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Abstract

Small-Angle Neutron and X-Ray Scattering (SANS & SAXS) are very powerful tools
in the studies of microstructure of various materials. In this thesis, SANS and SAXS
are used to study the ionic surfactant(AOT)/water/decane microemulsion and an in-
teresting semifluorinated alkane(F8 H 16 ) /perfluorooctane /iso-octane system, respec-
tively. From the SANS data analyses based on the sticky-sphere model of Baxter,
we are able to obtain the temperature dependent structural information of the mi-
croemulsion system and construct a transformation relation. This relation enables
us, for the first time, to explain the experimental phase boundary and percolation
line with Baxter's model. SAXS data analyses confirms quantitatively the detailed
structural models for the liquid and gel phases of the F8 Hs1 system that we propose
based on the qualitative information provided by light scattering and birefringence.
From the dimensions extracted from the data analyses, we propose a mechanism for
the growth of the gel in the system.
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Chapter 1

Introduction

1.1 Small-Angle Neutron and X-Ray Scattering

Small-angle scattering of X-rays and neutrons is a widely used diffraction method for

studying the structure of matter. This method of elastic scattering is used in various

branches of science and technology, including condensed matter physics, molecular

biology and biophysics, polymer science, and metallurgy. Many small-angle scattering

studies are of value for pure science and practical applications.

It is well known that the most general and informative method for investigating

the spatial structure of matter is based on wave-diffraction phenomena. In diffraction

experiments a primary beam of radiation influences a studied object, and the scatter-

ing pattern is analyzed. In principle, this analysis allows one to obtain information on

the structure of a substance with a spatial resolution determined by the wavelength

of the radiation.

Diffraction methods are used for studying matter on all scales, from atoms to

macro-objects. The use of X rays, neutrons and electron beams, with wavelengths

of about 1i, permits the study of the condensed state of matter, solids and liquids,

down to atomic resolution. Determination of the atomic structure of crystals, i.e.,

the arrangement of atoms in a unit cell, is an important example of this line of inves-

tigation. Another line deals with the study of the structure of matter at superatomic

level, i.e., with a spatial resolution from 10A up to thousands and even several tens



of thousands of angstroms. For this line of investigation the basic tool is small-angle

scattering, mainly of X-rays and neutrons.

In small-angle scattering research the wavelength used is, as a rule on the order

of several angstroms. As interatomic distances are of same order of magnitude, the

diffraction pattern, corresponding to the superatomic structure, lies in the small-angle

region, and this is how the method received its name. The most important feature of

the small-angle scattering method is its potential for analyzing the inner structure of

disordered systems, and frequently the application of this method is a unique way to

obtain direct structural information on systems with random arrangement of density

inhomogeneities of colloidal size, namely, 101 -. 104 A.

Small-angle scattering studies date from the classical works of A. Guinier[1]. Later,

G. Porod[2], O. Kratky[3], V. Luzzati[4], P. Schmidt[5], and others developed the

theoretical and experimental fundamentals of the method[6, 7]. The principles of

designing small-angle scattering facilities were developed, and the potential for ap-

plying the method for determining general structural characteristics of various types

of highly dispersed systems was shown.

New progress in refining the method of small-angle scattering began in 1970s and

is continuing today. This state of work is characterized by new opportunities both

for experimentation (powerful neutron beams, synchrotron X-ray sources, position-

sensitive detectors) and for structural interpretation(contrast variation, isomorphous

replacement, direct methods analysis of characteristic functions). Certainly, the use

of various computers is of great significance in advancing these two aspects of small-

angle scattering applications. The result has been a gradual expansion of the range

of studied objects and an increase in the spatial resolution in both directions. Thus,

for example, the mechanisms of phase separation and the sizes and degrees of dis-

persion of dispersed structures of alloys, powders, and glasses, the specific features

of the configuration polymer chains in different aggregate states, and the geometri-

cal and weight parameters(and, sometimes, three-dimensional structure) of biological

macromolecules and their complexes in solution can all be the subjected to analysis.

Currently, the small-angle scattering technique, with its well-developed exper-



imental and theoretical procedures add wide range of studied objects, is a self-

contained branch of the structural analysis of matter[8].

1.2 Resolution Function

Traditionally, most small-angle X-ray scattering experiments have been performed in

a long slit geometry, using the "Kratky" type of camera[7]. Numerous studies have

been made in order to perform the desmearing analysis which is necessary in connec-

tion with this technique[9, 10, 11]. Small-angle neutron scattering experiments are,

on the other hand, always performed in a pinhole geometry, and area-sensitive detec-

tors are widely used. The smearing effects for pinhole geometry are of course much

smaller than for long-slit geometry as long as-the wavelength spread of the incident

beam is small. Therefore the experimental data measured in the pinhole geometry

are usually analyzed without taking any smearing effects into account. However, the

limited resolution of the instrument will lead to some smearing which might have an

important influence on the measured scattering data.

Some numerical studies have already been made in order to investigate the smear-

ing effects[12, 13]. However, it is found there is a great need for an analytical treat-

mient of the resolution effects. This would allow these effects to be incorporated in

a relatively simply way in the analysis of the experimental data. This is further mo-

tivated by the fact that at present there is a tendency also to use pinhole geometry

and area-sensitive detectors in new X-ray sources such as the rotating-anode sources

and synchrotron X-ray facilities.

The resolution effect is described by the resolution function R(q, (J), where (q) is

the average scattering vector corresponding to the setting of the instrument (() means

average value of a parameter). The length of the scattering vector is (q) = 2(k) sin(e),

where 2(theta) is the scattering angle, (k) is the length of the wavevector, (k) =

27r/(A), where (A) is the wavelength of the neutrons or X-rays. When the instrument is

set to detect radiation with scattering vector (qJ, radiation with scattering vectors q'in

a range around (q0) also contributes to the scattering due to the finite collimation, the



spread in the wavelength of the incident beam and the finite spatial resolution of the

detector. The resolution function R(q, (q)) describes the distribution of the radiation

with scattering vector q contributing to the scattering for setting (q). According to

this the measured intensity at (q3 is proportional to

I((q) = f R(-, (q)) a (1.1)

Where da(q-/dQ is the scattering cross section.

Previous investigations of the properties of R(q, (q)) reported in the literature have

mainly been connected with the optimization of the dimensions of small-angle scat-

tering instruments in order to give the highest flux for a given resolution[14, 57, 16,

17, 18, 19]. In other publications the instrumental resolution has been treated more

in its own right[20, 12, 21, 13, 11, 22]. Investigations of the width of the resolution

function have usually been done analytically by calculating variances and the results

have been supported by computer simulation. General equations for the smearing

of an ideal scattering curve due to resolution effects have been given by Moore[23],

Miller et al.[20], Ramakrishnan[12] and Schmidt[11]. These works led to equations

which express the smearing in terms of integrals involving weighting functions de-

scribing the transmission of the collimating system and the wavelength distribution.

Expressions for the weighting function have to be determined either experimentally

or by calculations[24, 25, 12], and practical applications involve numerical calculation

of several integrals. In this chapter, the different contributions to the resolution func-

tion are all approximated by Gaussian functions. This allows the integrals connected

with the combination of the different contributions to the resolution function to be

performed analytically. One obtains the resolution function expressed as a Gaus-

sian function on a two-dimensional ' space. The azimuthal-integrated resolution

function to be applied for radial-averaged scattering profiles can also be calculated

analytically[26]. Hence, smearing of an ideal scattering curve involves in this case

only one numerical integration.

The Gaussian function describing the various contributions to the resolution func-



tion are determined when the parameters describing the width and the normalization

condition are chosen. It has been decided to define the Gaussians to have the same

full-width-at half-maximum value as the distributions they approximate and to give

unity when integrated over the two-dimensional q'space[27]. However, other criteria

may be applied. For example, the variances of the Gaussians could have been chosen

to have the same value as the distributions they approximate[17].

The analytical treatment of the resolution function is begun with deriving sepa-

rately the resolution functions resulting from (1) wavelength spread, (2) collimation

effects, and (3) detector resolution. In each of these derivations the two other con-

tributions not under consideration are assumed to be negligible. Then the combined

resolution due to all three contributions are calculated, assuming that they are inde-

pendent. Finally, the resolution function for rfdial-averaged data are derived.

1.2.1 Resolution Function due to Wavelength Spread

Assume that the wavelength distribution can be described by a Gaussian function

centered on wavelength (A) having a full-width-at half-maximum value (FWHM)

F(A, (A)) = [(27r)1/2a] - ' exp[-(A - (A))2/2aU] (1.2)

where a, is related to the FWHM value AA of the distribution by

a, = AA/[2(2 1n2)'1 / 2] (1.3)

A first-order Taylor expansion of expression for the scattering vector with respect

to A - (A) gives

q - (q) = -((q)/(A))(A - (A)) (1.4)

and multiplication of nominator and denominator of the exponent in Eq.1.2 by

((q)/(A)) 2 gives



Rw(q, (q)) = [(27r)'/2Uw]- exp[-(q - (q)) 2/202,]

where

(q) AA 1
aw = as = (q) (1.6)(1' A) (A) 2(2 In 2)1/2 (1.6)

Note that the width aw of Rw is proportional to (q). The prefactor of the expo-

nential function in Eq.1.5 has been chosen to give Rw(q, (q)) the proper normalization:

Rw(q, (q))dq = 1 (1.7)

The measured intensity is proportional to

I((q)) = f10 Rw(q, (q)) dq (1.8)

Where ( is parallel to (q-. In Eq.1.8 the integration element is one-dimensional,

in contrast to the integration element in Eq.1.1 which is two-dimensional.

In a small-angle X-ray scattering (SAXS) experiment the incident beam is monochro-

matized by Bragg scattering from a crystal. For a conventional X-ray source the crys-

tal is set to scatter one of the characteristic lines of the source and the wavelength

spread is a result of the combined effects of the natural line width, the mosaic spread

or the Darwin width of the monochromator crystal and the collimation before and

after the crystal. The spectrum of the radiation from a synchrotron is continuous and

the wavelength spread is only determined by the mosaic spread or Darwin width of

the monochromator and the collimation. However, for both the conventional an syn-

chrotron X-ray source the wavelength spread AA/(A) is typically smaller than 10- 3

and it can therefore be neglected in most cases.

For small-angle neutron scattering (SANS) experiments the relatively low flux

available makes the use of Inonochromators with a relatively large wavelength spread

necessary. This can be either a segmented monochromator crystal[13] or mechanical

velocity selector[28, 29].

(1.5)



1.2.2 Resolution Function due to Finite Collimation

When the range is chosen sufficiently small in a small range around (q) = 0, changes in

the shape and the width of the resolution can be neglected. Hence, it is only dependent

on the difference Iq'- (q-), i.e., we can specifically write R,(f, (q-) = R (lI- (q-l). The

unscattered beam can be described by the cross section du(q)/dQ = 6(q, where 5 is a

delta function, and Eq.1.1 gives the result that the measured intensity is proportional

to

I((q-) = R)(-(qJ1) (1.9)

This shows that the collimation-related resolution close to (q) = 0 can be de-

termined by measuring the profile of the direct beam. This fact is used to derive

the resolution function for small values of (q) by calculating the width and shape of

the direct beam. A schematic drawing of the small-angle scattering setup is shown

in Fig.1-1. The first aperture is denoted as the source aperture and the second the

defining aperture. In an experiment the sample is situated just after the defining

aperture. Here it is assumed that the sizes of the apertures are small compared with

their separation L and the distance I between the defining aperture and the detector

plane. First-order approximations for the opening angles can then be applied in the

calculation of the collimation effects. In the general situation it is assumed that the

apertures are circular and that they are uniformly illuminated.

For simplicity, it is started by considering a special situation with negligible ex-

tension of the apertures in the direction perpendicular to the plane of the paper in

Fig.1-1. From a point on the detector half the angular extent of the apertures is

a, = rl/(l + L) and a2 = r2/I for the source and defining aperture, respectively (see

Fig.1-2(a)). The intensity at a point on the detector is determined by the angular

overlap of the two apertures. The intensity is expressed as a function of the angle

0, shown in Fig.1-l, which corresponds to a scattering angle. By this choice it is

straightforward to convert from angle to scattering vector.

At the point on the detector corresponding to the angle 0, the angle v between



r r2

Source aperture

V

Sample

Defining aperture

Detector plane

Figure 1-1: A schematic representation of the setup. The plane of the paper corre-
sponds to the scattering plane. The radius of the source and the defining apertures
are rl and r2, respectively. The distance between the apertures is L and the distance
between the defining aperture and the detector plane is 1. Lines have been drawn from
a point on the detector through the center of the two apertures to define the various
angles referred to in the text. The figure demonstrates the relation v = OL/(L + 1)
of v to the scattering angle 3.
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Figure 1-2: (a) The angular extent of the source and defining apertures, al and a2,
respectively, seen from a point on the detector. (b) The effective in-plane angular
extent of the apertures for a beam scattered through the angle (20).



the centers of the source and the defining aperture is v = OL/(L + 1). This equation

gives the transformation on between the angular separation v and the angle 0. For

al = a2 the overlap as a function of 3 is a triangular function and for at 5 a2 the

function has a trapezoidal shape. The FWHM value A•p is determined by the angle

where the angular overlap, and thereby the intensity, is reduced to half the maximum

value:

-A,3 = 2r,/L For a > a2 (1.10)

= 2r 2 (1/1 + 1/L) Forat < a2

For circular apertures the overlap is slightly more complicated to calculate. Fig.1-

3 shows the situation for a, > a2 at an angle corresponding to the FWHM value for

apertures with negligible extent perpendicular.-to the scattering plane. A correction

to the FWHM values will be determined in Eq.1.10 for circular apertures. The angle

y defined in Fig.1-3 can be approximated by 7y tan y = a2/at. A better value for

-A3 is obtained using 7al(1+cosy) instead of a, in Eq.1.10. There is 1a1(1+cos7)

at - Ja2/at. Insertion of the expressions for at and a2 and multiplication by (L+1)/L

to convert to a 0 angle gives the FWHM values

A - L _ , l+ 1 For at > aI
L 2ri 2 L For (1.11)

= 2r 2  2 r2 L I+L 2

These equations are valid for small values of (q). The distribution is approximated

by a Gaussian function with the same width. From a purely qualitative judgment

it is estimated that this approximation is acceptable when a, and a 2 deviate by less

a factor of two. For at > a2 (or a2 > at) the true distribution approaches a "box

function" which is poorly described by a Gaussian function.

Next the FWHM values of the distribution function for an arbitrary value of

(q- $ 0 is derived. It is assumed that we have a sample with an ideal Bragg reflec-

tion at the reciprocal-lattice vector qO. This can be described by the cross section

da(q)/dQ = 5(q'-q-). A sufficiently small range around (qý = -r is considered to allow

changes in the resolution function to be neglected. The resolution function is then



Figure 1-3: The figure defines the angle y and 7y tan 7 = a2/al.



only dependent on the difference q'- (q). The measured intensity can be calculated

by Eq.1.1:

I((q-) = Ro(q°o - (q- 1) (1.12)

Accordingly, the resolution function around (q- = q- can be determined by mea-

suring the actual intensity distribution of the Bragg reflection. This will be used

in our derivation and the resolution function will be calculated by calculating the

width of the corresponding Bragg reflection. In the derivation it is implicitly as-

sumed the scattering vectors to be two-dimensional vectors, thereby relating points

on the two-dimensional detector to the two components of the scattering vector. For

the scattering situation in reciprocal space, the third dimension is in the direction

perpendicular to the Ewald sphere. For scattering from disordered or polycrystalline

materials this has no consequences as the third dimension is effectively integrated

out of the problem. However, for crystalline materials it is also necessary to consider

whether the Bragg condition is fulfilled in the direction perpendicular to the Ewald

sphere and in order to measure the integrated intensity it is necessary to perform a

sample rotation scan along an axis normal to the scattering plane. Therefore, when

actually measuring the resolution function using a Bragg reflection, this rotation has

to be performed. In the derivation of the resolution function this is taken into account

by assuming the beam to be scattered through the same 280 in the plane independent

of the direction of the incident beam.

Consider the neutrons or X-rays which are scattered through the angle 200 =

2 arcsin[qo/(2(k))] = (20). The shape of the Bragg reflection can be calculated as the

angular overlap between the source and the defining aperture, taking the scattering

into account. Again we start by considering a situation for which the apertures have

negligible extent in the direction perpendicular to the scattering plane(Fig.1-2). Half

the angular extent of the source aperture is effectively al = rl/(L + 1/ cos2 (20)) and

for the defining aperture a2 = r 2 cos2 (20)/1. The derivation follows the same lines as

in the first part of this section. The results for the FWHM values of the angles in



scattering plane are

= 2r, __ Lr2 cos 4(20) 2L +o a
L -2rL 12 L + cos2 (20) For al > a2

I L 2 r2 L cos 2 (20) L+ (

The corresponding results for the distribution in the direction perpendicular to the

scattering plane can be calculated by considering a situation for which the apertures

have negligible extent in the scattering plane. The angular extents of the slits are

a, = ri/(L + 1/ cos(20)) and a2 = r2 cos(20)/1, and this gives the FWHM values

A3 -- 2r, _ -cs2(2°) (L + cos(20) For al Ž a2

2 _(1.14)2r2 cos() 1 Fora,1 <a 21 L 2 r2 L cos(20) (L+~ cos 0)

As mentioned previously, the distribution function describing the collimation ef-

fects is taken to be Gaussian and the total distribution is the product of the in-plane

F1 and out-of-pane F2 distribution functions:

F1(20, (20)) = [(2r)'/ 2c] - ' exp[- (20 - (20))2/a2] (1.15)

F2 (6, 0) = [(27r)1/2u1] - exp[- 62/aa2]

where (20, (20)) and 6 are the deviations in scattering plane and perpendicular to

the scattering plane, respectively, and

ao = A,31/2(21n2)1/2

au = A0 2 /2(21n2)'/ 2

The first-order Taylor expansion of the scattering vector q around (q- can now be

made:

qI - (q) 2(k) cos(0)(6 - (0))
S- (q) (1.17)

q2 (k) is the component perpen-

Where q, is the component of q parallel to (qj and q2 is the component perpen-



dicular to (i).

Expressing the distribution function Eq.1.15 in terms of this gives

Fi(qj, (q)) = [(27r)"/2 cl]-' exp(- (qi - langleq))2/cl]
(1.18)

F2 (q2 , 0) = [(27) 1/2 ac2]-1 exp[-q 2/2C 2]

where

act = (k)cos(O)AP3 1/2(2ln2) 1/2  (1.19)

aC2 = (k) A• 2/2(2 In 2)1/2

The resolution function is the product of FI and F2:

Rc(j, (q)) = [27raclc2-1 exp - + a2(1.20)

where the prefactor of the exponential function has been chosen to give the proper

normalization when the expression is integrated over the two-dimensional q space.

When the wavelength spread is small and the collimation effects are dominant, Eq.1.20

for the resolution function can be applied. This is the case for X-rays, as mentioned

previously.

1.2.3 Resolution Function due to Detector Resolution

Consider a two-dimensional area-sensitive detector. There are usually three contri-

butions to the spatial resolution: the division of the detector into pixels, the method

of detection and the method of position determination. It is assumed that the latter

two dominate and that the spatial resolution can be described by a Gaussian function

of width A. First, the width of the resolution function in the direction parallel to (q)

is determined. Let (s) denote the distance from the beam center at the detector to

the point on the detector with scattering angle (20). Then (0) = 1 arctan((s)/l) and

a first-order Taylor expansion of the scattering vector with respect to s gives

q, - (q) = (k) cos(0) cos2(20)(1/1)(s - (s)) (1.21)



The Gaussian distribution of (s - (s)) with the FWHM value A gives a Gaussian

distribution of q1 - (q) with the width

OTD1 = (k) cos(0) cos2(20)A[12(2 In 2) 112] -1 (1.22)

Similarly it can be shown that in the direction perpendicular to (qj) the distribution

of the projection q2 of q has the width

D2 -- (k) cos(20)A[12(21n 2)1/ 2 ]- '

Hence the resolution function due to the detector resolution is

1 ( (q I - (q))2 + 22
RD({, ½q) = [27rUDIUD2] 1 exp 2 2) 2

(2 D1 D2

(1.23)

(1.24)

1.2.4 Combined Resolution Function

In this section the case for which both the wavelength spread and the effects of finite

collimation are of significance is treated. Performing a first-order Taylor expansion

of q'as a multi-parameter function around (qj, it can be obtained

q = - (q))2

- (A - (A)) + 2(k) cos(O)(O - (0))

(k)6

The in-plane component q1 - (q) is the sum of two term which both have Gaussian

distributions (Eq.1.2 and 1.15). Therefore the distribution of qt - (q) is also Gaussian

with the width

.2 - +o 2
0. cv+CW CI

(1.25)



= (q) • 1 / 2  + [ (kCOS)_fn 1]2  (1.26)
(A) 2(2 In 2)1/2 2(2 In 2)1/2

where aw and act are the widths of the resolution functions due to wavelength

spread and finite collimation given in Eq.1.6 and 1.19, respectively. To the order of the

calculation the out-of-plane component q2 does not depend on A and the distribution

is the same as already derived in Eq.1.18. The combined resolution function is[27]

[_ 1 ( (q-(q ) )2 
2

R(q, (qW) = (27rUC2)- exp - q - q)2 + (1.27)

C2 
)2]

which has the proper normalization when integrated over the two-dimensional q'

space. Note that the wavelength spread gives rise to a broadening of the resolution

function in the direction of (qj. This broadening increases for increasing values of (q).

To the order of the calculations there is no influence of the wavelength spread in the

direction normal to (q). This result, which expresses the difference of the widths of

the resolution function along (q- and perpendicular to (q-, demonstrates the necessity

of making a distinction between these two directions.

Finally, the effects of detector resolution is included. The total resolution function

is calculated by convoluting the two contributions described by Eq.1.24 and 1.27. For

an Gaussian function the result of the convolution is a Gaussian function with the

width squared given by the sum of the widths squared of the two contributions.

Hence, the total resolution function is given by Eq.1.27 with a 2 replaced by a 2 + al

and ac2 replaced by oa, + 2

1.2.5 Resolution Function for Radially-Averaged Data

In many applications of the small-angle scattering technique the scattering pattern

is circularly symmetric. Therefore, the two-dimensional integration involved in the

convolution of the cross section and the resolution function can be replaced by a one-

dimensional integration in analogy with Eq.1.8. This is accomplished by introducing

a resolution function integrated along circles where q is constant.

In order to get through the algebra we need to make the assumption that the



resolution function is symmetric (act = aC2 = a) in a range around (qj. This is

fulfilled in many cases since the contribution from the wavelength spread vanishes

for (q) -* 0. Specifically, for (q) < qgo it is assumed that the resolution function is

symmetric and q0o > act. Using q, = q cos p where po is the angle between (q) and q,

we obtain

R(q, (eq) = (2ra 2 )- exp[- (q2 + (q) 2 - 2q(q) cos o)/oa 2 ] (1.28)

The radial-averaged resolution function is defined to give the measured intensity

proportional to

I((q)) = j Rv(q, dq)) dq (1.29)

dQ (1.29)

where

Rav(q, (q)) = R(q, (q))qdc

1
= (q/a 2) exp[--(q 2/a2 + (q) 2/a2 )]Io(q(q)/a 2) (1.30)

and Io is the modified Bessel function of first kind and zeroth order. This result

was first derived by Freltoft, Kjems & Sinha[26]. For (q) approaching qo the large-

argument expression of the Bessel function lo(x) = e"/V can be used together

with q _ (q):

Ra,,(q, (q)) - [(27r)'/2a] - 1 exp[- (q - (q)) 2 /a 2 )] (1.31)

for (q) -+ qo, (q) < qo0

For (q) > q0 the resolution function is elongated along (qj and the integration in

Eq.1.30 is not easily performed. It will be shown that one can obtain Eq.1.31 for

(q) > q0 by changing the integration variables in Eq.1.30. The resolution function is

only different from zero in a small range around (q) and in this range q m ql, where

ql is the coinmponent of q along (q- and qdyp e dq2 , where q2 is the component of q'



perpendicular to (q). Therefore, the integration in Eq.1.30 of qdpo can be replaced

by an integration of dq2. Another way of expressing the approximation qdcp - dq2

is that for large values of (q) the circles q = constant can, in the range where the

resolution function is different from zero, be replace by straight lines in the direction

perpendicular to (q). Using Eq.1.27 for the resolution function and performing an

integration of q2 we can obtain Eq.1.31 as mentioned previously.

In applications it is important that Eq.1.30 is used for small values of q and not

Eq.1.31. The two functions deviate systematically for small q values, and the center

of mass of Eq.1.30 is at a q value larger than (q).

1.2.6 Examples

Fig.1-4 shows the radially-averaged resolution-function for a typical situation where

(A) = 5.0o1, AA/(A) = 0.2 and a=a2 = 0.01. One gets aw = (q)a', c' = 0.085

(Eq.1.6), act C ac2 • 0.008;1-1 (Eqs.1.13,1.14,1.19),and the resolution function is

symmetric when (q) < qgo < acctla' " 0.10A - 1. The relation q0 > acl can easily

be fulfilled and it is meaningful to calculate the radial-averaged resolution function.

From these considerations it can also be concluded that when the wavelength spread is

negligible, the radially-averaged resolution function is given by Eq.1.30 with a = acl.

The 3-component microemulsion system consisting of ionic surfactant AOT/water/decane

tends to form a water-in-oil droplet microemulsion near room temperature. AOT is

an ionic surfactant with a sodium sulfate hydrophilic head and two hydrophobic

hydrocarbon tails. At higher temperature, these droplets percolate and form bicon-

tinuous microemulsion[30]. Fig.1-5 shows a SANS scattering intensity curve of this

bicontinuous microemulsion and the data analysis using

Im((q)) = Background + (77r) q)+ (q, (q))S(q)dq (1.32)
J(q)-3a

where Im is the measured intensity and

S(q) = (1 - Ao)1r2/3c3e-q2C2/4 + Ao 825/ (1.33)
a2 - 2b2 2 + 4
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Figure 1-4: The azimuthal-integrated resolution function for (A) = 5.0A, AA/(A)
0.2, r1 = 2.0, r2 = 1.0, L = I = 200 cm. The function is plotted for (q) = 0.05, 0.1,
0.3, 0.6, and 1.0 - ', respectively.



with a = k2 + 1/2, b = k- _ 1/ý2. The SANS experiment was performed at NIST

with (A) = 5 A, AA/(A) = 0.147, rl = 0.6cm, r2 = 1.9 cm, L = 1, 622 cm, I = 310 cm,

and A = 1 cm. The variables are displayed in the figure.

In Fig.l1-5, the dashed line is the calculation with the same variables used to

obtain the solid line without the resolution function correction. The smearing by the

resolution correction is clearly shown. From Figs.1-5 and 1-4, it is evident that the

resolution correction is necessary for scattering curves with sharp features, especially

at larger q.

A FORTRAN computer program calculates the resolution function with given

parameters is listed in Appendix A.
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Figure 1-5: An example of including resolution function in the data analysis. Cir-
cles are experimental data, solid line is the calculation with the resolution correction.
Dashed line is the calculation without the resolution correction using the same vari-
ables as shown in the figure. ¢ is the volume fraction of AOT and water, T is the
temperature of the experiment, Tp is the percolation temperation, k, ý, c, and Ao are
the fitting variables, (772) and Background are obtained from other SANS experiments.



