Small-Angle X-ray and Neutron Scattering Studies of 3-component Microemulsion and Micellar Solution of Semifluorinated Copolymers

by
Chwen-Yuan Ku
M.S., National Tsing-Hua University (1987)
B.S., National Tsing-Hua University (1985)

Submitted to the Department of Nuclear Engineering in partial fulfillment of the requirements for the degree of
 OF TECHNOLOGY
at the
APR 221996
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LIBRAmaES

$$
\text { February } 1996
$$

© Massachusetts Institute of Technology 1996, All rights reserved.

Author

Department of Nuclear Engineering January 24, 1996
Certified by . \qquad ...

Professor Thesis Supervisor
Certified by \qquad
Xiaolin Zhou Assistant Professor Thesis Supervisor
Certified by .
Anne Mayes
Assistant Professor
Thesis Reader
Accepted by .
Jeffrey P. Freidberg Chairman, Departmental Committee on Graduate Students

Small-Angle X-ray and Neutron Scattering Studies of 3 -component Microemulsion and micellar solution of Semifluorinated Copolymers

by
Chwen-Yuan Ku

Submitted to the Department of Nuclear Engineering on February 5, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nuclear Engineering

Abstract

Small-Angle Neutron and X-Ray Scattering (SANS \& SAXS) are very powerful tools in the studies of microstructure of various materials. In this thesis, SANS and SAXS are used to study the ionic surfactant(AOT)/water/decane microemulsion and an interesting semifluorinated alkane $\left(F_{8} H_{16}\right)$ /perfluorooctane /iso-octane system, respectively. From the SANS data analyses based on the sticky-sphere model of Baxter, we are able to obtain the temperature dependent structural information of the microemulsion system and construct a transformation relation. This relation enables us, for the first time, to explain the experimental phase boundary and percolation line with Baxter's model. SAXS data analyses confirms quantitatively the detailed structural models for the liquid and gel phases of the $F_{8} H_{16}$ system that we propose based on the qualitative information provided by light scattering and birefringence. From the dimensions extracted from the data analyses, we propose a mechanism for the growth of the gel in the system.

Thesis Supervisor: Sow-Hsin Chen
Title: Professor

Thesis Supervisor: Xiao-Lin Zhou
Title: Assistant Professor

Acknowledgments

I have been very fortunate to be able to come to MIT and to have the opportunities to meet and spend time with many professors and friends here. Without the guidance, support, and help from them, I could not have finished my thesis.

I would like to first thank Professor Sow-Hsin Chen for supervising my graduate studies and research. He has given me a model of a devoted scientist with warm personality and enthusiasm for science to follow in the coming days of my research career. I am also indebted to my co-supervisor, Professor Xiaolin Zhou, for exposing me to the field of reflectometry, and to the rest of my thesis committee, Professor Sidney Yip, Professor Elias Gyftopoulos, and Professor Anne Mayes, for their patience of going through this thesis.

I would also like to thank my collaborators Piero Lo Nostro, Yingchun Liu, J. S. Lin, Dieter Schneider, John Barker, and Bill Orts for assistance and discussions on experiments and theories during these past few years.

There are also many friends, Dan Lee, Lisa Park, Kuang Han Chen, Chen An Chen, Der Hua Peir, Wei Chao, and Pei Ching Chu, who have made my stay at MIT a very enjoyable one.

I am also deeply grateful to my sisters for their constant support from the other side of the earth. Finally, I would like to express my gratitude to my wife, Hui, for all the love she has been giving me during the better and the worse of our life at MIT.

Contents

1 Introduction 13
1.1 Small-Angle Neutron and X-Ray Scattering 13
1.2 Resolution Function 15
1.2.1 Resolution Function due to Wavelength Spread 17
1.2.2 Resolution Function due to Finite Collimation 19
1.2.3 Resolution Function due to Detector Resolution 26
1.2.4 Combined Resolution Function 27
1.2.5 Resolution Function for Radially-Averaged Data 28
1.2.6 Examples 30
2 Structure and Dynamics of Water-in-oil Microemulsions near the Critical and Percolation Points 34
2.1 Introduction 34
2.2 Baxter's Sticky Sphere Model and the Associated Phase Diagram 41
2.3 Analysis of SANS Data Below T_{c} 48
2.4 Analysis of the Phase Diagram 50
2.5 Dynamics of the Droplet Number Density Fluctuation near the Critical Point 58
2.5.1 Dynamic Slowing-Down of the Average Relaxation Rate 60
2.5.2 Stretched Exponential Decay of the Time Correlation Function at Long Time 62
2.6 Conclusion 63
3 Structural Study of the Liquid and Gel Phases of a Semifluorinated Alkanes in a Mixed Solvent 65
3.1 Introduction 65
3.2 Materials and Methods 68
3.3 Phase Diagram, Light Scattering, and Birefringence 70
3.4 Model of the liquid 79
3.5 Models of the Gel 84
3.5.1 Crystal Part 86
3.5.2 Liquid Part 91
3.6 Results and Discussions 93
3.6.1 Liquid Phase Data Analyses 93
3.6.2 Comparison 95
3.6.3 Gel Phase Data Analyses 97
3.6.4 Formation of a Gel 100
3.7 Conclusions 103
4 Conclusions 106
A Resolution Function 110
B Baxter's Model 113
C Least-Square Fitting 160

