
Learning Augmented Recursive Estimation for
Uncertain Nonlinear Dynamic Systems

Stark Christiaan Draper

B.A., History (1994)
Leland Stanford Junior University

B.S., Electrical Engineering (1994)
Leland Stanford Junior University

submitted to the department of
electrical engineering and computer science

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1996

@1996 Stark C. Draper. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute copies of this thesis document in whole or in part.

A uthor......................
Department of Electrical Engineering and Computer. Science

May, 1996

Certified by _
Peter Dayan, Ph.D.

Assistant Professor of Comnutational Neuroscience

Certified by
Rami Mangoubi, Ph.D.

Thesis Supwvisor, CKh.les Stark Draper Laboratory

Accepted by
............ Fk .1 Morgenthaler, Ph.D..

Professor 4 lectrical Engineering
Chair, Departnent Committ& on Graduate Students

sA"SAUHUSE-TiS INSiTTUTE
OF TECHNOLOGY

JUL 16 1996 EN

LIBRARIES

Learning Augmented Recursive Estimation for
Uncertain Nonlinear Dynamic Systems

Stark Christiaan Draper

submitted to the department of
electrical engineering and computer science

in partial fulfillment of the requirements for the degree of
master of science at the Massachusetts Institute of Technology

May, 1996

Abstract

This thesis addresses the joint problems of state estimation and system
identification for partially unknown dynamic systems. We focus on the case
where the unknown dynamics are nonlinear time-invariant function of the state.
We use a spatially localized learning system to construct a state-dependent map-
ping of the unknown nonlinearities. This map then serves as a source of evolving
long-term memory for use in tasks of estimation and identification. Standard
filtering algorithms (EKFs) that exploit the knowledge stored in the learning
system are used to estimate both the system state and the correction terms for
the learned mapping. These state/correction term pairings are then used to
refine the learned mapping of the unknown dynamics. This approach contrasts
with many existing identification techniques that treat the unknown nonlinear-
ities as time-varying quantities. By not storing any information about previous
estimates of the unknown dynamics, these techniques fail to improve their per-
formance as they explore the state space. Numerical results for a number of
dynamic systems are included that demonstrate the improved performance of
this approach and provide insight into the strengths and weaknesses of the al-
gorithm.

Academic Supervisor: Peter Dayan, Ph.D.
Assistant Professor of Computational Neuroscience

Thesis Supervisor: Rami Mangoubi, Ph.D.
Senior Member of the Technical Staff, Draper Laboratory

Acknowledgment

I must say that when I was first offered support at Draper Laboratory to
fund my graduate studies at MIT, I was a bit hesitant. I was not quite sure what
it would be like to walk into a building with the prominent portion of my name on
the door every day, or to hear stories of lore about my grandfather. People had
commonly enough made the connection at Stanford, and that was a good couple
of thousand miles from the Infinite Corridor. Being a graduate student in course
VI, ten courses away from Aero/Astro, might be close enough. But on further,
and deeper, reflection I came to realize that it might be a great opportunity,
not only to study at MIT, but to find out what went on in that black-glassed
building, to work with the people who had sent Apollo to the moon, and indeed
to hear those stories of my grandfather. I have not been disappointed. While
being a Draper Fellow might isolate one a little from graduate life at MIT, the
staff at Draper makes a concerted effort to interact with the Draper Fellows and
to make up for that isolation, to both parties' benefit I think. Indeed, though
I really had nothing to do with it, the whole mission of the Lab to support
graduate education is really quite notable nowadays, so... sure, you guys can
keep my name on the door.

I would especially like to thank Rami Mangoubi who, although our first
discussions were about the Palestinian-Israeli conflict, eventually took over su-
pervision of my project and really spent much of his busy schedual helping me
work on it. Peter Dayan was my academic supervisor and although he entered
into the project after the problem and approach had already been firmed up, he
took an active interest and made some significant contributions in how I went
about experimenting with the architecture, and in clarifying the connection be-
tween learning and estimation. I would also like to thank Walter Baker who
suggested the problem I ended up working on in the first place, and though
he's currently doing his doctorate at Harvard, took a continuing interest in this
project's progress (I won't tell Roger). Dean Cerrato was my first real (third
actual - but that's another story) supervisor at Draper, and he continued to
leave his door (and bookcase) open even after the focus of my project moved
away from learning systems and towards estimation and identification.

I would also like to thank the rest of the staff (and eventually students) who
participated in learning group meetings and made suggestions on my, and other
students', projects - Milt Adams, Neil Adams, Jim Negro, Keith Rogers, Matt
Welborn. There were other students and staff, both at Draper and MIT, who
helped me through various stages of the project: Elaine Chew, Larry McGovern,
Homer Pien, Afshan Hamid, Bill Hall, Rich Barron, Sridevi Sarma, Austin
Frakt, Cathy (the cute) O'neil. Of course, the Draper folks who like to head
over to the Cambridge Brewing Company on those snowy Friday afternoons
should be included in the last category as well. My parents even contributed
a little, on both the technical and dining-out sides. I think in closing it is

appropriate to mention my academic advisor, Professor Alan Oppenheim, who
first thought to forward my MIT application to Draper Labs, and without whose
acquaintance I'd still be in sunny California... hmmmm...

This thesis was prepared at The Charles Stark Draper Laboratory, Inc.
Funding was provided by a Draper Laboratory Independent Research and De-
velopment (IR&D) project, number 96-0-718.

Publication of this thesis does not constitute approval by Draper Labora-
tory or the sponsoring agency of the findings or conclusions contained herein.
It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper
Laboratory, Inc., Cambridge, Massachusetts.

Permission is hereby granted by The Charles Stark Draper Laboratory,
Inc., to the Massachusetts Institute of Technology to reproduce any or all of
this thesis.

Stark C. Draper

Contents

1 Introduction 11

1.1 Problem formulation 13

1.2 Organization of the thesis 15

2 State Estimation for Dynamic Systems 17

2.1 Bayesian estimation.......................... 18

2.2 State estimation for linear systems 21

2.3 State estimation for nonlinear systems 25

2.3.1 State evolution without observations 26

2.3.2 Observations and nonlinear filtering 29

2.3.3 Implementable nonlinear filters and approximations . . . 33

2.4 Parameter estimation using an AEKF 36

2.4.1 An application 38

3 Learning Systems 47

3.1 General concerns in learning system design 48

3.2 Basis/influence function networks 51

3.3 Discussion 55

4 Learning Identification for Estimation 59

4.1 Problem statement 60

4.2 The learning augmented architecture described 61

4.3 Naive approach 62

4.4 Incorporating memory 64

4.5 The learning augmented architecture 66

4.5.1 A motivating example for blending 68

4.5.2 Blending with sample statistics 70

4.6 Summary of the LAEKF algorithm 72

5 Applications to Physical Systems 75

5.1 Spring-mass-damper 76

5.2 Spring-mass-damper II . 83

5.3 Aeroelastic oscillator 89

6 Conclusion 93

6.1 Future directions 95

Bibliography 97

List of Figures

1.1 Block diagram of learning augmented estimator 15

2.1 Two examples of joint densities, px,y(x, y) 18

2.2 Adaptive controller, plant, and AEKF 40

2.3 Parameter identification performance 41

2.4 State estimation performance 42

3.1 Learned mappings of f(x,y) = -(1 + x2) - (1 + y2) 54

3.2 A Bayesian decision between architectures 57

4.1 Block diagram of learning augmented estimator 61

4.2 AEKF addressing joint tasks of estimation and identification . . 63

4.3 AEKF merged with a learning system 65

5.1 Block diagram of learning augmented estimator 77

5.2 RMS state estimation errors normalized by performance of stan-
dard EKF (designed with exact nonlinear model) 78

5.3 Learned mapping of spring stiffness. Dashed line corresponds to
mapping at t = 300; solid line is truth 79

5.4 RMS errors in spring stiffness identification 80

5.5 Identification performance versus noise modeling level 81

5.6 RMS state estimation errors normalized by performance of stan-
dard EKF (designed with exact nonlinear model) 85

5.7 Normalized RMS state estimation errors of the AEKF and EKF
systems incorporated into the LAEKF, of the final blended esti-
mates, and of an EKF designed with full knowledge of the dynamics. 86

5.8 Learned mapping of spring stiffness. Dotted line corresponds
to mapping at t = 150; dashed line corresponds to mapping at
t = 300; solid line is truth....................... 88

5.9 RMS errors in spring stiffness identification 88

5.10 Structural diagram of aeroelastic oscillator 90

5.11 Learned mappings; data batches; and phase diagrams of two
training sets for the aeroelastic oscillator 91

Chapter 1

Introduction

Many physical phenomena, natural and man-made, are well modeled by dy-

namic systems. The state of the dynamic system encapsulates all information

needed to describe the system at the current time, and the system dynamics

mathematically describe how the state evolves with time. Given noisy obser-

vations of the state, or a function thereof, a central question in system theory

is how best to estimate the state of the system. Under certain conditions this

problem has an explicit solution, but in general it is quite difficult.

A further difficulty arises when one's description of the system dynamics

is incomplete. We concentrate on this case where the unknown dynamics are

time-invariant and nonlinear. The problem at hand is thus one of joint state esti-

mation and system identification. We will investigate the application of learning

ideas, taken from the wealth of research on learning systems that has emerged

in the past decade, to this joint problem of estimation and identification. We

will show the potential benefits of drawing on both fields as compared to some

standard nonlearning techniques.

Often problems that require both state estimation and system identification

are approached via state augmentation and nonlinear filtering methods [8, 13].

In this approach, unknown parameters are treated as additional states and in-

troduced into the original state vector. Conventional filtering methods are then

used to estimate this augmented state vector.' Although the unknown parame-

ters may actually be nonlinear functions of the original state, they appear in the

augmented filtering framework as time-varying quantities that are estimated in

a recursive fashion.

A deficiency in this approach arises if the system switches repeatedly among

different operating points. This type of estimation and identification algorithm

will be forced to identify the corresponding unknown dynamics from scratch each

time - it will have to readjust fully every time the system revisits an operating

point it has been to in the past. Effectively then, the influence of previous

estimates is age-weighted. Old estimates of the nonlinearities matter little after

sufficient time has elapsed. If some form of memory could be incorporated into

the system, then the estimator could partially rely on "remembered" information

from previous visits to this area of the state space, when attempting to carry out

its identification task. It is in the identification and storage of such information

that ideas from the learning literature will come to the fore.

The primary objective of this thesis is to formulate a learning augmented

estimation methodology for partially unknown dynamic systems. As well as

incorporating ideas of memory, we must also determine how to combine this

learned information with new information collected as the system operates.

Over the past decade a number of researchers have applied learning to

problems of estimation, identification, and control of dynamic systems (e.g.,

see [6, 10, 11, 14, 16, 17, 18, 23]). In general these approaches fall into two

categories. The first category addresses the estimation problem. These ap-

'An illustrative example is described in Section 9.4 of [8], where the problem is to de-
sign a filter for a missile autopilot, given only a partial model of the dynamics and noisy
measurements. We will develop this example in Section 2.4.

proaches use the universal function approximation capability of many learning

systems to attempt to obtain unbiased, minimum-variance filters for stochastic

nonlinear systems. One recent approach is discussed in [14] where a training

set (incorporating the actual system states) is used to build a mapping between

measurements and estimates of the system state. In many situations, however,

such a training set it not available, nor is a complete model of the state dynam-

ics from which to generate such a training set. The second category addresses

the problems of identification and control for a deterministic but unknown non-

linear dynamic system. Again exploiting the universal approximator capability

of many learning systems, these approaches try to minimize the output error by

adjusting the parameters of their function approximations. Our problem is a

bit different from these in that we want to do both estimation and identification

for a nonlinear dynamic system that is stochastic and unknown.

1.1 Problem formulation

Consider the discrete-time nonlinear system given by

Xk+1 = f(xk, (Xk)) + b(xk, O(Xk))Uk + G•k (1.1)

Zk = h(Xk)+Vk (1.2)

where Xk E n is the state of the system, uk E •m is a known driving signal,

zk E R, is the measurement, O(Xk) E R is the unknown state-dependent pa-

rameter vector, and wk and vk are process and measurement noises, respectively

(assumed to be zero mean white Gaussian sequences). In addition, f and b are

possibly nonlinear time-invariant functions describing the plant model. In our

problem, these functions are only partially known, with the unknown portion

characterized by 0(x). Finally, h is a known function describing the sensor

model. The reason why this function must be known will become evident in

Chapter 4 when we discuss blending.

As is discussed in Chapter 2, in the absence of model uncertainty (i.e.,

when the mapping x F-+ O(x) is completely known), a problem of great interest

is the design of filters that give estimates of the state Xk at each time k, based

on the observations ze up to time k, £ = 0,..., k.

In the presence of model uncertainty, however, an additional goal, and a

necessary one for achieving the original state estimation objective, is the iden-

tification of the unknown mapping O(x). The case of a linear mapping with

unknown constant parameters (i.e., f(xk, O(xk)) 8 xk) has been widely treated

in the literature [12, 13, 22]. In this thesis we focus on systems whose model

uncertainties are nonlinear functions of the state.

Figure 1.1 displays a schematic of the algorithm designed to address the

problem of state estimation and system identification for a partially unknown

nonlinear time-invariant system. The learning system encapsulates "remem-

bered" state-dependent knowledge of the unknown portion of the dynamics 9(x).

The learned mapping OLS is then fed to two filters to help in estimation: first,

to an augmented extended Kalman filter (AEKF) that provides refined knowl-

edge of the unknown dynamics by estimating a correction term SO as well as

the state; and second, to an extended Kalman filter (EKF) that provides state

estimates if the AEKF is not working well. The two filters also take the known

driving signal u and the sensor measurements z produced by the plant as inputs.

Finally, the estimates of each filter are fed to the blending block that combines

the two sets of estimates to produce final state and parameter estimates, ^B

and OB. These estimates are then used in the next step of the state estimation

problem and to further refine the learning system mapping. Because we are

using Kalman filters as our recursive estimators, we refer to the overall estima-

W?, V

u

B

esti

LAEKF

Figure 1.1: Block diagram of learning augmented estimator

tion system as a learning augmented extended Kalman filter, or LAEKF. This

architecture is discussed more fully later in the thesis, as is the design of each

of the subsystems.

1.2 Organization of the thesis

In Chapter 2 a brief review is given of estimation theory. We first discuss the

general problem of estimation of probabilistic quantities. We then address the

case of state estimation for linear systems and discuss the Kalman filter algo-

rithm. From there we move into the more general, and less tractable, nonlinear

estimation framework. We conclude this section with a discussion of the assump-

tions that lie behind the design of the suboptimal, but implementable, extended

Kalman filter (EKF). In both the linear and nonlinear discussions we assumed

full knowledge of the system dynamics. In the final section of Chapter 2 we give

mate

a description of how the EKF can be used to address the joint problems of state

estimation and system identification - a development resulting in the so called

augmented extended Kalman filter (AEKF).

