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ABSTRACT

This thesis is concerned with two different approaches to modeling the

chemistry of dinuclear non-heme iron proteins. The first involves the

preparation of small model complexes which closely mimic the active site

structures of hemerythrin, methane monooxygenase, or ribonucleotide

reductase. The second approach is to encapsulate iron complexes inside a zeolite

as a way of imitating the effect of the protein framework, which prevents the

bimolecular decomposition of oxidizing intermediates.

Several carboxylate-bridged (t-oxo)diiron(III) complexes were prepared and

spectroscopically characterized. A compound with five nitrogen donor atoms as

ligands and one labile coordination site, [Fe20(XDK)(BIPhMe)(tacn)(H20)](NO 3 )2

(5), was designed as an accurate structural model for the active site of

hemerythrin. This complex reacts with one equivalent of azide to give a product

with spectroscopic characteristics remarkably similar to those of

azidomethemerythrin. In addition, it catalyzes the disproportionation of

hydrogen peroxide, a process which may involve a step analogous to dioxygen

release from hemerythrin. The X-ray crystal structures of a DMSO solvento

complex, [Fe 20(XDK)(DMSO) 6](NO 3)2 (3), and an unusual hydroxide-bridged

diiron(III) compound, [Fe 2 (OH)(XDK)(BIPhMe)(H 20)(NO3)3] (4), are also

presented.

High-silica faujasites impregnated with several nitrogen donor ligands have

been prepared and characterized by solid state CPMAS-NMR. Addition of Fe 2 + to



at least one of these materials, HPTP-FAU, appears to result in the formation of

an intrazeolitic diiron(II) complex. Only a small amount of Fe 2 + can be loaded

into the faujasite, whether or not an organic ligand is present. These Fe-

containing faujasites are slow catalysts for the oxidation of cylcohexene with

H 20 2 . The major product is the epoxide, with lesser amounts of allylic oxidation

products being produced. Since this activity does not require a ligand, the

catalytic species is most likely an iron atom associated with the lattice of the

faujasite.

Thesis Supervisor: Stephen J. Lippard

Title: Arthur Amos Noyes Professor of Chemistry
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Chapter 1

Modeling Dinuclear Non-Heme Iron Centers



Proteins and enzymes with dinuclear non-heme iron in their active sites

carry out a variety of functions in biology. Hemerythrin (Hr) is a dioxygen

transport protein,1 the hydroxylase of soluble methane monooxygenase (sMMO)

converts alkanes to alcohols,2 and the R2 protein of ribonucleotide reductase

(RNR) generates a stable tyrosyl radical.3 All of these functions involve the

reaction of dioxygen with a diiron(II) carboxylate-bridged core, but the differences

among the proteins lead to different results. Understanding what features of

these proteins account for their various reactivities is of significant interest, and

building chemical models of the active sites helps a great deal in elucidating the

chemistry of the carboxylate-bridged diiron structural motif. In particular,

functional models are desirable as a way of identifying which features are

necessary and sufficient for activity, and also because functional models of low

molecular weight may be useful for a number of applications.

One approach to producing functional models is to mimic the

coordination environment found in the protein as closely as possible. Nature

has optimized the structures of these active sites for their particular functions

over millions of years, so it is reasonable to think that there is something unique

about the donor sets and ligand geometries found in the proteins. There have

been a number of structural models for the oxo-bridged, bis(carboxylate)

diiron(III) core found in methemerythrin and the oxidized forms of other non-

heme diiron proteins, 4-7 and several more that mimicked the reduced forms of

these active sites.8-12 These model complexes generally do not reproduce the

functions of the biological systems, perhaps in part because many of them are

coordinatively saturated or have ligand systems with a different set of donor

atoms than is present in the enzyme active site. For example, until recently1 1

there were no model compounds with one nitrogen donor per iron, as is found

in the active sites of the MMO hydroxylase and the R2 protein of ribonucleotide



reductase. Developing functional models of these enzymes may require even

closer approximations of the structures in the proteins. An example of one such

effort in modeling hemerythrin is described in Chapter 2.

Another aspect of proteins that can be imitated in the development of

functional models is the effect of the protein framework which surrounds the

active site. The folded protein chain not only stabilizes the structure of the

diiron core, but its bulk also prevents decomposition by reaction with another

dimetallic center. In modeling heme proteins like hemoglobin and cytochromes

P-450, chemists have built sterically bulky "picket fence" and "strapped"

porphyrins successfully to reproduce this effect of the protein framework. 13

Other efforts have focused on encapsulating iron porphyrins and iron

phthalocyanines inside a zeolite in order to block bimolecular decomposition of

the catalyst. 14 The work described in Chapter 3 seeks to extend this zeolite

strategy to the chemistry of non-heme iron model complexes.

Metalloproteins determine what reactions take place at the metal center

through a combination of the ligands they provide, structural constraints on the

geometry around the metal atoms, and the chemical environment provided by

the surrounding protein framework. In modeling dinuclear non-heme iron

proteins, the goal is to mimic certain aspects of the active site in order to

elucidate which factors are most important. Whether by using a very similar

ligand environment or by encapsulating a complex in a zeolite to model the

effect of the protein framework, these efforts may ultimately lead to the

preparation of functional models for the proteins, which have potential as useful

catalysts.
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Chapter 2

Studies in Biomimetic Diiron(III) Chemistry



Introduction

Dinuclear iron centers bridged by carboxylates appear at the active sites of

several non-heme iron proteins, including hemerythrin (Hr),1 the R2 subunit of

ribonucleotide reductase (RNR),2 and soluble methane monooxygenase

(sMMO).3 The diiron(II) forms of all three of these proteins react with dioxygen,

but the proteins perform very different functions. Whereas sMMO and RNR

react irreversibly with 02 in the hydroxylation of methane and the generation of

a tyrosyl radical, respectively, Hr binds dioxygen reversibly. 4 Hemerythrin also

differs from the other two proteins in that it has predominantly histidines in the

coordination sphere of the diiron moiety,1 whereas sMMO and RNR each have

only such ligands. 2' 3 These differences in coordination environment are a major

factor in the unique reactivity of hemerythrin, but may not be sufficient to

account for the reversibility of dioxygen binding. Preparation and

characterization of a functional model with the same donor set found in the

active site of Hr could help identify other characteristics of the protein that are

necessary for reversible oxygen binding.

Background. Hemerythrin is the dioxygen carrier in the blood of various

marine invertebrates. Extensive structural work has been done on Hr, so that

the crystal structures of the oxy-, deoxy-, met- and azidomet- forms of the protein

have all been solved.1, 5 -8 Much is known about the dioxygen carrier as a result

of these studies and others. 9 In deoxyhemerythrin, the two iron(II) ions are

bridged by two protein-derived carboxylates and a solvent-derived hydroxide,

and five histidines are also bound to the iron atoms. A key feature of this

protein complex is that the core is asymmetric (Figure 2.1). One iron is six-

coordinate, with three of the histidines bound, whereas the other iron is only

five-coordinate. l The open coordination site on the latter metal ion is where



dioxygen and other exogenous ligands bind. It is therefore vital to the activity of

the protein.

His H '0H H

+02 .sFei6n Fi

-lis -02 His O OV 0 His

V
Deoxyhemerythrin Oxyhemerythrin

Figure 2.1: Reversible Dioxygen Binding in Hemerythrin

Binding of dioxygen is accompanied by two-electron transfer, oxidizing the

iron atoms to the ferric oxidation state and reducing dioxygen to peroxide.4' 9 In

addition, there is substantial evidence that a proton is almost simultaneously

transferred from the hydroxide bridge to the resulting peroxide, producing the

hydroperoxide ligand seen in oxyhemerythrin, as shown in Figure 2.1.9,10 The

stability of the complex is increased by the presence of a hydrogen bond between

the hydroperoxide ligand and the oxo bridge. Protonation of the peroxide may

also enhance the reversibility of the reaction by reducing xT-interactions between

the peroxide and the metal.4

Early models for the diiron center in Hr were successful in reproducing

the (g-oxo)bis(g-carboxylato)diiron(III) core in azidomethemerythrin, as well as

the spectroscopic and magnetic characteristics of the protein. 1, '12 Another

complex mimicked the structure, spectroscopy, and magnetic properties of the

diiron(II) core in deoxyhemerythrin, including a bridging hydroxide. 13 All of

these compounds, however, relied on facially-capping tridentate nitrogen donors

to stabilize the complex and prevent formation of higher nuclearity compounds.

As a result, none of them had an open coordination site to bind dioxygen or

other nucleophiles, as in deoxy-Hr. Other models have used a mixture of



bidentate and monodentate capping ligands on each iron(III), 14 but formation of

higher nuclearity species has often been a problem in extending this chemistry to

diferrous complexes. 15 More recently, an asymmetric diiron(III) model has been

synthesized with a tridentate capping ligand on one iron and a bidentate

nitrogen donor on the other, with water bound at the remaining site. 16

Interestingly, this complex catalyzes the disproportionation of hydrogen

peroxide, rather than binding hydroperoxide to form a stable oxyhemerythrin

model.

H 2XDK Compound 5

Figure 2.2: A New Model for Methemerythrin

In the work described here, a similarly asymmetric model for hemerythrin

has been synthesized, with the primary difference being the use of the

dinucleating dicarboxylate ligand xylylenediamine-bis(Kemp's triacid)imide

(XDK). This ligand allows direct assembly of a (g-oxo)bis(g-carboxylato)diiron(III)

unit without any need for anionic or multidentate capping ligands to prevent

formation of higher nuclearity species. 17 The resulting solvento diiron(III)

complex has proved to be an excellent precursor for the preparation of the

asymmetric compound shown in Figure 2.2. This new model for

methemerythrin shares with the asymmetric diiron(III) model prepared by

Wieghardt, et. al. 16 the ability to catalyze the disproportionation of hydrogen

peroxide. In addition, it can form a 1:1 complex with azide which is remarkably



similar to azidomethemerythrin in its spectroscopic characteristics. Compound 5

is an accurate structural model for hemerythrin, but it may not be a functional

model even in its reduced form.

Experimentala

General. Most solvents were used as received or dried over molecular

sieves. The following compounds were synthesized according to literature

procedures: BIPhMe, 15 Me3tacn, 18 H 2XDK,19 and [Fe 20(XDK)(MeOH) 5-

(H 2 0)](NO3)2 -4H 20. 17 Also, tacn-3H2SO4 was made and isolated through a

combination of published procedures, 18' 2 0 and neutral tacn was isolated by

allowing tacn-3H2SO4 to react with 3 equiv of Ba(OH)2 in water, filtering off

BaSO 4 , and evaporating the water. Nonaqueous hydrogen peroxide was

prepared as described in Chapter 3.

The UV/visible spectra were collected on either a Cary 1E

Spectrophotometer or on a Hewlett Packard Diode Array Spectrophotometer.

Preparation of [Fe 20(XDK)(BIPhMe) 2(H 20) 2](NO 3)2, 1. To a suspension of

30 mg (0.052 mmol) of H 2XDK and 14.6 mg (0.052 mmol) of BIPhMe in 1 mL of

methanol was added 14.3 gL (0.10 mmol) of triethylamine. After stirring for 5

min and filtering, 21 mg (0.052 mmol) of Fe(NO 3)3 .9H 20 was added as solid,

producing a clear brown solution. Vapor diffusion of ether into the reaction

mixture gave 34 mg of brown solid. This powder was recrystallized from a 2:1

mixture of CH 2 C12 /MeOH by Et 20 vapor diffusion to yield 23 mg (61% yield

based on iron) of brown solid. FT-IR (KBr, cm-1): 3130 (m, b); 2965, 2930 (m); 1734

(m); 1695 (s); 1548 (m); 1499 (m); 1470, 1451 (m); 1400 (m); 1361 (m); 1285 (s); 1195

a Abbreviations: BIPhMe: bis(1-methyl-2-imidazolyl)phenylmethoxymethane
tacn: 1, 4, 7-triazacyclononane
Me3tacn: 1, 4, 7-trimethyl-1, 4, 7-triazacyclonane
H 2 XDK: m-xylylenediamine bis(Kemp's triacid imide)



(s); 1088, 1072 (w); 986 (m); 959 (w); 899 (m); 762 (s); 721, 703 (m). UV/vis

(CH30H), Xmax, nm (a, M-1 cm-1): 342 (5030), 372 (4700), 490 (820), 718 (112). This

compound was also prepared by addition of 52 mg (0.185 mmol) of BIPhMe in 1

mL of DMF to 100 mg (0.093 mmol) of [Fe 20(XDK)(MeOH) 5 (H 20)](NO3)2 in 2.0

mL of DMF. The solution was stirred for 1 h as the color changed from green to

brown. Addition of 1 volume of benzene and vapor diffusion of Et 20 yielded 116

mg (80%) of 1. Anal. Calcd for 1.DMF.H 20, C67H 87N 13 0 2 1Fe2 : C, 52.87; H, 5.76;

N, 11.96. Found: C, 53.07; H, 5.79; N, 12.20. DMF is evident in the IR spectrum of

the vacuum-dried material as an additional carbonyl stretch at 1648 cm -1.