Chapter 2

Structure and Dynamics of

Water-in-oil Microemulsions near

the Critical and Percolation

Points

2.1 Introduction

The three-component ionic microemulsion system made of anionic surfactant, sodium

di-2-ethylhexylsulfosuccinate (AOT), water and decane is rather unusual in terms of

its phase behavior. At a constant temperature, a typical symmetric ternary mi-

croemulsion system, having equal volume fractions of water and oil, shows the well-

known 2-3-1 phase progression, as the surfactant concentration is increased from zero

to more than 8%. When surfactant concentration is very low, the molecules are dis-

persed in water and oil just as monomers. The system is naturally phase separated

into two-phases, with an oil- rich phase on the top and water-rich phase on the bottom

because of high interfacial tension between water and oil. There is no organized struc-

ture in the two phases. At a temperature where the surfactant has balanced affinities

toward water and oil, a three-phase coexistence, with a middle-phase microemulsion



in co-existence with an oil-rich phase on the top and a water-rich phase in the bottom,

is to be expected at relatively higher surfactant concentrations simply because of a

finite solubilization power of the surfactant for water and oil. The middle-phase mi-

croemulsion is an interesting liquid because there is an organized microstructure in it.

The microemulsion shows ultra-low interfacial tensions between itself and the water

and oil-rich phases. The microstructure of the middle-phase microemulsion is often

described as being "bi-continuous" in both water and oil. With further increase in

the surfactant concentration, a "minimum" concentration will be reached whereby all

the excess water and oil are solubilized into a single-phase microemulsion. This mini-

mum concentration is usually between 5 to 8% for a good microemulsion system. The

value of the minimum concentration is a measure of amphiphilicity of the surfactant

molecules at that temperature, being lower f6r higher amphiphilicity. In the vicin-

ity of this minimum surfactant concentration, the microstructure of the one-phase

microemulsion is also disordered bi-continuous[30]. As the surfactant concentration

further increases, the one-phase microemulsion transforms into a lamellar structure,

which may be called ordered bi-continuous, and then to some other three-dimensional

ordered structures. This disorder-to-order transition occurs usually around 15% of

the surfactant concentration.

AOT/water/decane system, on the other hand, does not follow this usual pattern

of phase behavior. Fig.2-1 is the phase diagram of this system. Around room temper-

ature the surfactant film, consisting of AOT molecules, possesses a spontaneous cur-

vature toward water due to a hydrophilicity-lipophylicity imbalance of AOT molecules

in this temperature range. Thus one finds in the ternary phase diagram a large one-

phase region, called the L 2 phase, extending from the decane corner into the middle

of the phase triangle. In the L2 phase, even with equal volume fractions of water

and oil, the microernulsion, instead of being bi-continuous, consists of water droplets,

coated by a monolayer of AOT, dispersed in decane. With this microstructure, the

inicroemnulsion is nearly an insulator because the water droplets are separated from

each other. Fig.2-2 is a schematic showing the microstructure of such a droplet. Pre-

vious Small-Angle Neutron Scattering(SANS) experiments verified that the average
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Figure 2-1: Projection of the phase prism of AOT/H 20/decane system, at W = 40.8
and one atmosphere pressure, on the temperature-volume fraction plane. This phase
diagram shows clearly the structural transitions in the one phase region as mentioned
in the text[36]. The study in this chapter concentrates on the lower left corner of this
phase diagram which is shown in Fig.2-3.
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Figure 2-2: Schematic of the microstructure of a water-in-oil droplet in an AOT

/water /decane microemulsion system.

radius (R) of the water droplets is determined essentially by the molar ratio of water

to AOT, called W, in the system. An approximate empirical relationship between

the radius (in A) and W is: (R) = !WV. Thus, for W = 40., the average water

droplet radius is about 60A[31]. This water-in-oil droplet structure is maintained

even if the volume fractions of water and oil are equal[32], provided the temperature

is below 250C. This case is in sharp contrast to the usual situation that, for equal

water and oil volume fractions, the microstructure of one-phase microemulsions were

generally found to be bicontinuous[33, 34]. Even for the AOT/water/decane system,

when a small amount of salt (NaC1) is added, the common 2-3-1 phase progression is

obtained at around the hydrophile-lipophile balance temperature of 40'C[30] and a

SANS experiment in the one-phase channel at this temperature conclusively showed

that the microstructure is bicontinuous[35].

This persistent droplet structure in the ternary AOT/water/decane system can,

however, be used to realize an interesting coexistence of a critical phenomenon at a

low volume fraction and a high temperature and a percolation phenomenon at lower

temperatures but at all volume fractions. In fact, this is a rare situation in which one



has, in a real system, the realization of both the critical and percolation points at the

same volume fraction.

Fig.2-3 shows the T - 0 phase diagram of AOT/H 20/decane system when the

water to AOT molar ratio W = 40.8. Substitution of H2 0 by D 20 will merely shift

all the phase boundaries up by about 2 degrees. 5 denotes the volume fraction of

the dispersed phase, in this case the AOT plus water. In the diagram, one sees a

one- phase (L 2 ) region below 40C0. In the interval of f between zero and 0.4, there

is a cloud point curve separating the one-phase droplet microemulsions from two-

phase droplet microemulsions. The previous SANS experiment established that the

average droplet sizes and their size distributions are, within the experimental error,

identical in the one-phase and two-phase regions[31j. The critical volume fraction is

approximately 0.1 and the critical temperature is 40 degrees[36] in H 20. Above the

volume fraction of 0.4 there is a phase boundary between the L 2 and a lamellar phase

where the microstructure is ordered and bicontinuous in water and decane (not shown

in the figure).

The novelty of this phase diagram is, however, the existence of a percolation line,

extending from the left of the critical point all the way to higher volume fractions,

gradually decreasing in temperature to about 23 degrees at € = 0.7. Below the

percolation line the microemulsion is non-conducting but above the percolation line

it becomes conducting. In crossing the line, the conductivity increases by over five

orders of magnitude. Fig.2-4 shows a set of logarithm of conductivities s as functions

of T and 0[37]. One sees clearly a set of steeply rising sigmoidal curves that can be

used to define a set of loci {Tp, ,p} in terms of their inflection points. The asymptotic

behavior of conductivity near the threshold, at a given €, can be expressed as:

(=-Tp-T (2.1)
TP

coming up from below, and

B= (T-TPT (2.2)
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Figure 2-3: Projection of the phase prism of AOT/H 20/decane system, at W = 40.8
and one atmosphere pressure, on the temperature-volume fraction plane. The open
circles are the one phase-two phase boundary and solid circles are percolation loci[36].
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going down from above. The exponents s' and t have been determined experimen-

tally to be 1.2 + 0.1 and 1.9 ± 0.1 respectively[37]. The exponents are the same when

T is fixed but € is varied[37]. The exponent s', determined from conductivities below

the threshold, agrees with the value of the index proposed in the so called dynamic

(or stirred) percolation theory[38, 39], which is distinct from the standard static per-

colation exponent s = 0.73[40]. On the other hand, the exponent t deduced from

data above the threshold agrees with the static or geometric percolation theory[40].

In the theory of dynamic percolation, the conduction of electricity is conjectured to

be mediated by charge carriers (presumably the sodium counterions from the AOT

molecules) which migrate rapidly among microemulsion droplets forming transient

fractal clusters, due to a short range attractive interaction between the droplets. The

percolation threshold is defined theoreticallylto be a point where the average clus-

ter size becomes infinity, namely, when at least one cluster spans the entire sample.

Fig.2-5 is a schematic explaining this concept. Note, for this definition, finite con-

duction can occur already below the threshold because even there an infinite cluster

can exist.

We have an experimental evidence that the percolation in AOT/water/decane

system in the L 2 phase is associated with a clustering phenomenon. The phase

diagram that we depict in Fig.2-3 should therefore be obtainable from the standard

liquid theory with an appropriate definition of the percolation. We shall outline one

such theory in the next section.

2.2 Baxter's Sticky Sphere Model and the Asso-

ciated Phase Diagram

A reasonable model for a microemulsion in the L 2 phase is to regard it as a collection of

spherical colloidal particles of an average radius (R) interacting with one another via

a short-range temperature-dependent attractive pair-potential. This pair-potential

can, for example, be a square-well potential with a hard-core diameter of a, plus an



Figure 2-5: Schematic of a percolating cluster made of droplets that spans from one
side to the other side.
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Figure 2-6: The original pair potential function used in Baxter's model.



attractive tail of depth -E and width A as shown in Fig.2-6. The liquid theory with

a square-well potential in general can not be solved in an analytical form except for

a limiting case in which e tends to infinity and A to zero in such a way that the

contribution to the second virial coefficient exists. This limiting potential is called

Baxter's sticky sphere potential. Specifically, the pair-potential is of the form:

= +oo r<

f3u(r) = - ln[(1/127)(a/(a - a))] a < r < a (2.3)

= 0 r>a

where , = 1/kBT, a the outer diameter and a the inner diameter of the attractive

well. It is understood that the limit a -4 a is to be taken in the calculation. From our

discussion above, it is obvious that a = 2(R). The single dimensionless parameter 1/7

is called the stickiness parameter. The sphere is stickier the smaller 7 is. In the limit r

tends to infinity, the pair potential reduces to a hard sphere potential. By equating the

respective second virial coefficients, one can map the square-well potential parameters

into an equivalent sticky sphere potential parameter in the following way:

1 A
- = 12- exp(Oe) (2.4)
T a

We assume here a > A. It is seen from Eq.2.4 that the stickiness increases as A

or PE increase. For an AOT in decane, the parameter A corresponds roughly to the

length of the hydrocarbon tail which can stretch out as the temperature increases.

Baxter showed that[41] the Ornstein-Zernike equation using this sticky pair- po-

tential can be solved analytically in the Percus-Yevick approximation[42]. The PY

approximation in this case amounts to a reasonable ansatz that the direct correla-

tion function c(r) = 0 outside the range of the potential a. Combining this ansatz

with the exact boundary condition for hard spheres that the pair-correlation function

g(r) = 0 inside the hard core a and has a form of delta function on the surface of

the sphere, the direct correlation function inside the hard core can be found. Thus

one can obtain an analytical form of the three-dimensional Fourier transform of the



direct correlation function c(k) as a function of the volume fraction of the spheres 77

and the stickiness parameter 1/7. Here, 77 = pa3 ir/6, and p is the number density of

the particles. In comparing the theory with experiments for the scattering intensities,

we shall identify 77 with q.

First, the inter-particle structure factor S(k) is calculated from the relation:

1
S(k) = (2.5)1 - pc(k)

From the limiting value S(k -+ 0) = pkBTXT we can get the isothermal compress-

ibility XT. By integrating XT with respect to the number density, one obtains the

compressibility equation of states:

p 1 + 712 A7(1 -77)(1 + 7/2) - A 72(l 7)/36 (2.6)P (1 - )3 (1 - 77)3

where the parameter A is given by the smaller real root of:

2 A ( - + 1  A + = 0 (2.7)
12  1 + ' (1 - 77)2

From the equation of states, one finds the existence of gas-liquid phase transition

with a critical point occurring at 77k = 0.1213 and 7r = 0.0976. Again, by integrating

the compressibility equation of states, Barboy[43] was able to obtain an analytical

chemical potential / valid both in the one- and two-phase regions. Having the chem-

ical potential and pressure, one can then obtain the coexistence curve by solving for

the coexisting gas and liquid densities at a given r, which is less than r- in the two-

phase region. Fig.2-7a shows the coexistence line obtained this way in a lr/7 vs. 77/77

plot. In the same figure the corresponding spinodal line is also plotted in a dash line.

The spinodal line is the loci of {7, 77} where the isothermal compressibility diverges.

It is seen that the coexistence curve is highly skewed toward the low volume

fraction side, a feature which is often seen in micellar solutions and microemulsions.

This is due to the interaction which is short range and strong and is in sharp contrast

to the well-known Van der Waal's case, which is derived from an interaction that is

long range and weak. To see the degree of asymmetry on the gas and liquid sides, I
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have worked out the respective asymptotic behaviors:

1 - - = 0.1584 1 - 2 7 ) <

(2.8)

1 - = 0.0264 - 1 77 > rc

The skewness can be assessed from the ratio of amplitudes in Eq.2.8, namely

0.1584/0.0264 = 6. This equation also shows that the PY approximation gives the

mean field exponent 0 = 1/2.

One of the nicest features of Baxter's model is, however, that one can also derive

analytically the percolation loci in the {r, 77} plane. Coniglio et al[44] introduced a

pair-connectedness function P(r) in 1977 in connection with development of a contin-

uum percolation theory. Given a particle at the origin, 47r 2pP(r)dr is the number of

particles in the spherical shell (r, r + dr) which are connected to this central particle

and belong to the same cluster. Coniglio et al showed that P(r) also satisfied an

Ornstein-Zernike type equation with a modified direct correlation function c+(r): By

invoking the short range nature of the direct correlation function, namely, c+(r). = 0,

for r > a, and the sticky sphere condition:

P(r) = 1Aa6(r - a) (2.9)
12

Chiew and Glandt[45] was able to show that the average cluster size S is given by

1
S =(1 A7) 2  (2.10)

The onset of percolation can be defined as the point where S diverges. Thus

percolation loci in the {T, 77} plane is given by 7l = 1/A, leading to an equation:

1 12(1 - 77)
7 197r2 - 2r7 + 1

Fig.2-7a shows also a percolation line according to Eq.2.11.

In order to compare the theoretical phase diagram with the actual one, we have to

specify the relationship between the stickiness parameter 1/7 and the temperature.



Eq.2.4 suggests that 1/r is proportional to the interaction strength and the interaction

strength should increase with temperature because we have a lower consolute point.

The stickiness in our system is a result of entropy difference. Consider two droplets

in the system as shown in Fig.2-2, when they are far apart, there are oil molecules

penetrate into the hydrocarbon shell of the droplets; when they are close together, the

hydrocarbon shells of them penetrate each other and expell away the oil molecules.

The release of the oil molecules increases the entropy and decreases the free energy of

the system so it is a favorable state for the system. At higher temperature, it is even

more favorable because U = E - TS, where U is the free energy, E is the enthalpy,

T is the temperature, and S is the entropy. Therefore, the droplets are stickier at

higher temperature. The simplest relationship with two parameters a and y is

S=_ 1 -a 1 T- (2.12)7 TC
We can try to fit the experimental coexistence curve using the sticky sphere model

supplemented by Eq.2.12 and then predict the percolation loci with it. Fig.2-7b shows

the results of choosing a = 13 and y = 1.

2.3 Analysis of SANS Data Below Tc

SANS intensity distribution from a system of polydispersed spherical droplets can be

written as[46]:

4 4 --3(Z + 6)(Z + 5)(Z + 4)I(Q) = (Ap)2 +o-- ( (P(Q))(S(Q)) (2.13)
3 (Z + 1)3

where Ap = p, - p, is the difference of scattering length densities of D 20 and

protonated decane, ,. the volume fraction of D 20 , R = (R), the average radius

of the water core, and Z the index related to the polydispersity. The normalized,

volume square averaged particle structure factor is defined as:

(R 6 3j (QR) 2

(P(Q)) = (2.14)
(R 6)



The form factor of a spherical particle of radius R is F(Q) = 3jl(QR)/(QR). The

form factor averaged inter-particle structure factor is defined as:

(S(Q)) = EJ(pip)11/2FF(Q)Fj(Q)Sij(Q)
(S ) p F2 (Q) (2.15)

The size average is taken with respect to a Schultz distribution, which is known

to be accurate in the case of AOT/water/decane system(31]. In this case the degree

of polydispersity is AR/(R) = (1 + Z)- 1/2 . The partial structure factor, Sij(Q),

for a multicomponent sticky sphere system has been given by Robertus et al[47], for

i,j = 1 to 9, using Baxter's method. The FORTRAN package for calculating the

partial structure factors has been kindly supplied to us by Dr. J.G.H. Joosten. The

volume square averaged particle structure factor, assuming the Schultz distribution

of sizes, had previously been given in an analytical form by Kotlarchyk et al[48].

Eq.2.13 is a theory containing three adjustable parameters (R), Z and r. These

parameters are functions of temperature and volume fraction. Here we assume that

particles of different sizes have the same degree of stickiness.

SANS experiments were performed at the National Institute of Standard and Tech-

nology (NIST). Wave-length of neutrons was selected at A = •A with AA/A = 0.147.

The radius of the source aperture was 1.9 cm and the radius of the sample aperture

was 0.6 cm. The distance between the source aperture and the sample aperture was

1, 622 cm. Every scattering curve was a combination of two measurements at two

differnt sample-to-detector distances of 300 cm and 1, 110 cm, in order to have both

low Q and high Q data.

Fig.2-8 shows results of fitting Eq.2.13 to the intensity data from samples at 0 =

0.08, 0.10, and 0.12, all measured at 7T = 40C00, closest to the critical temperature.

The upper three graphs show experimental I(Q), in log scale, vs. Q plots and their

theoretical analysis results (solid lines). The lower three graphs depicts the normal-

ized, volume square averaged particle structure factor and the form factor averaged

inter-particle structure factor extracted from the fits. The fits are satisfactory and

from which we were able to extract, for all three samples, (R) = 50A, close to what



we estimated in the introduction, and Z = 8, corresponding to a polydispersity index

of 33%. The dimensionless parameter 7 = 0.112 for the 8% sample is closest to the

critical value r, = 0.0976. From this we deduce that the critical volume fraction for

the microemulsion system we studied is 8%. As can be seen, the form factor averaged

inter-particle structure factor shows a zero angle peak due to critical scattering and

is devoid of the first diffraction peak due to the low volume fractions.

Fig.2-9 shows results of the analyses of the temperature dependence of the scat-

tering intensity distributions from the 8% sample. As temperature increases from 30

to 35 and to 400 C the stickiness parameter progressively decreases toward the critical

value, while the average size decreases and width of the size distribution increases

slightly.

2.4 Analysis of the Phase Diagram

What is most pleasing to see is, however, that the temperature variation of T7/7

derived from the SANS data comes out in the form as given in Eq.2.12. This situation

is similar to the case of non-ionic micellar solution investigated by Menon et al[49].

These authors suggested a linear relation between Tc/T and T/TC. Fig.2-10 plots the

r,/r values of obtained from SANS data against (1 - T/T0 )o0 94 . Linear relations are

obtained by adjusting the value of T,. For 8% case the Tc turns out to be 42.7 0 C,

close to the actual T, in a D20 based microemulsion system. The slope of the straight

line gives a! = 11.03 in Eq.2.12.

We can derive Eq.2.12 heuristically in the following way: We study the low Q

behavior of the form factor averaged structure factor S(Q) for a system of sticky

hard spheres of an average diameter 100A and a polydispersity index of Z = 10 at

the critical volume fraction 77, = 0.1213. Fig.2-11 shows that at sufficiently small Q,

the Ornstein-Zernike functional form is obtained and we can thus extract the long-

range correlation length ý as a function of 1/T as we approach the critical point.

Physically, as we approach the critical point, the droplets in the microemulsion form

clusters. The size of the clusters become larger as the stickiness of the surfaces of



Q [A-']
0.00 0.05 0.10 0.15 0.20 0.25

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

Q [A-' ]  [AQ [A-' ]

0.00 0.05 0.10 0.15 0.20
4.U

3.5

3.0

2.5
S(Q)

2.0

1.5

1.0

0.5

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

Q [A'l ]  Q [A-']

Figure 2-8: SANS intensity distributions and their analysis by Baxter's model with a
polydispersity. In the top of the figure, we show SANS intensity distributions for 8, 10
and 12% volume fraction samples at 400 C. The analysis shows that 8% case is closest
to the critical volume fraction as indicated by the lowest value of T obtained. In the
lower part of the figure we present the corresponding particle structure factor P(Q)
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for three cases are almost identical indicating the same size and size distribution of
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the droplets increases and finally they form a separate phase. Therefore, ( should

increase as 1/r increases. Fig.2-12 plots log of the correlation length against log of

(1 - re/r). We obtain a series of straight lines implying validity of a relation

( 1 _ 1 (2.16)

where the exponent v' depends on the polydispersity index Z. When Z is very

large, namely when the system is a monodisperse sticky spheres, v' = 0.5; but when

Z = 10, corresponding to the system under study, v' = 0.532. On the other hand, it

is known experimentally as well as theoretically that near the critical point of a fluid,

the correlation length is a function of the temperature distance from the critical point

according to

I•, 1 T- (2.17)

with v = 0.5 as in a mean field theory like the Baxter's solution. Eq.2.16 and 2.17

taken together leads to our previous ansatz, Eq.2.12 in which

v 0.500
7 = 0.94.

v' 0.532

Fig.2-13 shows a comparison of experimental cloud point curve (open circles) and

the theoretical co-existence curve (solid line) and spinodal line (dash line) calculated

by taking a polydisperse sticky spheres with the stickiness parameter 7- depending on

temperature according to a relation:

- = 1 1- 11 - -T. (2.18)
7 T'

The discrepancy on the upper-right corner of Fig.2-13 is due to the inicrostructure

of the microemulsion in that region is bicontinuous rather than droplet. The sticky-

sphere model doesn't apply for a bicontinuous microemulsion.

In order to account completely for the percolation loci using Eq.2.11 and 2.12,

we have to introduce a temperature dependent effective sticky sphere diameter. This
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idea is reasonable because the definition of connectivity of two spheres should be

dependent on thermodynamic state of the liquid. In fact it is intuitively appealing to

postulate that the higher the temperature the easier for the counterions to migrate

from one water core of a droplet to another in the neighborhood. Therefore the

effective diameter of the microemulsion droplets, as far as electrical percolation is

concerned, is larger for higher temperatures. Fig.2-14 shows the result of force fitting

the experimental percolation loci (solid circles) with Eq.2.11 (solid line). The ratio,

(7lSHS/T7) 113, which is a measure of the ratio of the effective diameter to the actual

diameter, turns out to be a linear function of T/TC. It is shown in Fig.2-14 as a solid

line.

2.5 Dynamics of the Droplet Number Density Fluc-

tuation near the Critical Point

We shall turn next to the discussion of some aspects of the droplet dynamics near the

critical point. The starting point of our theory is an assumption that the slow dynam-

ics of the droplets is dominated by diffusive motions of the percolation clusters[50].

This assumption is expected to be good in the vicinity of the percolation threshold

where large, transient fractal clusters are formed. Formation of the transient fractal

clusters is a necessary condition for the dynamic percolation theory[38] to be valid.

We have used it to explain the conductivity exponent below the percolation threshold

in the introduction. In AOT/watcr/dccane system, as one can see from the phase

diagram (Fig.2-3), the critical point is only about two degrees above the percolation

point. One therefore expects that the cluster structure and cluster size distribution

are similar in the critical region to the percolation point.

For light scattering, the wave-length of visible light is much larger than the droplet

sizes. Hence, for this Q range, the particle structure factor is nearly unity and we can

ignore it.

First, we calculate the inter-particle structure factor Sk(Q) for a cluster containing

/~_IIW __I _I
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k particles. We do this by Fourier transforming the k-cluster pair correlation function,

D e - r /Rk
P(9k) 1)= D 3-D (2.19)

where D is the fractal dimension of the clusters, Rk = Rlkl /D, the radius of

gyration of the k-cluster, and RI the average radius of the droplet. The result can be

put in an analytical form[51]:

SkD(D) sin[(D - 1) arctan(QRk)]
S (Q) = +1 (2.20)(D - 1)QRk[1 + Q2R I(D-1)/2

With the structure factor, the intermediate scattering function F(Q, t) can be

calculated as

F(Q,t) = ~E kN(k)Sk(Q) exp(-DkQ2t)
F(Q, t) k= Ek / k (2.21)

Zr-=I kN(k)Sk(Q)

The discrete sum can be converted into an integral over k by introducing a cluster

size distribution function of the form: N(k) ~. k 1 - • exp(-k/S)[521. In this expression

r is the polydispersity exponent, S the average cluster size, Dk = Dlk- 1/D the transla-

tional diffusion coefficient of the k-cluster and D1 the Stokes-Einstein diffusion coeffi-

cient of the droplet. Numerical simulations for three-dimensional percolation clusters

gave a fractal dimension D = 2.5 and the polydispersity exponent - = 2.2[52]. The

measured photon correlation function is then given by C2(Q, t) = 1 + IF(Q, t) 2 .

The first cumulant, or the average relaxation rate, is the logarithmic derivative of

C(Q, t) evaluated at t = 0. It is given by:

E001 kN(k)Sk(Q)DkQ
2

r(Q)= = -,k k= (k)Sk(Q) (2.22)E0=01 kN(k)Sk()

2.5.1 Dynamic Slowing-Down of the Average Relaxation

Rate

Eq.2.22 for the average relaxation rate F(Q) can be expressed in terms of two di-

mensionless variables x = Qý and xz = QR I, where the correlation length is defined

i~RglLPilrigaauE·ra~auvarrrraPrrar~l~·Y~



as ( = RISllD/3 1/ 2 . The complete analytical form of the F(Q) near the percolation

threshold has been given in [50]. We shall limit our discussion here to the particular

case near the critical point. In this case the cluster structure factor Eq.2.20 is ap-

proximated by its low Q form Sk(Q) = k exp(-Q 2 R2/3). An analytical expression

of F(Q) is obtained by converting Eq.2.22 into an integral. It is more revealing to

construct a scaling function defined as: F*(x, xl) = F(Q)/D1RQ3 . It is given by [53]

X) 37r F(3 - r, xf)F(3 - T -i1/d, u) [ 1]1/2 (2.23)
r*(x, s,) = -s- - 1 (2.23)817(3 - - 1/D,3f)P(3 -TU) [ 2

where u = D [1 + x2]D12, and F(a, b) is the incomplete Euler gamma function.

It should be remarked that the presence of the second non-universal variable xl in

Eq.2.23 is due to the finite size of the constituent particles. In this regard, it is

remarkable that in the limit of small particles,

K(x)lim F*(x, l) K() (2.24)
XI-40 X 3

where K(x) is the Kawasaki universal dynamic scaling function originated from a

mode coupling theory:

K(x) = 3 + (x -X-) arctan(x)] (2.25)

which is known to account for light scattering data from binary mixtures of molec-

ular liquids very well. F*(x, xl = 0) has simple asymptotic behavior

Forx <« 1 F*(x) = a/x (2.26)

For x > 1 F*(x) = b

where a and b are known constants. Fig.2-15 illustrates the cross-over from the

small x to large x behavior as expressed by Eq.2.26. Using light scattering data

taken near the critical point of the AOT/water/decane system, we illustrate the

agreement of measured first cumulants of photon correlation functions and prediction

of Eq.2.23[53]. It is clear from the graph that the finite size effect of microemulsion
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Figure 2-15: The dynamic scaling function r*(x, xi) associated the average relaxation
time of the cluster diffusion plotted as a function of 1/x for two values of the scaled
droplet size xl. Open circles are experimental data from AOT/water/decane sys-
tem near the critical point. The dashed line corresponds to Kawasaki's mode-mode
coupling result. The solid line is the dynamic droplet model result presented in the
text.

droplets is large enough to be detectable in a light scattering experiment.

Analogous dynamic slowing-down phenomenon near percolation points at higher

volume fractions has been observed and explained by the theory [50, 54].

2.5.2 Stretched Exponential Decay of the Time Correlation

Function at Long Time

Again Eq.2.21 in its integral form can be computed analytically[55J. We then obtain

the time correlation function, C(u, v), in terms of the scaling variable u and a dimen-

sionless time variable v = DIRIQt(1 + x-2) 1/2 . It is sufficient for the purpose here to

state that at sufficiently short time, we have an exponential decay with the average

relaxation rate F(Q) given before,

C(u, v -+ 1) = exp[-r(Q)t] (2.27)



and at long time such that Ft > 1, the time correlation function approaches an

stretched exponential form,

C(u, v > 1) = exp[- (t) ] (2.28)

with F given by

S- l/p•D/oDiRiq3 1( + )2 (2.29)

and the exponent 3 = D/(D + 1) is a universal number 0.713.

Cross-over from the short-time exponential decay to the long-time stretched expo-

nential decay of the photon correlation function occurs at the dimensionless variable

Ft = 1. Near the percolation points at high volume fractions, one has a similar cross-

overs from exponential to stretched exponential behavior[50], except the cross-overs

occur at earlier times so the stretched exponential decays can be easily observed in

experiments[46].