Chapter 3 gives some background on learning systems. Issues that face the

designer of such systems are discussed. Following this general discussion the

particular learning system used in the thesis is described, as are some learning

issues that are raised by our specific application.

Chapter 4 formulates anew the problem of the thesis. Based on the mate-

rial developed in Chapters 2 and 3, a full description of the learning augmented

estimation architecture can finally be given. In addition, the question of com-

bining the information contained in the learning system's mapping, and the new

information entering the filters via observations, is addressed and resolved in the

development of the blending system.

In Chapter 5 several applications of the learning augmented architecture

are presented. Performance of the LAEKF is compared with that of nonlearning

approaches to the estimation and identification problem, as well as with the

state estimation performance of nonlinear filters that are designed with full

knowledge of the nonlinear dynamics. It is this latter performance that the

learning augmented system should approach as it identifies the unknown portion

of the model with increasing accuracy.

Finally, Chapter 6 presents conclusions emanating from this research and

ideas on future directions that might be pursued.

Chapter 2

State Estimation for Dynamic
Systems

Nature provides abundant examples of situations where one wishes to infer in-

formation about a certain object or process from observation of a distinct, but

related, object or process. An example might be a mountaineer's prediction of

future weather based upon his or her observations of local conditions (clouds,

winds, barometric pressure, temperature) throughout the day, or a bat's hunt-

ing method where the bat determines the distance and direction to its prey by

chirping and listening to the echoes. While the mountaineer faces the problem

of attempting to infer global information from sparse observations, the bat faces

the problem of translating its echoed information into distances. In both cases

the relationship of the received information to the desired knowledge may be

unclear and the received information may be corrupted (by local fluctuations in

the mountaineer's case, by extraneous echoes and other noises in the bat's). It

is often useful to cast the desired knowledge, the observed data, and the rela-

tionship between, into a probabilistic framework. Then reasonable statements

can be made about the desired knowledge based upon the observations.

In Section 2.1 general approaches to probabilistic estimation will be pre-

sented. Section 2.2 specializes these approaches to linear dynamic systems and

17

b Yo

Y

Figure 2.1: Two examples of joint densities, px,y(x, y)

discusses the Kalman filtering algorithm. Section 2.3 generalizes this discussion

to nonlinear systems, providing insight into both the linear and nonlinear cases.

Finally, Section 2.4 provides a brief introduction to the joint problems of state

estimation and system identification.

2.1 Bayesian estimation

Suppose that the unknown quantity in which we are interested, X, is well de-

scribed as a probabilistic quantity. In that case all a priori information about

X is contained within its probability density function, px(x). Now say that

some other data related to the unknown quantity is gathered, and call this data

Y. We would then like to refine our information about X based on the new

data. The quantity in which we are now interested is the conditional density,

PxIY(xly).

To help understand why pxjy (x I y) is the right thing to look at, we present

two examples of joint densities px,y(x, y) in figure 2.1. We are interested in the

distribution of X conditioned on measurements of Y. In the figure both densities

., °- . .- °-i° .- °

are two-dimensional and uniform (i.e. px,y(x, y) = c in the shaded region and

zero elsewhere, where c = 1/(area of shaded region)). On the left we see that

the marginal density, px(x) is the same as pxly(xlyo) V yo within the shaded

region. Thus, given any possible observed values (i.e., within the shaded region)

of Y, we gain no knowledge about X. This means that observations of Y are

useless as they are not related to X and we should observe something else. In

the plot on the right a different situation prevails. Given no information about

Y, the random variable X is constrained to lie between g and c, i.e. g < X < c.

However, given Y = yl, we see that the conditional probability pxiy(xlyi) #

Px (x), rather it is uniformly distributed between f and d. Thus, the conditional

probability gives us refined, seemingly sensible, information about X.

Now, say that instead of looking at densities, we want to derive a single

number, a "best" guess of the quantity X based on the observations y, i.e. X(y).

To determine whether a guess is "good," we must first have some measure of

quality. Such a measure is a cost function that penalizes the difference between

the true value of x and the estimate. Given a cost function, we can then deter-

mine our estimator by finding the function that minimizes the expected value

of the cost over the conditional distribution of X given Y. That is

X(y) = argminaE[C(x,a)] (2.1)

= argmina j C(x,a)Pxly(xly)dx. (2.2)loo

There are many possible choices of cost function; all of which generally

result in different estimators. One choice is to penalize the absolute error

C(x, a) = Ix - aI. This choice yields the minimum absolute error (MAE)

estimator. Another is to seek the maximum of the conditional density, i.e.,

C(x,a) = S(x - a), where b(.) is a dirac delta function. This cost function

yields the maximum a posteriori (MAP) estimator.

19

One of the most common cost function is the quadratic, i.e. C(x, a) =

(x - a)2. This is the cost criterion we will focus on below.1 Given the quadratic

cost criterion, we want to solve the following problem

X(y) = argmina (x - a)2'pxly(xy)dx. (2.3)

Taking the derivative of the expected cost with respect to a - which we can

easily do since the cost criterion is a smooth polynomial - and setting the result

equal to zero, we get

-2aJ (x- a)pxiy(xly)dX = 0

a Pxiy(xly)dx = xpxly(xly)dx

a = E[Xly]. (2.4)

Since the function to be minimized is convex in a, any local extremum is global,

and we can take another derivative to show that this extremum is a minimum.

Thus, we have derived the estimator that globally minimizes the quadratic cost

criterion,

2(y) = E[Xly]. (2.5)

Returning to our example of figure 2.1, we see that on the left E[X] = 0,

and E[Xlyo] = E[X] = 0 V yo in the shaded region. So, just as we saw in

the discussions of conditional densities, observation of Y gives us no additional

information about X. Again in the plot on the right a different situation prevails.

Given no information about Y, E[X] = 0. However, given Y = y, we see that

E[X y] = e = df. And again, as in the discussion of joint densities, observation2 "

of Y gives us refined knowledge of X.

This is the Bayes Least-Squares estimator, an estimator that has many nice

properties. It is unbiased, E[X - X(y)] = E[X] - E[E[XIy]] = E[X] - E[X] = 0.

'The squared form of the last equation reveals that in this discussion we will be dealing
with scalar quantities, though the ideas extend to the multi-dimensional case.

In the general multi-dimensional case it is uncorrelated with any vector-valued

function of the data, i.e. E[(X(y) - X)gT(y)] = 0. A corollary of this last

property is that the Bayes estimator is the estimator that yields the minimum

mean-squared error. All these are desirable properties of estimators. The diffi-

culty is that equation (2.5) is often a highly nonlinear function of the data that

is not easily computable. A case where equation (2.5) is easily computable is the

case where X and Y are jointly Gaussian. In that case the bayesian estimator

is a linear function of the observations,

X(y) = E[X] + AxyA-, (y- E[Y]) (2.6)

where Axy = E[(X - E[X])(Y- E[Y])], Ayy = E[(Y- E[Y])(Y- E[Y])] and the

estimate generated is the linear least squares estimate (LLSE). This estimate

can also be calculated for non-Gaussian distributions, but in general it is then

not equal to the Bayesian estimate.

2.2 State estimation for linear systems

In the last section the central idea was that the conditional probability density

Pxiy(xly) contained the information in which we were most interested. In this

section, the unknown X evolves in time as a Markov process, and we want

to make sequential estimates. Given knowledge of how X evolves in time, an

analogous idea to the last section is to determine the conditional density of the

unknown at the next time step based on all the observations up to the previous

time step. We then to condition this density on the next observation, before

finally determining the estimate based on this updated conditional density.

The unknown we wish to estimate is the state of a dynamic system where

the evolution of the state with time is described by the following relations,

Xk+1 = Akxk + GkWk (2.7)

Zk = Ckxk (8Vk

where x E R is the state of the system; z ER' are the observations; A E nXn

is the state-transition matrix, describing the evolution of the state with time;

G E Rnx is the process-noise intensity matrix, describing how randomness

enters into the state evolution; C E ×mxn is the observation matrix, describing

the linear combination of states measured by the sensors; and wk and vk are

zero-mean, uncorrelated, white random processes with covariances Qk and Rk

respectively. In addition, they are uncorrelated with the initial state estimate

i0 that has covariance Po+.

If we again choose the quadratic cost criterion we can find the linear least

squares estimator (LLSE) for X based on the observations z. This is the estima-

tor that minimizes (2.3) subject to the additional constraint that the estimate

X(z) be linear in z. The form of the LLSE was given by equation (2.6). It turns

out that given the relations (2.7) and (2.8) the calculation of the linear least

squares estimate can be implemented in a recursive manner. The algorithm that

does this is the Kalman filter.

The form of the Kalman filtering algorithm is as follows where A is the

"predicted" state estimate of Xk based on the observations z0 , .. zk-1, and A
+

• Xk

is the "updated" state estimate of Xk based on the observations zo,... zk. The

same notation holds for the error covariance, P.

Prediction:

S+ = AkA + (2.9)

P;+1 = AkPA + GkQkGk (2.10)

Gain:

Kk+1 = P+1 cT+1 (Ck+1P +1kI+ + Rk+±1) (2.11)

(2.8)

Update:

k+1 = x4+ + Kk+1 (zk+1 - Ck+1k+1) (2.12)
1 (P1r1Ck+1R 1-k+ 1 (2.13)

The Kalman filtering algorithm is a recursive algorithm divided into two parts.

First, a predicted estimate of the state at time k + 1, or k+, is calculated using

knowledge of system dynamics, Ak, and the estimate at time k, 4+. Likewise,

the error covariance of the predicted estimate is a function of the plant dynam-

ics, the error in the last estimate, Pk+, and the process noise covariance, Qk.

Second, based on these extrapolations, the observation function, Gk+1, and the

sensor noise covariance, Rk+1, a gain term is computed. Finally, using both the
A - I+bae

extrapolated quantities and the gain, the estimate + is updated to +1 based

on the new observation zk+1. The error covariance P4+1 is also updated at this

point, but its update is not a function of the new observation.

Insight into the algorithm is gained by examining the form of each of the

equations (2.9-2.13). The state prediction equation (2.9) reveals that extrapola-

tion of the state estimate is based solely on system dynamics. This makes some

intuitive sense as between measurements we receive no additional information

nor can we predict what the process noise will be because it's white. Addition-

ally, we know that the speed of the system dynamics is be controlled by the A

matrix; the same thing is happening in (2.9) - the difference between ^+ and

S+ is determined by the A matrix.

If we now examine equation (2.10), we will gain an understanding of how

randomness enters and propagates in the system. We will turn to the prop-

agation of uncertainty first. The first term in (2.10) is a propagation of the

error covariance at the last step and is a function of A. Depending on system

stability, AkP+AA can be larger or smaller than Pk+. The second term in (2.10)

is always non-negative. Because of this non-negativity, the process noise can be

viewed as a constant source of uncertainty in the system.

The expression for the gain (2.11) contains two terms of interest, Pk+1 and

Rk+1. The first is the covariance of the predicted estimate and is a measure of

the quality of information contained within the prediction. The second term is

the covariance of the observation noise, and is a measure of the quality of new

information coming into the system by way of the sensors. The Kalman filter

blends these two sources of information in a statistically optimal way. Note that

if R is very small, i.e. if the sensor measurements are practically free of noise,

and if C is invertible, the gain term would look something like C- 1, simply

inverting the observation matrix. We will get back to this when we discuss the

state update equation (2.12). Alternately, if P+-1 = 0, and there is no process

noise, Qk-1 = 0, then the state prediction is perfect and the gain would go to

zero - i.e. no information from the sensors would be needed.

Examining the state update equations (2.12), we see that the new estimate

is derived from the best guess of the current state based upon all previous

measurements, Xk+1, and some function of the new information contained in

the current observation. This new information - the difference between the

predicted and the actual measurement - is called the residue, (zk+1 - Ck-+1).

Now, if we again consider the situation where the sensor noise is very small and

C is invertible, the state update equation would reduce to,

ý+ =/-1
Xk+1- C-zk+1+1

that is, a simple inversion of the sensor model and a cancellation of the predicted

estimate. So although ++1 is conditioned on zo,... zk+1 , in this case only zk+1

is used.

Finally, when considering equation (2.13) one should realize that the inverse

of a covariance matrix is a measure of information. In this way we can see that

each new measurement adds some amount of information to the knowledge one

has of the state. While the process noise pumps uncertainty into the system,

the measurements removes it. If we now consider equations (2.10) and (2.13),

we can see that the error covariance matrix evolves in time independently of

the state trajectory. That is, P;- and P+ are not functions of zk and so can be

calculated off-line, thus significantly lowering the on-line computational burden

of the Kalman filter.

For purposes of comparison with results in the next section we present the

continuous-time Kalman filtering equations below,

xit = At t + Kt[zt - Ct5] (2.14)

Pt = AtPt + PtAt + GtQtGT - KItRtlKf (2.15)

K = PtCR7'. (2.16)

Note that because sensor data is now continuous in time, the prediction and

update steps collapse into one set of equations. Although the form of the algo-

rithm changes, the underlying intuition remains the same. The state estimate

derivative is of the exact form of the discrete-time state estimate update where

the state estimate is corrected by a linear function of the residue. As in discrete-

time, the error covariance increases proportionally to the strength of the process

noise and decreased proportionally to the information content of the observa-

tions (each gain factor Kt contains a R- 1). Finally, the general form of the gain

as a ratio of error covariance to measurement covariance remains the same.

2.3 State estimation for nonlinear systems

While the problem of state estimation for linear dynamic systems with white

noise processes is tractable, for more general dynamic systems it is quite difficult.

In this thesis we are concerned with nonlinear dynamic systems and the estima-

tion techniques applied to such systems are necessarily approximate. One may

begin from the linear context as developed above, and try to extend the ideas

to nonlinear problems through linearization and other techniques. We prefer to

take the opposite tack and instead outline the theory from a general nonlinear

framework, thereby more clearly seeing what specializations and assumptions

are needed to arrive at usable, though suboptimal, filtering algorithms. This

section will present a general overview of this complex theory, often presenting

deep results without proof, but with the intention of providing some insight and

intuitive feeling for the subject. 2

In section 2.3.1 we will discuss the mathematics behind the evolution of

continuous-time stochastic processes without observations, while in 2.3.2 we

will discuss how to condition these processes on observations. Finally, in 2.3.3

we will discuss implementable filtering algorithms based on expressions for the

evolution of the conditional probabilistic density of the state in time, where the

conditioning is based on the observations received.

