
An Investigation of

Hardware and Software Mindsets

by

Roy R. Cantu III

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 28, 1996

Copyright 1996 Roy R. Cantu III. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

May 28, 1996

Certified by mCeuiie b v oWanda J. Orlikowski
Thesis Supervisor

Accepted by

OF CH n

JUN 11 1996 r

I 10ADICC'

.

An Investigation of

Hardware and Software Mindsets

by

Roy R. Cantu III

Submitted to the

Department of Electrical Engineering and Computer Science

May 28, 1996

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Given the growing importance of software versus hardware in modern computer systems, it is becoming

increasingly necessary for companies traditionally rooted in hardware development to migrate to a

predominantly software development environment. This migration requires an understanding of how

individuals and organizations view and approach hardware and software. The concept of mindsets

provides a means of characterizing the assumptions, expectations, and knowledge that individuals and

organizations use to understand a technology. This paper introduces the notions of software and hardware

mindsets and applies them in a case study of a computer company, Gamma Corporation, to assess their role

in the migration from hardware to software development. The results revealed congruence in the ways in

which individuals in Gamma approached hardware and software engineering problems and large differences

in the ways in which Gamma's organizational practices and procedures were structured to manage hardware

and software projects. Such structural incongruence appeared to be associated with some difficulties in the

management of software projects at Gamma. Some implications of these results for software and hardware

development are discussed.

Thesis Supervisor: Wanda J. Orlikowski

Title: Associate Professor of Information Technologies

DEDICATION

To my parents for waiting this long.

TABLE OF CONTENTS

INTR O D U CTIO N ... 6

LITERA TU RE REV IEW .. 8

THE CONCEPT OF M INDSETS .. 8

HARDW ARE AND SOFTWARE M INDSETS... 10

H ardware D evelopm ent... 10

Software D evelopm ent... 12

HARDW ARE AND SOFTW ARE M ANAGEMENT.. 13

ORGANIZATIONAL TRANSITION.. 14

RESEA R CH M ETH O DS ... 16

DESCRIPTION OF THE SITE .. 16

DATA COLLECTION .. 17

DATA ANALYSIS .. 18

RESU LTS .. 20

GAMMA CORPORATION BACKGROUND .. 20

M anagem ent Style.. 20

Projects .. 21

Types of Hardware and Software Being Developed.. 21

H ardware and Software Teams... 23

HARDWARE AND SOFTWARE MINDSETS AT GAMMA CORPORATION 24

Approaching H ardware and Software Problem s .. 25

Characteristics of Hardware and Software Projects .. 26

MANAGEMENT PRACTICES AT GAMMA CORPORATION .. 31

Project Schedules... 32

SUMMARY OF GAMMA CORPORATION ... 38

GENERALIZATIONS AND IMPLICATIONS .. 39

PERSONNEL ISSUES .. 39

O RGANIZATIONAL ISSUES .. 40

PROJECT MANAGEMENT RECOMMENDATIONS ... 42

SU M M A RY .. 42

REFERENCES .. 44

APPENDIX A: FIRST ROUND INTERVIEW FORMAT... 47

APPENDIX B: SECOND ROUND INTERVIEW FORMAT.................................... 48

INTRODUCTION

This thesis addresses the cognitive and cultural issues that arise as engineers and

corporations attempt to adapt to the evolving role of developing and managing software

and hardware. An investigation into this area yields answers as to how individuals

approach hardware and software and organize themselves around it. Furthermore, it

provides insight into the organizational changes that are necessary in order for

technological evolution to properly proceed within the organization.

The literature supports the notion that given the phenomenal growth of hardware

computing power, it is software that will continue to demand more and more resources in

the development of modem computer systems. Curtis (1995, p. xvii) describes three

epochs in computer systems development:

In the first epoch only the hardware mattered. Hardware was expensive.
Software was cheap, and so were people who developed it. Only the elite used
computers, and they could master the most arcane of interfaces. Programmers learned
to write programs from wizards. Programs were called 'beautiful' because they used the
hardware artfully, not because most people could use them.

In the second epoch hardware became cheaper and software grew far larger
and more expensive. Swarms of programmers began emerging from the universities.
The growing uses for computers required an avalanche of software. Software
development became a team activity. People were told to manage what had a few years
before been considered an art. Programs were called 'beautiful' because other
programmers could understand them, not because most people could use them.

The third epoch started with Jerry Weinberg's The Psychology of Programming
in 1971. Hardware eventually became a commodity and everyone started buying
personal computers. Having bought computers, they had to figure out how to use them.
Common folk had crashed the ball, but thanks to the complexity of the steps, they couldn't
join the dance. The first mavens of usability design used social science terms like
'software psychology' and programmers paid little attention. Programs will now be
called 'beautiful' because their functionality and interface are usable, and most people
will use them.

As a result of the increasing presence of software, computer development

organizations traditionally rooted in hardware development have had to react quickly so

as not to be left in software's wake. Specifically, the primary problem that has arisen

may be stated as follows: Given the increasing importance of software in the development

and maintenance of modem computer systems, how do organizations -- whose focus for

years has been primarily hardware development -- migrate their culture, practices, and

mindsets of their managers and engineers so that they can effectively produce both

hardware and software? This thesis attempts to explore this problem via a case study of a

computer organization. The organization chosen here, Gamma Corporation (a pseudo-

nym), has been in the hardware development business for over 25 years and has only in

the past five years recognized the increasing importance of software to its business.

Yin states that the purpose of a case study is to answer questions of "how" and

"why" (Yin, 1989, p. 20). Examination of Gamma Corporation provides insight into how

managers and engineers approached and viewed hardware and software development and

the role of both within the organization. The case study also examines the experiences of

this particular organization in its attempt to make the transition from an organization

firmly rooted in hardware to one in which hardware and software coexist.

The ways in which engineers, managers, and organizations approach hardware

and software is analyzed from the perspective of mindsets. Mindsets provide a way of

characterizing the cognitive influences on how individuals and organizations act and

approach issues, and is a concept which is discussed fully in the next chapter.

Having developed the concept of mindsets, the research setting and methodology

will be described. In chapter four, the results are presented and discussed. The thesis

concludes with suggestions for how computer organizations may effectively make the

transitions necessary to support the changing nature of computer systems development.

LITERATURE REVIEW

This chapter provides a literature review of the concept of "mindsets" and how

this concept has been and can be applied to understanding software and hardware

development and management.

The Concept of Mindsets

The literature on social cognition states that individuals act based on their own

interpretations, or frames of reference, of the world (Berger and Luckman, 1967;

Smircich and Stubbart, 1985; Weick, 1979; cited in Orlikowski and Gash, 1994, p. 176).

Gioia describes an individual's frame of reference as "a built-in repertoire of tacit

knowledge that is used to impose structure upon, and impart meaning to, otherwise

ambiguous social and situational information to facilitate understanding" (Gioia, 1986, p.

56). Orlikowski and Gash (1994, p. 178) use the term "technological frame" to identify

"that subset of members' organizational frames that concern the assumptions,

expectations, and knowledge they use to understand technology in organizations." In

particular, they write (1994, p. 175):

To interact with technology, people have to make sense of it; and in this sense-making
process, they develop particular assumptions, expectations, and knowledge of the
technology, which serve to shape subsequent actions toward it.