2.6 Conclusion

We have given concrete evidence that both the structure and dynamics observed in

a three-component microemulsion system, AOT/water/decane, near the critical and

percolation points can be explained in terms of a model based on the formation of

transient, polydisperse fractal clusters due to a short-range attraction between mi-

croemulsion droplets. This attractive interaction increases in a specific way as the

temperature increases toward the percolation and critical points. We derive a quan-

titative relation between the interaction strength and the temperature from analyses

of SANS data in the one-phase region approaching the critical point. This relation

serves to explain the over-all feature of the phase diagram, including the cloud-point

curve and the percolation line.

The diffusive cluster dynamics also accounts for the Q-dependence of the first

cumulant of photon correlation functions in the critical region. The dynamic scaling



function associated with the average relaxation rate deviates significantly from the

well-known Kawasaki function at large Q due to the large sizes of the microemulsion

droplets[531. The long-time behavior of the photon correlation function is shown to

be a stretched exponential form with a universal stretch exponent of 0.713[50].

A FORTRAN computer program used to calculate the structure factor and inter-

particle structure factor for a multicomponent droplet system using Baxter's model

is listed in Appendix B.



Chapter 3

Structural Study of the Liquid and

Gel Phases of a Semifluorinated

Alkanes in a Mixed Solvent

3.1 Introduction

Fluorocarbons and hydrocarbons are both hydrophobic and apolar molecules, with

very low dipolar moments, therefore in principle they are expected to form regular

mixtures, due to the weakness of the intermolecular forces. Instead, binary mixtures of

CmF2m+2 and CnH2n+2 are an interesting and surprising example of phase separating

systems[56, 57, 58].

The plot of demixing temperature(To) versus concentration(x) provides the phase

separation curve with an upper critical solution temperature(UCST) and a critical

concentration value x,. The curve is quite asymmetric and the values of x, and T,

depend on the chemical structure of the two liquids.

Unlike other phase separating systems, mixtures of fluorocarbons and hydro-

genated solvents show larger deviations from the "regular solution" theory (S2,M2)

than those expected from the difference in solubility parameter 6.

In spite of their chemical similarity, fluorocarbons and hydrocarbons possess dif-



ferent properties and are immiscible below a certain demixing temperature, as a

result of the different chain conformations: in fact (CH2)n segments arrange in the

usual zigzag conformation with a cross-section area of 18.5 A12/molecule, whereas a

(CF2)m chains possesses a typical 15/7 helix conformation and the cross-section area

is 28.3 A12/molecule[60]. For this reason fluorocarbon/hydrocarbon mixtures show

characteristic phase boundaries (demixing temperature versus either molar or vol-

ume fraction) with a broad maximum that corresponds to the upper critical solution

temperature (T,) and to the critical concentration (xc) or critical volume fraction

Semifluorinated n-alkanes (or perfluoroalkyl-alkanes) are diblock short-chain copoly-

mers that show peculiar properties in the liquid and in the solid state. They are

constituted by two different blocks: a fluorinated chain linked to a hydrocarbon tail

F3C(CF2 )m-1 - (CH 2)n-ICH3 (shortly FmHn). Since the two segments are covalently

bonded, they cannot phase separate.

The presence of both fluorinated and hydrogenated tails in a semifluorinated

alkane produces interesting phenomena both in the solid and in the liquid state.

In the solid state FmHn produce liquid crystals, show peculiar ordered arrangements,

and undergo some phase transitions that have been extensively studied[62, 63, 64, 65,

66, 67, 68, 69].

In the liquid state, semifluorinated alkanes produce micellar aggregates when dis-

solved in fluorinated or hydrogenated solvents[70, 71, 72, 64]. Being completely in-

soluble in water, they also form stable Langmuir monomolecular films and show a

slight surface activity at the air/water interface[74]. Heating up a solution containing

F,Hn micellar aggregates results in the destruction of these aggregates, whilst at

lower temperatures the solution forms a gel, depending on the nature of the solvent

and on the concentration of the copolymer. These gels are constituted by long fibers

of copolymer in an extended network that entraps free solvent molecules. The gels

look like soft, high viscosity materials, that partially dissolve by shaking. By heating

up the gel, a clear solution is quickly restored.

FmH,, solutions in different solvents have been usually studied by several tech-
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niques such as static and dynamic light-scattering, NMR, UV absorption, small-angle

neutron and X-ray scattering (SANS and SAXS respectively), differential scanning

calorimetry (DSC), surface tension, and dye solubilization measurements. These data

clearly show that the copolymer monomers form micellar aggregates, depending on

the temperature, on the chemical composition of the F,nH, and on the nature of

the solvent. The incompatibility between fluorinated and hydrogenated blocks is the

main factor that controls the formation of such aggregates. In fact in the presence of

a selective solvent, the two blocks will establish different interactions with the solvent

molecules and therefore will be confined in different regions of the supramolecular

structure.

Since F,H,n copolymers are able to form aggregates when dissolved in a selective

solvent, they have been named as "primitiv~ amphiphiles"; this term refers to an

apolar molecule that is formed by two incompatible units and possesses a low dipolar

moment. According to this recent definition, primitive amphiphiles represent the an-

cestors of the whole amphiphile' family, because of the presence in the same molecule

of two incompatible and immiscible moieties, and therefore it is expected that they

will provide a useful tool for testing molecular theories of surfactant aggregation.

The addition of even small quantities of F8 H 16 to a mixture of perfluorooctane

(PFO) and i-octane (i-OCT) produced a significant lowering of the upper consolute

temperature and a relevant broadening of the phase separation curve. Light-scattering

from the liquid sample was not ascribed to the presence of small aggregates, but to a

critical scattering related to the demixing of the two solvents.

Larger amounts of copolymer added to the PFO/i-OCT system resulted in the

formation of a white gel below a certain liquid-gel transition temperature, and in this

case no solvent demixing was observed upon cooling. In this high-copolymer state,

dynamic light-scattering and SAXS measurements performed on the liquid samples

showed the presence of small aggregates characterized by an average hydrodynamic

diameter of about 30 A. Lowering the temperature, the system evolves toward the for-

mation of a bigger structure and eventually to the formation of an extended, ribbon-

like, sheet.



According to the model for the liquid phase[60], some copolymer molecules ag-

gregate in the mixed solvent and form small micelles. As the temperature decreases

and approaches the liquid-gel phase transition temperature, the original micelles grow

and form an extended, ribbon-like structure, where the copolymer molecules produce

a lamellar pattern, with the fluorinated chains closely packed in a side-by-side and

head-by-head arrangement. The hydrogenated segments will interdigitate in the in-

ternal region, given the smaller cross-section of the hydrocarbon blocks respect to

the section of the fluorinated helices. As the temperature lowers, other copolymer

monomers will be captured and several lamellar layers will be formed, producing

birefringent elongated structures that can be observed under a polarizing microscope.

Two plausible models are proposed for the gel phase based on the birefringence

picture[60, 70] which includes both the fine structure of the crystalline part and the

mesoscopic aggregational behavior that leads to the formation of the fibers. We

then construct the particle structure factors which approximately describe both the

internal structure and the mesoscopic structure of the fibers.

3.2 Materials and Methods

Iso-octane was purchased from Fluka (Buch, Switzerland) and perfluorooctane (98%)

was supplied by M&G Chemicals (Stockport, England). The solvents were used with-

out further treatments. The semifluorinated n-alkane F8H 16 was obtained according

to the two-step procedure already described previously[72]:

1. F(CF2)8 I + CH2 =CH-(CH2)14H --- F(CF2) 8-CH2-CHI-(CH2) 14H

2. F(CF2)8-CH2 -CHI-(CH2 ) 14H + H2 -- + F(CF2)8- (CH2 )16 H

The synthesis was performed by Dr. P. Lo Nostro at University of Florence,

Italy. F8H 16, PFO, and i-OCT were weighted directly in a glass tube and the sample

was slowly heated in a thermostated bath(±0.10 C), until it became completely clear,

cooled down to phase separation, and then heated up again. The cooling-heating

cycle was repeated slowly and several times on each sample. The liquid-liquid phase
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separation temperature(To) was then calculated as the average of the cloud point

temperature(Tp) and the reclarification temperature (Tre). The difference between

T,, and Tre was always within ±0.50 C. The sample composition was then changed,

and the phase separation curve obtained by plotting To as a function of PFO molar

fraction(xl).

For larger amounts of copolymer, the homogeneous liquid mixture does not phase

separate into two liquid phases upon cooling, but rather forms a white solid gel.

The liquid-gel transition temperature(Tg) can be measured by recording the temper-

ature at which the gel first appears in the liquid mixture when the sample is cooled

down(Ti), and the temperature at which the gel converts into a clear liquid upon

heating(T2). Tg is then calculated as the average between T1 and T2 .

Density, refractive index and viscosity measurements were carried out following the

procedures reported in [72]. Birefringence observations were made with a Reichert-

Zetopan polarizing microscope, with crossed nicols, on the liquid and gel samples.

Static and dynamic light-scattering measurements were performed with a Brookhaven

Instr. Co. apparatus(A = 514.5 nm, Ar+ source) and the data analyzed with a

BI-2030 AT Digital Correlator. The scattering intensity was recorded at different

temperatures and at different scattering angles (15' < 0 < 160'). Samples for light-

scattering experiments were filtered in order to remove the dust.

Small-angle X-ray-scattering experiments were carried out at the Small-Angle X-

Ray-Scattering Facility, Oak Ridge National Laboratory, Oak Ridge, TN. The spec-

trometer is equipped with a rotating anode X-ray source and a 20 x 20 cmn2 position-

sensitive area detector with 64 x 64 pixels. X-Rays from Cu KI line with A = 1.54A

were extracted using a graphite monochromator. The source-to-sample distance was

2 in, with three collimation pin holes, the resulting beam spot at the sample position

is 1.5 mm. The sample-to-detector distance was 2.065 m. This configuration gave

us a Q range of 0.01 - 0.25A - 1. The scattering data were corrected for background,

detector efficiency, and sample cell scattering. The absolute normalization of the

scattering intensity was made with a vitreous carbon standard.



Table 3.1: List of data extracted from the phase separation curves.

Te(K) Xz (OPFo/qi-OCT)c
X = oo (curve A) 300.4 0.321 0.71
X = 20 (curve B) 290.4 0.422 1.10
X = 10 (curve C) 283.5 0.472 1.36

3.3 Phase Diagram, Light Scattering, and Bire-

fringence

Fig.3-1(a) shows the liquid-liquid phase separation temperature(To) as a function of

the PFO molar fraction(xi), for different PFO/i - OCT/F8 H16 mixtures. Defining

X as the molar ratio between i-OCT and F8sH 6 , curve A corresponds to X = oo(no

FsH16 in the mixture), while curves B and C correspond to X = 20 and X = 10

respectively. In all cases the phase separation curve shows an upper consolute tem-

perature T, for a critical molar fraction x,. The significant asymmetry of the curves

accounts for the large differences in molecular sizes between PFO and i-OCT[73, 74].

The skewness of the curve and the value of Tc depend on the amount of copoly-

mer added to the PFO/i-OCT system, showing that the critical demixing is greatly

affected by the presence of the semifluorinated n-alkane. In Table 3.1 we sum-

marize the experimental parameters obtained from the coexistence curves of the

PFO/i - OCT/FSHI6 mixtures. (OPFo//i-OCT)c represents the volume fraction

ratio of PFO over i-OCT at the critical point.

The effect induced by the semifluorinated compound on the PFO/i-OCT system

is indicated by the relevant decrement of T, as more F8 H 16 is added to the mixture,

whereas x, and OPFO/ki-OCT change only in a slight way as a function of X.

The data reported in Table 3.1 indicate that the presence of F8 HI6 makes the

PFO/i-OCT mixture more stable, increasing the amount of PFO that can be added

before the critical phenomenon occurs; in other words the copolymer keeps the mix-

ture in the monophase region, whereas at the same composition and temperature the

PFO/i-OCT system would phase separate. F8 H16 acts then as a "compatibilizing"

agent for the PFO/i-OCT system, decreasing the incompatibility of the two solvents.
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Figure 3-1: Phase separation curves for different PFO/i - OCT/F8Hi6 mixtures:
curve A, no copolymer(X = oc); curve B, X = 20; curve C, X = 10.
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This "compatibilizing" effect reproduces the behavior shown by other semifluorinated

copolymers with different solvents[70].

In order to explain the phase separation, the Hildebrand-Scatchard equation,

which is valid for mixtures of fluorocarbons and linear hydrocarbons, can be applied

to the PFO/i-OCT system (curve A). This equation relates the critical temperature

to the molar volume and to the solubility parameter of each component[75]:

RTc , (61 - 62)2 2V(31)

where R is the gas constant (1.9872 cal - mol-1 K-'), Vi and ,i are the molar

volume and solubility parameter of each component respectively; 6 is defined as:

2H v.ap -RT, H - (3.2)

where AHjia is the molar enthalpy of vaporization of component i. According to

our experiments, we calculated a value for (61-62)2 of 5.95 cal/cm3 , while the expected

theoretical value should be 0.59 cal/cm3 for the PFO/i-OCT system. This discrep-

ancy is in agreement with the general known behavior of fluorocarbon/hydrocarbon

mixtures, that still remains unexplained. By comparing our data for the PFO/i-OCT

system to the results published for similar mixtures, such as perfluoro-n-heptane in

various n-alkanes or perfluoro- methylcyclohexane in n-octane[76, 77], we find that Tc

decreases in the case of iso-octane. This lowering has to be related to the presence

of five methyl end groups in the iso-octane molecule - instead of the two terminal

CH3 residues as in n-alkanes - which increases the number of "contact points" with

the fluorinated molecule, as described in the "segment treatment"[78, 79], and the

interactions of the two chemicals as well.

In Fig.3-2 we reported the phase diagrams of PFO/i - OCT/F8 HI, systems,

plotting the phase separation temperature T as a function of the copolymer volume

fraction Ocop. For each curve the volume fraction ratio between PFO and i-OCT(r,)

has been kept constant, as qCOP ranges between 0 and 80%. Curve a corresponds to

r, = 2.8 and curve b refers to r, = 0.81, which is the exact ratio between the volumes
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Figure 3-2: Liquid-gel phase transition curves: curve a, PFo/ Oi-ocT = 2.8; curve b,
PFOI'F/i-OCT - 0.81.



of the fluorinated and the hydrogenated blocks in the copolymer[72].

The phase diagram shows a characteristic curve, with a minimum at 00 0 0.05

for curve a and 0.15 for curve b. This fact, which is quite unusual for low molecu-

lar weight compounds, can be explained by invoking some components segregation

in the liquid phase, above the phase separation line. Such behavior has already

been described for other systems, such as F12H10 in n-octane, and confirmed by

light-scattering measurements[70]. The presence of this minimum indicates that the

PFO/i - OCT/F8 Hl6 system changes its state depending on the amount of copoly-

mer. In fact for 'Cop < ko the curve indicates the value of the liquid-liquid phase

separation temperature, To, as a function of bCoP. The addition of copolymer causes

the progressive lowering of the demixing temperature, and therefore enhances the

mutual solubility of PFO and i-OCT. For 00eo > 0o instead of the liquid-liquid

separation we observe a liquid-gel phase transition at Tg. At a given OcoP value, for

T > Tg we have a homogeneous and clear solution that transforms into a white solid

gel when the sample is cooled down below Tg. This gel is constituted by copolymer

ribbons entrapping the two solvents, and extended in a tridimensional network. The

addition of copolymer has the effect to increase the lateral size of the ribbon, and

arises the temperature required to "melt" the lamellar structure. Moreover the evi-

dence that curve "b" lays below curve "a" for CcoP > 10% indicates that when the

volume fraction ratio of PFO over i-OCT is exactly equal to the ratio between the

molecular volumes of the two blocks in the copolymer(Fs/H 16), the most favorable

structure is formed as far as the mutual packing hindrances are concerned. Therefore

microdomains formed when r, = 0.81 are the most stable and most closely packed,

at least with respect to the aggregates produced at r, = 2.8.

Fig.3-3 reports the static intensity I of light scattered at 0 = 900 by PFO/i -

OCT/F8 H1 6 mixtures at 22°C as a function of the volume fraction ratio r, for different

values of X; curves a, b and c correspond to X = 20, 10 and 5 respectively. Each

plot shows a peak corresponding to a value of r, that is comparable to the critical

value obtained from phase diagrams, as reported in Table 3.1. The maximum intensity

decreases in a significant way when the copolymer is added to the mixture. The angle-
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Figure 3-3: Static intensity versus bFO
X = 20; curve b, X = 10; curve c, X = 5.

'/Oi-OC7 at 0 = 900 and 220 C: curve a,



dependence of I(dissymmetry coefficient) is almost negligible, which is probably due

to the small size of these particles, rather than to a nearly spherical geometry. The

presence of the intensity peak has to be ascribed to the critical scattering arising from

phase separation of the PFO/i-OCT mixture. Considering that the addition of the

copolymer enhances the mutual solubility of the two pure solvents, it is evident that

the higher the amount of copolymer in the mixture, the lower the scattered intensity

peak in the plot.

Fig,3-4(a) reports the scattered intensity at 900 measured at 27 0 C for the r, = 2.8

system as a function of the volume fraction of the copolymer. The sharp break in

the plot is typical for aggregate formation, and indicates the presence of scattering

particles for €cop > 3%, which can be assumed as the minimum amount of FsH16

required to form aggregates in the mixed solvent at this temperature. This data is in

good agreement with the value indicated in the phase diagram (see Fig.3-2) for which

the gel-liquid transition curve reaches its minimum.

Dynamic light-scattering measurements on the liquid samples indicate the pres-

ence of weakly interacting particles. The hydrodynamic radius of the equivalent

sphere R can be calculated according to the following expression:

kBT
D = , (3.3)

67rqOoR

where kB, T, D and ro0 are the Boltzmann constant, the temperature, the transla-

tional diffusion coefficient and the viscosity of the solvent respectively[72]. By substi-

tuting the correct values in Eq.3.3, the average hydrodynamic diameter ranges around

301(see Fig.3-4(b)). In the case of samples with r, = 0.81 at 270 C, the static intensity

steeply increases when the copolymer volume fraction decreases, before the occurring

of the complete phase separation of the two solvents. This relates to the critical scat-

tering due to phase separation, and this effect hides any possible scattering deriving

from aggregates formation.

Birefringence has been detected in all PFO/i - OCT/FsH16 gel samples observed

between crossed nicols(Fig.3-5). The solid gel shows the maltese cross pattern that
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Figure 3-4: (a) Static intensity at 9 = 900 and 270 C versus copolymer volume fraction
for OPFO//i-OCT = 2.8. (b) Hydrodynamic diameter of scattering particles as a
function of copolymer volume fraction for /PFO/1i-OCT = 2.8.
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Figure 3-5: Birefringent structures indicating the presence of spherulites in a PFO/i-
OCT/F8 H1 6 mixture(gel phase).
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is typical of spherulites, and also in the liquid phase the sample rotates the plane of

polarized light, indicating the presence of compartimentalized microdomains. Similar

observations on semifluorinated n-alkanes have been made and published by other

authors[62]. This behavior has been reported as the effect of preferential orientation

of microstructures in radial symmetry.

3.4 Model of the liquid

In a Small-Angle X-Ray-Scattering experiment, the absolute scattering intensity can

be expressed as:

I(Q) = np (Q)S(Q) (3.4)

where np is the particle number density, V, is the volume of the particle, P(Q) is

the particle structure factor and S(Q) is the inter-particle structure factor.

For a 3-layer cylindrical particle with two equal-thickness outer layers, the orien-

tational averaged particle structure factor can be written as:

I (pout - Pso) Sill [Q(H + 2F)] - (pout - Pin) sin ('QpL) 2

PJ (Q) = 2 { (QpI(H + 2F)2

x [2J1 (QR(1 - p2)1/2 2[ QR(1 - 2)1/2  (3.

where H is the thickness of the middle layer, F is the thickness of the outer layer, R

is the cross section radius of the cylinder and Pout, pi, and Pol are the scattering length

density of the outer layer, of the inner layer and of the solvent respectively. Because of

the free rotational motion of the cylinders in the liquid phase, we assume that these

particles interact with each other through an equivalent hard sphere potential[80]

with an apparent hard sphere diameter a and a corresponding volume fraction 7q of

the hard spheres in the solvent. This results in an inter- particle structure factor

S(Q, a, 77) used in Eq.3.4.



According to the phase diagram study, light-scattering and birefrnigence experi-

ments, we were able to elaborate a model for the formation of the gel phase from the

liquid mixture. In the liquid phase, for OcoP > 3%, copolymer molecules arrange in

micellar aggregates, exposing the fluorocarbon units to the external solvent, while the

hydrocarbon chains remain confined in the micellar core. In this way the interactions

between fluorocarbon and hydrocarbon blocks are minimized.

As the temperature decreases, approaching the liquid-gel transition temperature(Tg),

some of the copolymer molecules aggregate and form the basic micelle unit illustrated

in Fig.3-6. In this structure, all fluorocarbon blocks are in a side-by-side arrangement

and all hydrocarbon chains are interdigitated. The fluorocarbon-fluorocarbon and

hydrocarbon-hydrocarbon interactions are in this way optimized, and the thickness

of the micelle is about 44.71. Further temperature decrement results in the forma-

tion of long, ribbon-like, lamellae that originate from a central "seed" or the basic

micelle unit, and extend in many directions(see Fig.3-7) entrapping the solvent in

the free cavities and the ribbon-like lamellae retain the thickness of the basic micelle

as the lamellar repeating distance. Fig.3-15 shows a top view of the lamellar rib-

bon, and Fig.3-8 reports the side view, where many layers overlap in a head-by-head

arrangement.

In order to explain the experimental results, we propose the following model for

micelles. Hydrocarbon tails of FSH 16 copolymers aggregate in a side-by-side and

tail-to-tail arrangement to form cylinders with a cross section radius of R and a

length H + 2F as shown in Fig.3-6. H results to be the fully stretched length of the

hydrocarbon part of the copolymer, and F is the length of the fluorocarbon segment

in F8sHl. The particle volume Vp used in Eq.3.4 can be replaced by:

VP = 7rR2 (H - 2F) (3.6)

The volume fraction q in the S(Q, a, rl) factor can be related to the particle number

density by:

-
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Figure 3-6: Model of the basic micelle unit with the fluorinated blocks(cylinders)
closely packed side-by-side and the hydrocarbon chains(thick lines) interdigitated in
the internal region.
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Figure 3-7: Ribbon-like schematic structure for the aggregation of copolymer
molecules in the gel phase. White regions indicate top surfaces: shaded regions
represent side surfaces. The structure originates from a "seed" and extends randomly
into 3-D space, entrapping the mixed solvent between the ribbons.
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Figure 3-8: Side view of the ribbon-like structure showing the side-by-side and the
head-to-head close packing of fluorinated segments. Fluorinated blocks are repre-
sented by gray ovals: hydrocarbon chains are indicated by black lines.



67/np = 3 (3.7)
7ra 3

If we rewrite Eq.3.4 using Eqs.3.6 and 3.7, we have:

I(Q) = 6r [IR 2(H + 2F)]2P(Q)S(Q, a, 7) (3.8)
7ra'

The solvent in the liquid phase is a mixture of PFO, i-OCT and the rest of

copolymer that did not aggregate to form micelles; therefore the scattering length

density of the solvent can be written as:

Pi-OCT VHC 1 - ]
1- om LVFC + V HC + 1+i

+ PPFO VFC (- m)+ rv(1 - q)+ (3.9)1 - Om VFC +VHC rv + 1

where Pi-OCT is the scattering length density of iso-octane, and PPFO is the scatter-

ing length density of perfluorooctane, VHC is the volume of the hydrocarbon segment

of the copolymer, while VFC is the volume of the fluorocarbon block of the F8 H 16

molecule, 0 is the actual volume fraction of the copolymer, qm = npVp is the volume

fraction of micelles in the solution. For the SAXS data analysis the variables in the

fitting routine were the radius R, the hard sphere diameter a, and the hard sphere

volume fraction 7.

3.5 Models of the Gel

The common understanding of the structure of a gel indicates that there are cross-

linked long molecules, which constitute a entangled network with cavities. The liquids

or solvents fill those cavities to complete the formation of a gel. The cross-linking is

often a result of chemical.bonding which gives rise to a fairly strong network structure

in an ordinary gel. This chemical bonding can be hydrogen bonding, solvation, etc..

In our gel samples, there are long fibers grown by successive crystallization of
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F8 H1 6 copolymers. These long fibers play the role of the long molecules in an ordinary

gel so as to form the porous networks entrapping the liquids among them. The

interaction between fibers is considered to be physical contact and the subsequent

cross-crystallization or cross-aggregation. Thus the strength of our gel depends on

the density of the fibers, since the amount of contacts between fibers increases with the

density of fibers. The entrapped liquids among the long fibers then contain the rest

of the materials in the system which are not involved in the crystallization processes:

PFO, i-OCT, free F8 H1 6 monomers, and F8 H 16 micelles formed by the free monomers

in the liquids. For the SAXS data analysis, a realistic mathematical model should

include all the scattering objects in the samples. Therefore, there are two parts in the

model we propose for our gel samples, the first part is the crystal part which comes

from the scattering of the FSH 16 crystalline networks in the gel, and the second part

is the liquid part which represents the scattering of micelles in the entrapped liquids.

The scattering patterns we obtained in the experiments are the results of the

scattering-length-density contrasts between different domains of the materials. Be-

side the contrasts inside the crystals and micelles due to the fine structures, there

are contrasts between either the crystals or the micelles and the solvents. So it is

important to define the solvents in our sample systems. To the crystalline fibers,

the solvents are simply the liquids of homogeneous mixture of four components as

described above. And to the micelles, the solvents are the homogeneous mixture of

three components: PFO, i-OCT, and F8 H 16 monomers.

According to Fig.3-1, for X = 10, T, ? 100C. Which means at temperature

above 10'C ,for any value of xi, the mixture is a single phase liquid or the mixture

is homogeneous. For the current samples under investigation, there are two sets of

data. One set has data with the volume ratio of PFO to i-OCT r, = 2.8 at 1000C

but different F8 H1 6 volume fraction Ccop, and another set has data with r, = 0.81

and ýcop = 0.6 but at different temperatures above 100C. For r, = 2.8 and X = 10,

5cop can be calculated to be 7.2%, meaning the mixture will be a one phase liquid

with 7.2% of F8HI6 in the mixture. And the increase of kcop will decrease X so as

to decrease T, and make the mixture further into the one phase region. For r, = 0.81



and X = 10, OcoP = 14.3%. Since we know F8H 16 form micelles in the single liquid

phase, the hypothesis of homogeneous mixture of four or three components can stand

if the volume fractions of F8H1 6 exceed 7.2% and 14.3% for r, = 2.8 and r, = 0.81

data sets respectively.

3.5.1 Crystal Part

In Ref.[70], Hbpken proposed a cylindrical model for the crystallization of F,mHn from

both melt and solution based on freeze fracture TEM pictures of F12 H20 crystals

and the fact that the cross-sections of fluorocarbon and hydrocarbon segments are

different. This model has not been challenged until in Ref.[60], where we suggested a

ribbon model for the networks of F8H16 crystals, which hold the solvents and form a

gel phase, to explain the birefringence pictures of the gel.

In this section, we will write down the mathematical formula for both of the models

and we will compare the results of data analysis using these two different models in

next section.

In a small-angle X-ray-scattering experiment, the absolute scattering intensity of

a system of independent particles can be expressed as

I(Q) = npP(Q) (3.10)

where np is the particle number density, Q is the magnitude of the scattering

wave vector Q, and P5(Q) is the orientationally-averaged particle structure factor.

