1-C) revealed several completely missing observa-

tions. In addition, several clearly erroneous observations (from a different time period and

randomly inserted in the data set) were removed at the outset.

5.2.2 Missing Data Characterization

Table 5.2 summarizes the missing data in each data set in terms of the number of completely

missing, completely recorded, and partially missing observations.

As an example, Figure 5-2 shows the missing measurements for the P1-C data in terms

of the specific variables and observations which had missing values. One interesting pattern



is that many pairs of variables are missing from exactly the same observations (variables

17 and 18, variables 14 and 15, and variables 12 and 13). Also note that many of the

completely missing observations are consecutive.

20

•15

C•
Co

10

5

n

0 200 400 600 800 1000 1200
Observation #

Figure 5-2: Missing data summary for P1-C data.

5.2.3 Missing Data Interpretation

The following are two causes of partially recorded observations:

1. Misalignment of the component or product in the measurement device. (This can

explain the pairs of variables missing on the same observations. One variable could

be horizontal displacement and the other vertical displace of a particular product

feature.)

2. Garbling two observations during the data recording and storage process.

The first cause was revealed by asking someone familiar with the process, and the second

cause was observed when loading the data. Both causes would seem to imply that the

recorded measurements are a representative sample.

Discovering the cause of the completely missing observations also requires knowledge of

the process and measurement system. The most likely guess is that the data was lost in

the recording and measurement system since final product measurements (the A data) were

recorded for most of the completely missing observations in the C data.



5.2.4 Treatment of Missing Data

The treatment of missing data depends on the which type of analysis is being done. Some

suggestions for the following types of analysis include:

1. Process-to-product modelling-fill in estimates for the partially missing observations

and ignore the completely missing observations.

2. Inherent variation modelling-same procedure as process-to-product modelling.

3. Time-series analysis-fill in estimates for partially missing observations. The P1-C

and P2-C data have many consecutive completely missing observations so the data

may need to be split into two time intervals corresponding to before and after the

missing observations.

5.3 Initial Outlier Analysis

5.3.1 Outlier Detection

Figures 5-3, 5-4, and 5-5 show values of the robust normalized distance from the mean d 2

for the P2-A, P2-B, and P2-C data, respectively. The statistic di 2 for each observation was

computed as described in Chapter 3 using K = 250 for the P2-A data and K = 60 for

the P2-B and P2-C data. The circled data points in each figure specify the most extreme

observations in the P2-A. In this way, the question of whether good parts (B and C data)

can make bad product (A data) or bad parts can make good product is addressed.

5.3.2 Outlier Characterization and Interpretation

In addition to describing the outliers in terms of the variables on which they have extreme

measurements, the outliers can be characterized in terms of the data set(s) (A, B, or C) in

which they were identified. Thus, observation number 1217 may have a large value of d 2

in data P2-C but a normal value in P2-A.

The figures showing di 2 for the P2 data seem to indicate that bad parts can indeed make

a good product and good parts can make a bad product. Two other possible explanations

are the following:
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Figure 5-3: Robust multivariate distance from the mean
are the observations with di 2 > 200 for the P2-A data.
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Figure 5-4: Robust multivariate distance from the mean for the P2-B data. Circled points
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Figure 5-5: Robust multivariate distance from the mean for the P2-C data. Circled points
are the observations with di 2 > 200 for the P2-A data.

1. The variables measured for P2-A are unrelated to the variables measured for P2-B

and P2-C.

2. The outliers reflect errors in measurement or recording.

Knowledge of the particular process and measurement system is needed to completely de-

termine the nature of the outliers.

5.3.3 Outlier Treatment

The treatment of the outliers depends on the subsequent data analysis. Outliers with

assignable causes can be addressed separately from the main population for process-to-

product modelling, removed or downweighted before inherent variation modelling, or re-

placed with estimates for time-series analysis. Gross outliers which likely correspond to

erroneous measurements should generally be removed before further analysis.

5.4 Analysis of Other Features

5.4.1 Detecting Other Features

Figures 5-6, 5-7, and 5-8 show the first and second robust principal components for the

P2-A, P2-B, and P2-C data, respectively. Each scatter plot clearly shows clustering in the

•4
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Figure 5-6: First two principal components of the P2-A data. The circles
while the asterisks are from A2.