List of Figures

1-1 A schematic representation of the setup. The plane of the paper corresponds to the scattering plane. The radius of the source and the defining apertures are r_{1} and r_{2}, respectively. The distance between the apertures is L and the distance between the defining aperture and the detector plane is l. Lines have been drawn from a point on the detector through the center of the two apertures to define the various angles referred to in the text. The figure demonstrates the relation $\nu=\beta L /(L+1)$ of ν to the scattering angle β.

1-2 (a) The angular extent of the source and defining apertures, a_{1} and a_{2}, respectively, seen from a point on the detector. (b) The effective in-plane angular extent of the apertures for a beam scattered through the angle $\langle 2 \theta\rangle$21
1-3 The figure defines the angle γ and $\gamma \approx \tan \gamma=a_{2} / a_{1}$. 23

1-4 The azimuthal-integrated resolution function for $\langle\lambda\rangle=5.0 \AA, \Delta \lambda /\langle\lambda\rangle=$ $0.2, r_{1}=2.0, r_{2}=1.0, L=l=200 \mathrm{~cm}$. The function is plotted for $\langle q\rangle=0.05,0.1,0.3,0.6$, and $1.0 \AA^{-1}$, respectively. 31

1-5 An example of including resolution function in the data analysis. Circles are experimental data, solid line is the calculation with the resolution correction. Dashed line is the calculation without the resolution correction using the same variables as shown in the figure. ϕ is the volume fraction of AOT and water, T is the temperature of the experiment, T_{p} is the percolation temperation, k, ξ, c, and A_{0} are the fitting variables, $\left\langle\eta^{2}\right\rangle$ and Background are obtained from other SANS experiments

2-2 Schematic of the microstructure of a water-in-oil droplet in an AOT /water / decane microcmulsion system.37

2-3 Projection of the phase prism of $A O T / \mathrm{H}_{2} \mathrm{O} /$ decane system, at $W=$ 40.8 and one atmosphere pressure, on the temperature-volume fraction plane. The open circles are the one phase-two phase boundary and solid circles are percolation loci[36].39

2-4 DC conductivity divided by the volume fraction of the $\mathrm{AOT} / \mathrm{H}_{2} \mathrm{O} /$ decane system as a function of volume fraction and temperature, showing the percolation behavior[36]. Note the percolation temperature starts at about $40^{\circ} \mathrm{C}$ at 9.8% and progressively decreases to about $22^{\circ} \mathrm{C}$ at volume fraction of 65%.40
2-5 Schematic of a percolating cluster made of droplets that spans from one side to the other side. 42
2-6 The original pair potential function used in Baxter's model. 43

2-7 Theoretical percolation, coexistence and spinodal lines according to Baxter's model. (a) gives universal relations between τ_{c} / τ and η / η_{c} according to the model. (b) shows the results after a transformation given by Eq.2.12.

46
2-8 SANS intensity distributions and their analysis by Baxter's model with a polydispersity. In the top of the figure, we show SANS intensity distributions for 8,10 and 12% volume fraction samples at $40^{\circ} \mathrm{C}$. The analysis shows that 8% case is closest to the critical volume fraction as indicated by the lowest value of τ obtained. In the lower part of the figure we present the corresponding particle structure factor $P(Q)$ and the inter-particle structure factor $S(Q)$. It can be seen from the figure that $P(Q)$ for three cases are almost identical indicating the same size and size distribution of the microemulsion droplets

2-9 SANS intensity distributions of the 8% sample as function of temperature. It is notable that $S(Q)$ increasingly peaks in the forward direction as the temperature approaches the critical point. But the particle sizes and size distributions stay the same.

2-10 The stickiness parameter $1 / \tau$ extracted from SANS data are plotted as functions of $\left(1-T / T_{c}\right)^{0.94}$ in order to obtain the slope $-\alpha$ and T_{c}. This value of α for 8% volume fraction is used to calculate the theoretical coexistence curve shown in Fig.2-13. It is remarkable that the T_{c} obtained from the 8% data agree with experimental T_{c} measured for the AOT microemulsion made with $D_{2} O$.53

2-11 Small Q behavior of $S(Q)$ function near the critical point. The graph shows that $S(Q)$ follows the Ornstein-Zernike function at sufficiently small Q so that the correlation length ξ can be extracted. It can be seen that as τ approaches $\tau_{c}(=0.0976)$ the correlation length increases. 55

2-12 The dependence of the extracted correlation length as a function of ($1-\tau_{c} / \tau$). It is seen that near the critical point, this is a power law dependence with an index ν^{\prime}. For a monodisperse system (corresponding to large Z), ν^{\prime} is 0.5 . As the polydispersity increases (corresponding to decreasing value of Z), the value of ν^{\prime} increases. At 33% polydispersity, ν^{\prime} is 0.532 .