The orientationally-averaged particle structure factor can be expressed as

V2I I27rdo
=P(Q) dl~ dA() (3.11)

47r -1

in spherical coordinates(r, 9, €, t = cosO), where Vp is the volume of the particle

and

A(Q) = ~ J df(p(- p,)e '
-

'r (3.12)
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The integration above is a volume integral over one particle and p(rj is the scat-

tering length density of the particle at location F, and p, is the scattering length

density of the solvents.

For both cylindrical and ribbon models, the first step in constructing the math-

ematical formula is to define the particle for the integration in Eq.3.12. Therefore,

we define the particle by chopping the long fibers, either with a. cylindrical cross-

section or with a rectangular cross-section, into smaller building bricks with straight

edges. Fig.3-9 is a two-dimensional schematic representation of the idea of chopping

a branched long fiber into small bricks, and each brick has a rectangular shape which

facilitates the mathematical modeling.

In the cylindrical model, it is unlikely that the cylindrical fibers can have branches,

as a result, there are many very long and coiled cylindrical fibers tangled together

to form the networks for the gel. Fig.3-10(a) shows one long cylindrical fibers and

the details of a cylindrical brick. Fig.3-10(b) shows a small section of the branched

ribbon structure and the details of a rectangular brick resulting from the chopping

of the structure. The repeating distance of the layering structure in both of the

models was calculated independently by examining the position of the Bragg peaks

in the SAXS scattering data. The result is - 45A, which equals twice the length

of the fluorocarbon segment of the copolymer plus the length of the hydrocarbon

segment of the copolymer. As a result, in both of the models, the internal structures

are fixed with a bilayer arrangement of the copolymers, with fluorocarbon segments

closely packed side-by-side and head-by-head and hydrocarbon segments interdigitally

stuffed in between the fluorocarbon layers.

Cylindrical Model

For a cylindrical shape brick with internal structure as described in Fig.3-10(a),

A( cyl J dz ez dO jdr r[p(r)



Chopping

Figure 3-9: Schematic showing a branched fiber and the results of chopping the fibers
into small bricks with straight edges.
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sin(QL/2) (P - Ph) f (2 J1(Qjt) (3.13)
QL/2 R=1 QLjt

S t + H ( (Q1 (jt + H))]
j=o R Q( (jt + H)

(2 J,(QIR+(P - Ps) 2 JQLR

where Vy, = =rR 2 L is the volume of the cylindrical brick, t = 2F + H is the

thickness of one bilayer, F and H are the lengths of fluorocarbon and hydrocarbon

segments of a F8 H 16 molecule respectively, L is the length of the cylinder, R =

(1 + 1)t - F is the cross section radius of the cylinder, I is the number of bilayers in

the radial direction, and pf and Ph are scattering length densities of fluorocarbon and

hydrocarbon respectively. Q, = Qp is the component of Q in the axial direction and

Qj = QJ/1772Iy is the component of Q in the cross section plane.

In spite of the fact that the bricks are connected to each other to form the long

fibers and are not allowed to rotate freely, by assuming randomly distributed fibers

in 3-dimensional space, the resulting building bricks are indeed uniformly distributed

in all the directions with respect to Q. Thus we can use Eq.3.11 to calculate the

rotation-averaged particle structure factor. We apply Eq.3.13 to Eq.3.11 and calculate

the rotation-average particle structure factor by doing numerical integration. Before

we can use Eq.3.10 to calculate the absolute scattering intensity, we need to find out

the particle number density for this model, which can be done by using the equation

ipcy- = 7, where lcyI is the volume fraction of cylindrical bricks in the sample. The

adjustable variables in this model include L, 1, jcyl, and p,.

Ribbon Model

For a rectangular brick with internal structure as shown in Fig. 3-10(b), with length

L, width W and thickness nt, where n is the number of bilayers. The volume of a

single brick np,rib = L x IW x t, 1prib = where Trib is the volume fraction of

the rectangular bricks, and



Figure 3-10: Schematic showing one piece of the random ribbons, the chopping of the
ribbon, and the details of a building brick.
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A(Q)
1 L/2 f W/2 (flt/2

I /2 dx eiQ W dy eQyy n dz [p(z) - p,]eiQ-z
nLWVt J-L/2 J-W/2 .-nt/2
1 sin(QxL/2) sin(Q,VW/2)

nt QxL/2 QW/2

x {2F(p- pS) { Cos (QZnt - F sin(QF/2)

2 QZF/2
n -1 '" n - 2t sin(QzF)

2 2 QzF

(3.14)

n+2H(ph_ ) _ m+ Cos Q n +1 - 2t) sin(QzH/2 )
2=- 2 QzH/2

where m = for even n, m =-' for odd n. QX = QV1'-/i2cosq is the

component of Q along the length of the brick, Q, = Qv•J 77Msinq is the component

of Q along the width of the brick, and Q, = Qu is the component of Q in the direction

perpendicular to the layers. The calculation of absolute scattering intensity can be

carried out following the same steps as in the cylindrical model. L, W, n, T/rib, and

p, are the adjustable variables in this model.

3.5.2 Liquid Part

The liquids in our sample are homogeneous mixtures of four components as mentioned

above and the micellar model described in the previous section is used to analyze

both liquid and gel phases data. Those micelles in the liquid serve as the seeds

for the growth of long and branched ribbon-like crystalline fibers as we decrease the

temperature below the liquid-gel transition temperature. It combines with the ribbon

model to give an integral description of the system in both liquid and gel phase.

The micellar model gives satisfactory results compared to the scattering data for

low concentration of micelles in the liquids but it fails at high concentration of micelles,

due to the more complicated interaction among the micelles where a simple two-

body spherical model such as the sticky-hard-sphere model does not apply anymore.

Therefore, we can use this model to analyze the low concentration liquid phase data



or combine the model with ribbon model to analyze the low concentration gel phase

data. This model is also applicable to the high concentration gel phase data if the

micelle concentrations in the entrapped liquids are sufficiently low. Those data sets

with kcoP = 0.6 at 20 and 30'C fall into that category since at those temperatures,

the sample is far into the gel phase, and most of the copolymers are included in the

fiber networks, there are much less monomers left in the entrapped liquid to form

micelles.

For the data set that the micellar model doesn't apply, we use the measured

scattering curve, which was taken at higher temperature so that the sample was

in the liquid phase, as the empirical curve for the scattering of the micelles. For

example, for the sets of data with r,, = 0.81 and qcop = 0.6, at 40'C, the sample

was in its liquid phase, and at 3000C the sample became a gel. Therefore, we used

the scattering curve at 40C00, with an adjustment amplitude factor to correct for the

volume difference, as the background of the scattering curve at 3000C, and use the

cylindrical or ribbon model to calculate the scattering of the crystalline fibers. This

data set is the only one we analyzed with the cylindrical model because the micellar

model for the liquid is in fact a counter part of the ribbon model. The counter part

of the cylindrical model doesn't exist.

The combined total absolute scattering intensity can be written as

Itotal(Q) = C (1 - 7r)Iiq(Q) + 'i(Q)] (3.15)

where C is an adjustable constant to account for the possible volume expansion

of the sample cells which were under high vacuum during the scattering experiment,

and it also accounts for the decrease of the volume of the sample due to the formation

of the gel. The empty space in the sample cell due to the formation of the gel always

located at the center of the cell where the x-ray beam was going through, since it was

the last position of the sample cell where the temperature would reach the set point.

Fraction of empty space at the location of the x-ray beam was not controllable, the

variable C in Eq.3.15 includes also this consideration. Iiiq(Q) is the absolute scattering



Table 3.2: List of variables extracted from the data analyses for different liquid sam-
ples.

rv 10cop Temp. R a I m

0.10 12.8 38.3 0.15 0.024
0.16 12.6 38.8 0.24 0.031

2.8 10oC
0.26 9.37 33.7 1.80 0.047
0.38 7.46 35.8 15.9 0.053

intensity of the entrapped liquid, it can be calculated using the micellar model or can

be the empirical number obtained at higher temperature where the sample is in its

liquid phase. rq is the volume fraction of the crystals in a gel, Vp is the volume of a

single brick, and P(Q) is the particle structure factor for either cylindrical model or

ribbon model.

3.6 Results and Discussions

In this section, the first subsection presents the results of liquid phase data analyses

using the micellar model. The second subsection is the comparison of the results

of data analyses using cylindrical and ribbon models for a gel sample. The third

subsection summarize the data analyses of the gel phase data sets using ribbon model.

And from the variables extracted in the data analyses, a mechanism for the formation

of the gel is suggested.

3.6.1 Liquid Phase Data Analyses

The model for micelles was used to fit four SAXS data obtained from four samples

at 40C in the liquid phase, with an i-OCT/PFO volume fraction ratio of 2.8, and

copolymer volume fraction 10, 16, 26, and 38% respectively. The resulting variables

are listed in Table 3.2 and the fitting curves are reported in Fig.3-11.

The results of the calculations are in excellent agreement with the data; the small

number of 0,n compared to the actual Ocop represents that only a small amount

of copolymer molecules do aggregate in the liquid phase. From the radius of the
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Figure 3-11: SAXS data for four liquid samples at 400 C with co, = 10%, 16%, 26%,
and 38%. For each sample the plot shows the experimental absolute intensity I(Q)
and the intensity calculated according to the model presented in the text. For these
four liquid samples, the parameters resulting from the fits are reported in Table 3.2.
The agreement between the experimental intensities and those calculated from the
model is excellent.



cylinders, we can calculate the aggregration number to be around 20 and it is larger

for the samples closer to T,. The absolute intensity was calculated taking into account

solvent and solute contrast in absolute scale, geometry and volume of particles, the

excluded volume effect of the micelle and the peculiar arrangement of fluorocarbon

and hydrocarbon blocks in the aggregated structure; the calculated intensity agrees

with the experimental values in an excellent way, confirming that the model of the

nmicelle is correct.

3.6.2 Comparison

We used the data set of the sample with r, = 0.81 and /Cop = 0.6 at 3000C for

the comparison between cylindrical and ribbon models. As described in the previous

section, for the data analysis for this particular set of scattering curve, we used the

data set of the same sample at 40'C as the background scattering which actually

came from the scattering of the micelles in the entrapped liquid. The results are

displayed in Fig.3-12.

From Fig.3-12(d), The ribbon model gives much better agreement at the small

Q region. The discrepancies for both models at Q ranging from 0.05 to 0.12 A-'

come from the liquid data shown in Fig.3-12(b), which doesn't completely represents

the scattering of the micelles for the gel phase data in Fig.3-12(d). For the sharp

peak in the experimental data, the ribbon model apparently fits the data better than

the cylindrical model. Fig.3-12(a) and (c) display the calculations of the cylindrical

model and the ribbon model respectively, the ribbon model produces a major sharp

peak which matches the data better than the split peaks produced by the cylindrical

model. The ribbon model indicates the brick is 966A long and the concentration of the

ribbons is 5%, which are more appropriate numbers for the approximation of treating

the brick as an independent particle in Eq.3.10 than those numbers given by the

cylindrical model, 80A and 15%. Since for the approximation of independent particle

to be valid, the interaction between particles needs to be very weak or long-ranged.

For the situation in our samples, the bricks are essentially connected to each other,

interaction is strong. But if the particles were very long, so that the interaction
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Figure 3-12: The results of the data analyses of using two different crystalline models.
(a) is the calculation of the cylindrical model, the numbers blow the plot are the ex-
tracted variables for the model; (b) is the liquid phase data for the micelle scattering;
(c) is the calculation of the ribbon model; (d) shows the 30C00 data set of r, = 0.81,
Ocop = 0.6, and the resulting curves of combining different models with the micelle
scattering of plot (b).
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between particles only affects the calculation at very small Q, the approximation

is still applicable. For a 966.A long brick in our case, the effect of inter-particle

interaction is mostly on Q < -2,_ = 0.0065A-', which is much less than the first Q
966A

position in our data.

The comparison above encouraged us to use the ribbon model to continue the

data analyses with the rest of our data sets.

3.6.3 Gel Phase Data Analyses

We used the ribbon model combined with the micellar model to analyze the rest of the

data sets. Fig.3-13 is an example of the comparison between the experimental data

and calculation. It also displays the crystal part and liquid part of the calculation.

The crystal part produces the small-Q peak and the diffraction peak around Q = 0.14,

the liquid part constitutes the smooth portion of the scattering curve. The multilayer

structure of the building brick in our ribbon model also produces oscillations at all

Q's as depicted in the figure. These oscillations are not significant for the data

sets with relatively low F8 H1 6 volume fractions, namely the data sets with FSH16

volume fractions of 0.1, 0.16 , and 0.26 respectively. Fig. 3-14(a) displays the results

of the data analyses for the samples of r, = 2.8 and three different F8 H 16 volume

fractions at 10'C. The agreements between the experimental data and calculations

are satisfactory. The oscillations will dominate the scattering curve as the crystals

dominate the structure of the gel. Fig. 3-14(b) displays the results of the data

analyses for the sample of r, = 0.81 at three different temperatures with FSH 16

volume fraction equals 0.1. The sample at 10'C has most crystals and least liquids,

therefore the oscillations are most severe in its theoretical calculation. Another reason

for the worse fitting in Fig. 3-14(b) is the breakdown of the liquid model for high

€cop samples as explained in a previous section. One of the possible solutions for the

oscillations in the calculation is the incorporation of diffuse boundaries between layers

and the polydisersed layer thickness. Another possibility is to have a polydisperse

particle system instead of the monodisperse system in use in this article. Either

approach will involve a lot more computation in the data analysis process.
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Figure 3-13: The comparison between the experimental data and calculation. Open
circles are the experimental data points for the sample with 26% of F8 H16 and r, =
2.8 at 100C. Long dashed line is the calculation of the crystal part calculation, short
dashed line is the liquid part calculation, and solid line is the combination of them.
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Figure 3-14: The results of data analyses using the combination of ribbon model for
the crystal and micelle model for the liquid. Solid line are theoretical calculations.
(a) shows results of three lower Ocop samples at same temperature. (b) shows results
of one high qCop sample at three different temperatures.



Table 3.3: List of variables extracted from the data analyses for different gel samples

rI P COP ITemp. L W I nl 7r q1p R a 'r
0.1 3150 13.6 8 0.024 0.076 9.08 23.3 0.082

2.8 0.16 100C 2900 41.1 7 0.027 0.133 9.97 27.4 0.106
0.26 2097 60.6 7 0.063 0.197 9.66 27.3 0.113

1000C 442 121 7 0.425 0.175 9.85 30.6 0.103
0.81 0.6 2000C 913 90.1 7 0.107 0.493 7.41 31.8 9.63

300C 966 86.5 7 0.051 0.549
0'cop is the volume fraction of F8 H 16 left in the liquid.

Table 3.3 summaries the variables extracted from the data analyses. It is inter-

esting that the building brick or the unit cell in our crystal model has seven or eight

bilayers, which corresponds to 300-350 A, and it is very long but extremely narrow.

The size of the building brick varies with concentration and temperature. It is longer

and narrower at low concentration, and becomes shorter and wider at high concentra-

tion. On the other hand, it is longer and narrower at higher temperature and shorter

and wider at lower temperature. The fibers constructed by longer building bricks

are less curly than the fibers constructed by shorter bricks. For the micelle part of

the variables, the size of the micelles remains approximately the same and they have

similar stickiness regarding the interaction among them. The special case is the data

set of ccoP = 0.6, rv = 0.81 at 2000C. The micellar model is about to breakdown in

this case.

3.6.4 Formation of a Gel

As we have mentioned above, the combination of the ribbon model and micellar model

for the gel phase is an extension of the micellar model for the liquid phase. They

form an integrated description for the whole system, starting at temperature above

the liquid-gel transition temperature where the micellar model applies, and ending at

temperature below the transition temperature where the gel forms and the combined

model applies.

Imagine the liquid phase of the system, the liquid is a homogeneous mixture of four

components: perfluorooctane, iso-octane, F8H 16 monomers, and cylindrical micelles
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formed by F8 H16 monomers. As we decrease the temperature in the liquid phase, the

radius of the cylindrical rnicelles will increase and the number of the micelles in the

liquid will also increase. When the temperature is lower than the liquid-gel transition

temperature, the F8 H1 6 monomers start to attach to the nearest micelles. Due to

the particular feature of the micelle, it is easier for the monomers to attach to the

micelle from the radial direction than from the axial direction. At the beginning,

the micelle starts to grow uniformly in the radial direction, after a while, there are

random positions around the peripheral of the micelle that catch more monomers

than other positions. These positions form islands around the micelle and deplete

the nearest monomers around the micelle at the moment. The tips of these islands

are now the closest positions for the monomers surround the micelle to attach to,

therefore, these islands grow towards the solveint and become strips. Each strip may

split into two strips due to the increasing peripheral area for cylindrical geometry

as the radius increases. As the strip grows longer, the monomers can also slowly

attach to the strip along the axial direction so as to make the strip thicker. The

width of a strip is limited by the competition of neighboring strips. At the end of the

formation process, according to the results of the data analyses, these strips become

long, curly ribbons with the thickness corresponding to the width of the strips and

the width corresponding to the thickness of the strips. Fig.3-15 is a two-dimensional

schematic drawing(top view) of a growing structure just described. The final shape of

the ribbons depends on the concentration and temperature of the sample as described

in the data analyses section. It is reasonable that at lower concentration, there are

less seeds to start the growing of a gel, therefore there is less interference on the

growing of the ribbons, which makes the ribbons less curly. And due to the fact that

there are less monomers in the solvent, the ribbons are thinner.

In the entrapped liquids among these ribbons, there are monomers and micelles.

Each micelle is constructed by P20 monomers. These micelles may be the micelles

from the liquid phase which fail to grow or they may be formed during the gel for-

mation process. They keep the mixture of iso-octane and perfluorooctane from phase

separation. Table 3.3 lists the volume fractions of ribbons in the samples and the re-
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maining FsH1 6 in the liquid. The second set of numbers all exceed the corresponding

thresholds of having homogeneous mixtures as mentioned in the models of the gel

section. It verifies the entrapped liquids are indeed one-phase liquids.

3.7 Conclusions

This chapter reports on the phase separation behavior of a perfluorooctane/iso-octane

mixture (PFO/i-OCT) and on the effect induced by the presence of a semifluorinated

di-block copolymer, F(CF2)8 (CH2)16H(shortly F8H 16).

The PFO/i-OCT system shows a liquid-liquid phase separation of the two com-

ponents below a certain temperature(To). The coexistence curve indicates the pres-

ence of an upper consolute point correspondinig to a critical molar fraction of PFO

xc = 0.321(volume fraction of PFO c -= 0.422) and to a critical temperature

Tc= 27.4'C.

The addition of even small amounts of semifluorinated copolymer produces a

significant lowering of Tc and a relevant broadening of the coexistence curve. Light-

scattering measurements do not indicate the presence of stable aggregates in this low-

copolymer regime, but only a critical scattering peak, depending on the composition

of the mixture. Further addition of copolymer to the liquid mixture results in the

formation of a gel phase below a gel-liquid phase separation temperature(T,).

Phase diagrams of the PFO/i - OCT/F8H 16 mixture show that the liquid-gel

transition temperature depends on the volume fraction ratio 0PFO/i-OCT, and on

the copolymer volume fraction qcop. For Ocop smaller than a critical value ¢0 the

system still separates in two liquid phases, and the copolymer dissolves in the two

components. In this case FsHI6 is not able to form stable aggregates and has the

mere effect to make the PFO/i-OCT mixture more stable, by reducing the mutual

incompatibility of the two solvents. On the other hand, for kCop > 0o the liquid

phase produces a solid gel upon cooling. This region of the phase diagram indicates

the presence of copolymer aggregates that avoid the liquid-liquid phase separation and

comupatibilize perfluorooctane and iso-octane even at relatively low temperatures.
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Birefringence experiments show the presence of spherulites in the gels, with the

typical maltese cross patterns, indicating the formation of compartimentalized do-

mains in the gel phase. Optical activity is revealed also in the liquid samples, and

supports the existence of microdomains in liquid phases as well. Quasi elastic light-

scattering (QELS) and small-angle X rays-scattering (SAXS) confirm the presence of

aggregates in the liquid samples,.with an average hydrodynamic diameter of about

301.

In order to explain the results a model for the copolymer aggregation in the

PFO/i-OCT system in its liquid phase is proposed. In the liquid phase the semiflu-

orinated copolymer aggregates in the mixed solvent and form small micelles. When

the temperature is cooled down below the liquid-gel phase transition temperature,

the basic micelle unit grows as an extended, ribbon-like, lamella with the fluorinated

segments closely packed in a side-by-side and head-by-head arrangement, and the

hydrogenated blocks interdigitated in the internal region. Eventually several lamel-

lar layers are formed and produce the birefringent elongated structures that can be

observed at the polarizing microscope.

Two models are investigated: cylindrical model and ribbon model, for the micro-

structure of the gel phase of F8H 16 dissolved in a mixture of perfluorooctane and

iso-octane. By analyzing a SAXS absolute intensity curve with both models, we

conclude the ribbon model is the better representation for our samples.

Using a combined model of ribbon model for the crystal part and micellar model

for the liquid part of the gel, we find the fibers in a gel are ribbons with widths of

300-350 A, thicknesses of 13.6-121 A, and these ribbons have persistent lengths of 442-

3150 A, depending on the volume ratio of perfluorooctane to iso-octane, the volume

fraction of F8H 16, and temperature. Within the persistent lengths, the ribbons are

practically straight. We also verify the entrapped liquids among the fibers are one

phase liquids composed of perfluorooctane, iso-octane, F8 Hi6 monomers, and micelles.

From the structural parameters obtained in the data analyses, a growing mecha-

nism for the formation of a gel starting from the liquid phase of a sample is proposed.

This mechanism gives a reasonable explanation for the final shape of the crystalline
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fibers in a gel of the system.

The models used in this article are approximations of a very complicated system.

These calculations include two-dimensional integration, therefore the data analyses

process is rather time consuming. As mentioned in the data analyses section, it

is possible to improve the ribbon model by including polydispersed layer thickness,

etc.. However, these additional improvements will result in extremely cumbersome

computations. Even at the present level of the model, the overall agreement with

absolute intensity data is good enough to warrant a serious consideration.

A FORTRAN computer program of data analysis with various models is listed in

Appendix C.
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Chapter 4

Conclusions

This thesis contains two different but related works that have been done during my

study at MIT. They are related in the sense that the small-angle scattering technique

has been utilized in both works to yield important information about the systems

under study.

In the first work, a theory based on extensions of Baxter's model has been de-

veloped for the phase diagram and SANS data analysis of a droplet microemulsion

system, specifically the AOT/water/decane microemulsion system. These extensions

include:

1. The incorporation of polydispersity of the size of the droplet in the SANS data

analysis.

2. Identifying the specific temperature dependence of the stickiness parameter 1/T

from both theoretical study of Baxter's model and systematic SANS experi-

ments.

3. Identifying the percolation threshold as a point where the cluster size diverges

and the experimental temperature dependent effective droplet size.

This theory provides explanation successfully for both the critical and percolation

phenomena possessed by the AOT/water/decane microemulsion system.
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The second work is the study of short chain copolymer SF3 (CF2)7(CH2)15 CH3

in a mixed solvent of perfluorooctane and iso-octane. In the solvent, the copolymers

form micellar aggregates and gels.

The phase diagram has been determined, which identifies the regions of micellar

formation and gel formation. From the information provided by light scattering and

birefringence picture, models for the microstructures in each of these regions have

been investigated and finalized by the SAXS experiments. It is for the first time that

SAXS cross section formula is developed for analysis of gel. This analysis accounts for

both the internal structure of the basic scattering unit with the length scale - 45A,

and the random orientation of the ribbons with the length scale - 1000A.

A mechanism for the growth of the gel in the system is then suggested based on

the structural information provided by the analyses of SAXS data.

The test of the Baxter's model, as described in this thesis, has explained all

the phenomena in this particular droplet phase region of the system. On the other

hand, the copolymer system still has lots of unexplored phenomena that need to be

explained. For example, the volume contraction phenomena observed in the gel phase,

the possible phase transition in the crystalline structure of the gel, and the effect of

different solvents, etc.. More experimental and theoretical evidences are necessary to

reconfirm the models presented in the thesis, and the models also welcome further

modifications. Although the cylindrical model is not the choice in this study, it can

be applied to different systems having cylindrical conformation. The model for the

gel phase in this thesis has set a ground of a different approach for the small-angle

scattering data analysis of other gels, which is a still wide open field.

The following is a list of publications related to my works toward the degree,

which includes publications included in this thesis and publications not included in

this thesis, which are studies done with Professor Sow-Hsin Chen and other collabo-

rators, and with my co-supervisor, Professor Xiaolin Zhou. One and a half years ago,

Professor Zhou started a project of constructing a neutron reflectometor at MITR II

research reactor, since I am interested in instrumentation, we worked together on the

design of the spectrometer and generated several new concepts of utilizing the neu-
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tron beam in a more efficeint way. It is an exciting experience to put a new idea into

a experiment. We have successfully finished one of the experiments and the results

will be published soon.

1. "Structure and Dynamics of Water-in-oil Microemulsions near the Critical and

Percolation Points,"

C. Y. Ku, S. H. Chen, J. Rouch, and P. Tartaglia,

invited to "Thermo-Physical Properties", Colorado, USA, June 1994. Int. J.

Thermophys 16 (1995) 1119.
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Appendix A

Resolution Function

This is a source code listing of two FORTRAN functions which calculate the resolution

function with given parameters.

c

FUNCTION FRES(SIGQ,QCEN,Q)

X=QCEN*Q/SIGQ

T=X/3.75

IF(ABS(X).GT. 3.75) GOTO 100

BESS=1 .+3.5156229*T*T+3.0899424*T**4.+ 1.2067492*T**6.

!+0.2659732*T**8.+0.0360768*T**10.+0.0045813*T**12.

FRESX=Q/SIGQ*EXP (-0.5* (QCEN*QCEN+Q*Q)/SIGQ)*BESS

GOTO 200

100 BESSX=(0.39894228+0.01328592/T+0.00225319/T**2. to

!-0.00157565/T**3.+0.00916281/T**4.-0.02057706/T**5.

!+0.02635537/T**6.-0.01647633/T**7.+0.00392377/T**8.)

FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ+X)*BESSX/SQRT(X)

200 FRES=FRESX

RETURN

END

c

C

FUNCTION SIGQ(X)

COMMON/RES PAR/R1,R2,RL1,RL2,RLAM,DLAM,RDET 20

DIMENSION X(1) ! Array with independent parameters
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PI=3.1415927

RI=0.8

R2=0.2

RL1=600.

C RL2=600.

C RLAM=6.00

C DLAM=0.18

! RAD IN CM OF SOURCE SLIT

SAMPLE

! DISTANCE IN CM SOURCE-SAMPLE

SAMPLE-DETECTOR

! WAVELENGTH IN A

! RELATIVE WAVELENGTH SPREAD OF MONOCHR.

C RDET=1.0

WKO=2.*PI/RLAM

SIGDET=RDET*WKO/RL2*0.4246609

C SIGRAV=0.0048*0.4246609

SIGRAV=0.000

THETO=ASIN(X(1)/2./WKO)

AAI=R1/(RL1+RL2/COS(2.*THETO)**2)

A2=R2*COS(2.*THETO)**2./RL2

IF(A2. GT. AA1) GOTO 125

BET1=2.*R1/RL1-0.5* R2*R2*(COS(2*THETO))**4.*(RL1

!+RL2/COS(2.*THETO)**2)**2./RL1/RL2/RL2/R1

GOTO 127

C

125 BET1=2.*R2*(1./RL1 +COS(2.*THETO)**2/RL2)

!-0.5*R1*R1*RL2/(R2*COS(2.*THIETO)**2.*

! RLI*(RL1+RL2/COS(2.*THETO)**2))

C

C

127 DELQ1=SQRT((WKO*COS(TH ETO)*BET1)**2.+(X(1)*DLAM)**2.)

CC127 DELQ1 =SQRT((WKO*COS(THIETO)*BET1)**2.)

C

SIGQ=(0.4246609*DELQ 1)**2.+SIGDET**2.+SIGRAV**2.

