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ABSTRACT

The accuracy and efficiency of a nodal synthesis method for steady-state and
transient reactor analysis are investigated using DISCOVER (DIscontinuous Synthesis
COde for VERification) computer code developed by the author. A three dimensional
neutron flux shape of a reactor is approximated as a linear combination of
predetermined two dimensional expansion functions. One dimensional mixing
coefficients are computed using synthesis equations. The governing synthesis equations
are derived by applying a variational principle. Discontinuous trial functions are
allowed in both space and time. Two different approaches for updating Coarse Mesh
Finite Difference (CMFD) discontinuity factors are incorporated in DISCOVER. One
approach is a discontinuity factor synthesis scheme in which discontinuity factors are
approximated as the weighted average of precomputed values. The other approach is a
non-linear iteration scheme which forces the synthesis solution to match a quartic
polynomial solution. Both flux and adjoint weight functions are edited from three
dimensional steady-state CONQUEST calculations.

A few benchmark problems with and without feedback effects are tested using
DISCOVER. For most cases, average nodal power errors are observed to be less than
five percent of the reference solution, and eigenvalues are usually consistent up to three
to four significant digits. In steady-state cases, there is about a five to tenfold reduction
in computing time, compared with that of CONQUEST if the discontinuity factor
synthesis scheme is applied. There is no reduction in execution time, however, if the
non-linear iteration scheme is applied. This is attributed to the slow convergence rate of
the synthesis solution method. In transient cases, even with the discontinuity factor
synthesis scheme, the reduction in computing time is less than for steady-state cases. In
fact, if the non-linear iteration scheme is applied, the execution time may even increase.
The time-consuming matrix multiplication routine is the main cause of the increase in
execution time. Still, a two to threefold reduction is possible if the discontinuity factor
synthesis scheme is utilized. Also, real-time calculations are feasible for some slow
transients.

Thesis Supervisor: Professor Allan F. Henry

Thesis Reader: Professor John E. Meyer
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CHAPTER 1

INTRODUCTION

1.1 Overview

One of the most fundamental quantities that pervades every aspect of nuclear

reactor core design and operation is the neutron flux. Ever since the beginning of the

nuclear era, great efforts by many bright minds have been devoted to answering the

seemingly simple question of how neutrons are distributed in a reactor core. The

difficulties in answering this question do not lie in lack of understanding of the physical

phenomena or in inadequate modeling. The governing neutron balance equation, the

Boltzmann Transport Equation, is well understood, and basic nuclear data are readily

available. The problem stems from the enormous difficulties in solving the Boltzmann

Transport Equation. It takes seven independent variables to describe the directional

neutron flux. And, even with the super computers of today, it is a formidable task to

carry all those variables in their discretized forms when a very accurate reference

solution is mandated. It is impractical to solve the Boltzmann Transport Equation
repeatedly for a particular reactor design or fuel loading optimization. Fortunately, for

Light Water Reactors (LWR), in which high-order transport effects are negligible, it is

also unnecessary.



Diffusion theory, which assumes a first order directional dependence of neutron

flux, has been shown to be sufficient for LWR's. This diffusion theory approximation

eases some of the difficulties associated with solving the Boltzmann Transport

Equation, and has been the basis of design and safety calculations associated with

LWR's. Yet, three dimensional spatial discretization of the neutron diffusion equation

still retains the problem of having to calculate millions of fine-mesh neutron fluxes.

Because of this limitation, most computer codes employing a fine-mesh representation of

the neutron diffusion equation resort to either one- or two-dimensional analysis taking

advantage of symmetry conditions.

Over the last twenty years, considerable research effort has been directed toward

developing nodal diffusion theory, which allows a much more coarse spatial

discretization (i.e., assembly size mesh). With the introduction of equivalence

parameters (usually called discontinuity factors), which account for homogenization,

discretization and even diffusion theory errors, the solution of the nodal diffusion

equation can replicate a reference solution obtained by either a fine-mesh diffusion

calculation or even a transport calculation. The nodal diffusion equation, therefore,

reduces the number of spatial fluxes by orders of magnitude and makes three

dimensional analysis feasible on desk-top computers.

The nodal theory greatly reduces the computing efforts associated with reactor

analysis and, thereby, serves as an excellent tool for a nuclear analyst to optimize a

particular reactor design or a fuel loading pattern without an undue burden of long

waiting time between each computation. Furthermore, the realization of a real-time

calculation, at least for some slow transients not requiring very small temporal steps, is

within reach with adequate computers. The natural progression in research efforts,

therefore, is to combine an efficient nodal code into an automatic controller to regulate

steady-state and transient behavior of a nuclear reactor on a real-time basis.

Accomplishing this ambitious goal, however, requires a further reduction in computing

time without sacrificing the computational accuracy. This goal can be realized in part by

faster computers, but it will also require further refinements in nodal theory and

development of more efficient computer codes.

This thesis concentrates on the development of a nodal synthesis method which

can be used for steady-state and transient reactor analysis. The primary goal is to

reduce further the computing efforts without unduly compromising the accuracy of

neutron flux determination.



1.2 Background

The synthesis method in reactor analysis approximates the neutron flux shape of

interest as a linear combination of predetermined expansion functions (sometimes called

trial functions). These expansion functions are, in fact, educated guesses of an actual

neutron flux shape. Although, little theoretical justification exists for deciding which

expansion functions to select, previous numerical studies [Y-1,Y-2,Y-3] indicate no

significant problem in choosing expansion functions based on physical intuition and

past experience. On the contrary, there is a firm theoretical ground for obtaining the

mixing coefficients, the parameters which specify how given expansion functions should

be combined to replicate the actual neutron flux shape as closely as possible. Both a

weighted residual method and a variational principle are used to derive synthesis

equations having mixing coefficients as the unknowns. The most attractive feature of the

synthesis method stems from the fact that the number of mixing coefficients is orders of

magnitude less than the number of discretized flux values. Thus, computational

requirements can be greatly reduced with proper application of the scheme.

The synthesis method in reactor analysis was first applied to a fine-mesh

representation of the neutron diffusion equation. Because of the enormous

computational requirements associated with a fine-mesh discretization, the synthesis

method was the only practical approach to calculate three-dimensional neutron fluxes.

Earlier studies by Yasinsky and Kaplan [Y-1,Y-2,Y-3] showed that space-dependent

synthesis employing discontinuous sets of axial and temporal expansion functions was

capable of constructing accurate space-time neutron fluxes. Yet, no mention of

computational speed was given in these studies. Furthermore, all the numerical tests

were performed for either one- or two-dimensional reactors.

Recently, there have been several attempts to apply the synthesis method to the

nodal diffusion equation. K. Lee studied a point synthesis method, which utilized three-

dimensional expansion functions, based on an analytical nodal diffusion theory model

[L-5]. The point synthesis model produced satisfactory results involving homogeneous

changes in reactor conditions. However, because of the inherent limitation of using

three-dimensional expansion functions, heterogeneous changes in reactor conditions (i.e.,

control rod motions) were not tested. Moreover, the computational speed did not

improve relative to the reference QUANDRY [S-2] calculations.

W. Kuo investigated the point synthesis method based on a finite difference

nodal diffusion theory [K-1]. He suggested a synthesis scheme to update the Coarse

Mesh Finite Difference (CMFD) discontinuity factors. The results were encouraging as



far as accuracy was concerned, but the computational speed again was not satisfactory.

He indicated the additional matrix multiplication steps needed in the synthesis method

as the main cause of inefficiency. Moreover, his study was limited to one-dimensional

reactors which would not exhibit the complexities associated with multi-dimensional

analysis.

R. Jacqmin investigated a semi-experimental instrumented nodal synthesis

method in which the synthesized neutron fluxes were force to match, in a least-squares

sense, neutron detector readings [J-1]. It was semi-experimental in that the detector

readings were generated by simulated transients rather than by actual experiments.

Although there were some concerns about measurement noise, the number and positions

of detectors, and detector characteristics, his study showed that nodal fluxes could be

reconstructed in real-time with maximum errors of a few percent.

J. Hughes applied an instrumented nodal flux synthesis method to analysis of the

Massachusetts Institute of Technology Reactor, MITR-II [H-1]. Detector measurements

were collected using fission chambers placed around the core. The experimental results

indicated that the instrumented synthesis accurately reflected the changes in reactor

conditions in real-time, though they did not replicate the reference solutions with

acceptable accuracy.

1.3 Research Objectives

The objective of this study is the development of an efficient (fast and accurate)

discontinuous space-time dependent nodal synthesis method for the solution of the

three-dimensional, few group, steady-state and transient neutron diffusion equations.

No restriction is placed on the number of energy groups, and neutron upscattering is

allowed. The synthesis method permits both spatially and temporally discontinuous

flux expansion functions while maintaining initial adjoint weight functions. Although

different flux expansion functions may be adopted at different axial planes and

different time steps, their total number is kept constant. The CONQUEST code,

developed by J. Gehin [G-1], is used to generate two-dimensional flux expansion

functions and adjoint weight functions. A three-dimensional CONQUEST calculation

rather than a series of two-dimensional calculations is performed for the generation of

expansion functions.

Two different discontinuity factor updating approaches are incorporated to test

their accuracy and speed. A non-linear iteration scheme, where finite difference nodal



fluxes are forced to match a quartic polynomial nodal solution, is one way to update

CMFD discontinuity factors. This scheme is successfully implemented in the

CONQUEST code, and results obtained from it indicate excellent accuracy [G-1].

However, one of the shortcomings of this non-linear iteration scheme is its

computational burden: Preliminary analysis indicates that more than half of the total

computing time is spent in updating CMFD discontinuity factors. This shows that if

significant reduction in computing effort is to be realized, a more efficient updating

scheme should be considered. A discontinuity factor synthesis scheme suggested by W.

Kuo [K-1] is another approach. Though this scheme lacks the theoretical basis that the

non-linear iteration scheme possesses, the results obtained are encouraging [K-1].

Furthermore, the discontinuity factor synthesis scheme requires much less computational

efforts than the non-linear iteration scheme.

Direct inversion of matrices, rather than iterative inversion, is adopted in the

synthesis solution procedure for two reasons. First, the number of unknowns are on the

order of tens to hundreds and, thereby, makes the direct inversion practical. Second, the

matrix to be inverted lacks the structure that guarantees that the iterative inversion

techniques converges. A simultaneous group solution is adopted and the band structure

is exploited in the direct inversion procedure.

Finally, a simple, one-dimensional thermal hydraulic WIGL model [V-1] is

adopted to allow feedback effects. This model is selected for its simplicity and

comparison purpose because the CONQUEST code adopts the same model.

1.4 Thesis Contributions

The space-time synthesis method was applied years ago to a fine-mesh

representation of the neutron diffusion equation, but has not been previously attempted

for a nodal method. Thus, the main contribution of this thesis is the development of a

computer code which can serve as a tool to test the accuracy and efficiency of the

discontinuous space-time nodal synthesis method. Another contribution is the

identification of the numerical properties of the synthesis method and the subsequent

development of numerical solution methods consistent with them. The implications of

discontinuous usage of expansion functions are identified variationally. Also, an

eigenvalue iteration strategy which maximizes the computational speed is tested for its

effectiveness.



1.5 Thesis Organization

Chapter 2 presents the complete mathematical derivation of a steady-state

nodal synthesis method. First, a finite difference method which incorporates CMFD

discontinuity factors is developed. Then, a nodal synthesis method is derived by

applying a variational principle to the finite difference nodal equation. Two different

discontinuity factor updating approaches (a discontinuity factor synthesis scheme and a

non-linear iteration scheme) are presented next. For the non-linear iteration scheme, a

polynomial nodal method is discussed in great detail.

Chapter 3 offers a similar derivation of a transient nodal synthesis method.

Although not implemented in this thesis, the implications of using a different number of

expansion functions at different time steps and of allowing flux and adjoint expansion

functions to change at the same time are discussed in light of the variational principle.

The thermal hydraulic and cross section feedback models as well as a cusping correction

model are also presented.

Chapter 4 presents the numerical solution methods for the steady state and

transient nodal synthesis method. The eigenvalue iteration procedure and the direct

matrix inversion technique are discussed. Also, a temporal solution advancing strategy

is presented.

In Chapter 5, the results from several steady state and transient benchmark

problems with and without cross section feedback effects are presented.

Finally, Chapter 6 presents the summary and conclusion of this study. Some

recommendations for future research are also made.



CHAPTER 2

STEADY-STATE
NODAL SYNTHESIS METHOD

2.1 Introduction

This chapter presents the derivation of a steady-state nodal synthesis equation

from the few-group diffusion equations. First, the finite-difference nodal equation,

which is mathematically rigorous with the introduction of CMFD discontinuity factors,

is derived in Cartesian geometry. With appropriate CMFD discontinuity factors, the

finite-difference nodal equation can reproduce any reference solution. Second, a

discontinuous nodal synthesis equation is derived by applying a variational principle to

the finite-difference nodal equation. Next, two different discontinuity factor updating

schemes, a discontinuity factor synthesis scheme and a non-linear iteration scheme, are

introduced. A polynomial nodal method, which produces accurate results even when

assembly-size spatial discretization is employed, is discussed in great detail. The non-

linear iteration scheme results when the synthesis solution is forced to match the

polynomial nodal solution. Although it lacks the theoretical basis of the non-linear

iteration scheme, the discontinuity factor synthesis scheme is introduced for its

computational simplicity and efficiency.



2.2 Nodal Balance Equation

The derivation of the nodal balance equation starts from the few-group, steady-

state diffusion equation in P1 form without an extraneous neutron source [H-2]

G

V Jg (r) + tg r)= X[xgvfg,(r) + Egg,(r) g g,(r), (2.1a)

Jg(r) = -Dg(r)VOg(r) g = 1,2,...,G. (2.1b)

Where
Jg (r) = neutron current for group g,

Og(r) = scalar neutron flux for group g,

Zt (r) = macroscopic total cross section for group g,

I fg(r) = macroscopic fission cross section for group g,

gg. ,(r) = macroscopic scattering cross section from group g' to g,

Dg (r) = diffusion coefficient for group g,

ZXg = fission spectrum for group g,

A. = reactor eigenvalue,

v = mean number of neutron emitted per fission,

G = total number of energy groups.

It is a bit of a misnomer to call Eqs. (2.1a) and (2.1b) the few-group diffusion equation

because the multi-group diffusion equation assumes the exact same form. The methods

by which the group parameters (cross sections and diffusion coefficients) are obtained

distinguish one from the other. The few-group diffusion equation uses the neutron

energy spectrum obtained by a separate calculation to determine the group parameters

while the multi-group diffusion equations uses an arbitrarily assumed energy shape (i.e.,

Maxwellian distribution in the thermal range). Note that, according to this distinction,

group parameters obtained by averaging over a detailed energy spectrum are "few-group

constants" even though the number of groups may be hundreds. With the number of

"few-groups" this large, however, the distinction is generally abandoned and the model is

referred to as a multi-group scheme [H-2].

The few-group diffusion equation in its spatially discretized form has been the

basis of most safety and fuel depletion calculations for LWR's, and many utilities still

perform reactor analyses using computer codes adopting this scheme. The solution of

the fine-mesh, few-group diffusion equation in its three-dimensional form, however,



requires an prohibitively large computing time. Thus, the repeated use of the fine-mesh

diffusion equation is undesirable in fuel loading, depletion and reactor safety

calculations which are inherently iterative in nature. This difficulty is somewhat

alleviated by exploiting symmetry conditions and the axially homogenous geometry that

exists in most LWR's, but even a two-dimensional analysis requires a formidable

computing effort, and furthermore, some of the reactor systems do mandate three-

dimensional analyses.

The nodal diffusion equation makes three-dimensional analyses feasible by

employing much more coarse spatial discretizations (i.e., assembly-size nodes).

However, it requires additional equivalence parameters, called discontinuity factors, to

replicate the reference solutions obtained from either the Boltzmann Transport Equation

or the fine-mesh diffusion equation. The physical meaning of discontinuity factors will

be discussed in Section 2.3. In Cartesian geometry, Eqs. (2.1a) and (2.1b) are

dJjx(x,y,z) +-- J(x,y,z) + JgZ (x, y,z) +Z eg (x,y,z)Og(x,y,z)

G (2.2a)

I IXgVjg (xyZ) +Z ,(x'y,z) Og' (xy,z),
g=

Jgu(x,y,z) = -Dg(x,y,z) dg(x,y,z) u = x,y,z. (2.2b)

The node (i,j,k) and its widths are defined by

xE [x.,xj+1] hx -xj+ -x,

Y [Yj'Yj+] he yj+2 - Yj, (2.3)

Z [zk,Zk+1] hk  Zk+1 - Zk,

and the node volume is

Vijk - .hxhyih. (2.4)

The nodal balance equation is obtained by integrating Eq. (2.2a) over the volume of node

(i,j,k) and then diving by Vilk

l[jk(x,+,) J (xi)]+ ;(y+) 'Ik + z k+1 JZk

+ I k ] +2.5J(Y 4(Zk+ ) z' (z+j]hx' yl G Xg Z(2.5)

+ -ri" 09111C V 4 " + -V j 1 1" 1
g9 9=l91



where the node-averaged flux and the surface-averaged current are defined by

ijk • 1 dx,+l dy Zk+l dz t(x, y, z), (2.6)Vilk Jx• dxy1  gz

Jmn (U) -• 1 dv w ""dwJg,, (u,v,w), u-x,y,z, v u, w u,v. (2.7)
J1gU) yn f w''V#U W#UV 27

The group parameters within node (i,j,k) are assumed to be constant.

Although derived without any approximation, Eq. (2.5) is not complete by itself

because it contains both node-averaged fluxes and surface-averaged currents as the

unknowns. Therefore, additional equations relating node-averaged fluxes and surface-

averaged currents must be provided. These additional equations are called nodal

coupling equations and discussed in the following section.

2.3 Finite Difference Nodal Coupling Equations

The finite-difference nodal coupling equations are derived by integrating the

second P1 equation, Eq. (2.2b), over a surface and diving by its widths

Jn (u)= -D'"g d nix(u), (2.8)
gUg

where the surface-averaged flux is defined by

'h(u) =h dv J 1 dw (u,v,w), (2.9)
V WV

and by approximating the spatial derivative as a simple first-order difference
-Itmn mn ('

Jmn l(u)=Dmn gu (2.10)
l/ (U) /D2 h /2 0)

where u' indicates the positive side of the interface shown in Figure 2.1. Similarly, the

same surface-averaged current at the interface u, can be approximated for node 1-1
mn) g-1lmn

l' (u/ ) /-D-,n n h 2 , (2.11)

where u- indicates the negative side of the interface shown in Figure 2.1.



U1-1 Ul Ul+1

Figure 2.1: Diagram indicating Interface and node labeling conventions.

Eqs. (2.10) and (2.11) are incomplete because they are valid only when a very fine-mesh

spacing is considered. When assembly-size nodes are used, which is the very goal of a

nodal theory, a large error will result. The assumption of a linearly varying flux is more

often than not invalid for assembly-size nodes.

This difficulty is overcome by the use of correction factors, first introduced by

Smith [S-1], to force Eqs. (2.10) and (2.11) mathematically rigorous. The correction

factors, f',mn and flm, for the opposite sides of the interface between node (1-1,m,n)

and (l,m,n) are defined by

f1-1,mn_ _i (g Uj)
f gu+

Ygu n ' (2.12)
4fm (U1)f"ii •

imn U_ Igu )

where A'n,(u l ) is the true surface-averaged flux. Examination of Eq. (2.12) shows that

the correction factors have the effect of making the surface-averaged flux discontinuous
if f1j1n and iand are not identical. For this reason, the correction factors are called

discontinuity factors [H-3]. Inserting the discontinuity factors given in Eq. (2.12) into

Eqs. (2.10) and (2.11) results in the following equation

-lmn ni/)n ( Ini )f nu

Jmn U)- Imn O gu(U)19IJgu (ul) = -Dr"g m h7(u~/f'2

" hL/2
- -B-mmn-lmn (2.13)

l-l'- mn gu (U -- gu+ Yg

= -D hul/2

When used with the reference values for the currents and fluxes, Eq. (2.13) also serves as

the definition of the discontinuity factors.



Although the discontinuity factors are introduced as the correction factors

intended to reduce the spatial discretization errors when a large node spacing is used,

they also can be used to correct for cross section homogenization errors and diffusion

theory approximation errors. These correction factors will be referred to as Coarse Mesh

Finite Difference (CMFD) discontinuity factors throughout this thesis to distinguish them

from another set of discontinuity factors introduced later in this chapter.

Now, the finite-difference nodal coupling equation, relating surface-averaged

currents to node-averaged fluxes, is obtained by eliminating the surface-averaged fluxes

in Eq. (2.13) using the continuity condition implied in Eq. (2.12)

h Imn  I - 1

_ h' fU2 h"j ____ 11rn"'mn gu- u gu- "Imn -,mn (2.14)
Jgu (UI 2Dmn I -  Im 2DI--Rmn n-Trg Vg (.L gu 2Dg 1 rn f f gu+

Substituting Eq. (2.14) and its equivalent coupling equation for the node surface ut+ 1 into

Eq. (2.5) results in the following finite-difference nodal balance equation

r 11/1 h' fg h l_ _x- , f k g-+1,k

+~ i jk -o -1h" 2Di'k i-l,sk 2Di-1,]k 1 g Jggx + g f -gx +
Ifqk Il . -+1 fi]k1 h h gx+ -ik -_+lfk

h' 2Dijk z+ljk +2D +,k +,jk g
hx ggx - g fg9xI ' -

1 h f;k +h-1 ijk

y g f;y+ g Igy+

1 h] ilk hi+' i1 jk+
Y +_ + y Jk ,+,k

h 2Dijk fi,j+l,k 2Dij+l,k ,+l,k g g
y g gy- ,g-y-

1 hf ff_ hki- - _ -_ k_ ,-

h 2Dhk IIk- 2D. k -1 fitjk- (.g

11 h( ff± h__+__ fz qk ~q,k+2 (2.15)+ _____ - k+h k2D ik fVk+I 2Di"'I k+1  yq, k Yg
= 1Z + gZ J+z k Ig k I gz-

ijk--'ijk = 1)pij -- i N~ jk--

First, note that only the ratios of the CMFD discontinuity factors appear in the final

nodal balance equation. Second, if CMFD discontinuity factors are unity, Eq. (2.15)

reduces to the mesh-centered, finite-difference diffusion equation.



Eq. (2.15) is reduced to a more compact form when matrix notation is used to

suppress the spatial dependence

1 G G
Ng= =- F , + JX 0, (2.16)

g' = g'=g -

where
N = N by N seven stripe matrix containing the coupling terms for group g,

the total cross section and the in-group scattering terms,

F = N by N diagonal matrix containing {XgV k },
S = N by N diagonal matrix containing {•i k, }

= column vector of length N containing fluxes for group g,

N = total number of nodes (I x J x K).

