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Abstract— The class of POP (Polynomial Optimization Prob-
lems) covers a wide rang of optimization problems such as0− 1
integer linear and quadratic programs, nonconvex quadratic
programs and bilinear matrix inequalities. In this paper, we
review some methods on solving the unconstraint case: minimize
a real-valued polynomialp(x) : Rn → R, as well the constraint
case: minimizep(x) on a semialgebraic setK, i.e., a set defined
by polynomial equalities and inequalities. We also summarize
some questions that we are currently considering.

I. I NTRODUCTION

A polynomial p in x1, · · · , xn is a finite combination of
monomials:

p(x) =
∑
α

cαxα =
∑
α

cαxα1
1 · · ·xαn

n , cα ∈ R,

where the sum is over a finite number ofn-tuples α =
(α1, · · · , αn), αi is a nonnegative integer. In this paper, we
will consider the problemP:

p∗ = min
x∈Rn

p(x),

wherep(x) : Rn → R is a real-valued polynomial. That is,
finding the global minimump∗ of p(x) and a minimizerx∗.
We will also consider the constraint casePK :

p∗K = min
x∈K

p(x),

whereK is a semialgebraic set defined by polynomial equali-
ties and inequalitiesgi(x) ≥ 0, i = 1, · · · ,m, which includes
many interesting applications and standard problems such as
0−1 integer linear and quadratic programs as particular cases.

For the problemP, exact algebraic algorithms find all the
critical points and then comparing the values ofp at these
points. We will discuss these methods in Section 2, which
include Gr̈obner bases, resultants, eigenvalues of companion
matrices [4], and numerical homotopy methods [16], [31].

A classic approach forPK (also can be used toP) is
convex relaxation methods. In recent years, there are various
relaxation methods that have been studied intensively and
extensively. For the0 − 1 integer program, alift-and-project
linear programming procedure by Bala, Ceria and Cornuéjols
[1], The reformulation-linearization technique(RLT) by Sher-
ali and Adams [24] and an SDP (Semidefinite Programming)
relaxation method by Lov́asz-Schrijver [15] were regarded as
their pioneering works. They have been modified, generalized
and extended to various problems and methods. Most recently,
some new SDP relaxation methods were proposed by Lasserre

[12] and Parrilo [19], [20], and Kim and Kojima [9] showed
that their Second-Order-Cone-Programming(SOCP) relax-
ation is a reasonable compromise between the effectiveness of
the SDP relaxation and the low computational burden of the
lift-and-project LP relaxation or RLT. We will discuss these
relaxation methods in Section 3 and will complete the paper
in Section 4 by giving some conclusion.

II. SOLVING POLYNOMIAL EQUATIONS

In this section, we will discuss computational algebraic
methods for the problemP. These results are based on [19],
[2] and [7]. For solving this problem, one often look at the
first order conditions, which form a system of (nonlinear)
equations.

A. Preliminary Notions and Notation

Throughout the paper, we suppose that1 ≤ n is an integer,
Cn andRn respectively denote the complex and realn-space,
andx is the abbreviation of(x1, · · · , xn). We letR[x] andC[x]
denote the ring of polynomials inn indeterminates with real
and complex coefficients, respectively. We first recall some
definitions and results regarding the solution set of system of
polynomial equations.

Definition 1: The setI ⊆ C[x] is an ideal if it satisfies:

1) 0 ∈ I;
2) If a, b ∈ I, thena + b ∈ I;
3) If a ∈ I andb ∈ C[x], thena · b ∈ I.

Definition 2: Given a set of polynomialsp1, · · ·, ps ∈ R[x],
define the set

〈p1, · · · , ps〉 = {f1p1+· · ·+fsps : fi ∈ R[x], i = 1, · · · , s}.
It can be easily shown that the set〈p1, · · · , ps〉 is an ideal,
known as the ideal generated byp1, · · · , ps.

The set of all simultaneous solutions inCn of a system of
equations

{x| p1(x) = p2(x) = · · · = ps(x) = 0}
is called the affine variety defined byp1, · · · , ps, denoted by
V (p1, · · · , ps). Given a polynomial idealI we let

V (I) = {x ∈ Cn|f(x) = 0, ∀f ∈ I}
as the affine variety associated withI.