111



RETURN

END
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Appendix B

Baxter's Model

This is a source code listing of a FORTRAN program which calculates the structure

factor and inter-particle structure of a multi-component droplet system based on

Baxter's model.

c CORE version

c NEW STICKYNESS PROGRAM LAST UPDATE 17/03/91

c 12/04/92

ccccccccccccecccccccccccccccccccccccccccccccccccccccccccccc

c This program calculates structure factors or scattering

c intensities for a system of polydisperse sticky hard

c spheres. The calculations are based on the theory in the

c following articles :

c

c R.J. Baxter J.Cheni.Phys. 49(1968) 2770 10

c R.J. Baxter J.Chemn.Phys. 52(1970) 4559

c J.W.Perram en E.R.Srmith Chem.Phys.Lett. 35(1975) 138

c A.Vrij J.Chern.Phys. 69(1978) 1742

c P.van Beurten en A.Vrij J.Chemi.Phys. 74(1981) 2744

c

c The above authors do not agree in their notations.

c For the particle size the diameter is used but to make

c life difficult this quantity is called R by Baxter,

c A by P&S and d by Vrij. In this program it is called r.
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c q is the scattcring vector magnitude (Vrij:K)

c

c rin mean diameter

c tau the mysterious factor which according to

c Baxter(1968) is the stickyness / the temperatuur.

c It is now possible to have polydisperse tau-s!!!

c This is made possible through the routine settau

c and the parameters atau and btau. (atau=0 gives

c the monodisperse tau case). In the polydisperse tau

c case the tau-values are coupled to the particle

c diameters. 30

c s relative measure of size dispersion

c p number of classes in size distribution.

c labda matrix of which the element (ij) describes the

c interaction between particles with diam. r(i) and r(j).

c phi volumefraction hardspheres. (Baxter 68: eta,

c Baxter 70, Vrij: ksi3)

cccccccccccccccccccCcccCCCccccccccccccccCccccccccccccccccccccccc

C

c We are using the following COMMON blocks:

c [blank] p, atau, btau, tau(200), pi 40

c /fu/ k2, k3, h, h2, pil2, pi24

c constants, belonging to a certain set of

c phi, rm, tau and sigma

c /ve/ v(20), la(200), la2(200)

c index in labda in the id-form of labda(ij)

c /pa/ x(20), r(20)
c particle densities and diameters

c /wl/ i, j

c /ri/ rl(20,20), r2(20,20), rr(20,20)

c factors to speed up S(ij) - calculations 5o

c /be/ b(20)

c constants in S(ij)

c /in/ istat, qa(200), ina(200)

c a reminder for INTENS

c /pl/ iplot
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c /vg/ nvg, vgq(200), vgi(200)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c ROUTINES CALLED :

c calc, show_tau, deal, intens, subint, contact,

c wijzlab, setdeeltje 60

c

c FUNCTIONS CALLED :

c igetval, agetval

c

program labda

c

c

implicit none

integer MAXSPEC, MAXPNT

parameter (MAXSPEC = 2, MAXPNT = 128) 70

c

c GLOBAL variables :

integer p, v, li, lj, iplot, istat, nvg, idistr

real*8 atau, btau, tau, pi, x, x2, vgq, vgi, fyvalue, dzeep

integer iform, nrho, nlayer, ina

real*8 rho(12), dlayer(10), qa

character*20 Ifn

common p, idistr, atau, btau, tau(200), pi

common /wl/ li, lj

common /ve/ v(20), x(200), x2(200) 80

common /pl/ iplot

common /in/ istat, qa(200), ina(200)

common /nm/ Ifn

common /vg/ nvg, vgq(200), vgi(200)

common /ltrap/ fvalue

common /deeltje/ iform,rho,nirho,dlayer, nlayer,dzeep

c

c LOCAL variables

integer i

real*8 rm, sig, phi, aint0, ai 90

character*2 ch
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c

c FUNCTION calls

real*8 agetval

integer igetval

c We will first initialize a few things

c

idistr = 1

iform=1 100

rho(1)= 1.0dO

rho(2)= O.OdO

rho(3)= 0.OdO

dlayer(1) = O.OdO

nlayer=0

nrho=2

c
pi = 4.0d0 * datan(1.0d0)

c
rm = 100.0d0 110

sig = .10d0

phi = 0.1d0

p= 9

atau = O.OdO

btau = 99.0d0

do 5 i=1,100

5 x(i) = O.OdO

li=1

lj=1

v(1)=0 120

do 6 i=1,19

6 v(i+l) = v(i) + i

c

c User may mess around now

c

10 write (*,1000)

read (*,2000) ch
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if (ch.eq.'k') goto 99

if (ch.eq.'h') write (6,1001)

if (ch.eq.' ?t') call showtau 130

if (ch.eq.' ?') then

write (*,1002) rm/2,sig,phi,

- p, idistr,

- atau,btau

endif

if (ch.eq.'p') then

p = igetval(1,19)

if (idistr.eq.3) p = 2

endif

if (ch.eq. 'id') then 140

idistr = igetval(1,3)

if (idistr.eq.3) p = 2

endif

if (ch.eq. 'r') then

c

c User supplies a radius... Immediately converted to a diameter

c

rm = 2.0dO*agetval(10.OdO,100.OdO)

c call calc(rm,sig,phi)

endif 15o

if (ch.eq.' s') then

sig = agetval(0.OdO,0.5001dO)

c call calc(rm,sig,phi)

endif

if (ch.eq. 't') then

write(*,'(A,$)') ' Enter value atau '

atau = agetval (-1.OdO,1.OdO)

write(*,' (A,$) ') ' Enter value btau '

btau = agetval (-0.089d0, 99.001d0)

c call calc(rrn,sig,phi) 16o

endif

if (ch.eq. 'f') then

phi = agetval(0.OdO,1.0dO)
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endif

if (ch.eq.'1') call wijzlab(p)

if (ch.eq.' c') then

call calc(rm,sig,phi)

endif

if (ch.eq. 'a') call set deeltje

if (ch.eq.' i') then 170

call deal(rm,sig,phi,.false.)

call intens

endif

if (ch.eq.'o') then

call subint(0.0d0,ai,aint0)

write (*,1007) ai/aint0

endif

goto 10

99 continue

stop 'Aaaarch!!!' 180

1000 format (' Give instruction :

1001 format (' INSTR name min max EXPLANATION '/

' f phihb 0 1 volume fraction inner spheres'/

' id idistr 1 3 type of distribution'/

p p 3 11 number of classes'/

' r rm 10 100 hard spheres radius'/

' s sigma 0 .3 relative variance'/

' t tau-s 0 100 stickiness'/

=============---------------------------------------- '/ 190

' c calc call calc'/

' h help display this menu'/

i intens calculate I(q) or S(q) '/

' k kill terminate program'/

' 1 lambda : display or change lambda'/

' o S(O) calculate S(q=0)'/

- ? show display parameters'/

' ?t show tau display tau'/

,- -)---------------------------' )
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1002 format (' rm : ',3x,f5.0,' sigma : ',3x,f5.3,' phi : ',f5.3,/, 200

p :',6x,i2, ' idistr :',6x,i2,/,

atau :',f8.3, ' btau :',f8.3)

1007 formnat(' S(q=0) = ',e14.5)

2000 format (a)

end

c

C

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

subroutine calc(rm,sig,phi)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++-ýe+++++++-

c PURPOSE: calculate labda(i,j) given:

c idistr, p, rm, sig, tau(i,j), phi

c

c ROUTINES CALLED:

c deal, ZSPOW

c

c FUNCTIONS CALLED : none

c

implicit none

c 220

c GLOBAL variables :

integer p, v, idistr

real*8 atau, btau, tau, pi, f value

real*8 x, x2

common p, idistr, atau, btau, tau(200), pi

common /ve/ v(20), x(200), x2(200)

common /ltrap/ f value

c

c SUBROUTINE variables :

real*8 rm, sig, phi 230

c

c LOCAL variables

integer i

c

c ZSPOW variables :
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integer ier, n, nsig, itmax

real wk(4000), par(l), xla(45)

real fnormn

external fcn

n = p*(p+l)/2

call deal( rm,sig,phi,.true.)

nsig = 5

itmax = 10

do 2 i= 1,n

xla(i) = sngl(x(i))

2 continue

call ZSPOW (fcn, nsig, n, itmax, par, xla, fnorm, wk, ier)

f value = dble(fnorm)

do 3 i=l,n 250

3 x(i) = dble(xla(i))

if (fvalue.gt.l.d-4) write(*,1000) fnorm

999 return

1000 format(' No real solution : ',el0.2)

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine deal( rm, sig, phi, labdas )

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

c PURPOSE: deals with frequent initialisations.

C 260

c CALLED BY: calc

c

c ROUTINES CALLED:

c schultz, setconst

c

implicit none

c

c GLOBAL variables :

integer p, v, idistr

real*8 atau, btau, tau, pi, x, x2 270

common p, idistr, atau, btau, tau(200), pi
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common /ve/ v(20), x(200), x2(200)
c

c SUBROUTINE variables :

real*8 rmi, sig, phi

logical labdas

C

c LOCAL variables :

real*8 sr, x0

c FUNCTION calls 280

C

c xO .....

sr = sig**2

if (idistr.eq.1) then

xO = 6.OdO * phi / pi / rm**3

- / (1.0d0 + 2.0d0 * sr) / (1.0d0 + sr)

else if (idistr.eq.3) then

xO = 6.0d0 * phi / pi / rm**3

- / (1.0d0 + 6.OdO * sr)

endif 290

c

call schultz(x0,rm,sig)

call setconst(labdas)

return

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

subroutine set tau

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

c PURPOSE: Set values for the stickyness parameter tau. This may be done

c two ways. 300

c 1: through curious function relating the particle diameters to a

c stickyness

c or 2: by reading data from a file. (Code is COMMENTED away)

c

c CALLED BY: main, setconst

c

c ROUTINES CALLED: errmsg
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implicit none

c 310

c GLOBAL variables :

real*8 x, r, atau, btau, tau, pi

integer p, idistr

common p, idistr, atau, btau, tau(200), pi

common /pa/ x(20), r(20)

c

c LOCAL variables :

integer i, j

real*8 rm, xi

c 320

cc character*80 fin, filename

cc integer jchar, los, iopt

c

c FUNCTION calls :

integer inx

cc integer igets

c calculate average diameter

rmn = 0.0d0

xi = 0.OdO 330

do 10 i=1,p

rm = rm + x(i)*r(i)

xi = xi + x(i)

10 continue

rm = rm / xi

c

C

ccl00 iopt = 0

cc write (6,1000) atau,btau

cc read( 5, fmnt=' (il) ',end=101,err= 100) iopt 340

ccl01 if (iopt.eq.0) iopt=l

cc if ( iopt .eq. 1 ) then

cc iopt = 1 tau data calculated
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do 20 i=1,p

20 tau(inx(i,i)) = btau *

( 1.0d0 + 2.0d0/pi * datan (atau*(r(i)-rm)) )

do 30 i=l,p

do 40 j=l,p

tau(inx(i,j)) = 0.5d0* ( tau(inx(i,i)) + tau(inx(j,j)) )

continue

continue

cc

cc iopt = 2 tau data from file !

cc else

c%%%%%

cc 50 filename = '

cc write(6,1020)

cc if (igets(5,filename).eq.

cc if (filename.eq.' ') fi

cc jchar = index(filenai

cc fln(l:jchar) = filename

cc open(unit=l,file=fln(1:

cc - form= 'formatted

cc if (ios.ne.0) then

cc call errmsg (' Error

cc goto 50

cc else

cc write(6,1010) fln(1:

cc read(unit= 1,fnt= 1

cc read (unit=l,fmt=

cc do 20 i=1,p

cc do 21 j=1,p

cc read(unit=1,fmt=

cc 21 continue

cc 20 continue

cc close(unit=1)

cc endif

cc endif

0) goto 100

lename= 'tau. dat'

ne,' ') - 1

(l:jchar)

jchar),blocksize=2048,recl=32766,

' ',status=' old',iostat=ios)

: File does not exist')

jchar)

040) p

*,err=999) ((tau(inx(i,j)),i= 1,p),j= 1,p)

:*,err=999) tau(inx(ij))
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return 380

c999 call errmsg(' Error read tau-data ')

c close (unit=1)

c goto 50

1000 format (' Option for tau-data :

- (1) Function with ',/,

atau : ',f5.2,' btau = ',f7.3,/,

- (2) From File [1: $)

1010 format(' Reading from datafile :',a)

1020 format(' >>> Enter file name or <crtl Z> [tau.dat] :

1040 format(i4) 390

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.

subroutine setconst(labdas)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

c PURPOSE: calculate constants belong to a set of x(i) and r(i)

c results in common blocks /fu/, /ri/, /ve/, /be/

c

c CALLED BY: deal

c

c ROUTINES CALLED : set tau 400

c

c FUNCTIONS CALLED : fksi, inx

c

implicit none

c

c GLOBAL variables :

real*8 atau, btau, tau, pi, k2, k3, h, h2, pi12, pi6

real*8 x, r, rl, r2, rr, la, 12, b

integer p, v, idistr

common /fu/ k2, k3, h, h2, pil2, piG 410

common p, idistr, atau, btau, tau(200), pi /pa/ x(20), r(20)

common /ri/ rl(20,20), r2(20,20), rr(20,20)

common /ve/ v(20),la(200),12(200) /be/ b(20)

c

logical labdas
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c

c LOCAL variables

real*8 bla, dla, bO, alab, somn

integer i, j

c FUNCTION calls 420

real*8 fksi

integer inx

C

k2 = fksi(2)

k3 = fksi(3)
h = 1.0d0 - k3

h2 = h**2

pi12 = pi/12.0d0

pi6 = pi/6.0d0

do 200 i=l,p 430

do 100 j=l,p

rl(i,j) = 0.5dO*(r(i)+r(j))

r2(i,j) = rl(i,j)**2

rr(i,j) = r(i)*r(j)

100 continue

200 continue

c

c r(i)'s are calcultated now calculate tau-array

c

call settau 440

if (labdas) then

bla = k3 / h + tau(inx(l,l))

dla = bla**2 - k3 / 3.0d0 * (1.Od0 + 0.5d0*k3) / h2

if (dla.ge.O.OdO) then

alab = 6.0dO / k3 * ( bla -dsqrt(dla) )

else

alab = 6.0dO / k3 * bla

endif

do 300 i=1,200

la(i) = alab 450

300 continue
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endif

c

do 400 i=l,p

som = 0.OdO

do 350 j=l,p

som = som +

- x(j) * la(inx(i,j)) * r2(i,j) * r(j)

350 continue

bO = 3.0d0*r(i)*k2/h2 - pi6*som/h 460

b(i) = -0.5d0*b0*r(i)

400 continue

return

end

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine schultz(xO,rmean,sig)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE :

c The number densities of particles with diameter r(i) are given

c by the size distribution (determined by 'idistr') 470

c --> result calculation passed to x(i) and r(i) in /pa/

c

c !!! Normal distribution not yet implemented !!!

c idistr :

c 1 Schulz

c 2 Normal

c The diameter run between plus

c and minus three times sigma of the mean.

c 3 Bimodal

c 480

c CALLED BY : deal

c

c ROUTINES CALLED : none

c

c INPUT

c-------

c xO : normalisation ie phi = ksi(3).
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c rmean : mean of the distribution.

c sig : relative variance of the distribution.

c 490

implicit none

real*8 del

parameter (del=3.0d0)

c

c GLOBAL variables :

integer p, idistr

real*8 atau, btau, tau, pi

real*8 x, rl

common p, idistr, atau, btau, tau(200), pi

common /pa/ x(20), rl(20) 500

c rl(i) is everywhere else r(i)

c

c SUBROUTINE variables :

real*8 xO, rmean, sig

c

c LOCAL variables :

integer i

real*8 zp, dr, r, fac, rm, z

c

c FUNCTION calls : 510

real*8 sch, dgamma

c dgamma : library gamma-function

c sch : schulz distribution function

rm=rmean

c

c pathological cases p=1 or sig = 0

if (p.eq.1 .or. sig.eq.0.0) then

do 11 i=l,p

rl(i)=rm 520

x(i)=x0/dfloat(p)

11 continue

return
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endif

c

c more interesting cases p > 1 , sig <> 0

c

if (idistr.eq.1) then

c SCHULZ option

c normalisation of Schulz distributionfunction 530

C

c (Z+1)

c (Z+1)

c fac =

c Gamma(Z+1) * rm * exp(Z+1)

c

z = (1.OdO/sig)**2 - 1.0dO

zp = z + 1.OdO

if (sig.lt.0.25d0) then

fac = dsqrt (zp/2.0dO/pi) / rm /(1.OdO + 1.0d0/12.dO/zp 540

- + 1.OdO/2.88d2/zp**2 - 1.39d2/5.1840d4/zp**3

- - 571.0d0/2.488320d6/zp**4)

c approximation of Gamma function for large arguments

c Zie Handbook of Chemistry and Physics, Gamma function

else

c

c exact expression for Gamma function for small arguments

fac = dexp( zp*dlog(zp) - zp )/rm/dgamma(zp)

endif

c 550

c !!! for large sigma distribution is skewed --->

c

dr = 2.0dO * del * sig * rm/ dfloat(p-1)

r = rm - del * sig * rm

if (r.lt.0.OdO) r = dr/2.0dO

do 200 i=l,p

rl(i) = r

x(i) = xO * sch(r, fac, rm, z) * dr

r = r + dr
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200 continue 560

return

c end of SCHULZ option

endif

c

c if (idistr.eq.2) then

c NORMAL distribution

c end of NORMAL distribution

c return

c endif

c 570

if (idistr.eq.3) then

c BIMODAL option

x(1) = 0.5d0 * xO

x(2) = x(1)

rl(1) = rm - rm * sig

rl(2) = rm + rm * sig

c end of BIMODAL option

return

endif

end 580

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

real*8 function sch(r, fac, rm, z)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE :

c Calculate given fac, rm & z the

c value of the schultz distribution function f(x) at x = r

c

c CALLED BY : schultz

c

implicit none 590

c

c SUBROUTINE variables :

real*8 r, fac, rm, z

c

c LOCAL variables
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real*8 rf

rf = r / rm

sch = fac * dexp (z * dlog(rf) + (z+1.OdO) * (1.OdO-rf))

return 600

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

real*8 function fksi(n)

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE: Calculate worldfamous ksi2 and ksi3 from x(i) and r(i), i=1..p

c (See: Vrij 1979 (17) )

c

c CALLED BY: setconst

c

c ROUTINES CALLED: none 610

c

implicit none

c

c GLOBAL variables :

integer p, idistr

real*8 atau, btau, tau, pi, x, r

common p, idistr, atau, btau, tau(200), pi /pa/ x(20),r(20)

c

c SUBROUTINE variables :

integer n 620

c

c LOCAL variables :

integer i

fksi=0.OdO

do 100 i=l,p

100 fksi=fksi+x(i)*r(i)**n

fksi=fksi*pi/6.0dO

return

end 630

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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subroutine fcn(xla, f, n, par)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE :

c This function is the obedient victim of the IMSL routine ZSPOW

c It is a sad compromise between readability and speed.

c In f(i) the Perram&Smith 1975 (14) equations are held.

c

c CALLED BY :

c ZSPOW ( in calc ) 640

c

c ROUTINES CALLED : none

c

c FUNCTIONS CALLED : inx

c

c GLOBAL variables :

integer p, idistr

real*8 x, r, rl, r2, rr, b

real*8 atau, btau, tau, pi, k2, k3, h, h2, pil2, pi6

common p, idistr, atau, btau, tau(200), pi /pa/ x(20), r(20) 650

common /ri/ rl(20,20), r2(20,20), rr(20,20)

common /fu/ k2, k3, h, h2, pil2, pi6

common /be/ b(20)

c

c SUBROUTINE variables :

real xla(45), f(45), par(1)

c real aux(15)

integer n

c

c LOCAL variables 660

real*8 xc(20), a(20)

real*8 som, bO

integer iq

c FUNCTION calls

integer inx

c In the following loop the coefficients as used in Perram&Smith
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c 1975 (9) are calculated. The b(i) 's are put in a common block

c as these are used later for calculation of the structure factor.

C 670

do 200 i=1,p

somn = O.OdO

do 100 j=l,p

som = sorn +

- x(j) * dble(xla(inx(ij))) * r2(ij) * r(j)

100 continue

xc(i) = som*pi6

bO = 3.0dO*r(i)*k2/h2 - xc(i)/h

a(i) = 1.OdO/h + bO

b(i) = -0.5d0*b0*r(i) 680

200 continue

C------

c

c write(*,1015)

c 1015 format('$Concentrations :

c write(*,1016) (x(i),i=1,5)

c 1016 format(' ',5e14.7)

c write(*,1018)

c 1018 format('$Radii

c write(*,1019) (r(i),i=1,5) 690

c 1019 format(' ',5e14.7)

iq = 0

do 500 i=l,p

do 400 j=1,i

som = O.OdO

do 300 k= 1,p

som = som + x(k) * dble(xla(inx(j,k)))

- * r2(j,k) / rl(ij) *

-0.5d0*a(i)*rr(i,k) - b(i)*r(k) 700

+ dble(xla(inx(i,k)))*r2(i,k)/12.0dO

300 continue
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iq = iq + 1

f(iq) = sngl( som*pi6 + b(i)/rl(ij) + a(i)

- tau(inx(i,j)) * dble(xla(inx(ij))) )

400 continue

500 continue

c write(*,1004) n

c do 15 ih=1,5 710

c do 14 jh=1,5

c 14 aux(jh)=xla(inx(ih,jh))

c write (*,1013) (aux(jh),jh=1,5)

c 1013 format (' ',5e14.6)

c 15 continue

c write (*,1003)

c write (*,1002) (f(i),i=1,15)

c 1002 format(' ',5e14.7,/,' ',5e14.7,/,' ',5e14.7)

c 1003 format('$Equations : ')

c 1004 format(' $1labdas : ',i4) 720

return

end

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

integer function inx(i,j)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c Omdat E04CGF insisteert op een array van variabelen, terwijl

c labda toch een heuse matrix is, simuleert inx een pxp-matrix.

c Het array v bevat offsets zodat de symmetrie behouden blijft.

c B.v. vl=0, v2=1, v3=3 etc. (Zie SUBROUTINE setconst)

C 730

implicit none

c

c GLOBAL variables :

integer v

real*8 la, 12

common /ve/ v(20), la(200), 12(200)

c

c SUBROUTINE variables :

integer i, j
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if (i.lt.j) goto 100

inx = v(i)+j

return

100 inx = v(j)+i

return

end

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++.

subroutine wijzlab(p)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++.

c PURPOSE: mess-around and display current values of labda(ij) 750

c

c CALLED BY: main

c

c ROUTINES CALLED : none

c

implicit none

c

c GLOBAL variables :

integer v, i, j

real*8 la, 12 760

common /wl/ i, j /ve/ v(20), la(200), 12(200)

c

c SUBROUTINE variables :

integer p

C

c LOCAL variables :

character*1 ch

real*8 aux(9)

integer ih, jh

C 770

c FUNCTION calls

integer inx, igetval

real*8 agetval

c-

10 write (*,1000) ij,la(inx(ij))
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read(*,1001) ch

if (ch.eq.'i') i = igetval(1,p)

if (ch.cq.' j ') j = igetval(1,p)

if (ch.eq. '1') la(inx(i,j))=agetval(0.0d0,30.OdO)

if (ch.eq.'q') return 780

if (ch.ne.' ?') goto 20

do 15 ih=1,p

do 14 jh=l,p

14 aux(jh)=la(inx(ihjh))

write (*,1003) (aux(jh),jh=l,p)

15 continue

20 continue

goto 10

1000 format (' i =',i2,', j =',i2,', l(i,j) =',f5.2,' ? '$)

1001 format (a) 790

1003 format (' ',9f6.2)

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine show tau

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-

c PURPOSE : display current values of tau(ij)

c

c CALLED BY: main

c

c ROUTINES CALLED : none 800

c

implicit none

c

c GLOBAL variables :

real*8 atau, btau, tau, pi

integer p, idistr

integer v, i, j

real*8 la, 12

common p, idistr, atau, btau, tau(200), pi

common /wl/ i, j /ve/ v(20), la(200), 12(200) 810

c
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c LOCAL variables :

real*8 aux(9)

integer ih, jh

c FUNCTION calls

integer inx

do 15 ih=1,p

do 14 jh=l,p

14 aux(jh)=tau(inx(ihjh)) 820

write (*,1003) (aux(jh)jh=1,p)

15 continue

1003 format (9(1x,f6.2))

end

c

c

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine struct(q,s,ifail)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE: 830

c S is the inverse of E-C'(q) [Vrij 1979 (8)] and can be determined

c from Q-. As Q'(-q)=Q'*(q) (*=complex conjugated) we find

c E-C~(q) = Q~+(q)Q-(q) (Q- times its hermitian conjugated). The

c inverse is determined by the modified to double precision INISL

c routine D LEQT1D.

c

c CALLED BY :

c subint

c

c ROUTINES CALLED : 840

c D LEQT1D, qik

c

implicit none

c

c GLOBAL variables :

integer p, idistr

real*8 atau, btau, tau, pi
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common p, idistr, atau, btau, tau(200), pi

c

c SUBROUTINE variables : 850so

real*8 q

integer ifail

complex*16 s(20,20)

c

c LOCAL variables

complex*16 qq(20,20)

complex*16 A(20,20), B(20,20), som

real*8 WA(20)

integer ier, N, M, IA, IB, IJOB

integer i, j, k 860

ifail = 0

call qik(q,qq)

do 300 i=1,p

do 200 j=l,p

A(ij) = qq(ij)

B(ij) = dcmplx ( 0.Od0, 0.0d0 )

if (i.eq.j) B(ij) = dciimplx ( 1.0d0 , 0.OdO)

200 continue

300 continue 870

C

N=p

IA = 20

IB = 20

M =p

IJOB = 0

CALL D_LEQT1C (A,N,IA,B,M,IB,IJOB,WA,IER)

if (ier.ne.0) ifail = 1

cQ
do 400 i=l,p 880

do 500 j= ,p

sorn = (0.0d0,0.0d0)

do 600 k =1,p

137



somn = som + B(i,k) * dconjg( B(j,k) )

600 continue

c write (6,*) ij,som

s(ij) = som

500 continue

400 continue

return 890

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine subint(q,ai,aint0)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE:

c Calculate scattering value including interactions (ai) for the

c system at scat.vector=q, and excluding interactions (aintO)

c

c !! NOTE !! in principle different particle electron density profiles

c can be introduced through the function 'formfactor'. Caution should 900

c be taken here as strange results may be introduced. (negative overall

c particle radii)

c For homogenous particles IFORM=l (and dlayer(i) = 0 and dzeep=0)

c no problems arise.

c

c ROUTINES CALLED :

c struct

c

c FUNCTIONS CALLED :

c form factor 910

c

implicit none

c

c GLOBAL variables :

integer p, idistr, istat, nrho, nlayer, iform

real*8 atau, btau, tau, pi, dzeep

real*8 x, r, rho(12), dlayer(10), qa, ina

common p, idistr, atau, btau, tau(200), pi

common /pa/ x(20), r(20) /in/ istat, qa(200), ina(200)
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common / deeltje / iform,rho,nrho,dlayer,nlayer,dzeep

c

c SUBROUTINE variables :

real*8 q, ai, aint0

c

c LOCAL variables :

real*8 a(20), p43

complex*16 s(20,20)

integer i, j, ifail

c FUNCTION calls

real*8 form factor 930

C

aint0 = 0.0

if (q.lt.0.0001) then

p43 = 4.0d0 * pi / 3.0d0

do 5 i= 1,p

a(i) = p4 3 * r(i)**3

aint0 = aint0 + a(i)**2 * x(i)

5 continue

else

do 10 i=l1,p 940

a(i) = form_factor(iform, q,

- r(i)*0.5d0 - dzeep - dlayer(1),

- nrho, rho, nlayer, dlayer)

aint0 = aint0 + a(i)**2 * x(i)

10 continue

endif

call struct(q,s,ifail)

if (ifail.ne.0) then

if (ifail.eq.1) write (*,' (a) '$SNAG: Complex diagonal.'

if (ifail.eq.2) write (*,' (a)') '$SNAG: QQ+ is not pos. def.' 950

write (*,' (a)') '$Intens Abort - You lose.'

return

endif

110 continue

ai = 0.OdO
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c --- intens ---

do 300 i= 1,p

do 200 j=i+1,p

ai = ai + 2. * dreal(s(i,j))

* a(i) * a(j) * dsqrt(x(i)*x(j)) 960

c As S is hermitian, you can write

c the sum this way.