An even more compact form results when Eq. (2.16) is written in super-matrix notation

with the group dependence suppressed

1
LO = MO, (2.17)

where

L = NG by NG net loss matrix containing {Ngog , - I ,}

M = NG by NG fission matrix containing {Egg ,}

(P = column vector of length NG containing {_ }.

This matrix form is useful because it simplifies the confusing notation caused by many

superscripts and subscripts. A variational method will be applied to Eq. (2.17) for the

derivation of the steady-state nodal synthesis equation.

2.3.1 Boundary Conditions

The following equation specifies the boundary conditions relating the surface-

averaged current and flux [Z-1]

o mn(us) = " n..(. s) "1 ( -n, (2.18)

where
Om(u s) = surface-averaged flux at external boundary,



Jg '(us) = surface-averaged current at external boundary,

us  = external boundary,

1 = unit vector in the positive direction of the coordinate axis,

= unit normal vector of external boundary,

Fin" = boundary condition factors having the following values:

F7 =0 zero flux
gu-n = 2 zero incoming current
gu

F nnu = zero current
"'u (us)

m=n = albedo condition.

The expression for the current at the external surface needed in Eq. (2.5) results when

Eq. (2.18) and (2.13) are combined to eliminate the surface-averaged flux term. The

resulting expressions for a lower and an upper external boundary are given by

J7n (us)= [7- + 2mjn, (2.19)ga -- Imn 2Dz mn g

and

IF m  
h~ -1

Jmn (us) | g+, + h ij , (2.20)
gu Im) 2Dmn Týglum+n 2D 1

respectively.

2.3.2 Evaluation of CMFD Discontinuity Factors

Any reference solution (i.e., a transport solution and a fine-mesh finite-difference

diffusion solution) along with Eq. (2.13) defines the CMFD discontinuity factors. By

rearranging Eq. (2.13), the following expression of the CMFD discontinuity factor ratio is

obtained for an interior surface

,m n .+n h2 D m n

fLnn + 2D--mn Jg (u)

=, u+ =g (2.21)I gmn Lin-1

Igu- A -1,m, hu imnf g 2D 2--,,mn 9gu U

g



At the lower external boundary, Eq (2.19) can be rearranged to give

Fmn Imn h_= - K +h (2.22)
fImu- Jgu" (s) 2D9

and at the upper external boundary, Eq. (2.20) can be manipulated to give

pmn Imn I
= I - hu . (2.23)

f1 m Jgu (us) 2D9n

2.4 Discontinuous Synthesis Equation

Synthesis methods assume many different forms depending on the types of

expansion functions adopted. The simplest of the flux-synthesis methods is called

point synthesis and consists of representing the flux as a superposition of known three-

dimensional fluxes

P

ik V zik, pTp (2.24)
p=l

where the V jk,p are predetermined flux expansion functions and the T7 are mixing

coefficients. This method works well only when the range of reactor conditions for

which a given set of expansion functions is to be applied involves homogeneous changes

in reactor properties (changes in homogeneous poison concentration, in overall reactor

temperature, etc.). However, it is not well suited for heterogeneous changes in reactor

conditions It is not possible, for example, to produce an accurate representation of the

detailed flux shapes corresponding to a range of control-rod positions using just two or

three expansion functions [H-2]. In other words, many different three-dimensional flux

expansion functions have to be used in order for the point synthesis to accurately

represent the heterogeneous changes in reactor conditions.

This limitation can be circumvented by the use of the continuous space-

dependent synthesis method. The essential idea is to express the three-dimensional

flux shape as a linear combination of predetermined two-dimensional expansion
functions V i 'P multiplied by unknown one-dimensional mixing coefficients Tkp.

P

k ,l'PT kp. (2.25)

p=
1



The fact that the mixing coefficients depend on axial positions permits the same

expansion functions to be used for many control-rod positions [H-2].

There is a fairly obvious way to reduce the number of unknowns without

seriously decreasing the accuracy of the continuous space-dependent synthesis scheme.

One simply notes that, at a given axial position k, the most important expansion

functions will be those characteristic of the radial planes close to k. The coefficients of

other expansion functions are expected to be small. At the mid-plane of the reactor, for

example, the expansions functions appropriate to the top and bottom reflectors would

not be a significant contribution to the actual flux shape. Thus, allowing different sets of

expansion functions at different axial locations reduces the computational requirement

without seriously compromising the accuracy [H-2]. This type of synthesis is called a

spatially discontinuous synthesis and is adopted in this thesis. It has the following

form in Cartesian geometry

h(k)
k ,pT k,p (2.26)9k  E /g rg,(.6

p=f(k)

where f(k) and h(k) represent the axial dependence of the expansion functions.

There are two central questions that need to be answered in using synthesis

methods in general: (1) How should the expansion functions be chosen? and (2) How

are the mixing coefficients determined? The answer to the former question is not an easy

one because there is no firm theoretical basis for choosing expansion functions. There is

no brute-force way (for example, reducing the mesh size in the finite-difference diffusion

equation) of ensuring that Eq. (2.26) can adequately represent the true flux shape. The

choice of expansion functions depends on the physics of the problem, and adding more

expansion functions does not always improve the solution.

The "bracket and blend" approach, where expansion functions corresponding to

the reactor conditions which envelope the particular reactor state of interest, is the

generally accepted procedure of selecting expansion functions. Although many reactor

designers are uncomfortable with synthesis methods because there is no systematic way

of estimating and reducing the errors, past experience indicates that an accuracy of a

few tenths of a percent in eigenvalue and a maximum error of five percent in the flux

shape can be obtained using the "bracket and blend" approach.

The discontinuous synthesis equation having the mixing coefficients as the

unknowns can be obtained by two different methods, the weighted residual method

and the variational method. The weighted residual method is easier to understand in

that the approximate form assumed in Eq. (2.26) is forced to be the solution of Eq.



(2.15) in a weighted-integral sense. However, the variational method, which is

somewhat mysterious at first glance, is much more powerful in that it suggests which

weight function be used and provides continuity equations. For these reasons, the

variational method will be applied in the derivation of the discontinuous synthesis

equation.

The first step in the variational derivation is to find a functional for which the

first-order variation is made stationary by the solution of Eq. (2.17). This is

accomplished by multiplying Eq. (2.17) by the transpose of an arbitrary weight function

2P and solving for 1/A. The resulting functional is

1 0 L (2.27)
FsF ( 0) - - - (2.27)

where P is a column vector of length NG. The first-order variation, where second- and

higher-order variation are neglected, of Eq (2.27) is then

bs(2 ,2) = Fs(2 + 602,0 + 80)- Fs(2, 2)

(p + p* )T L(O + 60) 'P LO

(p* +6p* )T M( +8 p) ' * M Op

'* L' + *4 L 30 + 3* L 0 +0(3) 2  P* L

M*T  + M3 0+30 * M + O(38)2  * Mp

PTL LP+P*TL 0+ *TL L*TLP

*r (P* M 8(l + (5()*M (1 * MO
0 MP I+ (PTMO~rMO

*T 'PTM P

___M ' M Mi±'

'PTL3P~P
T TPF'P 'P'TMP

= --- + (,5)2
0P* T M P *T M P (2.28)

-0 LO- M P +4p L T.p 1 M 0

From the last line of Eq. (2.28), requiring the first-order variation of the

functional Fs to vanish for completely arbitrary 8'0 and 30 produces the following

equations



L _ - M _=0 (2.29)-- --

L T (--M M ' =0. (2.30)
=- 1ý-

The fact that Eq. (2.29) is identical to Eq. (2.17) proves that, indeed, the first-order

variation of the functional Fs defined by Eq. (2.27) is made stationary by the finite-

difference nodal balance equation. Moreover, the variational principle suggests that the

weight function should be the solution of Eq. (2.30), the adjoint nodal balance equation.

One may question the significance of the variational approach because requiring

oFs to vanish merely leads back to the same finite-difference nodal balance equation.

The answer lies in the fact that the space of functions I considered in Eq. (2.28)

contains the correct solution as one of its elements. If space of expansion functions

which does not contain the correct solution, such as Eq. (2.26), is considered, and if the

variational principle is applied to such a limited space, the solution that makes the first-

order variation vanish will yield a close approximation to 1/, o, the fundamental

eigenvalue, obtainable from that limited space1

Eq. (2.26) can be expressed more compactly using the following matrix notation

Si= T, (2.31)

where

I = NG by KP expansion function matrix,

T = mixing coefficient column vector of length KP,

P = number of expansion functions.

Similarly, the adjoint weight function can be expressed as the following

1 We cannot say that the procedure will yield "the closest approximation" to the fundamental
eigenvalue since the functional will not generally assume a minimum value at its stationary
point. Instead the stationary point will have more the nature of a point of inflection. That is,
if a limited subspace of expansion functions not containing the true flux shape is examined and a
vector out of that subspace is found that makes the first-order variation of the functional
stationary, it will not in general yield the best value of the fundamental eigenvalue obtainable
using expansion functions from the subspace. There will be other vectors in the limited subspace
that will yield more accurate value of the fundamental eigenvalue, however no systematic
way to find these vectors is known [H-2]. Yet, this is not a great concern since the same equation
can be derived using the weighted residual method. Also, practical experience indicates that
the approximated eigenvalue is almost always a close approximation to the true, fundamental
eigenvalue.



IF T. (2.32)

Substituting Eq. (2.31) and Eq. (2.32) into Eq. (2.28) and requiring the first-order

variation to vanish for arbitrary 680* yields

F(P* (), =T •= F * T LI T-1 M T•• T =O. (2.33)

Finally, the discontinuous synthesis equation containing the mixing coefficients as the

unknowns is

[*T LI T= [T M W] T. (2.34)

A similar derivation of the adjoint synthesis equation is possible, but it is of no interest

because the objective of this thesis is to synthesize the neutron flux shape, not the

adjoint shape. The adjoint weight functions and expansion functions will be determined

from separate calculations using the CONQUEST code [G-1].

2.5 CMFD Discontinuity Factor Updating Schemes

As defined in Section 2.3.2, the CMFD discontinuity factors can be determined

from a reference solution which provides the node-averaged fluxes, the surface-averaged

fluxes and the surface-averaged currents. However, this approach is self-defeating in

that there is no incentive to solve the finite-difference nodal balance equation if a more

accurate reference solution is already available. Solving the finite-difference nodal

balance equation merely reproduces the exact reference solution without adding any

additional information. Therefore, unless there are other schemes to calculate the CMFD

discontinuity factors more efficiently, the nodal theory is a purely academic proposition

without much practical significance.

Two different CMFD discontinuity factor updating schemes, which do not

require expensive reference calculations, are introduced in this section. One is called a

discontinuity factor synthesis scheme and the other a non-linear iteration scheme.

2.5.1 CMFD Discontinuity Factor Synthesis Scheme

In a fashion analogous to the flux synthesis scheme, the CMFD discontinuity

factor can also be synthesized using the following equation [K-1]



h(k)

fg'k _ p =f k)

u± - h(k) , U -x,y,z, (2.35)

p=f(k)

where u are the predetermined CMFD discontinuity factors associated with the

expansion functions yr'P. This scheme is based on the observation that the CMFD

discontinuity factors reflect the changes in the flux shape. Thus, if a particular linear

combination of known expansion functions closely reproduces the true flux shape, it is

physically plausible to expect that the same linear combination of the CMFD

discontinuity factors associated with the expansion functions be a good approximation

to the true CMFD discontinuity factors. Of course, this justification lacks a firm

theoretical basis, but the computational accuracy obtained using this scheme is

encouraging [K-1]. Moreover, the computational time, compared with the non-linear

iteration scheme introduced in the following section, is minimal.

2.5.2 Non-Linear Iteration Scheme

The application of a non-linear iteration scheme requires an additional nodal

coupling equation, which even with an assembly-size node without the introduction of

the CMFD discontinuity factors would result in a very accurate evaluation of node-

averaged fluxes, surface-averaged fluxes and surface-averaged currents. The polynomial

nodal theory, which represents the flux as a quartic polynomial, is adopted for this

purpose. The derivation shown in this section closely follows the presentation given in J.

Gehin's thesis [G-1].

2.5.2.a Transverse-Integration Procedure

Three coupled, one-dimensional equations are obtained by integrating the neutron

diffusion equation in the direction transverse to the direction of interest. This is

accomplished by operating on Eq. (2.2a) and Eq. (2.2b) with

I_ rm+1 dv f rndw. (2.36)
h"'h£; o,s



Thus, a one-dimensional equation in the direction u is obtained by integrating Eq. (2.2a)

and Eq. (2.2b) over a node in the direction v and w. The result is

d Jn (u) + zGt "rg () = F ,, Vmn + ,f"" S-mS (u), (2.37a)
gg -uf 9 gu

Ju m(u)= -D -- du nu (u) , u -x,y,z, (2.37b)

where
1 1Smn (u) = E L•" (u) + I L!' (u)

-gu hgwhw

V W

Lgvmn (u) = Xhi~~2w dw[Jgv(UVm+I "W)- Jgv(UVmtW)]
w

L7 (u) = w Jv[, (u,v,v wn2) - Jg ( v

V

The transversely-integrated equations (2.37a) and (2.37b) can be combined to

obtain a system of ordinary, second-order, inhomogeneous differential equations with

constant coefficients. If these equations are solved analytically, the Analytical Nodal

Method developed by K. Smith [S-2] results. The resulting solution, however, is rather

complicated and for practical application is limited to two energy groups.

An alternate approach is to assume that the transversely-integrated fluxes have

a polynomial form and to apply a weighted residual procedure to determine the

polynomial coefficients [F-1]. If the transversely-integrated flux can be adequately

represented by a low-order polynomial, relatively simply expressions result. Moreover,

because the equations for each energy group can be treated separately, generalization to

more energy groups is straightforward. For these reasons, the polynomial expansion

procedure along with a weighted residual method is adopted.

2.5.2.b Polynomial Expansion

The transversely-integrated flux is approximated by a truncated polynomial
P

p" mn U(omn =Ix .a gu' p ) P2 • U_ ~ , l (2 .38)
rgu •



Previous applications of polynomial methods [F-l] have shown that at least a fourth-

order polynomial is required to obtain acceptable results for light water reactor

applications. Further approximation involving the transverse leakage term, which is to

be discussed later, limit the accuracy such that using polynomials higher than fourth-

order is not warranted. For the case of a quartic polynomial approximation, the basis

functions are defined by [F-1,Z-1]

fo(ý)= 1, (2.39a)
1

f1() = -- , (2.39b)
2

f2(ý) = 3ý 2 - 34+- (2.39c)2
1

f3()= (1- )(3 -), (2.39d)

2 1

f4(ý) = 4(1- -)(2 _ +) . (2.39e)
5

These polynomials are chosen such that

S 1, p = 0(2.40)(4)d4 0, p= 1,2,3,4

In addition, the higher-order basis functions are required to satisfy

f£(0)=f(1)=O, p=3,4. (2.41)

This constraint on the higher-order expansion functions is convenient because it leads to

expressions which relate the node-averaged and the surface-averaged fluxes only to the

first three expansion coefficients.

Several key quantities of interest, namely the node-averaged flux, the surface-

averaged flux and the surface-averaged current, are evaluated in terms of the polynomial

expansion coefficients by manipulating equations (2.38) through (2.41):

-i mn lm
Imn = aumin (2.42a)Og - guO,

nW(uT a) aImn +1 Imn + I Imn (2.42b)= + guo 2gu 2 gi2 , (2.42b)

m"a( = agmn 1- aln + ailn, (2.42c)

J" (u1 lm) = - an 3a, - 1 -r Jl , (2.42d)mn(U+ D g a Lan, + -an "a Im u4aJm (2.42d)-u11 ' I gl 9 2 2 u 5 g4



J"(u) Dg a Imn ,'- 3a - Imn (2.42e)hgu [a'ul - u2 gu3 (2.42e)

The polynomial expansion coefficients are determined by solving the two-node

problem shown in Figure 2.1. The goal in solving this two-node problem is the

determination of the surface-averaged current at the interface of the two nodes in terms

of the node-averaged fluxes. This will result in a more accurate nodal coupling relation

than the finite-difference nodal coupling equation with unity CMFD discontinuity factor

ratios.

For this two-node problem, there are five unknown polynomial expansion

coefficients for each node and energy group. As Eq. (2.42a) shows, the first polynomial

expansion coefficient is the node-averaged flux, leaving four unknown polynomial

expansion coefficients for each node and energy group. Thus, eight equations are

required for each energy group to completely specify the coefficients. The equations

which will be used are:

1. nodal balance equation for each node, (2)

2. continuity of current at the interface, (1)

3. continuity of flux at the interface, (1)

4. two weighted residual equations for each node. (4)

The numbers in parenthesis indicate the number of equations that results from each

condition.

2.5.2.c Weighted Residual Procedure

Two equations for each node in the two-node problem are provided by a

weighted residual procedure. Because the truncated polynomial cannot match the exact

solution of the transversely-integrated diffusion equation, an alternate approach is to

require it to satisfy the equation in a weighted-integral sense. The weight functions can

be chosen arbitrarily, but two different methods are generally used: Galerkin Weighting,

where the polynomials are weighted by themselves; and moments weighting, where

polynomials of increasing order are used successively as weight functions. Previous

applications of polynomial nodal methods have shown that moments weighting is

superior [F-1].

The first step in the weighted residual procedure is to multiply Eq. (2.37a) by a
weight function w (u) and integrate over the node. The resulting equation is



(2.43)D)n G g gu,(hu') ° 9,'=u1-•p

where the brackets indicate inner products as in the following definitions

PlImn • W(U), Ogng(U)) Z u+1~~l•nTUd-w , (u), (u))w - h w, (u)O m "(u)du
USIm• -W• (U), Smn (u),

(K2)lmn_ (h')- [ gin ,r- - ! ln
_ L g g n"nIm n

n % t W 9 '

For moments weighting, the weight functions are given by

w2(u)= f(U U )
hU

w2(u) =f2( u
u  3
U h'

U U1 I
hU 2

, (2.45a)

u-u, u-lh_1 2 h1 + - "h' h' 2U ( U) (2.45b)

Substituting the polynomial approximation into Eq. (2.44a) and performing the

necessary integration result in the following first and second flux moments

lmn 1 Imn 1 lrn
92n = -la + 1 algu3n (2.46a)

gul -- ' 120"•bgu

Igmn =1 _Imn
;2 "- "2 gu2 + I ooam

700 gu4
(2.46b)

In a similar fashion, the first and second current-derivative moments are obtained by

substituting the polynomial approximation into Eq. (2.37b) and evaluating the inner

products

d 1 D ImnJ' (u) aImn, (2.47a)
(Wd(U)d J n(U ) 2 F "ygu3'

D Imn
1 Dg Imn

\2m du( .b
5= u agu4

w(u)K d mnwpu,-du lgu (

and

(2.44a)

(2.44b)

(2.44c)

(2.47b)
d

(W2() du



The evaluation of the transverse-leakage moments requires more information

because the variation of the transverse leakage within a node in the u-direction is not

known. The most common manner of treating this spatial dependence is the quadratic

transverse-leakage approximation [B-1]. In this approximation, the u-directed

transverse leakage is expressed in a quadratic polynomial which preserves the node-

averaged transverse leakages in the node of interest and its two neighbors in the u-

direction. The quadratic transverse leakage has the following form for an interior node
1-1mn mn -1(U) 1+ -mn lmn• 1+1/

Sgu) = Sgu +gu - Sgu )(u)-+-() (Ugulm _ +gu )i(u ), (2.48)

where the u-direction node-averaged transverse leakage for node (1,m,n) is given by

- nmn 1 u+1 InSgu = fu., Sg (u)du, (2.49)

U

and the quadratic polynomials are

pu-,(u) = a + b- + c uu , (2.50a)Ul I I ul (
"2

P 1+1 W=+ + b -uU +C u- u (2.50b)

pRh (u) = a + b + c hul . (2.50b)

The coefficients of these polynomials are determined by requiring that the quadratic

form preserve the node-averaged transverse leakages in the three adjacent nodes. The

resulting coefficients a+, b,, and c , depend only on the node widths. The complete

specifications of these coefficients, including those in the boundary nodes, and the

transverse-leakage moments are given in Appendix A. The resulting evaluation of the

transverse-leakage moments for an interior node is

slmn 1 _1[Im +m ,--1+1,mnz

S - (b + c- )S ingun - (b +b + c +c ,C+)-gun + (b +c- ,) •sg , (2.51a)

smn /[-1-1,mn C -)mn --+1,mn
u2 6 -S, -- (C +cu)Sgu +Cu1  gl . (2.51b)

Substituting Eqs. (2.46a), (2.46b), (2.47a) and (2.47b) into Eq. (2.43) results in

the following two weighted residual equations

aron +iX(K2 anFamn a_  z + + m = 0agu3 ~2\Igg m Inin~jj+ slin(2.52a)
2 +T2 lu u



Slmn + 1( GI2) mn a + ITa l (hl I)SImn =0 . (2.52b)
5 20 9'I L1 35j D 9

Before continuing, a discussion of the errors introduced by the quadratic leakage

approximation, Eq. (2.48), and the choice of the fourth-order polynomial is pertinent.

The error introduced by the quadratic leakage approximation is expected to be of the

same order as a third-order polynomial approximation for the transversely-integrated

flux because the leakages are related to the currents which are in turn related to the

spatial derivative of the flux. Hence, the leakages for a third-order polynomial

approximation have a quadratic form. Because the magnitude of the leakage terms are

typically smaller than that of the currents, errors in the leakages should be smaller than

and less significant than the errors in the currents. Therefore, the use of a quartic

polynomial approximation seems to be a reasonable choice with the quadratic

transverse-leakage approximation [G-1].

Empirical evidence also supports this choice. A convergence analysis of a two-

dimensional, homogenous, bare-core problem performed by M. Zerkle [Z-1] shows that
the spatial discretization errors in kff (/I) is O(h 4 ) for both the cubic and quartic

polynomial methods. A subsequent one-dimensional analysis, however, indicates that

in the absence of the transverse-leakage approximation the quartic approximation has a

truncation error of O(h6 ) while the cubic error remains O(h4 ). The comparison of the

one-dimensional to the two-dimensional result suggests that the quadratic transverse-

leakage approximation introduces an error of O(h 4 ) and this error is more significant

than the quartic polynomial approximation error.

2.5.2.d Expansion Coefficient Solution

The expansion for the two-node problem has eight unknown expansion

coefficients per energy group. The complete set of equations for a given interface is:

1. nodal balance equation for node I-1:

6Gmn 2- lcmn-i- mn  (hu-1) 2 .=ii mn

6' 2 - -a =d 2 \I , Og' + i5 m Sgu (2.53)
Ogu2 5 - gu4 =I(U9g'=l Dg

This is an alternate form of the nodal balance represented by Eq. (2.5) and is
obtained by using the weight function w o = 1 in Eq. (2.43).