Figure 5-6 shows distinct clustering between the two process paths.
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Figure 5-7: First two principal components of the P2-B data: 'o' from path Bl-B3, '*' from
B1-B4, 'x' from B2-B3, and '+' from B2-B4.

Figure 5-7 also shows distinct clustering between the process paths. However, the clus-

tering is more distinct between process steps 3 and 4 than between process steps 1 and 2.

This agrees with intuition because steps 3 and 4 come after steps 1 and 2.
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Figure 5-8: First two principal components of the P2-C data: 'o' from path C1-C3, '*' from
C1-C4, 'x' from C2-C3, and '+' from C2-C4.

Figure 5-8 shows clusters based on process steps C3 and C4 but not on steps Cl and

C2. None of the categorical variables could explain this clustering so one conclusion is that

a relevant variable has been left out of the data set. In order to see if steps Cl and C2

could be separated, a linear regression was performed against a vector that had ones where

the product went through C1 and zeros when it went through C2. Figure 5-9 shows that

the resulting linear combination of the variables does indeed show clustering based on C1

and C2.

5.4.2 Feature Characterization and Interpretation

As has already been mentioned, the clusters in all the data sets except P2-C corresponded

to the process paths. The clusters in P2-C showed a separation between steps C3 and

C4, but also showed clustering which could not be explained with the categorical variables

included in the data set. This mysterious clustering came from measurement variables 19

and 20.

5.4.3 Feature Treatment

One logical treatment of the clusters is to address each cluster individually. Thus, a process-

to-product model may be different for each process path. Another possible treatment of
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Figure 5-9: One dimensional projection of the P2-C data which shows clustering based on
Cl and C2: 'o' from path C1-C3, '*' from C1-C4, 'x' from C2-C3, and '+' from C2-C4.

clusters is to center each cluster at a common point-in effect combining all the clusters

into one.

5.5 Discussion

The preliminary analysis described in the previous sections provides information about the

assembly process which can be used as a basis for further analysis. The next few paragraphs

discuss the implications of the missing data, outliers, and clustering.

All of the data sets had missing measurements. An investigation of the measurement

and recording procedures may lead to an understanding of the causes for the partially

and completely missing observations. Improvements in the measurement and recording

procedures to reduce the amount of missing data would increase the quality of the data

analysis because the missing measurements are a loss of information.

One primary question about the outliers is whether or not they correspond to "bad"

products. If they do represent bad products, the outliers can be used to detect problems

with the process. On the other hand, if the outliers represent measurement or recording

errors then they can be used to evaluate the measurement and recording procedures.

The clusters in the data represent a major source of variation in the product. In all the

data sets except P2-C, each cluster reflected on of the possible process paths. Investigating

A A



the measurement variables which best show the differences between clusters would be one

step toward reducing this variation.

If the variation between clusters is acceptable, the clusters can be used to provide

information about the individual process paths. For instance, a problem with a specific

process machine would only affect some of the process paths. Monitoring each process

path separately could lead to the identification of the broken machine from post-process

measurements.



Chapter 6

Batch Process Case Study

6.1 Data Set Description

This case study deals with a data set containing end-of-line measurements on individual

products which are processed in batches. Each observation contains 60 measurement vari-

ables, a categorical variable (specifying the batch number), and an identification variable

(specifying the product within a given batch).

The measurement variables are divided into 2 groups. Two of the measurement variables

are critical to product quality so these variables can be called "output" variables. The

relationship between the output variables and the other 58 measurement variables ("input"

variables) is of interest to the company.

6.2 Missing Data Analysis

While examining the identification variable, it was noted that some observations were com-

pletely missing. Table 6.1 summarizes the missing data. It turned out that the cause for

the missing observations was the removal of very poor quality products before they reached

the end-of-line measurement stage. Since the primary interest in the data was the rela-

tionship between input and output measurement variables, the analysis used the recorded

observations and ignored that fact that some observations were missing.



Table 6.1: Missing Data Summary-Batch Process
Completely Missing Partially Missing Completely Recorded Total

Observations Observations Observations Observations
85 0 2465 2550

6.3 Initial Outlier Analysis

6.3.1 Outlier Detection

Figure 6-1 shows the normalized distance from the mean d2 for the input measurements.