200 continue

ai = ai + a(i)**2 * dreal(s(i,i)) * x(i)

c s(i,i) is real, but the machine

c does not know.

300 continue

return

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++

subroutine qik(q,qq)

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE:

c This routine determines Q'(i,k) as defined in Vrij 1979 (23) but now

c with stickyness included. For insiders we note that the variables

c start with vr.

c

c CALLED BY: struct

c

c ROUTINES CALLED: none 980

c

implicit none

c

c GLOBAL variables :

integer p, v, idistr

real*8 atau, btau, tau, pi, k2, k3, h, h2, pil2, pi6

real*8 la, 12, x, r, b

common p, idistr, atau, btau, tau(200), pi

common /ve/ v(20), la(200), 12(200)

common /pa/ x(20), r(20) /fu/ k2, k3, h, h2, pil2, pi6 990

common /be/ b(20)
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C

c SUBROUTINE variables :

real*8 q

complex*16 qq(20,20)

C

c LOCAL variables

integer i, k

real*8 sq(20), cq(20), vrx(20), vrphi(20), vrpsi(20)

c FUNCTION calls 1oo0

integer inx

C

if (q.lt.0.0001d0) then

do 30 i= 1,p

vrx(i)=0.Od0

sq(i)=0.0d0

cq(i)=1.0d0

vrphi(i)=1.0d0

vrpsi(i)=1.0d0

30 continue 1oto

else

do 10 i=1,p

vrx(i) = r(i) * 0.5d0 * q

sq(i) = dsin(vrx(i))

cq(i) = dcos(vrx(i))

vrphi(i) = 3.0d0 / vrx(i)**3

- * ( sq(i) - vrx(i) * cq(i) )

vrpsi(i) = sq(i) / vrx(i)

10 continue

endif 1020

c

do 200 i=l,p

do 100 k=1,p

qq(i,k) = dcmplx ( pi6 * dsqrt(x(i)*x(k)) , O.OdO )

- * dcmplx

- - 0.25d0 * la( inx(i,k) ) * r(k)
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* ( r(i) + r(k) )**2 * vrpsi(k)

c

c This term is obtained by treating Perram&Smith 1030

c 1975 (9) the way Vrij 1979 (14) does

c

- + r(k)**3 / h * vrphi(k)

- + r(k)**2 * r(i) / h * 3.OdO * vrpsi(k)

- - r(k)**3 * b(i) / r(i)

- * 2.0dO * vrphi(k)

- - r(i) * r(k)**2 / h * vrx(k) * vrphi(k)

- * dcmplx( cq(i) , sq(i) ) 1040

c = cdexp(vrx(i))

100 continue

c Now we've got Z(i,k)....

qq(i,i) = qq(i,i) + dcmplx ( 1.0d0, 0.OdO )

c .... and Q~(i,k)!

200 continue

return

end

c

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ loso

subroutine intens

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE :

c Calcute scattering intensity or structure factor.

c Write to file.

c

c ROUTINES CALLED :

c subint, schrijf

c

c 1060

c GLOBAL variables :

integer p, idistr, istat, iplot

real*8 atau, btau, tau, pi
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real*8 x, r, ina, qa

common p, idistr, atau, btau, tau(200),pi /pa/ x(20),r(20)

common /pl/ iplot /in/ istat, qa(200), ina(200)

c

c LOCAL variables

real*8 a(20)

real*8 q, dq, smint, ai, aintO 1070

real xxx(200),yyy(200)

character*1 ch

complex*16 s(20,20)

c

c FUNCTION calls :

integer igets

1 write (*,1000)

read (*,*) q

if (q.ne.0.0) goto 10 1080

write (*,1030)

read (*,1031) ch

if (ch.eq.'s') istat=1

if (ch.eq.'i') istat=0

if (ch.eq.'o') goto 950

if(.true.) goto 1

10 continue

write (*,1002)

read (*,*) dq

write (*,1004) 1090

read (*,*) nq

smint = O.OdO

do 900 n = 1,nq

call subint (q,ai,aintO)

qa(n)=q

if (istat.eq.1) goto 500

ina(n) = ai

if (ina(n).lt.smint) smint = ina(n)

goto 800
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500 continue o100

c --- struct ---

ina(n) = ai / aint0

if (ina(n).lt.smint) smint = ina(n)

800 continue

q = q + dq

900 continue

c do 910 n=l,nq

c ina(n)=ina(n)-smint

c 910 continue

950 continue 1110

960 continue

c write (6,1017)

c read (5,1031) ch

c if (ch.eq.'j') then

c do 8888 i=l,nq

c xxx(i) = sngl(qa(i))

c yyy(i) = sngl(ina(i))

c8888 continue

c iplot = 0

c call ctermplot(xxx,yyy,nq,iplot,' ',' ') 1120

c else if (ch.ne.'n')then

c goto 960

c endif

call schrijf(nq, qa, ina)

return

1000 format (' Give first q: '$)

1002 format (' Give stepsize: '$)

1004 format (' Give number I(q)-s: '$)

1017 format (' Plot? D/n] '$)

1030 format (' s(truct)/i(ntens)/o(again): '$) 1130

1031 format (la)

end

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

integer function igetval(il,ih)

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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c implicit none

integer il, ih

11 write (*,20)

10 read (*,fmt=*,err=ll) igetval 1140

if((igetval.ge.il).and.(igetval.le.ih)) return

write (*,30) il,ih

if (.true.) goto 10

20 format (' Value: '$)

30 format (' ',i3,' < value < ',i4,'. '/' Again : '$)

end

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

real*8 function agetval(bl,bh)

c+++++++++++++++++++++++++++++++++++++++++++÷+++++++++++++++++++++++++++++

C 1150

real*8 bl, bh

11 write (*,20)

10 read (*,fmt=*,err=ll) agetval

if((agetval.ge.bl).and.(agetval.le.bh)) return

write (*,30) bl,bh

if (.true.) goto 10

20 format (' Value: '$)

30 format (' ',f6.2,' <= value <= ',f6.2,' '/' Again : '$)

end 1160

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

REAL*8 FUNCTION FSPHERE(DELRHO,R,Q)

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A HOMOGENEOUS

C SPHERE OF RADIUS R AT SCATTERING VECTOR Q

C

C GLOBAL :

REAL*8 DELRHO, R, Q

C LOCAL :

REAL*8 PI, RQ 1170

C
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PI = 4.0DO * DATAN (1.00D)

RQ = R * Q

IF (Q.LT.1.OD-7) THEN

FSPHERE=4.0DO*PI*DELRHO*R*R*R/3.0DO

ELSE

FSPHERE=4.0DO*PI*DELRHO*(DSIN(RQ)-RQ*DCOS(RQ))/(Q*Q*Q)

ENDIF

RETURN

END 1180

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

REAL*8 FUNCTION FORMFACTOR(IFORM,QVECTOR,RADIUS,NRHO,RHO,

> NLAYER,DLAYER)

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C IMPLICIT NONE

C NRHO,NLAYER: Number of RHO(),DLAYER()

C RHO(I) : Electron densities (MAX = 12)

C DLAYER(I) : Transition layer distances (MAX = 10)

C

C QVECTOR : SCATTERING ANGLE 1190

C RADIUS : MEAN OF THE GAUS DISTRIBUTION

C

C ROUTINES CALLED :

C

C SCATTERED AMPLITUDE (NOT INTENSITY) OF

C FSPHERE : HOMOGENOUS SPHERE

C FLINSPHERE : DIFFUSE SPHERE (LINEAR DECREASING DENSITY)

C FSHELL SHELL

C

INTEGER IFORM, NRHO, NLAYER 1200

REAL*8 Q_VECTOR, RADIUS

REAL*8 DLAYER(10), RHO(12)

REAL*8 FSPHERE,FLINSPHERE,FSHELL

C LOCAL

C

REAL*8 PI, PPI, Y, YZERO
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PI=4.0DO*DATAN(1.ODO)

PPI=4.0DO*PI/3.0DO 1210

IF (IFORM.EQ.1) THEN

Y=FSPHERE(RHO(1)-RHO(2),RADIUS,QVECTOR)

YZERO = (RHO(1)-RHO(2))*(RADIUS**3)

ELSE IF (IFORM.EQ.2) THEN

Y=FLINSPHERE(RHO(1)-RHO(2),RADIUS,DLAYER(1),QVECTOR)

YZERO = (RHO(1)-RHO(2))*RADIUS**3 +

> 0.75EO*(RHO(1)-RHO(2))/DLAYER(1) * ((RADIUS+DLAYER(1))**4

> -RADIUS**4) + (RHO(1)-RADIUS*(RHO(1)-RHO(2))/DLAYER(1))*

> ((RADIUS+DLAYER(1))**3-RADIUS**3)

ELSE IF (IFORM.EQ.3) THEN 1220

Y=FSHELL(RHO(1)-RHO(2),RHO(2)-RHO(3),RADIUS,

> DLAYER(1),QVECTOR)

YZERO = RADIUS**3*(RHO(1)-RHO(2))+

> (RADIUS+DLAYER(1))**3*(RHO(2)-RHO(3))

ELSE IF (IFORM.EQ.4) THEN

Y=FLINSPHERE(RHO(2)-RHO(3),RADIUS,DLAYER(1),Q_VECTOR)

> -FSPHERE(RHO(2)-RHO(1),RADIUS,QVECTOR)

YZERO = (RHO(1)-RHO(2))*RADIUS**3 + (RHO(2)-RHO(3))*RADIUS**3

> 0.75EO*(RHO(2)-RHO(3))/DLAYER(1) * ((RADIUS+DLAYER(1))**4

> -RADIUS**4) + (RHO(2)-RADIUS*(RHO(2)-RHO(3))/DLAYER(1))* 1230

> ((RADIUS+DLAYER(1))**3-RADIUS**3)

ELSE IF (IFORM.EQ.5) THEN

Y=FLINSPHERE(RHO(1)-RHO(2),RADIUS,DLAYER(1),QVECTOR)

> +FSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(1),QVECTOR)

YZERO = (RHO(1)-RHO(2))*RADIUS**3 +

> 0.75EO*(RHO(1)-RHO(2))/DLAYER(1) * ((RADIUS+DLAYER(1))**4

> -RADIUS**4) + (RHO(1)-RADIUS*(RHO(1)-RHO(2))/DLAYER(1))*

> ((RADIUS+DLAYER(1))**3-RADIUS**3)+

> (RHO(2)-RHO(3))*(RADIUS+DLAYER(1))**3

ELSE IF(IFORM.EQ.6) THEN 1240

Y=FSPHERE(RHO(1)-RHO(2),RADIUS,QVECTOR)+

>FLINSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(1),DLAYER(2),QVECTOR)

YZERO=1.ODO
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ELSE IF(IFORM.EQ.7) THEN

Y=FLINSPHERE(RHO(1)-RHO(2),RADIUS,DLAYER(1),QVECTOR)+

>FLINSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(1),DLAYER(2),Q_VECTOR)

YZERO=1.ODO

ELSE IF(IFORM.EQ.8) THEN

Y=FLINSPHERE(RHO(1)-RHO(2),RADIUS,DLAYER(1),QVECTOR)+

>FSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(1)+DLAYER(2),QVECTOR) 1250

YZERO=1.ODO

ELSE IF(IFORM.EQ.9) THEN

Y=FLINSPHERE(RHO(1)-RHO(2),RADIUS,DLAYER(1),QVECTOR)+

>FLINSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(2),

> DLAYER(3),QVECTOR)

YZERO=1.ODO

ELSE IF (IFORM.EQ.10) THEN

Y=FSPHERE(RHO(1)-RHO(2),RADIUS,QVECTOR)+

> FSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER(1),QVECTOR)+

> FSPHERE(RHO(3)-RHO(4),RADIUS+DLAYER(1)+DLAYER(2),QVECTOR) 1260

YZERO = (RHO(1)-RHO(2))*(RADIUS**3)+

> (RHO(2)-RHO(3))*((RADIUS+DLAYER(1))**3)+

> (RHO(3)-RHO(4))*((RADIUS+DLAYER(1)+DLAYER(2))**3)

ENDIF

FORMFACTOR = Y

C FORMFACTOR = Y / YZERO / PPI

RETURN

END

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

REAL*8 FUNCTION FLINSPHERE(DELRHO,R,D,Q) 1270

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C IMPLICIT NONE

C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A HOMOGENEOUS

C SPHERE OF RADIUS R , WITH A LINEAR DECREASING ELECTRON DENSITY

C OVER A DISTANCE D , AT SCATTERING VECTOR Q

C

REAL*8 DELRHO, R, D, Q

REAL*8 X, Y, PI

PI=4.0DO*DATAN(1.ODO)
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X=R*Q 1280

Y=(R+D)*Q

FLINSPHERE= 4.ODO * PI * DELRHO / (Q*Q*Q) *

> ((2.0DO*(DCOS(Y)-DCOS(X))-X*DSIN(X)+Y*DSIN(Y))/(X-Y))

RETURN

END

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

REAL*8 FUNCTION FSHELL(DELRH1,DELRH2,R,D,Q)

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C IMPLICIT NONE

C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A SHELL PARTICLE 1290

C WITH INNER RADIUS R, OUTER RADIUS R+D AT SCATTERING VECTOR Q.

C

REAL*8 DELRH1,DELRH2,R,D,Q

C

REAL*8 FSPHERE

C

FSHELL= FSPHERE(DELRH1,R,Q) + FSPHERE(DELRH2,R+D,Q)

RETURN

END

C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1300

subroutine print.profile(iform)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c implicit none

integer iform

C

write(*,99) iform

goto (1,2,3,4,5,6,7,8,9,10) iform

1 write(*,101)

return

2 write(*,102) 1310

return

3 write(*,103)

return

4 write(*,104)

return
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5 write(*,105)

return

6 write(*,106)

return

7 write(*,107)

return

8 write(*,108)

return

9 write(*,109)

return

10 write(*,110)

return

format(lh ,/, '$Density profile: iform

format(lh ,/,"----",/," 1",/,"

format(lh ,/,' ',/,ye d /",/,"

format(lh ,/," --- ",/," I

I" .---- "$)
format(lh ,/,"----",/," /",/,"

format(lh ,/,'Not yet drawn?'$)

format(h ,/," ---- ,/,"

" /-----" $)

format(1h ,/," ,," /

" I-----" $)
format(lh ,/," //",/, / /

format(1h ,/," __",/," /

"I /----"$)
format(lh ,/,'Not yet drawn?'$)

end

W= 'i4)

I -.- .$)

(" / "- - 1

/----"$)

I",/
1330

/---- "$)

I " i I

Ill , / ,

I , /

t,/," /-----" $)

i /" ,/," -- / /" /, 1340

subroutine setdeeltje

c+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c implicit none

c

c GLOBAL :

integer nrho, nlayer, iform

real*8 rho(12), dlayer(10)

1320

99

101

102

103

104

105

106

107

108

109

110

1350
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real*8 dzeep

common / deeltje / iform, rho, nrho, dlayer, nlayer, dzeep

c

c LOCAL

integer i

C

c FUNCTION calls

real*8 agetval

integer igetval 1360

99 WRITE (*,102)

102 FORMAT('$GiveIFORM: '$)

IFORM = IGETVAL(1,11)

IF (IFORM.EQ.1) THEN

RHO(1) = 1.ODO

RHO(2) = O.ODO

DO 1002 I=1,10

1002 DLAYER(I) = 0.0DO

NRHO = 2 1370

NLAYER = 0

ELSE IF (IFORM.EQ.2) THEN

NRHO = 2

NLAYER = 1

ELSE IF ((IFORM.GE.3).AND.(IFORM.LE.5)) THEN

NRHO = 3

NLAYER = 1

ELSE IF ((IFORM.GE.6).AND.(IFORM.LE.8)) THEN

NRHO = 3

NLAYER = 2 1380

ELSE IF (IFORM.EQ.9) THEN

NRHO = 3

NLAYER = 3

ELSE IF (IFORM.EQ.10) THEN

NRHO = 4

NLAYER = 2

ENDIF
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WRITE (*,103)

103 FORMAT('$Give inner density :'$)

RHO(1) = AGETVAL(O.dO,1000.dO) 1390

104 FORMAT('$Giveouter density :'$)

WRITE (*,104)

RHO(NRHO) = AGETVAL(-1000.d0,1000.d0)

DO 98 I=2,NRHO-1

WRITE(*,100) I-I

100 FORMAT(1H ,'$ Give electron density in transition layer no.', 4)

RHO(I) = AGETVAL(-1000.d0,1000.d0)

98 CONTINUE

DO 97 I=1,NLAYER

WRITE(*,101) I 1400

101 FORMAT(1H ,'$ Give transition layer thickness no.',I4)

DLAYER(I) = AGETVAL(0.d0,1000.dO)

97 CONTINUE

IF(.TRUE.) GOTO 999

DO 95 I=1,10

95 CALL PRINTPROFILE(I)

IF (.TRUE.) GOTO 99

999 RETURN

END

c 1410

c

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine schrijf(nnn, xxx, yyy)

c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

c PURPOSE : save data xxx and yyy in a file

c

c ROUTINES CALLED

c errmsg

c

c FUNCTIONS CALLED : 1420

c askno, igets

c

c implicit none
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real*8 xxx(1), yyy(1)

integer nnn

c LOCAL:

c

character*80 dumfln, infln

integer jchar, ios, irc

logical answer 1430

c

c FUNCTION calls:

logical askno

integer igets

10 write(*,1000)

dumfln = '

if (igets(5, dumfln).eq.0) then

return

else 1440

jchar = index(dumfln,' ') - 1

if (jchar.eq.0) then

infln = 'tt.dat'

jchar = 6

else

infln = dumfln

endif

endif

C

c 1450

open(UNIT=2, FILE=infln(l:jchar),

STATUS='OLD', IOSTAT=ios )

if (ios.ne.0) then

c ----- > CREATE NEW FILE

open(UNIT=2, FILE=infln(l:jchar), STATUS='NEW' ,IOSTAT=ios )

if (ios.ne.0) then

c --------- > CANNOT CREATE NEW FILE

goto 9990

endif

153



else 1460

c ----- > FILE EXISTS, APPEND NEW DATA

write(6,1001)

answer = askno(5,irc)

if (answer) then

c -------- > DO NOT APPEND

close (UNIT=2)

goto 10

endif

endif

c 1470

C

c ----> write to file

c

do 40 k=1,nnn

40 write(UNIT=2, FMT=1020, ERR=9991) xxx(k), yyy(k)

close (UNIT=2)

return

c

c ERRORS

9990 call errmsg(' Error opening datafile ') 1480

close (UNIT=2)

goto 10

9991 call errmsg(' Error writing datafile ')

close(UNIT=2)

goto 10

1000 format(' >>> Enter filename or <crtl Z> [TT.DAT]: '$)

1001 format(' File already exists! Overwrite ? [Y/N] [N]: '$)

1002 format(a)

1010 format (2i5)

1020 format (2f16.7) 1490

end

C LAST UPDATE 16/03/89

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C

INTEGER FUNCTION IGETS (ITERM,TBUFF)
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C IMPLICIT NONE

C

C PURPOSE: READ A CHARACTER STRING FROM THE TERMINAL AND REPORT IF

C CTRL-Z ISSUED.

C 1500

C NB : PRINT *,", is for the CONVEX

C

INTEGER ITERM

CHARACTER*(*) TBUFF

C

C ITERM : TERMINAL INPUT STREAM

C TBUFF : TERMINAL BUFFER

C-----------------------------------------------------------------------

READ (ITERM,'(A)',END=999) TBUFF

IF( (ICHAR(TBUFF(1:1)) .EQ. 26) .OR. (ICHAR(TBUFF(1:1)) .EQ. 4) 1510

GOTO 999

IGETS=-1

RETURN

999 IGETS=O

C PRINT *,"

RETURN

C

END

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C 1520

LOGICAL FUNCTION ASKNO (ITERM,IRC)

C

C Purpose: Read user response to a yes/no question and either assign

C the default answer if <cr> is entered or interpret the reply

C and return the relevant logical value. If <ctrl-Z> is

C entered the return code is -1.

C

INTEGER ITERM,IRC

C

C ITERM : Terminal input stream 1530

C IRC : Return code 0 - successful
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1 - <ctrl-Z>

C

C Calls 1: ERRMSG

C

C-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

C Local variables:

C

INTEGER JCHAR

CHARACTER*80 TBUFF 1540

C

C JCHAR : Nos. of chars entered

C TBUFF : Terminal buffer

C

C-----------------------------------------------------------------------

C

ASKNO=.TRUE.

IRC=1

C

10 READ (ITERM,'(A)',END=999) TBUFF 1550

JCHAR=INDEX(TBUFF,' ')-1

IF (JCHAR.EQ.0) THEN

IRC=O

ELSEIF (TBUFF(1:1).EQ.'N'.OR.TBUFF(1:1).EQ.'n') THEN

IRC=O

ELSEIF (TBUFF(1:1).EQ.'Y'.OR.TBUFF(1:1).EQ.'y') THEN

IRC=O

ASKNO=.FALSE.

ELSE

CALL ERRMSG ('Error: Reply Y or N, Please re-enter') 156o

GOTO 10

ENDIF

999 END

C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

C

LOGICAL FUNCTION ASKYES (ITERM,IRC)

C
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C Purpose: Read user response to a yes/no question and either assign

C the default answer if <cr> is entered or interpret the reply

C and return the relevant logical value. If <ctrl-Z> is 1570

C entered the return code is -1.

C

INTEGER ITERM,IRC

C

C ITERM : Terminal input stream

C IRC : Return code 0 - successful

C 1 - <ctrl-Z>

C

C Calls 1: ERRMSG

C 1580

C-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

C Local variables:

C

INTEGER JCHAR

CHARACTER*80 TBUFF

C

C JCHAR : Nos. of chars entered

C TBUFF : Terminal buffer

C

C----------------------------------------------------------------------- 1590

C

ASKYES=.TRUE.

IRC=1

C

10 READ (ITERM,'(A)',END=999) TBUFF

JCHAR=INDEX(TBUFF,' ')-1

IF (JCHAR.EQ.0) THEN

IRC=0

ELSEIF (TBUFF(1:1).EQ.'N'.0R.TBUFF(1:1).EQ.'n') THEN

IRC=0 1600

ASKYES=.FALSE.

ELSEIF (TBUFF(1:1).EQ.'Y'.OR.TBUFF(1:1).EQ.'y') THEN

IRC=O
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ELSE

CALL ERRMSG ('Error: Reply Y or N, Please re-enter')

GOTO 10

ENDIF

999 END

1610

SUBROUTINE ERRMSG (MESAGE)

C Purpose: Print error message in inverse video on a VT100 emulator

terminal.

CHARACTER*(*) MESAGE

C MESAGE : Error message to be displayed

C

C Calls 0:

C

C Local variables:

C

CHARACTER*1 BELL,ESC

C BELL

C ESC

: Bell ascii character

: Escape character

DATA BELL/'7'/ , ESC/'27'/

C------------------------------------------------------------------

C

C======REVERSE VIDEO MODE

C

PRINT *,1000 , ESC , '[' , 7 , 'in'

C

C======PRINT ERROR MESSAGE AND RING BELL

C
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PRINT *,1010,MESAGE,BELL

C

C=====REVERT TO PREVIOUS VIDEO MODE

C

PRINT *,1020 , ESC , '[' , 0 , 'm'

RETURN

C

1000 FORMAT (' ',2A1,Il,A1)

1010 FORMAT ('+',A)

1020 FORMAT ('±',2A1,I1,A1)

END 1650

159
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Appendix C

Least-Square Fitting

This is a source code listing of a FORTRAN program which performs the least-square

fitting of various models to the experimental data with the option of the incoporation

of the resolution function.

c main program

implicit none

character*20 filein(3), title, fileout, state, xsectype

character*50 junk

real*8 sigq, ave, fave, STP, QBE, Qres

real*8 reso, ftemp

integer pnumber, i, estart(3), enumber, imax, j, imequ

integer iprint, resyn, nfold, sets, ii

real*8 prm, step, bound, fres, oldchi, sig

real*8 edat(3,4,200),rl,r2,rl 1 ,rl2,rlam,dlam,rdet to

common/general/estart, enumber(3), prm(200), bound(2,200), imax

common/resofl/reso(3,200,200) ,rl,r2,rll.rl2,rlam,dlam,rdet,resyn

common/resof2/sig(3,200),nfold

common/QQQ/ave(200), fave(200), imequ, iprint, sets

c

c

open(unit=5,file= 'f itcontrol ',status= 'old')

rewind(unit=5)

read(5,1201) title
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print *,'title :',title 20

3333 read(5,1201) state

if(state.eq. 'stop') go to 4444

read(5,*) sets

do 170 i=1,sets

read(5,1201) filein(i)

read(5,*) estart(i)

read(5,*) enumber(i)

170 continue

1201 format(a20)

read(5,1201) fileout 30

c

c

open(unit=10,file= 'test', status= 'unknown')

rewind (unit= 10)

do 190 ii=l,sets

open(unit=7,file=filein(ii), status= 'old')

rewind(unit=7)

if(estart(ii).eq.1) go to 117

do 2 i=l,estart(ii)-I

read(7,1202) junk 40

2 continue

1202 format(a50)

117 do 3 i=1, enumber(ii)

read(7,*) edat(ii,l,i), edat(ii,2,i), edat(ii,3,i)

if(title.eq. 'ORNL') then

edat(ii,l,i) = edat(ii,l,i)/10.

endif

write(10,1023) edat(ii,1,i),edat(ii,2,i),edat(ii,3,i)

3 continue

close(unit=7) 50

190 continue

close(unit= 10)

c

c

read(5,1201) xsectype
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print *,xsectype

read(5,*) pnumber

do 1 i=-l,pnumber

read(5,*) prin(i), bound(1,i), bound(2,i)

1 continue 60

c

c input the predetermined volume fraction as prm(pnumber+l)

c if(xsectype.eq. 'monoshs '.or.xsectype.eq. 'polyshs ') then

c read(5,*) prm(pnumber+l)

c prm(pnurnber+l) = prm(pnumber+l)*0.7018

c endif

c

read(5,*) step

read(5,*) ftemp

read(5,*) imequ 70

read(5,*) imax

read(5,*) iprint

read(5,*) resyn

c

c
if(resyn.eq.0) go to 19

open(unit=7,file= 'reso. fun' ,status= 'unknown')

rewind(unit=7)

nfold = 50

do 180 ii=l,sets so

read(5,*) rl

read(5,*) r2

read(5,*) rll

read(5,*) r12

read(5,*) rlam

read(5,*) dlam

read(5,*) rdet

DO 200 I=l,enumber(ii)

SIG (ii,I)=dSQRT(SIGQ(edat(ii,1,I)))

STP= 6.*SIG (ii,I) /FLOAT (N FOLD) 90

QBE=edat(ii,1,I)-0.5*FLOAT(NFOLD)*STP
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IF(QBE .LE. 0.0) QBE=1.d-10

DO 300 J=1,nfold

Qres= QBE+(J-0.5)*STP

RESO(ii,I,J) =STP*FRES(SIG(ii,I)**2,

+ edat(ii,1,I),Qres)

write(7,1023) Qres,reso(ii,i,j)

300 continue

200 continue

180 continue 100

close(unit=7)

c

c

19 call anneal(edat,ftemp,pnumber,step,oldchi,state,xsectype)

c

c

open(unit=7,file=fileout,status= 'unknown')

rewind(unit=7)

write(7,*) title

write(7,*) xsectype 110

write(7,1023) oldchi

write(7,*) ' '

do 20 i=1,pnumber

write(7,1023) prmn(i),ave(i),fave(i)

20 continue

1023 format(3el5.6)

close(unit=7)

c

go to 3333

4444 close(unit=5) 120

stop

end

c

c

real*8 function xsec(Q, pr ersed, sectype)icky-Hard-Sphere System

c Scattering Intensity of a Monodispersed Sticky -Hard-Sphere Systemn
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implicit none

character*20 xsectype 130

real*8 prm(200), Q, eta, a, R, tau, bgd, dsld, pi

real*8 QR, P, np, mu, alpha

real*8 Sshs, alp, G1, G2

real*8 const, thy, d, AA, BB, Z, Z1, Z2, Z3, G11, G12, G13

real*8 bet, arb, thyl, thy2, f, S, center, deviat, Na

real*8 L, Vfc, Vhc, fcop, fpfo, foct, rsol, rhc, rfc

real*8 cylindform, etaa, SHSStr, Vp, phim

real*8 cylind3form, RectStr, W,liqP,liqSshs

real*8 H,rhoF,rhoH,rhoS,pstep,sspo,pp(7),liq,phii

real*8 instep,step,phi,ssm,fhcfun ,ssmn ,sspn ,ssmo 140

real*8 fhcylfun,rv,phio,tt,rhoC,ang

integer nj,kk

c

pi = 3.141592653

c

c Monodisperse & Polydisperse Sticky Hard Spheres

c

if(xsectype.eq. 'monoshs ' .or.xsectype.eq. 'polyshs ') then

c Define the parameters 150

c 1. Sticky Sphere Diameter for Structure Factor Calculation

a = prm(1)

c 2. Hard Sphere Radius for Form Factor Calculation

R = prm(2)

c 3. Stickiness in Sticky Sphere Model

tau = prm(3)

c 4. Difference of Scattering Length Density between Spheres and solvent

dsld = prm(4)

c 5. Incoherent Scattering Background

bgd = prm(5) 160

if(xsectype.eq. 'monoshs') then

c 6. Volme Fraction

c eta = prm(6)*a**3./R**3./8.
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eta = prm(6)

else

c 6. Width parameter in Schultz distribution

Z = prm(6)

c 7. Volmne Fraction

c eta = prm(7)*a**3.

c * *(Z+1.)**2./(Z+2.)/(Z+3.)/R**3./8. 170

eta = prm(7)

endif

c

c

if(eta.gt.0.74) then

xsec=1l.d30

return

endif

c

C 180

c Form Factor

if(xsectype.eq. 'monoshs ') then

QR = Q*R

P = (4.*pi*R**3.*(dsin(QR)-QR*dcos(QR))/QR**3.)**2.

else

c alp = (Z+I.)/Q/R
alp = Q*R/(Z+1.)