2.3.1 State evolution without observations

As was discussed in the introduction, in many cases the temporal evolution

of natural phenomena or man-made devices can be well modeled by dynamic

systems. As opposed to Section 2.2, in more general cases these dynamics consist

of nonlinear stochastic differential equations

dXt = m(Xt, t)dt + r(Xt, t)dWt (2.17)

2A more complete exposition can be found in [21], upon which much of this development
is based. In addition, while in the last section thle discussion was carried out in discrete-time,
in this section it will be easier to consider the continuous-time scalar case.

where if X0 is the initial condition, m and o are real-valued function on R x

(0, oo) with u(x, t) > 0, and (Wt; t > 0) is a Wiener process independent of X0.

The reason for expressing this equation in this form, rather than differential

form is that Wiener processes are continuous, hence dWt and dXt exist, but not

differentiable, so v, does not. Equation (2.17) can alternately be expressed in

integral form as

Xt = Xo + m(X,, s)ds + o-(X,, s)dW,. (2.18)

Subject to certain regularity conditions, (2.17) and (2.18) give rise to well defined

processes, see [21]. We will assume such conditions hold and simply note that

m(Xt, t)dt and a(Xt, t)dWt are often referred to as the drift and variance terms.

Conditioned on the state at a certain time, X, any future state X, can be

generated without knowledge of past data (Xt; t < r) since (Wt - W,; t > r) is

independent of the past. Thus,

Xt = X, + m(X,, s)ds + o(Xý, s)dW,. (2.19)

Random processes that have such a property are referred to as Markovian,

and the property leads to a very nice statistical description. Given any finite

collection of time instants, 0 <_ t < t 2 < ... < tn < c0, the joint density of the

corresponding time samples, Xt, Xt 2 ... Xt,•, is given by,

pxts,... x (X1... X) = Px (xI) TI PXklXt-l (XkIXk-1). (2.20)
k=2

So, given expressions for the density of the initial condition, and for the tran-

sition densities px,1x.(xtJxs), t Ž s > 0, any finite dimensional distribution of

sample points can be obtained.

It happens that the transition densities satisfy the partial differential equa-

tion known as the Fokker-Planck Equation or Kolmogorov's forward equation

of diffusion, as follows, where the * represents the complex conjugate and we

present results only for the scalar case.

aP=,6 ,(Xt X,) = ATpxt 1,(XtjXr) (2.21)

where for any function f(x), A is the Fokker-Planck operator given by

1 a2

Af(x) = 20 [Xr(xt)f(x)]- [(xt)(x)]. (2.22)

In the end our objective is to derive information about the distribution of the

random process Xt at any instance. Since knowledge of all density moments is

equivalent to knowledge of the probabilistic density, it may be more productive

to try to find expressions for the evolution of the moments rather than a single

expression for the entire density. We will pursue this idea hereafter.

Starting from either the Fokker-Planck equations or (2.18), one can derive

the following equation for the time derivative of the expectation of any function

of the state, f(x),

dE[f (X)] = E[m(Xt, t) {df(X,)} + . 2 (Xt,t) {df (Xt)}](2.23)

However, since f(Xt) can be any function of Xt, we can choose f(Xt) = Xt and

evaluate (2.23) to derive the time derivative of the mean (y) of the density,

t = E[Xt] = E[m(Xt,t)] (2.24)

To derive a similar expression for the covariance (v) of the density, we proceed by

exploiting the result in (2.23) with f(Xt) = X2 as follows where Vt = E[Xt2]- t,

Jt -d E[Xt]-2ptsdt=+-

= E[2Xtm(Xt, t) + a2 (X,,q)] - 2yt E[m(Xt,t)]

= 2E[(X, - pt)(m(Xt, t) - E[m(Xt, t)])] + E[a2 (X, t)]

= 2Cov(Xt,m(Xt,t)) + E[a 2 (Xt,t)] (2.25)

As seen in (2.21), it is possible to derive the general equations needed

to propagate the probability density of the state. However, (2.24) and (2.25)

demonstrate that even the propagations of only the first two central moments

are not easily solved as the expectations depend upon the two nonlinear func-

tions m(X,, t) and a(Xt, t), whose expectations in turn rely on further nonlinear

functions, etc.

For linear systems, however, the result is quite tractable. In this case,

m(Xt, t) = AtX, and a(X,, t) = Gt. Substituting back into (2.24) and (2.25)

one gets

At = Ati (2.26)

=2 (2.27)j•, = Atv, + vtAt + Gt. (2.27)

If we remember that there are no observations, then these equations are obtain-

able from the linear continuous-time Kalman filter algorithm, (2.14) and (2.15),

specialized to the scalar case with K, = 0.

2.3.2 Observations and nonlinear filtering

Thus far we have only discussed the propagation of probability densities for

dynamic systems without observations. Knowledge how the density evolves

allows us to estimate the state at any time. However, if we have some other

information about the state, sensor data for instance, we should condition our

density on this new information. If we were to then look for the mean of this

conditioned density, we would arrive at the Bayesian estimate. In our case the

additional information is from integrated observations that are of the form

dZt = h(X7,t)dt + R'/2dVt (2.28)

where (Vt, t > 0) is a standard Wiener process independent of X0 and (We, t >

0).

Now, as discussed above, we would like to be able to estimate the con-

ditional expectation of any function of the process f(Xt) based on all the ob-

servations up to time t. Since we are seeking the Bayesian minimum variance

unbiased (MVU) estimate, we want to calculate the conditional expectation of

Xt, where the conditioning is represented by an overbar,

f(X) = E[f(Xt)jZt]

0 0= J f(x)qx,(xt)dx (2.29)

where qx,(xt) is the conditional density of Xt given Zo, the observations from

time 0 to time t.

Inspection of (2.29) reveals that if one had an expression for the evolution

of the conditional density in time, one could compute a simple integral to get

the MVU estimate at any time. This expression would be a function both of

the state diffusion (2.17) and the observations (2.28). Indeed, such a description

of the evolution of the conditional density has been derived and is termed the

Kushner Equation. Within regularity - again refer to [21] - qx,(xt) satisfies

the following stochastic partial differential equation

dqx, (xt) = A qx,(xt)dt + qx,(xt)[h(xt, t) - h(Xt, t)]RT'dlt (2.30)

where again the overbar denotes the mean of the function conditioned on Zt.

The process (It, t > 0) is the nonlinear innovations process as follows

t
It = Zt- h(X,,s)ds (2.31)

dI, = dZt - h(Xt, T)dt (2.32)

The equations (2.29) and (2.30) can be combined to obtain a stochastic differ-

ential equation for the evolution of f(Xt),

df(Xt) = Atf(Xe)dt + {f(Xt)h(Xt,t) - f(Xt) h(Xt, t)}Rt1dId (2.33)

It should be noted that if h - 0 (i.e. back to the case of no observations), then

the Kushner equation (2.30) reduces to the Fokker-Planck equation (2.21). How-

ever, these relations are fundamentally different in that the Kushner equation

is stochastic while Fokker-Planck is deterministic.

For completeness we include a relationship that is analogous to (2.30), but

is simpler and lends itself more easily to analytical work. This is the unnormal-

ized conditional density given by the Zakai equation,

dpx,(x) = ATpxj(x)dt + h(x,t)px,(x)dZt (2.34)

where

qx, WPx, (W
x(px (x)qxo(x) = J'_•o px,(x)dx

The problem facing any real-world implementation of these equations is

that, in general, they are of infinite dimensionality. The expression for the

evolution of the conditional expectation of f(Xt), (2.33), depends on knowledge

of other quantities that themselves rely on nonlinear recursions. Unless at some

finite point the equations close, any filter based on these equations will be of

infinite order and therefore not implementable.

To better see under what conditions the equations do form a closed set,

we examine in greater depth the two functions of the process in which we are

most interested. First is the conditional mean of the state and second is the

-2conditional mean squared error Pt = Xt2- Xt. Substituting f(x) = x into

equation (2.33) we get

dX- = dE[XtIZt] = m(Xt, t)dt + {Xh(X,,t) - Xth(Xt,t)}Rt-1dl. (2.35)

31

To gain insight into this equation we will make a number of successive simplifi-

cations. For linear observations, h(Xt, t) = CtXt, and remembering that we are

only dealing with the scalar case, we have

dXt = m(Xt, t)dt + CtPARt1dIt

-2
where Pt = X2T - Xt, the conditional variance of Xt given Zo. The innova-

tions term CtPtR7'dIt is identical to that for the Kalman filter (2.14). Further

simplification to a linear drift term (m(Xt, t) = AtXt) leads to

dXt = AtXtdt + PtCtRt 1dIt

which is identical in form to the state estimation equation of the continuous-

time Kalman filter (2.14). There may yet be a difference between the filters,

however, in that it is not yet clear whether Pt evolves independently of ZI, as

is the case in the Kalman filter formulation.

Because of the stochastic nature of the quantities with which we are dealing,

we must turn to stochastic calculus when integrating the time derivatives of

these processes. Because of this, we will simply state the time derivative of the

error variance as

dPt = {2(X, -Xte) + 02(Xt,t) - [Xth(Xt,t) - Xth(Xt,q 2t)]R1}dt

+ {(Xt - Xt) 2h(Xt,t) - Pth(Xt,t)}RtldIl. (2.36)

Evidently this expression is quite complicated. We simplify to linear obser-

vations and drift term, and a process noise function independent of state

(a(Xt,t) = Gt) to get

dPt = {2AtPt + Gt + Ct2Pt2Rt1}dt + (X' - Xt)3RTldIt. (2.37)

The first three terms are familiar from the continuous-time Kalman variance

equation (2.15). But even with the assumption of a completely linear model,

we see that the variance Pt is still dependent on the observations through the

last cubic term. This is distinctly different from the Kalman filtering case. If,

however, the assumption is made that the initial condition is jointly gaussian

with the noise, then Xt is conditionally gaussian given Zo. Because of the

symmetry of the Gaussian distribution all its odd central moments are zeros,

and thus (Xt - Xt)3 = 0. The variance now reduces to its familiar form (2.15),

dPt = {AtPt + PtAt + GtGt + CPtRtP'PtCt}dt. (2.38)

Note again that while (2.37) is stochastic, (2.38) is deterministic, and so can

be calculated off-line as mentioned in Section 2.2. This then is a fundamental

difference between the linear and nonlinear cases. When considering the first

two conditional central moments, in the linear case only the conditional mean

(the estimate) is dependent on the observations, while in the nonlinear case both

the mean and the error covariance are dependent on the observations. (For the

linear case refer to equations (2.9)- (2.13) for discrete-time, and equations (2.14)-

(2.16) for continuous-time).

2.3.3 Implementable nonlinear filters and approximations

As we have seen in the preceding discussion, it is only under very stringent

conditions that the optimal filter equations are finite dimensional and therefore

implementable. It is thus of great interest to see what approximations can be

made to allow implementation more generally. Expanding the innovations term

in equation (2.35) we have

dXt = m(Xt,t)dt + {Xth(X,,t)- Xth(Xt,t)}RT'dZt

+ {Xth(Xt,t)- Xth(Xt,t)}}RT-Ih(Xt,t)dt

where again the overbar indicates the conditional mean, conditioned on Zo.

To address the difficulties posed by the conditional expectations, M, Xh

and h, we first suppose the estimation error (Xt - Xt) to be generally small and

assume m(x,t) and h(x,t) are smooth functions of the state, x. In this case

we can approximate the state transition and observation functions by their first

order Taylor expansions

m(Xs,,t) m- (Xs,1) + (X, - X---)m'(Te, t)

h(X, t) 0 h(X7, t) + (X, - X~,)h'(t, t)

where m'(x,t) = Om(x,t)/Ox and h'(x,t) = Oh(x,t)/Ox. If we take the condi-

tional expectation of each expansion, noting that E[Xt - XtIZZ] = 0, we have

m(Xt,,t) m(xt,,t)

h(Xt, t) h(Xt, t)

After substitution and simplification, we have the relation

dX C m(Xt, t)dt + Pth'(Xt, t)Rt [dZt - h(Xt, t)dt] (2.39)

Since the system model described by m, h, and Rt and the observations are

known, the only unknown in the expression is Pt; were that quantity calculable,

then the equations could be implemented.

Applying the same approximations to equation (2.36) as well as expanding

a2(x, t) in its first order Taylor approximation, we get

dP - {2Ptm'(Xt,t) + a2 (Yt, t) - P,2 [h'(Xt,t)]•RT1x}dt

+ (Xt - Xt) 3 h'(Xt,t)R-'[dZt - h(Xt,t)dt].

We see that we again run into the troubling third moment term. If, as before,

we assume the errors are symmetrically distributed, this term drops out and we

are left with

d
-Pt = m'(Xt,t)PO + Ptm'(Xt, t) + 2 (X, t) - [h'(X,,t)]P• R7'P[h'(Xt,t)].

(2.40)

These equations, (2.39) and (2.40), are the equations upon which the ex-

tended Kalman filter (EKF) design is based. Continual linearization must be

performed about the state estimate to implement this filter. Thus, as well as

being subject to the assumptions needed to justify the use of a Taylor expan-

sion, the EKF is much more computationally intensive than the linear Kalman

filter as the evolution of the error variance is dependent on the state trajectory

of the system.

In summation then, we have seen that the extended Kalman filtering al-

gorithm can be derived directly from the optimal nonlinear filtering equations

based upon three key assumptions. The first is that the system functions are

smooth so that a Taylor series can be used to approximate the functions. The

second is that the estimation error is generally small so that only a first order

Taylor series is needed. The third assumption is that the errors are symmetri-

cally distributed so that the third order term, and all coupling to higher order

statistics, drop out of the equations. Since the EKF is such a widely used tool,

much work has been dedicated to analyzing it properties; for further reading

see [1, 8, 12, 13].

As much of our work will be on systems that have continuous-time plants,

but only discrete-time sensors, we will now list the extended Kalman filtering

equations for such a system where measurements are collected once every T

seconds.

System dynamics:

it = f(xt,t) + Gtwt (2.41)

ZnT, = h(xT) + vT (2.42)

Propagation:

xt = f(-T,,t) (2.43)

Pt = F(•, t)Pt + PtFT(yt, t) + GtQtGT (2.44)

Gain:

K n = P•HT(y~)(H(Y-)Pn-HT(y-) + Rn)-' (2.45)

Update:

XnT = XnT + Kn(z~. - h(Yn)) (2.46)

Pn+ = (I- KHf(Y -))Pn- (2.47)

where

, f(xs, t)
F(,t) = Oxt '=* (2.48)

= 8hxH2. =1 (2.49)

where wt (0, Qt), v', - (0, Rn), xo ~ (Y0 , P0) and E[wtvT] = 0 V n,t.

In addition, the notation X 2- refers to the state estimate just prior to the

nth measurement, and X:T to the estimate just after the measurement. The

notation is analogous for the error covariances, P;-2 and P,+T.