An individual's perspective on a technology is inherently influenced by his/her

technological frame. This frame is composed of the assumptions, preconceptions, and

knowledge of a technology that will inevitably affect the way in which that individual

approaches a particular technology.

Frames can be shared in the sense that a set of core attributes are seen to be in

common among individuals. This notion is termed "congruence" by Orlikowski and

Gash and can be understood when compared to the concept of inheritance, in which each

individual is distinct but certain base characteristics are shared with a family or parent.

The concept of congruencelincongruence is important with respect to the notions

discussed in this paper. Orlikowski and Gash (1994, p. 180) define the concept this way:

Congruence in technological frames would imply, for example, similar expectations
around the role of technology in business processes, the nature of technological use, or
the type and frequency of support and maintenance. Incongruence implies important
differences in expectations, assumptions, or knowledge about some key aspects of the
technology.

The primary focus of this thesis is to define and understand frames of reference as

they are applied to understanding the development of software and hardware. It is

expected that some incongruence will arise, and that this will need to be identified and

mechanisms proposed for organizations to deal with them effectively. Specifically, the

purpose of this paper is not to propose a new (or variant) method of analyzing people's

attitudes towards technology, but rather to use such already established concepts as

stepping stones that will aid in understanding the specific problems involved with how

individuals and organizations approach hardware and software. The terms that will be

used henceforth are software mindsets and hardware mindsets, where mindset indicates a

specific application of the heretofore described concept of technological frames.

Therefore, I will use the following definitions:

* Software mindset: The underlying assumptions, expectations, and knowledge that

individuals have about software systems and their development.

* Hardware mindset: The underlying assumptions, expectations, and knowledge that

individuals have about hardware systems and their development.

Hardware and Software Mindsets

Humans are "nonmodular." The major problems of our work are not so much
technological as sociological in nature. (DeMarco and Lister, 1987, p. 10)

Weinberg states, in his seminal work The Psychology of Computer Programming,

"that great strides are possible in the design of our hardware and software too, if we can

adopt the psychological viewpoint" (Weinberg, 1971, p. vii). The focus of this section is

to capture the ways in which hardware and software engineering have been portrayed in

the literature. From this literature review, a preliminary model of the technological

frames of hardware and software engineers can be developed. This model can then be

used to explore the results from the empirical case study.

Hardware Development

As described in the introduction, the historical progression of hardware and

software is one in which the rate of hardware performance improvement has outstripped

that of software by orders of magnitude. According to Brooks, "the anomaly is not that

software has been so slow in its progress but rather that computer technology has

exploded in a fashion unmatched in human history" (Brooks, 1995, p. 254). "The up-

front design costs are so high that it's no longer worth it to develop special-purpose

micros for every machine-tool and garage-door opener" (Hargrave, 1996, p. 109). As a

result, the burden of development has been shifting to the software arena where the

expectation is that software can take care of it. Today, hardware is so sophisticated and

multi-purpose that the true challenge lies in developing software that can use it

effectively.

Hennessy and Jouppi state that many of the dominant ideas of computer

architecture and hardware today are old ideas that are resurfacing because of the new

ways in which technology has allowed us to look at hardware (Hennessy and Jouppi,

1991, pp. 18-19):

The field of computer architecture has become quantitatively oriented, with
comparisons driven by performance and cost. Thus, computer architecture is becoming
more engineering and less art.

This shift has not led to a dramatic increase in the number of revolutionary new
ideas. Indeed, many of the dominant ideas in computer architecture in the 1980s were
old ideas. For example, simplified load/store instruction sets go back to the early
supercomputers at Control Data Corp. and Cray Research, while the emphasis on
pipelining goes back to machines like Stretch.

However, computer architecture remains challenging because the changing
implementation technologies constantly alter the trade-offs, leading to reevaluation of
older ideas or the adaptation of existing ideas to a new set of technology assumptions.
Dramatic changes in technology, such as significant increases in integration level and
decreasing memory cost, have been crucial to the development of many new
architectures.

As recently as February 17, 1996, The Boston Globe described MIT scientists

lamenting over the fact that an IBM computer based on "brute force" processing was

markedly better at chess than their machines based on elegant uses of artificial

intelligence. The mechanism used by the IBM computer "is the same 'brute force'

computing that has dominated the computer world for 50 years. In computing, brute

force means simply amassing all the memory and speed possible -- which is considerable,

given the computer industry's dazzling record of doubling memory and speed every 18

months -- and using it to crunch millions of options in the blink of an eye" (Yemma,

1996, p. 1).

Such statements indicate much of the current sentiment toward hardware

development as seen in the literature. Hardware development has reached a level where it

is no longer viewed as an art form but rather as a quantitatively oriented engineering

discipline. Trade-offs in hardware design can be made on the basis of principles and

rules rather than instinct or beauty.

Software Development

The process of developing software for computer systems has been likened to

many things, most of them non-technical in nature:

The process of preparing programs for a digital computer is especially attractive, not
only because it can be economically and scientifically rewarding, but also because it can
be an aesthetic experience much like composing poetry or music. (Knuth, 1968, p. v)

Computer programming is a human activity. One could hardly dispute this assertion,
and yet, perhaps because of the emphasis placed on the machine aspects of
programming, many people -- many programmers -- have never considered
programming in this light. Among programmers, there is a certain mystique -- a certain
waving of the hands which takes place wherever one tries to probe the manner in which
programming is done. Programming is not done in a certain way, they say, it is just
done. Either you can program or you cannot. Some have it; some don't. (Weinberg,
1971, p. 3)

Programming, like music, blends esthetics and technology. The high-level plan, the
middle-level concepts, and the low-level details must be correct and in harmony with
each other. Discordant data structures or missed notations are jarring. (Soloway, 1986,
p. 1)

As can be seen, much literature describes software developers as viewing their profession

as an art, to be practiced as they see fit. Accordingly, pure software development efforts

are not meant to be structured or strictly managed if true innovation is to result.

Structured policies are described as acceptable for traditional software products (e.g. the

development of the world's millionth accounts payable program), but are not to be applied

to more sophisticated development efforts.

Constantine describes the delicate nature in which managers must deal with

"software cowboys" and "lone wolves" who program in sleepless fury without the

constraints of management or data flow diagrams (Constantine, 1995, p. 47). DeMarco

and Lister debunk discussions of a future in which software development will be

automatable:

This is another variation of the high-tech illusion: the belief that software developers do
easily automatable work. Their principal work is human communication to organize the
users' expressions of needs into formal procedure. That work will be necessary no
matter how we change the life cycle. And it's not likely to be automated. (DeMarco &
Lister, 1987, p. 27)

Overall, the literature portrays software development as much less disciplined and much

more flexible and dynamic than hardware development.

Hardware and Software Management

Traditional project development and management leaves software design and

completion as an "afterthought" to the hardware design process (Mittag, 1996, p. 37). As

a result software engineers are prone to believe that hardware engineers are inflexible and

tend to push their problems onto software to fix. Furthermore, the very nature of the

traditional development schedule results in software being the only obviously late

deliverable. It is expected that software can make up for defects in the hardware design,

and that if corners are to be cut, they must be cut in the software development phase,

simply because it is the last phase of the cycle.