2-13 Experimental cloud points and the corresponding theoretical coexistence and spinodal curves based on Baxter's model after the transformation of Eq.2.12, with $\alpha=11$ and $\gamma=0.94$ (see text). The percolation loci was fitted with the Baxter's model using the method described in next figure caption

2-14 The temperature dependence of the apparent volume fraction $\eta_{S H S}$ of sticky spheres which are needed to fit the percolation line. We plot the ratio $\left(\eta_{S H S} / \eta\right)^{1 / 3}$ versus T / T_{c} which results in a straight line. This shows that the apparent diameter of sticky spheres which is percolating increases as the temperature increases

2-15 The dynamic scaling function $\Gamma^{*}\left(x, x_{1}\right)$ associated the average relaxation time of the cluster diffusion plotted as a function of $1 / x$ for two values of the scaled droplet size x_{1}. Open circles are experimental data from AOT/water/decane system near the critical point. The dashed line corresponds to Kawasaki's mode-mode coupling result. The solid line is the dynamic droplet model result presented in the text.

3-1 Phase separation curves for different $P F O / i-O C T / F_{8} H_{16}$ mixtures: curve A , no copolymer $(X=\infty)$; curve $\mathrm{B}, X=20$; curve $\mathrm{C}, X=10$.

3-2 Liquid-gel phase transition curves: curve a, $\phi_{P F O} / \phi_{i-O C T}=2.8$; curve $\mathrm{b}, \phi_{P F O} / \phi_{i-O C T}=0.81$.

3-3 Static intensity versus $\phi_{P F O} / \phi_{i-O C T}$ at $\theta=90^{\circ}$ and $22^{\circ} \mathrm{C}$: curve a, $X=20$; curve $\mathrm{b}, X=10$; curve $\mathrm{c}, X=5$.

3-4 (a) Static intensity at $\theta=90^{\circ}$ and $27^{\circ} \mathrm{C}$ versus copolymer volume fraction for $\phi_{P F O} / \phi_{i-O C T}=2.8$. (b) Hydrodynamic diameter of scattering particles as a function of copolymer volume fraction for $\phi_{P F O} / \phi_{i-O C T}=$ 2.8. 77

3-5 Birefringent structures indicating the presence of spherulites in a $P F O / i-$ $O C T / F_{8} H_{16}$ mixture(gel phase). 78
3-6 Model of the basic micelle unit with the fluorinated blocks(cylinders) closely packed side-by-side and the hydrocarbon chains(thick lines) interdigitated in the internal region.81

3-7 Ribbon-like schematic structure for the aggregation of copolymer molecules in the gel phase. White regions indicate top surfaces: shaded regions represent side surfaces. The structure originates from a "seed" and extends randomly into 3-D space, entrapping the mixed solvent between the ribbons.

3-8 Side view of the ribbon-like structure showing the side-by-side and the head-to-head close packing of fluorinated segments. Fluorinated blocks are represented by gray ovals: hydrocarbon chains are indicated by black lines.
3-9 Schematic showing a branched fiber and the results of chopping the fibers into small bricks with straight edges. 88

3-10 Schematic showing one piece of the random ribbons, the chopping of the ribbon, and the details of a building brick

3-11 SAXS data for four liquid samples at $40^{\circ} \mathrm{C}$ with $\phi_{\text {cop }}=10 \%, 16 \%$, 26%, and 38%. For each sample the plot shows the experimental absolute intensity $I(Q)$ and the intensity calculated according to the model presented in the text. For these four liquid samples, the parameters resulting from the fits are reported in Table 3.2. The agreement between the experimental intensities and those calculated from the model is excellent.

3-12 The results of the data analyses of using two different crystalline models. (a) is the calculation of the cylindrical model, the numbers blow the plot are the extracted variables for the model; (b) is the liquid phase data for the micelle scattering; (c) is the calculation of the ribbon model; (d) shows the $30^{\circ} \mathrm{C}$ data set of $r_{v}=0.81, \phi_{C O P}=0.6$, and the resulting curves of combining different models with the micelle scattering of plot (b).

3-13 The comparison between the experimental data and calculation. Open circles are the experimental data points for the sample with 26% of $F_{8} H 16$ and $r_{v}=2.8$ at $10^{\circ} \mathrm{C}$. Long dashed line is the calculation of the crystal part calculation, short dashed line is the liquid part calculation, and solid line is the combination of them.