(Chapter 3 contains a discussion on the normalized distance from the mean.) This plot

shows several gross outliers as well as an outlying batch.
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Figure 6-1: Normalized distance from the mean for the input variables.

The robust normalized distance from the mean dý2 for the input variables of each ob-

servation is shown in Figure 6-2. shows that some of the outliers were much more extreme

than Figure 6-1 seems to suggest. The reason for this is that the gross outliers greatly

inflated the estimates of the standard deviation initially used to scale the data.

Another interesting thing to note is that observations 1620, 1933, and 1986 have the

same value for di 2. Thus, these points may form a cluster. Alternatively, these observations

could be completed unrelated since Figure 6-2 only shows distance and not direction.

Figure 6-3 shows the values of d2 for the 2 output measurements of each observation.

This plot also shows several gross outliers, and once again observations 1620, 1933, and
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Figure 6-2: Robust normalized distance from the mean for the input variables.

1986 have the same values.

6.3.2 Outlier Characterization

Figure 6-4 shows the measurements greater than 2 robust standard deviations from the

mean for each of the observations with a multivariate normalized distance, dI 2 > 300. Each

outlier or outlying batch is characterized by the variables on which it "sticks out".

One interesting thing to note in Figure 6-4 is that most of the gross outliers are extreme

on many input variables while the outlying batch is extreme on relatively few input variables.

Also, observations 1620, 1933, and 1986 were extreme on many of the same measurement

variables.

Figure 6-5 shows the input principal component values greater than 2 standard devia-

tions from the mean for the observations with di 2 > 300. Figure 6-6 shows a similar plot

based on the robust principal components.

Comparing Figure 6-5 and Figure 6-4 reveals that the outlying batch is extreme on

many more principal components than measurement variables while the observation 2403

is extreme on fewer principal components than measurement variables. Furthermore, some

observations had extreme principal component values while having no extreme input mea-

surements.

A comparison of Figure 6-5 and Figure 6-6 shows that the gross outliers stick out on
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Figure 6-5: Input principal component values greater than two standard deviations from
the mean for observations with dý2 > 300.
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many more of the robust principal components than regular principal components. The

reason for this is that the regular principal components take into account the variation due

to the gross outliers.

Since there are only 2 output variables, the 2-dimensional scatter plot shown in Figure 6-

7 can represent the data exactly. The main population is located at (0,0), and the gross

outliers seem be located only at certain values for each variable. Observations 1620, 1933,

and 1986 are clustered near 0 for output variable 1 and near 22 for output variable 2.
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Figure 6-7: Scatter plot of the two output variables.

Figure 6-8 gives a closer view of the main population. This plot shows two groups of

outliers plus a positive correlation between the two variables. The group of outliers at the

lower left of the figure turned out to be gross outliers in the input measurements, while the

group of outliers to the upper right of the main cloud of points were from a single batch.

It turned out that the outlying batch in the output was not the same as the outlying batch

in the input.

6.3.3 Interpretation of Outliers

The interpretation of the outliers combines engineering knowledge of the process with the

information found during outlier characterization. Several hypotheses which may need to

be investigated include the following:
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Figure 6-8: The main population in the scatter plot of the two output variables.

1. Observations 1620, 1933, and 1986 have the same cause since they had extreme mea-

surements on the same input variables and output variables.

2. The batch with extreme input measurements did not have extreme output measure-

ments. Thus, the input variables where this batch had extreme measurements are

unrelated to the output variables.

3. The gross outliers which had extreme values for principal components but not for

measurement variables represent random "noise".

6.3.4 Treatment of Outliers

The treatment of the outliers depends on the subsequent data analysis. Some possibilities

include the following:

1. Input-to-output modelling-gross outliers and outlying boats may be removed or mod-

elled separately.

2. Time-series analysis-gross outliers may be replaced with estimates.

3. Inherent variation modelling-gross outliers and outlying boats should be removed.
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6.4 Analysis of Other Features

6.4.1 Feature Detection

Figure 6-9 shows the first and second robust principal components for the input data. The

main feature of the data is distinct clustering of points.
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Figure 6-9: First two robust principal components of the input data. (Gross outliers are off
the graph.)

In contrast to the scatter plot of the first two robust principal components is the scatter

plot of the first two standard principal components shown in Figure 6-10. The clusters are

not clearly distinguishable in this representation of the data.