2.4 Parameter estimation using an AEKF

As we have seen in the last two sections, methods of state estimation assume

complete knowledge of the system dynamics. Such knowledge is not always

available, however, and therefore some amount of system identification must be

done in conjunction with state estimation. For this discussion we return to the

case where the dynamics are linear,

xt = Atxt + Gtwt

ZnT = CnTxnfT + VnT.

If we knew At, Gt and COn, we could implement slightly modified versions

(to account for the continuous-time plant) of equations (2.9-2.13) to get esti-

mates of the state. However if, for example, we did not know the parameters of

the A matrix, we would need an alternate approach. One such approach is to

include the parameter in the original state vector as additional states and then

do estimation on the augmented state. Then, if we had two original states, x,

and x2 , our augmented state vector would be

X = [x1 x2 a a12 a21 a22IT

where the aij's are the entries of the A matrix. If we wish to estimate this

augmented state we need to use a nonlinear estimation technique as the state

derivatives are no longer linear in the states, e.g. (x 2,t = a21,t Xl,t + a22,t X2,t).

One method is to use an EKF as as described in (2.41-2.49). Because the nonlin-

ear filter used is an EKF, and the state has been augmented with the unknown

parameters, this approach is referred to as augmented extended Kalman filtering

(AEKF). Before we can implement the nonlinear Kalman filtering algorithm,

however, we must decide how to model the time derivatives of the unknowns

a = [ax1 a12 a21 a22]T.

If the dynamics we are trying to identify are constant, we could say

it = 0. (2.50)

If, on the other hand, the parameters are time-varying, i.e. it 0, we need

to model this variation. One method is to model the parameters as polynomial

functions of time and then estimate the time-invariant coefficients pi, i.e.

at = Po + PIt + P2t 2 + ... + Pmt m (2.51)

A problem with this method is that the ai 's may vary in a very non-polynomial

way, resulting in a huge number of coefficients pi that need to be identified.

A way to avoid this dimensionality issue is to model the time variation of the

parameters as a random walk. In this case (2.50) becomes

at = Wa,t (2.52)

where wa - N(0, Qa). The strength of the noise Qa corresponds to the speed

of parameter variation in time. That is, if Qa = 0 we reduce to the case

of equation (2.50) where the parameters are constant. As Qa increases, the

bandwidth of the time variations that the parameters can track also increases.

Evidently this noise modeling is a crucial user-determined aspect of the approach

that can greatly influence the success of the identification technique. We will

return to this issue when we discuss our approach to the joint tasks of state

estimation and system identification.

Our dynamic system model can now be recast as follows,

d [x(t) Axt]+ [Gw,(1
dt L a(t) 0 Wa,t (2.53)

ZnT = CnTXnT + vT. (2.54)

And we see that we now have a nonlinear continuous-time plant with dis-

crete measurements, and so we can use the EKF algorithm described in equa-

tions (2.41-2.49) to address this problem.

2.4.1 An application

Following the theoretical exposition given in the last section, we would like to

demonstrate some of these ideas on a real system. We choose a three-state,

tail-surface-controlled airframe.3 We desire the airframe's lateral acceleration

to follow a deterministic square-wave ut of amplitude 10 ft/sec2 . The states are

pitch rate qt, lateral acceleration It, and tail deflection St, which is limited to

±30.50. The sensors yield full state measurements, but only periodically. The

dynamics are as follows, where in this particular example process noise has been

excluded

d qt all a12 a13 qt 0

d It = a21 22 a23 It + -a23 Ut (2.55)
6 [[0 -100 bt 100]

ZnT = Xzr + Vn (2.56)

To use the AKEF, the state is augmented with the unknowns, a =

[all a1 2 a13 a21 a22 a23]T, resulting in the same dynamics as in (2.53) if x = [q 16]T,

i.e

Sqt a 1 al12 a13 t 1 0
d It a2 1 a22 a 23 It + -a 23 ut
dt bt 0 0 -100 bt 100

[atJ 0

0
+ 0 (2.57)+ 0

ZnT = XnT + VnT (2.58)

Figure 2.2 is a schematic of the overall estimation/identification/control

system. The sensor noise is small, so the challenge is in the identification of

the entries of the A matrix, not in the estimation of the state. The AEKF

provides state and parameter estimates, both of which are used in controller

design. The "first-order actuator" box models the elevator dynamics as a simple

pole at s = -100. Control is implemented by a full state feedback (using the

estimated state) pole-placement (using the estimated parameters) algorithm,
3This example is taken from Section 9.4 of [8]

autopilot dynamics

Figure 2.2: Adaptive controller, plant, and AEKF

where the poles are nominally placed at s = -110, and -10 ±- j5. In addition,

the estimated parameters are used to determine a gain scaling at the input to

achieve zero steady state error to a step input.

A typical simulation is shown in figures 2.3 and 2.4. Figure 2.3 shows the

parameter identification performance of the time-varying parameters. Figure 2.4

shows the state estimation performance of the system, and the ability of the

control system to track the desired trajectory. The all and a22 estimates track

especially poorly. This is explained by the dynamics of the airframe as those

parameters are relatively unobservable. Because of this decoupling, however,

these parameters have little impact on the system response, and so the inability

to identify them is of diminished importance. The reason for the large transient

over the first second of the a12 estimate is unclear as it was a feature that did

not always occur and seemed to be relatively dependent upon initial conditions.

All the parameter estimates can be seen to have a vaguely step-like character.

This is a function of the control input. Generally it was when a sharp change in

the control input occurred that dynamics were excited and the measurements

contained useful information about the dynamics of the airframe. Between such

shocks the parameter estimates could not track the changing parameters even

x2 = A12 estimate

.

-0.05

-0.1

x3 = A13 estimate
1500

1000

500

1 2

x5 = A22 estimate

-5000

-10000

-15000

1 2

x4 = A21 estimate

1 2

x6 = A23 estimate

Figure 2.3: Parameter identification performance

0.5

0

- 0

v

-50

-100

-0.2

-0.4

..............................

I n I = ii

..

.....................
..

..

m

.........................

..

r-

05R

flhII

xl = All estimate

x8 = lateral accel (ft/s^2)
50

0

1 2

x9 = deflection (deg)

1 2

lateral velocity (ft/sec)

- 0

lateral displacement (ft)

2 3

Figure 2.4: State estimation performance

though the state estimates tracked well. This is an especially important effect

when considering system identification schemes based on on-line observations. If

the system dynamics are not continually excited by the driving signal then it will

not be possible to continually identify the system (the requirement of continual

excitation is often referred to as persistent excitation). A trivial example of a

non-persistently exciting signal is a zero input. Note that in figure 2.4 the actual

velocity is the curve that lags the triangle wave. This lag is a function of what

we are tracking - lateral acceleration. Some error integrates up in the initial

transient until the controller gets going, and since we only care about error in

the lateral acceleration, the error in the velocity never gets corrected.

-50

-9

m !

V% r

..........................

....

x7 = pitch rate(deg/s) F

)

CA -f

-a=v

..............

In the example we have presented there was very little sensor and no real

process noise. To make the relationship between noise levels and identification

performance more clear we return to the linear Kalman filtering equations (2.9-

2.13). The time variation of the unknown dynamics is modeled as a disturbance

(through the Qa matrix, see equation (2.52)). By determining the transfer

function from disturbances to estimation error we can develop a feeling for what

kind of disturbances the system filters out and what kind can be passed through.

This will give us an idea of the frequencies that can be tracked by this system

identification scheme. Under linear time-invariant assumptions, and after a little

fiddling, we can come up with,

i4 = X ^+ (2.59)

= xk - k - Kk(Yk - C,^) (2.60)
= (A - KkCA)4+_1 + (I - KkC)wk-. - KkVk. (2.61)

If we assume we have reached steady state so that Kk = K and if, for the

moment, we view wk and vk as deterministic quantities so that we can take

their Z-transform to determine the transfer function, we get

(I - (A - KCA)z-1)X+(z) = (I - KC)z-'W(z) - KV(z) (2.62)

which results in two transfer function,

X+(z) (I - KC)z-1- (2.63)
W(z) I - (I - KC)Az-1

X*(z) -K= -(2.64)
V(z) I - (I - KC)Az-1

The major quantity of interest within these transfer functions is the loca-

tion of the poles as the poles determine the pass-band of the filter. Assuming

that C is invertible, we get

0 = I-(I-KC)Az-

z = (I- KC)A

= (I- PCT(CP-CT + R)-C)A

= (I _ P+AT + GQGT)CT(C(AP+AT + GQGT)CT + R)-'aA

=-j P+A T + GQGT + C-1RC-T)-AC-2R
= A2P++ G2Q + C-2R A (2.65)

where the last equation holds only for scalar systems.

By examining this equation we will gain an understanding of what kind of

frequency selective filtering the Kalman filter performs in its attempts to filter

out disturbances. If, for example, we discover that under some conditions the

Kalman filter acts as a low-pass filter, we wouldn't expect the system to be able

to track high-bandwidth parameter variations since they are also modeled as

disturbances. If we now look at the scalar case, equation (2.65), we see that as

R increases, the quality of the sensors lessens, and z - A. This means that

the transfer function from disturbances to error gains an increasing low-pass

characteristic. In such cases only low-frequency information from the sensors is

allowed through and, analogously, only low-frequency parameter variations will

be tracked. This makes sense intuitively as if we do not have a system model to

start with, and if in addition our sensors degrade beyond worth (as R --+ oo), we

have nothing. Therefore, the overall system should have little success in either

of its tasks of estimation or identification. Now, if we examine the Q and P+

terms, both of which are in the denominator, we see that as either of those two

quantities increases, z --+ 0. This means that the filter attains an increasingly

all-pass character and higher bandwidth variations can be tracked. This makes

some sense since as P+ increases we should trust the model less and thus allow

further refinements. In addition we modeled the unknowns as disturbances, a

high Q, indicating high-frequency parameter variations. Thus as Q increases in

equation (2.65) the bandwidth of the Kalman filter grows and we would expect

that higher frequency variations could be tracked. However, the sensor noise is

still the dominated quantity, for if R gets really large the transfer function will

have to have a low-pass character no matter what the Q or P+, and the system

won't track the unknowns well.

This last observation brings us back to the idea of incorporating memory

into a system identification system. If we take advantage of periods of good

data, then we will be able to exploit this stored knowledge in times of poor

data. That is exactly what the LAEKF architecture is formulated to do.

In Section 1.1 where we gave an overview of the LAEKF we mentioned

that an AEKF was used to do system identification for the nonlinear system. In

this section we have described how the AEKF can do system identification for a

time-varying linear system. We have also seen that the EKF performs successive

linearizations of the system dynamics in order to calculate its estimate. Thus,

one can alternately think of the EKF as a linear Kalman filter doing state

estimation on a time-varying, but linear, system where the time variation of

the system is determined on-line. Because the difference between linear time-

varying and nonlinear systems is opaque to an EKF, this approach can also

be used on nonlinear systems. However, since the "time" variations are now a

function of state trajectory, rather than time, the question of how to model the

time variations of the unknown parameters becomes even more important.

Chapter 3

Learning Systems

In life one is continually faced with new situations, but these situation are often

not very different from ones faced in the past. It would be silly to ignore all one's

accumulated experience and adapt to every situation from scratch. Rather, one

wants to remember those experiences and make use of them in the new situations

faced every day. This is the basic idea of learning from experience, to use the

past as a vast reservoir of accumulated knowledge for future generalization. An

example might again be the mountaineer of the last chapter trying to come to a

conclusion about a potentially dangerous weather situation. The mountaineer

relies on all his or her accumulated knowledge when deciding whether to try

to gain the summit or not. In this chapter we will discuss how the idea of

learning, based on the repetition of examples paradigm, can be implemented in

a mathematical manner on a training set of numerical data.

This chapter opens with a general overview of concerns in learning system

design in Section 3.1, while Section 3.2 discusses in more detail the particular

learning system used in this thesis. Finally, Section 3.3 discusses additional

issues and ideas concerning learning that arose in the course of this research,

but were not investigated.

3.1 General concerns in learning system design

We will focus on the idea of learning as one of function approximation. Viewed in

this light, learning systems are closely related to estimation systems as addressed

in the last chapter. We are again given a batch of data somehow related to

the quantities we wish to determine. Before the data was a time sequence

probabilistically related to another, desired, time sequence (observation and

state sequences, respectively). Now the batch of data is a set of input-output

pairings that we want to use to determine the parameters of an approximate

mapping that could have generated the data set.

The data set used for training can be of greatly varying origin. It can be

specified by an outside user; generated on-line by the system itself; or, as in

our case, can be a result of a combination of both where an operator might

specify the deterministic driving signal, but the estimator generates its own

training data during system operation. A question of great relevance is how to

weight old training data as compared to data collected more recently. Ideally

we would have some knowledge about how data relevance decays with time. If

we return to the probabilistic context of the last chapter, this is exactly what

the Kalman filter does. The Kalman filter's propagated covariance matrix is a

measure of the information contained in the old measurements about the current

situation, while the covariance of the sensor noise is a measure of information

in the new data collected. Based on these two measures of quality the Kalman

filter decides how best to update its estimates. However, as we are operating in

a world where we don't have such measures of information, we instead use the

"viscous" training methodology of gradient descent on a cost function to update

our learned mapping. This methodology puts much store in the old information,

only updating its mapping slightly based on each new training example.

Having decided that we will use gradient-based algorithms to do our train-

ing, let us delve deeper into the probabilistic context of Chapter 2 to gain insight

into what these means for our learning algorithm. We recall first that in the

discussion of Bayesian estimation (Section 2.1) the quantity of real interest was

the conditional density, i.e. pxly(xjy). In our current context we will also be

concerned with conditional quantities, PD H,(djh) and PHijD(hjd), where D is

the data set received and Hi is the hypothesis that the data set was generated

by the itn approximation architecture. In this discussion we will only have one

architecture available, H1 . The problem then reduces to one of how to optimize

the internal structure of that architecture to approximate the unknown func-

tion. Following in the same vein as before, we represent the internal structure

as a vector of "weights," w, that parameterize the mapping. Now, the quantity

in which we are most interest would be the conditional density of the weights

given the training data and the system structure, i.e.

pwl ,) =PDlw,g (djw, h)Pwl y (w h)
PWID,H (wd, h) = PDW H (djwh)pwH(wh) (3.1)

PDIH1 (dlh)

From the development of Section 2.1 we know that to minimize the expected

value of the squared error in weight values we would use the conditional mean

of the weights, E[wID, H1], as our mapping weights. However, as discussed

above, we have instead decided to use gradient methods. Using gradient meth-

ods to find the maximum over the conditional density of equation (3.1) yields

the "most likely" weights, WML. The is the same approach as in Section 2.1

where we derived the maximum a posteriori estimator by finding the maximum

over the probability density. Thus by choosing to use gradient techniques we

have fundamentally changed our approach from a Bayesian one to a maximum

likelihood one. Note that in this problem the denominator of (3.1) is simply a

normalizing factor independent of W and will not enter into the calculation for

WML.