2. first moment equation for node 1-1:

I i G. 1 , --, 2 ,m,,[ _n ,,. 1 _,1rn! (h" )2 .,1,,
a l-1,mn 2  1,mn m -mn - S-l ,mn" (2.54)2""- + 12• ., g. [a,., +g 1 ] =o D (n2.54

__ g

3. second moment equation for node 1-1:

1-,mn 1- (2)1-,m1-1,m[ 1-i =mn - (h 1)2 -1,mn (2.55)-agU4  +. gg IIC a~Tm +-1-agu I-gu (2.55)
S20 =l L 9, 1,J Dg

4. nodal balance equation for node 1:

6 Imn _n G 2 m I In-mnmn (2.56)

gu2- gu4 _ , (ICug •, gu
5 g g

5. first moment equation for node 1:

an ( in[ln +i G al1= - S2ns. (2.57)
Ua +Imn gg (2.57)

2 g1=1 Lg 1

6. second moment equation for node 1:

aImn G (ImIa 1mn (h sImn (2.58)
a5gu 

+  
a + In - (2258)--gu4 + gg' g'u2 +a gu2

5g0 '=I1L 35 D9~m

7. continuity of flux at the node interface:

( -1,mn 1 l-l mn 1 n-2mn 1fl-,mn (Imn - am nl mn (2.59)+a.' +-affiu.+ : -a •. +-a;• (2.59)
Og +2 agl" 2 a'gu2 -u Og 2 giui 2 gu2 g)

Note that the discontinuity factors introduced in this equation, f-1,mn and fImn
gu+ gu-'

are different from the CMFD discontinuity factors. As for the finite-difference

equation, these discontinuity factors can be used to correct for spatial,

homogenization and diffusion theory errors. Because the quartic polynomial

approximation leads to small spatial errors, their primary purpose is to provide

homogenization correction. Generally, these discontinuity factors will be

constant throughout the entire calculation.

8. continuity of the current at the node interface:



l-l1'mn- a l-1,mn a-1•m'n 1 -m1 mn 1-1,mn, ..
hl-' guil  gu2 2 gu3 5 agu4 j

linn 1 1(2.60)Dg n Imnu• ,Imn 1_Iamn 1almn (
- ua gu2 2 gu3 + 5 aju4

These equations represents a 8G by 8G coupled system of equations which

would be very time-consuming to solve, especially for a large number of energy groups.

With further manipulation, however, the solution procedure can be simplified [G-1].

Note that the nodal balance equation and the second moment equation for each node

consist of only the even expansion coefficients and are not coupled to the other node.
Thus, by solving the nodal balance equation, Eq. (2.56), for a2" and substituting it into

the second moment equation, Eq. (2.58), almn and a"m are obtained with one G by G

solution. Next, the continuity conditions, Eqs. (2.59) and (2.60), can be used to obtain
giAmnan amn n 1trm o 1almn a mndal-,m, and am in terms of a-,n and a. These expressions can then be substituted

into the first moment equations, Eqs. (2.54) and (2.57), to obtain a 2G by 2G equations
for a ,--mn and aumn. Thus, the 8G by 8G problem can be reduced to one G by G and one

2G by 2G problem per interface.

The coupling relations for the polynomial nodal method are simply the surface

averaged current expressions given in Eqs. (2.42d) and (2.42e). Because of their

complicated nature, they cannot be easily combined with the nodal balance equation to

form a single nodal equation as in the finite-difference method.

2.5.2.e Boundary Conditions

The boundary conditions applied to the polynomial equations are a

generalization of those applied to the finite-difference equation, Eq. (2.18), and are given

by

G
a~n (us ) = n g+_Jm g(us). (2.61)

g'=l

Note that if the off-diagonal elements of F7_ are zero, Eq. (2.61) reverts back to the

same form as in Eq. (2.18). Substituting the polynomial expansion approximations of

the surface-averaged flux and current results in the following equation at the lower

boundary surface



G imn
Im mn Infgm D g, I mn ,•Imn l _Imn l aImn.,- -ar•+ a- u_ ""U_, a 3ag'u- 2 a2 + ag'u4 (2.62)

and at the upper boundary surface

11n lmn Imn ]mn D= G Imn I Imrn 1Irmn

[<in + ajf = XF gg [a~ + 3alnl" - -a~ -- a~i (2.63)2- tgul 2- gu2 uu+ h-! s ' I--T a 'u' +  a 'u2 2 ---d u,3 5 -tg'u4 .( .3
g'=! hu2 gu

These equations are combined with the other expansion coefficient equations given in

Section 2.5.2.d to form the complete set of equations for nodes at the boundaries.

2.5.2.f Non-Linear Iteration Procedure

Eqs. (2.53) through (2.60), including the node-averaged flux as an unknown, can

be solved as a complete set. The system of equations having the polynomial expansion

coefficients as the unknowns, however, is quite large and complex because of both

spatial and energy coupling terms. The non-linear iteration scheme was first introduced

by K. Smith [S-3] as an efficient way of solving the polynomial nodal equations. The

scheme takes advantage of the property of the finite-difference nodal method in which

any reference solution can be exactly replicated if appropriate CMFD discontinuity

factors are provided. By solving the finite-difference nodal equation and the polynomial

nodal equations in a iterative manner, a significant reduction in storage and computing

time can be realized.

The crux of the non-linear iteration procedure is that the CMFD discontinuity

factor ratios, defined in Section 2.3.2, are updated using the node-averaged fluxes

obtained by solving the finite-difference nodal equation and the surface-averaged

currents obtained by solving the polynomial nodal equations. The uniqueness of the

solution of the nodal equations guarantees that if this scheme converges, if will converge

to the solution of the polynomial nodal equations. The non-linear scheme adopted in

this thesis utilizes exactly the same procedure except that the node-averaged fluxes are

found by solving the discontinuous synthesis equation rather than the finite-difference

equation.

A flow diagram of the non-linear iteration scheme is shown in Figure 2.2.

Beginning with an initial guess for the CMFD discontinuity factor ratios, the

discontinuous synthesis equation can be solved to compute the node-averaged fluxes.

These fluxes are then used in the polynomial equations to calculate the expansion

coefficients and, hence the currents at the interface. From these polynomial currents and
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Figure 2.2: Non-linear iteration flow diagram.



the synthesized node-averaged fluxes, discontinuity factor ratios may be computed.

These discontinuity factor ratios are in turn used in the discontinuous synthesis equation

and the process is repeated until the node-averaged fluxes converge.

2.6 Summary

The derivation of the discontinuous nodal synthesis method is presented in this

chapter. A variational principle is applied to the finite-difference nodal equation to

achieve the derivation. In addition to providing the discontinuous synthesis equation,

the variational principle suggests that the solution of the adjoint nodal equation be used

as the weight function. Two different CMFD discontinuity factor (the equivalence

parameter which corrects for the errors in spatial, homogenization and diffusion theory

errors) updating schemes are also presented in this chapter. The CMFD discontinuity

factor synthesis scheme, based on physical intuition, is simple and efficient, but lacks a

firm theory. On the other hand, the non-linear iteration scheme, in which the

discontinuous synthesis solution is forced to match a more accurate quartic polynomial

solution, has a concrete theoretical basis, but even with the simplified solution procedure

described in Section 2.5.2.d, it is much more complex and time-consuming than the

CMFD discontinuity factor synthesis scheme.



CHAPTER 3

TRANSIENT NODAL SYNTHESIS METHOD

3.1 Introduction

The transient nodal synthesis method is presented in this chapter. As in the

steady-state case, the derivation starts from the time-dependent, finite-difference nodal

equation. A functional, for which the first-order variation is made stationary by the

time-dependent, finite-difference nodal equation, is then introduced, and the same

variational procedure is applied for the derivation of the transient nodal synthesis

method. Although, not implemented in this thesis, the implications of using different

number of expansion functions at different time steps and of allowing flux and adjoint

expansion functions change at the same time are discussed in light of the variational

principle. Next, the same CMFD discontinuity factor updating schemes used in the

steady-state case are reiterated. The same non-linear iteration procedure described in

Chapter 2 is used with the introduction of dynamic frequencies and modified cross

sections while the CMFD discontinuity factor synthesis scheme is applied without any

modification. Finally, the WIGL thermal hydraulic and a linear cross section feedback

model as well as a cusping correction model are presented.



3.2 Time-Dependent, Finite-Difference Nodal Equation

The derivation of the time-dependent, finite-difference nodal equation starts

from the time-dependent, few-group diffusion equations [H-2]

18VI O(r't) = -V Jg(r t)- Ztg(r, t)Og(r, t)

G

+ I [(1- P)'Z'g)fg ,(r, t) + Egg, (r, t)] Og, (r, t) (3.1a)
9"=I

D

+1 ZdgXCd (rt) i
d=1

Jg (r, t) =-Dg (r, t)V Og (r,t) , g = 1,2,...,G (3.1b)

cdr dfg(rt)gd(rt)•dc(rt) , d = 1,2,...,D, (3.1c)
g'=l

where in addition to the quantities defined in Section 2.2

D = total number of delayed neutron precursor families,
vg = neutron speed for group g,

Xpg = prompt fission spectrum for group g,

Xdg = delayed neutron spectrum for precursor family d, group g,

,ld = decay constant for precursor family d,

Cd = density of delayed neutron precursor family d,

• = fractional yield of delayed neutron family d,
D

/ = total fractional yield of delayed neutrons, = • Pd *
d=1

As in the steady-state case, the time-dependent nodal balance equation is obtained by

integrating Eqs. (3.1a) and (3.1c) over the volume of node (i,j,k) and then dividing by the

nodal volume

1 d-ijk , [It , Jk--(•-xx [lgx(X,+l~t)- Igx(X,, - ) , t).[ jI (YJ+RJ, t) jik (YJ t
gx y

l jg(Z~lt ) fg(Zk t)] "I -,;
h ( zk+ J - (zkt - ,(t)g k(t) (3.2a)

G D
+1 [1 _ )Xp 37ik " _' k D -ijk

-(-gg(t) + (t) (t) +  -dgk (t),
g'= d=X



d-qjk (t O dvj/() G(t -i -zjk ()
Cd ItVE"ý (00-,W-d Cd (t). (3.2b)
~dt g'=1

The same definitions given in Section 2.2 apply to the node-averaged flux and the

surface-averaged current, and the cross sections represent averages over the node. In

addition, the node-averaged precursor density is defined by

ck (t)W kJ dx '+I dy• ' dzcd(xy,z). (3.3)

The time-dependent, finite-difference nodal coupling equation, relating surface-

averaged currents to node-averaged fluxes, is exactly same as the steady-state case

because the time derivative in Eq. (3.1b) is neglected. Thus, the coupling equation for

node interface u, is

F h' u  lmnt) g'- 1  - nt )  _-J (ul,) [2D (t) g + 2D( n(t) 2m(t) (3.4)lgmnU l ) =m 2Dtl- , nI-I, mn, (t) |  f1-,nt
D gu+W

Except that the CMFD discontinuity factor and cross sections are time-dependent, Eq.

(3.4) is exactly same as Eq. (2.14). Substituting Eq. (3.4) and the similar coupling

equation for the node interface u,+1 into Eq.(3.2a) leads to the following time-dependent,

finite-difference nodal balance equation in matrix form.

I d G
- 

d ( -t) = -g (t)g(t) + (1- )F pgg,(t) 0,(t)V_ dt -9 -- =
=g g'=1

G D (3.5a)
+ Egg,(t),(t) + Yd, ACdg (01

g'=1 d=1g'•g

d Gdcdg(t) = fd Xd,gg ,(t)g,(t) - d Cdg (t), d = 1,2,...,D, (3.5b)
g'=1

where in addition to the terms defined in Section 2.3

V = N by N diagonal matrix containing neutron group speed {vg },
Fpgg = N by N diagonal matrix containing {%pgVZ},

Fgg' = N by N diagonal matrix containing {dgVg},



cdg = column vector of length N containing {dg Cd }
Eqs. (3.5a) and (3.5b) can be simplified further by suppressing the group dependence

using super-matrix notations

V - 1  [(t) = M t(t)t-+L( t) (t)+ Ad d(t), (3.6a)dt -P d=12d dl

d
- dc(t) = Md (t)(P(t)- Acd(t), d = 1,2,...,D, (3.6b)dt-

where in addition to the terms defined for the steady-state case

V = NG by NG diagonal matrix containing Vg ,

M = NG by NG prompt fission matrix containing F ,

Md = NG by NG delayed fission matrix containing {Fd,gg'}

Cd = column vector of length NG containing {cdg }.

3.3 Discontinuous, Time-Dependent Synthesis Equation

The extension of the spatially discontinuous synthesis concept into time domain

leads to the discontinuous space-time dependent synthesis method. As spatially

discontinuous expansion functions are allowed in the steady-state case, temporally

discontinuous expansion functions reduce the computational requirement without

seriously compromising accuracy. Adopting discontinuous synthesis in time domain

allows the flexibility to drop or add the expansion functions during transients. A set of

expansion functions used in the beginning of a transient may be replaced by another set

at a later stage to reflect the changes in reactor conditions. The discontinuous space-

time dependent synthesis adopted in this thesis has the following form

h(k,t)
Vf i,p k, p

k(t) = g (t) , (3.7)
p=f(k,t)

where f(k,t) and h(k,t) represent the axial and temporal dependence of the expansion

functions. Although different expansion functions may be permitted at different time

steps, their total number will be kept constant. Eq. (3.7) can be expressed compactly

using matrix notation



0(t) = (T(t) ,

where superscript n represents the temporal dependence of the expansion functions.

The functional used for the discontinuous, time-dependent synthesis derivation

has the following form

F,(# (t),cW(t),. tcW... ,cD(t))=

fd t ;(t)

LcV (t))0
T1 W

M (t)- L(t)- 1 d-

S =- dt

M (t)

MD(t)

4P_*rT(t o)
- c ;(t o)

CD(to

_To
C1o

CDo

-A Sdt

0

+ glf (tf)

DfT CD (tf

2~d= 12 + -dj* T (tn)} -1{(tn)-_+ _ +cT (tnn}{Cd(tn) -Cd(t

The to and tf represent the initial and final time, respectively, and tn represents the

times when the space of functions considered are discontinuous. Also, The superscript +

and - represent the positive and negative side of time discontinuity tn. In addition, the

subscript o andf in the second and third term of Eq. (3.9) symbolize the initial and final

condition, specified by users, respectively. The first-order variation of the functional is

then

6 _ _ ( t ) T

C T(t),

M (t)-L(t)-- d
==P dt

MI(t)

M (t)

d
dt

0

0

d,if

(_P(t))
_C(t)

cD t)

N(t)
,C (t)

cD t)

.0

d

(3.9)

(3.8)

dt

,•6

. 7"



T(t)

+j'dt
,c (t)

cT

M (t)- L(t)- V- 1 d

- D d

M(t)

d
dt

• .. xD (SP(t)"

0 3c1 (t)

d D(t)t

T -)* (to) --{(to)_o - -o} (*T o

S;C* T(to) , cP(to)--Co c-T (to)

)c ] TJL D (to)

V-1320(to
=6c,(t 0)

ScD(to)

(P * T __-13 v _.tf) 1)

+ f -&D(tf)

' D f D• f

2{< (t) +
(t- { •Y (

t +) 0 t (t; )}

(, ) + •*t(tt( ) - (tn2
(3.10)

d=(t)2 + d (t2){cd(t) -Cd(t,)}

D *T() +c (t) Sc () - d(t) +0() 2.
d=T 21

The time derivative term, (t -- d.0(t), in Eq. (3.10) becomes
fto!2- adt

'fp*T(t)V-1 d
dt-

- drt *(t)V - =(tf t d t
" dt Lf" - - - dt-

__ )v-c_(t ()_ + _-,. + _*T(t)V' tn)*T -1,(p~t ) *T 
T -tOPob) )V~ ibt n~/t

-*T (tow-14_t o) - t O'¢_ V- •  -0*_ (t).t,, - - dt
Similarly, the time derivatives involving weighted precursor densities become

tf T d .T T + .T

cd (t)_Cd(t)=C (tf)Cd(tf)-C (t)Cd(t )+d d(t )3c(t)
tý dt -

-c (to) rtf (t)d c* (t).
d (to)-Cd(to -3 dt

(3.11)

(3.12)

J



With the substitution of Eqs. (3.11) and (3.12) into Eq. (3.10), the first-order

variation of the functional leads to the following expression after some algebraic

manipulations

' N

"T T6 _*(t) r

=dt Sc (t)

SC*T (t) 9

r6 S(t) T

t t c T(t) )

6cT (t) j

_VjaM (t) - L(t)-, . ,
Sddti ( d _t 11 dD.

dtM•(t) -Az - t o
dM (t) 0 .... A -

N

MT (t)_Tr(t) + V- 1 a MT~t .. T t
-P L dt ý

Ad2" d - 1 D - ' 0

AD 0 - AD + d

C (t)LD C(t

c;(t)

~c (t)J1*(0

D
+30 *T (t 1 0 (t)} c_ (t)c d(to)}

+ (o)V_- t o A Elto* ( d odo C(d a
d=1D (3.13)

+o (t )V-'•• 0 f - * (tf)} + I d (tf){cf - c*(tf)}
d=1

*T() + 3*T _t -1
(-q -{ *t(+)

2 n

1 rT+ T 1rD_1 cT) (t)) +c T (t +c ) d d(t
21~ - -d _d d4
2d=1+ 10__T (t) +6(__ (t+)}V( to_*{(t+)- (- tt)

+ ID _I tt8,) ct+t + (tT)}
+2d_.n d n+ - }{

2d= 
_

Now, requiring Eq. (3.13) to vanish for arbitrary 3* and 3d should reproduce the

time-dependent, finite-difference nodal equation, Eqs. (3.6a) and (3.6b). Indeed, this is

true from the first term of Eq. (3.13). Furthermore, Eq. (3.13) reveals other relations that

the space of functions must obey. From the third and fourth term, the following initial

conditions are apparent

cP(to) = (3.14a)

cd(t o) =c . (3.14b)



These relations specify the initial conditions. The seventh and eighth term of Eq. (3.13)

lead to the time continuity conditions, and they are

(t+ ) = (t- ), (3.15a)

c(t +) = C(t ) .  (3.15b)

In fact, Eq. (3.15a) are obtained twice if the variations 80 (tn) and 63 (t-) are treated

as independent. Also, a similar statement can be made about Eq. (3.15b). This

redundancy does not cause any trouble at this point. The variational procedure selects

only continuous functions among a generally discontinuous space of functions. As long

as the continuity conditions are satisfied, one can be indifferent as to whether +P (t n )

and S6P(t n) are independent variations or not. The redundancy, however,

foreshadows over-determination difficulties in the synthesis approximation for which

the space of functions considered do not include continuous functions [S-4].

In addition to the time-dependent, finite-difference nodal equation and its initial

and continuity conditions, Eq. (3.13) reveals what the weigh function should be.

Namely, requiring Eq. (3.13) to vanish for arbitrary 60 and 3 Cd leads to the time-

dependent, finite-difference, adjoint nodal equation and its final and continuity

conditions. However, the time-dependent adjoint equation is of no interest in this thesis

of which the goal is to synthesize the flux shape, not the adjoint shape. From a precise

theoretical standpoint, the solution of the time-dependent adjoint equation should be

used as the weight function because that is what the variational procedure suggests.

However, this is very undesirable from a practical standpoint. It is expensive to solve

the time-dependent adjoint equation, requiring as much computational time as solving

the time-dependent nodal equation. For this reason, this thesis resort to the steady-

state adjoint solution as the weight function even in the time-dependent synthesis

scheme.

Similar to Eq. (3.8), the adjoint weight function can be expressed as the following

2• (t) -• _V.T* (t) , (3.16)

where, again, the superscript n represents the temporal dependence of the weight

function. Substituting Eqs. (3.8) and (3.16) into Eq. (3.13) and requiring the first-order

variation to vanish for arbitrary variations (50 and 8cd result in the discontinuous

synthesis equation. The first term in Eq. (3.13) becomes



M (t) L(t) - 'V A
l

MP dd ... 0D
d= dt

ddMM__(t) 1 dt0
M~t) d

Il n T(L ,nT__(t)
CR(t) , (3.17)

,D c

and it has to vanish. Therefore, within the continuous time domain where both

expansion and weight functions do not change, the synthesis equation is

---- -dt-- =d=1

d
-dd(t) = Md (t)•n T(t) - )cd(t), d = 1,2,...,D. (3.18b)

Similarly, the seventh term leads to

*n+IT V- n T(tn) - T )= 0, (3.19a)

and

W*nT V-l n T (tn ) -( "JT(t ) = 0. (3.19b)
== =Jn+1T-tn .= 0.

Now, the over-determination difficulty is apparent. While the number of

unknowns is KP, there are 2KP equations to satisfy. This difficulty can be overcome by

requiring that the expansion and adjoint weight functions not be discontinuous at the

same time. The adjoint weight function does not have to be continuous throughout the

entire time domain, but it has to be when the flux expansion function is discontinuous.

Thus, in this case, if *n+ l = *n at time tn, the over-determination problem vanishes

and the continuity condition is given by

. -_ V-lW n'T(t) =, *n V- y T(t,). (3.20)

Another possible way to bypass this over-determination problem is to solve Eqs. (3.19a)

and (3.19b) in a least-square sense. Although the physical meaning of the least-square

solution is not clear in this case, there exist, nonetheless, a well established mathematical

procedure. This thesis adopts the former approach to overcome the over-determination

difficulty. Furthermore, the adjoint weight function is kept constant throughout a

transient. Unlike the point kinetics approach which assumes that the initial flux shape

L ST* T(ty*nT T'
SCT (t)

c r(t) )
-/DT



persists throughout a transient, the discontinuous synthesis allows different flux shapes

at different time steps, and therefore, the error associated with a particular choice of

weight function is expected to be small.

The third term of Eq. (3.13) leads to the following initial condition
tlF*Tv-lWn°-T(t ) -- Wr*T v-1(Po (3.21)

where the temporal dependence of the adjoint weight function is suppressed in light of

the assumption mentioned in the previous paragraph. A closer examination of Eq.

(3.21) shows that this initial condition is a specialized case of the continuity condition
given by Eq. (3.20). For example, if one wants to use a set of expansion functions, T s

for the steady-state synthesis solution and another set for the transient synthesis

solution, Eq. (3.21) becomes
W*T v-lWn° T(to) = Wl*T V-1LWlSTs

very similar to the continuity equation given by Eq. (3.20).