Ideas of hardware and software codesign have been gaining favor as it has

becoming increasingly clear that the final activity of traditional systems design schedules

involves writing and debugging the software. The purpose of codesign is to make the

activities of software and hardware development parallel so as to eliminate the "waiting

for hardware" gap seen in the traditional project schedule. Such ideas, although espoused

in the literature, are not often seen in practice.

Organizational Transition

This thesis addresses how organizations can learn to make effective transitions as

shifts in focus between hardware and software become necessary. The delivery of

computer systems that are both on budget and on schedule is a serious problem (Brooks,

1995, p. 5). Difficulties exist in accurately estimating development costs and schedules

and measuring project progress. Furthermore, little thought is given to software

maintenance during the development cycle, even though maintenance is reported to

consume anywhere from 40% to 75% of the software effort (Vessey, 1983, p. 128). The

trend in development costs is that software is accounting for an increasingly greater share

of the costs involved in the development of computer systems (see Figure 1). With the

problems of building computer systems identified and well-documented in the literature,

attention at the organizational level is required in order to mitigate their negative impact

on product development.

- Software
[I Hardware

Iz~~

1970 1975 1980 1985 1990 1995 2000

Figure 1: Hardware and Software Design Costs in Embedded Systems (from
Hargrave and More, 1996, p. 110)

This thesis provides an attempt at identifying mechanisms for realizing many of

the changes that are needed in order to maintain organizational control over computer

systems development efforts. Specifically, the premise is that by identifying and

influencing the frames through which hardware and software developers and managers

approach their roles within the organization, change can be affected. Attempts at

changing the fundamental ways in which organizations operate and develop products will

often meet with resistance. Therefore, it is imperative that any attempts at change

management be conducted with respect to both the economic and sociological impacts

that they will have on the organization.

RESEARCH METHODS

This chapter provides an overview of data collection and analysis methods used in

this study as well as a description of the site at which the study was conducted.

Description of the Site

The study was conducted at a small computer hardware development firm,

henceforth known as Gamma Corporation (a pseudonym). Gamma Corporation is a large

independent supplier of hardware products for large-scale computer systems, and it

generates annual revenues of approximately $50 million. The firm employs 60

employees at its main development headquarters with 20 salespeople distributed globally.

The story of Gamma is one of a company traditionally oriented towards developing

hardware confronted with a large software development effort on its hands. The result

was software that was not maintainable or reliable, and a company in which the social

relationships among and within project teams had significantly deteriorated.

For 26 years, Gamma had developed hardware products for large-scale computer

systems. These products were purely hardware endeavors completed by small teams of

hardware engineers in a number of months. In 1992, Gamma decided to enter a new

multi-billion dollar market with a new product, ProdX (a pseudonym). ProdX

represented the first large-scale product that required a significant software development

effort.

Gamma Corporation uses a matrix management strategy for creating project

teams. The engineering organization consists of the following departments: Advanced

Development (three individuals), Hardware Engineering (eight individuals), Software

Engineering (eight individuals), Engineering Support and Validation (five individuals),

and Mechanical Engineering (three individuals). Project teams are created with a team

leader and personnel from Advanced Development, Hardware Engineering, and Software

Engineering. Teams on average consist of five individuals, and these individuals may

switch between teams on an as needed basis. Mechanical Engineering and Engineering

Support/Validation provides support to all teams.

Outside of engineering, the other departments at Gamma Corporation are: Design

Assurance, Manufacturing/Production, Field Service, Sales/Marketing, and Test

Engineering. These departments provide support for all released products from

engineering.

Data Collection

Interviews were conducted with 15 employees of Gamma Corporation, where the

background and positions included senior managers, managers, engineers, technicians,

and marketers. The interviews were done in two rounds, with the initial round being

more open-ended than the second round. The intent was to take experiences, perceptions,

and other reactions from the initial round, analyze them, and then use them to derive more

structured interview protocols for the second round.

The following guidelines were provided to the interviewee before the interview:

* The name of the company will remain anonymous in this study.

* The name of the interviewee will remain anonymous in this study.

* The interview is voluntary. The interviewee may refuse to do the interview.

* The interviewee may refuse to answer any questions in the interview.

* The management of the company will have no access to the data collected.

The specific interview protocols are presented in the Appendix.

Project data were also collected and analyzed to illuminate the ways in which

hardware and software projects are perceived at the managerial level. Although project

data were not the primary data used in this study, they provided valuable information to

supplement the data generated through interviews. Specifically, development schedules,

where available, proved very useful in discussions involving assumptions about how

hardware and software engineers work and are expected to work.

Data Analysis

The data were analyzed using a combination of inductive and deductive

techniques. Strauss and Corbin (1990) discuss the techniques of open coding and axial

coding. Open coding involves a coding of the data that is derived from the data itself,

with no pre-existing categories defined beforehand. Axial coding provides pre-existing

data categories that the investigator can use before the data are analyzed. The analysis of

the data from this case study of Gamma Corporation involved both techniques.

The literature already suggests concepts of technological frames and mindsets

which are clearly applicable in this particular research. Given this, categories already

exist for analyzing and grouping data according to some of these themes (deductive). In

this case, axial coding was utilized to analyze the data.

However, much of the data that were collected concerned the specific

relationships, congruencies, and incongruencies between hardware and software frames

within Gamma, and these themes were developed using grounded theory (inductive).

Here, techniques of open coding proved very helpful.

First round interview data was analyzed using an iterative approach. The data

were read repeatedly to identify common themes that were suggested by prior work as

well as emerged from the data. New thematic categories were not created unless they

were corroborated by multiple individuals in the study.

Once a set of thematic categories was obtained, a more specific second round

interview protocol was developed with the intent of strengthening and expanding upon

the themes revealed in the first round. Second round interview data were read with the

first round categorizations in mind. Categories that were not supported by new data were

eliminated and where applicable, new categories created that more accurately supported

the data. Certain participants in the study were asked for additional input on various

issues in order to refine the categorizations and interpretation of results. These results are

discussed in the following chapter.

RESULTS

The results chapter discusses the themes that characterize the data collected at

Gamma Corporation.

Gamma Corporation Background

The setting of this research is Gamma Corporation, the largest independent

supplier of hardware products for large-scale computer systems. This section provides

background regarding the nature of work that occurs at Gamma, and offers a view of the

attitudes (and accompanying problems) relating to hardware and software development at

Gamma.

Management Style

The Gamma management style of project development teams emphasizes results

versus planning. Code is generally developed without design reviews or walkthroughs,

and module design and size decisions are left to the discretion of the individual

developer. Milestones are established every few weeks by polling the developers as to

what they believe they can accomplish, and adjusting that by the targets expected by

engineering upper management. A milestone is declared complete when the basic

functionality expected is demonstrated. Little thought or attention is given to the

maintainability of the existing code.

Few upper managers have software experience, and therefore tend to view

projects through the eyes of hardware development. My perception is that buy-in from

upper management of process changes will be more difficult to achieve than buy-in from

the developers or project managers. Gamma upper management is reluctant to place

strong engineers as full-time managers of technical projects, because strong engineers are

in short supply and new engineers require time to train. As a result, most managers at

Gamma have little "hands-on" software or hardware development experience.