3-14 The results of data analyses using the combination of ribbon model for the crystal and micelle model for the liquid. Solid line are theoretical calculations. (a) shows results of three lower $\phi_{C O P}$ samples at same temperature. (b) shows results of one high $\phi_{C O P}$ sample at three different temperatures.99

3-15 A two-dimensional schematic of the growing of the crystalline matrix(ribbons) of a gel . 102

List of Tables

3.1 List of data extracted from the phase separation curves. 70
3.2 List of variables extracted from the data analyses for different liquid samples. 93
3.3 List of variables extracted from the data analyses for different gel samples 100

Chapter 1

Introduction

1.1 Small-Angle Neutron and X-Ray Scattering

Small-angle scattering of X-rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, including condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications.

It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation.

Diffraction methods are used for studying matter on all scales, from atoms to macro-objects. The use of X rays, neutrons and electron beams, with wavelengths of about $1 \AA$, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation. Another line deals with the study of the structure of matter at superatomic level, i.e., with a spatial resolution from $10 \AA$ up to thousands and even several tens
of thousands of angstroms. For this line of investigation the basic tool is small-angle scattering, mainly of X-rays and neutrons.

In small-angle scattering research the wavelength used is, as a rule on the order of several angstroms. As interatomic distances are of same order of magnitude, the diffraction pattern, corresponding to the superatomic structure, lies in the small-angle region, and this is how the method received its name. The most important feature of the small-angle scattering method is its potential for analyzing the inner structure of disordered systems, and frequently the application of this method is a unique way to obtain direct structural information on systems with random arrangement of density inhomogeneities of colloidal size, namely, $10^{1}-10^{4} \stackrel{\circ}{A}$.

Small-angle scattering studies date from the classical works of A. Guinier[1]. Later, G. Porod[2], O. Kratky[3], V. Luzzati[4], P. Schmidt[5], and others developed the theoretical and experimental fundamentals of the method $[6,7]$. The principles of designing small-angle scattering facilities were developed, and the potential for applying the method for determining general structural characteristics of various types of highly dispersed systems was shown.

New progress in refining the method of small-angle scattering began in 1970s and is continuing today. This state of work is characterized by new opportunities both for experimentation (powerful neutron beams, synchrotron X-ray sources, positionsensitive detectors) and for structural interpretation(contrast variation, isomorphous replacement, direct methods analysis of characteristic functions). Certainly, the use of various computers is of great significance in advancing these two aspects of smallangle scattering applications. The result has been a gradual expansion of the range of studied objects and an increase in the spatial resolution in both directions. Thus, for example, the mechanisms of phase separation and the sizes and degrees of dispersion of dispersed structures of alloys, powders, and glasses, the specific features of the configuration polymer chains in different aggregate states, and the geometrical and weight parameters(and, sometimes, three-dimensional structure) of biological macromolecules and their complexes in solution can all be the subjected to analysis.

Currently, the small-angle scattering technique, with its well-developed exper-
imental and theoretical procedures add wide range of studied objects, is a selfcontained branch of the structural analysis of matter[8].

1.2 Resolution Function

Traditionally, most small-angle X-ray scattering experiments have been performed in a long slit geometry, using the "Kratky" type of camera[7]. Numerous studies have been made in order to perform the desmearing analysis which is necessary in connection with this technique $[9,10,11]$. Small-angle neutron scattering experiments are, on the other hand, always performed in a pinhole geometry, and area-sensitive detectors are widely used. The smearing effects for pinhole geometry are of course much smaller than for long-slit geometry as long as the wavelength spread of the incident beam is small. Therefore the experimental data measured in the pinhole geometry are usually analyzed without taking any smearing effects into account. However, the limited resolution of the instrument will lead to some smearing which might have an important influence on the measured scattering data.

Some numerical studies have already been made in order to investigate the smearing effects[12, 13]. However, it is found there is a great need for an analytical treatment of the resolution effects. This would allow these effects to be incorporated in a relatively simply way in the analysis of the experimental data. This is further motivated by the fact that at present there is a tendency also to use pinhole geometry and area-sensitive detectors in new X-ray sources such as the rotating-anode sources and synchrotron X-ray facilities.

The resolution effect is described by the resolution function $R(\vec{q},\langle\vec{q}\rangle)$, where $\langle\vec{q}\rangle$ is the average scattering vector corresponding to the setting of the instrument (\rangle means average value of a parameter). The length of the scattering vector is $\langle q\rangle=2\langle k\rangle \sin \langle\theta\rangle$, where $2\langle$ theta \rangle is the scattering angle, $\langle k\rangle$ is the length of the wavevector, $\langle k\rangle=$ $2 \pi /\langle\lambda\rangle$, where $\langle\lambda\rangle$ is the wavelength of the neutrons or X-rays. When the instrument is set to detect radiation with scattering vector $\langle\vec{q}\rangle$, radiation with scattering vectors \vec{q} in a range around $\langle\vec{q}\rangle$ also contributes to the scattering due to the finite collimation, the
spread in the wavelength of the incident beam and the finite spatial resolution of the detector. The resolution function $R(\vec{q},\langle\vec{q}\rangle)$ describes the distribution of the radiation with scattering vector \vec{q} contributing to the scattering for setting $\langle\vec{q}\rangle$. According to this the measured intensity at $\langle\vec{q}\rangle$ is proportional to

$$
\begin{equation*}
I(\langle\vec{q}\rangle)=\int R(\vec{q},\langle\vec{q}\rangle) \frac{d \sigma(\vec{q})}{d \Omega} d \vec{q} \tag{1.1}
\end{equation*}
$$