The final characteristic of learning systems that we want to discuss is that

of "spatial localization." The idea of spatially localized networks is most easily

understood when contrasted with "global" networks. A global architecture is

one where an adjustment of a single parameter of the function approximation has

a significant effect across the whole mapping. A spatially localized architecture

is one where the adjustment of a single parameter generally has a nonzero effect

only in a certain, bounded, region. Thus while a spatially localized system

distinguishes between training examples based upon the location of each in the

input space, a global architecture does not.

Let us define our functional approximation as f(x; w). In this notation x is

the point in the input space where we want an approximate value of the unknown

function, and w is the vector of real numbers, or weights, that parameterizes

the approximation. Then say we change only a single one of those weights, wj,

to wj + Awj, and let Aw = [0 0 0... Awj...0]T . If

f(X;w+Aw)-f(x;w)>>0 Vx

then f(x; w) has a global architecture.

On the other hand, say we had an approximation f(x; xc, w) where now

each weight is associated with a point in the input space, xq. Given the same

change in weights, Aw, if

f(x;x,w+ Aw) - f(x;xc,w)- 0 Vx s.t.Ix-xJ»>>0

then f(x; xC, w) has a spatially localized architecture. Each weight is associated

with a point in the input space, xq. At some distance from this point, the effect

of changing this weight on the mapping is negligible. See [2, 4, 5, 7, 20] for

additional discussions on this topic.

The central strength of spatially localized architectures is that as well as

not effecting the approximation in distant areas of the space, if we train weights

in one region, we need not modify the weights associated with distant centers.

Thus, if the system spends a lot of time in one area of the space, and then

transitions into a different area, the relevant weights for that distant area will

be left unmodified until the system returns. Of course, this idea is based on the

assumption that the functional value in one area of the space has little relevance

for the value in other areas. If one had little a priori information, this would

be a safe assumption. (Alternately one could incorporate such information as is

available into the Bayesian approach for model comparison that will be outlined

at the end of the chapter.) However if, for example, one knew that the unknown

function was in fact quadratic, then it would not make sense to use a localized

system because data from one area of the space has a known relationship to the

approximation across the whole space.

3.2 Basis/influence function networks

The particular learning system we use in this work is a simple type of ba-

sis/influence function network [2, 5]. Many other types of schemes might have

been applied, but we are motivated to use this architecture because of its spa-

tially localized character. In the basis-influence scheme, there are a number of

(spatially) local models Fj, j = 1,. . . , N, centered about various points in the

input space. Each local model is intended to provide an accurate representation

of the global input-output map whenever the input signal falls within a compact

subset of the input space about the center of the local model. The scope of each

local model is determined by an associated influence function dj, j = 1,..., N.

Based on the influence functions, the outputs of the local models are combined

to yield the global output. Because of the general character of local models

knitted together to yield a global approximation, this network results in the

cases, the function approximation is no longer linear in its adjustable parame-

ters and true nonlinear optimization methods such as gradient descent must be

used.

The weight update rule is derived from the following squared output error

J(x) = e(x)Te(x) (3.5)

where the output error e is given by

e(x) = 0S.,,(X) - LS(X) (3.6)

and O,.,,g(x) is the target data while x is the input data. The update rules are

obtained by calculating the gradient of J with respect to the adjustable weights

Wj and w° as follows,

dJ(x) {d 1(otar(x) -. LS()(r(X-LS(X))
dWk dWk . - Es())(O () -

A 'd
= (Otarg(X) - Ls(X))dV {GLS()}

= (Oo,,(X) - GLs(X)) (W,(x - x•) + w)Di(x)

= (O (x) - s())(x - k() (3.7)

dJ(x) d 1

dw dw, 2(X- (X) OLS(X)) (O (X) - (x)

(Otarg(X,,) - OLS(X)) - (W(x -) + w)D(x)

= (O,.,(x) - oLS(X))Dk(X) (3.8)

If we now remember that e(x) = (Ot.,(x) - s(X)) and that Dk(X) is8 a

scalar quantity, we get the following simple form for the weight update rules

-5

-10

-5

-10

y -4 -4 x y -4 -4 x

Figure 3.1: Learned mappings of f(x,y) = -(1 + x 2) - (1 + y2)

where ALR > 0 is the learning rate,

AWk = ALRDk(x)e(x)(x- Xk)T (3.9)

A = ALRDk(x)e(x). (3.10)

In figure 3.1 we see the results of using this architecture to learn a

multi-dimensional inverse parabola with two different affine/gaussian, ba-

sis/influence, function networks. In the left hand plot there are five cen-

ters at xC = {(-2,-2),(-2,2),(0,0),(2,-2),(2,2)}, each associated with a

very narrow influence function, V = 0.01 * I, where I is the identity matrix.

Because of these choices the affine character of the basis functions becomes

very apparent. In the plot on the right, however, there are nine centers at

XC= {(-2,-2),(-2,0),(-2,2),(0,-2),(0,0),(0,2),(2,-2),(2,0),(2,2)}, and

V = I. Because of the greater density of basis functions, the more gradual

knitting together provided by the wider influences, and the lack of noise on

the training set, the learned mapping is a much better approximation of the

true parabolic function. Evidently the choice of basis/influence function loca-

tions, and influence widths, is an important factor in the use of this sort of

learning system. This choice can be made adaptive, however, as is done in [5].

spatially localized character desired.

In our application "linear" (affine) maps are used as the local models Fj

while Gaussian functions are used as the associated influence functions dj. As-

suming our network has N local models, the overall output OLS(X) corresponding

to the input x is given by

AN d (x) N

OLS(X) = F,(xX)-d) - £EFj(x) Dj (x). (3.2)
j=1 Lk=1dk(x) J=,

where Dj are the normalized influence functions. Since Fj is affine, it can be

written as

Fj(x) = Wj(x - x) + w (3.3)

where Wj is the "slope" matrix, w9 is the "bias," and xq is the "center" (lo-

cal origin) about which the approximation is intended to hold. The influence

function dj is simply an unnormalized Gaussian function

dj(x) = exp[-I(x - xc)TVJ(x - xD)] (3.4)

where Vj is a positive definite matrix.

A gradient learning algorithm is used to update the adjustable weights of

the learning system. For the results presented in this thesis, the adjustable

weights are limited to Wj and wQ, associated with the local affine approxi-

mations. Because the weights enter linearly into the approximation scheme,

one could solve for the minimum error mapping directly using a recursive least

squares type algorithm. As discussed above, we choose not to do this because

one would need knowledge about how data relevance decays with time. In the

absence of such knowledge gradient descent algorithms are much more robust to

such modeling uncertainties. More elaborate basis/influence learning systems

are possible where the parameters associated with the influence functions (e.g.,

the matrices Vj and the center positions xq) are also be updated [5]. In such

Alternately, different learning system architectures (basis/influence centers and

widths in this case) can be compared according to their Bayesian "evidence,"

an approach that will be discussed in the next section.

3.3 Discussion

If we return to Section 1.1 we now better understand the motivations behind our

choice of learning system architecture for the LAEKF. The central characteristic

that attracted us to basis/influence function approximation networks was their

spatially localized character. Our system will be collecting training information

only along state trajectories. If there is some area of the state space that it has

not visited, we want to leave the mapping in that area alone until the system

gets there. Similarly, once the system leaves a certain area of the state space, we

want the mapping to remain unmodified in that region until the system returns.

Spatially localized networks exactly provide such a property.

An issue that arises in our design is that the training set that the learning

system uses is made up of estimates coming from Kalman filters. Because of

this there is error both in the input values (the state estimates) and in the

output targets (the estimates of the unknown portion of the dynamics). The

uncertainty in both halves of the training set means that the learning problem

is analogous to a total least squares problem, as opposed to a least squares

problem where error is confined to the outputs. We have not taken any steps to

address this issue, but future work could be along such lines.

Another situation alluded to, but not addressed, above was that of having

multiple learning architectures to choose from. When there are multiple model

architectures available, one is not only faced with the problem of picking the best

weights to match the learned mappings to the data, but the question of which

model to use, or how far to trust each. Note that the the quality of each learned

mapping is not necessarily proportional to how well each architecture fits the

data points. To see this we turn to the familiar case of fitting a polynomial to

some noisy measurements of an underlying function in a least squares manner. If

the order of the polynomial is the same as the number of data points, then those

points can be fitted exactly, but there will be wild variations between them. This

is the problem of overfitting data. We want a method for minimizing the error

between the underlying function and approximation, not just the error in the

training set. One method often used is to train networks on some percentage of

the available training set, and then to do cross-validation with the un-trained-

upon examples to see how the error increases at points between those trained

upon. However, if the amount of data available for training is limited, one would

prefer to train and test on the same batch of data. Bayesian analysis focusing

on conditional densities lets us do this in a consistent manner.

Again the quantities of interest are the conditional densities, pDHi(dJh)

and PHiID(hid) where now i = 1,...N. To decide the amount to which each

mapping architecture can be trusted, we turn to the posteriori probability, or

the "evidence," of each hypothesis, i.e.,

PHID(hId) oc pDH(dIh)pH1(h). (3.11)

If we set all the prior probabilities PHi•(h) equal we are saying that we have no

a priori reason to favor one architecture over another. In this case the evidence

used to compare models comes directly from the data, PDjH, (djh). This is the

predicted probability that the hypothesized model could generate the received

data set. To help see why this approach works to avoid the overfitting problem,

we turn to figure 3.2. In this figure the horizontal axis represents the possible

range of data sets D used for training. If the approximation architecture is sim-

Evidence

.PD (dth)

FD

Figure 3.2: A Bayesian decision between architectures

ple, it can only approximate a limited number of functions well, functions that

would only be able to generate a limited range of data sets. The first hypothesis

has such a limited range. If the data set used for training lies in that limited

set, it is quite likely that the simple architecture is a good one to use for the

approximation. A more complex model can approximate a much wider set of

functions which, if true, could generate much more varied data sets, and thus

its conditional density, PDIH2(djh) is much wider (though it still integrates to

one). So, if our priori probabilities are equal (PH, (h) = pH2, (h)), and if the data

fell in the region C, we would trust the first model more, and if the data fell

outside of this region we would turn increasingly to the more complex archi-

tecture. An example of two architectures with differing complexities would be

two back-propagation networks, one with ten and the other with one hundred

hidden nodes. The more complex network can approximate a much wider range

of functions (including all the ones that the simple network can - just zero

out the contributions from ninety of the nodes). However, given a data set that

could well be generated by the simpler architecture, there is much less evidence

that it was generated by the complex one. To determine the overall approxima-

tion then, the Bayesian approach averages over all possible architecture and all

possible weights of each architecture, to the degree that it trusts each architec-

ture and each set of weights. For a more complete discussion of these ideas, and

especially how to extend these ideas to back-propagation networks, see [15].

Finally, although the dynamics we are trying to learn are in fact determin-

istic, it would be useful to learn an output distribution, rather than an output

value. Such a distribution could represent the quality of the mapping in that

area. Having knowledge of the quality of the mapping embedded into the learn-

ing system would be very useful, especially for blending. A second motivation

for learning an output distribution, rather than a deterministic output point,

would be if the output is truly stochastic. While in our application this is not

the case, it would be if we were trying to learn the mapping from state and

driving signal to next state. That next state value would be uncertain because

of the stochastic nature of the system. Thus learning an output distribution

would be the right thing to do.

Chapter 4

Learning Identification for
Estimation

In this chapter the problem of this thesis is set forth anew and the design of

the learning augmented extended Kalman filter (LAEKF) is fully discussed.

Section 4.1 casts the problem into a mathematical formulation. Section 4.2

provides a brief outline of the complete architecture so that in the subsequent

discussions the eventual objective is not lost sight of. Section 4.3 presents a

basic approach to the solution of the estimation/identification problem, and

the deficiencies of this approach that motivated our work are also described.

Section 4.4 presents a refinement of the approach of Section 4.3 that incorporates

the idea of "memory" for the first time. Significant caveats remain, however, and

the ways these issues are addressed leads to the final architecture as described

fully in Section 4.5. Finally, in Section 4.6 we present a summary of the LAEKF

algorithm and give a brief discussion of how we would expect the algorithm to

behave.

4.1 Problem statement

Consider anew the discrete-time nonlinear system described in Chapter 1 given

by

Xk+1 = f(xk, O(Xk)) + b(xk, O(Xk))Uk + GWk (4.1)

Zk = h(xk) +vk (4.2)

where xk E R'• is the state of the system, Uk e Em is a known driving sig-

nal, zk E RP is the measurement, O(xk) E r is the unknown state-dependent

parameter vector, and wk and vk are process and measurement noises, respec-

tively (assumed zero mean and white). In addition, f and b are possibly nonlin-

ear time-invariant functions describing the plant model. In our problem, these

functions are only partially known, with the unknown portion characterized by

O(x). Finally, h is a known function describing the sensor model. It should

be noted that the system represented by (4.1) and (4.2) is assumed to have a

sensor suite such that, given an appropriate input signal, all observability and

identifiability conditions are satisfied.

As we have seen in Chapter 2, if the dynamics are fully known, a problem of

great interest is the design of filters that give estimates of the state at each time

ik, based on the observations zt up to time k, £ = 0,..., k. In the linear case the

Kalman filter algorithm (equations 2.9-2.13) yields such estimates, and in the

nonlinear case the extended Kalman filter can be used instead (equations 2.41-

2.49).

In the presence of model uncertainty, however, an additional goal, and a

necessary one for achieving the original state estimation objective, is to identify

the unknown mapping O(x). The case of a linear mapping with unknown con-

stant parameters (i.e. f(xk, O(xk)) 9 8xk) has been widely investigated, and

w, V

U data

B

estimate

LAEKF

Figure 4.1: Block diagram of learning augmented estimator

one approach based on augmented extended Kalman filtering was presented in

Section 2.4. In this thesis, however, we are focusing on systems whose model

uncertainties are nonlinear, but time-invariant, functions of the state. Our ob-

jective is to formulate a methodology to address this problem by drawing upon

ideas from the learning literature, as discussed in Chapter 3.

4.2 The learning augmented architecture described

Figure 4.1 displays a schematic of the algorithm devised to address this problem.

The learning system is the heart of this architecture. It encapsulates a priori

state-dependent knowledge of the unknown portion of the dynamics 9(x) based

on all state estimates up to the current time. The particular learning algorithm

used has been fully described in Chapter 3. The mapping OLS(x) is fed to two

filters to help in estimation. The mapping is fed first to an augmented extended

..................