The initial and continuity conditions on the weighted precursor density are the

same as given by Eqs. (3.14b) and (3.15b). Unlike the nodal flux, the space of functions

considered for the weighted precursor density is not limited by the synthesis

approximation, and therefore, the same initial and continuity conditions are applicable
for all variations of cd values.

Before finalizing the time-dependent synthesis equation, let us consider what

happens if the number of expansion functions are changed in light of the variation

procedure. First of all, Eq. (3.18a), in its time-discretized form, becomes either over- or

under-determined system of equations and, so does Eq. (3.20). These equations could

be solved in a least-square sense, but the computational complexity and expense are

enormous. If the adjoint weight functions and the flux expansion functions are allowed

to be discontinuous at the same time and their numbers are kept same, the over- and

under-determination difficulty in Eq. (3.18a) disappears. The time-continuity relation,

however, still retains the over-determination problem as shown in Eqs. (3.19a) and

(3.19b). Therefore, one cannot avoid solving either an under- or over-determined system

of equations if the number of expansion functions are allowed to change from one time
step to the next. For this reason, the number of expansion functions is kept constant in

the development of the time-dependent synthesis method in this thesis.



The complete set of the time-dependent synthesis equations derived with the

assumptions of (1) continuous, initial adjoint weight functions throughout a transient

and (2) a constant number of flux expansion functions is then:

1. within the continuous time domain where the flux expansion function do

not change:

T = VIW[M(t) - L(t)]'YT(t) + T_ (3.22a)

dt -d=1

d
-7Cd(t) = M(tT(t) c(t), d = 1,2,...,D. (3.22b)dt- :=d t'Tt)-kd0

2. initial conditions on the mixing coefficients and the weighted precursor

densities:

IF*rv-2I nMT(to) v-1 (P0, (3.23a)

Cd(to) = Cdo. (3.23b)

3. continuity conditions on the mixing coefficients and the weighted

precursor densities when the flux expansion functions are discontinuous:

T(t)= W * TV-, nT(t ), (3.24a)

Cd(t +) = cd(t ). (3.24b)

3.4 CMFD Discontinuity Factor Updating Schemes

The same CMFD discontinuity factor updating schemes, introduced in Chapter

2, are reiterated in this section. The discontinuity factor synthesis scheme assumes the

exact same form as in the steady-state case. The non-linear iteration scheme, however,

is applied with modified cross sections as a result of the introduction of dynamic

frequencies. This approach is necessary if one wants to avoid solving time-dependent,

polynomial nodal equations.



3.4.1 CMFD Discontinuity Factor Synthesis Scheme

The time-dependent CMFD discontinuity factor synthesis scheme has the exact

same form as given in Eq. (2.35). A linear combination of the predetermined CMFD

discontinuity factors associated with the expansion functions selected for a particular

transient is assumed to represent closely the true CMFD discontinuity factors. Eq.

(2.35) can be rewritten with the time dependence explicitly shown

h(k,t) T'11, (t)
fI 'I*k p-f (k,t0

fu (t) = h(k,t) , u = x,y,z. (3.25)

Thk,) P

p=f(k,t)

3.4.2 Non-Linear Iteration Scheme

The same transverse integration procedure introduced in Chapter 2 is applied to

Eq. (3.1a) to obtain one-dimensional equations. Integrating Eq. (3.1a) in the direction v

and w for node (l,m,n) leads to

I d mnd IIn
,- (UM= Jm, (u,t) - E tg (t)gu (u, t)
mgu , t guvg

G

+ p(1- /)ZpgV Zjn (t) + Elm" (t)] O m (u, t) (3.26a)

f- (ut) g =
g'=lgD

+• ,dg,,ddmn (u, t)- Sm (u, t), g = 1, 2,..., G,
d=1

d G
cm, (u,t)= pd, n nId (t)mu(U, t)-,Cu (u,t), d = 1,2,...,D. (3.26b)

g'=2

The time derivatives in these equations present a difficulty. They require the equations

to be differenced in time and past values of the expansion coefficients to be saved from

one time step to the next [G-1]. Also, the transverse integration procedure has led to the
directionally-dependent precursor densities, cu (u, t). Eqs. (3.26a) and (3.26b) can be

simplified with the introduction of dynamic frequencies defined by the following

expressions [G-1]



wIn (t) = mn (ut), (3.27)9 omn (U., t) & 9
and

wIn W 1 d Cn (u,t). (3.28)

dtu

Note that these frequencies vary neither spatially nor directionally within a given node.

A method of estimating these frequencies is presented in Chapter 4. Substituting Eq.

(3.28) into Eq. (3.26b) results in the following equation relating the transversely-

integrated precursor densities in terms or the transversely-integrated fluxes
G

cmn (u, t) = id (. ng (t)+n n (u, t), u E[uuU+1]. (3.29)

Eq. (3.29) and Eq. (3.27) can then be substituted into Eq. (3.26a) to obtain

dJn (u, t) + Emn (t)mn (u, t) = [ (t)v,,7n (t) + Eln ((t) mn (u, t)
Sg g=1 (3.30)

-nS U (u, t), g = 1, 2,...,G,

where an effective total cross section, I n(t), and an effective fission spectrum,
mn(t), are defined by

Ztgn (t) . Elm, (t ) + w9(twtmn(t)
_gvg

X4" tm(t) - (1- 1 )pg + I wmn(t)+ d

Now, Eq. (3.30) closely resembles the transversely-integrated equation for the

steady-state case, Eq. (2.37a). Thus, the steady-state equations for the polynomial

expansion coefficients may be applied with the modified cross sections. Once the

polynomial expansion coefficients are determined, the polynomial current expressions,

Eqs. (2.42d) and (2.42e), are applied and the CMFD discontinuity factors are

computed. Hence, the non-linear iteration procedure described in Section 2.5.2.f remains

unchanged.



3.5 Time-Integration of the Synthesis Equation

The derivation in Section 3.3 has resulted in spatially discretized, time-

dependent, ordinary differential equations in terms or mixing coefficients and weighted

precursor densities. The methods applied for the solution of the synthesis equation is a

direct integration of the precursor equation and a theta-differencing scheme for the

mixing coefficient equation.

The time domain is represented by discrete points at which the desired solution

is to be computed

t= to  tl t2...'

and the time intervals are defined as

Atn t (+1 - tn -

First, consider the precursor equation, Eq. (3.22b). A direct integration of this equation
from tn to tn+ 1 leads to

c(n+l) = e-;dat, (n) e-;dAt" tn+ e-d t-t; M  (t)M T(t)dt, d = 1,2,...,D. (3.31)Q Cd+ tn e d .---- 31

The superscript represents the time at which the quantities are evaluated, for example

(n+1)
Cd =d n+1

Now, if Md (t)WT(t) is assumed to vary linearly across the time step, the integral in Eq.

(3.31) can be evaluated to give

(dn+1) = kdn)c k +k2 (n+) (n+1) -- k 1 M 'T (3.32)
S2,d Ad 3,d d = -d

where

kid =e- dAtn"  k2,d = 1-e - dAt , k3,d = e-idAt - e- dAtn

XAtdn 1d' tn

Note that in computer applications kl,d, k2,d and k3,d should be evaluated using Taylor

series expansions to avoid round-off errors for small At, .

Now, the theta method [V-1] applied to the mixing coefficient equation, Eq.
(3.22a), results in



*T Tn - Tr ( *T[l (n+1) _(n+2) (n+1) *T D (dn+1)

At - d1 (3.33)
D

+ (1-0) o{I[M(n) -L (n) ]WT(n) + I 2T ( 3.33
d=1

The choices of 6 and their numerical implications are given in Chapter 4.

Substituting Eq. (3.32) into Eq. (3.33) eliminates the precursor densities at the
new time step tn+2, and subsequent rearranging leads to

T VMn+ - L(n+) + M'k n+ WT1 (n+1) -

+ 0 - L I k2,d )].d= d1

has V-1 + be- 0) Msove Lb ef te ik3n Mpn) cT ang (3.34)C At e t d=1 T s t
D

*T Ad(n) 1 _(1- k,

d=1

Eq. (3.34) is applicable only within the continuous time domain where the expansion

functions do not change. As soon as the expansion functions are changed, Eq. (3.24a)
has to be solved before the solution procedure can be advanced again using Eq. (3.34).

The subdivision of the time steps in the synthesis method is shown in Figure 3.1.
The largest time step, At,, is allotted for the expansion function changes, while the

CMFD discontinuity factors are updated with a smaller time step, At m . The smallest

time step, At n , is used to obtain the mixing coefficients. For the slowly developing

transients in which the changes in the CMFD discontinuity factors are also very gradual,

skipping several mixing coefficient time steps before updating the next CMFD
discontinuity factors reduces computing time without noticeable effect on accuracy. For
this reason, Atm is chosen to be larger than Atn.

3.6 Thermal Hydraulic and Cross Section Feedback Models

A realistic investigation of space-time neutron behaviors must consider thermal
hydraulic effects. In fact, the neutron flux shape is a strong function of fuel and coolant
temperatures and many transients are initiated by changes in thermal characteristics of a
reactor core. A simple thermal hydraulic model, called the WIGL model, and a linear
cross section feedback model are described in this section.



Synthesis Time Steps
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At, = Expansion Function Time Step

Atm = CMFD Discontinuity Factor Time Step

At n = Mixing Coefficient Time Step

Figure 3.1: Diagram showing the subdivision of time steps in synthesis method.

3.6.1 WIGL Thermal Hydraulic Model

The WIGL model [V-1] uses a simple, one-dimensional, lumped heat capacity

representation of the reactor core. Also, boiling effects are neglected in the model,

making it inapplicable for Boiling Water Reactors (BWR). Despite these limitations, the

WIGL model provides a reasonable representation of the PWR core thermal hydraulic

behaviors. As a result, many reactor problems have been analyzed based on the WIGL

model [G-1]. The WIGL model is incorporated in this thesis for its simplicity and for

comparison purposes.

The appropriate heat transfer equations for a given thermal hydraulic region are

PfVCdTiJ k _k____Vij 1 (W .kTijk\

pfV -(1 i _ + V k 08 T (ijk jk), (3.35a)dt (1rI)(q")'kik c [AHU Anho Wo

Vtjk(0.8 
--1

Vcjk=Vijk ijk ijk
V c dt C AHU AHho o T (3.35b)

+2WrjkC(Tjk- ik) + r(q,) ijk fVijk

Tijk = 2 cij,k-1 _ Tij k- 1, (3.35c)



where

r = fraction of fission power deposited in coolant,
ijk = average fuel temperature in node (i,j,k),
f

Tijk = average coolant temperature in node (i,j,k),

Tbk = inlet coolant temperature of node (i,j,k),

Pf = fuel density,

Pc = coolant density,
Cf = specific heat of fuel,

Cc  = specific heat of coolant,

(q"')ijk = volumetric heat generation rate in node (i,j,k),

Vjjk = volume of fuel in node (i,j,k),f

Vck = volume of coolant in node (i,j,k),

AH ratio of total heat transfer area to coolant volume within node (i,j,k),

U = ratio of conductivity to conduction length of cladding,
ho = convective heat transfer coefficient at initial flow rate,

Wo = initial total core mass flow rate,

W = total core mass flow rate,

WTk = mass flow rate in node (i,j,k),

= energy needed to raise temp. of a unit volume of coolant one temp. unit.

For steady-state calculations, the time derivatives in Eqs. (3.35a) and (3.35b) are set to

zero. Time-dependent applications employ a fully-implicit time integration method with

the same time step used as for mixing coefficient calculations. The numerical properties

of a fully-implicit WIGL model are compared with those of a fully-implicit donor cell

model and results are presented in Appendix B. For all practical purposes, there are

little differences between the WIGL model and the donor cell model.

3.6.2 Cross Section Feedback

This thesis uses a linear cross section feedback model, where all macroscopic

cross sections (and inverse of diffusion coefficients) are assumed to be linear functions

of the node-averaged fuel temperature, coolant temperature and coolant density



ijkE ~ ~ ~ ~ ~ ~~ r (k ijk iTj ikTo o/Pof f-°j' ( "°'j( 0-rk(; kijik..k( b,:OPC) O )~ f(3.36)

+ ik (Tci - •k ) +c ijk co 0)
IdikC cc 4 .ijk cc

c 2 L~~c -

where Tfo, TcO and Pco represent the reference values and the partial derivatives with

respect to temperature are at constant density. In general, the linear functional

dependence can accurately represent the actual cross sections over only limited ranges of

the temperatures and densities. Actual design calculations may warrant more elaborate

schemes (table look-up or polynomial fitting) to represent cross section changes more

accurately [G-1]. But, for the purposes of this thesis, the linear assumption is sufficient.

3.7 Control Rod Cusping Correction

Transients are initiated by perturbations in reactor conditions. The perturbations

can be cause by many different mechanisms including control rod motion and thermal

hydraulic changes. The control rod motion, in particular, raises a question in nodal

theory concerning cross sections of a partially rodded node.

The nodal method treats control rod motions as spatially uniform changes in

macroscopic cross sections. The simplest scheme of obtaining the cross sections for a

partially rodded node is to use a volume-weighted average of the rodded and unrodded

nodal cross sections. This procedure, however, introduces a modeling error because the

neutron flux within the node in not spatially uniform. In fact, the rodded flux shape is

very much different from the unrodded flux shape. As a result, the volume-weighted

scheme causes a cusp-like time behavior of the flux as the control rod moves through a

node. An elaborate correction scheme was developed by H. Joo [J-2] and incorporated

in the QUANDRY code to reduce the error caused by the cusping effect. However, a

simple correction scheme developed by J. Gehin [G-1] is used in this thesis.

If the average fluxes in the rodded and unrodded portions of a node are known,

a new homogenized cross section can be obtained by a flux-weighted scheme

ag ,nr h~nr ;rhylk h"'rd"' + hdg , (3.37)Sh"' g"' + hk

where superscript r and nr represent the rodded and unrodded portions of the node,

respectively. The nodal method, however, computes just the average flux of the entire



node, not of the two regions of interest. In the case of a strongly absorbing rod, the

neutron flux makes a sharp change at the rod tip, and varies more slowly away from the

tip. Based on this observation, one can approximate the flux in the unrodded portion of

the node as the average of the node-averaged flux of the partially rodded node and its

lower neighbor. (Note that this statement implicitly assumes that control rods are

inserted from the top of a core, but an analogous statement can be made about control

rods inserted from the bottom of a core.) Likewise, the flux in the rodded portion can be

approximated as the average of the flux in the partially rodded node and its upper

neighbor. These approximations lead to

hknr ijk +h "",k-1hnr + hk, 1  (3.38a)
0; gh" + hk-1

and

hf t i + hk+ ik+1
r• .pkg + hk+lk+l (3.38b)

hg + hk+l

Eqs. (3.38a) and (3.38b) are substituted into Eq. (3.37) to obtain flux-weighted nodal

cross sections. In spite of its simplicity, this method has been found to perform as well

as more elaborate models [G-1].

Other perturbations initiated by thermal hydraulic changes in reactor conditions,
including coolant inlet temperature and core flow rate changes, in general, affect an

entire node homogeneously and do not cause a cusp-like behavior in the neutron flux.

3.8 Summary

The time-dependent synthesis method, which allows discontinuous expansion

functions is presented in this chapter. The functional for which the first-order variation

is made stationary by the time-dependent, finite-difference nodal equation assumes a

more complex form and the synthesis derivation requires a bit more algebraic

manipulation than the steady-state case because of discontinuous expansion functions.

As a result, the variational procedure reveals some interesting numerical implications.

An over-determination difficulty arises if both flux expansion functions and the adjoint

weight functions are allowed to be discontinuous at the same time. Although the

resulting over-determined system of equations could be solved in a least-square sense,

the variational procedure suggests that the adjoint weight function be continuous if the

over-determination problem is to be avoided. Further, the variational procedure

discloses that either an over- or under-determination problem cannot be avoided if



different numbers of expansion functions are employed at different time steps. For

these reasons, it is assumed that the adjoint weight functions are continuous throughout

a transient, and that the number of expansion functions is constant.

The same CMFD discontinuity factor updating schemes used in the steady-state

case are applicable for the time-dependent application. The CMFD discontinuity factor

synthesis scheme is a straightforward, but the non-linear iteration scheme requires the

introduction of dynamic frequencies if solving the time-dependent polynomial nodal

equations is to be avoided. With modified cross sections, the non-linear iteration

procedure describe in Section 2.5.2.f can be applied for the time-dependent case as well.

The direct integration of the precursor density equation and the theta scheme for

the mixing coefficient equation are the methods selected for the solution of the time-

dependent synthesis equation. The overall time advancing strategy uses three different

time steps. The largest time step is reserved for possible expansion function changes

and the smallest time step for mixing coefficient calculations. The CMFD discontinuity

factor updating time step is allowed to be larger than the mixing coefficient time step to

reduce the computational expense for transients which do not require frequent

discontinuity factor updates. Finally, the WIGL thermal hydraulic model as well as the

linear cross section feedback model is introduced for their simplicity and for comparison

purposes. A simple control rod cusping correction model to determine the macroscopic

cross sections of a partially rodded node is also described.



CHAPTER 4

NUMERICAL SOLUTION METHODS

4.1 Introduction

This chapter presents the numerical methods for solving the steady-state and

transient synthesis equations. The introduction of predetermined, two-dimensional

expansion functions yields several significant numerical implications in solving the

synthesis equation. First, the resulting matrix in the synthesis equation lacks the

structure that guarantees that iterative matrix inversion techniques will converge. As a

result, there is no choice but to resort to a direct inversion technique. Second, the

synthesis eigenvalue problem loses the property that guarantees the existence of a

largest, positive eigenvalue and its corresponding unique positive eigenvector. This has

potentially serious consequences because the resulting eigenvalue and the synthesized

flux can assume physically unacceptable values. There is no theoretical resolution of

this problem, but the past experience with synthesis methods indicates that negative

eigenvalues and fluxes are rarely encountered [Y-1,Y-2,Y-3]. Third, the implementation

of Wielandt's eigenvalue acceleration scheme necessitates a simultaneous group solution

procedure. The group-wise solution procedure developed by T. Sutton [S-5] has a

convergence problem and is, therefore, not applicable to synthesis methods.



4.2 Steady-State Solution Methods

The complete set of steady-state equations for which a solution is sought is Eq.

(2.34) along with either the polynomial nodal equations (2.53) through (2.60) or the

CMFD discontinuity factor synthesis equation (2.35). The CMFD discontinuity factor

updating schemes, both the non-linear iteration scheme and the CMFD discontinuity

factor synthesis scheme, discussed in Chapter 2 require the determination of the mixing

coefficients for their implementation. This section presents the numerical methods for

solving Eq. (2.34) for the eigenvalue and the mixing coefficients.

4.2.1 Numerical Properties

The finite-difference nodal balance equation from which the synthesis equation is

derived has the following form in matrix notation

1
L(4,A) = - M , (2.17)

where the dependence of the loss matrix L on the node-averaged fluxes and the

eigenvalue is explicitly indicated. The diagonal dominance of the matrix L is no longer

guaranteed because of the introduction of the CMFD discontinuity factors. However, if

the CMFD discontinuity factors are assume to be unity, Eq. (2.17) reduces to the finite-
difference diffusion equation and the matrix L has the following properties [V-2]:

1. L is real,

2. the diagonal elements of L are positive,

3. the off-diagonal elements of L are non-positive,

4. L is diagonally dominant,

5. L is irreducible.

A matrix which has these properties is called an S-matrix and its inverse, L-2 , exists

and has all positive elements [N-1]. These properties render a significant numerical

importance in solving the finite-difference nodal balance equation. First, the diagonal-

dominance guarantees the convergence of iterative inversion methods. Second, the
positivity and the irreducibility of L-' guarantee the existence and uniqueness of a

largest positive eigenvalue and its corresponding positive eigenvector [N-1] (physically

acceptable effective multiplication factor and node-averaged fluxes).



Now, let us consider the numerical properties of the resulting matrix for the

synthesis equation. Recall that the synthesis equation in matrix form is

1
'T= -M'T, (2.34)

where

L1'=[T*TL] and M'= [* TM ].

Because of the introduction of arbitrary expansion functions and weight functions

(which, although not selected arbitrarily, can be considered arbitrary for the purpose of
this discussion), the resulting matrix L' is no longer guaranteed to be diagonally-

dominant; hence iterative inversion techniques cannot be applied. Also, the existence

and uniqueness of a largest positive eigenvalue and its corresponding eigenvector is not

assured any more. This has a rather significant consequence in that the convergence of

the power method is not guaranteed. Furthermore, even if the power method has a

converged solution, it may contain physically unacceptable values (i.e., a negative

eigenvalue or negative node-averaged fluxes).
A theoretically trivial but a numerically significant concern is that the matrix L'

is, in general, ill-conditioned. Theoretically, the use of linearly independent weight and

expansion functions ensures a non-singular matrix. However, because the expansion

functions and the weight functions are, in general, all nearly the same size, the resulting
matrix L' becomes nearly singular. Under these circumstances it is possible to run into

significant rounding-off errors in solving Eq. (2.34). This difficulty can be overcome by

using linear combinations of original expansion and weight functions. For example, use

of [l], [W - 2],...,[ - i,], and [i*], [ - 2],...,[ 1 -P i p] in place of the original

[p]I and [p]I is usually sufficient to avoid rounding-off errors. If not, an actual

orthogonalization can be carried out. Such a transformation does not affect the answer

mathematically; hence, from that viewpoint, the procedure is unnecessary. It can,

however, affect the numerical answer considerably [H-2].

4.2.2 CMFD Discontinuity Factor Iterations

The top iteration level in the steady-state solution procedure is the CMFD

discontinuity factor updating. In this iteration, the synthesis equation is solved for the

mixing coefficients. Then, using these mixing coefficients, the CMFD discontinuity

factors are computed either from the non-linear iteration scheme or the CMFD



discontinuity factor synthesis scheme. This process is repeated until a desired

convergence is achieved.

By having the top iteration level be the CMFD discontinuity factor updating, all

CMFD discontinuity factors are kept constant throughout the solution of the synthesis

equation. In addition, cross section updating required by thermal hydraulic changes is

performed with the CMFD discontinuity factor updates. As a result, the non-linearity is

eliminated from the synthesis equation.

4.2.3 Outer Iterations

Eq. (2.34) can be rewritten in the following form
1

T = -RT, (4.1)

where
R =- L'- M'.

The largest (magnitude) eigenvalue and its corresponding eigenvector can be found using

the power method [N-1], which can be written as

T = + ) 1 --RT' (4.2a)

)(w1 2:(+) . = l,2,..., (4.2b)

(W"T(1)

where 1 is the iteration number and w is a weighting vector. According to the Perron-

Frobenius theorem, an irreducible matrix having non-negative elements has a unique,

positive eigenvalue greater in magnitude than the modulus of any other eigenvalue of the

matrix. Further, its corresponding eigenvector has all positive elements.