Projects

Only four software projects have ever been undertaken at Gamma. Each of these

used C as its high level language with certain modules written in assembly language. One

project (ProdW) has been delivered, although a team is still working on upgrades,

enhancements, and maintenance. Another project (ProdX) is in beta testing with limited

shipments to customers. Some development is still underway on ProdX, and a follow-on

project to ProdX, ProdX+ entered development in October 1995 and has just recently

been put on indefinite hold for lack of resources. A third project (ProdY) was canceled

after two years, recently revived under a new name (ProdZ) and then subsequently

canceled again. The cancellations occurred because the product never demonstrated

acceptable functionality.

ProdX and ProdX+ both used automated scheduling packages to generate

schedules and set development milestones. Copies of these schedules were obtained and

analyzed (see below). Even without analysis, it is well-known within Gamma that ProdX

consistently missed milestones and underestimated the size of the software task at hand.

Types of Hardware and Software Being Developed

As background, it is important to make clear the types of software and hardware

development that the individuals at Gamma Corporation are involved in. The nature of

hardware and software is such that there is a wide spectrum along which a given project

can fall. The employees of Gamma Corporation are experienced in developing hardware

and software at both extremes of the spectrum, but have little experience in developing

hardware and software in the middle areas of the spectrum.

The hardware systems traditionally developed at Gamma are board-level memory

boards. These boards are plug-compatible with existing memory boards made by other

vendors. Each board design typically involves one or two hardware engineers. Such

hardware can be tested with the philosophy that "if it's broke, it's broke." For example,

typical tests involve continuously writing and then reading back memory locations to

ensure data integrity. Other tests require passing pre-defined verification tests and

diagnostics that have been standardized and developed on the host computer system

independent of Gamma's development. Passing these verification and diagnostic tests

provides a very good indicator of whether the hardware system has met its specifications.

This mode of hardware development represents one extreme of the spectrum, because

other types of hardware development do not exhibit the single function rigidity displayed

by Gamma hardware projects. These other classes of hardware are more flexible in what

is required as input and expected as output and can be re-programmed quickly to modify

functionality within a given range of constraints.

The software developed at Gamma Corporation is software for real-time

embedded systems. This software is tailored to proprietary hardware developed at

Gamma Corporation, and its purpose is to emulate and be compatible with proprietary

hardware and software developed by other vendors. Because the other vendors' hardware

and software are proprietary, Gamma Corporation has been forced to reverse engineer the

designs of other vendors in order to provide compatibility. These reverse engineering

efforts are difficult to complete with full confidence given the complexity of other

products. As a result, assumptions made in the reverse engineering specifications and

built into the software must be modified as new issues are uncovered during software

development and testing. Such conditions lead to functional requirements that change

frequently as the software is developed.

This mode of software development can be seen to be at one end of the

hardware/software development spectrum. Although changing requirements are

experienced in any software project, the process of reverse engineering propriety

interfaces and the issues that arise as a result, make the challenges faced by Gamma

software developers particularly difficult and unpredictable.

Hardware and Software Teams

Software development teams at Gamma Corporation can best be characterized as

"collaborative problem-solving teams" (Constantine, 1995, p. 73), that is:

The aim in such a group is to hang loose and talk things through so that competing goals
can be integrated and alternative approaches can be synthesized. They are, in a sense,
continually reinventing themselves, changing the way they work to fit the needs of the
moment and the group's long-term goals. Who is "in charge" and how they are in
charge depends on what the group is doing.

Software teams generally consist of approximately five individuals, all of whom are very

technically involved with the project. Of these individuals, one is designated Project

Leader, and is therefore the one "officially" designated to coordinate with other areas of

the company. However, this role is not strictly implemented, and other team members

(whether encouraged or not) also take on such a coordination role as the project

progresses and evolves. Meetings and discussions are held frequently and are used to

exchange ideas about new design issues and required modifications.

Hardware development teams at Gamma Corporation are best described as

"breakthrough teams" (Constantine, 1995, p. 66), that is:

Breakthrough teams actually depend on individual initiative to coordinate their
activities. Decisions are not centralized but are made independently, close to the action,
by whomever encounters the problems and has the knowledge to resolve them. What
keeps such a group on course is a kind of friendly competition; what keeps them from
running off in every direction at once is their common interest in and love of the game
and their mutual respect for each other as players.

The hardware teams at Gamma are usually smaller than the software teams, with no more

than three individuals working on a given hardware product. A high level manager

presides over these teams and does not interact as closely or as technically with the team

as the Project Leader does with the software team. Work proceeds in a more methodical

and orderly manner, with much less time spent in meetings and discussions and much

more time spent in the lab areas doing development and debugging.

Hardware and Software Mindsets at Gamma Corporation

Both hardware and software mindsets were defined earlier as the underlying

assumptions, expectations, and knowledge that individuals have about hardware and

software, respectively. At the outset of this study it was expected that the frames or

mindsets that individuals had about software and hardware, would be quite different

depending on whether they were involved in software or hardware development.

However, this study found that the mindsets that Gamma members had about engineering

approaches to software and hardware were quite similar, although they distinguished

between hardware and software project development, and saw these as needing to be

quite different.

Approaching Hardware and Software Problems

Overwhelmingly, it was acknowledged at Gamma Corporation, that although

stereotypes of hardware and software engineers do exist, the fundamental qualities

necessary to be good at either or both are in actuality the same.

My overall belief is that good engineers are good engineers because of the talents they
have and their approach to problem solving, and in general that applies to most
engineering disciplines. (Manager)

My opinion is that there are definitely stereotypes and some people fall into that
category, but the true engineer I think reasons things out the same way. (HW Engineer)

When you're able to look at both of these as one entity instead of two, then you truly have
an engineer. (SW Engineer)

People that are good at it are people who have learned there's a lot of technique. I
guess I'd say that's involved with people who are good at either software or hardware
designs. (Manager)

You gotta be able to abstract [to excel at hardware or software development]. If you
can't abstract, like I said, just get out of here. (SW Engineer)

The findings at Gamma Corporation indicate that there is a common belief in an

"'engineering discipline" that individuals share regardless of whether they are developing

hardware or software. These results run contrary to stereotypical notions of the

individuals required to develop hardware and software. Such stereotypes paint software

engineers as renegade artists and cowboys while portraying hardware engineers as clean-

cut robots.

Software engineers are expected to be in at midnight wearing jeans and hardware
engineers show up during the day in white shirts and suits. (Manager)

The results of this study do not support these stereotypes -- at least at Gamma

Corporation -- from the purely engineering approach. However, such stereotypes may be

evident in the ways in which software and hardware projects are managed, and the kind of

practices that are reinforced. This topic is covered in the next section.

Characteristics of Hardware and Software Projects

Although there seemed agreement that, from an engineering perspective, the

approaches to hardware and software development problems at Gamma Corporation are

quite similar, it was also evident that from an organizational perspective the management

of hardware and software projects at Gamma is very different. Based on the interview

data, hardware and software projects were characterized as differing along five

dimensions: predictability, functionality, testability, complexity, and changeability.

Table 1 presents interview data from individuals at Gamma Corporation

highlighting the differences in hardware and software projects discussed below.