Kalman filter (AEKF) that provides refined knowledge of the unknown dynamics

by estimating the error in the learned mapping 80 as well as the state; and

second, the mapping is fed to an extended Kalman filter (EKF) that provides

state estimates if the AEKF is not working well. The two filters also take the

known driving signal u and the sensor measurements produced by the plant z as

inputs. Finally, the estimates of each filter are sent to the blending block that,

based on the quality of the estimates coming from the AEKF and the EKF,

produces final state and parameter estimates, IB and OB. These estimates are

then used in the next step of the state estimation problem, to further refine the

learning system mapping, and can be used for control or other applications. For

simplicity of discussion, in the rest of the paper we assume that the uncertainty

resides only in the plant dynamics, f(Zk, 8O(xk)).

In the following sections we examine this architecture block by block, first

describing the reasons for each subsystem, and then the mathematical imple-

mentation of each. We start with the AEKF in Section 4.3. That discussion

motivates the inclusion of a learning system as described in Section 4.4. At the

conclusion of this section we will understand the reasons for including a second

EKF and a blending system, as is discussed in Section 4.5.

4.3 Naive approach

A simple way to address the joint problems of estimation and identification is

to implement a nonlinear filter on a state vector augmented by the unknowns,

exactly as in Section 2.4. See figure 4.2 for the schematic of such an approach.

Here the plant takes a driving signal and process and sensor noises, u, w and v,

respectively, as inputs; and yields sensor data z as an output. The AEKF takes

the driving signal and sensor data as inputs and produces estimates of state and

w, V

U data

Figure 4.2: AEKF addressing joint tasks of estimation and identification

unknown dynamics, & and 0.

The augmented state equations upon which the AEKF design is based are

[Xk+1 [Ok]+[Uk+[(4.3)OkC+1 A90k 0 0 Be tChk
zk = HXk + Vk. (4.4)

An important point to these equations is the way in which the time variation

of 0 is modeled. Here we have modeled it as a Gauss-Markov process,

Ok+1 = AoOk + Beok (4.5)

where the matrices A6 and Be are diagonal and selected so as to give good

tracking quality. In the linearized context this means that IITi 0 I_ 1 where T.,

is the mapping 0 '-4 9. If one wishes to simplify the problem further, A6 can

be chosen equal to zero. In this case the modeling of the time variation of 8

reduces to a random walk. This simplification was made in Section 2.4 and will

be made again for the results presented in Chapter 5.

The deficiencies in this approach are two-fold. First, as discussed before,

the unknowns are modeled as time-varying, so if the state trajectory takes the

system out of a certain area of the state space, and subsequently returns, old

estimates of the unknown dynamics will have little influence on later ones. Some

sort of "memory" is needed so that when the system revisits an area of the state

space, it does not have to reidentify the dynamics from scratch.

A second weakness is that the performance of the AEKF is very dependent

on the way the time variation of the unknowns is modeled. If nothing is known

beforehand about this variation, great mistakes can be made. Therefore, an

architecture that minimizes the dependency of the overall performance on this

user-determined modeling is desired.

4.4 Incorporating memory

In order to address the deficiencies described in the last section, we make two

changes in the architecture. We first add a spatially localized learning system

that uses the state/parameter estimates as training data and, over time, con-

structs a model of the unknown dynamics. By making this change we have

incorporated memory into the identification architecture. The second change

is to use the nonlinear filter to identify the error in the learning mapping, 80,

rather than the full unknown dynamics, 0. A schematic of this refined system

is given in figure 4.3. Note that in the figure the diagonal arrow through the

learning system indicates that the estimates being fed to the learning system

are used to modify the learned mapping. However, while training data accumu-

lates at the rate of the sensors, it is stored in a buffer and the learning system

mapping is updated only periodically.

The function approximation form of the learning system is as follows,

N d.(x) N
OLs(X) = L Fj(X) EN()= Fj(x)Dj(x). (4.6)

j=1 Lk=l () =

where the local basis function are affine and the influences Gaussian, as in

Chapter 3. The complete algorithm for training the learning system mapping is

W, V

U

Figure 4.3: AEKF merged with a learning system

given by equations (3.2-3.10). In this application the training data is provided

by the state and parameter estimates, {IXk, OLS + bOk}, with the state estimates

serving as inputs, and the corrected parameter estimates as targets.

The augmented state equations upon which the AEKF design is based are

[k+1] [fXk,Ls +69k) B G 0 1wk 1 (47)
[Ok+1 A9-Ok + 0 k 0 Bo tbJk

zk = Hxk + vk. (4.8)

The reason for estimating a correction term, 60, rather than the whole value of

the unknown function at each time step, is that by doing so we explicitly make

use of the information stored in the learned mapping in our current estimation

and identification steps. In this way we incorporate a priori knowledge gained

from previous visits to this area of the state space into our current tasks of

estimation and identification. As we will see, making this change yields system

performance that is much more invariant to user choice of A0 and B0 .

The problem with this design is that if the nonlinear filter (the AEKF)

starts to produce poor state/parameter estimates, the learning system will

blithely train on this bad data and will learn the wrong function. If this contin-

ues, the system performance can degrade past that of the memoryless AEKF as

described in Section 4.3. Examples of situations where this might happen are if

the quality of the sensors degrades, or if the driving signal's bandwidth is above

that which the filter can track.

Two remedies can help to avoid this pitfall. First is a way to compute

state estimates based solely on the old information stored in the learning system

whenever the nonlinear filter (then AEKF) is not working properly. Second is

a way to judge the quality of the information already stored in the learning

system versus the new information being collected by the AEKF. The first

requires the use of an additional filter, the EKF block in figure 4.1, and the

second a blending mechanism also seen in the same figure. The next section

will discuss these additions.

4.5 The learning augmented architecture

The architecture of the last section suffers from the lack of a check on the

learning system. To address this issue we first add a second estimator to our

design, an extended Kalman filter. The dynamic model upon which the EKF is

based is,

Xk+1= f(x, OLS) + BUk + Gwk (4.9)

zk = Hxk vk. (4.10)

We see then that this filter does not attempt to do any system identification,

rather it completely trusts the learned model as the correct model of the un-

known portion of the dynamics. As we will see, this filter will come to the fore

when the AEKF is not producing good estimates.

Now that there are two filters, the AEKF and the EKF, there are also

two sets of estimates, xI, LS + 60, and X 2 , Ls, respectively, as diagrammed

in figure 4.1. (Note that because the EKF performs no system identification,

its estimate of the unknown dynamics is the same as the learning system's.) A

second additional subsystem is needed to combine these two sets of estimate

into the final blended estimates, isB and B. The following blending law is used

where the derivation will be given in subsequent subsections,

XB,k = I2,k(I1,k + I2,k)- 1 1,k +1,k(I1,k + I2,k)-1 •2',k (4.11)

OB,k = I2,k(I1, 2,k)- 1 (LS,k + 8k) + I1,k(I1, + 2,k)-1 LS,k (4.12)

(4.13)

where

11,k Pk - (Q12,k + 21,k) (4.14)

12,k = 1 - 1(12,k + Q21,k) (4.15)

and making the following definition of error

e6i,k = (zk- Hi,k) i = {1, 2} (4.16)

we can compute the sample statistics

Pi,k = eik k+ (1 - A)P,k-1 i = {1,2} (4.17)Q12,k- A•el,k eTk

Q12,k = el,k 2,k + (1 -) 12,k-1 (4.18)

It is because of the nonlinear and unknown character of this system, and

because we need a measure of the quality of the learned mapping, that we

cannot calculate such blending statistics analytically. We have thus turned

to the output squared error of the AEKF as a measure of the quality of the

corrected mapping, OLS + 80, and to the output squared error of the EKF as a

measure of the quality of the quality of the learning system mapping, hatOLs.

These measures are then used in the blending block to yield Xs and 0 B, the

outputs of the learning augmented estimation system, as well as the data upon

which the learning system is trained. This is the point in the architecture where

knowledge of the observation function H is crucial. Without such knowledge it

would be impossible to compute such sample statistics.

4.5.1 A motivating example for blending

The blending block is introduced into the architecture to provide a check on the

learning system. This check is needed so that an unstable feedback loop is not

set up where the learning system learns the wrong function, thereby causing the

quality of the estimates to degrade, so that the learning system is fed even worse

training data, and so forth. A method is needed to emphasize the correction

term OLS + 60 if the learning mapping is incorrect (as at network initialization

and visits to unexplored areas of the state space), and to emphasize the learned

mapping OLS if the AEKF is performing poorly. To motivate our approach, we

consider the problem of having information from two separate, but correlated,

sensors of a random vector y,

y = y+wi (4.19)

y2 = y + w2 (4.20)

where y, y2, Y, w1, W2 E RP. Assume that w, and w 2 are zero-mean random

vectors such that E[wxw T] = P1 , E[w 2wT] = P2 , and E[wwT] = Q12 = QT.

We want to combine these two measurements linearly so as to achieve an

unbiased estimate, and to minimize the trace of the resulting covariance matrix.

We start as follows, remembering that the measurements are assumed to be

unbiased,

E[ys - y] = E[Ayj + By2 - y]

= A E[yi] + B E[y2]- E[y]

= {A + B-I}E[y] = 0. (4.21)

To get an unbiased estimate, our matrices must satisfy the relationship A+ B =

I, where I is the identity matrix. Now, to minimize the covariance of the blended

estimate, YB, our optimization problem is

minA,B trace E[eeT] = minA,B trace PFe (4.22)

s.t. A+B = I

where e is the error, and the error covariance matrix Pe can be expanded as

follows,

E[eeT] = E[(ys - y)(YB - y)T]

= E[(Ay, + By2 - (A + B)y)(Ay, + By2 - (A + B)y)T]

= E[(A(y, - y) + B(y 2 - y))(A(y, - y) + B(y2 - y))T]

= AP1 AT + AQ 12BT + BQ21AT + BP2BT

= AP1AT + AQ 12(I - A)T + (I - A)Q 21AT

+ (I - A)P 2 (I - A)T. (4.23)

Taking the derivative of the trace of Pe and setting it equal to zero results in
a + p) + Q QT)QT(a AT

(tracePe) = A(P + P) + 2 - A(Q 12 + Q2) + •(A)

- A(Q21 + QT) + (I - A)(P2 + P2T)(- 1)

= 2API - 2A(Q1 2 + Q21) + 2AP2 - 2P 2 + (Q12 + Q21)

- 0.

Solving for A gives us

A = (P2 - (Q12 + Q 2 1))(Pi + P 2 - (Q12 + Q21)) - 1 (4.24)

Now, if we make the identifications,

Il = P1 - (Q12 + Q21) (4.25)

12 = P2 -!(Ql + Q21) (4.26)

The following linear blending law yields the minimum covariance estimate,

yB = 12(11 + I2)-1y + I1(I + I2)-Y2 (4.27)

where we have assumed that (I, + 12) is invertible.

4.5.2 Blending with sample statistics

The approach described in the last Subsection (4.5.1) would be a good one

if we had second order statistics. However, because of the plant's nonlinear

and unknown character we don't have these statistics. Still, we will model our

approach on the example given above. In our case the two sources of information

are the adaptive filter and the learning system. Although Ljung has shown that

while being used as a system identification tool the AEKF can become biased,

and need not converge even in the case of identifying constant parameters for a

linear time-invariant system [12], we assume that the state dynamics are such

that the filter remains unbiased and non-divergent. Under these assumption we

wish to apply (4.27) to our system where

Y = [LS] (4.28)O= s + (

X2
y2 = (4.29)

OLs

To implement equation (4.27) we need a measure of the quality of these es-

timates. The measure we use is derived from the output squared error given

by

el,ke Tk = (Zk - Hl,k)(zk - Hl,k)T. (4.30)

and

e2,ke 2 k = (zk - H2,k)(zk - Hi 2,k)T. (4.31)

The difference between the two error calculations is that in (4.30) the AEKF

relies on the corrected mapping, OLS+ 6 0, while in (4.31) the EKF relies solely on

OLs. This exclusive reliance on the learned map means that the EKF's output

squared error is a relative measure of learning system quality. Finally, smoothed

versions of the output squared errors are calculated,

ATPi,k = Ae,kek + (1 -)Pi,k~1 i= {1,2}. (4.32)

Equation (4.32) is the expression for a low pass filter where the filter bandwidth

is controlled by A. These quantities are then used in blending in the same way

that P1 and P2 were in (4.25) and (4.26). An analogous measure is calculated

for the pseudo cross-covariance,

A ~ TA
12,k = 102, + (1 - •)Q12,k-1 (4.33)

Since the output error is a function of the current learning mapping, if the

mapping is incorrect, this will be reflected in a large output error for the EKF.

If the mapping is correct, but the adaptive 60 term is not, this will be reflected

in a large output error for the AEKF.

This approach is limited by the relationship between sensor data and un-

known dynamics. If the sensor data is strongly affected by the unknown dy-

namics then the approach can be usefully applied. Of course, if the sensor data

is not closely related to the unknown dynamics, it may not be possible to do

71

system identification in the first place. A second limitation to the approach is

in the case of high sensor noise. Under high sensor noise conditions the blend-

ing ratio will approach 1 : 1 because the noise will dominate the residue term

(z - H^ = H (x - ^) + v) from which the sample statistics are calculated. In

such cases it would be very useful to have a learning system that kept track

of its own error statistics, rather than relying on the output error for such in-

formation. Finally, dimensionality issues arise when considering this blending

approach. Even if multiple sensors are available, they do not necessarily yield

covariance-matrix-like information without further knowledge. Thus, a priori

information on the relation of sensor data to the domain and range of the un-

known functions can greatly help this identification scheme. In the examples we

present in Chapter 5, the observation functions are linear, scalar, and known.

This method seems to work quite well even though the measures of qual-

ity are calculated from sample statistics and are of the wrong dimensionality.

The reason is that all that is really needed is a relative measure of quality to

judge between the two sources of information. This measure need not be a true

measure of information, as is the inverse of a covariance matrix, it must simply

measure the quality of one information source with respect to the other. It is

such a relative quality of measure that the output error covariance yields.

4.6 Summary of the LAEKF algorithm

The LAEKF algorithm can now be summarized. If we refer back to figure 4.1,

we can walk through the implementation of each block. The system dynamics

are given by equations (4.1) and (4.2). It is the 0 in these equations that we

wish to identify, and a priori information about the value of 0 is given by the

learning system whose mapping is of the form of equation (4.6).

The learning mapping is fed to two filters, an AEKF and an EKF, to help

in estimation and identification. The AEKF design is based on the dynamic

models of equations (4.7) and (4.8), while the EKF design is based on slightly

different dynamics, equations (4.9) and (4.10). Each of these filters generates

a set of estimates. These two sets of estimates must be combined to yield the

final estimates of states and unknown dynamics. This operation is performed

by the blending block.