Where $d \sigma(\vec{q}) / d \Omega$ is the scattering cross section.
Previous investigations of the properties of $R(\vec{q},\langle\vec{q}\rangle)$ reported in the literature have mainly been connected with the optimization of the dimensions of small-angle scattering instruments in order to give the highest flux for a given resolution $[14,57,16$, $17,18,19]$. In other publications the instrumental resolution has been treated more in its own right[20, 12, 21, 13, 11, 22]. Investigations of the width of the resolution function have usually been done analytically by calculating variances and the results have been supported by computer simulation. General equations for the smearing of an ideal scattering curve due to resolution effects have been given by Moore[23], Miller et al.[20], Ramakrishnan[12] and Schmidt[11]. These works led to equations which express the smearing in terms of integrals involving weighting functions describing the transmission of the collimating system and the wavelength distribution. Expressions for the weighting function have to be determined either experimentally or by calculations $[24,25,12]$, and practical applications involve numerical calculation of several integrals. In this chapter, the different contributions to the resolution function are all approximated by Gaussian functions. This allows the integrals connected with the combination of the different contributions to the resolution function to be performed analytically. One obtains the resolution function expressed as a Gaussian function on a two-dimensional \vec{q} space. The azimuthal-integrated resolution function to be applied for radial-averaged scattering profiles can also be calculated analytically[26]. Hence, smearing of an ideal scattering curve involves in this case only one numerical integration.

The Gaussian function describing the various contributions to the resolution func-
tion are determined when the parameters describing the width and the normalization condition are chosen. It has been decided to define the Gaussians to have the same full-width-at half-maximum value as the distributions they approximate and to give unity when integrated over the two-dimensional \vec{q} space[27]. However, other criteria may be applied. For example, the variances of the Gaussians could have been chosen to have the same value as the distributions they approximate[17].

The analytical treatment of the resolution function is begun with deriving separately the resolution functions resulting from (1) wavelength spread, (2) collimation effects, and (3) detector resolution. In each of these derivations the two other contributions not under consideration are assumed to be negligible. Then the combined resolution due to all three contributions are calculated, assuming that they are independent. Finally, the resolution function for rädial-averaged data are derived.

1.2.1 Resolution Function due to Wavelength Spread

Assume that the wavelength distribution can be described by a Gaussian function centered on wavelength $\langle\lambda\rangle$ having a full-width-at half-maximum value (FWHM) $\Delta \lambda:$

$$
\begin{equation*}
F(\lambda,\langle\lambda\rangle)=\left[(2 \pi)^{1 / 2} \sigma_{\lambda}\right]^{-1} \exp \left[-(\lambda-\langle\lambda\rangle)^{2} / 2 \sigma_{\lambda}^{2}\right] \tag{1.2}
\end{equation*}
$$

where σ_{λ} is related to the FWHM value $\Delta \lambda$ of the distribution by

$$
\begin{equation*}
\sigma_{\lambda}=\Delta \lambda /\left[2(2 \ln 2)^{1 / 2}\right] \tag{1.3}
\end{equation*}
$$

A first-order Taylor expansion of expression for the scattering vector with respect to $\lambda-\langle\lambda\rangle$ gives

$$
\begin{equation*}
q-\langle q\rangle=-(\langle q\rangle /\langle\lambda\rangle)(\lambda-\langle\lambda\rangle) \tag{1.4}
\end{equation*}
$$

and multiplication of nominator and denominator of the exponent in Eq. 1.2 by $(\langle q\rangle /\langle\lambda\rangle)^{2}$ gives

$$
\begin{equation*}
R_{W}(q,\langle q\rangle)=\left[(2 \pi)^{1 / 2} \sigma_{W}\right]^{-1} \exp \left[-(q-\langle q\rangle)^{2} / 2 \sigma_{W}^{2}\right] \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{W}=\sigma_{\lambda} \frac{\langle q\rangle}{\langle\lambda\rangle}=\langle q\rangle \frac{\Delta \lambda}{\langle\lambda\rangle} \frac{1}{2(2 \ln 2)^{1 / 2}} \tag{1.6}
\end{equation*}
$$

Note that the width σ_{W} of R_{W} is proportional to $\langle q\rangle$. The prefactor of the exponential function in Eq.1.5 has been chosen to give $R_{W}(q,\langle q\rangle)$ the proper normalization:

$$
\begin{equation*}
\int_{0}^{\infty} R_{W}(q,\langle q\rangle) d q=1 \tag{1.7}
\end{equation*}
$$

The measured intensity is proportional to

$$
\begin{equation*}
I(\langle\vec{q}\rangle)=\int_{0}^{\infty} R_{W}(q,\langle q\rangle) \frac{d \sigma(\vec{q})}{d \Omega} d q \tag{1.8}
\end{equation*}
$$

Where \vec{q} is parallel to $\langle\vec{q}\rangle$. In Eq.1.8 the integration element is one-dimensional, in contrast to the integration clement in Eq.1.1 which is two-dimensional.