Predictability

Members of Gamma described the development of hardware as considerably more

predictable and controllable than software. Experience in the hardware development

business had enabled engineers to predict hardware complexity based on simple metrics

(e.g., board size). No such metrics had been generated for the software side. Software

estimation methods -- e.g., COCOMO (Boehm, 1981) -- provide little insight into the

time required to develop the complex, embedded software products that Gamma

Corporation produces. Software estimation methods are more appropriate for estimating

projects that can be comprehensively defined before implementation. Such thorough

specification was impractical for the types of software systems being developed at

Gamma Corporation.

Functionality

The intended functionality of hardware developed at Gamma was generally well-

defined. Software, however, was perceived to be very functionally adaptive. Multiple

generations and variations of software products at Gamma Corporation had been based on

the same hardware platform, with the assumption that software can be quickly adapted to

many different variations and functions, while hardware cannot. Any features not present

in the hardware were assumed to be capable of being rendered in software. Hardware

was often described as "special-purpose," whereas software is more "general-purpose."

Gamma Corporation's ProdY (later renamed as ProdZ) went through three years

of software iterations on the same hardware platform before it was recognized that the

lack of functionality provided by the hardware could not be compensated for in software.

Instead of modifying the hardware, the software project was canceled.

Testability

Members of Gamma saw software as considerably more difficult to test robustly

than hardware. Hardware was described as having more of a pass/fail quality than

software. For example, the hardware boards at Gamma Corporation were placed in in-

house testers overnight. After a night of running, a board would be declared to be either

pass or fail. Similarly, in the design stage of hardware, simulators were available for

testing the hardware design before it was implemented. No such simulators were

available for testing software before its implementation.

With products having a large software component, tests at Gamma Corporation

typically ran for weeks, with engineers attempting to simulate customer environments and

situations. No purely procedural tester had been developed, and neither was such a tester

possible. It is typically impossible mathematically to test all possible code paths in a

given piece of software. Even conditions which on the surface appear to be software

"bugs," may not be so clear -- bugs may be later re-labeled as "features" or attributed to

"user error."

Complexity

The tooling provided for software and hardware projects at Gamma were at quite

different levels of sophistication. In general, hardware development was supported by

increasingly sophisticated tools that guide and support the engineer through all phases of

the development life cycle. These tools significantly reduce the complexity faced by the

hardware developer. For example, powerful tools for up-front design and simulation are

available that can significantly reduce the likelihood of error in the final hardware

product. Such tools have tended to structure the entire hardware development process in

ways not yet available for software. Hardware engineers were generally not as familiar

with the less sophisticated software processes and tools that do exist. Traditional

software development tools include CASE (computer aided software engineering) tools,

source code control, configuration management, and documentation tools. These tools,

although helpful, have not yet reached the level of sophistication provided by hardware

tools and familiar to Gamma engineers.

Changeability

Once a hardware board had been "laid out" or sent to "fab" (fabrication), future

modifications at Gamma were met with considerable resistance. Such resistance was the

result of a perceived difficulty in re-doing or correcting hardware designs. The validity of

such perceptions, given the quick turnaround and flexibility seen in modem hardware

development efforts, is questionable, yet the perception continued to exist within Gamma.

Given this resistance to change on the hardware side of development, considerable effort

was expended to ensure that the original hardware design was sound. As noted earlier,

sophisticated tools for simulation and verification were used by the engineers before any

physical hardware was ever touched or assembled.

Hardware functionality was only changed when it was broken or when it had been

designed in such a way that the very life of the product was threatened. Gamma

Corporation used a complex ECO (engineering change order) process for applying

changes to hardware functionality. Kooshian (1995, p. 1) describes such as process as

follows:

Hardware is designed with a rigorous, well-known, religiously implemented process
supported by high-quality, robust, and expensive tools. The software, on the other hand,
is often coded up late in the game by a bunch of smart people, using whatever tools they
can get their hands on.

The hardware project management process at Gamma involved many phases

including release documentation, schematics, and bills of materials. There was no

equivalent project management process defined and in place for software. Because

software was intangible and less visible, little attention at Gamma had been paid to

formalizing its release and control throughout the company. With formal release and

control procedures in place for hardware and not software, it was much easier at Gamma

to change software rather than hardware in all aspects of the production schedule.

It was clear from the interviews conducted at Gamma Corporation that the

individuals recognized and understood the key differences in hardware and software

projects. However, it was also clear that as an organization, Gamma Corporation had

failed to recognize these differences, and had not acted on them as it made the transition

from a hardware to software company.

Hardware Software

Predictability Things are a little more controlled in an exclusive The environment in which hardware development
hardware environment...processes are a little more takes place is much more structured and tends to
disciplined and rigid. (HW Engineer) proceed in a much more controlled fashion. (SW

Engineer)
We didn't always hit the mark [on hardware
projects]. But, we weren't that far off, and when Software tends to be more "loosey goosey." You
we didn't hit the mark, we had an idea of what only know just how tough things are when you get
would get us to the end. (Manager) into it. You see things and think you need two or

three weeks to do it and in three or four days it is
Mechanical stuff is predictable when you have to done. Other things you say two weeks and two
deal with it so much. (SW Engineer) months later you are still grinding away at it. (SW

Engineer)
Hardware development has well-defined goals.
(SW Engineer)

Functionality Hardware has a dedicated function, what it does The software, you have so many different
and how it does it. (HW Engineer) variations and take offs. (HW Engineer)

I think our hardware is fairly rigid; it has to do Software can be extremely adaptive. (SW
ABC to work. (Marketer) Engineer)

[Software must cover] all the areas that the
customer might invoke, all the different scenarios
and how the customers might use the equipment.
(Marketer)

Testability In hardware if the piece is broken it's broken. Things aren't tested because the pass/fail isn't as it
(HW Engineer) is on the hardware side. (HW Engineer)

There were probably a lot fewer variables that went With the many combinations that are possible, it
into either developing the product, testing it, or becomes impractical to test in an effective manner
debugging it. (Manager) all of the paths of your software portion of the

product. (SW Engineer)
There are some very good tools for both validating
your [hardware] design before you commit to There are no real ways to validate [software], prior
actually generating physical hardware. (SW to writing code. (SW Engineer)
Engineer)

Complexity Ask anyone who does hardware what they want to I think writing software is probably a lot harder.
build, complexity wise you know a board 11 by 8. (Marketer)
If you look at that with a rough idea of complexity
I can almost tell you how long it will take to Hardware development has been in a sense less
design. (SW Engineer) complex...its easier to decompose and document a

pure hardware program than it is a system or
We kind of find that there aren't very many software program. (Manager)
complex hardware designs happening anymore.
(SW Engineer) However you would like to measure complexity,

the software in a large system is a lot more
In general, hardware is simpler than software. (SW complicated than the hardware. (SW Engineer)
Engineer)

Changeability It's a lot harder to change hardware. (Manager) So you have to make your [software] designs very
flexible. (Marketer)

Hardware to date has not been absolutely flexible
so it has a tendency to impose restraints on the You get the advantage on the software side that
software. (SW Engineer) software can be extremely adaptive. The

presentation that is given to the customer [is that
it] is hypothetically possible for it to be extremely
adaptive or changeable. (SW Engineer)

Software problems are only defined as the
development proceeds. (SW Engineer)

Table 1: Differences in Hardware and Software Projects

Management Practices at Gamma Corporation

At Gamma Corporation, there was no clear organizational understanding of the

organizational changes required in order to adapt to the different nature of the products

that were being developed. The management structure and philosophy at Gamma

Corporation remained constant throughout the entire transition to software development,

although very different products were being developed than had been developed in the

past. The data shown in the previous sections highlight that for individuals at Gamma,

the approach and skills required for software development were seen to be the same as

those required for hardware development. However, as the scope is enlarged to consider

project management, it is apparent that certain process changes were required. A lack of

understanding of the new processes that were required to transition a primarily hardware

company to a more software oriented one have created difficulties at Gamma

Corporation.