B. Gr̈obner bases and Stetter-M̈oller Method

Obviously, any finite set of polynomials generated a poly-
nomial ideal. Due to the Hilbert’s Nullstellensatz, the converse
is also true: any polynomial idealI is generated by a finite
set of polynomials, which is called abasisfor I. Usually, the
generated set is not unique. For a given term order≺ on the
polynomial ringR[x], any nontrivial ideal has a unique monic
reduced Gr̈obner basis[2], [4]. Let G = (g1, g2, · · · , gr) be a
Gr̈obner basis for the critical ideal

I = 〈 ∂p

∂x1
,

∂p

∂x2
, · · · , ∂p

∂xn
〉

with respect to≺. Then, the elements of the quotient space
C[x]/I have the form[f ] = f̂ + I and f̂ ∈ C[x] is unique:

f̂ = f − (f1g1 + · · ·+ frgr), fi ∈ C[x], i = 1, · · · , r

and no term off̂ is divisible by any of the leading terms of the
elements ofG. Obviously, the remainder̂f = 0 if and only
if f ∈ I and polynomials in the same class have the same
remainder.

Theorem 1:Let I ⊆ C[x] be an ideal. The following
conditions are equivalent:

a. The vector spaceC[x]/I is finite dimensional.
b. The associate varietyV (I) is a finite set.
c. If G is a Gr̈obner basis forI, then for eachi, 1 ≤ i ≤ r,

there is aki ≥ 0 such thatxki
i is the leading term ofg

for someg ∈ G.

A monomial xα = xα1
1 · · ·xαn

n is standard if it is not
divisible by the leading term of any element in the Gröbner
basisG. Let B be the set of standard monomials, then, it is a
basis for the residue ringC[x]/I. For f ∈ C[x], an arbitrary
polynomial, define the endomorphism

Af : C[x]/I → C[x]/I, Af ([g]) = [fg].

The endomophism is represented in the basisB by a µ × µ
matrix Af , whereµ is the number of elements ofB. The entry
of Af with row index xα ∈ B and column indexxβ ∈ B is
the coefficient ofxβ in the normal formxαf(x) with respect
to G.

The Stetter-M̈oller method [17] (also known as eigenvalue
method) is to compute symbolically the matrixAp and Axi ,
i = 1, · · · , n, then compute numerically its eigenvalus and
corresponding eigenvectors ofAp. Then, determinep∗ andx∗

according to the following result, which follows from Lemma
2.1 and Theorem 4.5 of [4].

Theorem 2:[19]. The optimal valuep∗ is the smallest real
eigenvalue of the matrixAp. Any eigenvector ofAp with
eigenvaluep∗ defines an optimal pointx∗ = (x∗1, · · · , x∗n) by
the eigenvector identitiesAxi · v = pi · v for i = 1, · · · , n.

C. Resultants

Let t be a new indeterminate and form the disciminant of
the polynomialp(x)− t with respect tox1, · · · , xn:

δ(t) := ∆x(p(x)− t)

and∆x is theA− discriminant, defined in [6], whereA is
the support ofp together with the origin. From [6] we have
that the discriminantδ equals the characteristic polynomial of
the matrixAf and

Theorem 3:The optimal valuep∗ is the smallest real root
of δ(t).

The method of resultant is to computeδ(t), and minimal
polynomials for the coordinatesx∗i of the optimal point, by
elimination of variables using matrix formulas for resultants
and discriminants [6].

D. Homotopy Methods

For the problemP, the critical equations form a squre
system withn indeteminates andn equations. For solving
such a square system, manynumerical homotopy continuation
methodswere introduced, see for example [16], [31]. The
basic idea of this class methods is to introduce a deformation
parameterτ into the system such that the system atτ = 0
breaks up into several systems and each of which consists of
binomials. Thus, the system atτ = 0 is easy to solve and the
methods then trace the full solution set (withµ paths,µ is the
Bézout’s number) toτ = 1.

If the system under consideration is sparse, then we usually
use polyhedral homotopieswhich take the Newton polytops
of the given equation into consideration. Under this case, the
numberµ is the mixed volumeof the Newton polytopes [4],
which is usually smaller than B́ezout number.