Preparation of [Fe20(XDK)(tacn) 2](BF4)2, 2. To a suspension of 28 mg

(0.048 mmol) of H 2XDK in 1.5 mL of methanol was added 13.5 gL (0.10 mmol) of

triethylamine. A suspension of 20 mg (0.069 mmol) of Fe(tacn)C13 in 1 mL of

MeOH was then added. To this suspension was added 58 mg (0.20 mmol) of solid

TI(BF4 ), yielding an orange solution with a mostly colorless precipitate, which

was removed by filtration. Red-orange crystals of the product were obtained by

mixing the orange solution with 1 volume of CH 2C12 and crystallizing by Et2 0

vapor diffusion. X-ray diffraction data were collected on one of these crystals,

and a crude crystal structure was obtained which revealed the expected

connectivity as well as the presence of a thallium atom in the lattice. Due to the

poor quality of the data, however, refinement of this structure was not

attempted. FT-IR (KBr, cm-1): 3310 (m, N-H); 3150 (m, b); 2978, 2933 (m); 2882

(w); 1730 (m); 1690 (s); 1533 (m); 1465 (m); 1403, 1364 (m); 1229 (w); 1199 (m); 1060

(vs); 928 (m); 764 (m); 743 (w). UV/vis (CH 2Cl2 ), Xmax, nm (e, M -1 cm-1): 336

(5430), 478 (986), 510 (sh), 740 (130).

Preparation of [Fe 20(XDK)(DMSO) 6](NO 3)2 -DMSO, 3.DMSO. A solution

of 200 mg of [Fe2 0(XDK)(MeOH) 5(H 20)](NO3)2 in 4.0 mL of DMSO was prepared

and filtered. Addition of 3-4 volumes of acetone and crystallization in an Et 20



vapor diffusion chamber yielded 190 mg (75%) of purplish plate-like crystals,

some of which were X-ray quality. Anal. Calcd. for C46H 80 N 40 2 2S7Fe 2 : C, 40.12;

H, 5.85; N, 4.07; S, 16.30. Found: C, 40.17; H, 5.88; N, 4.05; S, 15.40. Although the

%S is not within error, it can be explained by the partial evaporation of the lattice

DMSO molecule during vacuum drying. FT-IR (KBr, cm-1): 3130 (br); 2967, 2928

(m); 1732 (m); 1692 (s); 1546, 1508, 1463 (m); 1384, 1360 (s); 1282 (m); 1193 (s); 991,

958 (s); 763, 743 (m); 442 (s). UV/vis (DMSO), Xmax, nm (F, M-1 cm-1): 362 (4770),

476 (382), 590 (146).

Preparation of [Fe 2 (OH)(XDK)(BIPhMe)(H 20)(NO 3)3]-CH 3 OH.-5H 2 0,

4-CH 3OH.5H 2 0. To a suspension of 30 mg (0.052 mmol) of H 2XDK in 1.5 mL of

MeOH was added 42 mg (0.104 mmol) of Fe(NO 3 )3 .9H 20, generating

[Fe 2 0(XDK)(MeOH) 5 (H 20)](NO3)2 in situ. A solution of 14 mg (0.050 mmol) of

BIPhMe in 0.75 mL of MeOH was added dropwise over 20 min to the green

solution, with no significant color change. An equal volume of CH 2C12 was

added, and yellow crystals were obtained by Et 20 vapor diffusion. Yield 44 mg

(70%). Anal. Calcd. for C4 9H 73N 90 26Fe 2: C, 44.73; H, 5.59; N, 9.58. Found: C,

44.57; H, 5.61; N, 9.47. FT-IR (KBr, cm-1): 3140 (m); 2965, 2930 (m); 1736 (m); 1696

(s); 1538 (s); 1500 (s); 1462 (m); 1406, 1383, 1359 (m); 1282 (s); 1186 (s); 990 (m); 958

(m); 762 (s); 723, 703 (m); 439 (m). See below for a discussion of the UV/visible

spectrum.

Preparation of [Fe 20(XDK)(tacn)(BIPhMe)(H 2 0)](NO 3)2, 5(NO 3)2 . To a

solution of 625 mg (0.58 mmol) of [Fe 20(XDK)(MeOH) 5 (H2 0)](NO3)2 .4H 2 0 in 7.0

mL of DMF was added, dropwise over 10 min, a solution of 164 mg (0.58 mmol)

of BIPhMe in 1.0 mL of MeOH. After stirring for one hour, 75 mg of tacn in 1.5

mL of EtOH was added dropwise, changing the green solution to brown. The

product was precipitated from the reaction mixture by vapor diffusion of ether or

by mixing the solution with benzene or toluene, followed by vapor diffusion of



Et 20 or t-BuOMe, yielding 550 mg (69%) total. FT-IR (KBr, cm-1): 3304 (w); 2965

(m); 2930 (m); 1731 (m); 1691 (s); 1648 (m); 1543 (m); 1499 (m); 1464 (m); 1382 (s);

1362 (s); 1284 (m); 1195 (m); 1092, 988, 959 (w); 764 (m); 723, 703 (w); 428 (m).

UV/vis (DMF), ,max, nm (e, M-1 cm-1): 336 (6700), 366 (sh), 471 (1040), 498 (990),

743 (143) [726 (130) in CHC13; 700 (148) in DMSO]. Anal. Calcd. for

5(NO 3)2 .DMF.2H2 0, C5 7H 84N 120 20Fe 2: C, 50.00; H, 6.18; N, 12.28. Found: C,

49.76; H, 6.15; N, 12.29.

Complex 5 was also prepared with different counterions X = C104-, PF6 ,

and BF 4 - by addition of 4 equiv of Bu 4 NX to the reaction mixture before

crystallization. Crystals of the perchlorate salt were studied by X-ray diffraction,

but due to the poor quality of these crystals, the structure could not be solved.

The unit cell parameters obtained in the attempted structure solution are given

in Table 2.9. These crystals were also sent for analysis, and the results for C, H,

and N, as well as the size of the unit cell, are consistent with the composition

5(C10 4)2 .4DMF. Anal. Calcd. for C6 6H 101N 130 23C12Fe 2 : C, 48.72; H, 6.26; N, 11.19;

Cl, 4.35. Found: C, 48.55; H, 5.95; N, 11.28; Cl, 1.59. The %Cl is low despite the

presence of a strong perchlorate stretch in the IR spectrum. Partially replacing

C104- with NO3- leads to inconsistent results for C, H, and N.

Preparation of 5(BPh 4 )2 was attempted by precipitation of the complex

from a methanol solution of 5(NO 3 )2 with NaBPh 4, followed by recrystallization

from acetonitrile by ether vapor diffusion. Unfortunately, the precipitated

complex did not contain BIPhMe, as indicated by the absence of the IR stretch at

1284 cm-1. The BIPhMe ligand was also recovered in 100% yield from the

methanol supernatant.

Preparation of [Fe 20(XDK)(tacn)(BIPhMe)(N 3)](NO 3), 6(NO 3). To a

solution of 75 mg (5.5 x 10-5 mol) of 5(NO 3 )2 in 2.5 mL of acetonitrile was added

0.2 mL of a 0.28 M solution of NaN3 (5.5 x 10-5 mol total) in MeOH, resulting in a



darkening of the solution. After crystallization by Et 20 vapor diffusion, a

mixture of dark solids and pale, powdery clusters was collected. FT-IR of dark

solids (KBr, cm-1 ): 3304 (w); 2965 (m); 2931 (m); 2049 (s; N 3- stretch); 1731 (m);

1690 (s); 1558 (m); 1498 (m); 1460 (m); 1398 (s); 1384 (s); 1361 (s); 1284 (w); 1198 (m);

1089, 987, 959 (w); 764 (m); 723, 703 (w); 426 (w). UV/vis (DMF), Amax, nm (6, M-1

cm-1): 330 (6700), 431 (sh, -3200), 691 (150).

Reaction of 5(BF4 )2 with Hydrogen Peroxide. To a solution of 25 mg of 5

(BF 4)2 in 0.5 mL of DMSO mixed with 1.0 mL of DMF was added 10 drops of 30%

aqueous H 2 0 2 . The brown solution soon became paler, and bubbles began to

form after a few seconds. Less bleaching of the solution was observed in a

parallel experiment where DMSO was the only solvent. Gas evolution

continued for nearly an hour, but addition of more H 2 0 2 did not result in

resumed bubbling. Two weeks later, colorless crystals had grown in this

solution, which turned out to be H 2XDK.2DMSO, as indicated by crystallographic

chemical analysis (CCA).

In another experiment, addition of a 90-fold excess of nonaqueous H 20 2 to

15 mg of 5 (NO3)2 in 1.0 mL of DMF/DMSO did not result in any color change or

gas evolution over the course of 15 min. Subsequent addition of 1 drop of NEt3

resulted immediately in a rapid gas evolution and a darkening of the solution.

Later attempts to reproduce this result with 1 equiv each of H2 0 2 and NEt3 in

dilute solution were not successful. Only the addition of aqueous H 20 2 led to

evolution of gas, accompanied by a bleaching of the visible bands characteristic of

oxo-bridged diiron(III) complexes.

X-ray Crystallography

General Procedures. The data for all of the structures were collected on an

Enraf-Nonius CAD4 kappa geometry diffractometer using Mo Kcx radiation. Data

collection and reduction, including corrections for Lorentz and polarization



effects, were performed by using general procedures previously described. 21 No

appreciable decay was observed for any of the samples, as judged by periodic

monitoring of three standard reflections. Initial iron positions were obtained by

using the direct methods program SIR-92x for 2, 3, and 4. The remaining heavy

atoms were located with DIRDIF phase refinements and difference Fourier

maps. 22 The TEXSAN program package was used to refine the structures. 23 A

summary of data collection parameters for complexes 3 and 4 is given in Table

2.3, and the parameters used in obtaining the crude structure solution of 2 are

listed in Table 2.8.

[Fe 20(XDK)(DMSO) 61](NO 3)2-DMSO, 3-DMSO. A plate-like dichroic

green/purple crystal was mounted on a glass fiber under Paratone N oil. Data

collection and structure solution were carried out as described above. No

absorption correction was applied. All non-hydrogen atoms were refined

anisotropically except for those of a disordered lattice DMSO molecule, which

were refined by using isotropic temperature factors. An attempt to fit the

electron density of the disordered DMSO resulted in a model in which two

positions for the sulfur atom (S402, S403) and three positions (C403, C404, C409)

for the two methyl groups were assigned. Hydrogen atoms were included in the

final cycles of least-squares refinement at calculated positions. Hydrogen atoms

were not included for the disordered methyl groups. The largest electron density

peak in the final difference Fourier map was 0.9 e-/A3, located near a methyl

group (C9) of a bound DMSO molecule. Selected bond distances and angles for 3

are listed in Table 2.4, and the final positional and thermal parameters are given

in Table 2.6.

[Fe 2 (OH)(XDK)(BIPhMe)(H 20)(NO3)31-CH 3 OH.-5H 2 0, 4-CH 3OH-5H 2 0. A

pale yellow block, obtained by crystallization directly from the reaction mixture,

was mounted on the end of a glass fiber under Paratone N oil. Data collection



and structure solution were carried out as described above. No absorption

correction was applied. The positions of most non-hydrogen atoms in the

molecule were refined with anisotropic thermal parameters. The xylyl ring of

XDK was treated as a rigid body. Certain atoms of the two nitrates bound to Fe2,

including N9, 07, 08, 018, 020, 021, and 022, were refined with isotropic

thermal parameters. The disorder observed for atoms 07 and 021 in these

nitrates was modeled by isotropic refinement over two positions at half

occupancy each for each nitrate (07 and 08, 021 and 022). Atomic positions of

all the lattice solvents were refined with isotropic thermal parameters, those of

the dichloromethane molecule being refined at half occupancy. The hydrogen

atoms were included in calculated positions during the final cycles of least-

squares refinement. The largest electron density peak in the final difference

Fourier map was 1.2 e-/A 3 , located in the lattice near a water molecule. Selected

bond distances and angles for 4 are listed in Table 2.5, and the final positional and

thermal parameters are given in Table 2.7.

Results and Discussion

Synthesis of Diiron(III) Complexes with XDK. Early attempts to synthesize

an asymmetric diiron(III) complex were made by using a procedure in which two

different sources of iron were added sequentially to deprotonated XDK, as shown

in Method A in Figure 2.3. In theory, the first equivalent of iron could lead to a

mononuclear intermediate, which might then react with the second iron

compound to give an asymmetric, dinuclear final product.

Figure 2.3: Methods for Preparation of (XDK)diiron(III) Complexes

MeOH/CH 2 C12

Method A: H2XDK + 2NEt 3 + Fe(tacn)C13 + Fe(NO 3)3 9H 20 + BIPhMe > 1 or 2

DMF
Method B. [Fe2 0(XDK)(MeOH)5(H 2 0)](NO3 )2 + BIPhMe + tacn > 5 (NO3 )2



The isolation of compounds 1 and 2, however, demonstrates that addition of a

single equivalent of iron(III) to XDK, as in the preparation of 1, rapidly affords a

dinuclear oxo-bridged species, as indicated by the UV/visible spectrum of the

reaction mixture. Evidently, the self-assembly of an oxo-bridged diiron(III)

complex thermodynamically drives formation of dinuclear compounds. The

bis(BIPhMe) and bis(tacn) complexes (1 and 2) were also synthesized by direct

addition of 2 equiv of ligand to the XDK solvento complex,

[Fe 20(XDK)(MeOH)5(H20)](NO 3)2 . These two symmetric complexes proved

useful for comparison with the asymmetric hybrid of the two, complex 5, as

described below.