Z1 = Z+1.

Z2 = Z+2.

Z3 = Z+3. 190

c Gll = alp**(- Z1) - (4.+alp**2)**(-Z1/2.)

c * *dcos(Z1*datan(2./alp))

c G12 = Z2*Z1*(alp**(-Z3)+(4.+alp**2)**(-Z3/2)

c * *dcos(Z3*datan(2./alp)))

c G13 = -2.*Z1*(4.+alp**2)**(-Z2/2)

c * *dsin(Z2*datan(2./alp))

GI = 1-(1.+4.*alp**2.)**(-Zl/2.)*

* dcos(Z1*datan(2.*alp))

G12 = alp**2.*Z1*Z2*(1.+(1.+4.*alp**2.)**(-Z3/2.)

165



*dcos(Z3*datan (2.*alp))) 200

G13 = -2.*alp*Z1*(1.+4.*alp**2.)**(-Z2/2.)

*dsin(Z2*datan (2.*alp))

G1 = Gll+G12+G13

c P = 8*pi**2.*R**6*alp**(Z+7)*G1/Z1**6

P = 8.*pi**2.*G1/Q**6.

endif

c

c Structure Factor

Sshs = SHSStr(Q,eta,a,tau)

c 210

if(xsectype.eq. 'monoshs') then

xsec = np*dsld*P*Sshs+bgd

else

c G2 = dsin(Zl*datan(1./alp))-Z1*((1+alp**2.)**(-0.5))

c * *dcos(Z2*datan(1./alp))

G2 = dsin(Z1*datan(alp)) -Z1*alp*

((1.+alp**2.)**(-0.5))*dcos(Z2*datan(alp))

bet = 2.*(1./(1.+alp**2.))**Z1*G2**2./G1

xsec = np*dsld*P*(1.+bet*(Sshs- 1.))+bgd

endif 220

c

return

endif

c

c

if(xsectype.eq. 'polylor') then

c Define the parameters

c 1. Hard Sphere Radius for Form Factor Calculation

R = prm(1)

c 2. Difference of Scattering Length Density between Spheres and solvent 230

dsld = prm(2)

c 3. Constant in Lorentzian

const = prm(3)

c 4. Corelation length in Lorentzian

thy = prm(4)
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c 5. Incoherent Scattering Background

bgd = prim(5)

c 6. Width parameter in Schultz distribution

Z = prm(6)

C 240

alp = Q*R/(Z+I.)

Z1 = Z+1.

Z2 = Z+2.

Z3 = Z+3.

G11 = 1-(1.+4.*alp**2.)**(-Z1/2.)*

* dcos(Z1*datan(2.*alp))

G12 = alp**2.*Z1*Z2*(1.+(1.+4.*alp**2.)**(-Z3/2.)

* *dcos(Z3*datan(2.*alp)))

G13 = -2.*alp*Zl*(1.+4.*alp**2.)**(-Z2/2.)--

* *dsin(Z2*datan(2.*alp)) 250

G1 = Gll+G12+G13

P = 8.*pi**2.*G1/Q**6.

G2 = dsin(Z1*datan(alp))-Z1*alp*

* ((1.+alp**2.)**(-0.5))*dcos(Z2*datan(alp))

bet = 2.*(1./(1.+alp**2.))**Z1*G2**2./G1

S = 1.+const/(1.+Q**2*thy**2)

xsec = dsld*P*(1.+bet*(S-1.))+bgd

return

endif

C 260

c

if(xsectype.eq. 'pshslor') then

c Define the parameters

c 1. Hard Sphere Radius for Form Factor Calculation

R = prm(1)

c 2. Difference of Scattering Length Density between Spheres and solvent

dsld = prm(2)

c 3. Constant in Lorentzian

const = prm(3)

c 4. Corelation length in Lorentzian 270

thy = prm(4)
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c 5. Incoherent Scattering Background

bgd = prm(5)

c 6. Width parameter in Schultz distribution

Z = prmn(6)

c 7. volume fraction in sticky spheres model

eta = prm(7)

c 8. sticky sphere diameter

a = prm(8)

c 9. stickness 280

tau = prm(9)

c 10. fraction of sticky spheres part in structrure factor

f = prm(10)

c

np = 6.*eta/pi/a**3.

alp = Q*R/(Z+1.)

Z1 = Z+1.

Z2 = Z+2.

Z3 = Z+3.

G11 = 1-(1.+4.*alp**2.)**(-Z1/2.)* 290

* dcos(Z1*datan(2.*alp))

G12 = alp**2.*Z1*Z2*(1.+(1.+4.*alp**2.)**(-Z3/2.)

* *dcos(Z3*datan(2.*alp)))

G13 = -2.*alp*Z1*(1.+4.*alp**2.)**(-Z2/2.)

* *dsin(Z2*datan(2.*alp))

G1 = Gll+G12+G13

P = 8.*pi**2.*G1/Q**6.

G2 = dsin(Z1*datan(alp))-Z1*alp*

* ((1.+alp**2.)**(-0.5))*dcos(Z2*datan(alp))

bet = 2.*(1./(1.+alp**2.))**Z1*G2**2./G1 300

c Structure Factor

Sshs = SHSStr(Q,eta,a,tau)

S = f*Sshs+(l.-f)*(1.+const/(1.+Q**2*thy**2))

c

xsec = dsld*P*(1.+bet*(S-1.))+bgd

return

endif
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c

C

if(xsectype.eq. 'mshslor') then 310

c Define the parameters

c 1. Hard Sphere Radius for Form Factor Calculation

R = prm(1)

c 2. Difference of Scattering Length Density between Spheres and solvent

dsld = prm(2)

c 3. Constant in Lorentzian

const = prm(3)

c 4. Corelation length in Lorentzian

thy = prm(4)

c 5. Incoherent Scattering Background 320

bgd = prm(5)

c 6. volume fraction in sticky spheres model

eta = prm(6)

c 7. sticky sphere diameter

a = prm(7)

c 8. stickness

tau = prm(8)

c 9. fraction of sticky spheres part in structrure factor

f = prm(9)

c 330

np = 6.*eta/pi/a**3.

c Form Factor

QR = Q*R

P = (4.*pi*R**3.*(dsin(QR)-QR*dcos(QR))/QR**3.)**2.

c Structure Factor

Sshs = SHSStr(Q,eta,a,tau)

c

xsec = f*np*dsld*P*Sshs+

+ (1.-f)*(const/(1.+Q**2*thy**2))+bgd

return 340

endif

c

c
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if(xsectype.eq. 'mcylind') then

c Define the parameters

c 1. Radius of the cylinder

R = prm(1)

c 2. Length of the cylinder

L = prm(2)

c 3. Core scattering length density 350

rhoC = prm(3)

c 4. Solvent scattering length density

rhoS = prm(4)

c 5. Particle volume fraction

eta = prm(5)

c 6. Background

bgd = prm(6)

c

P = cylindform(Q,R,L)

xsec = 1.d8*eta*pi*R**2.d0*L*(rhoC-rhoS)**2.d0*P+bgd 360so

return

endif

c

c

if(xsectype.eq. 'mcylshs') then

c Define the parameters

c 1. Aggregation Number

Na = prm(1)

c 2. volume fraction in sticky spheres model

eta = prm(2) 370

c 3 Adjustment to the absolute scale

const = prm(3)

c 4. Incoherent Scattering Background (1/cm)

bgd = prm(4)

c 5. stickness

tau = prm(5)

c 6. Length of Cylinder in Form Factor Calculation (A)

L = prm(6)

c 7. Length of the perfluorocarbon chain in copolymer (A)
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F = prin(7) 380

c 8. Volume of fluorocarbon chain in copolymer (A^3)

Vfc = prm(8)

c 9. Volume of hydrocarbon chain in copolymer (A^3)

Vhc = prm(9)

c 10. Copolymer volume fraction

fcop = prm(10)

c 11. Perflrorooctane volume fraction

fpfo = prm(11)

c 12. iso-octane volume fraction

foct = prm(12) 390

c 13. Scattering length density of fluorocarbon (A ^ -2)

rfc = prm(13)

c 14. Scattering length density of hydrocarbon (A^--2)

rhc = prm(14)

c 15. Cylinder Cross Section Radius for Form Factor Calculation

R = prm(15)

c 16. sticky sphere diameter

a = prm(16)

c 17. correlation length in Lorentzian

thy = prm(17) 400

c 18. constant for Lorentzian

arb = prm(18)

c

c

c first approximation 5/27/94

R = dsqrt(Na*Vhc/21.74d0/pi)

c a = (6.*R**2.*(L+2.*F))**(1./3.)

etaa = 6.*eta*R**2.*L/a**3.

rsol = (rhc*(fcop*Vhc/(Vhc+Vfc) +foct-etaa)+

+ rfc* (fcop*Vfc/(Vhc+Vfc) +fpfo))/(1-etaa) 410

c Form Factor

P = cylindform(Q,R,L)

c Structure Factor

Sshs = SHSStr(Q,eta,a,tau)
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xsec = 6.d8*const*eta*Na**2.*

* (L/21.74)**2.*(3.635d-3-Vhc*rsol)**2.*

* P*Sshs/a**3./pi+arb/(1.+thy**2.*Q**2.)+bgd

return

endif 420

C

c

if(xsectype.eq. 'm3cyshs') then

c Define the parameters

c 1. Aggregation Number

Na = prm(1)

c 2. volume fraction in sticky spheres model

eta = prm(2)

c 3 Adjustment to the absolute scale

const = prm(3) 430

c 4. Incoherent Scattering Background (1/cm)

bgd = prm(4)

c 5. stickness

tau = prm(5)

c 6. Length of the hydrocarbon chain in copolymer (A)

L = prm(6)

c 7. Length of the perfluorocarbon chain in copolymer (A)

F = prm(7)

c 8. Volume of fluorocarbon chain in copolymer (A^3)

Vfc = prm(8) 440

c 9. Volume of hydrocarbon chain in copolymer (A^3)

Vhc = prm(9)

c 10. Copolymer volume fraction

fcop = prm(1O)

c 11. Perflrorooctane volume fraction

fpfo = prm(11)

c 12. iso-octane volume fraction

foct = prm(12)

c 13. Scattering length density of fluorocarbon (A^-2)

rfc = prm(13) 450

c 14. Scattering length density of hydrocarbon (A^-2)
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rhc = prm(14)

c 15. Cylinder Cross Section Radius for Form Factor Calculation

R = prm(15)

c 16. sticky sphere diameter

a = prm(16)

c 17. correlation length in Lorentzian

thy = prm(17)

c 18. constant for Lorentzian

arb = prm(18) 460

c 19. solvent scattering length density correction factor

alpha = prm(19)

c

c

c first approximation 5/27/94

np = 6.dO*eta/pi/a**3.dO

Vp = pi*R**2.dO*(L+2.dO*F)

phim = np*Vp

rsol = alpha*(rhc*((Vhc/(Vfc+Vhc))*(fcop-phim)+foct)+

+ rfc*((Vfc/(Vfc+Vhc))*(fcop-phim) +fpfo))/(1-phim) 470

c Form Factor

P = cylind3form(Q,R,L,F,rfc,rhc,rsol)

c Structure Factor

Sshs = SHSStr(Q,eta,a,tau)

c

xsec = 6.d8*const*eta*

* (pi*R**2.d0*(L+2.dO*F))**2.d0*

* P*Sshs/a**3./pi+arb/(1.+thy**2.*Q**2.)+bgd

return

endif 480

c

c

if(xsectype.eq.' complex') then

c Define the parameters

c 1. volume fraction of crystal

phii = prm(1)

c 2. Adjustment to the absolute scale
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const = prm(2)

c 3. Incoherent Scattering Background (1/cm)

bgd = prm(3) 490

c 4. stickness

tau = prm(4)

c 5. Length of the hydrocarbon chain in copolymer (A)

H = prm(5)

c 6. Length of the perfluorocarbon chain in copolymer (A)

F = prm(6)

c 7. Scattering length density of fluorocarbon (A^-2)

rhoF = prm(7)

c 8. Scattering length density of hydrocarbon (A^-2)

rhoH = prm(8) 500

c 9. Cylinder Cross Section Radius for liquid Form Factor Calculation

R = prm(9)

c 10. sticky sphere diameter

a = prm(10)

c 11. Volume fraction of micelles

eta = prm(ll)*a**3.dO/R**2.dO/(2.dO*F+H)/6.d0

c 12. Number of lamellar layers in a crystal

n = prm(12)

c 13. Length of the crystal

L = prm(13) 510

c 14. Width of the crystal

W = prm(14)

c 15. Steps size for the integration in crystal part

step = prm(15)

c 16. Crystal part on/off switch (0. is off)

arb = prm(16)

c 17. Volume ratio of PFO to i-OCT

rv = prm(17)

c 18. Total volume fraction of COP in the sample

phio = prm(18) 520

c 19. Copolymer angle

ang = prm(19)

c
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C

c date 11/4/95

c

c Liquid Form Factor

if(rv.eq.0.81d0) then

rhoS = 1.028d-5

elseif(rv.eq.2.9d0) then 530

tt = 2.d0*F+H

rhoS = ((phio-phii-prm(11))

+ *1.028d-5+(1.d0-phio)*1.238d-5)

+ /(1.dO-phii-prmn(11))

else

print *, 'Wrong Volume Ratio'

return

endif

liqP = cylind3form(Q,R,H,F,rhioF,rhoH,rhoS)

c Liquid Structure Factor 540

liqSshs = SHSStr(Q,eta,a,tau)

c

liq = 6.d8*(1.d0-phii)*eta*

* (pi*R**2.d0*(H+2.dO*F))**2.d0*

* liqP*liqSshs/a**3./pi

c Crystal part

H = H*ang

F = F*ang

ssm = O.dO

if(arb.eq.0.d0) go to 407 550

if(rv.eq.0.81d0) then

rhoS = 1.028d-5

elseif(rv.eq.2.9d0) then

rhoS = ((phio-phii)* 1.028d-5+(.d0-phio)*1.238d-5)

+ /(1.dO-phii)

else

print *, 'Wrong Volume Ratio'

return

endif
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mstep = 1.d0/step 560

pstep = pi/2.d0/step

ssmo = 0.d0

sspo = fhcfun(0.d0,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

do 405 kk = 1,step

phi = dfloat(kk)*pstep

sspn = fhcfun(0.d0,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmo = ssmo+pstep*(sspo+sspn)/2.d0

sspo = sspn

405 continue

do 205 j = 1,step 570

mu = dfloat(j)*mstep

sspo = fhcfun(mu,0.dO,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmn = 0.d0

do 305 kk = 1,step

phi = dfloat(kk)*pstep

sspn = fhcfun(mu,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmn = ssmn+pstep*(sspo+sspn)/2.d0

sspo = sspn

305 continue

ssm = ssm+mstep*(ssmno+ssmn)/2.d0 5so0

ssmo = ssmn

205 continue

c

407 xsec = const*(2.d8*ssm*phii*W*L*n*(2.dO*F+H)/pi+liq)+bgd

c

return

endif

c

c

if(xsectype.eq. 'rect3cy') then 590

c Define the parameters

c 1. volume fraction in sticky spheres model

eta = prm(1)

c 2. Adjustment to the absolute scale

const = prm(2)
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c 3. Incoherent Scattering Background (1/cm)

bgd = prm(3)

c 4. stickness

tau = prm(4)

c 5. Length of the hydrocarbon chain in copolymer (A) 600

H = prm(5)

c 6. Length of the perfluorocarbon chain in copolymer (A)

F = prm(6)

c 7. Scattering length density of the solvent

rhoS = prm(7)

c 8. Scattering length density of fluorocarbon (A^-2)

rhoF = prm(8)

c 9. Scattering length density of hydrocarbon (A ^ -2)

rhoH = prm(9)

c 10. Cylinder Cross Section Radius for Form Factor Calculation 610

R = prm(10)

c 11. sticky sphere diameter

a = prm(11)

c 12. half with of the rectangular distribution

W = prm(12)

c

c

c date 11/4/95

if(W.gt.a) W = a

c Form Factor 620

P = cylind3form(Q,R,H,F,rhoF,rhoH,rhoS)

c Structure Factor

Sshs = RectStr(Q,eta,a,W)

c

xsec = 6.d8*const*eta*

* (pi*R**2.d0*(L+2.d0*F))**2.d0*

* P*Sslhs/a**3./pi+bgd

return

endif

C 
630
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if(xsectype.eq. 'lorentzian') then

const = prrm(1)

thy = prn(2)

bgd = prm(3)

c

xsec = const/(1.+Q**2*thy**2)+bgd

c

return

endif

C

c

if(xsectype.eq.' teubnerstrey') then

d = prm(1)

thy = prm(2)

dsld = prm(3)

bgd = prm(4)

c

AA = (1./thy**2.+(2.*pi/d)**2.)**2.

BB = 2.*(1./thy**2.-(2.*pi/d)**2.) 
650

C

xsec = 8 .*pi*dsld/(AA+BB*Q**2.+Q**4.)/thy+bgd

c
return

endif

c

c

if(xsectype.eq.' teubadd') then

d = prm(1)

thyl = prm(2) 
660

thy2 = prni(3)

const = prm(4)

arb = prm(5)

bgd = prm(6)

c
AA = (1./thyl**2.+(2.*pi/d)**2.)**2.

BB = 2 .*(1./thyl**2.-(2.*pi/d)**2.)
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xsec = const/(AA+BB*Q**2.+Q**4.)

+ +colnst*arb/(1 +Q**2.*thy2**2.)**2.+bgd 670

C

return

endif

c

c

if(xsectype.eq.' gaulorl') then

center = prm(1)

deviat = prm(2)

const = prm(3)

thy = prm(4) 680

arb = prm(5)

bgd = prm(6)

c

xsec = const*exp(- (Q-center)**2./deviat**2./2.)

+ +arb/(1.+thy**2.*Q**2.)+bgd

c

return

endif

c

C 
690

if(xsectype.eq.' fhcryst') then

eta = prm(1)

n = prm(2)

F = prm(3)

H = prm(4)

L = prm(5)

W = prrn(6)

rhoF = prm(7)

rhoH = prm(8)

rhoS = prm(9) 700

const = prmn(10)

bgd = prm(11)

step = prmI(1 2 )
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C R = prm(13)

pp(1) = -5.4325d4

pp(2) = 5.6746d4

pp(3) = -2.1513d4

pp(4) = 3.4672d3

pp(5) = -2.1285d2

pp(6) = 5.5331d0 710

pp(7) = 3.8840d-1

mstep = 1.d0/step

pstep = pi/2.d0/step

ssmo = 0.d0

sspo = fhcfun(0.d0,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

do 400 kk = 1,step

phi = dfloat(kk)*pstep

sspn = fhcfun(0.d0,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmo = ssmo+pstep*(sspo+sspn)/2.d0

sspo = sspn 720

400 continue

ssm = 0.dO

do 200 j = 1,step

mu = dfloat(j)*mstep

sspo = fhcfun(mu,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmn = 0.dO

do 300 kk = 1,step

phi = dfloat(kk)*pstep

sspn = fhcfun(mu,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)

ssmn = ssmn+pstep*(sspo+sspn)/2.d0 730

sspo = sspn

300 continue

ssrn = ssm+mstep*(ssmo+ssmn)/2.d0

SSIO10 = SSnn1

200 continue

liq = pp(1)*Q**6.dO+pp(2)*Q**5.d0+pp(3)*Q**4.d0

+ +pp(4)*Q**3.d0+pp(5)*Q**2.dO+pp(6)*Q+pp(7)

c

c S = 1.d0-(3*(dsin(Q*R)-Q*R*dcos(Q*R))/(Q*R)**3.d0)
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C

c xsec = 2.d8*S*ssm*eta*W*L*n*(2.dO*F+H)/pi+const*liq+bgd

xsec = const*(2.d8*ssm*eta*W*L*n*(2.dO*F+H)/pi

+ +(1.dO-eta)*liq)+bgd

c
return

endif

c

c

if(xsectype.eq.'fhcylin') then

eta = prm(1) 750

n = prm(2)

F = prm(3)

H = prm(4)

L = prm(5)

rhoF = prm(6)

rhoH = prm(7)

rhoS = prm(8)

const = prm(9)

bgd = prm(10)

step = prm(11) 760

R = n*(2.d0*F+H)+F+H

pp(l) = -5.4325d4

pp(2) = 5.6746d4

pp(3) = -2.1513d4

pp(4) = 3.4672d3

pp(5) = -2.1285d2

pp(6) = 5.5331d0

pp(7) = 3.8840d-1

mstep = 1.d0/step

ssmo = fllcylfun(O.dO,L,F,H,n,rhoF,r,rhoHrhoS,Q) 770

ssm = O.dO

do 209 j = 1,step

mu = dfloat(j)*mstep

ssmn = fhcylfun(mu,.L,F,H,n,rhoF,rhoH,rhoS,Q)

ssm = ssm+mstep)*(ssimo+ssinl)/2.d0
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ssnmo = ssmn

209 continue

liq = pp(1)*Q**6.dO+pp(2)*Q**5.dO+pp(3)*Q**4.dO

+ +pp(4)*Q**3.dO+pp(5)*Q**2.dO+pp(6)*Q+pp(7)

C 780

xsec = const*(1.d8*ssm*eta*R**2.dO*L*pi

+ +(1.dO-eta)*liq)+bgd

c

return

endif

c

print *,'Wrong Xsec Type!'

xsec = 1.d30

return

end 790

real*8 function fhcylfun(mu,L,F,H,n,rhoF,rhoH,rhoS,Q)

implicit none

real*8 mu,L,F,H,rhoF,rhoH,rhoS,Q,t,Qz,Qj ltt,Qjlt,Qj2tt

real*8 R,F1,F2,QR,QRt,pi,Qj2t,bessj 1

integer n,

pi = 3.141592653

t = 2.dO*F+H

R = n*t+F+H 800

F1 = 0.dO

if(mu.eq.0.d0) then

Qj2tt = Q*H

Qj2t = 2.dO*bessjl(Qj2tt)/Qj2tt

F2 = (H/R)**2.d0*Qj2t

Qz = 1.dO

QRt = Q*R

QR = 2.dO*bessjl(QRt)/QRt

if(n.gt.0) then

do 10 j=l,n 810

Qjltt = Q*dfloat(j)*t
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Qj t = (dfoat(j)*t/R)**2.d0*2.d0*bessjl(Qjltt)/Qjltt

Qj2tt = Q*(dfloat(j)*t+H)

Qj2t = ((dfloat(j)*t+H)/R)**2.d0*2.d0*bessjl(Qj2tt)/Qj2tt

F1 = Fl+(Qjlt-Qj2t)

10 continue

endif

elseif(mu.eq. 1.dO) then

F2 = (H/R)**2.d0

Qz = sin(Q*L/2.dO)/(Q*L/2.d0) 820

QR = 1.dO
if(n.gt.0) then

do 20 j=l,n

Qjlt = (dfloat(j)*t/R)**2.d0

Qj2t = ((dfloat(j)*t+H)/R)**2.d0

F1 = Fl+(Qjlt-Qj2t)

20 continue

endif

else

Qj2tt = Q*H*dsqrt(1.d0-imiu**2.d0) 830

Qj2t = 2.dO*bessjl(Qj2tt)/Qj2tt

F2 = (H/R)**2.d0*Qj2t

Qz = dsin(Q*mu*L/2.dO)/(Q*mu*L/2.dO0)

QRt = Q*R*dsqrt(l.d0-mui**2.d0)

QR = 2.d0*bessjl(QRt)l/QRt

if(n.gt.0) then

do 30 j=l,n

Qjltt = Q*t*dfloat(j)*dsqrt(1.d(10-mu**2.d0)

Qjlt = (dfloat(j)*t/R)**2.d10*2.d0*bessjl(Qjltt)/Qjltt

Qj2tt = Q*(t*dfloat(j)+H)*dsqrt(1.d0-mu**2.d0) 840

Qj2t = ((dfloat(j)*t+H)/R)**2.d0*2.d0*bessjl(Qj2tt)/Qj2tt

F1 = Fl+(Qjlt-Qj2t)

30 continue

endif

endif

fhcylfun = (Qz*((rhoF-rhoH)*(F1- F2)+(rhoF-rhoS)*QR))**2.d0

return
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end

C

c 850

real*8 function fhcfun(mu,phi,L,W,F,H,n ,rhoF,rhoH,rhoS,Q)

implicit none

real*8 mu,phi,L,W,F,H,rhoF,rhoH,rhoS,Q,t,QzF2,QzF,QzH,Qx,Qy

real*8 F1,F2,F3,F4,F6,F7,Qxx,Qyy,pi

integer m,n,j

pi = 3.141592653

t = 2.dO*F+H

m = n/2

F6 = 0.dO

F7 = 0.d0 860

do 10 j=l,m

F6=F6+dcos(Q*mu*dfloat(n -2*j)*t/2.d0)