III. R ELAXATION METHODS

In the above section, we have reviewed some methods for
the unconstrained global polynomial optimization problemP.
The three classes of methods share the same feature that their
running time is controlled by the numberµ of complex critical
points: In the Stetter-M̈oller method, we need to solve the
eigenvalue-eigenvector problem on matrices with sizeµ×µ; in
the resultants methods, we must solve a univariate polynomial
with degreeµ; in the homotopy methods, we must traceµ
paths fromτ = 0 to τ = 1. These methods become infeasible
if µ is large; this is the case even for smalln or small total
degree2d of p, sinceµ = (2d− 1)n, which increases rapidly
with n and 2d. For example, whenn = 9 and 2d = 4, then
µ = 1953125 (see Table 1 in =[19]).

Various convex relaxation methods have been studied in-
tensively and extensively in recent years, such as thelift-
and project method for integer programs [1], [15], the
reformulation-linearization techniqueof Sherali-Adams [24],
[25], Sherali-Tuncbilek [26], [27], the semidefinite program-
ming relaxation of Lasserre [12], [13] and Pariilo [19], [20],
the second order cone programming relaxation of Kim and
Kojima [8], [9]. In this section, we will review these methods
detailly.



A. Linear Programming Relaxation

Let δ > 0 be an integer. In the reformulation-linearization
technique of Sherali and Tuncbilek [26], They first reformulate
the constraints to the form

g1(x)α1g2(x)α2 · · · gm(x)αm ≥ 0, |α| :=
m∑

i=1

αi ≤ δ,

(1)
which contain the bound factor product constraints (0 ≤ xi ≤
1) as well as the original constraints. Then, introducing a new
variableyα for each term in the objective functionp and the
new constraints, we obtain a linear programming, a relaxation
of problemPK :

Pδ → min
y
{c>δ y | Aδy ≥ bδ from (1) for every|α| ≤ δ}. (2)

The following results shows the reasonable of the LP
relaxation. Here we assume with no loss of generality that the
constant term ofp(x) is zero, i.e.,p(0) = 0. For the proof,
see [14].

Theorem 4:Consider the constraint polynomial optimiza-
tion problemPK and the LP relaxationPδ in (2) defined from
(1). Let ρδ be its optimal value:

(a) For everyδ, ρδ ≤ p∗ and

p(x)− ρδ =
∑

|α|≤δ

bα(δ)g1(x)α1 · · · gm(x)αm , (3)

for some nonnegative scalars{bα(δ)}. Let x∗ be a global
minimizer of PK and let I(x∗) be the set of active
constraints atx∗. If I(x∗) = ∅ (i.e., x∗ is in the interior
of the constraint setK) or if there is some feasible,
nonoptimal solutionx ∈ K with gi(x) = 0, ∀i ∈ I(x∗),
thenρδ < p∗ for all δ, that is, no relaxationPδ can be
exact.

(b) If all the gi are linear, that is, ifK is a convex polytope,
then (3) holds andρδ ↑ p∗ asδ →∞. If I(x∗) = ∅ for
some global minimizerx∗, then in (3)

∑
α

bα(δ) → 0 asδ →∞. (4)

B. Semidefinite Programming Relaxation

The SDP relaxation of POP was inroduced by N.Z. Shor
[29] and was recently further extended by Lasserre [12] and
Parrilo [20]. Theoretically, it provides a lower bound ofP or
PK while in practice it frequently agrees with the optimal
value.

Let

1, x1, x2, · · · , xn, x2
1, x1x2, · · · , x1xn,

x2
2, x2x3, · · · , x2

n, · · · , xr
1, · · · , xr

n (5)

be a basis of a real-valued polynomial of degree at mostr and
let s(r) be its length.

The unconstraint POP is equivalent to

max λ, s.t. p(x)− λ ≥ 0, ∀x ∈ Rn.

This is a very hard problem and we usually relax it to

max λ, s.t. p(x)− λ is sos (6)

where sos is the abbreviation ofsum of squares. Now, we can
assume that the degree ofp is 2d. Let X denote the column
vector whose elements are as (5) with degreed. The length of
X is

N =
(

n + d
d

)
.

Let Lp denote the set of all real symmetricN ×N matrix A
such thatp(x) = X>AX and letE11 denote the matrix unit
whose only nonzero entry is one on the upper left corner.