In that sense Gamma was making the transition or we are attempting to make the
transition to a new type of company. But, maybe in a sense we are even worse off than a
start-up in that we didn't start off with the key people who really understood what it was
that we were trying to get into. So that probably as much as anything -- if you look back
-- was probably the cause for some of the problems that we have been encountering.
(Manager)

As Kooshian (1995, p. 3) notes: "It is unlikely that the manager of the software group in a

hardware-oriented company can solve any of these problems without significant support

from senior management." When Gamma members were asked whether the current

culture at Gamma Corporation was suitable to the type of products it was trying to deliver

(i.e., primarily complex software products), their responses were quite consistent:

No, not at all. The company isn't managed properly at all. (HW Engineer)

No. I think the corporate culture on one hand was not geared toward developing this
type of program. (Manager)

No. The culture that exists at Gamma is very appropriate for the company that it used to
be. (SW Engineer)

In general, affecting the proper organizational changes required to make a shift

from a hardware orientation to a software one is difficult. However, the situation at

Gamma Corporation was particularly difficult as both the hardware and software

development efforts were characterized as extreme, and little to no attempt was made

organizationally to change the development processes and practices as the transition was

undertaken. This finding is further reinforced by the data derived from examining

Gamma's project schedules.

Project Schedules

I've never done a schedule that was worth anything. (Manager)

In addition to the data generated through individual interviews and observation,

project schedules were obtained from Gamma Corporation and analyzed for insights into

the management practices at the company.

Analysis of such project data illuminates the ways in which hardware and

software projects were perceived by Gamma management, and they reveal some of the

preconceived notions dominant at Gamma as to how hardware and software engineers

should work on hardware and software projects.

Figure 2 depicts a generalized view of a typical embedded systems project

schedule involving both hardware and software development.

Figure 2: Typical Software / Hardware schedule (from Mittag, 1996, p. 37)

As Mittag (1996, p. 37) observes:

The most telling point about this schedule is the order of operations. There is a fairly
significant amount of overlap at the beginning of the project, but in general there isn't
much going on in the software department between the time the initial code testing is
complete and when software testing begins. The slack time is more than made up at the
end of the project, however, where all the work is being done by the software group. In
other words, it's the software group'sfault if the project is late because they were the last
to work on it.

This typical schedule reinforces many of the stereotypes that exist concerning hardware

and software development. Most prominent is the belief that software development can

compensate for faults present in the hardware and is therefore inherently in the critical

path to product release.

An examination of project schedules at Gamma Corporation project schedules

indicates that Gamma had fallen into this and other, more pernicious traps. As one

engineer at Gamma stated:

On any project, software engineers will be the last ones working on it. It's the nature of
the animal that you are going to be doing software last. (SW Engineer)

Analyzing these traps provides insight into problematic management practices that have

led to persistent difficulties in Gamma's product development and delivery. The first

project examined -- ProdX+ -- shows the evolution of a schedule from October 1995 to

January 1996 (see Figures 3 and 4). (Note that the terms used in the schedules have been

modified to preserve confidentiality. All dates have been left unchanged.)

Figure 3: Gamma Corporation ProdX+ Schedule, 10/5/95

The level of detail provided in the schedule varies considerably between the

hardware and software sections. In fact the schedule was actually presented to engineers

as two separate schedules on October 5, 1995 (see Figures 3 and 5). The first schedule is

best described as an overview of the project and includes three major divisions: two

hardware development sections, and a software development section. The second

schedule is a more detailed presentation of the hardware development schedule provided

in the overview schedule. The inclusion of a second schedule devoted exclusively to the

Task Name
Hardware Design Spec

Hardware Component

Subtask #1

S Subtask #2
.. ..

Subtask #3

Hardware Component

7 Subtask #1

S Subtask #2
i

Subtask #3

Software Developmen
....

Software Design S

Code Task #1

Code Task #2

Test Code
......................

ID
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ID
1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

Figure 4: Gamma Corporation ProdX+ Schedule, 1/23/96

Figure 5: Gamma Corporation ProdX+ Hardware "Micro"-Schedule, 10/5/95

Task Name
Hardware Design Spec

Hardware Component

Subtask #1

Subtask #2

Subtask #3

Hardware Component

Subtask #1

Subtask #2

Subtask #3
..................

Software Development

Software Design S

Code Task #1

Code Task #2

Code Task #3.................... e Task #3..

Code Task #4

Test Code

....................... -.....

ID Task Name Aug Sep Oct Nov Dec Jan Feb
1 Hardware Design Spec

2 Hardware Component #1

3 Subtask #1

4 subtask a

5 subtask b................*... ..

6 Subtask #2

7 subtask a

8 subtask b

9 Subtask #3

10 Hardware Component #2

11 Subtask #1

12 subtask a
...................................

13 subtask b

14 Subtask #2

15 subtask a

16 subtask b

17 Subtask #3
18

Im

hardware portion of the project with no such schedule provided for software

development, provides a strong indication of the comfort (or discomfort) that

management at Gamma had with estimating and controlling the software development

process.

As the schedules evolved over the months, it is seen that the hardware portion

slips two weeks over a period of four months whereas the software portion slips six

weeks over the same time period. In fact, the final overview schedule on January 23,

1996 (see Figure 4) included handwritten dates in place of the formatted ones presented

in the early schedule -- an indication of the waning confidence the project manager had in

estimating dates as time went on. At the time of this writing, the project (ProdX+) for

which this is the schedule has been put on indefinite hold for lack of resources.

The second set of schedules analyzed provided more insight into the management

culture at Gamma Corporation. The project schedule shown in Figure 6 represents the

first large-scale hardware and software project ever undertaken at Gamma. This initial

master schedule (on June 7, 1994) was primarily devoted to scheduling hardware

development, with only about a quarter of the items on the schedule relating to software

development. The initial schedule set a completion milestone of September 15, 1994,

and assumed that software development would occur concurrently with software

development. As it turned out, the hardware portion of the product was completed (albeit

one to two months late) while the software development continued into March 1995. A

later schedule (see Figure 7) was entirely devoted to software and had a completion date

in February 1995. It shows all of the software portion shifted from May-August 1994 to

the new time period following hardware completion, November-February 1995. The

original schedule developed in June of 1994 was virtually devoid of any preparation or

understanding of the nature of the software effort involved.