Unfortunately, the matrix in Eq. (4.1) lacks these properties and the eigenvalue

and the eigenvector found using the power method may well be physically unacceptable.

Moreover, if the largest eigenvalue of Eq. (4.1) is complex, the power method does not

converge at all. In fact, both the convergence problem and physically unacceptable

eigenvalues have been observed in past studies [A-1,L-1,L-2,Y-4]. The anomalies

observed in these studies, however, all stem from the poor choice of expansion

functions. V Luco observed negative eigenvalues when expansion functions of highly-

oscillatory modes are considered [L-1,L-2]. C. Adams found anomalies in the



collapsed-group synthesis approximation resulting from inaccurate fast-to-thermal flux

ratios [A-1].

On the contrary, past experience with the group-dependent synthesis employing

fundamental mode expansion and weight functions has been encouraging in that no

convergence problem or negative fluxes were observed [Y-1,Y-2,Y-3]. Thus, although

there is no firm theoretical basis, past experience provides some confidence that, with a

proper choice of expansion functions, the solution obtained from the power method will

be a close approximation to the physically acceptable one.

The selection of the weighting vector in Eq. (4.2b) is arbitrary, but does affect the

rate of convergence. One common choice is to set the elements of w to unity. Another

choice for the weighting vector is the product of nodal fission cross sections and the
expansion functions, MW, summed over axial planes such that the inner products

perform summations over the fission source. This represents a more physical approach

of determining the eigenvalue by taking the ratio of the neutron production in the current
"generation" to the previous "generation", where a "generation" now represents an

iteration. This weighting vector choice also has the benefit of using only information in

the fueled regions which leads to a more stable iteration procedure and possibly faster

convergence [G-1]. An alternate choice of the weighting vector is the fission source

vector summed over axial planes from the previous iteration. The eigenvalue calculated

with this method can be shown to converge faster than the power method with unity

weighting [N-1].

While the choice of a particular weighting vector does impact the rate of

convergence of the power method, the asymptotic convergence rate is primarily

dependent on the ratio of the moduli of the two largest eigenvalues

od = , (4.3)

where Ao and X, are the eigenvalues with the largest and the second largest moduli,

respectively. This ratio is called the dominance ratio and for most of the problem of

interest, is so close to unity that the power method converges very slowly [G-1]. One

acceleration scheme which can be applied to synthesis methods is Wielandt's fractional

iteration or eigenvalue shifting [W-1]. In Wielandt's scheme, a portion of the right-hand

side of Eq. (2.34) is moved to the left-hand side as follows

'-L I ' = I M'T (4.4)I A



where
2111

A 2L 2,'

Whatever eigenvalue shift, A', is chosen, the Wielandt's scheme will converge to the

eigenvalue closest to it. Since the eigenvalue of interest in synthesis methods is the

largest positive one, certain restrictions, which will be discussed later, are imposed on

the choice of the eigenvalue shift.

Applying the power method to Eq. (4.4) results in the following equations

T(a+) 1 , -M' M'T'> (4.5a)

_ = A___ (, (4.5b)
(w TO)

Aj+) = A +,,.(4.5c)

The eigenvector, which is associated with the largest eigenvalue, A, is identical to the

eigenvector associated with the eigenvalue closest to the eigenvalue shift value of the

unshifted equations [W-1]. Thus, if the eigenvalue shift is chosen such that its modulus
exceeds, Ao, the new dominance ratio is given by

1 1

d'=1 1 (4.6)

'ZI A'

and is less than the unshifted dominance ratio, d. Choosing the eigenvalue shift to be

infinite results in the unaccelerated power method of Eqs. (4.2a) and (4.2b). Choosing
A' very close to Ao gives a very small dominance ratio; hence accelerates the convergence

rate of the power method.
Since A,,o is not known a priori, the eigenvalue shift may be changed during the

solution procedure to ensure optimum performance. A common procedure is to let the

eigenvalue shift value be the current estimate of the eigenvalue plus an arbitrary positive

constant

,A'= Xa + 3A. (4.7)



This eigenvalue shift factor, S6A, guarantees that the power method converges to the

correct eigenvalue and eigenvector. However, changing the eigenvalue shift value requires

that the matrix inversion shown in Eq. (4.5a) be performed in every outer iteration. This

requirement is not a serious one if the matrix inversion is carried out using a iterative

solution technique. But, for the reason stated in Section 4.2.1, a direct inversion method,

called LU factorization method [G-2], will be adopted. It is desirable to have a

constant eigenvalue shift value since, than, the time-consuming LU factorization needs

to be performed only once per CMFD discontinuity factor iteration. These two

competing factors can be reconciled as follows: A few iterations using a reasonable
eigenvalue shift value {1.2~1.5} are carried out to obtain a reasonable guess for o.

Then, the eigenvalue shift value, which is kept constant for the rest of the problem, is
calculated using Eq. (4.7) with the current estimate of 1o and the eigenvalue shift

factor, 6A {0.001-0.05}.

One of the advantages of using LU factorization is that the computing time of

the matrix inversion procedure is independent of a particular choice of the eigenvalue

shift factor. Thus, an aggressive shifting (very small eigenvalue shift factor) can be

employed. This is not the case for the iterative inversion techniques, for which the

convergence rate decreases as the eigenvalue shift factor is reduced. However, one must
be cautious about a very small shift factor. Recall that A,' must exceed Ao for proper

convergence to the right eigenvalue. If the a low estimate of o, is obtained (this is

possible especially because the CMFD discontinuity factors are changing) during the
solution procedure and the eigenvalue shift factor is small, Ao may exceed A' and the

Wielandt's scheme may converge to an incorrect eigenvalue.

As shown in Eq. (4.4), the eigenvalue shifting scheme results in a coefficient
matrix that resembles a problem with strong up-scattering since M' is generally a full

matrix. Thus, the implementation of Wielandt's method generally requires that all energy

groups be solved simultaneously [G-1]. T. Sutton's group-wise solution procedure [S-5],

successfully implemented in the CONQUEST code [G-1], was attempted for the

solution of the synthesis equation given by Eq. (4.4), but failed to give a converged

solution. The success of the group-wise solution procedure in the solution of the finite-

difference nodal equation is attributed to the quick convergence of the "spectrum ratios"

[S-5]. However, the generalization of the "spectrum ratios" to the synthesis equation

("mixing coefficient ratios" would be more appropriate in this case) failed to converge

because of the presence of expansion functions which contribute minimally to the overall

flux shape. For this reason, a simultaneous group solution has to used in conjunction

with the Wielandt's eigenvalue acceleration scheme.



4.2.4 LU Factorization

At each outer iteration, the matrix [L'-I/2'M'] must be inverted. Because the

diagonal-dominance of this matrix is not assured, the matrix inversion cannot be carried

out using iterative techniques. Therefore, a direct inversion method has to be used. The

method used in this thesis is called LU factorization. The size of the matrix appearing

in the synthesis formulation is on the order of tens to hundreds, and thus, makes the

direct inversion technique practical. Furthermore, the sparse, banded structure of the

matrix can be exploited to reduce the computational requirement.
During the outer iterations the equations of the form Ax = b must be solved,

where

1
A = L- M' (4.8a)

b - M'T , (4.8b)

x- T(1+1).  (4.8c)

In LU factorization, the matrix A is written as a product of two triangular matrices L

and U (non-singular matrix A ensures the existence and uniqueness of the LU

factorization [G-2])

A = LU, (4.9)

where L is a unit lower triangular matrix and U is an upper triangular matrix. Once the

LU factorization is obtained, the solution of the original Ax = b problem is found by a

two step triangular solve process

Ly = b, (4.10a)

Ux = y. (4.10b)

where Eqs. (4.10a) and (4.10b) are solved using simple algorithms known as forward

substitution and back substitution, respectively [G-2}. The LU factorization is the most

time-consuming part requiring (2/3)n3 flops while both the forward and back

substitutions require n2 flops, where n is the matrix size [G-2}. Now, the advantage of

keeping the eigenvalue shift value constant is apparent. Whenever the eigenvalue shift



value changes, the time-consuming LU factorization must be performed. By maintaining

a constant eigenvalue shift value, both forward and back substitutions can be carried

out repeatedly for different values of b with the same LU factorization.

Another way to reduce the computational requirement of the LU factorization is
to take advantage of the banded structure of the matrix A. A is a block 5-stripe

matrix, where the size of each block is P by P (recall P is the number of expansion
functions used at each axial position). For example, the matrix A for two energy group,

four axial node, one expansion function problem has the following structure

(4.11)

where x represents non-zero elements. If the matrix A has lower bandwidth p and

upper bandwidth q, and if n >> p and n >> q then the LU factorization involves about

2npq flops, substantially less than (2/3)n3 flops of a dense matrix of the size n [G-2].

The bandwidths can be further reduced by a simple reordering of the mixing

coefficients. By listing all group mixing coefficients at each axial position as a block

rather then listing all axial mixing coefficients in a group as a block, the band widths of

the matrix shown in (4.11) can be decreased as follows

x

xx
x
X XX X

Xxx
x

x

xx

(4.12)

For a problem with more energy groups and/or more axial nodes, the reduction in

bandwidths from this simple reordering of mixing coefficients can be substantial.
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The rounding-off error associated with the LU factorization is a serious concern

since it can ultimately affect the global convergence of the synthesis solution procedure.

The rounding-off error is proportional to the machine precision, the matrix size, the

condition number of the matrix and the growth factor of the matrix [G-2]. There is no

way to remedy the errors stemming from the machine precision, the matrix size and the

condition number of the matrix2, but a method called partial pivoting can substantially

reduce the error due to a large growth factor. In practice, the growth factor is usually of

order 10 but it can be as large as 2n -1. Despite this, most numerical analysts regard the

serious element growth in the LU factorization with partial pivoting as highly unlikely in

practice [G-2]. The implementation of partial pivoting, however, does expand the

bandwidths; hence the computational time is increased compared to the LU

factorization without pivoting.

4.2.5 Steady-State Iteration Strategy

As mentioned in the previous sections, there are two levels of iterations, namely

the CMFD discontinuity factor iteration and the outer iteration. The Wielandt

eigenvalue shifting scheme accelerates only the convergence rate of the outer iteration.

The convergence rate of the CMFD discontinuity factor iteration is not well known

because of its non-linear nature, but experience indicates that LWR problems with

assembly-size nodes typically requires about 5 to 15 iterations [G-1].

The following is the general iteration procedure for the solution of the steady-

state synthesis equation:

1. Make initial guesses of the mixing coefficients, the eigenvalue and the CMFD

discontinuity factors.

2. Perform outer iterations with a constant eigenvalue shift value known to be

larger than the eigenvalue (For most problems, the eigenvalue is near unity so

that the eigenvalue shift value in the range of 1.2 to 1.5 can be used.) until a

coarse convergence is achieved (~ 10-2)

lx~)- X)I<81,l

2 The rounding-off error resulting from a large condition number (ill-conditioned matrix) can be
reduced by employing the Singular Value Decomposition (SVD) method [G-2]. But, the SVD
scheme was not implemented because it is extremely time-consuming, especially for the matrix
size considered in the space-dependent synthesis methods.



where E, is a user-specified coarse eigenvalue convergence value.

3. Next, the eigenvalue shift value, to be used throughout the subsequent

iterations, is computed from the latest estimate of the eigenvalue and a user-

specified positive eigenvalue shift factor

A "+ 8A;,

where 8A value is typically 0.001 to 0.05.

4. Now, the fully accelerated iterations proceed until the specified convergence

in the eigenvalue and the nodal power is achieved

I(++1) - P "l,
Max. over all nodes ( < 83,

where Pi represents the power in node i and 82 and 83 are the user-specified,

global eigenvalue and fission source convergence values, respectively. An

eigenvalue convergence of 10-5 and a fission source convergence of 10-4 are

generally sufficient. Also, the iteration procedure can be terminated if some

user-specified maximum number of iterations is exceeded.

This procedure has been successfully implemented in the steady-state synthesis solution

routine. Some of the steady-state synthesis calculation results are given in Chapter 5.

4.3 Transient Solution Methods

The equations to be solved in transient synthesis analyses are Eqs. (3.22a)

through (3.24b). The initial and the continuity equations (3.23a) and (3.24a) can be

solved easily by applying the LU factorization discussed in Section 4.2.4, and the

solution of Eqs. (3.23b) and (3.24b) is trivial. Thus, the following discussion may be

concentrated on the numerical methods to solve Eqs. (3.22a) and (3.22b), or their time-

differenced equations (3.32) and (3.34). While the numerical schemes to solve Eq. (3.34)

requires a further discussion, obtaining the solution of Eq. (3.32) is simple in that it only

requires matrix multiplication. The following sections describe the general transient

solution procedure starting from the numerical properties of Eq. (3.34).



4.3.1 Numerical Properties

Recall that the time-dependent synthesis equation is

F*T V- 1 1 -LMn+ - Ln+ + • • n M T -

tP 2L =2,dM-d

-- +(1- - - O k 3,M_ (3.34)
Atn -p d= 3/d ==d

dAt 

= 

=1
D

+ Ad dn) 6( - ki,d)].
d=1

The value of 6 can be chosen to give the standard time-differencing scheme:

0 = 0 Forward Difference (or Fully Explicit),

0 = 1/2 Trapezoidal Rule (or Crank-Nicholson),

0 = 1 Backward Difference (or Fully Implicit).

In order for a space-time finite-difference solution scheme to be reliable, it must be

stable. The issue of stability is the major determining factor in choosing the value of 9.
It can be shown that the theta method is unconditionally stable when 6 Ž 1/2 [L-3].

When the values of 0 less than 1/2 are chosen, restrictions on the time step size

are required to ensure stability. Typically, the upper limit of the time step size is on the

same time scale as the fastest varying quantities in the system of equations. The system

of equations in reactor analysis, however, has quantities with vastly different time

constants [G-1]. The behavior of the neutron flux can have time constants on the order

of 1/(v,) (neutron mean free path divided by neutron speed) which may be smaller

than 10-8 seconds for fast neutrons [S-1]. The delayed neutron precursors, on the other

hand, have decay constants ranging from hundredths of seconds to several seconds.

Such systems of differential equations with widely varying time scales are said to be

stiff. With the conditionally stable methods, the time step size must be extremely small

to follow all short-lived transient modes of the neutron behavior, even if they are of no

interest. And this, in turn, translates to a large computational time.

Consequently, the values of 6 to be considered in solution of the time-

differenced synthesis equation are greater than or equal to 1/2. Without other

consideration, 0 = 1/2 (Crank-Nicholson) is the best choice because it is the most

accurate. The Crank-Nicholson method, however, exhibits a slowly decaying oscillatory



behavior for stiff systems if moderately large time steps are used [G-1]. Therefore, the

most appropriate value of 0 is 1, the fully implicit method.

With appropriate definitions, the fully implicit version of Eq. (3.34) can be

written as

A_(n+')T n+l ) = s(n . (4.13)

This equation has the same exact form considered in Section 4.2.4, and therefore, can be

solved using the same matrix inversion technique. However, the LU factorization must

be performed at each time step because of the changes in cross sections which alter the
matrix A at every time step. In other words, the computational saving realized in the

steady-state solution procedure is not present in transient analyses.

4.3.2 Dynamic Frequency Estimation

In Section 3.4.2, dynamic frequencies were introduced to eliminate the time

derivatives in the polynomial nodal equations. The frequencies at time step n are

approximated by the following expressions

(4.14a)(w.k)(n) = 1
Atn-_

( "-ijk k(n)

(wk (n) - n1 r n-2) (4.14b)At n- (nz~ )f1) J
4.3.3 Transient Solution Procedure

Before a transient is initiated by perturbations in reactor conditions (i.e., control

rod motions and thermal hydraulic changes), the initial flux shape and the eigenvalue3

are obtained by applying the solution methods described in Section 4.2.5. If a set of

expansion functions, different from the one used in the steady-state analysis, is to be

3 The nodal fission cross sections are divided by the eigenvalue for the subsequent transient
analysis. This does not mean that the fission cross sections in the transient analysis are
physically different from those in the steady-state case. Rather, the division by the
eigenvalue is required for a numerically consistent solution.



used in the beginning of the transient, Eq. (3.23a) must be solved first. Otherwise, the

fully implicit solution of Eq. (3.34) may proceed.
First, the CMFD discontinuity factors are computed using a large time step, Atm,

with the thermal hydraulic conditions at the beginning of the time step (the CMFD

discontinuity factors are relatively insensitive to the changes in thermal hydraulic
conditions). The mixing coefficients are then determined using a smaller time step, At n.

The CMFD discontinuity factors used in this calculation are obtained by a linear

interpolation of the values at tm and tm+1.

These steps are repeated until a different set of expansion functions are adopted
to reflect changes in reactor conditions. At time t1 of the expansion function change, Eq.

(3.24a) must be solved before proceeding with the steps mentioned in the previous

paragraph. Although discontinuous expansion functions are allowed, one must be

reasonably sure, from physical intuition, that the expansion functions replaced do not

contribute significantly to the actual flux shape. If not, distinct discontinuities may be

apparent at those time steps when the expansion function changes occur.

4.4 Summary

The complete description of the numerical methods and the solution procedures

for the steady-state and transient synthesis equations were presented in this chapter.

The steady-state synthesis equation lacks certain properties which ensure the

convergence of iterative matrix inversion techniques and the existence and uniqueness of

the positive, largest eigenvalue and its associated positive eigenvector. The resolution of

the convergence problem is not difficult in that a direct matrix inversion scheme called

LU factorization can be applied. However, there is no theoretical resolution of the

latter; hence past experience with synthesis methods is the only assurance that the

power method will converge to a physically acceptable solution. Though the use of

fundamental mode expansion functions has been shown to produce reasonable results,

one should not be surprised even if physically unacceptable negative fluxes or

eigenvalues are observed in some cases.

The power method, accelerated by the Wielandt's eigenvalue shifting scheme, is

used for outer iterations. Adoption of the Wielandt's eigenvalue shifting scheme

necessitates the use of simultaneous group solution. T. Sutton's group-wise solution

procedure [S-5] used in synthesis methods was found to have convergence problems;

hence not implemented in this study. The bandwidth of the matrix, resulting from the

simultaneous group solution scheme, is minimized by a simple reordering of the mixing



coefficients, and the banded structure is exploited to reduce the computational

requirement associated with the LU factorization. Also, partial pivoting is introduced

to minimize the rounding-off errors in the LU factorization routine.

The stability consideration forces the use of a fully implicit time differencing

scheme for the solution of the transient synthesis equation, and the LU factorization is

again applied in the transient solution procedure. The introduction of discontinuous

expansion functions requires the solution of a time continuity equation in addition to the

transient synthesis equation. When replacing a set of expansion functions by another

set, one must be careful with the choice in order not to introduce apparent

discontinuities in core power.



CHAPTER 5

APPLICATION OF SYNTHESIS METHOD

5.1 Introduction

The steady-state and transient synthesis methods presented in Chapter 2 and

Chapter 3 along with their numerical solution methods discussed in Chapter 4 are

applied to a few benchmark problems in this chapter to investigate their accuracy and

efficiency. Two CMFD discontinuity factor updating approaches, the CMFD

discontinuity factor synthesis scheme and the non-linear iteration scheme, are applied to

every problem presented. The comparison of these two CMFD discontinuity factor

updating approaches, with respect to their computational speed and accuracy, is the

main result presented in this chapter.

Transients involving control rod motion are investigated extensively since they

present a significant challenge in synthesis methods with substantial changes in flux

shapes. A coolant inlet temperature transient based on a realistic reactor configuration

is also tested and presented in this chapter. These problems are analyzed using all the

options incorporated in the synthesis method to ensure their functionality. The potential

convergence problems discussed in Chapter 4 were not observed, especially with the

orthogonalization of expansion and adjoint weight functions.



5.2 Prelude to Synthesis Results

The description of the computer code, execution time and error estimation is

given in this section before the presentation of computational results.

5.2.1 Computer Code

The steady-state and transient synthesis methods presented in Chapter 2 and

Chapter 3 along with their numerical solution schemes discussed in Chapter 4 are

incorporated into a computer code which has been named DISCOVER (DIscontinuous

Synthesis COde for VERification). This computer code solves three-dimensional, few-

group, steady-state and transient problems without extraneous neutron sources. It

requires as inputs, two-dimensional expansion and weight functions and, if the CMFD

discontinuity factor synthesis scheme is to be applied, the CMFD discontinuity factors

associated with the expansion functions. Either a series of two-dimensional calculations

or a full three-dimensional calculation produce the necessary expansion and adjoint

weight functions. However, a three-dimensional calculation is mandated to provide the

axial CMFD discontinuity factors if the CMFD discontinuity factor synthesis scheme is

to be applied. For this study, three-dimensional calculations are performed using a

computer code called CONQUEST (COde for Nodal QUasi-Static Theory) to generate

expansion functions, adjoint weight functions and the CMFD discontinuity factors

associated with the expansion functions.

DISCOVER is written in standard FORTRAN 77, except for a few system

dependent routines which return the system time and date. DISCOVER has been

compiled and executed without problem on a SUN SPARCclassic machine. All

computations are performed in single precision to minimize execution times and storage

requirements. Some of the salient features of DISCOVER are reiterated as follows

1. Adoption of both continuous and discontinuous expansion functions,

2. Orthogonalization of expansion and weight functions,

3. Direct inversion of matrices using LU factorization,

4. Simultaneous group solution procedure for outer iterations,

5. Wielandt's fractional iteration to accelerate eigenvalue convergence,

6. Fully Implicit time-differencing,

7. Two CMFD discontinuity factor updating approaches, the non-linear

iteration scheme and the CMFD discontinuity factor synthesis scheme.



A diagonal symmetry option is allowed; however users have to be careful not to input

asymmetric expansion functions nor asymmetric weight functions and CMFD

discontinuity factors when this option is utilized. Non-uniform node spacings are also

allowed, but irregular geometry (jagged boundaries) are not allowed in DISCOVER.

There is no limit on the number of energy groups, and up-scattering is also permitted.

The implementation of the transient synthesis method lets users specify when the CMFD

discontinuity factors are to be updated allowing additional execution time savings for

the transients involving little flux shape changes.

5.2.2 Transverse Leakage Approximations

In Chapter 2, the quadratic transverse leakage approximation was introduced in

describing the non-linear iteration scheme. In this approximation, the transverse leakage

is expanded as a quadratic polynomial which preserves the node-averaged transverse

leakage in the three adjacent nodes. This does not present a problem for nodes in the

reactor interior or at boundaries of symmetry. Nodes at the reactor surface, however, do

not have the third adjacent node required to perform the quadratic leakage expansion.

Therefore, the transverse leakage expansion for nodes on the reactor surface is

performed using the three nodes closest to the surface [G-1].