Theorem 5:[19] For any real numberλ, the following two
are equivalent:

1) The polynomialp(x)− λ is a sum of squares inR[x].
2) There is a matrixA ∈ L such thatA−λE11 is positive

semidefinite, that is, all eigenvalues ofA − λE11 are
nonnegative reals.

From this theorem, we can see that (6) is a semidefinite
programming, which can be solved in polynomial time by
interior point methods [18], [30]. For fixedn or for fixed d,
The lengthN of X is polynomial ofn, which, together with
the above theorem, means that we can find the largest number
λ of (6), denote bypsos, in polynomial time. We always have
that psos ≤ p∗ and the inequality may be strict. An example
is Motzkin’s polynomial [23]

m(x, y) = x4y2 + x2y4 − 3x2y2.

We can prove thatm(x, y) ≥ −1 but for any real numberλ,
m(x, y)− λ is not sos, which means thatpsos = −∞.

For the constraint case, we can find the largest numberλ,
such thatp(x) − λ ≥ 0, ∀x ∈ K. This condition is then
relaxed to

p(x)− λ = u0(x) +
m∑

j=1

uj(x)gj(x)

and
uj(x) is sos, j = 0, · · · ,m.

This also leads to a semidefinite programming relaxation:

psos = max λ

s.t. p(x)− λ = u0(x) +
m∑

j=1

uj(x)gj(x)

u0, u1, · · · , um sos.

From a dual point of view, Lasserre [12] develop another
SDP relaxation. ReplaceP andPK with the equivalent prob-
lem

P → p∗ := max
µ∈P(Rn)

∫
p(x)µ(dx)

and
PK → p∗ := max

µ∈P(K)

∫
p(x)µ(dx),



respectively, whereP(Rn) andP(K) are the space of finite
Borel signed measures onRn andK, respectively. Then, the
criterion to minimize is a linear criteriona>y on the finite
collection of moments{yα}, up to orderm, the degree of
p, of the probability measureµ. The problem is then how to
describe the conditions ony to be a sequence of moments. For
the history and recent development on the theory of moments,
one is referred to [3], [5], [21] and references therein.

Lasserre [12] then relaxP to the following SDP:

Q →
{

inf y

∑
α pαyα

s.t. Mm(y) º 0 (7)

whereMm(y) is the moment matrix of dimensions(m) with
rows and columns labelled by (5). Equivalently, (7) can be
written as

Q →
{

inf y

∑
α pαyα

s.t.
∑α

α 6=0 yαBα º B0
(8)

whereBα andB0 are easily understood from the definition of
Mm(y). The dual program ofQ is

Q∗ →




sup X 〈X,−B0〉(= −X(1, 1))
s.t. 〈X,Bα〉 = pα

X º 0,
(9)

whereX is a real-valued sysmmetric matrix and〈A,B〉 is the
Frobenius inner produce

〈A,B〉 = tr(AB) =
n∑

i,j=1

AijBij .

Lasserre proved that

Theorem 6:Assume thatQ∗ has a feasible solution. Then
Q∗ is solvable and there is no duality gap, that is

infQ = supQ∗.
Under some conditions, the relaxation is exact:

Theorem 7:Let p(x): Rn → R be a2m-degree polynomial
with global minimump∗.

1) If the nonnegative polynomialp(x) − p∗ is a sum of
squares of other polynomials, thenP is equivalent to
the semidefinite programmingQ (7). More precisely,
minQ = p∗ and if x∗ is a global minimizer ofP, then
the vector

y∗ := (x∗1, · · · , x∗n, (x∗1)
2, x∗1x

∗
2, · · · , (x∗1)2m, · · · , (x∗1)2m)

is a minimizer ofQ.
2) Conversely, ifQ∗ has a feasible solution, thenp∗ =

minQ only if p(x)− p∗ is a sum of squares.