ID Task Name Apr May Jun Jul Aug Sep Oct
1 Packaging

2 Model sign-off * 5/15
3 Detail drawings O 6/12

4 First delivery * 7/6

5 Hardware Card I1

6 Logic design

7 Layout, fab, and build

8 Internal debug

9 Hardware Card 2

10 Logic design

11 Layout, fab, and build

12 Internal debug
i.....

13 Software

14 Simulation environment

15 Script debug

16 Basic functionality

17 Test and Validation

18

Figure 6: Gamma Corporation ProdX Schedule, 6/7/94

ID Task Name Duration Nov Dec Jan Feb Mar Apr
1 Software Development 61d

2 Back end error handling 11w

3 Front end error handling 2w

4 Performance tuning 2w

5 Recovery mechanisms 3w

6 Validation 6w

7

Figure 7: Gamma Corporation ProdX Schedule, 1/3/95

Gamma Corporation has learned little from these project failures and slippages.

An informal survey of Gamma software engineers provided a list of three reasons as to

why many of Gamma's software efforts are often redone in order to reduce errors and

increase efficiency and reliability:

1. Lack of time to "code it right the first time."

2. Amorphous requirement specifications.

3. Failure to enforce strict interface checking and structured coding practices.

All of these reasons point to significant problems with management practices at Gamma

Corporation.

Summary of Gamma Corporation

As a case study, Gamma Corporation provides insight into how hardware and

software are viewed and managed in an organizational setting. From the data, it is

evident that while the developers at Gamma recognized that the company was going

through a major transition, the organization had not adapted its procedures and practices

to reflect this realization. At Gamma little if any changes were made to such practices as

budgeting, estimating, organizing, and other standard operating procedures. As a result,

Gamma Corporation was not properly positioned to transition from hardware to software

production. Hence, most of the software projects at Gamma failed or took considerably

longer to complete than originally estimated. Furthermore, engineers who were aware of

the problems as well as upper management's failure to adapt the organization's practices

became disgruntled and left. Gamma Corporation, an organization well-versed in

hardware, ignored many of these problems and by default chose to manage software in

the way that they had always managed hardware.

GENERALIZATIONS AND IMPLICATIONS

This chapter provides suggestions for what issues computer organizations must

address to make the transitions necessary to support the changing nature of computer

systems development from a primarily hardware orientation to a primarily software one.

The results of this case study have demonstrated that the approaches and skills

required to excel in hardware and software development are essentially the same.

However, what is necessary is a different set of processes and practices to manage the

fundamentally different nature of hardware and software. In particular, processes used to

manage the development of hardware are simply inappropriate and ineffectual when

applied to the development of software.

What is thus needed is a focus -- not so much on understanding how individuals

approach hardware and software development -- but on understanding the organizational

contexts in which engineers can be expected to effectively develop software, hardware, or

both. In the following, personnel as well as organizational issues are discussed.

It is recognized that the nature of the hardware development done at Gamma

Corporation does not represent all classes of hardware development. Comments such as

"if it's broke, it's broke" certainly do not universally apply to all hardware development

efforts. Therefore, it is important to bear in mind that the following remarks are

suggestive only, and generalizations beyond Gamma can only be made cautiously.

Personnel Issues

Hardware and software are characterized as different forms of engineering, with a

good engineer capable of handling either or both. When transitioning from hardware to

software, therefore, the fundamental "engineering" skills that are required can be carried

over by existing personnel.

Although the mindsets required for effectively developing hardware or software

may be similar, the processes required to effectively work on a hardware or software

project are not. Certain individuals may adjust easily to the new processes introduced by

a company shifting from one form of development to another. Training may be required

to introduce new tools and methodologies to the engineers who will be using them. For

example, one software engineer noted during my study:

I don't think it's a difference in the type of person [required to do hardware or software
development], but rather just in training and what one has been doing for the last ten
years. (SW Engineer)

Furthermore, any repositioning of management practices for shifting from hardware to

software development can have effects on individual engineers. It is to be expected that a

certain number of capable engineers will find the transition too difficult or jarring to

accept. Such turnover, however, generally accompanies any organizational change.

Organizational Issues

The primary areas of change are the organizational processes and practices around

projects. Gamma Corporation failed to do this in shifting from hardware to software

development, and, as a result, encountered numerous problems as it attempted to migrate

to primarily software intensive projects.

Organizations must consider the contexts within which they ask people to work.

The contexts required to effectively develop hardware versus software are very different.

Furthermore, the production processes required for development in a hardware world are

quite different than those required for development in a software world. When migrating

from a hardware to software development environment, processes should be changed

using a step-wise approach. It is important that the upper management of the

organization provide the motivation for process change. Without such support, it is

unlikely that the organization will make the necessary transition.

Upper management is responsible for recognizing that a hardware to software

shift is occurring within the organization and communicating this awareness to the

employees. Communication prepares the employees for the process changes that are to

occur, and also reassures them that the organization is aware of the changing environment

in which it is operating. Upper management should also require that project managers

and project leaders rethink the ways in which they approach and schedule software

projects, recognizing that they need to be framed differently than hardware projects (see

below).

Both test and production processes -- areas not involved with the actual software

development, per se -- may require the most radical change. These two areas require

processes that are suitable to the increased complexity and changeability seen when

moving from hardware to software products. Test and production fixtures and procedures

may become instantly obsolete when the shift from hardware to software is made.

Furthermore, the personnel involved in test and production may not be as flexible in their

ability to adjust to new paradigms given that such areas are generally much more

procedure driven than engineering development.

In summary, proper software engineering processes need to be designed to yield

quality software with predictable schedules. However, the necessity for such processes

on the software side needs to be recognized by management before they can be effectively

implemented. Gamma Corporation fell short in that it attempted to develop sophisticated

software in an organizational context that still understands development from a hardware

perspective. Unfortunately, it is not clear from this study whether a proper management

structure, although necessary, is sufficient to effectively allow a company to make the

hardware to software transition.

Project Management Recommendations

It is important that managers have respect for the software development side as

well as the hardware development side when preparing development schedules and

allocating personnel on projects in which both software and hardware are used. Efforts

should be made to reduce the likelihood of software being placed in the final critical path

to product delivery. Software/hardware codesign is an idea that allows for parallel

development of both software and hardware to help ameliorate just that problem.

The respect given to the processes and procedures required for the development

and release of hardware should also be given to the processes and procedures required for

the development of software. At Gamma Corporation, software releases were made when

the developers hand someone a "magic diskette" with the code executable on it. On the

other hand, hardware releases went through a rigorous approval and documentation

process. Such a discrepancy in procedures and attitudes provides insight as to why so

many of Gamma's software projects slipped or failed.

Management expectations should be adjusted when thinking of software given its

likely increased complexity and lack of predictability and testability as well as its high

likelihood of undergoing "function creep." Resource allocation may also need to be

rethought. Whereas five years ago, two engineers in a back room were capable of

producing a board-level product for Gamma in three months, two engineers in such a

situation are utterly inadequate at producing the type of software required today.

Summary

The effectiveness with which an organization manages the transition from

hardware to software lies with the recognition that the very nature of hardware and

software are different along the five dimensions of predictability, functionality, testability,

complexity, and changeability. Gamma Corporation provides an example of the

problems that result when an organization does not recognize the different processes and

contexts necessary for proper development of software, even when individuals

understood the differing issues involved with the development of software versus

hardware.