The blending block is founded on the idea of generating second-order sam-

ple statistics. The blending law seeks to determine a minimum variance unbiased

combination of the two estimates. Its design is based upon the calculation of

sample statistics as given by equations (4.11-4.18).

Finally, the output of the blending block provides not only the final es-

timates of states and unknown dynamics, but also training data for the next

step in the refinement of the learning system mapping. The learning system is

of a spatially localized type and the algorithm for updating its mapping was

described fully in Chapter 3 and is given by equations (3.2-3.10).

Chapter 5

Applications to Physical
Systems

In the last chapter we discussed the motivations behind, and the design of, the

LAEKF. There were three main design points. The first was to incorporate ideas

of memory through inclusion of a learning system in the estimation architecture.

The second was to use an EKF coupled with a blending system to provide a

check on the influence of the learning system mapping. The final idea harkens

back to Chapter 3 and was to make the learning system spatially localized in

order to accommodate the way that training data is generated, i.e. along state

trajectories.

In this chapter we present three systems that illustrate each of these de-

sign points. The example of Section 5.1 is a spring-mass-damper system with

an unknown spring stiffness function. This is a very familiar dynamic system

and so the performance of the LAEK will be easy to understand; it is also a

system that well demonstrates the advantages in constructing a mapping of the

unknown dynamics. In Section 5.2 we present a second simulation of the spring-

mass-damper system. However, this time the conditions under which the system

operates change in time. These changes to some degree illustrate the strength

of using a spatially localized approximation, but more significantly demonstrate

the importance of using a blending system in the learning augmented architec-

ture. Finally, in Section 5.3 we implement the architecture on a more complex

physical system, the aeroelastic oscillator. The response of this system is char-

acterized by two limit cycles. These means that training data is collected along

very constrained state trajectories, thereby fully illustrating the importance of

using a spatially localized learning system.

5.1 Spring-mass-damper

The first system on which we will implement our LAEKF is a second-order

mass-spring-damper system with an unknown nonlinear spring stiffness. The

system dynamics are described by the scalar equations

= = - + (x)x u (5.1)

where x is position, u is the known input signal, and the unknown nonlinear

spring stiffness is a function of position

O(x) = -(1 + _X2). (5.2)

The sensor data is scalar, observing only position, with measurements re-

ceived at 10 Hz and a noise covariance matrix of R 1/2 = 0.2. The system

is driven by the superposition of two sine waves of the same amplitude, but

one of period T = 30 seconds, and the other of period T = 15 seconds, i.e.

u(t) = 15 sin(0.2t) + 15 sin(0.4t). As we will see, this input provides sufficient

excitation of the dynamics so as to allow system identification. The time vari-

ation of the unknown spring stiffness function is modeled as a random walk

with Ae = 0, and E[Beoi7TBye] = 2 (see equation (4.7)). The learning sys-

tem is initialized at a constant zero with basis-influence functions placed at

z C = {-4,-2,0,2, 4} with Vi = I. The decay parameter for the sample statis-

tics, see equation (4.32), is set to A = 0.2. The simulation runs for 300 seconds

w, V

U

B

estimate

LAEKF

Figure 5.1: Block diagram of learning augmented estimator

and learning is done off line on six data batches, each consisting of 50 seconds

of estimates. That is, the learning system first collects 50 seconds worth of data

and then trains; then that new mapping is used to help in the next 50 seconds

of estimation and so on. Figure 5.1 presents anew the schematic of the LAEKF

from Chapter 4 for reference in the following discussions.

To see how learning affects estimation, figure 5.2 plots the estimation per-

formance of the filters in terms of root-mean-squared (RMS) error. The error

is calculated over the 30 seconds of estimates prior to each plotted point (i.e.

a causal error calculation); this is why the error plots are at zero until time

t = 30. So, if there are N samples in the past 30 seconds, then the RMS error

for a single scalar state estimate at time k is calculated as follows

1 N-1
RMSk = (k- - Xk-i) 2 . (5.3)

i=0

[- I I I I I]

5

4
0
TO3

cn2
0

010

50 100

0 50 100

150

150

200

200
seconds

250

250

300

300

350 400

350 400

Figure 5.2: RMS state estimation errors normalized by performance of standard
EKF (designed with exact nonlinear model).

dot: AEKF

solid: LAEKF

dash: EKF

dot: AEKF

solid: LAEKF

dash: EKF
S-- - --- ------------------- -- I----------

I I

I - I -I I - - - I 1 II

•,-I •

< 40

- 20

-20

" -40
_r

-5 0 5
position

Figure 5.3: Learned mapping of spring stiffness. Dashed line corresponds to
mapping at t = 300; solid line is truth.

Each subplot of Figure 5.2 contains three curves. First is the performance

of an EKF designed with full knowledge of the nonlinear dynamics. This filter's

accuracy gives us a base-line from which to evaluate the performance of the other

estimation methods. If the error of either the AEKF or LAEKF approaches

this level of accuracy, then we would say it is approaching the best possible

performance. We plot the ratio of the RMS error of each estimator to the RMS

error of the EKF. Thus, the ratio of EKF error to EKF error is plotted as a

reference dashed line at 1.0. The error of the AEKF normalized by the EKF

error is plotted as a dotted curve, and the normalized error of the LAEKF is

the solid curve. The top graph in Figure 5.2 shows the velocity error ratios, and

the bottom one shows the position error ratios.

The second quantity of interest is the quality of the system identification

done by the LAEKF. First, in figure 5.3, we plot the learned system function

(dashed line) versus the true unknown system function (solid line). This figure

shows the true mapping versus the learned mapping after the six training batches

of data have been used, i.e. at t = 300.

0 50 100 150 200 250 300 350 400
seconds

Figure 5.4: RMS errors in spring stiffness identification.

Figure 5.4 uses the same error measure as in figure 5.2, and compares the

performance of the AEKF and LAEKF as system identification approaches un-

der the same operating conditions. Since an EKF designed with full knowledge

of the nonlinear dynamics need not do any system identification, in this figure

the EKF performance is not plotted for comparison.

As can be seen in both figures 5.2 and 5.4, the errors in the learning aug-

mented system are substantially smaller than those for the system without learn-

ing. It should also be noted that all the information from which the learning

map is constructed comes from a single driving signal. With more variation in

the driving signal - a richer input - the system identification could be done

to an even greater degree of accuracy. On the other hand, it is also possible to

feed the system unfriendly signals, such as very high frequency signals above the

bandwidth of the filter, that can lower the performance gains of this architec-

ture. So, as with other identifications schemes, the performance of the system

remains, in part, dependent on the characteristics of the driving signals.

It should also be noted that in this application the blending did not come

into play. This is because the system was driven by the same double sine wave

10

CD

r=
CL

velocity error position error

10 10 10 10 102 10
QCa Q-a

parameter error

AEKF error - x

LAEKF error - o

100 102 10
Qa

Figure 5.5: Identification performance versus noise modeling level.

signal under the same noise conditions for the entire run. Since there was no

change in conditions there was no reason why the AEKF incorporated into the

LAEKF architecture should diverge, and thus no reason why the system should

rely exclusively on the old learned mapping and the EKF instead of continuing

to correct the mapping. In the next section we will see another application to a

spring-mass-damper system where the blending will play a very central role in

preserving system performance after a change in operating conditions.

The last aspect of LAEKF performance to investigate goes back to our

discussion of how to model the time variation of the unknowns. As discussed in

Section 2.4.1, this user-determined quantity can have a great effect on the success

of the identification scheme. In figure 5.5 we plot the system identification

81

I -- I II

J A •

..

.

performance versus noise modeling level. That is, if we model the parameter

variations as

a• -- Wa•t

where w, -~ N(0, Qa), then the independent axes in figure 5.5 plots the intensity

of the Qa matrix. As can be seen, across the noise modeling spectrum, the

error of the LAEKF is significantly below that of the AEKF. In addition, the

performance of the LAEKF is a less strong function of the noise level - i.e.

the plot of LAEKF performance is flatter, and therefore more invariant to the

user's choice of Q,. These are both objectives in the design of this architecture,

and are a function of choosing to estimate a correction term 60 rather than

the whole unknown 0. This choice yields improved performance because as

the unknown dynamics are learned the quantity that remains to be estimated

decreases and thus eases the estimation problem. In this way learning helps in

the identification as well as the estimation problems.

If we think for a moment about figure 5.5, we realize that the characteristic

"U" shape of the plots in figure 5.5 shows that there is an optimal choice of Q,.

That is, there exists a choice of Qa that results in the best LAEKF performance.

If Qa is chosen too small, parameter variations cannot be tracked, and both

identification and estimation suffer. If, on the other hand, Qa is chosen too

large, both tasks suffer again from designs optimized for excessive levels of

process noise.' Ideally then, after each training batch, and for each region

of the state space, a new Qa would be chosen that would best model the speed

of parameter variation in that region of the space. In the results presented

here, this is not done, rather for each 300 second experiment Qa is set equal to

a constant. Each experiment corresponds to a different value of Qa and to a

'The reason that the error in the position estimate levels out with increasing Qa is that
there is a position sensor that upper bounds the error in that estimate.

different data point in figure 5.5 (the x's and the o's). The idea of treating Qa as

an adaptive quantity could work well with the spatially localized character of the

learning system. With each local approximation some measure of approximation

quality could be associated that could then be used in either tasks of blending

or noise modeling. As uncertainty in the mapping increases, the noise level

could be increased, and vice-versa. Although not implemented, this would be

an interesting path for future investigation.

5.2 Spring-mass-damper II

In this section we also present results for the system used in 5.1, but this time

the conditions are less friendly for system identification. This example will help

explain why the spatially localized character of the learning system is important,

and why the use of a blending block is critical. Initially the system is driven by

a biased signal; this situation reveals the advantage of using a spatially localized

function approximation system. Then, after a time, the sensor the system relies

on degrades significantly. This situation is disastrous for an identification ap-

proach that treats the unknown as time-varying as the algorithm must continue

to rely heavily on the degraded sensor. However, we will see that the LAEKF is

not so adversely effected by this sensor degradation as it remembers the system

dynamics identified earlier. While this example may seem a bit constructed, it

is analogous to real time operations where the quality of the received data is

changing in time as a function of location in state space.

Again, the same second-order spring-mass-damper system is used with the

same unknown and learning system architecture. The system is again driven by

the superposition of two sine waves, one of period T = 15 seconds, the other of

period T = 30 seconds. However, this time the simulation is run for 500 seconds

and the driving signal is initially biased positive, and subsequently negative, for

the first and second 150 seconds, before the bias is dropped at 300 seconds.

That is

u(t) = 15sin(0.2t) + 15sin(0.4t) + 10 0 < t < 150

u(t) = 15sin(0.2t) + 15sin(0.4t) - 10 150 < t < 300

u(t) = 15 sin(0.2t) + 15 sin(0.4t) 300 < t < 500

In addition, the sensor quality degrades at t = 300, so

E[vvT]1/2 = [0.2] 0 < t < 300

E[v r1/ 2 = [5.0] 300 <t < 500

and the filters are designed with knowledge of this degradation. That is, it is

assumed that this failure was detected.

As before, we look to state estimation performance as a measure of quality.

In figure 5.6 we see that the error for the AEKF (dotted line) stays relatively

constant for the first 300 seconds regardless of which way the driving signal

is biased. For the LAEKF (solid line), on the other hand, there is a large

jump in error at 150 seconds when the bias switches from +10 to -10 and the

system transitions into an unexplored region of the state space. This is caused

by the incorrect (unlearned) mapping that the system partially relies on (and

also indicated that the blending can be improved somewhat). However, after

an additional training cycle (at 200 seconds), the error again drops below that

of the AEKF. At 300 seconds, the time of sensor degradation, both estimates

worsen in quality. However, the LAEKF error stays significantly below that of

the AKEKF as it has already learned the unknown dynamics and can now rely

on its learned mapping to help in estimation. The AEKF, on the other hand,

must continue to identify the unknown dynamics based on its observations and

40

3" .- dot- AEKF
30 -'.. ,

20 -. .. solid - LAEKFU)

10 - -. >.*..;dash - EKF

or------- ---•- -------- --•ll- . I

0 100 200 300 400 500 600 700

40

0: "dot - AEKF
30-

6C'20 - solid - LAEKF
CO
0
C.

10 -dasho- EKF

0 100 200 300 400 500 600 700
seconds

Figure 5.6: RMS state estimation errors normalized by performance of standard
EKF (designed with exact nonlinear model).

ZU

15
0

~ 10

5

n

0 100 200 300 400 500 600 700

1g ...

0= 10-

I 5as5

• k -I

0 1 I1 I I I

0 100 200 300 400 500 600 700
seconds

Figure 5.7: Normalized RMS state estimation errors of the AEKF and EKF
systems incorporated into the LAEKF, of the final blended estimates, and of an
EKF designed with full knowledge of the dynamics.

thus its performance degrades in step with the sensor. Finally, note again that

the dashed line is the performance of an EKF designed with full knowledge of

the state dynamics, a measure of performance by which the other plots have

been normalized.

To help understand how blending comes to the rescue after sensor degra-

dation, in figure 5.7 we plot the contributions of the two filters subsystems of

the LAEKF (the AEKF and EKF) to the final, blended estimate. It helps at

this point to refer back to figure 5.1 to aid in the following discussion. In fig-

ure 5.7 the error of the AEKF subsystem (X1 in figure 5.1) is plotted as a dotted

dot - sys_AEKF

dashdot -sys_EKF

solid - blend

d -h _ EKF

line; the error of the EKF subsystem designed based solely on the learned map-

ping (^2) is the dash-dot line; and the blended estimate is the solid curve. For

the first 300 seconds, before the sensor degrades, the AEKF subsystem provides

very good estimates, and the LAEKF relied on them. After the sensor degrades,

on the other hand, it is the EKF subsystem's state estimates that the LAEKF

relies on. Indeed, this is exactly the purpose of blending, to direct the system to

rely more heavily on the AEKF subsystem and its correction term when it was

producing the better data, and more heavily on the learned mapping and EKF

subsystem when the AEKF is not working well. Because in this simulation the

conditions for attempting system identification degrade significantly, the AEKF

that is still trying to accomplish this task suffers greatly in both its estimation

and identification tasks. The EKF, which does not attempt to do any system

identification, yields much better state estimates under such conditions, and the

learned mapping is left unchanged.