In a small-angle X-ray scattering (SAXS) experiment the incident beam is monochromatized by Bragg scattering from a crystal. For a conventional X-ray source the crystal is set to scatter one of the characteristic lines of the source and the wavelength spread is a result of the combined effects of the natural line width, the mosaic spread or the Darwin width of the monochromator crystal and the collimation before and after the crystal. The spectrum of the radiation from a synchrotron is continuous and the wavelength spread is only determined by the mosaic spread or Darwin width of the monochromator and the collimation. However, for both the conventional an synchrotron X-ray source the wavelength spread $\Delta \lambda /\langle\lambda\rangle$ is typically smaller than 10^{-3} and it can therefore be neglected in most cases.

For small-angle neutron scattering (SANS) experiments the relatively low flux available makes the use of monochromators with a relatively large wavelength spread necessary. This can be either a segmented monochromator crystal[13] or mechanical velocity selector[28, 29].

1.2.2 Resolution Function due to Finite Collimation

When the range is chosen sufficiently small in a small range around $\langle\vec{q}\rangle=0$, changes in the shape and the width of the resolution can be neglected. Hence, it is only dependent on the difference $|\vec{q}-\langle\vec{q}\rangle|$, i.e., we can specifically write $R_{c}(\vec{q},\langle\vec{q}\rangle)=R_{c}^{0}(|\vec{q}-\langle\vec{q}\rangle|)$. The unscattered beam can be described by the cross section $d \sigma(\vec{q}) / d \Omega=\delta(\vec{q})$, where δ is a delta function, and Eq.1.1 gives the result that the measured intensity is proportional to

$$
\begin{equation*}
I(\langle\vec{q}\rangle)=R_{c}^{0}(|\langle\vec{q}\rangle|) \tag{1.9}
\end{equation*}
$$

This shows that the collimation-related resolution close to $\langle\vec{q}\rangle=0$ can be determined by measuring the profile of the direct beam. This fact is used to derive the resolution function for small values of $\langle q\rangle$ by calculating the width and shape of the direct beam. A schematic drawing of the small-angle scattering setup is shown in Fig.1-1. The first aperture is denoted as the source aperture and the second the defining aperture. In an experiment the sample is situated just after the defining aperture. Here it is assumed that the sizes of the apertures are small compared with their separation L and the distance l between the defining aperture and the detector plane. First-order approximations for the opening angles can then be applied in the calculation of the collimation effects. In the general situation it is assumed that the apertures are circular and that they are uniformly illuminated.

For simplicity, it is started by considering a special situation with negligible extension of the apertures in the direction perpendicular to the plane of the paper in Fig.1-1. From a point on the detector half the angular extent of the apertures is $a_{1}=r_{1} /(l+L)$ and $a_{2}=r_{2} / l$ for the source and defining aperture, respectively (see Fig.1-2(a)). The intensity at a point on the detector is determined by the angular overlap of the two apertures. The intensity is expressed as a function of the angle β, shown in Fig.1-1, which corresponds to a scattering angle. By this choice it is straightforward to convert from angle to scattering vector.

At the point on the detector corresponding to the angle β, the angle ν between

Figure 1-1: A schematic representation of the setup. The plane of the paper corresponds to the scattering plane. The radius of the source and the defining apertures are r_{1} and r_{2}, respectively. The distance between the apertures is L and the distance between the defining aperture and the detector plane is l. Lines have been drawn from a point on the detector through the center of the two apertures to define the various angles referred to in the text. The figure demonstrates the relation $\nu=\beta L /(L+1)$ of ν to the scattering angle β.

Figure 1-2: (a) The angular cxtent of the source and defining apertures, a_{1} and a_{2}, respectively, seen from a point on the detector. (b) The effective in-plane angular cxtent of the apertures for a beam scattered through the angle $\langle 2 \theta\rangle$.
the centers of the source and the defining aperture is $\nu=\beta L /(L+l)$. This equation gives the transformation on between the angular separation ν and the angle β. For $a_{1}=a_{2}$ the overlap as a function of β is a triangular function and for $a_{1} \neq a_{2}$ the function has a trapezoidal shape. The FWHM value $\Delta \beta$ is determined by the angle where the angular overlap, and thereby the intensity, is reduced to half the maximum value:

$$
\begin{align*}
\Delta \beta & =2 r_{1} / L & & \text { For } a_{1} \geq a_{2} \tag{1.10}\\
& =2 r_{2}(1 / l+1 / L) & & \text { For } a_{1}<a_{2}
\end{align*}
$$