REFERENCES

Abdel-Hamid, T., and S. Madnick 1991. Software Project Dynamics: An
Integrated Approach, Prentice Hall, Englewood Cliffs, New Jersey.

Argyris, C., and D. Schon 1978. Organizational Learning. Prentice-Hall,
Englewood Cliffs, New Jersey.

Berger, P. L., and T. Luckmann 1967. The Social Construction of Reality.
Anchor Books, New York.

Boehm, Barry 1981. Software Engineering Economics.
Englewood Cliffs, New Jersey.

Prentice-Hall,

Brooks, Frederick P. 1995. The Mythical Man-Month: Essays on Softwvare
Engineering, Anniversary Edition. Addison-Wesley Publishing Co.,
Reading, Massachusetts.

Constantine, Larry L. 1995. Constantine on Peopleware.
Englewood Cliffs, New Jersey.

Curtis, Bill 1995. Foreword for Constantine on Peopleware.
Englewood Cliffs, New Jersey.

Yourdon Press,

Yourdon Press,

DeMarco, Tom, and Timothy Lister 1987. Peopleware: Productive Projects and
Teams. Dorset House Publishing, New York, New York.

Dougherty, D. 1992. "Interpretive Barriers to Successful Product Innovation in
Large Firms." Organizational Science 3, 2, 179-202.

Douglas, M. 1987. How Institutions Think. Routledge and Kegan Paul, London.

Eisenhardt, K.M. 1989. "Building Theories from Case Study Research."
Academy of Management Review 14, 4, 532-550.

Hargrave, Steve, and John More 1996. "The Increasing Importance of Software."
Electronic Design 44, 1, 109-113.

Hennessy, John L., and Norman P. Jouppi 1991. "Computer Technology and
Architecture: An Evolving Interaction." Computer, September, 18-29.

Knuth, D. E. 1968. The Art of Computer Programming, Vols. 1-3. Addison
Wesley Publishing Co., Reading, Massachusetts.

Kooshian, Sarah 1995. "Managing Software Teams in a Hardware Company."
Proceedings Embedded Systems Conference, April.

Leonard-Barton, D.A. 1990. "A Dual Methodology for Case Studies: Synergistic
Use of a Longitudinal Single Site with Replicated Multiple Sites."
Organizational Science 1, 3, 248-266.

Miles, M.B. and A. M. Huberman 1982. Qualitative Data Analysis: A
Sourcebook of New Methods. Sage Publications, Newbury Park, California.

Mittag, Larry 1996. "Trends in Hardware/Software Codesign." Embedded
Systems Programming 9, 1, 36-45.

Mohr, L.B. 1982. Explaining Organizational Behavior. Jossey Bass, San
Francisco, California.

Orlikowski, Wanda J. 1989. "Division Among the Ranks: The Social
Implications of Case Tools for System Developers." Proceedings of the
Tenth International Conference on Information Systems, Association for
Computing Machinery, New York, New York, 199-210.

Orlikowski, Wanda J. 1993. "CASE Tools as Organizational Change:
Investigating Incremental and Radical Changes in Systems Development."
MIS Quarterly, September, 309-340.

Orlikowski, Wanda J. and Debra C. Gash 1994. "Technological Frames: Making
Sense of Information Technology in Organizations." ACM Transactions on
Information Systems 12, 2, 174-207.

Schein, E. 1985. Organizational Culture and Leadership. Jossey-Bass, San
Francisco.

Schumacher, E. F. 1973. Small Is Beautiful: Economics as if People Mattered,
Perennial Library Edition. Harper and Row, New York, New York.

Smircich, L. and C. Stubbart 1985. "Strategic Management in an Enacted
World." Acad. Management Review 10, 4, 724-736.

Soloway, Elliot, and Sitharama Iyengar eds. 1986. Empirical Studies of
Programmers. Alex Publishing Corp., Norwood, New Jersey.

Strauss, A. and J. Corbin 1990. Basics of Qualitative Research: Grounded
Theory, Procedures, and Techniques. Sage Publications, Newbury Park,
California.

Thomsett, Rob 1980. People and Project Management. Prentice-Hall,
Englewood Cliffs, New Jersey.

Vessey, I. and R. Weber 1983. "Some Factors Affecting Program Repair
Maintenance: An Empirical Study." Commun. ACM 26, 2, 128-134.

Weick, K. E. 1979. The Social Psychology of Organizing. Addison-Wesley
Publishing Co., Reading, Massachusetts.

Weinberg, Gerald 1971. The Psychology of Computer Programming. Van
Nostrand Reinhold Co., New York, New York.

Yemma, John 1996. "MIT Brains are Feeling Blue." The Boston Globe 249, 48,
1-9.

Yin, R.K. 1989. Case Study Research: Design and Methods. Sage Publications,
Beverly Hills, California.

APPENDIX A: FIRST ROUND INTERVIEW
FORMAT

The following guidelines are to be provided to the interviewee before the interview:

* The name of the company is to remain anonymous for the purposes of this research.
* The name of the interviewee is to remain anonymous for the purposes of this research.
* The interview is voluntary. The interviewee may refuse to do the interview.
* The interviewee may refuse to answer any questions in the interview.
* The management of the company will have no access to the answers given in the

interview.

Questions:

1. Do you consider yourself a software person, a hardware person, both, or
neither?

2. How would you describe the ways in which individuals who are good at
software development think versus the ways in which individuals who are
good at hardware development think? How are they similar? How are they
different?

3. Do you feel that Gamma is primarily a hardware or software company?
(Follow up on this question depending on how it is answered.)

4. Can you describe to me the difference between working on a project that
uses only hardware versus one that combines both hardware and software?

5. Is the current culture at Gamma suitable to the kind of products it is trying to
deliver?

6. What is the criteria for developing reliable and robust hardware in a timely
manner?

7. What is the criteria for developing reliable and robust software in a timely
manner?

8. How does Gamma compare with respect to meeting these criteria?

9. Do you have any experiences or anecdotes that either highlight ways in
which issues concerning hardware and software development were done
right? or wrong?

APPENDIX B: SECOND ROUND INTERVIEW
FORMAT

Questions:

1. Do you consider yourself a software person, a hardware person, both, or
neither?

2. How would you describe the ways in which individuals who are good at
software development think versus the ways in which individuals who are
good at hardware development think? How are they similar? How are they
different?

3. Do you feel that Gamma is primarily a hardware or software company?
(Follow up on this question depending on how it is answered.)

4. Can you describe to me the difference between working on a project that
uses only hardware versus one that combines both hardware and software?

5. Is the current culture at Gamma suitable to the kind of products it is trying to
deliver?

6. If the culture has changed, how has it changed? What was management like
before? What is it like now?

7. What are the critical people issues involved in developing reliable and robust
hardware in a timely manner?

8. What are the critical people issues involved in developing reliable and robust
software in a timely manner?

9. Do software and hardware people work differently?

10. Are software and hardware people evaluated differently? Are they trained
differently? Are different things expected of them?

11. How does Gamma compare with respect to meeting these criteria?

12. Do you have any experiences or anecdotes that either highlight ways in
which issues concerning hardware and software development were done
right? or wrong?