At the start of these investigations, the more sterically demanding

Me3tacn was used in place of tacn, primarily because it is incapable of forming

FeL2
n + complexes. When [Fe(Me3tacn)C13] was allowed to react with XDK, or

when Me3tacn was added directly to the XDK solvento complex, however, either

no oxo-bridged species could be detected at all by UV/vis spectrophotometry or

only starting material was recovered. The reason for these problems became

clear when the target complex was modeled on computer by using the CAChE

software. When Me3tacn binds to one iron of a diiron(III)-XDK core, two of the

methyl groups on the ligand lie within 2.5 A of methyl groups on XDK (Figure

2.4). This steric interaction almost certainly prevented formation of a compound

containing both XDK and Me3tacn.

An Asymmetric Diiron(III) Compound. Compound 5, which is designed

to have a coordination environment almost identical to that in

methemerythrin, is prepared in good yield by reacting a solvento complex first

with BIPhMe and then with tacn. The IR spectrum of the resulting material

revealed the presence of both of these ligands and XDK. This synthesis was

carried out in a variety of solvents, including methanol, DMSO, and DMF. It was



thought that strong coordination by solvent molecules such as DMSO would

slow formation of a bis(BIPhMe) complex prior to addition of tacn.

Crystallizations in DMSO often produced a green, crystalline side product,

however. No problems were observed with DMF, and fairly crystalline material

was often obtained from this medium. Such polar solvents appear to be

necessary to dissolve some of the salts of complex 5, especially the perchlorate,

whereas the nitrate salt is soluble in a somewhat broader range of solvents.

It has proved difficult to get X-ray quality crystals for purposes of

determining the precise structure of this putative asymmetric complex. Data

were collected on a few weak crystals of 5(C10 4 )2, but the structure could not be

solved. Unit cell parameters are listed in Table 2.6. The large volume, over

17200 A•, is consistent with eight molecules per unit cell, along with at least four

DMF molecules per complex. Based on current data, the space group appears to

be P222 (#16), although this assignment could change with better quality data. In

this space group, there would have to be two molecules in the asymmetric unit,

which, given the chiral nature of the supposed structure, may be an indication

that the crystal is a racemic mixture of the two stereoisomers.

A sample of 5(NO 3)2, prepared by a colleague24 and crystallized from

methanol, was submitted to analysis by MALDI mass spectrometry. Among the

many peaks in the mass spectrum was a broad peak with m/z = 1272,

corresponding to the molecular ion with methanol in the exchangeable site and

the nitrates ion-paired with the complex. Molecular ions were also observed for

XDK, BIPhMe, and tacn. More significantly, there were no peaks where the

molecular ions of 1 and 2 were expected. These data are consistent with the

proposed structure of 5, and indicate that the symmetric complexes are not major

contaminants.



Electronic Spectra. The spectroscopic properties of the oxo-bridged

diiron(III) core are sensitive to the ligand environment and provide some

support for the formulation of complex 5 as an asymmetric (R-oxo)(XDK)-

diiron(III) species containing BIPhMe and tacn. In particular, the lowest-energy

band in the UV/vis spectrum, assigned to the 6A 1-4[4T2]( 4G) ligand field

transition, shifts to higher wavelength with increasing numbers of nitrogen

donor atoms. 17 As shown in Table 2.1, the position of this band in the spectrum

of complex 5 falls between the corresponding bands in the spectra of the

bis(BIPhMe) and bis(tacn) complexes (1 and 2), in agreement with the

intermediate number of nitrogen ligands in the asymmetric complex. The

intensity of the absorbance at 366 nm in 5 is also intermediate in strength relative

to the other two complexes. Except for the peak at 496 nm, however, there is

little to distinguish the spectrum of 5 from that of a 50:50 mixture of 1 and 2,

owing to the breadth of the bands (Figure 2.9). The spectra in Table 2.1 and

Figure 2.9 were collected in DMSO because the relatively weak ligand field

contribution of the coordinated solvent molecule creates more of a difference in

the position of the low energy band. In other solvents, the position of this band

in the spectra of 1 and 5 shifts to longer wavelength, indicating the presence of at

least one exchangeable site where another solvent can bind.

Table 2.1: UV/vis Spectra of (g-Oxo)(XDK)diiron(III) Complexes in DMSO

Compound inmax (nm)

[Fe 20(XDK)(BIPhMe)(DMSO) 4](NO 3)2  364 474 632

[Fe 20(XDK)(BIPhMe)2(DMSO) 2](NO 3)2, 1 338 372 480 684

[Fe 20(XDK)(BIPhMe)(tacn)(DMSO)](NO 3)2 , 5 336 366(sh) 472 496 700

[Fe 20(XDK)(tacn) 2](BF 4)2, 2 336 478 510(sh) 740

A Model for Azidomethemerythrin. Addition of azide ion to the metHr

model complex 5 leads to a significant visible change and formation of compound



6, which presumably has azide bound in the one exchangeable site. Although the

crystal structure of this complex could not be obtained, spectroscopic

characterization of this product supports this formulation. In a titration of

complex 5 with sodium azide in DMF, an isosbestic point is observed at 729 nm,

the band at 743 nm being replaced by one at 691 nm arising from 6 (Figure 2.6).

This point is constant up through 0.9-1.0 equivalents of azide, beyond which all

absorbances above 625 nm decrease. Such behavior is consistent with formation

of a 1:1 complex with azide replacing the coordinated solvent molecule, followed

by decomposition of the complex, probably because additional azide must displace

other ligands, such as the carboxylates of XDK, in order to react.

Table 2.2: UV/vis Spectra of (g-Oxo)diiron(III) Azide Complexes

Compound _max_ (nm)
Azidomethemerythrin, HrN3 25 328 445 680

[Fe 20(XDK)(BIPhMe)(tacn)(N3)](NO 3), 6 330 430 (sh) 691

The spectroscopic properties of the azide adduct 6 correspond remarkably

well with those of azidomethemerythrin (azidometHr). In the IR spectrum, the

azide stretch of 2049 cm -1 for compound 6 is virtually identical to that observed in

azidomethemerythrin (2050 cm-1). 26 The UV/visible spectra of complex 6 and

HrN 3 correlate very well, too, as shown in Table 2.2. Difference spectra obtained

in the titration experiment cleanly reveal the growth of an absorption band at 430

nm, which is probably an azide-to-iron charge transfer transition. Previously

known model compounds with only tridentate nitrogen-donor capping ligands

have imitated the general features of azidometHr before,12' 27 but compound 6 is

the first to produce the same spectroscopic signature with a complex containing

azide.



Reactions with Hydrogen Peroxide. Addition of 10 drops of 30% aqueous

hydrogen peroxide to a solution of compound 5(NO 3)2 in DMF/DMSO led to gas

evolution and a bleaching of the solution. Bubbles continued to form gradually

for almost an hour in this case. In contrast, addition of non-aqueous H 20 2 did

not produce any change in the UV/visible spectrum of the complex. Subsequent

addition of a drop of triethylamine in one experiment led immediately to rapid

evolution of gas and a darkening of the solution. The latter result was not

reproducible in a more dilute solution, however, so the UV/visible spectrum of

the darker solution was not obtained. It was observed, on the other hand, that

the presence of triethylamine in a dilute solution of the complex promoted very

rapid gas evolution with each drop of aqueous H2 0 2 added, such that no more

bubbles were observed after a few seconds. Addition of triethylamine and

aqueous hydrogen peroxide to a solution containing the symmetric complex 1

resulted in immediate gas evolution and a color change to reddish brown,

whereas 1 was completely unreactive to aqueous H 20 2 alone.

The gas evolution observed in these experiments is most likely due to

catalytic disproportionation of hydrogen peroxide into dioxygen and water.

Dioxygen production was not quantitatively measured, but the amount of gas

evolved was qualitatively much more than a stoichiometric quantity (~0.5 mL of

gas at 25°C, 1 atm). Some water appears to be necessary, at least in most cases, but

also results in the decomposition of the complex. The presence of base clearly

promotes the reaction, perhaps by deprotonating H 2 0 2 , thereby allowing faster

reaction with the metal complex.

This disproportionation reaction is not catalyzed to any significant extent

by the symmetric bis(tacn) compound 2, so it seems that an open or labile

coordination site is necessary. In addition, the reactivity of the symmetric

bis(BIPhMe) complex 1 differs from that of the asymmetric compound 5 in that it



requires base for a reaction to occur at all. This difference may indicate that

different mechanisms are at work in the reactions catalyzed by complexes 1 and 5.

In the latter case, the reaction may proceed through a diiron(III) complex with

hydroperoxide bound in the open site, which decomposes to 02 in analogy to

dioxygen release from the protein (Figure 2.5). Such an intermediate has been

proposed for the catalase-like activity exhibited by a very similar compound

prepared by Wieghardt, et. al., which has the same asymmetric coordination

environment with one open site.16 In contrast, the mechanism involved in the

activity of complex 1 may require that H 2 0 2 be deprotonated twice in order to

bind as a 1,2-g-peroxo or to interact with another metal complex.

Significantly, catalase activity has not been observed for methemerythrin

itself, despite attempts to react it with hydrogen peroxide, 25 although the reduced

form, deoxyHr, reacts with H 20 2 to give hydroxymetHr. 28 The inability to obtain

the bound hydroperoxide of oxyhemerythrin with H 20 2 was attributed to the fact

that the protein is not stable at the high pH where significant amounts of HO2

are present in aqueous H 20 2 . This fact most likely does not explain the lack of

catalase activity in hemerythrin, however, since Wieghardt's asymmetric model

catalyzes the disproportionation reaction in aqueous solution at pH 4-6.16 The

main difference between oxyHr and the asymmetric model complexes appears to

be the stability of the hydroperoxide. In air-saturated buffer, the equilibrium

favors the oxyHr form of the protein, 25 whereas release of dioxygen is apparently

favored in the model complexes. A more positive redox potential for the model

complexes relative to the active site of hemerythrin or a more nucleophilic oxo

bridge might shift the equilibrium towards 02 release. This step could be

followed by rapid reduction of H 20 2 by the diiron(II) form of the complex. The

latter process could even be bimolecular, involving a reaction between a

diiron(III)-hydroperoxide complex and the reduced dinuclear metal center. Such



a mechanism would be blocked by the protein framework of hemerythrin, which

might explain why catalase activity is not observed for the protein.

A DMSO Solvento Complex. A new solvento complex, 3, with six DMSO

molecules bound to a (g-oxo)(XDK)diiron(III) core, can be isolated by dissolving

the previously known methanol solvento complex in DMSO, and crystallizing

with acetone and ether. Spectroscopically, the different solvent results in a shift

of the low energy band in the visible spectrum from 614 nm in methanol to 590

nm in DMSO, consistent with the weaker ligand field contribution of the DMSO

ligands. The coordinated solvent molecules are still easily replaced by added

ligands such as tacn and BIPhMe, allowing synthesis of compounds such as the

oxo-bridged analogue of complex 4 in an aprotic medium.

Compound 3 crystallizes in the triclinic space group Pi. An ORTEP

drawing of the structure is shown in Figure 2.7. The complex has the expected

core of two essentially octahedral iron atoms bridged by an oxo ligand and the

carboxylates of XDK. Six DMSO molecules are bound in the terminal sites

through the oxygen atom, with the methyl groups pointing away from the diiron

center. The primary deviation from octahedral of the geometry at each iron is

that all the O(oxo)-Fe-O(cis) angles are > 90' . The (g-oxo)(XDK)diiron(III) core of

this structure is very similar to the methanol solvento complex, with a slightly

wider Fe-O-Fe angle (125') relative to that of [Fe 20(XDK)(MeOH) 5 (H 20)] 2+

(1220).17 The Fe-O(DMSO) bond lengths are all roughly equivalent, regardless of

whether the ligand is cis or trans to the oxo bridge. This characteristic of

equivalent bond lengths is shared by several other complexes with only

monodentate capping ligands.17 Selected bond distances and angles for 3 are

given in Table 2.4, and final positional and thermal parameters are listed in

Table 2.6.



All the DMSO ligands bind to iron through the oxygen lone pair trans to

the methyl groups. This coordination mode allows a variety of different

orientations for the DMSO molecule relative to the Fe ...Fe vector. The distances

of the DMSO methyl groups from the nearest iron range from 4.0-4.6 A.

Interestingly, the lower limit of this Fe ... C distance supports the conclusion of

ENDOR studies of the mixed-valence form of MMOH treated with DMSO, in

which a 13C-labeled DMSO is proposed to be O-bound to iron(III) based on the

distance-dependent coupling between the unpaired electron and the 13 C

nucleus.29

Solid State Structure of a Hydroxo-Bridged Diiron(III) Complex. An

unusual carboxylate-bridged diiron(III)-XDK complex, [Fe 2(OH)(XDK)(BIPhMe)-

(H 20)(NO3)3 ] (4), is obtained in crystalline form by allowing the MeOH solvento

complex to react with one equivalent of BIPhMe. An ORTEP drawing of the

complex is shown in Figure 2.8 and selected bond distances and angles are given

in Table 2.5. The two iron atoms in the asymmetric neutral complex are

essentially octahedral and bridged by the carboxylates of XDK and a hydroxide

ion. BIPhMe and a nitrate occupy the terminal sites on Fel and two nitrates and

a water molecule are bound terminally to Fe2. The Fe-O(bridging) bond lengths

of 1.94 and 1.96 A and the relatively long Fe ...Fe distance of 3.45 A are typical of

hydroxide-bridged diiron(III) complexes. 30 The positive charge on the iron

atoms is balanced by XDK, the three nitrates, and the hydroxide. A strong

bifurcated hydrogen bond from the bridging hydroxide oxygen atom to two of the

nitrate oxygen atoms, 03 (03 ... 01, 2.80 A) and 07 (07.. 01, 2.79 A), also supports

hydroxide as the bridging moiety, although the hydrogen could not be located in

the difference Fourier map. The coordinated water molecule, 010, which is trans

to the hydroxo bridge, is also involved in hydrogen bonding to a water molecule

in the lattice, 019 (010.. 019, 2.6 A), which is in turn hydrogen-bonded to two



imide oxygens of the XDK ligand. Final positional and thermal parameters for 4

are listed in Table 2.7.