For circular apertures the overlap is slightly more complicated to calculate. Fig.13 shows the situation for $a_{1}>a_{2}$ at an angle corresponding to the FWHM value for apertures with negligible extent perpendicular.to the scattering plane. A correction to the FWHM values will be determined in Eq. 1.10 for circular apertures. The angle γ defined in Fig.1-3 can be approximated by $\gamma \approx \tan \gamma=a_{2} / a_{1}$. A better value for $\Delta \beta$ is obtained using $\frac{1}{2} a_{1}(1+\cos \gamma)$ instead of a_{1} in Eq.1.10. There is $\frac{1}{2} a_{1}(1+\cos \gamma) \approx$ $a_{1}-\frac{1}{4} a_{2}^{2} / a_{1}$. Insertion of the expressions for a_{1} and a_{2} and multiplication by $(L+l) / L$ to convert to a β angle gives the FWHM values

$$
\begin{align*}
\Delta \beta & =\frac{2 r_{1}}{L}-\frac{\left(r_{2}^{2}\right.}{2 r_{1}} \frac{(l+L)^{2}}{l^{2}} \frac{1}{L} & & \text { For } a_{1} \geq a_{2} \tag{1.11}\\
& =2 r_{2}\left(\frac{1}{l}+\frac{1}{L}\right)-\frac{1}{2} \frac{r_{1}^{2}}{r_{2}} \frac{l}{L} \frac{1}{l+L} & & \text { For } a_{1}<a_{2}
\end{align*}
$$

These equations are valid for small values of $\langle q\rangle$. The distribution is approximated by a Gaussian function with the same width. From a purely qualitative judgment it is estimated that this approximation is acceptable when a_{1} and a_{2} deviate by less a factor of two. For $a_{1} \gg a_{2}$ (or $a_{2} \gg a_{1}$) the true distribution approaches a "box function" which is poorly described by a Gaussian function.

Next the FWHM values of the distribution function for an arbitrary value of $\langle\vec{q}\rangle \neq 0$ is derived. It is assumed that we have a sample with an ideal Bragg reflection at the reciprocal-lattice vector $\overrightarrow{q_{0}}$. This can be described by the cross section $d \sigma(\vec{q}) / d \Omega=\delta\left(\vec{q}-\overrightarrow{q_{0}}\right)$. A sufficiently small range around $\langle\vec{q}\rangle=\overrightarrow{q_{0}}$ is considered to allow changes in the resolution function to be neglected. The resolution function is then

Figure 1-3: The figure defines the angle γ and $\gamma \approx \tan \gamma=a_{2} / a_{1}$.
only dependent on the difference $\vec{q}-\langle\vec{q}\rangle$. The measured intensity can be calculated by Eq.1.1:

$$
\begin{equation*}
I(\langle\vec{q}\rangle)=R_{c}^{q_{0}}\left(\overrightarrow{q_{0}}-\langle\vec{q}\rangle\right) \tag{1.12}
\end{equation*}
$$

Accordingly, the resolution function around $\langle\vec{q}\rangle=\overrightarrow{q_{0}}$ can be determined by measuring the actual intensity distribution of the Bragg reflection. This will be used in our derivation and the resolution function will be calculated by calculating the width of the corresponding Bragg reflection. In the derivation it is implicitly assumed the scattering vectors to be two-dimensional vectors, thereby relating points on the two-dimensional detector to the two components of the scattering vector. For the scattering situation in reciprocal space, the third dimension is in the direction perpendicular to the Ewald sphere. For scattering from disordered or polycrystalline matcrials this has no consequences as the third dimension is effectively integrated out of the problem. However, for crystalline materials it is also necessary to consider whether the Bragg condition is fulfilled in the direction perpendicular to the Ewald sphere and in order to measure the integrated intensity it is necessary to perform a sample rotation scan along an axis normal to the scattering plane. Therefore, when actually measuring the resolution function using a Bragg reflection, this rotation has to be performed. In the derivation of the resolution function this is taken into account by assuming the beam to be scattered through the same $2 \theta_{0}$ in the plane independent of the direction of the incident beam.

Consider the neutrons or X-rays which are scattered through the angle $2 \theta_{0}=$ $2 \arcsin \left[q_{0} /(2\langle k\rangle)\right]=\langle 2 \theta\rangle$. The shape of the Bragg reflection can be calculated as the angular overlap between the source and the defining aperture, taking the scattering into account. Again we start by considering a situation for which the apertures have negligible extent in the direction perpendicular to the scattering plane(Fig.1-2). Half the angular extent of the source aperture is effectively $a_{1}=r_{1} /\left(L+l / \cos ^{2}\langle 2 \theta\rangle\right)$ and for the defining aperture $a_{2}=r_{2} \cos ^{2}\langle 2 \theta\rangle / l$. The derivation follows the same lines as in the first part of this section. The results for the FWHM values of the angles in
scattering plane are