For problems with large reflectors, a quadratic transverse leakage approximation

in the core and a flat transverse leakage in the reflector has been found to give good

results. The reason for this is that the leakages deep within the reflector tend to be small

and only have small effect on the core power distribution. In fact, approximating the

transverse leakage in large reflectors as a quadratic polynomial has resulted in stability

problems which are not present when the flat approximation is used [G-l].

5.2.3 Power Distribution Errors

The synthesis solutions presented in this chapter are compared to the reference

solutions obtained from the CONQUEST calculations. For the purpose of summarizing

the errors in the power densities, the maximum node error is defined to be

=max Max. over all nodes {Pi -pr efI
,max t p re



where Pi represents the power density in node i and P1rf represents the reference power

density in node i. Also, the average node error is defined to be

Ior prefS- 1 V , - IC pT ref
K"•Vore •i ffi" V,

where Vi is the volume of node i and Vcore is the total volume of the reactor core. The

convergence criterion on the maximum nodal power changes of 10-4 has been used in

steady-state calculations and 10-1 to 10-3 for transient calculations.

5.2.4 Execution Times

The execution times of computer codes are commonly used to compare their

relative efficiency. Direct comparison of execution times, however, are often difficult

and misleading because the calculation speeds of computer systems vary widely. In

order to establish a meaningful comparison, both DISCOVER and CONQUEST

calculations have been perform on a SUN SPARCclassic machine. Furthermore, both

computer codes are compiled using the same optimizing feature available.

Another factor that significantly affects the execution time is the various

convergence criteria adopted. For example, setting the convergence criterion of 10-5 on

the maximum nodal power error requires a longer execution time than setting one of 10-4.

Thus, the same convergence criteria are adopted consistently in both DISCOVER and

CONQUEST calculations whenever possible, and in transient analyses the same time

steps are used. Only with such consistent choices of convergence criteria and transient

time steps is the execution time comparison meaningful in that many peripheral factors

contributing to the execution times are eliminated and only the inherent differences in

theoretical formulations and numerical solution methods are present.

However, this is not always possible since different codes use different

convergence criteria. For instance, CONQUEST uses the average power error as the

convergence criterion in transient calculations while DISCOVER uses the maximum

power error. For this case, a range of execution times corresponding to different

convergence criteria is presented for comparison purposes. Table 5.1 shows the

convergence criteria used throughout this chapter. The average power error of 10-3 is

normally equivalent to a maximum power error somewhere between 10-1 to 10-3.



Table 5.1: Convergence criteria used in DISCOVER and CONQUEST.

DISCOVER CONQUEST

Steady-State Eigenvalue: 10-5  Eigenvalue: 10-5

Calculations Max. Power Error: 10-4  Max. Power Error: 10-4

Transient Max. Power Error: Avg. Power Error:

Calculations 10-1 to 10-3 10-3

5.3 The Three-Dimensional LMW Reactor

The three-dimensional LMW (Langenbuch-Maurer-Werner) reactor [L-4] is a

highly simplified LWR as described in Appendix C. The reactor is modeled with two

neutron energy groups and six precursor groups. In the steady-state condition, control

rod group 2 (a bank of five control rods) is completely withdrawn while control rod

group 1 (a bank of four control rods) is inserted half way into the core. The transient

involves the withdrawal of the control rod group 1 and the subsequent insertion of the

control rod group 2. This complicated control rod motion leads to significant flux shape

changes and large cusping effects, and thus, presents a good test for the synthesis

method. This problem has been solved with and without thermal hydraulic feedback.

5.3.1 The Three-Dimensional LMW Problem Without Feedback

The steady-state calculation is performed with the 20 x 20 x 20 cm node spacing

and eighth-core symmetry. The reference solutions are the CONQUEST calculations

with the same node spacing. The expansion functions as well as the adjoint weight

functions and the CMFD discontinuity factors needed for synthesis calculations are

generated from three-dimensional CONQUEST fluxes for three different reactor

conditions. They are: (1) all control rods withdrawn (CR Out), (2) control rod group 1

fully-inserted (Bank 1 In) with control rod group 2 fully withdrawn, and (3) control rod

group 2 fully-inserted (Bank 2 In) with control rod group 1 fully withdrawn. The

expansion functions used for the LMW steady-state problem without feedback are

shown in Table 5.2. Numbers in parenthesis indicate the axial plane from which the

two-dimensional expansion functions were taken. Expansion functions from axial plane

k = 5 are repeatedly used for planes from k = 3 to k = 8 because the flux shape well



within the core is not expected to vary significantly. On the contrary, the flux shape in

the reflector and reflector/core boundary planes can not be represented well with the

flux shape at the mid-plane, and therefore, the expansion functions from corresponding

planes are selected for boundary and reflector/core boundary planes.

The steady-state results using the three expansion functions given in Table 5.2

are summarized in Table 5.3. The errors in eigenvalue and power densities are small for

both the CMFD discontinuity factor synthesis and the non-linear iteration schemes. The

maximum errors in nodal power densities occur at a low power density node on the

reflector/core interface. The execution time of the CMFD discontinuity synthesis scheme

is about a factor of eight less than that of the reference CONQUEST solution confirming

its computational efficiency over the non-linear iteration scheme.

The execution time of the non-linear iteration scheme, however, is comparable to

that of the reference solution. This is a expected result considering that the solution of

quartic polynomial equations is the most time consuming routine in CONQUEST. Since

the same exact non-linear iteration scheme is incorporated in DISCOVER, any saving in

execution time comes from the decrease in the number of unknowns and the direction

matrix inversion solution technique. This saving is offset by the additional CPU time

spent in performing matrix multiplication and the reduced convergence rate. It took 12

CMFD discontinuity factor iterations for the synthesis solution while only 8 iterations

were needed for the reference CONQUEST solution. The exact cause of this

degradation in convergence rate is not known, but the approximate nature of the

synthesis equation in conjunction with the formally exact polynomial equations may be a

contributing factor.

The transient calculations were performed using the same expansion functions.

Fully implicit calculations were carried out with both the mixing coefficient and the

CMFD discontinuity factor updating time steps of 1 second. The results of these

calculations are presented numerically in Table 5.4 and graphically in Figure 5.1. It is

evident from Table 5.4 and Figure 5.1 that the non-linear iteration scheme produces a

better result. The maximum errors in nodal power densities occur in either reflector/core

boundary nodes or nodes in which control rods are moving.

The transient execution times are listed given in Table 5.5. The real-time

calculation is realized in the reference CONQUEST solution as well as in the DISCOVER

solution with the CMFD discontinuity factor synthesis scheme. There is about factor of

three to four reduction in execution time, much less than that shown in the steady-state

result. This is attributed to the time-consuming matrix multiplication which have to be

performed whenever cross sections are updated. The cross section updating in turn



Table 5.2: Expansion functions for the LMW steady-state problem without feedback.
(3 Expansion functions)

Description of Expansion Functions (Axial Plane, k)

Axial Plane Expansion Expansion Expansion

(k) Function 1 Function 2 Function 3

1 CR Out (1) Bank 1 In (1) Bank 2 In (1)

2 CR Out (2) Bank 1 In (2) Bank 2 In (2)

3 CR Out (5) Bank 1 In (5) Bank 2 In (5)

4 CR Out (5) Bank 1 In (5) Bank 2 In (5)

5 CR Out (5) Bank 1 In (5) Bank 2 In (5)

6 CR Out (5) Bank 1 In (5) Bank 2 In (5)

7 CR Out (5) Bank 1 In (5) Bank 2 In (5)

8 CR Out (5) Bank 1 In (5) Bank 2 In (5)

9 CR Out (9) Bank 1 In (9) Bank 2 In (9)

10 CR Out (10) Bank 1 In (10) Bank 2 In (10)

Table 5.3: A summary of the results for the LMW steady-state problem
without feedback (3 Expansion Functions).

CONQUEST DISCOVER DISCOVER

(Ref.) (DF Syn.) (Non-Lin.)

Eigenvalue 0.999643 0.999853 0.999665

Number of DF Iterations 8 4 12

Number of Outer Iterations 27 18 34

CPU Time (s) 4.4 0.56 4.5

Avg. Nodal Power Error (%) -- 0.70 0.20

Max. Nodal Power Error (%), 4.54 1.46

Node (i,j,k), -- (1,4,9) (1,4,6)

Ref. Normalized Power Density 0.47 0.18

Error In Max. Power Node (%), 0.27 -0.16

Node (i,j,k), -- (1,1,5) (1,1,5)

Ref. Normalized Power Density 2.45 2.45



LMW Transient Without Feedback
(3 Continuous Expan. Funct.: CR Out, Bank 1 In, Bank 2 In)
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Figure 5.1: Core power vs. time for the LMW transient without feedback.
(3 Cont. Expan. Functions: CR Out, Bank 1 In, Bank 2 In)

Table 5.4: A comparison of errors for the LMW transient without feedback.

DF Synthesis Scheme Non-Linear Iteration Scheme

Avg. Max. Nodal Error In Max. Avg. Max. Nodal Error In Max.

Nodal Power Error (%), Power Node (%), Nodal Power Error (%), Power Node (%),

Time Power Node (i,j,k), Node (i,j,k), Power Node (i,j,k), Node (i,j,k),

(s) Error Ref. Normalized Ref. Normalized Error Ref. Normalized Ref. Normalized

(%) Power Density Power Density (%) Power Density Power Density

0 0.70 4.54, (1,4,9), 0.47 0.27, (1,1,5), 2.45 0.20 1.46, (1,1,10), 0.18 0.16, (1,1,5), 2.45

5 1.40 5.73, (1,4,9), 0.47 -0.96, (1,1,5), 2.44 0.55 1.20, (1,4,6), 0.57 -0.72, (1,1,5), 2.44

10 3.30 7.61, (1,4,9), 0.48 -2.92, (1,1,5), 2.43 0.79 1.69, (1,5,8), 0.63 -0.94, (1,1,5), 2.43

20 7.16 11.6, (1,1,9), 0.72 -6.75, (1,1,5), 2.43 1.44 2.64, (1,1,10), 0.17 -1.49, (1,1,5), 2.43

30 9.14 14.1, (1,1,9), 0.69 -8.79, (1,1,5), 2.43 1.61 2.06, (4,5,5), 0.62 -1.60, (1,1,5), 2.43

40 9.25 13.9, (1,1,9), 0.70 -9.77, (1,2,5), 2.29 1.66 2.40, (4,5,4), 0.55 -1.85, (1,2,5), 2.29

50 8.74 13.3, (1,1,9), 0.72 -9.38, (1,2,5), 2.26 1.45 2.42, (4,5,3), 0.40 -1.70, (1,2,5), 2.26

60 8.70 13.3, (1,1,9), 0.72 -9.31, (1,2,5), 2.26 1.40 2.38, (4,5,3), 0.40 -1.62, (1,2,5), 2.26



Table 5.5: A summary of execution times for the LMW transient without feedback.

CPU Time (s) CPU Time (s) CPU Time (s)

CONQUEST (Ref.) 36.7 a 36.7 a 36.7 a

DISCOVER (DF Syn.) 13.2 b 12.9 c 8.3 d

DISCOVER (Non-Lin.) 74.2 b 53.8 c 27.5 d

a Avg. nodal power error convergence criterion = 10-3.

b Max. nodal power error convergence criterion = 10-3.
c Max. nodal power error convergence criterion = 10-2.
d Max. nodal power error convergence criterion = 10-1.

necessitates the need for the time-consuming LU factorization routine, and thereby,

increases the computational requirement further. The non-linear iteration scheme, which

has a slower convergence rate as well as the aforementioned requirements, gives

execution times that are, at best, comparable to the reference result.

Figure 5.2 shows the transient results obtained from the CMFD discontinuity

factor synthesis scheme with several different discontinuity factor time steps. The

mixing coefficient time step of 1 second is used for all calculations. The result obtained

with the CMFD discontinuity factor update time step of 2 seconds shows excellent

agreement with that obtained with the CMFD discontinuity factor time step of 1 second.

However, the 4 second calculation (in 4 seconds, a control rod traverses more than half

of a node in this problem) shows a bit of fluctuation. Figure 5.3 shows similar results

obtained from the non-linear iteration scheme.

The core power versus time for calculations with and without the cusping

correction are given in Figure 5.4. The volume-averaging of the cross sections leads to an

over-prediction of the control rod's "worth" as the rod traverses the node. As a result,

the core power is under-predicted. The calculation employing the cusping correction,

however, displays no discernible cusping effects [G-1].

All previous calculations were performed with temporally continuous expansion

functions, that is at a given axial plane the same expansion functions were used

throughout the transient. To test the accuracy of temporally discontinuous synthesis

method, the same transient calculations have been performed again using two expansion

functions. The initial steady-state condition is calculated before the initiation of the

transient. Table 5.6 and Table 5.7 provide the description of the expansion functions

employed and the steady-state results, respectively. Comparison of Table 5.7 with
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Figure 5.2: Core power vs. time for the LMW transient without feedback.
(DF Synthesis Scheme with different time steps)
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Figure 5.3: Core Power vs. time for the LMW transient without feedback.
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Figure 5.4: Core power vs. time for the LMW transient without
feedback demonstrating the cusping correction.

Table 5.6: Expansion functions for the LMW steady-state problem without feedback.
(2 Expansion Functions)

Description of Expansion Functions

(Axial Plane, k)

Axial Plane Expansion Expansion

(k) Function 1 Function 2

1 CR Out (1) Bank 1 In (1)

2 CR Out (2) Bank 1 In (2)

3 CR Out (5) Bank 1 In (5)

4 CR Out (5) Bank 1 In (5)

5 CR Out (5) Bank 1 In (5)

6 CR Out (5) Bank 1 In (5)

7 CR Out (5) Bank 1 In (5)

8 Bank 1 In (5) CR Out (5)

9 Bank 1 In (9) CR Out (9)

10 Bank 1 In (10) CR Out (10)



Table 5.7: A summary of the results for the LMW steady-state problem
without feedback (2 Expansion Functions).

CONQUEST DISCOVER DISCOVER

(Ref.) (DF Syn.) (Non-Lin.)

Eigenvalue 0.999643 0.999732 0.999668

Number of DF Iterations 8 4 12

Number of Outer Iterations 27 18 35

CPU Time (s) 4.4 0.40 4.2

Avg. Nodal Power Error (%) -- 0.65 0.18

Max. Nodal Power Error (%), 3.35 1.34

Node (i,j,k), -- (1,4,9) (1.4,6)

Ref. Normalized Power Density 0.47 0.180

Error In Max. Power Node (%), 0.28 -0.29

Node (i,j,k), -- (1,1,5) (1,1,5)

Ref. Normalized Power Density 2.45 2.45

Table 5.3 reveals little difference because the control rod group 2 expansion function is

not needed for the steady-state calculation.

Temporally discontinuous expansion functions, different from those used in the

steady-state calculation, are given in Table 5.8 and the graph of core power versus time

is shown in Figure 5.5. Bank 2 In expansion function replaced one of the expansion

functions as the control rod group 2 is being inserted into the core. An attempt has been

made to ensure, by intuition, that the expansion being replaced contributed minimally to

the actual flux shape. However, with the complicated control rod motion and limited

number of expansion functions, it was not always possible to achieve the right

combination. Figure 5.5 shows the distinct discontinuities caused by a sudden removal

of a expansion function which still has a significant contribution to the synthesized flux

shape.

Consequently, the temporally discontinuous application of the synthesis method

has been attempted once more, but this time with three expansion functions instead of

two. The same expansion functions given in Table 5.2 were employed initially and any

change in expansion functions are given in Table 5.9. A little after the control rod group
1 is completely withdrawn from a plane, the Bank 1 In expansion function is replaced

with another CR Out expansion function (recall that the expansion functions have to be

linearly independent not to cause a singular matrix). Intuitively, this should have a



Table 5.8: Changes in expansion functions for the LMW transient
problem without feedback (2 Expansion Functions).

Time (s) Axial Plane (k) Description of Expansion Functions

(Axial Plane, k)

t=O0 to t=6 None None

t=6 to t=12 9 Bank 1 In (9) Bank 2 In (9)

t=12 to t=18 8 Bank 1 In (5) Bank 2 In (5)

t=18 to t=24 7 CR Out (5) Bank 2 In (5)

t=24 to t=32 6 CR Out (5) Bank 2 In (5)

t=32 to t=38 5 CR Out (5) Bank 2 In (5)

t=38 to t=60 4 CR Out (5) Bank 2 In (5)
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Figure 5.5: Core power vs. time for the LMW transient without feedback.
(2 Discontinuous Expansion Functions)
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Table 5.9: Changes in expansion function for the LMW transient
problem without feedback (3 Expansion Functions).

Time (s) Axial Plane Description of Expansion Functions

(k) (Axial Plane, k)

t=0 to t=8 None None

t=8 to t=15 6 CR Out (5) CR Out (2) Bank 2 In (5)

t=15 to t=22 7 CR Out (5) CR Out (2) Bank 2 In (5)

t=22 to t=28 8 CR Out (5) CR Out (2) Bank 2 In (5)

t=28 to t=60 9 CR Out (9) CR Out (2) Bank 2 In (9)
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(3 Discontinuous Expansion Functions)
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Core power vs. time for the LMW transient without feedback.
(3 Discontinuous Expansion Functions)

negligible effect because once the control rod group 1 is out of an axial plane, the CR Out

shape should be the dominant one. In fact, Figure 5.6 shows that the discontinuities

apparent in Figure 5.5 disappear even with temporally discontinuous expansion

functions. Furthermore, the result improved, at least for the non-linear iteration scheme,

as a result of the replacement of out-dated expansion functions with ones that better

approximate the true flux shape.
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5.3.2 The Three-Dimensional LMW Problem With Feedback

The three-dimensional LMW problem has been combined with the WIGL thermal

hydraulic parameters which are representative of an operating PWR [S-2]. The WIGL

parameters are given in Appendix C. The same node spacing of 20 x 20 x 20 cm and

eighth-core symmetry is maintained. Again, the reference solutions are obtained from

the CONQUEST calculations. The expansion functions, the adjoint weight functions

and the CMFD discontinuity factors needed for synthesis application are generated,

from steady-state CONQUEST calculations, for the same reactor conditions considered

in Section 5.3.1: (1) all control rods withdrawn (CR Out), (2) control rod group 1 fully-

inserted (Bank 1 In) and (3) control rod group 2 fully-inserted (Bank 2 In). All steady-

state CONQUEST calculations were performed at the power level of 184.8 MWth.

The expansion functions employed for the steady-state calculations are given in

Table 5.10 and the synthesis results are summarized in Table 5.11. The CMFD

discontinuity factor synthesis scheme still shows about five-fold reduction in execution

time while the non-linear iteration scheme requires the same execution time as the

reference calculation. The average nodal power errors are greater than those observed in

the problem without feedback. This in turn explains the relatively large errors in

eigenvalues. However, both the CMFD discontinuity factor synthesis scheme and the

non-linear iteration scheme show comparable nodal power errors.

The transient calculations were performed using the same expansion functions

shown in Table 5.10. The mixing coefficient and the CMFD discontinuity factor

updating time step of 1 second is used. Figure 5.7 and Table 5.12 show the graphical

and numerical results, respectively. Again, the nodal power errors in both schemes are

comparable. The superior accuracy of the non-linear iteration scheme, observed in the

LMW transient problem without feedback, is not present because of the thermal

hydraulic feedback effects. The transient calculation times are given in Table 5.13.

Figure 5.8 shows the transient results obtained from the CMFD discontinuity

factor synthesis scheme with several different discontinuity factor time steps. The

mixing coefficient time step of 1 second is used for all calculations. The discontinuity

factor time step of 4 seconds results in a large oscillation when a new set of

discontinuity factors are updated. This fluctuation was also observed in the LMW

transient without feedback, but the thermal hydraulic feedback amplifies the fluctuation

(recall that the CMFD discontinuity factors are updated without taking the thermal

hydraulic changes into consideration). Figure 5.9 shows the similar results obtained for



Table 5.10: Expansion functions for the LMW steady-state problem with feedback.
(All expansion functions generated at 184.8 MWth)

Description of Expansion Functions (Axial Plane, k)

Axial Plane Expansion Expansion Expansion

(k) Function 1 Function 2 Function 3

1 CR Out (1) Bank 1 In (1) Bank 2 In (1)

2 CR Out (2) Bank 1 In (2) Bank 2 In (2)

3 CR Out (5) Bank 1 In (5) Bank 2 In (5)

4 CR Out (5) Bank 1 In (5) Bank 2 In (5)

5 CR Out (5) Bank 1 In (5) Bank 2 In (5)

6 CR Out (5) Bank 1 In (5) Bank 2 In (5)

7 CR Out (5) Bank 1 In (5) Bank 2 In (5)

8 CR Out (5) Bank 1 In (5) Bank 2 In (5)

9 CR Out (9) Bank 1 In (9) Bank 2 In (9)

10 CR Out (10) Bank 1 In (10) Bank 2 In (10)

A summary of the
with feedback.

results for the LMW steady-state problemTable 5.11:

CONQUEST DISCOVER DISCOVER

(Ref.) (DF Syn.) (Non-Lin.)

Eigenvalue 0.983160 0.986085 0.985846

Number of DF Iterations 8 8 12

Number of Outer Iterations 34 27 35

CPU Time (s) 5.47 1.24 5.0

Avg. Nodal Power Error (%) -- 3.01 3.24

Max. Nodal Power Error (%) 7.34 6.96

Node (i,j,k), -- (1,1,9) (1,1,9)

Ref. Normalized Power Density 0.65 0.65

Error In Max. Power Node (%), -0.15 -0.31

Node (ij,k), -- (1,1,5) (1,1,5)

Ref. Normalized Power Density 2.45 2.45
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Figure 5.7: Core power vs. time for the LMW transient with feedback.

Table 5.12: A comparison of errors for the LMW transient with feedback.

DF Synthesis Scheme Non-Linear Iteration Scheme

Avg. Max. Nodal Error In Max. Avg. Max. Nodal Error In Max.