6.4.2 Feature Characterization and Interpretation

Figure 6-11 shows the first robust principal component values for each observation. The

clustering in Figure 6-9 clearly reflects variation between batches. This variation seems

to have a regular pattern in which 3 or 4 batches drift before being reset. The variation

between batches was evident in almost all of the input and output measurement variables.

6.4.3 Treatment of Features

Different data analyses will require different treatments of the variation between clusters.

For input-output modelling, the clusters should be left intact. On the other hand, inherent
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Figure 6-10: First two standard principal components of the input data. (Gross outliers are
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variation modelling would be more focused on the variation within boats than the variation

between boats. To highlight the variation within boats, the mean can be estimated for each

boat individually and subtracted out.

6.5 Discussion

The exploratory analysis of the batch process data showed that most of the variation in the

data was due to gross outliers and variation between the batches. Based on this information,

possible objectives for further analysis include the following:

1. Determine the causes of the gross outliers.

2. Explain the main sources of variation between the batches.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.1.1 Outliers

Comparisons of visual displays of standard and robust normalized distance from the mean

for each observation showed substantial differences between the statistics based on the

standard estimate of the mean, standard deviation, and correlation matrix and statistics

based on robust estimates. These differences were caused by gross outliers in the data. Thus,

the robust normalized distance from the mean is better suited to initial outlier analysis than

the standard normalized distance from the mean.

Three different types of observations were effectively identified as outliers using the

robust normalized distance from the mean. The first type had extreme measurements on

several variables. The second type of outlier was extreme on only one or two variables.

Finally, the last type of outlier had no extreme measurements but had extreme values for

the principal components with the lowest variances. This kind of outlier was often due to

differences between two highly correlated variables.

7.1.2 Missing Data

Filling out the data set with maximum likelihood estimates based on the recorded values

proved effective for detecting the main features in the data. Maximum likelihood methods

are the treatment of choice for missing data whenever the amount of missing data is not

excessive. Removing complete variables or observations from the data should be considered



only if they have an excessive amount of missing data.

The missing data definitely complicated the data analysis. Several of the causes for

missing data encountered during the research included:

1. Product removed from line at earlier processing step.

2. Information about product written over on the disk.

3. Measurement equipment did not operate correctly.

While little can be done to correct the first cause, eliminating the last 2 causes for missing

data will improve the quality of the data analysis.

7.1.3 Other Features

Both the standard principal components and principal components based on robust esti-

mates of the mean and correlation matrix proved useful for the initial analysis of manu-

facturing data. The standard principal components showed the dominant variation in the

data set-gross outliers in the batch process data, clustering in the assembly process data,

and large excursions in the web process data. On the other hand, the robust principal

components showed variation in the main population which was obscured by the outliers

in the data-clustering in the batch process and drifting in the web process. The standard

principal components and the robust principal components were nearly identical for the

assembly data because the clustering dominated the main population variation as well as

the variation of the main population plus outliers.

7.2 Future Work

One primary area for future work is to develop tools for taking into consideration the

time-series nature of manufacturing data when dealing with outliers and missing data.

For missing data this means basing estimates of missing values on previous and future

observations as well as the current observation. For outliers, this means developing methods

for characterizing drifts and periodicities in the presence of outliers and vice versa.



Bibliography

[1] Barnett, V., and Lewis, T. Outliers in Statistical Data, Third Edition, John Wiley,

Chichester, England, 1994.

[2] Krzanowski, W.J., and Marriott, F.H.C. Multivariate Analysis, Part I, Edward Arnold,

London, 1994.

[3] Leon-Garcia, A. Probability and Random Processes for Electrical Engineering, Addison-

Wesley, Reading, Massachusetts, 1994.

[4] Little, Roderick J.A. Robust Estimation of the Mean and Covariance Matrix from Data

with Missing Values Applied Statistics, 37, No. 1, pp. 23-38, 1988.

[5] Little, R.J.A., and Rubin, D.B. Statistical Analysis With Missing Data, John Wiley and

Sons, New York, 1987.

[6] MacGregor, J.F., and Kourti, T. Statistical Process Control of Multivariate Processes.

Control Eng. Practice. 3, No. 3, pp. 403-414, 1995.