In solution, this mono(BIPhMe)-substituted compound is largely

deprotonated, existing as an oxo-bridged diiron(III), as evidenced by the

characteristic visible absorption bands at 474 and 632 nm (in DMSO). The

intensity of these features is significantly affected by solvent, though, being most

intense in solvents with a high dielectric constant, such as DMSO or DMF.

When the medium is a mixture of methanol and dichloromethane, as in the

crystallization, the absorptivity of the low energy band, which shifts to 670 nm in

methanolic solution, is reduced by roughly 25%. Under these conditions,

addition of only 0.1 equivalents of methanolic HNO3 causes the disappearance of

both ligand-field transitions. This behavior suggests that in methanolic solution,

the oxo-bridged species is in equilibrium with its hydroxo-bridged analogue. In

solvent systems with lower dielectric constants, the degree of protonation of the

oxo bridge is increased because coordination of the nitrate counterions is favored,

increasing the basicity of the oxo bridge by virtue of their charge, and stabilizing

the bridging hydroxide by hydrogen bonding.

Conclusion

None of the diiron(III) complexes described here is a functional model for

hemerythrin. The chemistry of complex 5, which has a set of donor atoms for

the diiron center that is almost identical to that found in Hr, does help to identify

the characteristics of the protein that are important to reversible dioxygen

binding. Five nitrogen donors and one open site, in addition to the two bridging

carboxylates and oxo or hydroxo bridge, are not sufficient to produce a functional

model. If a key intermediate in the catalase activity of the asymmetric model

complex is a bound hydroperoxide analogous to the structure of oxyHr, this



species is not as stable in the model compound as it is in hemerythrin. In the

protein such factors as the redox potential of the metal center or the pKa of the

hydroxo bridge may be tuned by the specific geometry of the active site to stabilize

the oxyHr form. Another important factor could be the protein framework

which prevents the bound hydroperoxide from reacting with another dinuclear

complex. Given the lack of such a framework in the model complex it is possible

that the catalase activity proceeds by an unknown mechanism, possibly

involving a bimolecular step, having nothing in common with reversible

dioxygen binding in hemerythrin. Further study of the kinetics of the

disproportionation reaction, and possibly reduction of the diiron(III) center, will

help to elucidate these issues.
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Table 2.3: Crystallographic Information for Complexes 3 and 4

Compound 3-2DMSO-Me 2 CO-H 2 0 4-5H20-0.5CH 2 C12
Formula C5 1H 94N 4 0 25 S8Fe 2  C4 8.5H70N 90 25C1Fe 2

Formula Weight, g/mol 1531.49 1326.3

Crystal Size, mm 0.6 x 0.29 x 0.06 0.38 x 0.30 x 0.23

Crystal System triclinic monoclinic

Space Group P1 C2/c

a, A 14.674(1) 25.394(8)

b, A 16.787(5) 17.400(2)

c, A 16.858(4) 32.934(9)

(X, deg 103.32(2)

3, deg 97.16(1) 113.95(3)

7, deg 114.79(2)

Volume, A3 3552(2) 13298(6)

Z 2 8
Density (calc.), g/cm3  1.43 1.31

Temperature, K 183.5 183.5

Abs. coeff., cm -1  7.19 5.54

Trans. coeff., min/max 0.755 - 1.000 0.948 - 1.000

20 Range, deg 3 < 20 < 48 3 < 20 < 48

Index Range +h, +k, +1 ±h, +k, +1

No. of data collected 11824 11234

p-factora 0.030 0.031

Ray 0.05 0.02

No. of independent data 11118 10825

No. of obs. unique datab 6833 4944

No. of parameters 794 667

Data/parameter ratio 8.6 7.4

Rc 7.21 10.36

Rw 7.47 12.74
GOF 1.74 2.82
Largest shift/esd, final 0.00 0.25

Largest peak, e-/A 3  0.9 1.2
a Used in the calculation of a(F 2 ). bObservation criterion I > 37(I). c R = 01Fo l-

IFCll/,IFol, Rw = [,w(IFol-IFcl)2 /ZwIF 0 j2]1/ 2, where w = 1/a 2 (F), as defined in ref 21.



Table 2.4: Selected Bond Distances and Angles for [Fe20(XDK)(DMSO) 6 ](NO3 )2 , 3

Fel-07(oxo)

Fel-01

Fel-O2

Fel-O3

Fel-0101

Fel-O201

Fel-07-Fe2

O1-Fel-O2

O1-Fel-O3

O1-Fel-07

01-Fel-0101

O1-Fel-O201

02-Fel-O3

02-Fel-07

02-Fel-0101

02-Fel-O201

03-Fel-07

03-Fel-0101

03-Fel-O201

07-Fel-0101

07-Fel-O201

O101-Fel-O201

Fel...Fe2

Fel ...C1

Fel...C2

Fel ... C3

Fel...C4

Fel ... C5

Fel...C6

Bond Distances (A)
1.799(5) Fe2-07(oxo)

2.089(5) Fe2-04

2.076(5) Fe2-05

2.077(5) Fe2-06

2.055(5) Fe2-0102

2.045(5) Fe2-O202

Bond Angles (deg)

125.2(3) 04-Fe2-05

85.3(2) 04-Fe2-06

87.3(2) 04-Fe2-07

93.8(2) 04-Fe2-0102

170.5(2) 04-Fe2-O202

87.2(2) 05-Fe2-06

85.0(2) 05-Fe2-07

95.2(2) 05-Fe2-0102

88.4(2) 05-Fe2-O202

166.7(2) 06-Fe2-07

178.9(2) 06-Fe2-0102

85.1(2) 06-Fe2-O202

83.7(2) 07-Fe2-0102

93.8(2) 07-Fe2-O202

0102-Fe2-O20296.3(2)
97.6(2)

Intramolecular Distances (A)

3.19 A
4.55 A Fe2 ...C7

3.99 Fe2 ... C8

4.00

4.61

4.35

4.40

Fe2 ... C9

Fe2 ...C10

Fe2 ... C11I

Fe2 ...C12

1.795(5) A
2.077(5)

2.082(5)

2.086(5)

2.058(5)

2.065(5)

86.3(2)

87.4(2)

93.7(2)

171.6(2)

86.8(2)

85.0(2)

97.3(2)

89.1(2)

166.5(2)

177.5(2)

85.2(2)

83.2(2)

93.8(2)

94.7(2)

96.3(2)

4.00 A

4.56

4.33

4.53

4.54

4.28



Table 2.5: Selected Bond Distances and Angles for 4

Fel-Ol(hydroxo)

Fel-O2

Fel-N3

Fel-N5

Fel-0101

Fel-O201

Fel-O1-Fe2

O1-Fel-O2

01-Fel-0101

O1-Fel-O201

O1-Fel-N3

O1-Fel-N5

02-Fel-0101

02-Fel-O201

02-Fel-N3

02-Fel-N5

O101-Fel-O201

O101-Fel-N3

O101-Fel-N5

0201-Fel-N3

0201-Fel-N5

N3-Fel-N5

Fel ... Fe2

010.. --019(water)

1.96 A
2.04

2.08

2.07

1.98

2.01

124.1

94.7

89.8

90.3

94.5

87.2

175.5

85.0

89.3

88.1

95.2

90.2

87.3

172.8

89.7

85.8

Bond Distances (A)
Fe2-Ol(hydroxo)

Fe2-05

Fe2-018

Fe2-O10(water)

Fe2-0102

Fe2-O202

Bond Angles (deg)

O1-Fe2-05

O1-Fe2-O10

O1-Fe2-018

O1-Fe2-0102

O1-Fe2-O202

O5-Fe2-O10

05-Fe2-018

05-Fe2-0102

05-Fe2-O202

O10-Fe2-018

O10-Fe2-0102

O10-Fe2-O202

018-Fe2-0102

018-Fe2-O202

0102-Fe2-O202

Intramolecular Distances (A)

3.45 01 ...03

2.54 01 ... 07

1.94 A

2.00

2.00

2.04

2.00

2.04

94.7

173.6

94.5

90.6

90.0

88.1

92.5

173.9

85.8

91.1

87.0

84.5

84.0

175.3

97.2

2.80

2.79



Table 2.6. Final Atom Positional and Equivalent Isotropic Thermal Parameters
for [Fe 2 0(XDK)(DMSO) 6 ] (NO 3 )2 .2DMSO-Me 2CO.H 2 0,
3.2DMSO-Me 2 CO-H 2 0. a

atom
Fe(1)
Fe(2)
S(1)
S(2)
S(3)
S(4)
S(5)
S(6)
S(401)
S(402)
S(403)
0(1)
O(2)
0(3)
0(4)
0(5)
0(6)
0(7)
0(101)
0(102)
O(103)
O(104)
0(201)
0(202)
0(203)
0(204)
O(401)
0(402)
0(403)
0(404)
O(405)
0(406)
0(407)
0(408)
O(410)
O(411)
N(101)
N(201)
N(401)
N(402)

x
0.88768(8)
0.90656(9)
0.7306(2)
1.0255(2)
0.9424(2)
0.7652(2)
1.0672(2)
0.9940(2)
0.5620(3)
0.567(1)
0.5035(8)
0.7481(4)
0.9569(4)
0.8986(4)
0.7723(4)
0.9819(4)
0.9363(4)
0.8805(4)
1.0332(4)
1.0483(4)
1.1685(4)
1.2086(4)
0.8048(4)
0.8229(4)
0.8159(4)
0.8468(4)
0.3292(9)
0.309(1)
0.3457(8)
0.1739(9)
0.115(2)
0.2392(9)
0.4854(7)
0.5374(8)
0.7142(6)
0.777(1)
1.1866(5)
0.8296(5)
0.3255(7)
0.194(1)

y
0.22932(8)
0.04719(8)
0.1557(2)
0.3978(2)
0.4039(2)
-0.1664(2)
-0.0229(2)
0.0008(1)
0.3255(2)
0.4658(9)
0.4215(7)
0.2005(3)
0.2935(4)
0.3568(3)
-0.0712(3)
0.0026(4)
-0.0335(3)
0.1196(3)
0.2797(4)
0.1517(3)
0.4472(4)
0.1967(4)
0.1866(4)
0.0620(3)
0.2999(4)
0.0419(4)
0.0492(8)
-0.0671(8)
-0.0477(7)
0.4292(7)
0.298(1)
0.3634(8)
0.3599(6)
0.3761(8)
0.4056(5)
0.3975(9)
0.3199(4)
0.1707(4)
-0.0242(7)
0.373(1)

z
0.19014(7)
0.19179(7)
0.0185(1)
0.1313(2)
0.3454(1)
0.1089(2)
0.1339(2)
0.3507(1)
0.2372(2)
0.8610(8)
0.8509(6)
0.1120(3)
0.1067(3)
0.2510(3)
0.1198(4)
0.1088(3)
0.2581(3)
0.1389(3)
0.2662(3)
0.2653(3)
0.4581(4)
0.4660(4)
0.2744(3)
0.2789(3)
0.4825(4)
0.4740(4)
0.2616(8)
0.1797(6)
0.3076(6)
0.8641(6)
0.8365(10)
0.9296(7)
0.2230(7)
0.8978(7)
0.9964(5)
0.7736(8)
0.4567(4)
0.4795(4)
0.2491(7)
0.8748(7)

B(eq)b
1.32(3)
1.60(3)
2.25(5)
2.52(5)
2.62(5)
3.03(6)
3.52(7)
2.23(5)
6.2(1)

18.0(4)
2.5(2)
1.9(1)
2.3(1)
1.9(1)
2.4(1)
2.5(1)
2.0(1)
1.7(1)
1.8(1)
1.8(1)
2.5(1)
2.7(2)
1.7(1)
1.6(1)
2.7(2)
2.1(1)

11.0(4)
10.2(4)

9.0(3)
9.2(4)

19.8(7)
9.8(4)
8.7(3)

10.2(3)
6.1(2)

12.4(5)
1.9(2)
1.6(2)
3.8(2)
9.3(5)



Table 2.6 contd. Final Atom Positional and
Parameters for 3.2DMSO-Me 2CO-H2O.a

atom
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
C(101)
C(102)
C(103)
C(104)
C(105)
C(106)
C(107)
C(108)
C(109)
C(110)
C(111)
C(112)
C(201)
C(202)
C(203)
C(204)
C(205)
C(206)
C(207)
C(208)
C(209)
C(210)
C(211)
C(212)
C(301)
C(302)
C(303)
C(304)
C(305)

x
0.6339(8)
0.6518(6)
0.9399(8)
1.0894(9)
1.0416(8)
0.849(1)
0.7044(8)
0.6598(8)
1.019(1)
1.1586(9)
0.9286(7)
1.1105(7)
1.0844(6)
1.2135(6)
1.2331(6)
1.1827(7)
1.3543(7)
1.3907(6)
1.1979(6)
1.2487(6)
1.2984(6)
1.3738(6)
1.3150(6)
1.2669(6)
0.7743(6)
0.7895(6)
0.7718(6)
0.5984(6)
0.6389(7)
0.6059(7)
0.6609(6)
0.6412(6)
0.6714(6)
0.6195(6)
0.6543(6)
0.6272(6)
1.0080(6)
1.1122(6)
1.1487(6)
1.0770(7)
0.9710(6)

y
0.1806(6)
0.0350(6)
0.4430(7)
0.4093(7)
0.5148(6)
0.4370(8)
-0.2056(7)
-0.2364(6)
-0.139(1)
0.0185(9)