As we have known from [23] and the above discussion that
p(x)−p∗ may not be a sos. Then, suppose we know in advance
that a global minimizerx∗ of p(x) has norm less thanr for
somer > 0, then, using the fact [3] that every polynomial
f(x) > 0 on Kr := {x | r2 − ‖x‖2 ≥ 0} can be written as

f(x) =
r1∑

i=1

qi(x)2 + (r2 − ‖x‖2)
r2∑

j=1

tj(x)2

for some polynomialsqi(x), tj(x), i = 1, · · · , r1, j =
1, · · · , r2. For everyN ≥ m, let

QN
r →





inf y

∑
α pαyα

s.t. MN (y) º 0
MN−1(θy) º 0

(10)

(θ(x) = r2−‖x‖2) be the new relaxation. The dual of (10)
is

(QN
r )

∗ →




supX,Z −X(1, 1)− r2Z(1, 1)
s.t. 〈X,Bα〉+ 〈Z, Cα〉 = pα, α 6= 0

X, Z º 0,
(11)

whereX, Z are real-valued sysmmetric matrices.
Lasserre [12] proved that

Theorem 8:Let p(x): Rn → R be a2m-degree polynomial
with global minimump∗ and‖x∗‖ ≤ r for somer > 0 at some
global minimizerx∗. Then

1) As N →∞, we have

QN
r ↑ p∗.

Moreover, forN sufficiently large, there is no duality
gap betweenQN

r and its dual(QN
r )∗, and the dual is

solvable.
2) minQN

r = p∗ if and only if

p(x)− p∗ =
r1∑

i=1

qi(x)2 + (r2 − ‖x‖2)
r2∑

j=1

tj(x)2

for some polynomialsqi(x) of degree at mostN , and
tj(x) of degree at mostN − 1, i = 1, · · · , r1, j =
1, · · · , r2. In this case, the vector

y∗ := (x∗1, · · · , x∗n, (x∗1)
2, x∗1x

∗
2, · · · , (x∗1)2N , · · · , (x∗1)2N )

is a minimizer of (QN
r ). In addition, max (QN

r )∗ =
min (QN

r ) and for every optimal solution(X∗, Z∗) of
(QN

r )∗,

p(x)− p∗ =
r1∑

i=1

λiqi(x)2 + (r2 − ‖x‖2)
r2∑

j=1

γjtj(x)2,

where the vectors of coefficients of the polynomials
qi(x), tj(x) are the eigenvectors ofX∗ and Z∗ with
respective to eigenvaluesλi, γj .

In a similar way, Lasserre [12] deduced the following SDP
relaxation forPK :

QN
K →





inf y

∑
α pαyα

s.t. MN (y) º 0
MN−ω̃i(giy) º 0, i = 1, · · · ,m,

(12)

where ω̃i := dωi/2e is the smallest integer larger thanωi/2,
the degree ofgi and N ≥ max{dm/2e, maxi ω̃i}. Writing



MN−ω̃i
(giy) =

∑
α Ciαyα, the dual program is:

(QN
K)

∗ →





supX,Zi
−X(1, 1)−∑m

i=1 Zi(1, 1)
s.t. 〈X, Bα〉+

∑m
i=1〈Zi, Ciα = pα,
α 6= 0

X, Zi º 0, i = 1, · · · ,m.
(13)

Lasserre proved the following convergence result:

Theorem 9:Let p(x): Rn → R be a m-degree polyno-
mial with global minimump∗K and the compact setK is
archimedean. Then

1) As N →∞, we have

QN
K ↑ p∗K .

Moreover, forN sufficiently large, there is no duality
gap betweenQN

K and its dual (QN
K)∗ if K has a

nonempty interior.
2) If p(x)− p∗K has the representation

p(x)− p∗K =
r1∑

i=1

qi(x)2 + (r2 − ‖x‖2)
r2∑

j=1

tj(x)2

for some polynomialsqi(x) of degree at mostN , and
tj(x) of degree at mostN − ω̃i, i = 1, · · · , r1, j =
1, · · · , r2, thenmin QN

K = p∗K = max (QN
K)∗ and the

vector

y∗ := (x∗1, · · · , x∗n, (x∗1)
2, x∗1x

∗
2, · · · , (x∗1)2N , · · · , (x∗1)2N )

is a minimizer of(QN
K). In addition, for every optimal

solution (X∗, Z∗1 , · · · , Z∗m) of (QN
K)∗,

p(x)− p∗K =
r1∑

i=1

λiqi(x)2 +
m∑

j=1

gj(x)
ri∑

i=1

γijtij(x)2,

where the vectors of coefficients of the polynomials
qi(x), tij(x) are the eigenvectors ofX∗ and Z∗ij with
respective to eigenvaluesλi, γij .