Nodal Power Error (%), Power Node (%), Nodal Power Error (%), Power Node (%),

Time Power Node (i,j,k), Node (i,j,k), Power Node (i,j,k), Node (i,j,k),

(s) Error Ref. Normalized Ref. Normalized Error Ref. Normalized Ref. Normalized

(%) Power Density Power Density (%) Power Density Power Density

0 3.0 7.34, (1,1,9), 0.65 -0.15, (1,1,5), 2.26 3.2 6.96, (1,1,9), 0.65 -0.31, (1,1,5), 2.26

5 3.0 7.50, (1,1,9), 0.65 -0.13, (1,1,5), 2.24 3.3 7.61, (1,1,9), 0.65 0.15, (1,1,5), 2.24

10 2.9 7.30, (1,1,9), 0.64 -0.03, (1,1,5), 2.23 3.4 8.43, (1,1,9), 0.64 0.56, (1,1,5), 2.23

20 2.9 8.18, (4,5,9), 0.19 0.36, (1,1,5), 2.23 3.3 7.33, (1,1,8), 1.16 0.44, (1,1,5), 2.23

30 3.0 7.03, (4,5,2), 0.25 -1.69, (1,1,5), 2.23 3.3 5.92, (3,3,2), 0.68 -0.82, (1,1,5), 2.23

40 3.3 7.96, (3,3,2), 0.68 -4.18, (1,2,5), 2.14 3.3 7.12, (3,3,2), 0.68 -2.98, (1,2,5), 2.14

50 3.8 10.0, (1,1,4), 1.96 -5.58, (1,2,5), 2.13 3.5 8.02, (3,3,2), 0.66 -4.41, (1,2,5), 2.13

60 3.8 10.0, (1,1,4), 1.96 -5.60, (1,2,5), 2.13 3.5 8.08, (3,3,2), 0.66 -4.42, (1,2,5), 2.13



Table 5.13: A summary of execution times for the LMW transient with feedback.

CPU Time (s) CPU Time (s) CPU Time (s)

CONQUEST (Ref.) 46.2 a 46.2 a 46.2 a

DISCOVER (DF Syn.) 16.1 b 14.9 c 11.3 d

DISCOVER (Non-Lin.) 77.0 b 51.7 c 30.7 d

a Avg. nodal power error convergence criterion = 10-3 .

b Max. nodal power error convergence criterion = 10-3 .

c Max. nodal power error convergence criterion = 10-2 .
d Max. nodal power error convergence criterion = 10- 1.

the non-linear iteration scheme.

A comparison of the calculations with and without the cusping correction are

presented in Figure 5.10. The cusping correction introduces no distortion when a control

rod leaves one node and enters another while the result with no correction shows more

prominent distortion. Figure 5.10 shows that the cusping effects are much more

significant than those in the non-feedback calculations.
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Figure 5.8: Core power vs. time for the LMW transient with feedback.
(DF Synthesis Scheme with several different time steps)
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Figure 5.9: Core power vs. time for the LMW transient with feedback.
(Non-Linear Iteration Scheme with several different time steps)
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Figure 5.10: Core power vs. time for the LMW transient with feedback
demonstrating the effects of cusping correction.



5.4 The PWR Operational Transient

The PWR reactor discussed in this section represents a more realistic reactor

model and was introduced by R. Jacqmin [J-1] for analysis of a semi-experimental

instrumented nodal synthesis method. The reactor is representative of a Westinghouse

pressurized water reactor. The core contains 193 fuel assemblies with dimensions of

21.591 x 21.591 x 360 cm. The radial reflector is explicitly modeled while the axial

reflector is represented by infinite reflector albedo boundary conditions. The thermal

hydraulic feedback is performed using the WIGL model. The complete description of the

reactor model is given in Appendix C.

The reactor is initially critical at 20 % nominal power (667.6 MWth). Control

rod bank C and D are partially inserted into the core; C, 120 cm and D, 300 cm. In

order to analyze the steady-state and the subsequent transient involving removal of both

control rod banks, the expansion functions are obtained from the steady-state

CONQUEST calculations for three different reactor conditions. They are: (1) all control

rods fully withdrawn (CR Out), (2) control rod bank D fully-inserted (Bank D In) with

control rod bank C fully withdrawn and (3) control rod bank C fully-inserted (Bank C

In) with control rod bank D fully withdrawn. All CONQUEST calculations were

performed at the initial power level (667.6 MWth) and the node spacing of 21.591 x

21.591 x 20 cm was used. The expansion functions employed for both the steady-state

and the transient analyses are presented in Table 5.14.

A summary of the steady-state results are presented in Table 5.15. The slower

convergence of the non-linear iteration scheme is more pronounced, hence it requires a

longer execution time than the reference CONQUEST calculation. Also, huge maximum

nodal power errors are observed in both discontinuity factor updating schemes at the

axial core boundary. The power density in that node, however, is about 4 % of the

average power density. Thus, the huge maximum nodal power errors, shown in

percentage, are not a great concern.

The transient is initiated by the removal of control rod bank C and D at a

constant speed of 2 cm/s. The control rod bank C reaches the top of the core at t = 60

seconds while the control rod bank D continues its motion. All rod motion ceases at t =

120 seconds leaving the control rod bank D partially inserted (see Appendix C for the

figure describing these sequences). The transient is followed until t = 180 seconds when

the reactor has nearly reached a new steady-state condition.

The transient results are presented in Figure 5.11. The reference CONQUEST

result as well as the point kinetics result is shown. The transient execution times are



Table 5.14: Expansion functions for the PWR steady-state and transient problems.
(All expansion functions generated at 667.6 MWth)

Description of Expansion Functions (Axial Plane, k)

Axial Plane Expansion Expansion Expansion

(k) Function 1 Function 2 Function 3

1 CR Out (1) Bank D In (1) Bank C In (1)

2 CR Out (2) Bank D In (2) Bank C In (2)

3 CR Out (5) Bank D In (5) Bank C In (5)

4 CR Out (5) Bank D In (5) Bank C In (5)

5 CR Out (5) Bank D In (5) Bank C In (5)

6 CR Out (5) Bank D In (5) Bank C In (5)

7 CR Out (5) Bank D In (5) Bank C In (5)

8 CR Out (9) Bank D In (9) Bank C In (9)

9 CR Out (9) Bank D In (9) Bank C In (9)

10 CR Out (9) Bank D In (9) Bank C In (9)

11 CR Out (9) Bank D In (9) Bank C In (9)

12 CR Out (14) Bank D In (14) Bank C In (14)

13 CR Out (14) Bank D In (14) Bank C In (14)

14 CR Out (14) Bank D In (14) Bank C In (14)

15 CR Out (14) Bank D In (14) Bank C In (14)

16 CR Out (14) Bank D In (14) Bank C In (14)

17 CR Out (17) Bank D In (17) Bank C In (17)

18 CR Out (18) Bank D In (18) Bank C In (18)

given in Table 5.16. The point kinetics approximation which assumes the steady-state

flux shape for the duration of the transient leads to a large error. Both the radial and

axial flux shapes drastically change for this transient and point kinetics approximation

inevitably results in an unacceptably poor solution. The CMFD discontinuity factor

synthesis scheme replicates the reference result well with about 3 % error in the final core

power. Also it is faster than the reference solution by a factor of 3. The non-linear

iteration scheme, however, leads to a relatively large error of about 15 % in the final core

power. This is a rather puzzling result in that the non-linear iteration scheme should

provide a more accurate result and previous examples have demonstrated such to be the

case.



A summary of the results for the PWR steady-state problem
with feedback
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Figure 5.11: Core power vs. time for the PWR operational transient.

Table 5.15:

CONQUEST DISCOVER DISCOVER

(Ref.) (DF Syn.) (Non-Lin.)

Eigenvalue 1.045484 1.047720 1.045651

Number of DF Iterations 8 6 14

Number of Outer Iterations 31 25 52

CPU Time (s) 20.8 3.7 25.2

Avg. Nodal Power Error (%) -- 7.93 4.57

Max. Nodal Power Error (%) 52.4 29.7

Node (i,j,k), -- (1,1,18) (1,1,18)

Ref. Normalized Power Density 0.044 0.044

Error In Max. Power Node (%), 2.01 1.36

Node (i,j,k), -- (1,7,7) (1,7,7)

Ref. Normalized Power Density 2.38 2.38



Table 5.16 A summary of execution times for the PWR operational transient.

CPU Time (s) CPU Time (s) CPU Time (s)

CONQUEST (Ref.) 906 a 906 a 906 a

CONQUEST (P.K) 274 a 274 a 274 a

DISCOVER (DF Syn.) 281 b 271 c 209 d

DISCOVER (Non-Lin.) 1650 b 1126 c 636 d

a Avg. nodal power error convergence criterion = 10-3
b Max. nodal power error convergence criterion = 10-3 .

c Max. nodal power error convergence criterion = 10-2.
d Max. nodal power error convergence criterion = 10-1.

First, a lack of correct expansion functions was hypothesized for the relatively

large error in the non-linear iteration result. Only those expansion functions

corresponding to the initial power level were used and the space of expansion functions

may not have contained the right flux shape for the end of the transient. But, this

reasoning does not explain the result obtained from the CMFD synthesis scheme. A lack

of proper expansion functions should result in large errors for both schemes. In fact, a

subsequent analysis using six expansions, three at the initial power level and three at the

final power level, produced essentially the same results shown in Figure 5.11.

A subsequent analysis revealed that the non-linear iteration scheme had grossly

mispredicted the axial CMFD discontinuity factors at the boundaries, not only in

magnitude and but even in sign. The albedo boundary condition use for the PWR model

was thought to be the culprit and another calculation was performed by modeling the

axial reflector explicitly. This indeed corrected the misprediction of the axial CMFD

discontinuity factors at the boundaries and core/reflector interfaces, but did not correct

the overprediction of core power. The power densities in the boundary nodes were so

small that even a large error in the axial CMFD discontinuity factors did not lead to a

significant change in the final result.

Then, what is causing the large error in the non-linear iteration scheme when,

theoretically, it is supposed to be more accurate that the CMFD synthesis scheme?

Figures 5.12 through 5.14 give a hint of what may actually be causing the large error

shown in Figure 5.11. The non-linear iteration scheme somehow overpredicts the power

in the axial plane from which a control rod is being withdrawn. As the control rods

traverses the mid-planes, where the power densities are high, the over-prediction

amplifies and finally results in a large error shown in Figure 5.11.
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Figure 5.12: Axial power shape for the PWR operational transient (t = 0 s)

PWR Operational Transient Axial Power Shape (t = 60 s)
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PWR Operational Transient Axial Power Shape (t = 120 s)
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Figure 5.14: Axial power shape for the PWR operational transient (t = 120 s)

A qualitative explanation of this phenomenon is as follows: When only a few

expansion functions are used, the synthesis scheme is not well suited to represent a

rapid local change in flux shape since the radial flux shape is determined by a linear

combination of the expansion functions adopted. Thus, the synthesis scheme tries to

approximate a strong local peaking in the flux shape (such as is the case for a control

rod removal) by increasing the magnitude of the mixing coefficient more than it should.

The non-linear iteration then finds discontinuity factors consistent with the wrong flux

shape. On the other hand, the CMFD discontinuity factor synthesis approach uses the

weighted average of the precomputed values and therefore somewhat "independently"

updates the discontinuity factors. By sheer coincidence, this results in a better

prediction of the overall core power than the non-linear iteration scheme.

If this reasoning is valid, the three-dimensional LMW transient considered in

Section 5.3.2 should have exhibited the similar trend. However, the error in the LMW

transient is compensated by the insertion of control rod group 2. (A similar reasoning

should lead to underprediction of power in the axial plane into which a control rod is

being inserted.) Also the LMW control rods are not as black as those in the PWR. A

new LMW transient involving only control rod group 1 withdrawal should eliminate this

compensation in errors. Figure 5.15 shows the result for such a transient and indeed

exhibits the same trend shown in Figure 5.11.



LMW Transient With Feedback
(Control Rod Group 1 Withdrawal)

2.05 108

2.00 108

1.95 108

1.90 108

1.85 108
10 20 30 40 50 60

Time (Seconds)

Figure 5.15: Core power vs. time for the LMW transient with feedback.
(Control rod group 1 withdrawal)

5.5 The PWR Coolant Inlet Temperature Transient

The transient considered in this section is driven by changing thermal hydraulic

conditions of the reactor. The reactor model is the same as the one considered for the

PWR operational transient. The reactor is initially in a steady-state, critical condition at
nominal power of 3338 MWth. All control rod banks are fully withdrawn. A transient

is initiated by a two-second exponential decrease in the coolant inlet temperature, from

555 K to 535 K, followed by an exponential increase to 555 K. The exact form of the

perturbation is

T;ilet(t) = •inet (0) exp(-t /i,) + Tinet (0)[1 - exp(-t/2)], (5.1)

where 7r1 = 2.0 s and '2 = 2.206 s.

The same expansion functions generated for the PWR operational transient are
used for this transient, since it was proven that they are not very sensitive to changes in
power level. Further, only one expansion function, namely the control-rod-out shape
(CR Out), is used at a given elevation since there is no control rod motion involved.

Table 5.17 shows the expansion functions used, and a summary of the steady-state
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Table 5.17: Expansion functions for the PWR inlet coolant temperature transient.

results is presented in Table 5.18. Again, a large maximum nodal power errors are

observed at the axial core boundary where the power densities are low.
All transient calculations were performed with 1/16 s mixing coefficient time

step and the CMFD discontinuity factors were updated every time step. The transient
results are shown in Figure 5.16 and the execution times are given in Table 5.19. At peak
power, the CMFD discontinuity factor synthesis scheme overpredicts the power by
about 3.8 % and the non-linear iteration scheme by about 2.5 %. The point kinetics
approximation replicates the reference solution very well since there is no drastic change
in flux shape. Because of a minimal number of expansion functions employed, the
CMFD discontinuity factor synthesis scheme requires much less execution time than
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Axial Plane (k) Expansion Function

(Axial Plane, k)

1 CR Out (1)

2 CR Out (2)
3 CR Out (5)

4 CR Out (5)

5 CR Out (5)
6 CR Out (5)

7 CR Out (5)
8 CR Out (9)
9 CR Out (9)

10 CR Out (9)

11 CR Out (9)

12 CR Out (14)

13 CR Out (14)

14 CR Out (14)

15 CR Out (14)

16 CR Out (14)

17 CR Out (17)

18 CR Out (18)



A summary of the results for the PWR steady-state problem.

PWR Coolant Inlet Temperature Transient
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Figure 5.16: Core power vs. time for the PWR coolant inlet temperature transient.
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CONQUEST DISCOVER DISCOVER

(Ref.) (DF Syn.) (Non-Lin.)

Eigenvalue 1.048782 1.050196 1.050210

Number of DF Iterations 8 10 14

Number of Outer Iterations 23 39 54

CPU Time (s) 18.9 3.8 22.7

Avg. Nodal Power Error (%) -- 5.26 6.38

Max. Nodal Power Error (%) 10.8 22.7

Node (i,j,k), -- (1,7,17) (6,7,1)

Ref. Normalized Power Density 0.47 0.20

Error In Max. Power Node (%), -1.38 -0.47

Node (i,j,k), -- (1,7,7) (1,7,7)

Ref. Normalized Power Density 1.80 1.80

Table 5.18:



Table 5.19: A summary of execution times for the PWR coolant inlet temp. transient.

CPU Time (s) CPU Time (s) CPU Time (s)

CONQUEST (Ref.) 231 a 231 a 231 a

CONQUEST (P.K) 73 a 73 a 73 a

DISCOVER (DF Syn.) 41 b 33 c 30 d

DISCOVER (Non-Lin.) 281 b 183 c 146 d

a Avg. nodal power error convergence criterion = 10-3 .
b Max. nodal power error convergence criterion = 10-3 .
c Max. nodal power error convergence criterion = 10-2.
d Max. nodal power error convergence criterion = 10-1 .

the point kinetics calculation. Also a step doubling adaptive procedure implemented in

CONQUEST contributes to a longer execution time for the point kinetics calculation.

Compared with the reference calculation there is about a factor of five reduction in

execution time. But, even with just one expansion function, the non-linear iteration

scheme requires about the same execution time as the reference quasi-static CONQUEST

calculation.

5.6 Summary

The space-time dependent nodal synthesis method was applied to the LMW

benchmark problem as well as more realistic PWR reactor transients. The accuracy

obtainable from the synthesis method is a strong function of the types of expansion

functions employed. However, in general, the synthesis method can accurately predict

the nodal power to within 5 to 6 percent of the reference solutions. Rather large nodal

power errors are observed in some cases, but they generally appear in boundary nodes

where power densities are very low. Usually more accurate solutions are obtained from
the non-linear iteration scheme rather than the CMFD discontinuity factor synthesis
scheme. However, a significant overprediction in core power was observed in the PWR

operational transient employing the non-linear iteration scheme. The exact nature of this
phenomenon is not well understood, but the lack of flexibility in synthesis method in
representing a rapid local flux shape change is believe to the main cause. The CMFD

discontinuity factor synthesis approach, which computes discontinuity factors
somewhat "independent" of the flux shape, resulted in a better overall core power

prediction.
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The execution time for the CMFD discontinuity factor synthesis approach was

about a factor of five to ten less than that for the reference CONQUEST calculations in

steady-state cases. The non-linear iteration scheme, however, did not lead to any

reduction in execution time. This lack of reduction in computing time is attributed to the

slower convergence of the synthesis method than that of CONQUEST. The polynomial

nodal solution routine, which is common in DISCOVER and CONQUEST and is the

most time-consuming part of both codes, is another cause. In transient cases, the CMFD

discontinuity factor synthesis approach led to about a factor of two to three reduction

in execution time. This decrease in execution time reduction is caused by the frequent

cross section changes which in turn necessitates the time consuming matrix

multiplication and LU factorization. The transient calculation employing the non-linear

iteration scheme requires more computing time than the reference solution. The slower

convergence rate as well as the factors just mentioned cause this increase in execution

time.

A temporally discontinuous application of synthesis was proved to be feasible

for the LMW transient without feedback. But, one has to be certain that the expansion

functions being replaced do not contribute significantly to the synthesized flux shape.

Otherwise, a discontinuous behavior in core power may result. There is no systematic

way to predict when and what expansion functions may be replaced. One has to rely

on physical intuition based on the particular transient at hand.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Overview and Conclusions

The objective of this study was the development of an efficient, discontinuous

space-time dependent nodal synthesis method for the solution of three-dimensional,

few-group, steady-state and transient nodal diffusion equations. The synthesis method

allows the use of spatially and temporally discontinuous expansion functions to

approximate the neutron flux shape of interest.

In Chapter 2, a steady-state, space-dependent synthesis equation was derived

by applying a variational procedure to the finite-difference nodal balance equation.

Two different approaches were introduced to calculate the CMFD discontinuity factors,

which are essential to make the finite-difference nodal balance equations formally exact.

The non-linear iteration scheme forces the synthesis solution to match a higher order

(quartic) polynomial nodal equations while the CMFD discontinuity factor synthesis

scheme uses a weighted averaged of the precomputed values. For the non-linear

iteration scheme, it was necessary to modify CONQUEST, a quartic polynomial nodal

computer code developed by J. Gehin [G-1], since it only provided the CMFD

discontinuity factor ratios.
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In Chapter 3, a transient nodal synthesis equation was derived again applying a

variational procedure. The use of discontinuous expansion functions combined with the

existence of a time derivative necessitated a rather involved mathematical manipulation

before a time-dependent nodal synthesis equation as well as a time-continuity equation

was derived The introduction of discontinuous expansion functions also forced the use
of continuous adjoint weight functions if an over-determined system of equations was to
be avoided. Further, a constant number of expansion functions was needed to avoid

either an over- or under-determined system of differential equations. The introduction
of flux and precursor dynamic frequencies enabled the use of the steady-state non-linear
iteration scheme without the need to solve the time-dependent polynomial nodal

equations.

The numerical solution methods for the steady-state and time-dependent

synthesis equations were discussed in Chapter 4. The properties (or lack of properties)
of the steady-state synthesis equation were discussed and a potential convergence
problem was indicated. A direct matrix inversion technique, called LU factorization,

was introduced and a particular iteration strategy that would optimize the Wielandt's

eigenvalue acceleration scheme was discussed. For the transient synthesis solution, the

choices of the theta parameter were considered in light of a stability concern, and a fully
implicit solution method was adopted. Finally, a temporal solution-advancing strategy
was presented that allowed intermittent updates of the CMFD discontinuity factors.

The accuracy and efficiency of the discontinuous space-time dependent nodal
synthesis method, incorporated in the DISCOVER code, was demonstrated in Chapter

5. The steady-state and transient results for the LMW benchmark problems and two
PWR problems were presented. For most cases, the non-linear iteration scheme proved
to be more accurate than the CMFD discontinuity factor synthesis scheme. Average
nodal power errors within five to six percents of the reference solutions were achieved
with a careful selection of expansion functions. Somewhat large maximum nodal power
errors were observed in some cases, but they generally appeared in low power density
regions. The feasibility of a temporally discontinuous application was demonstrated on
the LMW transient problem. However, distinctive discontinuities were observed if
expansion functions were prematurely replaced. There exists no systematic way to
predict when and how expansion functions can be replaced. Thus, a continuous
temporal application is recommended for transient analysis. An overprediction of core
power by about 15 percents was observed for the PWR operational transient when the
non-linear iteration scheme was applied. This overprediction is believed to be caused by
inaccuracy of the synthesis method.
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A substantial reduction in computing time was realized for the steady-state

cases when the CMFD discontinuity factor synthesis scheme was applied. A five to

tenfold decrease in execution time was consistently observed. The non-linear iteration

scheme, however, did not result in any reduction at all. The convergence rate of the non-

linear iteration scheme incorporated in DISCOVER was generally slower than that

implemented in CONQUEST. Any execution time saving realized by a substantial

decrease in the number of unknowns was offset by the degradation in convergence rate.

In general, the execution times of the non-linear iteration scheme were comparable to

those of the reference calculations.

The reduction in execution time was less pronounced for the transient

applications when the CMFD discontinuity factor synthesis scheme was applied. A

factor of two to three decrease in computing time was realized. However, again, the

non-linear iteration scheme required more computing time (or comparable computing

time at best) than CONQUEST calculations. The frequent cross section updates, which

in turn necessitated time-consuming matrix multiplication and LU factorization,

contributed to the increase in the execution time. The aforementioned degradation in

convergence added further execution time.

6.2 Recommendations for Future Work

Several issues arose during this study and following areas are recommended for

future investigation.

6.2.1 A Code Allowing Different Number of Expansion Functions Axially

Two competing factors pose difficulties in choosing expansion functions. One

wants to employ the expansion functions that closely approximate the physical

conditions of a particular axial plane. Practically, this means that many of the

expansion functions are very close to each other. A numerical concern, on the other

hand, mandates linearly independent expansion functions in order to guarantee a non-

singular matrix. Thus, the use of a constant number of expansion function, which is the
only option allowed in DISCOVER, forces a user to retain unwanted expansion
functions in particular axial planes to accommodate the need of other axial planes. For
example, several expansion functions may be needed in axial planes involving control
rod motion while just one expansion function may be sufficient for other planes which
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do not experience substantial flux shape changes. In this particular situation, one has to

include undesirable expansion functions in those axial planes experiencing no flux shape

change for other axial planes undergoing substantial flux shape changes. A computer

code allowing different number of expansion functions at different axial planes would

eliminate this dilemma. Also, more accurate and efficient solutions are possible by

excluding undesirable expansion functions and thereby further reducing the number of

unknowns.