-0.0952(6)
-0.0083(6)
0.2348(6)
0.4025(5)
0.2618(6)
0.2576(6)
0.5366(6)
0.2517(7)
0.2830(6)
0.3889(6)
0.4300(6)
0.3934(6)
0.2882(6)
0.2471(6)
0.1080(5)
0.0751(6)
0.2170(6)
0.0165(6)
-0.0679(6)
0.2204(7)
0.0601(6)
-0.0156(5)
0.0167(5)
0.0763(6)
0.1590(6)
0.1306(6)
0.2445(6)
0.2992(6)
0.3350(6)
0.3175(6)
0.2615(5)

z
-0.0277(6)
-0.0005(5)
0.1039(7)
0.0479(7)
0.3515(7)
0.3756(7)
0.1859(7)
0.0195(6)
0.076(1)
0.0760(7)
0.3867(6)
0.3483(6)
0.2671(5)
0.4385(5)
0.4394(5)
0.1623(6)
0.4159(7)
0.4154(6)
0.2597(5)
0.2957(6)
0.3912(6)
0.4146(6)
0.3921(6)
0.2970(6)
0.2843(5)
0.4636(5)
0.4671(5)
0.2012(5)
0.4629(6)
0.4682(6)
0.2935(5)
0.3342(5)
0.4308(5)
0.4639(6)
0.4334(5)
0.3388(5)
0.4695(5)
0.5099(5)
0.5945(5)
0.6428(5)
0.6055(5)

B(eq)b
3.3(2)
2.5(2)
4.3(3)
4.4(3)
4.6(3)
5.5(4)
4.4(3)
4.6(3)

10.3(5)
5.4(4)
2.9(2)
3.2(2)
1.5(2)
1.9(2)
2.0(2)
3.0(2)
4.0(3)
3.1(2)
2.0(2)
2.4(2)
2.5(2)
2.7(2)
2.2(2)
2.4(2)
1.6(2)
1.7(2)
1.8(2)
2.4(2)
3.1(2)
3.1(2)
1.8(2)
1.9(2)
2.0(2)
2.5(2)
1.9(2)
2.1(2)
1.9(2)
2.0(2)
2.2(2)
2.3(2)
1.9(2)

Equivalent Isotropic Thermal



Table 2.6 contd. Final Atom Positional and Equivalent Isotropic Thermal

Parameters for 3.2DMSO.Me 2CO.H 2 0.a

atom x y z B(eq)b

C(306) 0.9386(6) 0.2266(5) 0.5201(5) 1.6(2)
C(307) 1.2620(7) 0.3925(6) 0.6383(6) 3.7(2)
C(308) 0.8947(7) 0.2442(7) 0.6596(6) 3.4(2)
C(401) 0.4980(9) 0.2054(8) 0.1801(8) 6.0(4)
C(402) 0.6475(9) 0.3600(8) 0.1705(8) 6.7(4)
C(403) 0.471(2) 0.505(2) 0.905(1) 14.1(8)
C(404) 0.496(2) 0.409(2) 0.756(2) 13.9(9)
C(409) 0.645(3) 0.532(3) 0.875(2) 5.5(8)
C(410) 0.7343(9) 0.3196(7) 0.7623(9) 4.7(3)
C(411) 0.802(1) 0.3043(10) 0.842(1) 10.2(5)
C(412) 0.631(1) 0.254(1) 0.747(1) 10.9(6)

a Numbers in parentheses are errors in the last significant digit. b B(eq) =

4/3[a2 p11 + b2 P22 + c2j33 + 2ab cos(y)312 + 2ac cos(P)P13 + 2bc cos(o()P 23] .



Table 2.7. Final Atom Positional and Equivalent Isotropic Thermal Parameters

for [Fe 2 (OH)(XDK)(BIPhMe)(H20)(NO 3 )3]-5H 20.0.5CH 2C12, 4.5H 2 0-0.5CH 2C12.a

atom x y z B(eq)b

Fe(1) 0.3518(1) 0.0169(1) 0.33111(7) 1.99(6)
Fe(2) 0.2107(1) 0.0785(1) 0.28973(8) 2.32(6)
Cl(1) 0.4370(9) 0.137(1) 0.1122(7) 13.9(7)
Cl(3) 0.468(1) 0.256(2) 0.1811(10) 21(1)
O(1) 0.2762(4) 0.0336(6) 0.2823(3) 2.0(3)
0(2) 0.3968(5) 0.0689(7) 0.2996(4) 3.3(3)
0(3) 0.3416(7) 0.0420(9) 0.2314(4) 5.5(5)
0(4) 0.4192(7) 0.1075(9) 0.2470(5) 6.2(5)
0(5) 0.1874(5) 0.1451(7) 0.2358(4) 3.8(4)
0(6) 0.1662(7) 0.1773(9) 0.1680(5) 6.8(5)
0(7) 0.212(1) 0.074(2) 0.1939(9) 5.1(7)
0(8) 0.241(1) 0.113(2) 0.2042(9) 4.3(6)
0(9) 0.4791(5) -0.1949(6) 0.3880(4) 2.9(3)
O(10) 0.1483(4) 0.1308(6) 0.3039(3) 2.7(3)
O(18) 0.1561(7) -0.0048(9) 0.2564(5) 6.6(4)
O(19) 0.1725(7) 0.1746(9) 0.3832(5) 7.4(5)
0(20) 0.0936(7) -0.065(1) 0.2004(6) 7.6(5)
O(21) 0.085(1) 0.060(2) 0.2092(9) 7.0(7)
0(22) 0.165(2) -0.011(2) 0.203(1) 5.8(9)
0(24) 0.0437(6) 0.072(2) 0.2918(7) 14.5(9)
0(26) 0.174(2) 0.101(3) 0.050(2) 8(1)
0(27) 0.258(1) 0.129(2) 0.1146(10) 8.8(9)
0(30) 0.109(2) 0.092(3) 0.048(2) 10(1)
0(33) 0.307(2) 0.123(2) 0.126(1) 6(1)
0(35) 0.327(3) 0.140(4) 0.106(2) 10(1)
O(101) 0.3141(5) -0.0353(7) 0.3656(3) 2.6(3)
O(102) 0.2252(5) 0.0113(7) 0.3426(3) 2.5(3)
O(103) 0.3638(5) -0.0435(7) 0.4802(4) 3.1(3)
O(104) 0.1789(5) 0.0383(7) 0.4260(4) 3.5(3)
O(201) 0.3488(5) 0.1221(6) 0.3550(3) 2.3(3)
0(202) 0.2607(5) 0.1688(6) 0.3231(3) 2.2(3)
0(203) 0.4293(5) 0.2042(7) 0.4611(4) 3.0(3)
0(204) 0.2482(5) 0.2957(7) 0.4015(4) 2.8(3)
N(1) 0.3846(8) 0.0720(10) 0.2581(6) 3.9(5)
N(2) 0.1931(7) 0.1369(10) 0.2004(5) 4.0(5)
N(3) 0.3653(6) -0.0886(8) 0.3073(4) 2.1(3)
N(4) 0.4008(6) -0.1938(8) 0.2934(5) 2.7(4)
N(5) 0.4294(5) -0.0029(7) 0.3843(4) 2.2(3)
N(6) 0.5118(5) -0.0469(8) 0.4310(4) 2.3(3)
N(9) 0.121(1) -0.009(2) 0.2179(8) 9.0(7)
N(101) 0.2714(6) -0.0054(7) 0.4527(4) 2.1(3)
N(201) 0.3391(6) 0.2463(8) 0.4282(4) 2.0(3)



Table 2.7 contd. Final Atom Positional and

Parameters for 4-5H 20-0.5CH 2 C12-a
atom
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
C(14)
C(15)
C(16)
C(101)
C(102)
C(103)
C(104)
C(105)
C(106)
C(107)
C(108)
C(109)
C(110)
C(111)
C(112)
C(201)
C(202)
C(203)
C(204)
C(205)
C(206)
C(207)
C(208)
C(209)
C(210)
C(211)
C(212)

x
0.4095(7)
0.3263(7)
0.3469(7)
0.4399(9)
0.4672(7)
0.4508(8)
0.5013(8)
0.5644(8)
0.4666(7)
0.4380(8)
0.5160(7)
0.5143(8)
0.5558(9)
0.6024(9)
0.6041(9)
0.5616(8)
0.2639(9)
0.3137(8)
0.2127(8)
0.2273(8)
0.3381(9)
0.1312(10)
0.2419(8)
0.2876(8)
0.2936(8)
0.2358(9)
0.1922(8)
0.1853(8)
0.3156(8)
0.3968(8)
0.2954(8)
0.3331(8)
0.4779(8)
0.2775(8)
0.3378(7)
0.4015(7)
0.4131(7)
0.3794(8)
0.3134(7)
0.3021(7)

y
-0.1335(10)
-0.120(1)
-0.184(1)
-0.263(1)
0-.0585(9)

0.046(1)
0.020(1)
-0.093(1)
-0.1258(9)
-0.211(1)
-0.1164(9)
-0.050(1)
-0.036(1)
-0.086(1)
-0.153(1)
-0.167(1)
-0.0418(10)
-0.061(1)
-0.016(1)
-0.166(1)
-0.199(1)
-0.111(1)
-0.122(1)
-0.1641(10)
-0.144(1)
-0.156(1)
-0.102(1)
-0.119(1)
0.174(1)
0.247(1)
0.2990(9)
0.243(1)
0.321(1)
0.429(1)
0.253(1)
0.265(1)
0.303(1)
0.375(1)
0.3584(10)
0.3232(10)

z
0.3218(5)
0.2687(5)
0.2600(5)
0.2962(7)
0.3917(5)
0.4201(6)
0.4486(5)
0.4527(6)
0.3621(5)
0.4062(6)
0.3470(5)
0.3223(6)
0.3060(7)
0.3172(7)
0.3424(7)
0.3581(6)
0.3601(5)
0.4634(5)
0.4344(5)
0.3232(6)
0.4859(6)
0.4232(6)
0.3687(5)
0.4066(5)
0.4538(6)
0.4549(5)
0.4232(6)
0.3753(6)
0.3381(5)
0.4339(5)
0.4027(5)
0.2809(6)
0.4300(6)
0.3711(6)
0.3290(5)
0.3601(5)
0.4065(5)
0.4003(5)
0.3771(5)
0.3308(6)

B(eq)b
2.2(4)
2.4(4)
2.4(4)
4.8(6)
1.8(4)
3.3(5)
3.4(5)
3.9(5)
2.2(4)
3.5(4)
1.7(3)
3.0(4)
4.6(5)
4.9(5)
5.0(5)
3.8(4)
2.4(5)
2.4(5)
2.6(5)
3.4(5)
4.0(5)
5.6(7)
2.6(5)
2.8(5)
2.6(5)
3.4(5)
2.8(5)
3.4(5)
2.4(5)
2.4(4)
2.0(4)
3.1(5)
3.7(5)
3.8(5)
2.5(4)
2.6(5)
2.4(4)
2.9(5)
2.3(4)
2.9(5)

Equivalent Isotropic Thermal



Table 2.7 contd. Final Atom Positional and Equivalent Isotropic Thermal

Parameters for 4.5H 2 0-0.5CH 2C12 .a
atom x y z B(eq)b
C(301) 0.3051(5) 0.1212(7) 0.4412(3) 4.4569
C(302) 0.2892(5) 0.0718(5) 0.4676(4) 4.4569
C(303) 0.2914(5) 0.0969(6) 0.5084(4) 4.4569
C(304) 0.3094(5) 0.1716(7) 0.5229(3) 4.4569
C(305) 0.3252(5) 0.2210(5) 0.4965(4) 4.4569
C(306) 0.3231(5) 0.1959(6) 0.4556(4) 4.4569
C(307) 0.2771(8) 0.043(1) 0.5390(5) 3.0(5)
C(308) 0.3479(8) 0.301(1) 0.5129(5) 3.4(5)
C(401) 0.460(2) 0.166(3) 0.158(2) 8(1)
C(402) 0.037(2) 0.076(3) 0.336(2) 5(1)

a Numbers in parentheses are errors in the last significant digit. b B(ea) =

4/3[a2 p11 + b 2 P22 + C2P33 + 2ab cos(y)Pl12 + 2ac cos(f)P 13 + 2bc cos(o()P23-].
- - O - Q/ \- 11



Table 2.8: Crystallographic Information for Complex 2

Compound 2-TI(BF 4 ).2CH 3OH a

Formula C46H 76N8011BF4 Fe2 TI

Formula Weight, g/mol 1531.49

Crystal Size, mm not measuredb

Crystal System orthorhombic

Space Group Pnnm

a, A 33.75(2)

b, A 12.61(1)

c, A 17.02(1)

Volume, A3 7245(8)

Z 4c

Density (calc.), g/cm3  1.58

Temperature, K 183.5

Abs. coeff., cm -1  28.47

Trans. coeff., min/max 1.000- 1.000

20 Range, deg 3 < 20 < 45

Index Range +h, +k, +1

No. of data collected 5293

p-factor 0.030

Ray 0.00

No. of independent data 5293

No. of obs. unique data 1556

No. of parameters 203

Data/parameter ratio 7.7

R 13.5

Rw 15.7

GOF 2.54

Largest shift/esd 2.57

a This composition is an estimate based on what could be seen in the lattice.
Elemental analysis was not obtained. b The crystal broke apart after data
collection as measurement was being attempted. c The Fe-O-Fe plane sits on a
mirror plane, so the asymmetric unit is actually half of the molecule.
Note: Because the crystal quality was low, resulting in very little observed data, a
fully refined solution was not attempted.