C. Second Order Cone Programming Relaxation

Lasserre [14] showed that the RLT of Sherali and Tuncbilek
[26], [27] used implicity the Hausdorff moment conditions.
Comparing with SDP relaxation, the LP relaxation has the
following drawbacks:

1) The binomial coefficients involved in the reformulated
constraints (see (3)), the Hausdorff moment condition
numerically not stable.

2) In contrast the SDP relaxation, the asymptotic conver-
gence of the LP relaxation is not guaranteed in general.

3) Even in the case of a convex polytopeK, the LP
relaxations cannot be exact in general.

On the other hand, LP software packages can handle very
large-size problems, while the present status of SDP software
packages excludes their uses in practice. Recently, Kim and
Kojima [8], [9] showed that their SOCP relaxation is a
reasonable compromise between the effectiveness of the SDP
relaxation and the low computation cost of LP relaxation.

Their method is for solving nonconvex quadratic programs
and the basic idea is simple: they just replaced the semedefinite
conditionX º 0 by a necessary condition

(Xkj)2 ≤ XkkXjj .

In some case, this relaxation is as powerful as the original
condition X º 0, while the computational cost is much less
than SDP.

D. Tighter Relaxation by Redundant Constraints

By adding redundant constraints, tighter bound for the
original problem can be found. Recently, Kojima, Kim and
Waki [10] gave a general framework for convex relaxation of
polynomial optimization over cones. They summarized that we
can add two classes valid inequalities to the original problem
to enhance the relaxation: Universally valid polynomial con-
straints and deduced valid inequalities. We say that a constraint
is universally valid if it holds for anyx ∈ Rn.

1) Universally valid polynomial constraints. Let u be a
mapping fromRn into Rm whosejth componentuj is
a polynomial inx. Then them×m matrix u(x)u(x)>

is positive semidefinite for allx ∈ Rn. We can add the
constraintu(x)u(x)> ∈ Sm

+ to the original problem.
Another universally valid constraint is the second order
cone constraint. Letu1 and u2 be two mappings from
Rn into Rm whosejth component is a polynomial in
x. By the Cauthy-Schwarz inequality, we see that

(u1(x)>u2(x))2 ≤ (u1(x)>u1(x))(u2(x)>u2(x)),

which can be converted to


u1(x)>u1(x) + (u2(x)>u2(x)
u1(x)>u1(x)− (u2(x)>u2(x)

2u1(x)>u2(x)


 ∈ N 3

2 ,

whereN 3
2 denotes the3-dimensional second cone.

2) Deduced valid inequalities. We can also deduce valid
inequalities from the original constraints. For example,
in the RLT, they added the products of the original in-
equalities. Kojima, Kim and Waki [10] summarize some
technique of this class, including Kronecker products of
positive semidefinite matrix cones, Hadamard products
of p-order cones (p ≥ 1), linear transformation of cones,
quadratic convexity and constraints from numerical com-
putation.

IV. CONCLUSION

In this review paper, we have summarized the current
development of the global polynomial optimization problems,
constrained and unconstrained. There are many methods for
this class of problems, algebraically and numerically. The
algebraic methods usually provide good approximation of
the optimal value as well as the global minimizer while the
computation cost is huge. The LP, SDP and SOCP are well-
developed and they can be used as convex approximation
of the original nonconvex problem. Among the three convex
relaxation methods, the SDP the most attractive but the status



of its software packages exclude it from utilization, LP is
mostly used in practice for large-size problems and SOCP is a
compromise between the effectiveness of SDP and efficiency
of LP.

Sherali and Tuncbilek [26], [28] have combined their LP
relaxation with other global optimization methods such as
branch-and-bound. Since that SDP relaxation will outperform
than LP for small-size problem, it is also possible to choose
SDP as the subproblem in branch and bound methods. But
how to choose a suitableN to make use the effectiveness of
SDP sufficiently and on the same time do not increase the
computational task is not an easy problem.

Parrilo [19] and Qi and Teo [22] listed some interesting
open questions on POP.
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