6.2.2 Further Investigation of Discontinuity Factor Updating Procedures

As the anomaly in Section 5.4 indicates, the effect of the non-linear iteration

procedure when combined with synthesis method is not well understood. The synthesis

method is an approximate approach with no systematic procedure for predicting error

and may result in substantial errors in some cases. Updating the CMFD discontinuity

factors by the non-linear iteration procedure may very well positively reinforce the

wrong synthesis solution. The CMFD discontinuity factor synthesis approach, on the

other hand, produced encouraging results but there is no theoretical explanation of this

phenomenon. It is recommended that the two CMFD discontinuity factor updating

schemes, incorporated in DISCOVER computer code, be further investigated as to their

role in synthesis method.

6.2.3 Non-Iterative Discontinuity Factor Updating During Transient

The fully implicit solution method requires the CMFD discontinuity factor values
at tn+l before the solution can be advanced in time. DISCOVER currently employs an

iterative approach to update these values and the convergence rate is very slow,

especially for the non-linear iteration scheme. A non-iterative discontinuity factor

updating scheme would reduce the transient execution time. It is recommended that a

sequential updating approach (where the CMFD discontinuity factors at time tn+l are

assumed to be same as the current values, but updated before advancing to time tn+2) be

investigated for its accuracy and efficiency.

6.2.4 A Quasi-Static Method Using Synthesis As Shape Update

For many transients involving slow flux shape changes, the point kinetics

approximation produces adequate results. A quasi-static approach, similar to the one
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incorporated in CONQUEST code developed by J. Gehin [G-1], using the synthesis

method only for shape updates is recommended for future investigation. This would

require less frequent matrix multiplication, which must be carried out in synthesis

method whenever there are cross section changes and is the most time-consuming part of

the synthesis method.
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APPENDIX A

THE QUADRATIC TRANSVERSE LEAKAGE
MOMENTS AND COEFFICIENTS

Since the same non-linear iteration scheme used in the CONQUEST computer

code is incorporated in the DISCOVER computer program, this appendix is copied from

J. Gehin's Ph.D. thesis [G-1].

In this appendix the transverse-leakage coefficients and moments required by the

weighted residual equations will be derived. The transverse leakage moments for node

(l,m,n) in the u-direction is defined by

SImn = w (u)Sgn (u)du, (A.1)9 f ul 1  mng
--gup g, u

where wp (u) is the weight function. For moments weighting we use the first and second

order expansion functions given by

w2(u) = UU,1 (A.2a)
uh' 2

w2(u 3 U 12 -3( 1 + - (A.2b)h' h' 2
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The transverse leakage moments are determined by assuming that its shape in the

u-direction can be represented by a quadratic polynomial. The coefficients of the

polynomial are obtained by requiring the quadratic approximation to preserve the

transverse leakage in three adjacent nodes. Within the core interior, the quadratic

transverse leakage which is fitted to the three adjacent nodes is used only for the central

node. Nodes located on the reactor boundary, however, do not have nodes on both

sides requiring that a biased quadratic fit be used. In addition, a flat transverse leakage

approximation may be used at the reactor surface.

A.1 The Quadratic Transverse Leakage Approximation

For the quadratic transverse leakage approximation, we represent the transverse

leakage by

Sum(u) = + (-1. m --,m_ P ),-1(u) + (1+1,mn -_ 5mn)p1() ,+(A.3)

where the u-direction node-averaged transverse leakage for node (l,m,n) is given by

-lmn I
S,, = hS J ,, (u) du ,

U

and the quadratic polynomials are

-(u)= a +b +C , (A.4a)Put u-u +, h

ph++(u) = a + b . (A.4b)

Substituting the transverse leakage approximation, Eq. (A.3), into Eq. (A.1) and

performing the required integration gives the following equations for the transverse

leakage moments

slmn I _ -1-1 mn Imn + ,mn +,mn

s• =--(b +c,,)Sg,' - (b- +b, +c• +c, +(bu Scu,) ],u(A.5a)
s Im= 0cS - (C• + C )57u + c g . (A.5b).g u 2 = c , g U - , Uc , +U cUc , .U( . b

The quadratic polynomial coefficients are obtained by requiring the transverse

leakage approximation to preserve the average transverse leakages in each of three
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adjacent nodes. This results in the following constraints on the quadratic polynomial

coefficients

1 p P'(u)du = 1,
u

1 r U+ 1-h +1 Jp-'(u)du = 0,
71i:12 2(u)du =0,

h p-- , (u)du = 0,

f+1 p 1 (u)du = 0,

h1 JU+2 p (u)du = 1.Rh+1f,,+ 1

Substituting Eqs. (A.4a) and (A.4b) into above constraints and performing necessary

integration give the quadratic coefficients

= h(h + hp)
al (h. + h + hp)(hm + h)

2h(2h + hp)

Ub (hm + h + hp)(h,, + h) '

3h
2

C1  (hm + h + hp)(hm +h)

a+ _hmh

aU (hm + h + hp)(h + hp)'

b 2h(hm - h)
u (hm + h + hp)(h + hp)

3h2
C+ A..

U, (hm + h + hp)(h + hp)

where
hm = h1-1

h = h 1,,

hThe transverse leakage coefficients are functions only of the reactor geometry.

The transverse leakage coefficients are functions only of the reactor geometry.
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A.2 LHS-Biased Quadratic Transverse Leakage Approximation

For nodes adjacent to the external reactor surface, M. Zerkle [Z-1] introduced a

biased quadratic transverse leakage approximation. The transverse leakage in the u-

direction in node (l,m,n), which is on the Left-Hand-Side (LHS) reactor surface is given

by
Sgum n(u) =" + • lmn Im +1(u) 1+2,mn Imn l+2(u) , (A.6)

where

p 1 (u) a, + b U + c ( Ul  , (A.7a)

2

+2 + +++ U - u (A.7b)
p~ (u)= a++ + bu+ h ul h14 A.b

Substituting the transverse leakage approximation, Eq. (A.6), into Eq. (A.1) and

performing the required integration gives the following equations for the transverse

leakage moments

Sm= (bf + c,, - (bf +b + +c +c)S " +(b, + + c+)2mn, (A.8a)

smn 1 l+1,mn + ++)lmn ++-l+2,mn
gS,2 60 •- •[ -+ (Cu + CU, gu +C• •,Sgu . (A.8b)

The quadratic polynomial coefficients are obtained by requiring the transverse leakage

approximation, Eq. (A.6), to preserve the average transverse leakage in each of three

nodes (1,m,n), (l+1,m,n) and (l+2,m,n). This results in the following constrains on the

quadratic polynomial coefficients

U +1 p, (u)du = 0,
1 Iu+ 2 I+

h1 1+2 p~' (u)du = 1,

1 UI+3

hu+2 1,+2 p, u = 0,

I •+ P1+2 (u)du = 0,
TU 1

1 +2 p1,+2
h•1 ",,,p,+2 (u)du = 0,
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IU
I+
3 1I+2 \a

U-h+2 l u+ +2(u)du = 1.

Substituting Eqs. (A.7a) and (A.7b) into above constraints and performing necessary

integration give the quadratic coefficients

a+
au1 -

h[h(h + 4h, + 2h,) + 3hp, (hp + h,) + hpp2]

(h+h + hpP + h)(h + hp)(hp + hPP)

b+ = 2h[h(2h+ 6hp, + 3h,,) + 3hp(hp + hPP) + h 2]

(h+h + hp, + hp)(h + hp)(hp + hpp)

,-+
3h 2 (h + 2hp + hpp)

U'

a+ -
++
u=

b*+ =

(h + hP + hPP)(h + hP)(hp + hPP)
h(h + hp)

(h + hP + hpp)(hp + hpp)

2h(2h + hp)
(h + h + hpp)(hp + hpp) '

IhL2

C +U
+  

=--•.JIIu' (h + hp + hpp)(hp + hPP)

where
h = hi,

hp = hi+1

hpp = h1+ 2

The transverse leakage coefficients are functions only of the reactor geometry.

A.3 RHS-Biased Quadratic Transverse Leakage Approximation

Similarly, the transverse leakage in the u-direction in node (l,m,n), which is on the

Right-Hand-Side (LHS) reactor surface is given by

S3"(u) = 1,n + ( -,mn n- p1-1(u) + 1-2,mn Imn)p (u) ,

U - U1
hu +j hCJu

(A.9)

(A.10a)
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p1, (u) = a

=



(i l)2pl-2 (u) +b - I + cju- h u-.u  (A.lOb)
U,, ( u) a U ,, h u 1 hu'

Substituting the transverse leakage approximation, Eq. (A.9), into Eq. (A.1) and

performing the required integration gives the following equations for the transverse

leakage moments

Sm" I "1 -C- ,gI-1,mn + - lmn .'l-2,mn
SguI =2(b +[ ( Sg -(bu 1 +b7 +c c , )Sfgl +±(b-+c) U 9 , (A.11a)12 lgulg

I [m I l-1,mn + C Imn + -l-2,mn
=n 60 Sgu -(c +c -) gu +c ~- gu . (A.11b)

The quadratic polynomial coefficients are obtained by requiring the transverse leakage

approximation, Eq. (A.9), to preserve the average transverse leakage in each of three

nodes (I,m,n), (l-1,m,n) and (l-2,m,n). This results in the following constrains on the

quadratic polynomial coefficients

1 ± + p~7•-(u)du = 0,
1 Ifu" U-,

pU , 1-(u)du = 1,

h -2
1 ul -

2 I 1du = 0,

h

h 1-2( u)du = 0,
u

h U-I 1-2
Uh-2 f,,,p, (u)ldu = 1.

Substituting Eqs. (A.10a) and (A.10b) into above constraints and performing necessary

integration give the quadratic coefficients

- h[hmm (hmm + 3hm + h) + hm(3h. + 2h)]
S (hmm +hm +h)(hm +h)(hmm +hm)

b- 2h[hmm(hmm- +3hm) + 3hm2 -h2
Ub (hmm + hm + h)(h,, +h)(hmm + hm)

3h2(h (mm + 2hm + h)
U= (hmm + hm + h)(hm + h)(hmm + hm)'
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a-- = hhmm
a,, (hmm +hm +h)(hmm +hm)

S 2h(hm - h)
b1 (hrmm +hm +h)(hmm +hm)

3h2
= (hmm +hm + h)(hmm +hm)

where
hmm = hl-2

km = h"U
h = h.h=hl,.

The transverse leakage coefficients are functions only of the reactor geometry.

A.4 Flat Transverse Leakage Approximation

In the flat transverse leakage approximation, the transverse leakage in the u-

direction is assumed to be constant and equal to the node-averaged u-direction

transverse leakage

S I•=mn
m = 3sg. (A.12)

Substituting the flat transverse leakage approximation into Eq. (A.1) and performing the

required integration reveal that for this approximation the transverse leakage moments

are zero

Sm = , p = 1,2. (A.13)
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APPENDIX B

NUMERICAL STUDY OF THERMAL
HYDRAULIC MODELS

This appendix presents a numerical study of two thermal hydraulic difference

approaches, namely an Implicit Donor Cell (IDC) and an Implicit WIGL model. This

numerical study is intended to identify unusual charateristics, if any, of the WIGL

model. If we neglect boiling and turbulence effects and also assume that there is no heat

transfer, the one-dimensional energy balance equation can be written as

dH dH
+ u- = O, (B.1)

dt dz

where H and u are enthalpy and velocity of the coolant, respectively. The difference

between IDC and WIGL models lies in the space-time discretization. The discretization

schemes used for IDC and WIGL models are given in Figures B.1 and B.2, respectively.

The space-time discretization of Eq. (B.1), assuming a constant node spacing

and step size, using the IDC model results in the following finite-difference equation

H 1 - Hn Hn+ - H .n+
k Hk +Uk k-1 =0, (B.2)At Azl
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Axial Position

Figure B.1: Space-time discretization used for IDC model.

I I

I I

Axial Position

Figure B.2: Space-time discretization used for WIGL model.
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where H" represent the coolant enthalpy at axial position k and time step n.

Rearranging Eq. (B.2) leads to

n+1 rHn_÷ + Hn uAt
Hk - r = (B.3)

1+r Az

Similarly, the space-time discretization of Eq. (B.1), assuming a constant node

spacing and time step size, using the Implicit WIGL model results in the following finite-

difference equation

H+ " 1 H - " k H1 - Hk 1I .k Hn+ I H- Hj + u k kl = 0. (B.4)
2 At 2 At Az

Rearranging Eq. (B.4) gives

n+1 (2r - 1) n H+H- uAt
H~1  (2r- 1)•H + H r - (B.5)

k -(2r +1) • • k- 1 2r+1 Az

Eqs. (B.3) and (B.5) along with the following expression of the node-averaged

enthalpy

-1
Hk = -(Hk + Hk+l), (B.6)

2

are applied to a very simple two-node problem with several different values of r. Figure

B.3 shows the schematic diagram of the two-node problem considered to compare the

numerical properties of the IDC and the Implicit WIGL models. The transient involves a

step change in the coolant enthalpy from Hinlet = 0 to Hinlet = 1 at time t = 0. Figures

B.4 through B.7 show the average enthalpy of node 2 versus time steps. We are

interested mainly in the average enthalpy because the cross section feedback model uses

the average temperature of the coolant in a node.

Both the IDC and the Implicit WIGL models converge to the true solution and

there exists hardly any difference between the two models for r > 0.5. If anything, the

Implicit WIGL model converges faster to the true solution than the IDC model. For r =
0.1, there exists a phase mismatch for the Implicit WIGL model (the node-averaged

enthalpy decreases when it should increase), but it is difficult to say even in this

situation that the IDC model approximates the true solution better than the Implicit

WIGL model. Furthermore, this phase mismatch is rarely encountered in reactor analysis

because for most cases considered, the values of r are usually larger than 1.
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Az
Node 2

Have

Node 1

k=2

k=1

k=0

Coolant

Figure B.3: Two-node problem used to test thermal hydraulic models.

Average Enthalpy, Have (r=0.1)

0.4

0.2

0.0

-0.2
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Time Steps

Figure B.4: Average enthalpy vs. time steps for r = 0.1.
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Average Enthalpy, Have (r=0.5)

5 10 15 20 25 30

Time Steps

Figure B.5: Average enthalpy vs. time steps for r = 0.5.

Average Enthalpy, Have (r=1.0)

0.2

0.0

n0
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Time Steps

Figure B.6: Average enthalpy vs. time steps for r = 1.0
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Average Enthalpy, Have (r=5.0)

0 1 2 3 4

Time Steps

Figure B.7: Average enthalpy vs. time steps for r = 5.0.

The results presented in this appendix show that the WIGL model exhibits no

unusual behavior compared with the donor cell model. For all practical purposes, both

the models lead to similar results. For comparison purpose, however, the WIGL model

was incorporated in DISCOVER.
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APPENDIX C

PROBLEM SPECIFICATIONS

C.1 The LMW LWR Transient Problem

Geometry:

Quadrant of Reactor Horizontal Section

0 10 30 50 70 90 110

Zero Current

126

Zero Cur

Rod Gro

o Flux

x (cm)



Reactor Vertical Section

Rod Group 2 z (cm)

Zero Flux

z kcm)

200

180

100

60

20

200

180

100

Zero Flux

Rod Group 1

Zero Flux

2 4 2 2 4

2 2

Rod Group 2

Zero Flux

Initial Rod Positions Final Rod Positions
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Material Properties:

= 1.0
= 0.0
= 2.5
= 2.25 x 107 cm/s

= 2.5x 105 cm/s

Delayed Neutron Data:

Xdl = 1.0

Xd2 = 0.0, d = 1,2,..., 6

Energy Conversion Factor: 3.204 x 10-11 J/fission
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Composition Group, g Dg -ag VFfg Y21

(cm) (cm-1) (cm-1 ) (cm-1)

1 1 1.423913 0.01040206 0.006477691 0.0175555

2 0.356306 0.08766217 0.1127328

2 1 1.423913 0.01095206 0.006477691 0.0175555

2 0.356306 0.08766217 0.1127328

3 1 1.425611 0.01099263 0.007503284 0.01717768

2 0.350574 0.09925634 0.1378004

4 1 1.634227 0.002660573 0.0 0.02759693

2 0.264002 0.04936351 0.0

Family, d fd d (s- 1 )

1 0.000247 0.0127

2 0.0013845 0.0317

3 0.001222 0.115

4 0.0026455 0.311

5 0.000832 1.40

6 0.000169 3.87

A



Perturbation:

Control Rod Group 1 removed at 3.0 cm/s, 0 < t •26.666 s
Control Rod Group 2 inserted at 3.0 cm/s, 7.5 < t • 47.5 s

WIGL Thermal Hydraulic Parameters:

Cf = 2.46x 106 ergs/g/K

Cc = 5.43 x 107 ergs/g/K

Pf
Wo
h0
AH

U
Vc/

= 10.3 g/cm3

= 2.2 x 106 g/s
= 2.71 x 107 ergs/cm2 /s/K

2.59 cm -1

= 2.2 x 106 ergs/cm 2/s/K
(Vc+Vf) = 0.559

S= 1.60 x 107 ergs/cm3 /K

Pressure = 1.53 x 107 Pa
Coolant Inlet Temperature = 533 K
Initial Power = 184.8 MWth (Quarter Core)

Macroscopic Cross Section Derivatives:

Parameter, E _•2 __

dpc aTc dTf

D /  +0.41 -8.0 x 10- 5  -6.6 x 10-6

D21  +2.7 -1.3 x 10- 3  -2.6 x 10-6

Ec +2.83 x 10-3 +3.0 x 10-6 +3.3 x 10-7

-c2 +1.4 x 10-2 -8.2 x 10-6 -3.7 x 10-7

Vzf 1  +0.0 +0.0 +0.0
"__f2 +4.132 x 10-2 -2.075 x 10- 5  -2.5 x 10-6

f 1 +0.0 +0.0 +0.0

_f_ 2 +1.7 x 10-2 -8.3 x 10-6 -1.0 x 10-6

21 +2.4 x 10 -2 -1.5 x 10-6 +8.5 x 10-8

* Zero for reflector material (composition #4)

Reference Coolant Density = 0.7961 g/cm3
Reference Coolant Temperature = 533 K
Reference Fuel Temperature = 533 K
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C.2 The PWR Transient Problems

Geometry:

Quadrant of the Reactor, Assembly dimensions 21.591 cm x 21.591 cm. In unrodded

planes, composition #16 is replaced by composition #1.

Zero Incoming
Current
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y (cm)

183.5

Zero
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0
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Current

183.5 x (cm)
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6

1

4

1

4

1

Zero Current
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Control Rod Bank D & C Locations and Reactor Vertical Section

y (cm)

183.5

0
183.5 x (cm)

Infinite Water Reflector

Infinite Water Reflector
183.5 x (cm)
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Material Properties:

Composition Group, g Dg Zag £fg 21

(cm) (cm-1)  (cm-1)  (cm-1)

1 1 1.3648 0.008887 0.005550 0.017245

2 0.4826 0.130772 0.185823

2 1 1.3603 0.009661 0.006267 0.015942

2 0.4776 0.169403 0.229195

3 1 1.3596 0.009957 0.006267 0.015398

2 0.4798 0.181915 0.230258

4 1 1.3592 0.10104 0.006269 0.015128

2 0.4810 0.188426 0.230923

5 1 1.3594 0.009509 0.006890 0.016386

2 0.4673 0.169073 0.264760

6 1 1.35898 0.0096925 0.0068905 0.0160495

2 0.46853 0.1762888 0.2653975

7 1 1.35890 0.009730 0.006890 0.015981

2 0.46875 0.177654 0.265512

8 1 1.3576 0.010252 0.006892 0.015022

2 0.4728 0.200287 0.267778

9 1 1,3572 0.010399 0.006894 0.014752

2 0.4740 0.206951 0.268552

10, 14 1 1.4957 0.002683 0.0 0.022923

2 0.3637 0.051595 0.0

11 1 1.3933 0.003541 0.0 0.017943

2 0.3659 0.068149 0.0

12, 15 1 1.6701 0.001220 0.0 0.031408

2 0.3621 0.039330 0.0

13 1 1.7446 0.000596 0.0 0.035032

2 0.3614 0.034208 0.0

16 1 1.321964 0.013482 0.055670 0.015178

2 0.486198 0.161003 0.194976 I

X2 = 0.0,

x 107 cm/s,

= 2.5,
= 2.5 x 105 cm/s.
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Axial Albedo Boundary Conditions:

Fli1 I 12 I 21 22

4.011 0.0 2.805 8.993

Delayed Neutron Data:

Family, d Pd d (s-1 )

1 0.000247 0.0127

2 0.0013845 0.0317

3 0.001222 0.115

4 0.0026455 0.311

5 0.000832 1.40

6 0.000169 3.87

Xdl = 1.0

Xd2 = 0.0, d = 1,2, ..., 6

Macroscopic Cross Section Derivatives:

Parameter, E __ _, _,

dpc dTc dTf
D 0 -8.0 x 10- 5  -6.6 x 10-6

D21 0 -1.3 x 10- 3  -2.6 x 10-6

cI 0 +3.0 x 10-6 +3.3 x 10- 7

_ c2 0 -8.2 x 10-6 -3.8 x 10- 7

Uf 0 +0.0 +0.0

"f2 0 -2.075 x 10- 5  -2.5 x 10-6

zfl 0 +0.0 +0.0
Zf2 0 -8.3 x 10-6 -1.0 x 10-6

21 0 -1.5 x 10-6 -8.5 x 10-8

* Zero for reflector material (composition #10 ~ 15)

Reference Coolant Density = 0.79755 g/cm3
Reference Coolant Temperature = 533 K
Reference Fuel Temperature = 533 K
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WIGL Thermal Hydraulic Parameters:

Cf = 2.46 x 106 ergs/g/K

Cc  = 5.43 x 107 ergs/g/K

pf = 10.3 g/cm3

Wo = 3.868 x 106 g/s

ho  = 3.293 x 107 ergs/cm2 /s/K

AH = 3.097 cm - 1

U = 2.2 x 106 ergs/cm2 /s/K

Vc/(Vc+Vf) = 0.542

- = 1.60 x 107 ergs/cm 3 /K

Pressure = 1.551 x 107 Pa

Coolant Inlet Temperature = 555 K

Initial Power = 166.9 MWth (Quarter Core)
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Transient #1: Rod Motion Transient Perturbation

Rod Bank C & D are removed at a velocity of 2 cm/s

z (cm)

D

.t

I I
I I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

120 180 Time (s)
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Transient #2: Coolant Inlet Temperature Perturbation

The coolant inlet temperature is varied according to

Tnet((t) = Tn,,et (0) exp(-t /l) + Tinlet (0O)[1- exp(-t/'2

where

1 = 2.0 s

2 = 2.206 s.

Initial Power = 834.5 MWth (Quarter Core)

All control rods are at completely withdrawn positions.
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