Table 2.9. Unit cell Parameters,

Compound
Formula
Formula Weight, g/mol

Crystal Size, mm

Crystal System
Space Group
a,A
b, A
c, A
oc, deg

f3, deg
y, deg
Volume, A~3
Z

[Fe20(XDK)(tacn)(BIPhMe)(H 20)](C10 4)2, 5(C10 4)2

5(C10 4)2.4DMF

C66H 101N 130 23C12Fe2

1627.2
0.3 x 0.23 x 0.1
orthorhombic
P 222(#16)
16.82(2)
26.90(2)

38.25(2)
90.00
90.00
90.00
17310(33)
8

The structure was unsolvable, due to the poor quality of the data (e.g., R(int) = 0.11)
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Figure 2.4: Results of CAChE Computer Modeling of Me3tacn Bound to

[Fe20(XDK)]2+
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Figure 2.5: Proposed mechanism for catalase activity of complex 5, based on known

reactions of hemerythrin.



LOl0
0

o-:

0

0

o bo

,cQ)

o I0

oCoro

o

C0Ln

C.)14

LOC)c5

CJ

X

0

0
0

o

0

(N (N rli 0-

C 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 •



04 C10

07

03

Figure 2.7: ORTEP diagram of the cation in 3, [Fe 20(XDK)(DMSO) 6]2+, showing 50%

probability thermal ellipsoids for all non-hydrogen atoms.
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Figure 2.8: ORTEP diagram of compound 4, [Fe2(OH)(XDK)(BIPhMe)(H 20)(NO3)3],

showing 50% probability thermal ellipsoids for all non-hydrogen atoms.
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Chapter 3

Zeolite-Encapsulated Iron Complexes



Introduction

A great deal of interest has arisen in recent years in mimicking the activity

of non-heme iron metalloenzymes. These proteins catalyze a number of

important oxidation reactions with dioxygen, including the hydroxylation of

methane by methane monooxygenase, 1 ring cleavage by extradiol catechol

dioxygenase, 2 and the generation of a tyrosyl radical by the iron center in

ribonucleotide reductase. 3 In the biological systems, the protein framework is

often responsible for the selectivity of the enzyme, and also protects reactive

intermediates formed at the metal active site, preventing their decomposition by

bimolecular pathways involving other metal complexes. Most model complexes

lack such a protective sheath, with the result that bimolecular decomposition can

often inactivate a small complex which might otherwise exhibit biomimetic

oxidation activity.

One promising method for replicating the effect of the protein framework

is to encapsulate a model compound inside a zeolite or clay. Model complexes

contained in the large cavities of a zeolite are immobilized if they are too large to

diffuse through the smaller pores, and the zeolite lattice can also impart some

shape selectivity. This strategy has been successfully applied to

metalloporphyrins and metallophthalocyanines in zeolite Y.4 The traditional

way that iron phthalocyanines (FePc) have been prepared inside zeolite Y is by a

template synthesis where dicyanobenzenes are allowed to react with Fe2 +-

exchanged zeolite Y. Increased catalytic turnover was observed for the zeolite-

encapsulated complexes in the oxidation of hydrocarbons, and smaller substrates

were selectively oxidized over larger hydrocarbons.4' 5 Even better results were

obtained by embedding FePc-Y in a polydimethylsiloxane membrane, producing

an efficient mimic of cytochrome P-450. In general, turnover number was



higher when the loading of complex in the zeolite was low, resulting in less pore

blockage.4 ,5

Zeolites are also capable of stabilizing catalytically active metal centers

without the use of any external ligands. Metal ions such as titanium can be

incorporated into the lattice, turning the zeolite into a catalyst for the oxidation

of a range of hydrocarbons by hydrogen peroxide. 7 A similar example is the

zeolite FeZSM-5, in which some of the irons move out of the lattice during

calcination, forming iron oxide complexes that are proposed to be dinuclear. 8

This material can use N 20 catalytically to convert benzene to phenol or to

oxidize methane stoichiometrically. 9' 10

Large a

Figure 3.1: Faujasite

Up to now, there have been no published investigations of encapsulated

iron complexes that did not involve porphyrin or porphyrin-like ligands, such as

FeIII(salen) complexes. 4' 11 A major goal of the research described here is to

encapsulate models of non-heme iron enzymes in a zeolite in the hope that new

catalysts for hydrocarbon oxidation may be found. Studies in our laboratory have

shown that the dioxygen adducts initially formed from many diferrous

complexes decompose by bimolecular pathways. 12 ,13 Isolating complexes from

each other in zeolite cages should increase the lifetimes of the diiron(III) peroxo



intermediates, possibly leading to more reactive intermediates through cleavage

of the O-O bond.

The zeolite used in this research is an essentially pure silica version of

faujasite and is relatively uncharged and hydrophobic compared to most zeolites.

This neutrality should help to limit side reactions catalyzed by acid sites in the

framework, allowing activity due to the encapsulated iron complexes themselves

to be investigated. In addition, the hydrophobicity of the zeolite should aid in

the uptake of hydrocarbon substrates. The difficulty in this work has been

knowing whether or not a complex has been formed inside the zeolite. Partial

success in forming complexes has been achieved, but in many cases it is unclear

whether or not the iron atom is bound to the ligand. In addition, partial

oxidation of cyclohexene with hydrogen peroxide has been observed with iron-

containing faujasites, although this activity apparently does not require a ligand.

The results described here suggest a degree of complexity in the behavior of

ligands and metal ions in the faujasite, and a clear understanding of the nature

and role of ligand complexes in the zeolite will require more detailed studies of

these materials.

Experimental

General. The high-silica faujasite, a research sample from TOSOH, was a

gift from Professor Marc Davis at the California Institute of Technology. It has a

Si/Al ratio of 300 and contains 4.2 x 1020 supercages per gram. The supercages are

13 A in diameter, and the pores between supercages are 7.5 A in width.

Methanol used in ligand impregnation was dried over 4 A molecular

sieves. All other solvents were dried and distilled under nitrogen by standard

procedures.



The ligands HPTP,14 Me3tacn,15 and KHBpz 3 ,16 and the iron complex

[Fe 2(HPTP)(OBz)](BPh 4 )214 were prepared according to literature methods.

Tetramethylammonium benzoate and 2-picolinic acid were purchased and used

as received. Cyclohexene was refluxed over CaH 2 and distilled under argon.

Non-aqueous hydrogen peroxide was prepared by vacuum distillation of

water from 50% aqueous H 20 2 into a flask cooled with liquid nitrogen. Volume

decreased from 15 mL to 5 mL during the distillation, leaving about 98% pure

H 20 2 in the distilling flask, which was diluted with 15 mL of dry, distilled

acetonitrile. CAUTION: Pure hydrogen peroxide is an explosion hazard. The

apparatus shoud be kept behind a blast shield until the H 20 2 is diluted with

solvent.

All iron-containing faujasites were prepared in a nitrogen-filled Vacuum

Atmospheres dry box. Ligand impregnation procedures, up to the filtration step,

were carried out under argon using standard Schlenk techniques.

Thermogravimetric analysis (TGA) was carried out by Kurt Kendall on a

TA Instruments SDT-2960 in the laboratory of Professor Hanno zur Loye at MIT.

Solid State NMR. Solid state 13C spectra were collected on a Unity 300

MHz instrument with a Magic Angle Spinning (MAS) probe. The spectra were

cross-polarized with a pulse of 0.3 ms contact time and proton-decoupled.

Samples were spun at 4.5 - 6 kHz during overnight acquisitions of -10,000

transients.

Preparation of HPTP-FAU. A 0.50-g sample of TOSOH high-silica faujasite

was activated by heating under vacuum at 100°C for 4 h. After cooling, a

solution of 16 mg (3.5 x 10-5 mol; 1 ligand/10 supercages) of HPTP in MeOH

(dried over molecular sieves) was added with enough MeOH to cover the

faujasite, and the slurry was refluxed with vigorous stirring for 36 hours. The

faujasite was then isolated by filtration and washed several times with MeOH,



stirred with fresh MeOH, and filtered and washed again. It was dried by heating

under vacuum at 80'C for 2 h. A total of about 4 mg of HPTP was recovered

from the washings, indicating that 12 mg (2.4% by weight) remained in the

faujasite. Thermogravimetric analysis (TGA) of a portion of this material

confirmed that approximately 2.2% of the sample weight was lost between 200 0C

and 600'C, presumably from combustion of the organic material. This level of

loading corresponds to one ligand/14 supercages.

A higher loading of HPTP in the high-silica faujasite was also prepared by

the same method by using 160 mg (0.35 mmol; 1 ligand/supercage) of HPTP and

0.50 g of faujasite in the methanol slurry. About 95 mg of ligand was recovered

in the washings in this case, indicating that 65 mg (1 ligand/2.5 supercages)

remained in the zeolite. An attempt to increase the loading even further by

reactivating the partially impregnated faujasite and refluxing it for 5 days in

MeOH with the remaining 95 mg of HPTP resulted in complete recovery of the

excess ligand.

Preparation of [Fe 2(HPTP)]3+-FAU. A 0.2-g sample of HPTP-FAU (1

ligand/14 supercages) was dried overnight at 80'C under vacuum and brought

into a dry box. This material was mixed with a solution of 7 mg (2.1 x 10-5 mol; 1

Fe/7 supercages) of [Fe(H 20) 6](BF 4)2 in a minimal amount of MeOH and 1 mg (1

x 10-5 mol) of NEt 3 . The resulting bright yellow slurry was stirred at room

temperature overnight and filtered to isolate the yellow faujasite. The initial

filtrate was also yellow, but subsequent MeOH washings were colorless. The

bright yellow solid was dried in the atmosphere of the dry box. Anal. Calcd

(based on 1 C27H 2 9N 6 /14 supercages): C 1.69%, H 0.17%, N 0.44%. Found: C

1.64%, H 0.28%, N 0.11%. Due to the small amount of organic material in the

sample, substantial error is possible, especially for H and N.



Preparation of [Fe 2 (HPTP)(OBz)] 2 +-FAU. This Fe 2+-containing faujasite

was prepared in the same way as [Fe 2(HPTP)]3 +-FAU, except that it was carried

out on a 0.13-g scale of HPTP-FAU, and 1.1 mg (1 molecule/14 supercages) of

tetramethylammonium benzoate was added to the slurry. The color of the

resulting faujasite was identical to that of [Fe 2(HPTP)]3+-FAU. Anal. Calcd for 1

C34H 34N 60 3 /14 supercages: C 1.96%, H 0.16%, N 0.4%. Found: C 1.96%, H 0.42%,

N <0.1%.

Preparation of Me 3tacn-FAU. To 0.50 g of activated TOSOH high-silica

faujasite was added a solution of 16 mg (9.3 x 10-5 mol; 1 ligand/3.7 supercages) of

Me3tacn in 2 mL of MeOH. The slurry was refluxed with vigorous stirring for 2

d, and the faujasite was isolated by filtration and washed several times with

MeOH. The white powder was dried at room temperature under vacuum. The

washings contained about 3 mg of Me3tacn, leaving 13 mg (1 ligand/4.6

supercages) in the zeolite. Anal. Calcd for 1 C9H 2 1N 3 /4.6 supercages: C 1.60%, H

0.31%, N 0.62%. Found: C 2.01%, H 0.32%, N <0.1%.

A higher loading of Me3tacn in the faujasite was prepared by the same

procedure and using 77 mg of Me3tacn in the impregnation. In this case, 32 mg

(one ligand/1.5 supercages) remained in the faujasite. This sample was prepared

for use in solid state CPMAS-NMR.

Preparation of Fe(Me 3tacn)-FAU. To 250 mg of Me3tacn-FAU (1 ligand/

4.6 supercages) was added a solution of 14 mg (4.1 x 10-5 mol) of [Fe(H 2 0) 6](BF 4 )2

in 2 mL of methanol. The slurry was stirred overnight, filtered, and washed

with methanol, and the white solid was dried under vacuum at room

temperature. The solvent was evaporated under vacuum to yield 12 mg of

brown solid in air. If the Me3tacn and Fe(II) remaining in the faujasite were

present in a 1:1 stoichiometry, the concentration based on the amount of

recovered material would be about one [Fe(Me 3tacn)(H 20) 3]2+ complex/6



supercages. Anal. Calcd (based on 1 FeC 9H 2 1N 3 /6 supercages): C 1.26%, H 0.29%,

N 0.49%, Fe 0.65%. Found (Desert Analytics): C 1.88%, H 0.09%, N 0.09%, Fe

0.03% (approx. 1 Fe/130 supercages).

A more concentrated sample was prepared for CPMAS-NMR by using 300

mg of Me3 tacn-FAU with a higher loading (1 ligand/1.5 supercages) and adding

44 mg (0.13 mmol; 1 Fe/1.6 supercages) of [Fe(H 20) 6](BF 4 )2 in 2 mL of methanol.