F7=F7+dcos(Q*mu*dfloat(n+ 1 -2*j)*t/2.d0)

10 continue

if(mu.eq.0.d0) then

QzF2 = 1.d0

QzF = 1.dO

QzH = 1.dO

else

QzF2 = dsin(Q*mu*F/2.dO)/(Q*mu*F/2.dO) 870

QzF = dsin(Q*mu*F)/(Q*nmu*F)

QzH = dsin(Q*mu*H/2.dO)/(Q*Inu*H/2.dO)

endif

if(mu.eq.l.d0) then

Qxx = 1.dO

Qyy = 1.dO

elseif(phi.eq.0.d0) then

Qx = Q*dsqrt(1.dO-mu**2.d0)*L/2.dO

Qxx = dsin(Qx)/Qx
Qyy = 1.dO 880

elseif(phi.eq.(pi/2.dO)) then

Qxx = 1.dO

Qy = Q*dsqrt(1.d0-mu**2.d0)*W\'/2.d0
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Qyy = dsin(Qy)/Qy

else

Qx = Q*dsqrt(1.dO-mu**2.dO)*dcos(phi)*L/2.dO

Qxx = dsin(Qx)/Qx
Qy = Q*dsqrt(1 .d0-mu**2.d0) *dsin(phi)*W/2.d0

Qyy = dsin(Qy)/Qy

endif s90

F1 = Qxx*Qyy/dfloat(n)/t

F2 = 2.dO*F*(rhoF-rhoS)*QzF2*dcos(Q*mu*(dfloat(n)*t-F)/2.d0)

F3 = 4.dO*F*(rhoF-rhoS)*QzF*(F6+dfloat(n-1)/2.d0-dfloat(m))

F4 = 2.d0*H*(rhoH-rhoS)*QzH*(dfloat(n)/2.dO-dfloat(m)+F7)

fhcfun = (Fl*(F2+F3+F4))**2.dO

return

end

c

c

real*8 function SHSStr(Q, eta, a, tau) 900

c

c This function is to calculate the structure factor of sticky hard spheres

c

c

implicit none

real*8 Q,eta,a,tau,K,gainma,epsilon,lambda,mu,alpha,beta

real*8 cl,c2,c3,c4,c5,c

c

K = Q*a

ganmma = eta*(1 .+eta/2.)/(1.-eta)**2./3. 91o

epsilon = tau+eta/(1.-eta)

if((epsilon**2. -gamma).lt.0.) then

SHSStr = 1.d30

c print *,'Negative Root!'

return

endif

lambda = 6.*(epsilon-dsqrt(epsilon* *2.-gamma))/eta

mu = laimbda*eta*(1.-eta)

alpha = (1.+2.*eta-mu)**2./(1.-eta)**4.
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beta = -(3. *eta*(2.+eta)**2.-2.*mu*(1.+7.*eta+eta**2.)+ 920

+ mu**2.*(2.+eta))/(1.-eta)**4./2.

cl = alpha*K**3.*(dsin(K)-K*dcos(K))

c2 = beta*K**2.*(2.*K*dsin(K)-(K**2.-2.)*dcos(K)-2.)

c3 = eta*alpha*((4.*K**3-24.*K)*dsin(K)-

+ (K**4.-12.*K**2.+24.)*dcos(K)+24.)/2.

c4 = -2.*eta**2.*lambda**2.*(1.-dcos(K))/K**2

c5 = 2.*eta*lambda*sin(K)/K

c = -24.*eta*(cl+c2+c3)/K**6.+c4+c5

SHSStr = 1./(1.-c)

C 930

return

end

c

c

real*8 function HSStr(Q, eta, a)

c

c This function is to calculate the structure factor of hard spheres

c

c

implicit none 940

real*8 Q,eta,a,K,gamma,alpha,beta,pi,np

real*8 cl,c2,c3,c

c

pi = 3.141592653

c

K = Q*a

np = 6.d0*eta/pi/a**3.d0

alpha = (1.d0+2.d0*eta)**2.d0/(1 .d0-eta)**4.d0

beta = -6.d0*eta* (1.d0+eta/2.d0)**2.dO/(1.dO-eta)**4.dO

gamma = eta*alpha/2.d0 950

cl = alpha*K**3.d0*(dsin(K)-K*dcos(K))

c2 = beta*K**2.d0*(2.d0*K*dsin(K)-(K**2.d0-2.d0)*dcos(K)-2,d0)

c3 = gamma*((4.d0*K**3.d0-24.dO*K)*dsin(K)-

- (K**4.d0-12.d0*K**2.d0+24.d0)*dcos(K)+24.d0)

c = -4*pi*a**3.d0*(cl+c2+c3)/I(**6.d0
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HSStr = l.d0/(1.d0-np*c)

c

return

end 960

c

c

real*8 function RectStr(Q, eta, a, W)

c

c This function is to calculate the structure factor of a rectangularly

c distributed polydispersed hard-sphere system

c

implicit none

real*8 Q,eta,a,beta

real*8 cl,c2,c3,c4,c5,c,W,HSStr,S,QW,QR 970

C

S = HSStr(Q,eta,a)

c

QW = Q*W

QR = Q*a/2.d0

c

cl = -QW/2.d0+QW*QR**2.d0+QW**3.d0/3.dO-

- 5.dO*dcos(2.dO*QR)*dsin (QW)*dcos(QW)/2.d0

c2 = (QR**2.d0+QW**2.dO)*dcos(2.dO*QR)*dsin(2.dO*QW)/2.dO

c3 = QR*QW*dsin(2.dO*QR)*dcos(2.dO*QW)+ 980

+ 3.dO*QW*(dcos(QR)*dcos(QW))**2.dO

c4 = 3.dO*QW*(dsin(QR)*dsin(QW))**2.d0-

- 6.dO*QR*dcos(QR)*dsin(QR)*dcos(QW)*dsin(QW)

c5 = cl+c2+c3+c4

c = 2.d0*dsin(QR)*dsin(QW)-QR*dcos(QR)*dsin(QW)-

- QW*dsin(QR)*dcos(QW)

beta = 2.d0*c**2.dO/c5/QW

c

RectStr = i.dO+beta*(S-1.dO) 990

c
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return

end

c

c

real*8 function cylindform(Q, R, L)

C

c This function is to calculate the form factor of cylinder

c

c 1000

implicit none

real*8 Q,R,L,QR,QL,CFfunction,P1,P2,PP,QQ,RR,LL,bessj1

common/CFF/QQ,RR,LL

QQ = Q

RR = R

LL = L

QR = Q*R

QL = Q*L/2

P1 = ((2.*bessjl(QR)/QR)**2.+

+ CFfunction(1.d-4))*0.0001d0/2. 1010

P2 = (CFfunction(0.9999d0)+(dsin(QL)/QL)**2.)*0.0001d0/2.

call qromb(0.0001d0,0.9999d0,PP)

cylindform = PI+PP+P2

return

end

c

c

real*8 function cylind3forrn(Q, R, L, t,rhoo,rhoi,rhos)

c

c This function is to calculate the forin factor of a 3-layer cylinder 1020

c

c

implicit none

real*8 Q,R,L,QR,QL,CF3function,P 1 ,P2,PP,QQ,RR,LL,bessjl

real*8 t,tt,rhoo,rhooo,rhoi,rhoii,rhos,rhoss,QLt,PP1,PP2

common/CFF3/QQ,RR,LL,tt,rhooo,rhoii,rhoss

QQ = Q
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RR= R

LL = L

tt = t 1030

rhooo = rhoo

rhoii = rhoi

rhoss = rhos

QR = Q*R

QLt = Q*(L+2.d0*t)/2

QL = Q*L/2

PP1 = ((rhoo-rhos) -L*(rhoo-rhoi)/(L+2.dO*t))*

* 2*bessjl(QR)/QR

P1 = (PP1**2.dO+CF3function(1.d-4))*l.d-4/2.d0

PP2 = (rhoo-rhos)*dsin(QLt)/QLt- 1040

- (L/(L+2.dO*t))*(rhoo-rhoi)*dsin(QL)/QL--

P2 = (CF3function(0.9999d0) +PP2**2.d0)*0.000ldO/2.dO

call qromb3(0.0001d0,0.9999d0,PP)

cylind3form = P1+PP+P2

return

end

c

c

real*8 FUNCTION bessjl(x)

REAL*8 x 1050

REAL*8 ax,xx,z

DOUBLE PRECISION pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6,
*sl,s2,s3,s4,s5,s6,y

SAVE pl,p2,p3,p4,p5,ql ,q2,q3,q4,q5,rl ,r2,r3,r4,r5,r6,sl ,s2,s3,s4,
*s5,s6

DATA r 1,r2,r3,r4,r5,r6/72362614232.d0, - 7895059235.d0,

*242396853.1dO,-2972611.439d0,15704.48260d0,-30.16036606d0/,sl,s2,

*s3,s4,s5,s6/144725228442.d0,2300535178.d0,18583304.74d0,

*99447.43394d0,376.9991397d0, 1.d0/

DATA pl,p2,p3,p4,p5/1.d0,.183105d-2,-.3516396496d-4, 1060

*.2457520174d-5,-.240337019d-6/, ql,q2.q3,q4,q5/.04687499995d0,

*-.2002690873d-3,.8449199096d -5,- .88228987d-6,.105787412d-6/

if(abs(x).It.8.)then
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y=x**2

bessj 1 =x* (rl +y* (r2+y* (r3+y* (r4+y* (r5+y*r6)))))/(sl+y*(s2+y* (s3+

*y*(s4+y*(s5+y*s6)))))

else

ax=abs(x)

z=8./ax

y=z**2 1070

xx=ax-2.356194491

bessj 1=dsqrt(.636619772/ax) *(cos(xx)*(pl +y*(p 2 +y*(p 3 +y*(p4+y*

*p5)))) -z*sin(xx)*(ql+y*(q2+y*(q3+y*(q4+y*q5)))))

endif

return

END

c

c

SUBROUTINE qromb(a,b,ss)

INTEGER JMAX,JMAXP,K,KM 1080

REAL*8 a,b,ss,EPS

PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

CU USES polint,trapzd

INTEGER j

REAL*8 dss,h(JMAXP),s(JMAXP)

h(1)=1.

do 11 j=1,JMAX

call trapzd(a,b,s(j)j)

if (j.ge.K) then

call polint(h(j-KM),s(j-KM),K,O.,ss,dss) 1090

if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)
h(j+1)=0.25*h(j)

11 continue

pause 'too many steps in qromb'

END

c

c

190



SUBROUTINE qromb3(a,b,ss) 1100

INTEGER JMAX,JMAXP,K,KM

REAL*8 a,b,ss,EPS

PARAMETER (EPS=l.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

CU USES polint,trapzd

INTEGER j

REAL*8 dss,h(JMAXP),s(JMAXP)

h(1)=1.

do 11 j=I,JMAX

call trapzd3(a,b,s(j),j)

if (j.ge.K) then 1110

call polint(h(j-KM),s(j-KM),K,O.,ss,dss)

if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+ 1)=s(j)

h(j+l)=0.25*h(j)

11 continue

pause 'too many steps in qromb'

END

c

C 1120

SUBROUTINE trapzd(a,b,s,n)

INTEGER n

REAL*8 a,b,s,CFfunction

external CFfunction

INTEGER it,j

REAL*8 del,sum,tnm,x

if (n.eq.1) then

s=0.5*(b-a)* (CFfunction(a)+CFfunction(b))

else

it=2* * (n- 2) 1130

tnm=it

del=(b-a)/tnm

x=a+0.5*del

suln=0.

do 11 j=l,it
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sum=sunm+ CFfunction(x)

x=x+del

11 continue

s=0.5* (s+ (b-a) *suIn/tnmn)

endif 1140

return

END

c

c

SUBROUTINE trapzd3(a,b,s,n)

INTEGER n

REAL*8 a,b,s,CF3function

external CF3function

INTEGER it,j

REAL*8 del,sum,tnm,x 115o

if (n.eq.1) then

s=0.5* (b-a)*(CF3function(a)+CF3function(b))

else

it=2**(n-2)

tnm=it

del=(b-a)/tnm

x=a+0.5*del

sum=0.

do 11 j=l,it

sum=sum+CF3function(x) 1160

x=x+del

11 continue

s=0.5*(s+(b-a)*sum/tnm)

endif

return

END

c

c

SUBROUTINE polint(xa,ya,n,x,y,dy)

INTEGER n,NMAX 1170

REAL*8 dy,x,y,xa(n),ya(n)
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PARAMETER (NMAX=10)

INTEGER i,m,ns

REAL*8 denI,dif,dift,ho,hp,w,c(NMIAX),d(NMAX)

dif=abs(x-xa(1))

do 11 i=l,n

dift=abs(x-xa(i))

if (dift.lt.dif) then

nS=i 1180

dif=dift

endif

c(i)=ya(i)

d(i)=ya(i)

11 continue

y=ya(ns)

S=IIS- 1

do 13 m=1,n-1

do 12 i=1,n-m

ho=xa(i)-x 1190

hp=xa(i+m)-x

w=c(i+l)-d(i)

den=ho-hp

if(den.eq.0.)pause 'failure in polint'

den=w/den

d(i)=hp*den

c(i) =ho*den

12 continue

if (2*ns.lt.n-mn)then

dy=c(ns+ 1) 1200

else

dy=d(us)

Is=IIS- 1

endif

y=y+dy

13 continue

return
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END

c

c 1210

real*8 function CFfunction(mu)

implicit none

real*8 mnu,Q,R,L,QRmnu,QLmiu,bessjl

common/CFF/Q,R,L

c print*, Q,R,L

QRmu = Q*R*dsqrt(1.-mu**2.)

QLmu = Q*mu*L/2.

CFfunction = (dsin(QLmu)/QLmu)**2.*

* (2.*bessjl(QRmu)/QRmu)**2.

return 1220

end

c

c

real*8 function CF3function(mu)

implicit none

real*8 mu,Q,R,L,QRmu,QLmu,bessj 1,QLtmu,F1,F2

real*8 t, rhoo,rhoi,rhos

common/CFF3/Q,R,L,t,rhoo,rhoi,rhos

QRmu = Q*R*dsqrt(l.d0-nmu**2.d0)

QLtinu = Q*mu*(L+2.d0*t)/2.dO 1230

QLmu = Q*mu*L/2.d0

F1 = (rhoo-rhos)*dsin(QLtmu)/QLtmu

F2 = (L/(L+2.dO*t))*(rhoo-rhoi)*dsin(QLmu)/QLmu

CF3function = (F1+F2)**2.d0*

* (2.d0*bessj1(QRmu)/QRnmu)**2.d0

return

end

c

c

real*8 function func(prnm, Q, j, xsectype, ii) 12,10

C

c This function is to convolute the calculated scattering intensity

c with given resolution function or not to
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C

c

implicit none

character*20 xsectype

integer i,j,resyn,nfold, ii

real*8 prm(200), sum, reso, Q, QBE, xsec

real*8 r1,r2,rll,rl2,rlam,dlam,rdet, sig, QSTEP 1250

real*8 Qres

common/resofl/reso(3,200,200),rl ,r2,rl 1 ,rl2,rlarn,dlam,rdet,resyn

common/resof2/sig(3,200),nfold

c

c

if(resyn.eq.0) go to 1

QBE=Q-3.*SIG(ii,J)

IF(QBE .LE. 0.0) QBE=1.d-10

QSTEP=6.*SIG(ii,J)/FLOAT(NFOLD)

SUM=0.0 1260

DO 20 I=1,NFOLD

Qres=QBE+(I-0.5)*QSTEP

SUM=SUM+(XSEC(Qres,prm,xsectype) *RESO(ii,J,I))

20 continue

GOTO 2

1 sum = xsec(Q, prm, xsectype)

2 func = sum

return

end

C 1270

C

C

C

C

c This subroutine is trying to use anneal method to get the optimal fit

c of some functional data to experimental data

c

subroutine anneal(edat,ftemp,pnumber,step,oldchi,state,xsectype)

c
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c declare parameters used in the subroutine

C

implicit none

external func, ran3

character*20 state,xsectype

integer i, ii, accept, reject, estart(3), enumber, pnumber

integer j, iloop, idum, imax, imequ, equ, iprint, sets

integer etotal

real*8 edat(3,4,200), prm, fdat(200),temp, step, oldchi, ran3

real*8 chisqu, edge, func, chiave, outchi, IQ

real*8 limit, sumchi, delchi, sumchi2, chidvi 1290

real*8 bound,thy,thyplum,dbound,p,ftemp

real*8 ave, fave, outsum, avesum(200), favesum(200),chimin

common/general/estart, enumber(3), prm(200), bound(2,200), imax

common/QQQ/ave(200), fave(200), imequ, iprint, sets

cccccc

c

c assign initial values

c

print *,state

do 10 i=1, 200 1300

fdat(i) = 0.

avesum(i) = 0.

favesum(i) = 0.

ave(i) = O.dO

fave(i) = O.dO

10 continue

c

c First chisqu

etotal = 0

do 260 ii=l,sets 1310

etotal = etotal+enumber(ii)

260 continue

oldchi = O.dO

chimin = 1.dlO

do 250 ii=l,sets
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do 231 i=l, enumber(ii)

fdat(i) = func(prm, edat(ii,l,i), i, xsectype, ii)

oldchi = oldchi+

+ ((fdat(i) - edat(ii,2,i))/edat(ii,3,i))**2.

231 continue 1320

250 continue

oldchi = oldchi/float(etotal)

limit = 1.e-6

iloop = 0

edge = 0.

accept = 0

reject = 0

idum = -100

chiave = 1.e30

outchi = 1.e30 1330

sumchi = 0.

sumchi2 = 0.

equ = 0

outsum = 0.

if(state.eq.' continue') then

open(unit=8,file= ' tmpprm. f it ',status= 'unknown')

rewind(unit=8)

read(8,*) iloop

read(8,*) oldchi

read(8,*) outsum 1340

read(8,*) sumchi

read(8,*) sumchi2

read(8,*) accept

read(8,*) reject

read(8,*) temp

read(8,*) step

read(8,*) equ

read(8,*) iprint

read(8,*) pnumber

read(8,*) sets 1350

read(8,*) prm(pnumber+1)
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do 12 i=1, pnumber

read(8,*) prm(i), avesum(i),

+ favesum(i)

12 continue

close(unit=8)

endif

open(unit=7, file=' intave. fit' ,status= 'unknown')

rewind(unit=7)

open(unit=9, file=' intprm. f it' ,status=' unknown') 1360

rewind(unit=9)

open(unit=11, file=' intprmav. fit' ,status= 'unknown')

rewind(unit=11)

open(unit= 13, file=' intprmf a. f it ',status=' unknown')

rewind(unit=13)

cccccc

c

c outer loop of all parameters

c

1000 iloop = iloop+1 1370

temp = oldchi*ftemp

c

c inner loop of individual parameter

c

do 100 j=1, pnumber

c

c update prm(j)

c

p = prm(j)

if(xsectype.eq.' complex' .and.j.eq. 11) then 1380

bound(2j) = bound(2,1)-prmn(1)

endif

dbound = bound(2j)-bound(1j)

if(dbound.eq.0.) go to 100

thy = ran3(idum)

thyplum = 2.*thy-1.

prm(j) = prm(j) + thyplum*step*prm(j)
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if(prin(j).It.bound(1,j)) then

prmrn(j) = prmn(j)+

* dbound*float(int((bound(1 j) -prm(j))/dbound)+1) 1390

endif

if(prm(j).gt.bound(2,j)) then

prm(j) = prm(j)-

* dbound*float(int((prrn(j) -bound(2 j))/dbound)+1)

endif

c

cccccc

c

c calculate chisquare of the current parameter set

C 1400

chisqu = 0.

do 270 ii=1,sets

do 20 i=1, enumber(ii)

fdat(i) = func(prm, edat(ii,l,i), i, xsectype, ii)

chisqu = chisqu+

+ ((fdat(i)-edat(ii,2,i))/edat(ii,3,i))**2.

20 continue

270 continue

chisqu = chisqu/float(etotal)

C 1410

c accept the current parameter set or not by comparing the chisquare

c to the previous one, accept when smaller then the previous one, but

c also accept if exp(-chisq/temp) < random number(between 0 and 1)

c

edge = ran3(idum)

delchi = chisqu-oldchi

c

c

if(delchi.le.0.) then

accept = accept+1 1420

oldchi = chisqu

else

if(exp(-delchi/temp).gt.edge) then
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accept = accept+1

oldchi = chisqu

else

reject = reject+l1

prm(j) = p

endif

endif 1430

avesum(j) = avesum(j)+prm(j)

favesurn(j) = favesum(j)+prm(j)

outsum = outsum+oldchi

sumchi = sumchi+oldchi

sumchi2 = sumchi2+oldchi**2.

100 continue

cccccC

C

c

if(((float(iloop)/float(iprint)) 1440

+ -int(float(iloop)/float(iprint))) .eq.0.) then

if(oldchi.le.chimin) then

chimin = oldchi

do 200 i= 1,pnumber

ave(i) = avesum(i)/float(iprint)

fave(i) = favesurn(i)/float(iloop)

200 continue

outchi = outsum/float(iloop*pnumber)

chiave = sumchi/float(iprint*pnumber)

chidvi = sumchi2/float(iprint*pnumnber) -chiave**2. 1450

c

2000 open(unit=8,file= ' tmpprm. fit',status=' old')

rewind(unit=8)

write(8,*) iloop

write(8,1023) oldchi

write(8,1023) outsuin

write(8,1023) sumchi

write(8,1023) sumchi2

write(8,*) accept

200
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write(8,*) reject 1460

write(8,1023) temp

write(8,1023) step

write(8,*) equ

write(8,*) iprint

write(8,*) pnumber

write(8,*) sets

write(8,1023) prin(pnumber+1)

write(8,*) ' '

do 21 i=1,pnumber

write(8,1023) prm(i), 1470

+ avesum(i),favesuin(i)

21 continue

1023 format(3e15.4)

write(8,*) 'I

do 280 ii=l,sets

do 22 i=l,enumber(ii)

IQ = func(prm, edat(ii,l,i), i, xsectype, ii)

write(8,1023) edat(ii,l,i),IQ

22 continue

280 continue 1480

close(unit=8)

endif

sumchi = O.dO

sumchi2 = O.dO

do 30 i=l1,pnumber

avesumn(i) = O.dO

30 continue

write(7,1024) iloop, chiave,chidvi,outchi

write(9,1025) (prm(i),i= 1,7)

write(11,1025) (ave(i),i= 1,pnunlber) 1490

write(13,1025) (fave(i),i= 1,pnumber)

102-1 formnat(I11,3ell .3)

1025 form at(7ell.3)

endif

c
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c check convergence or equilibration

c

if(equ.ge.1) then

if(iloop.ge.(10.*iprint).and.

+ abs(outchi-chiave)/outchi.le.limit) then 1500

print *,'Out by Deviation'

go to 9999

endif

if(oldchi.le.0.5) then

print *,'Out by Chi Square'

go to 9999

endif

if(iloop.eq.imax) then

print *,'Out by Steps'

go to 9999 1510

endif

else

if(iloop.eq.imequ) then

iloop = 0

equ = 1

accept = 0

reject = 0

sumchi = O.dO

sumchi2 = O.dO

outsum = O.dO 1520

do 25 i=l,pnumber

avesum(i) = O.dO

favesum(i) = O.dO

25 continue

close(unit=7)

close(unit=9)

close(unit= 11)

close(unit=13)

open(unit= 7,file= ' intave. f it ' ,status= 'unknown' )

rewind(unit=7) 1530

open(unit=9, file=' intprm. fit ',status= 'unknown')
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rewind(unit=9)

open(unit= 11, file= ' intprmav. f it ',status= 'unknown')

rewind(unit=11)

open(unit=13, file= ' intprmf a.f it ' ,status= 'unknown' )

rewind(unit= 13)

endif

endif

cccccc

C 1540

go to 1000

CCCCC

C

9999 close(unit=7)

close(unit=9)

close(unit=11)

close(unit=13)

return

end

C 1550

C

FUNCTION ran3(idum)

INTEGER idum

INTEGER MBIG,MSEED,MZ

real*8 ran3

REAL FAC

PARAMETER (MBIG= 1000000000,MSEED=161803398,MZ=0,FAC= 1./MBIG)

INTEGER i,iff,ii,inext,inextp,k

INTEGER mj,mk,ma(55)

SAVE iff,inext,inextp,ma 1560

DATA iff /0/

if(idum.lt.0.or.iff.eq.0)then

iff=

mj = MSEED -iabs(idum)

mj=mnod(mmj,IMBIG)

ma(55)=mj

mk=1
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do 11 i=1,54

ii=mod(21*i,55)

ma(ii)=mk 1570

mk=mnj-mk

if(mk.lt.MZ)mk=mk+MBIG

mj=ma(ii)

11 continue

do 13 k=1,4

do 12 i=1,55

ma(i)=ma(i)-ma(1+mod(i+30,55))

if(ma(i).lt.MZ) =ma(i)+ma(i)MBIG

12 continue

13 continue 1580

inext=0

inextp=31

idum=1

endif

inext=inext+1

if(inext.eq.56)inext= 1

inextp=inextp+ 1

if(inextp.eq.56)inextp=1

mj=ma(inext)-ma(inextp)

if(mj.lt.MZ)mj=mj+MBIG 159o

ma(inext)=mj

ran3=mj*FAC

return

END

c

c

real*8 FUNCTION SIGQ(X)

implicit none

integer resyn, nfold

real*8 pi,rl,r2,rll,rl2,rlam,dlam,rdet,wkO,sigdet,x,thet0 1600oo

real*8 aal,a2,bet1,delql,reso,sig

common/resofl/reso(3,200,200),rl ,r2,rl ,rl2,rlam,dlam,rdet,resyn

common/resof2/sig(3,200),nfold
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PI=3.1415927

c

c rl=1.9

c r2=0.545

c r11=1636.

c r12=127.73 1610

c rlarn=6.

c dlam=0.147

c rdet=0.39

c

WKO=2.*PI/RLAM

SIGDET=RDET*WKO/RL2*0.4246609

THET0=dASIN(X/2./WKO)

AA1=R / (RL1+RL2/dCOS(2.*THETO) **2)
A2=R2*dCOS(2.*THETO) **2./RL2

C 1620

IF(A2.le.AA1) then

C

BET1=2.*R1/RL1-0.5*R2*R2*(dCOS(2*THETO))**4.*(RL1

+RL2/dCOS(2.*THETO)**2)**2./RL1/RL2/RL/R

else

C

BET1=2.*R2*(1./RL1+COS(2.*THETO) **2/RL2)

-0.5*R1*R1*RL2/(R2*dCOS(2.*THETO)**2.*

RL1*(RL1+RL2/dCOS(2.*THETO)**2))

C 1630

endif

C

DELQ 1=dSQRT((WKO*dCOS(THETO)*BET1 )**2.+(X*DLAM) **2.)

C

SIGQ=(0.4246609*DELQ1)**2.+SIGDET**2.

RETURN

END

c

c
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real*8 FUNCTION FRES(SIGQ,QCEN,Q)

implicit none

real*8 x,sigq,qcen,q,t,bess,fresx,bessx

X=QCEN*Q/SIGQ

T=X/3.75

IF(ABS(X).le.3.75) then

BESS= 1.+3.5156229*T*T+3.0899424*T**4.+1.2067492*T**6.

! +0.2659732*T**8.+0.0360768*T**10.+0.0045813*T**12.

FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ)*BESS

else

BESSX= (0.39894228+0.01328592/T+0.00225319/T**2. 1650

! -0.00157565/T**3.+0.00916281/T**4.-0.02057706/T**5.

S +0.02635537/T**6.-0.01647633/T**7.+0.00392377/T**8.)

FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN-+Q*Q)/SIGQ+X)*BESSX/dSQRT(X)

endif

FRES=FRESX

RETURN

END

c

C

1660
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