To see what is happening to the approximation over the course of the

experiment, we plot the learned mappings for this system. Figure 5.8 shows

the learned mapping at two distinct times as compared with the true unknown

function (solid curve). The mapping is plotted at t = 150 (dotted) and t = 300

(dashed). These plots make it clear that spatial localization has really come into

play. Until t = 150, the driving signal is biased positive, and thus the negative

region of the state space is not explored, and a correct mapping could not be

learned there. Between t = 150 and t = 300, however, the system transitions

into the negative state-space, explores, and learns the dynamics there. The

dashed plot, corresponding to t = 300, has been corrected for negative position,

but for positive positions the mapping has been left alone (the dotted and dashed

lines are superimposed). This exploration is also made clear in figure 5.9 where

the system identification RMS error has been plotted versus time. As in the

04

CO)

CL

01)

-5 0 5
position

Figure 5.8: Learned
mapping at t = 150;
is truth.

C,

E

0.

mapping of spring stiffness. Dotted line corresponds to
dashed line corresponds to mapping at t = 300; solid line

v

0 100 200 300 400 500 600 700
seconds

Figure 5.9: RMS errors in spring stiffness identification.

_Uv

state error plots, figure 5.6, there is a error hump around t = 150 when the

system transitions into an unexplored area of the state space. After t = 300,

however, the identification performance of the memoryless AEKF (dotted line)

worsens drastically because of the loss of the quality sensor. On the other hand,

the error in the estimates of the unknown dynamics made by the LAEKF doesn't

increase at all. This is because the blending has figured out the AEKF subsystem

is producing poor correction terms and so turns to the EKF subsystem for state

estimation. But this EKF does not attempt to do any system identification, and

so the learned mapping is left alone and will stay unchanged until conditions

for system identification improve.

5.3 Aeroelastic oscillator

In this third example we turn to a different system to demonstrate the strengths

of this approach when it comes to accumulating training data along state trajec-

tories. The system we turn to is a type of aeroelastic oscillator. These oscillators

are systems of great practical interest with perhaps the most famous example

being the Tacoma Narrows Bridge in Washington state. Our oscillator is a

second-order system with unknown dynamics residing in the damping term as

follows,

i = 0(i)i-x+u+Gw

z = [0 111]+v

where again the measurements are received periodically at 10 Hz. In the equa-

tions of motion, the unknown function is actually

(i)= 1.61 - 105 i2 + 1531 i4 - 5712 i. (5.4)

These equations correspond to a physical system consisting of a mass with a

rectangular cross section attached to a surface by a spring and damper. In

Wind

Wind Speed, v

Figure 5.10: Structural diagram of aeroelastic oscillator.

addition, wind is blowing over the block and, depending on the wind velocity and

angle of attack a, the oscillatory character of the mass changes; see figure 5.10.

While at low angles of attack and wind speeds the mass settles out to zero if

displaced, as the wind increases the mass can settle into either of two limit

cycles, depending on initial conditions. This is the region in which our system

operates, resulting in the functional form for 0(i) as given in equation (5.4).

For a complete discussion of this system see [19].

In addition to the equation of motion discussed above, the system is driven

by a small signal, u(t) = 0.5 sin(0.2t), that provides some extra exploration as

the system settles into its limit cycle. The learning system is initialized with

centers at {-0.45, -0.3, -0.15, 0, 0.15, 0.3, 0.45}, and with narrow influences,

V = 0.01 I. Having influence functions this narrow means that the input space

is basically divided up into a number of affine approximations. In addition, the

noise statistics are as follows,

E[vvT]1/ 2 = [0.02] (5.5)

E[GwwTGT]1/ 2 = diag[- 0.1 6]. (5.6)

In figure 5.11 we present a set of plots illustrating the performance of the

LAEKF for this system. We do not present state estimation performance, but

Mapping after data batches I & 2

0S01

-0
0

data batch 1

5 0

data batch 2

o,
01

0

-1

5 0

phase diagram for batch 1

-0.5 0 0.5
velocity

Figure 5.11: Learned mappings; data
ing sets for the aeroelastic oscillator.

1

.o~0
"0
o i

-1
-O.r5

phase diagram for batch 2

velocity

batches; and phase diagrams of two train-

rather graph the data and the learned functions to better comprehend how the

spatially localized character of the learning system assists in these problems. It

is important to understand the way this figure is set up. The figure is divided

into two columns where the left hand column presents the results after the

first set of training data has been received, and where the right hand column

presents results after the first two training sets have been received. The top row

of plots show the respective learned curves (dashed) versus the true mapping

(solid). The second row of plots show the training data graphed versus the

true function. The bottom row of plots are the phase diagrams of the training

sets, showing the state-space trajectory of the system. The reason why these

trajectories are so different is because of the limit-cycle nature of the dynamics.

-0.5-0.5

......

.

..

.I.

* .:. ..
* .1.~

.~

..

* . 9. a
* . .

~A. a'**xIj.i .
I.. *C. * *.

F
.....

- v

Mapping after data batch 1
r-

L-

L-

--'1

-0.•

1I

The first and second training runs were started with different initial conditions

and therefore settled into different limit-cycles. All plots have velocity - the

independent variable in the mapping 0(i) - plotted along the horizontal axis.

This simulation demonstrates why the spatially localized character of the

learning system is so important when it comes to systems that have limit cycles

or only sequentially explore regions of the input space. In the first training

batch (first column) no real data was collected about the center hump of the

unknown dynamics because the system transitioned through that part of the

state space so quickly. It was not until the system fell into the inner limit-

cycle that information about the central hump could be collected. The learning

system's spatially localized nature allows it to concentrate only on those areas

where it had data. Thus the outer humps were trained in the first batch, and

the central hump in the second.

A further benefit of this experiment was that we discovered that the

LAEKF could only construct an accurate mapping for low sensor noises. This

observation motivated further investigation and led to the analysis of Chapter 2,

equations (2.59-2.65). Basically what was found was that as the sensor noise

increases, the bandwidth of the Kalman filter drops, and the AEKF begins to

treat fast spatial variations in the dynamics increasingly as noise. Since they

are classified as such, the AEKF does not even attempt to track system function

variations in those high bandwidths. This makes some intuitive sense since a

priori we do not have a complete description of the dynamics and if, in addition,

we only have very poor sensor measurements, then we really do not have much

information with which to approach the tasks of estimation and identification.

Chapter 6

Conclusion

This thesis presents a learning augmented filtering algorithm for dynamic sys-

tems having unknown nonlinearities. To demonstrate the advantages of incor-

porating a learning system into a state estimation architecture, three different

nonlinear filters are compared: (1) a standard extended Kalman filter (EKF)

derived from an exact system model; (2) an augmented extended Kalman fil-

ter (AEKF) designed by augmenting an EKF derived from an incomplete de-

scription of system dynamics with additional states that model the unknown

dynamics in a time-dependent manner; and (3) a learning augmented AEKF

(LAEKF) formed by combining an AEKF with a learning system that models

unknown nonlinear effects in a state-dependent manner. As the first filter is

designed with full knowledge of the system dynamics (i.e., all nonlinearities), it

is included only for purposes of state estimation performance comparison.

The results presented here confirm an intuitive expectation that the stan-

dard EKF, based on an exact system model, outperforms the AEKF, based on

an approximate model, despite the adaptive capability of the latter. The dif-

ference in state estimation performance between these two filters is likely to be

greater in situations where the unknown dynamics cannot simply be considered

as a small set of constant parameters to be identified on-line. For example, the

spring-mass-damper system considered in this thesis involves a spring stiffness

parameter that is really an unknown nonlinear function of position. It is in such

situations that learning may be advantageously applied, as demonstrated by the

experiments in Chapter 5.

The underlying idea is that a complete system model can be built up over

time, given estimates of the states and unknown state-dependent mappings,

so that in the long-run the overall estimation performance can be improved.

We have provided some background theory in Chapters 2 and 3, theory that we

draw upon to design and explain the learning augmented estimator as presented

in Chapter 4. Finally, in Chapter 5 we implement this design on a number of

practical systems, both to see how it works in practice and to gain deeper insight

into its strengths and weaknesses.

In Chapter 5 we first demonstrate the approach on a spring-mass-damper

system with an unknown spring stiffness. We learn that the LAEKF improves

state and parameter estimation performance dramatically, as compared to a

memoryless AEKF attempting the same tasks. We also learn that if we model

the time variation of the unknown spring stiffness as a random walk, the LAEKF

outperforms the AEKF regardless of how we choose to pick the parameters of the

model, i.e. the noise driving term. Our second application is again to a spring-

mass-damper system, but this time the operating conditions are less friendly

for system identification. There are biases in the driving signal, and part-way

through the experiment the quality of the sensor degrades greatly. Because of

the biases for the first time we see the spatially localized character of the learning

system coming into play, and because of the degradation of the sensor quality we

really see the need for the blending system. Our last application of the LAEKF

is to an aeroelastic oscillator. This system has dynamics characterized by two

limit-cycles. We run the system twice, with two different sets of initial conditions

that cause the system to settle out in the different limit-cycles. Because of these

distinct state trajectories, and because the LAEKF only collects training data

along state trajectories, this experiment clearly shows the importance of using

a spatially localized learning system. The results presented were designed to

demonstrate the need for each subsystem of the LAEKF architecture. The

results also show the merits of learning augmentation for a class of nonlinear

estimation and identification problems and provide motivation for further work

in this area.

6.1 Future directions

The results presented in this thesis suggest both immediate extensions and fu-

ture areas of research.

1. Smoothing: An immediate direction in which this work could be taken

is to implement an extended Kalman smoother to calculate the estimates

used in training. Because these estimates are stored up over time in a

buffer, and only periodically used to update the learned mapping, they

can be smoothed to increase their accuracy.

2. Blending and whiteness: The blending scheme might well benefit from

casting it in the light of an optimization problem. In such an optimization

problem the objective would be to whiten the blended residue sequence.

That is, given xl,k and X2,k V k, our objective would be to choose ak and

/3 k at each time step to whiten the residue (zk - ak^1,k - AkX2,k), under

the constraint that ak + 1k = I where I is the identity matrix.

3. Adaptive modeling of parameter variations: A third extension of the

current framework is to make the time variation modeling of the unknown

dynamics adaptive. The motivation for such a change originated with

the discussion of figure 5.5 in Chapter 5. In that discussion it became

clear that the optimal noise modeling for parameter variation is not a

constant across all time and areas of the state space. Rather, the noise

modeling should be made a function of the quality of the learned map.

Where the learned map is poor, the noise level should be increased to

allow identification; where it is refined, the noise level should be decreased

so as to not interfere with state estimation.

4. Learning approximation quality: A final direction in which the research

can be taken is to develop learning systems that keep track of their own

approximation quality. This idea was discussed briefly at the close of

Chapter 4. There the motivation was to help in blending. Now we see

a second benefit would be that the noise modeling of parameter varia-

tions could be made a dependent function of such knowledge. Indeed, a

third benefit of having such a measure of learning system error also ex-

ists. Knowledge of such error can be used to determine what areas of the

state space need further exploration. Then, if we have some control over

the driving signal, the system can actively direct itself into such areas in

order to extend and refine its mapping. Some progress in addressing this

question of learning system quality has been made from the direction of

the Bayesian approach to learning as discussed briefly in Chapter 3.

Bibliography

[1] B. Anderson and J. Moore (1979). Optimal Filtering, Prentice Hall.

[2] W. Baker and J. Farrell (1992). An introduction to connectionist learn-

ing control systems, in Handbook of Intelligent Control: Neural, Fuzzy,

and Adaptive Approaches, D. White and D. Sofge (eds.), Van Nostrand

Reinhold.

[3] W. Baker and P. Millington (1993). Design and evaluation of a learning

augmented longitudinal flight control system, 32nd IEEE Conference on

Decision and Control.

[4] D. Broomhead and D. Lowe (1988). Multivariable functional interpola-

tions and adaptive networks, Complex Systems, vol. 2, pp. 321-355.

[5] D. Cerrato (1993). Modeling Unknown Dynamical Systems Using Adaptive

Structure Networks, M.S. Thesis, Department of Electrical Engineering

and Computer Science, M.I.T., and Draper Laboratory Report T-1194.

[6] J. Farmer and J. Sidorowich (1987). Predicting chaotic time series, Phys-

ical Review Letters, vol. 59, pp. 845-848.

[7] J. Farrell (1996). Motivations for local approximations in passive learning

control, to appear in Journal of Intelligent Systems and Control.

[8] A. Gelb (ed.) (1974). Applied Optimal Estimation, M.I.T. Press.

[9] A. Jazwinski (1970). Stochastic Processes and Filtering Theory, Academic

Press.

[10] A. Lapedes and R. Farber (1987). Nonlinear Signal Processing Using Neu-

ral Networks: Prediction and System Modeling, Los Alamos Report LA-

UR 87-2662.

[11] M. Livstone, J. Farrell, and W. Baker (1992). A computationally efficient

algorithm for training recurrent connectionist networks," 1992 American

Control Conference.

[12] L. Ljung (1979). Asymptotic Behavior of the Extended Kalman Filter as

a Parameter Estimator for Linear Systems, IEEE Transactions on Auto-

matic Control, vol. AC-24, no. 1, pp. 36-50.

[13] L. Ljung and T. SSderstr~m (1983). Theory and Practice of Recursive

Estimation, M.I.T. Press.

[14] J. Lo (1994). Synthetic approach to optimal filtering, IEEE Transactions

on Neural Networks, vol. 5, no. 5, pp. 803-811.

[15] D. Mackay (1992). Bayesian Methods for Adaptive Models, PhD thesis,

California Institute of Technology.

[16] M. Matthews (1990). Neural network nonlinear adaptive filtering using

the extended Kalman filter algorithm, 1990 International Neural Network

Conference.

[17] M. Matthews (1990). A state-space approach to adaptive nonlinear filter-

ing using recurrent neural networks, 1990 lASTED Symposium on Artifi-

cial Intelligence Applications and Neural Networks.

[18] K. Narendra and K. Parthasarathy (1990). Identification and control of

dynamical systems using neural networks, IEEE Transactions on Neural

Networks, vol. 1, no. 1, pp. 4-27.

[19] G. Parkinson and J. Smith (1964). The Square Prism as an Aeroelastic

Non-linear Oscillator, Quarterly Journal of Mechanics and Applied Math-

ematics, vol. 17, pt. 2.

[20] T. Poggio and F. Girosi (1989). A theory of networks for approximation

and learning, Artificial Intelligence Laboratory Memo No. 1140, M.I.T.

[21] H. Poor (1988). An Introduction to Signal Detection and Estimation,

Springer-Verlag.

[22] D. Wiberg and D. Dewolf (1988). The Wiberg estimator: continuous-time

case, 27th IEEE Conference on Decision and Control, pp. 845-850.

[23] R. Williams (1990). Adaptive state representation and estimation using re-

current connectionist networks, in Neural Networks for Control, W. Miller,

R. Sutton, and P. Werbos (eds.), M.I.T. Press.