After stirring for 3 h at room temperature, the slurry was filtered, washed with

MeOH, and dried under vacuum. Evaporation of solvent from the supernatant

and washings yielded 35 mg of [Fe(H 20) 6](BF4)2.

Preparation of Fe-FAU. After activating 300 mg of TOSOH high-silica

faujasite by heating at 100'C under vacuum for 4 hours, the faujasite was brought

into a dry box and stirred with a solution of 25 mg (7.4 x 10-5 mol; 1 Fe/3 super-

cages) of [Fe(H 20) 6 ](BF 4 )2 in 2 mL of MeOH for 3 hours. The faujasite was then

filtered, washed with methanol, and dried under vacuum with moderate

heating. Evaporation of the filtrate yielded 14 mg of [Fe(H 20) 6](BF 4)2, leading to

an estimated concentration of 1 Fe/6.4 supercages. Anal. Calcd for 1 Fe/6.4

supercages: Fe 0.65%. Found (Desert Analytics): 0.05% (1 Fe/78 supercages).

Preparation of KHBpz 3-FAU. After activating 300 mg of TOSOH high-

silica faujasite by heating at 100 'C under vacuum for 4 h, a solution of 52 mg

(0.21 mmol; 1 ligand/supercage) of KHBpz 3 in 3 mL of dry THF was added and

the slurry was heated at 50 'C for 24 h. The suspension was filtered, washed with

THF and methanol, and the white powder was dried by heating under vacuum.

Solvent was evaporated from the supernatant, yielding 31 mg of a white residue,

which meant that 21 mg (1 ligand/2.5 supercages) remained in the faujasite.

However, the 1H-NMR spectrum of the residue in D2 0 showed several pyrazole-

containing products in addition to KHBpz 3, indicating partial decomposition of

the ligand.



Preparation of Fe(HBpz 3)+-FAU. To 200 mg of KHBpz3-FAU was added

17.2 mg (5.1 x 10-5 mol; 1 Fe/2.7 supercages) of [Fe(H 20) 6 ](BF 4)2 in 2 mL of

methanol. The slurry was stirred at room temperature overnight, and the

faujasite was filtered out, washed with methanol, and dried under vacuum. The

supernatant and washes were evaporated to yield 10.5 mg of solid, which turned

red upon exposure to air. The IR spectrum of this residue did not show any

KHBpz3. Given that 6.5 mg of KBF 4 was expected as a side-product, it was

estimated that 50% of the available iron was loaded into the faujasite.

Preparation of Fe(PA)-FAU. To 150 mg of Fe-FAU (1 Fe/3.5 supercages)

was added 6.8 mg (5.5 x 10-5 mol; 1 ligand/1.9 supercages) of 2-picolinic acid (PA)

in 2 mL of acetonitrile. The faujasite immediately turned a light orange color.

The slurry was stirred for 3 h, and the faujasite was filtered, washed with

acetonitrile and ether, and dried under vacuum. The solution phase was

evaporated to yield of 5.5 mg of picolinic acid, as identified by 1H-NMR

spectrometry.

Assays for Oxidation Activity in Fe-containing Faujasites. All solutions

and reaction mixtures were prepared in a dry box. Generally, a 25-mg sample of

the faujasite being studied was mixed with 0.8 mL of a 0.097 M solution of

cyclohexene and 1.0 mL of a 0.18 M solution of H 20 2 , all in acetonitrile. The

reaction flask was then capped and brought out of the dry box, and the slurry was

stirred at room temperature for 20-50 h. To observe the course of the reaction, a

0.5-mL aliquot was removed, mixed with an equal volume of solution

containing methyl benzoate as an internal standard, and centrifuged to

precipitate the zeolite. Products were analyzed by GC and GC/MS using a

Hewlett Packard (HP) Model 5890 gas chromatograph with an FID detector for

one column and an HP Model 5971A mass spectrometer interfaced to another

column. Both columns were cross-linked methyl silicon capillary columns (HP-



1) with dimensions of 50 m x 0.2 mm x 0.5 pm. Typical conditions were as

follows: initial temp., 400 C; initial time, 14 min; heating rate, 15°C/min; final

temp., 190'C.

In other oxidation assays, the H 2 0 2 solution was omitted and replaced

either with solvent or a 94 mM solution of hydroquinone as reducing agent.

After removal from the dry box, the atmosphere of the flask was purged with 02

and stirred at least 24 h before being worked up as above.

Results and Discussion

Ligand Impregnation. The general approach taken in this work to the

preparation of intrazeolitic iron complexes was to add a ferrous salt to a zeolite

already impregnated with a ligand. In theory, this strategy aids the uptake of iron

into the zeolite and can also promote the formation of ligand complexes,

provided that the iron binds preferentially to the ligand rather than to other sites

in the zeolite. For some ligands, this approach allows for a more even

distribution of the ligand throughout the zeolite. Subsequent formation of a

larger and more rigid iron complex traps the compound in a supercage, for it is

now unable to diffuse through the pores of the zeolite.

Faujasite samples were impregnated with a ligand by refluxing a solution

of the latter with the zeolite. Methanol was used most often in this procedure

because of the solubility of all the ligands in this solvent. This method worked

well for relatively nonpolar ligands such as HPTP and Me3tacn. Loading

efficiencies were 75% or greater for low attempted loadings of these two ligands,

and about 40% at higher concentrations. Washing the impregnated faujasites

with fresh methanol did not remove very much of the encapsulated ligand,

implying that HPTP and Me3tacn are absorbed in the hydrophobic interior of the

faujasite, rather than adsorbed on the surface. In contrast, highly polar and



ionizable ligands such as 2-picolinic acid and HPTA could not be loaded to any

significant extent in methanol, perhaps due to their preference for a polar

environment. For picolinic acid, this problem was solved by adding ligand to an

iron-containing faujasite, but HPTA proved too insoluble in methanol at room

temperature or in less polar solvents for either approach to be feasible. Another

ligand which could not be loaded into the faujasite was BIPhMe, although in this

case the effective diameter ( > 8 A) and rigidity of the molecule may have

prevented it from passing through the 7.5-A pores.
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In the case of KHBpz 3, the ionic character of the compound was expected

to hinder encapsulation inside the hydrophobic faujasite. Accordingly, the

ligand impregnation was performed in THF to induce ion pairing. When the

resulting KHBpz 3-FAU was stirred with methanol, less than 5% of the ligand

could be washed out. It is not clear, however, whether the encapsulated

molecules are intact, since free pyrazole and H 2Bpz2- were observed in the NMR

spectrum of the excess ligand left in solution (Figure 3.3).

Encapsulated Iron Complexes. According to the results of elemental

analysis, very low loading levels of Fe2 +, around 1 Fe/100 supercages, were

achieved in the preparation of Fe-FAU and Fe(Me 3tacn)-FAU, in contrast to

much higher estimates based on the amount of material recovered. A control

experiment in which a methanol solution of [Fe(H 20) 6](BF4 )2 was filtered and

evaporated also showed the loss of 6 mg from a 13-mg sample, however, so the

latter should be ignored. The actual loading of iron in Fe-FAU corresponds to 1

Fe/6 Al, or one-third the exchange capacity of the zeolite since there is one

negative charge in the lattice per aluminum atom. Although the reported

amount of iron in Fe(Me3tacn)-FAU is even lower, the estimated error in the

weight percent of iron (+0.01%) means that the loading in both Fe-FAU and

Fe(Me 3tacn)-FAU may be nearly identical. It is likely that similar levels of iron

will be found in the other Fe-containing faujasites.

The presence of a ligand in the faujasite clearly does not result in

stoichiometric loading of iron into the zeolite. For example, when iron was

added to the concentrated Me3tacn-FAU, material equivalent to 80% of the

stoichiometric amount of Fe 2+ for a 1:1 complex was recovered in the washings.

The results of elemental analysis for Fe(Me 3tacn)-FAU confirm that the presence

of a ligand does not increase the loading of iron, even though the actual loading

of the ligand may be lower than expected, too. These data indicate that, in at least



one case, interaction with a ligand is not a determining factor in the degree of

iron loading attainable. Given that the actual loading is quite low, this

conclusion may indicate that iron cations preferentially bind to the lattice of the

faujasite, rather than the ligand.

In some cases, addition of the ferrous salt to a ligand-containing fauajsite

did appear to result in formation of intrazeolitic complexes. For example,

addition of Fe 2 + to HPTP-FAU, with or without benzoate, resulted immediately

in a bright yellow color, similar to the color of [Fe 2(HPTP)(O 2CPh)](BF 4)2 in very

dilute solutions. The yellow color was associated with the solid faujasite, and

could not be washed out by acetonitrile or methanol, implying that the

complexes were trapped inside the zeolite. Addition of 2-picolinic acid to Fe-

FAU also produced a color change to orange, perhaps indicating formation of a

complex with iron. In the cases of Me3tacn and KHBpz 3 , no color changes were

observed upon addition of the ferrous salt to the ligand-containing faujasite,

although Me3tacn produces a colored complex when added to iron(II) in

solution. Absence of color is not proof that complexes did not form, however,

since the color may have been too weak to be visible.

Solid State NMR. Cross-polarized Magic Angle Spinning (MAS) NMR of
13 C nuclei in concentrated samples of HPTP-FAU (Figure 3.4) and Me 3tacn-FAU

(Figure 3.5 A) gave spectra which were consistent with the presence of intact

ligands in the materials (Table 3.2). The signals were significantly broadened due

to the effect of the matrix, and possibly because limited mobility of the confined

ligands led to inequivalence in carbon atoms with the same chemical shift which

was not resolvable in these experiments. In the case of KHBpz 3-FAU, the

spectrum obtained did not show any signals attributable to the ligand (Figure 3.6),

despite a degree of loading similar to that of the HPTP-FAU sample studied. The



presence of a magnetic 11B nucleus (S = 3/2) may have broadened the signals

beyond our detection limits.

The solid state NMR spectrum of a concentrated sample of Fe(Me 3tacn)-

FAU was also obtained (Figure 3.5 B). A signal corresponding to the ligand was

observed again, but much weaker than it had been in the same material before

addition of iron. A very broad feature centered around the Me3tacn signals was

also apparent, possibly arising from signals broadened by proximity to

paramagnetic metal center. Although these data are inconclusive, the presence

of both broadened and unbroadened signals is consistent with the

substoichiometric amount of iron loaded into this sample.

Reactions with Dioxygen. Most of the iron-containing faujasites did not

undergo any obvious changes when allowed to react with dioxygen. Visible

changes were observed upon addition of dioxygen to slurries of [Fe2 (HPTP)]-FAU

and [Fe 2 (HPTP)(O 2CPh)]-FAU in acetonitrile. The former changed from yellow

to a darker orange before bleaching to a pale yellow in less than a minute. In a

similar fashion, [Fe 2(HPTP)(O 2CPh)]-FAU changed from yellow to greenish grey,

and then bleached more gradually. As a reference, [Fe 2 (HPTP)(O 2CPh)](BPh 4 )2

was prepared and allowed to react with dioxygen in solution, resulting in a

change from orange to dark orange at room temperature.

The initial color change in [Fe 2 (HPTP)]-FAU could be analogous to the

solution behavior of the complex, although the final oxidation product in

solution is known to be a tetranuclear species, 13 which is unlikely to form in the

confined spaces of the zeolite. If the more intense color is due to interaction

between iron(III) and the ligand, however, these visible changes may be exactly

analogous. The initial green color observed in [Fe2 (HPTP)(O 2CPh)]-FAU is more

tantalizing because of its similarity to the blue color of the known diiron(III)-

peroxo complex, which in solution can only be observed at low temperature. 13' 14



Stabilization of the peroxo intermediate at room temperature in a zeolite would

be noteworthy. Spectroscopic characterization of these materials, perhaps by

diffuse reflectance, is required before any conclusions can be made about the

nature these intermediates.

The reversion to a pale yellow by both materials after reaction with

dioxygen could be an indication that the metal ions are no longer bound to the

ligand. This bleaching has no precedent in the behavior of [Fe 2 (HPTP)(O2 CPh)]2 +

in solution. Faujasite containing just HPTP exhibits the same pale yellow,

whereas Fe-FAU is essentially colorless both before and after exposure to air. The

implication is that, upon oxidation, sites associated with the lattice of the

faujasite are thermodynamically favored over ligand sites. This conclusion is

supported by the development of oxidation activity in the previously oxidized

material, as described below. Oxidative degradation of the ligand might account

for the apparent decomposition of the complex.

Reactions with Dioxygen and Substrate. All six Fe-containing faujasites

were tested for oxidation of cyclohexene in the presence of dioxygen. Although

in the presence of substrate [Fe 2(HPTP)]-FAU and [Fe2(HPTP)(O 2CPh)]-FAU did

not exhibit the intermediate color changes observed with only 02, this difference

in behavior did not translate into substrate oxidation. No products of

cyclohexene oxidation were detected in any of the assays with 02. Hydroquinone

was added as a reducing agent in assays involving Fe-FAU and Fe(PA)-FAU, but

benzoquinone was the only oxidized product detected in these runs (Figure 3.7).

Reaction with Hydrogen Peroxide and Substrate. When hydrogen

peroxide was used, oxidation of cyclohexene to the epoxide, as well as some

allylic oxidation, occurred in the presence of some Fe-containing faujasites.

Dilute samples of Fe-FAU and Fe(Me 3tacn)-FAU exhibited similar levels of

activity and identical product distributions, catalyzing 18-30 turnovers per iron



over the course of 20-40 h and converting about 5% of the substrate to product.

Cyclohexene oxide represented 70-75% of the total yield of oxidized products,

with 2-cyclohexen-1-one and 2-cyclohexen-1-ol making up the rest. No oxidation

products were detected in the presence of faujasite without iron, and the epoxide

was not formed in control experiments involving Fe2 + or Fe(Me3tacn) 2+ and no

faujasite. The Fe-containing faujasites Fe(HBpz 3)-FAU, [Fe 2(HPTP)]-FAU, and a

previously oxidized sample of [Fe 2(HPTP)]-FAU also catalyzed oxidation of

cyclohexene with H 2 0 2 , with higher amounts of the allylic oxidation products.

Only Fe(PA)-FAU was inactive, generating only trace amounts of oxidized

products. One run with cyclohexane as substrate and Fe-FAU as catalyst yielded

no detectable products of alkane oxidation.

Table 3.1. Cyclohexene Oxidation with Various Fe-Containing Zeolites

Yields (Umol)b

_____ ~ 0 Q OH

Turnoversa ( O O O H

Fe-FAU 18 2.9 0.7 0.4

Fe(Me 3tacn)-FAU 30 3.1 0.7 0.3

[Fe 2(HPTP)]-FAU c -- 2.0 1.4 0.8

[Fe 2 (HPTP)]-FAU, oxid.d -- 2.6 1.1 0.6

Fe(HBpz 3 )-FAU c -- 2.0 2.1 0.5

[Fe(H 20) 6 ](BF4 )2 e 0.06 0 0.6 0.37

a-Yield of all oxidation products/mol of iron cations; based on Fe analysis for Fe-
FAU and Fe(Me3 tacn)-FAU. b-Runs were carried out with 25 mg of faujasite, 80

gmol of cyclohexene, 180 gmol of H2 0 2 , in 1.8 mL of CH 3CN, stirred at 250 C for
40 h. Yields were determined by GC and GC/MS. c-These runs were stirred for
20 h. d-This sample had been previously oxidized by exposure to dioxygen. e-In
this run, 5.5 mg (1.6 x 10-5 mol) of the ferrous salt was added in place of faujasite.



Since very similar levels of activity are observed in many of the Fe-

containing faujasites, the active species in each of these materials may be the

same. If this hypothesis is true, then the active center is not bound to an

exogenous ligand, since no ligand is present in Fe-FAU and the metal ions do

not appear to be bound in oxidized [Fe 2(HPTP)]-FAU. This proposal is consistent

with the very low loading of iron observed. The various ligands appear to have

a limited effect on the product distribution and almost no influence on the level

of activity. One possible explanation for these results is that there are two kinds

of active sites, one of which produces epoxide whereas the other produces allylic

oxidation products. If the negatively charged ligands HPTP and HBpz 3- allow

uptake of a little more iron, and there is a limited quantity of the former sites,

then the additional iron would lead to more allylic oxidation. The lack of

activity in Fe(PA)-FAU could result from increased local acidity due to the ligand

rather than formation of a complex, since complex formation does not appear to

block activity in any of the other ligand-containing faujasites.

The production of cyclohexene oxide clearly requires the presence of iron

and the zeolite, but there may be another factor in the formation of the allylic

oxidation products. In acetonitrile solution, addition of hydrogen peroxide and

cyclohexene to [Fe(H 20)6](BF 4)2 results in oxidation to iron(III) and the

production of small amounts of 2-cyclohexen-1-one and 2-cyclohexen-1-ol. It has

been reported previously that iron(II) in rigorously anhydrous acetonitrile

solution catalyzes the disproportionation of hydrogen peroxide, but without

oxidation of the iron or any oxidation of cyclohexene. 17 The presence of some

water in the reagents used in these assays most likely alters the reactivity of the

ferrous salt so the products of the reaction resemble those generated in aqueous

Fenton chemistry. 17 In the assays with the zeolite catalysts, it is possible that

water again plays a role in the allylic oxidations, possibly in conjunction with a



fraction of the iron cations which is not bound to the zeolite lattice. The faujasite

does apparently inhibit the disproportionation of hydrogen peroxide catalyzed by

free Fe 2+ in acetonitrile, however, so the presence of unbound cations is not a

certainty.

Identity of Active Species. The primary questions about the active center

are: 1) What is the oxidation state of iron in the active species, 2) Does the active

center contain more than one iron, and 3) What are the active intermediates?

None of these questions can be answered conclusively based on what is known at

present. Some of the results, however, in conjunction with literature

precedents, allow one to make some educated guesses.

The activity of oxidized [Fe 2 (HPTP)]-FAU suggests that Fe3 + is responsible

for the oxidation of cyclohexene in this case. Iron(II) in all the reduced Fe-

containing faujasites could be oxidized by H 2 0 2, resulting in the same iron(III)

center produced by 02 oxidation of [Fe 2 (HPTP)]-FAU. In addition, exposing a

reaction mixture with Fe-FAU to air early in the run did not stop the reaction.

These observations point to an iron(III) ion or cluster as the active species,

although there is no direct evidence to support this conclusion.

One likely candidate for the active catalyst is an iron in a specific site

bound to the lattice of the faujasite. In Fe 2+-exchanged Y-zeolite, which has the

faujasite structure but a much lower Si/Al ratio than the faujasite in the present

study, the iron is believed to occupy specific mononuclear sites associated with

the zeolite lattice. 18' 19 M6ssbauer studies of Y-zeolite samples with Si/Al ratios

ranging from 2.5 to 8.9 found that, as aluminum was replaced with silicon, ion-

exchanged Fe2 + moved towards low-coordinate sites closer to the supercage. 19

The iron atoms in these sites could be reversibly oxidized and reduced with

pulses of 02 (or N 20) and H 2, and interacted with external nucleophiles such as

CO and water. One proposed model suggested that Fe-O-Fe bridges formed upon



oxidation to explain the 2:1 Fe/O stoichiometry observed in oxygen atom

uptake,2 0 but other models proposed a mononuclear site with one electron

provided by a second iron cation.21

In the present study it is likely that at least some metal ions in Fe-FAU,

and perhaps in some of the other Fe-containing faujasites, occupy sites bound to

lattice oxygens. Since the faujasite used in these experiments has a Si/Al ratio of

300, the favored sites are probably low-coordinate and near the supercage, in

analogy to the high-silica Y-zeolite (Figure 3.9). One such proposed site, called

Site II, is at the center of a hexagonal window (12-atom ring) between supercage

and sodalite cage, close to three lattice oxygen atoms. 18 Another possible site in

the supercage (Site III') sits among a tetragonal arrangement of oxygen atoms at

the intersection of a sodalite cage and a hexagonal prism.21' 22 Water or

hydroxide may be bound an iron atom in either of these sites, giving a distorted

tetrahedral environment to the metal in Site II (Figure 3.10 A). Since the

oxidation state of the active species is not known, one can imagine either Fe 2+ or

Fe 3+ being present in this site. The proposed Fe-O-Fe oxidized species is not

likely to be the active center, since it is more likely to form inside a sodalite cage

where the interatomic distances are more favorable but it is inaccessible to

substrate.20 Solvent may have an effect on the stability of iron in any of these

sites, freeing ions from the lattice by solvation, and creating ions which are more

likely to catalyze allylic oxidation of cyclohexene.

Several non-porphyrin mononuclear iron complexes catalyze the

epoxidation of olefins by H 20 2 in acetonitrile solution.2 3-26 Iron(II) complexes of

several tetraaza macrocycles, particularly cyclam (1,4,8,11-tetraaza-

cyclotetradecane), are among the best, producing only small amounts of allylic

oxidation products in up to 20 turnovers.2 3' 2 7 Epoxidation of cyclohexene with

H 20 2 is also catalyzed by FeC13 in acetonitrile and by Fe(acac) 3 (acac =



acetylacetonate). 24' 25 In addition, there is a diiron(III) complex with mostly

carboxylate ligands that also utilizes hydrogen peroxide in the epoxidation of

olefins, although with only a few turnovers. 2 6

The present system may be analogous to these homogeneous catalysts. A

four-coordinate iron cation bound to the lattice could behave as a Lewis acid in a

manner similar to the complexes in solution. The reaction occurs more slowly

in part because diffusion is slowed in the zeolite, and pores can become blocked

by substrate, product, or ligand. A key intermediate proposed for the

Fe(cyclam)2 + catalyst is a hydroperoxide bound to the iron, stabilized by a

hydrogen bond from an axial N-H provided by the ligand.23 A protonated lattice

oxygen could fulfill a similar role in the faujasite. Silicate oxygen atoms are not

as likely to bind as tightly to iron as a macrocycle, however, particularly in the

presence of solvent with some water. Solvation of metal ions could slow the

reaction by removing cations from the primary active site, or promote allylic

oxidation by free ions or iron atoms in a different site.

Dinuclear or higher nuclearity species cannot be eliminated as candidates

for the active species given what is known at present, although formation of

dinuclear complexes seems unlikely at such low levels of iron loading. The

effect of such a hydrophobic zeolite on the aggregation of metal ions has not been

studied, and it may promote charge neutralization by formation of hydroxo- or

oxo-bridged species. Formation of multinuclear metal centers could also provide

a plausible reason for why ligand complexes are apparently disfavored,

particularly in the oxidized Fe-containing faujasites.



Conclusion

Based on the results obtained so far, it seems that preparation of

encapsulated iron complexes can be achieved to a limited extent. The zeolite is

not just an inert framework for separating complexes from one another,

however. In the absence of ligands, and in some cases even in the presence of

ligands, the lattice of the faujasite apparently favors formation of metal centers

which can activate hydrogen peroxide for the epoxidation of cyclohexene. A

mononuclear iron(III) unit is one likely possiblity for the identity of the active

species. One major uncertainty in this work is whether all the iron atoms are

contained in a single type of active site or some are present in other sites away

from the supercage. Elucidation of these issues will require more detailed study

of these materials. In future investigations it is possible that increased activity

will be realized by increasing the concentrations of the reagents or by heating the

catalyst. In view of the poor conversion of substrate to product at present, such

an investigation may not be warranted.
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Figure 3.3: 1H-NMR spectrum of excess ligand from impregnation of faujasite

with KHBpz3.
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Figure 3.4: CPMAS-NMR spectrum of HPTP-FAU (2000 transients, spinning at

4.7 kHz).

Table 3.2: Summary of
Solution

13C Chemical Shifts of Ligands in Faujasite and in

ppm in FAU

59.7
122.8
136.8
148.0
159.6

45.1
52.2

ppm in CDC13 a

59.3, 60.9, 67.4
122.0, 123.2

136.5
149.0
159.6

46.7
57.1

105.0
134.7
140.8

Ligand

HPTP

Me3tacn

KHBpz3 b

a - A linewidth of 500 Hz (~ 7 ppm) in these solid state NMR spectra results in poor resolution of
closely spaced peaks. Peaks present in the solution 13C-NMR spectrum are grouped opposite the
broad peak in the solid state spectrum which includes the same signals. b - The solution NMR
spectrum of KHBpz 3 was obtained in CD 3OD.
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Figure 3.5: CPMAS-NMR spectra of A) Me3 tacn-FAU (800 transients, spinning at
4.7 kHz), and B) Fe(Me3tacn)-FAU (10,500 transients, spinning at 6.6kHz).
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Figure 3.6: CPMAS-NMR spectrum of KHBpz 3-FAU (10,500 transients, spinning

at 5.2 kHz).
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Figure 3.7: GC trace of the reaction mixture from exposure of Fe-FAU to 02 in

the presence of cyclohexene and hydroquinone. The GC conditions used in this

experiment are as follows: initial temp., 45°C; initial time, 13 min; heating rate,

15°C/min; final temp., 180'C. The retention times of the important components,

both observed and unobserved, are given below.

Compound Retention Time (min)

cyclohexene 9.1

cyclohexene oxide 18.1

2-cyclohexene-1-ol 18.9

p-benzoquinone 19.0

2-cyclohexen-1-one 19.7

methyl benzoate (standard) 23.0

hydroquinone 26.0

All the smaller peaks that appear in the GC/MS trace were identified as either

solvent impurities (e.g. toluene at 16.16 min) or decomposed column packing

material (i.e., oligomethylsiloxanes at 21-22 min).
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Figure 3.8: GC traces of the reaction mixtures from assays for the oxidation of

cyclohexene with H 2 0 2 in the presence of A) Fe-FAU and B) previously oxidized

[Fe 2 (HPTP)]-FAU. The GC conditions used in these experiments are as follows:

initial temp., 400 C; initial time, 14 min; heating rate, 15°C/min; final temp.,
190°C. The retention times of the major components under these conditions are

listed below.

Compound

cyclohexene

cyclohexene oxide

2-cyclohexene-1-ol

2-cyclohexen-1-one

methyl benzoate (standard)

Retention Time (min)

10.1

19.5

20.3

21.1

24.2

The results of these experiments and those involving other Fe-containing

faujasites are summarized in Table 3.1.
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Figure 3.9: Locations of possible mononuclear iron sites in the lattice of the
faujasite. Each segment in the structure represents a Si-O-Si(Al) linkage. Site III',
which is in the supercage, sits above an oxygen atom which points into the
sodalite cage.
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Figure 3.10: A) A Chem3D® representation of the proposed structure of

an Fe 2 + bound at Site II with a coordinated water molecule. B) Diagram

of the local environment at Site III'.