$$
\begin{align*}
\Delta \beta_{1} & =\frac{2 r_{1}}{L}-\frac{r_{2}^{2}}{2 r_{1}} \frac{\cos ^{4}\langle 2 \theta\rangle}{l^{2} L}\left(L+\frac{l}{\cos ^{2}\langle(2 \theta\rangle}\right)^{2} & & \text { For } a_{1} \geq a_{2} \\
& =2 r_{2}\left(\frac{\cos ^{2}\langle 2 \theta\rangle}{l}+\frac{1}{L}\right)-\frac{1}{2} \frac{r_{1}^{2}}{r_{2}} \frac{l}{L} \frac{1}{\cos ^{2}\langle 2 \theta\rangle\left(L+\frac{l}{\cos ^{2}\langle 2 \theta\rangle}\right)} & & \text { For } a_{1}<a_{2} \tag{1.13}
\end{align*}
$$

The corresponding results for the distribution in the direction perpendicular to the scattering plane can be calculated by considering a situation for which the apertures have negligible extent in the scattering plane. The angular extents of the slits are $a_{1}=r_{1} /(L+l / \cos \langle 2 \theta\rangle)$ and $a_{2}=r_{2} \cos \langle 2 \theta\rangle / l$, and this gives the FWHM values

$$
\begin{array}{rlrl}
\Delta \beta_{2} & =\frac{2 r_{1}}{L}-\frac{l r_{2}^{2}}{2 r_{1}} \frac{\cos ^{2}(2 \theta\rangle}{l^{2} L}\left(L+\frac{l}{\cos (2 \theta\rangle}\right)^{2} & & \text { For } a_{1} \geq a_{2} \\
& \left.=2 r_{2}\left(\frac{\cos \langle 2 \theta\rangle}{l}+\frac{1}{L}\right)-\frac{1}{2} \frac{r_{1}^{2}}{r_{2}} \frac{l}{L} \frac{1}{\cos \langle 2 \theta\rangle\left(L+\frac{l}{\cos (2 \theta\rangle}\right)}\right) & \text { For } a_{1}<a_{2} \tag{1.14}
\end{array}
$$

As mentioned previously, the distribution function describing the collimation effects is taken to be Gaussian and the total distribution is the product of the in-plane F_{1} and out-of-pane F_{2} distribution functions:

$$
\begin{align*}
F_{1}(2 \theta,\langle 2 \theta\rangle) & =\left[(2 \pi)^{1 / 2} \sigma_{\theta}\right]^{-1} \exp \left[-\frac{1}{2}(2 \theta-\langle 2 \theta\rangle)^{2} / \sigma_{\theta}^{2}\right] \tag{1.15}\\
F_{2}(\delta, 0) & =\left[(2 \pi)^{1 / 2} \sigma_{\delta}\right]^{-1} \exp \left[-\frac{1}{2} \delta^{2} / \sigma_{\delta}^{2}\right]
\end{align*}
$$

where $(2 \theta,\langle 2 \theta\rangle)$ and δ are the deviations in scattering plane and perpendicular to the scattering plane, respectively, and

$$
\begin{align*}
\sigma_{\theta} & =\Delta \beta_{1} / 2(2 \ln 2)^{1 / 2} \tag{1.16}\\
\sigma_{\delta} & =\Delta \beta_{2} / 2(2 \ln 2)^{1 / 2}
\end{align*}
$$

The first-order Taylor expansion of the scattering vector \vec{q} around $\langle\vec{q}\rangle$ can now be made:

$$
\begin{equation*}
\vec{q}-\langle\vec{q}\rangle=\binom{q_{1}-\langle q\rangle}{ q_{2}} \approx\binom{2\langle k\rangle \cos \langle\theta\rangle(\theta-\langle\theta\rangle)}{\langle k\rangle \delta} \tag{1.17}
\end{equation*}
$$

Where q_{1} is the component of \vec{q} parallel to $\langle\vec{q}\rangle$ and q_{2} is the component perpen-
dicular to $\langle\vec{q}\rangle$.
Expressing the distribution function Eq.1.15 in terms of this gives

$$
\begin{align*}
F_{1}\left(q_{1},\langle q\rangle\right) & \left.=\left[(2 \pi)^{1 / 2} \sigma_{C 1}\right]^{-1} \exp \left[-\frac{1}{2}\left(q_{1}-\text { langleq }\right\rangle\right)^{2} / \sigma_{C 1}^{2}\right] \tag{1.18}\\
F_{2}\left(q_{2}, 0\right) & =\left[(2 \pi)^{1 / 2} \sigma_{C 2}\right]^{-1} \exp \left[-\frac{1}{2} q_{2}^{2} / \sigma_{C 2}^{2}\right]
\end{align*}
$$

where

$$
\begin{align*}
& \sigma_{C 1}=\langle k\rangle \cos \langle\theta\rangle \Delta \beta_{1} / 2(2 \ln 2)^{1 / 2} \tag{1.19}\\
& \sigma_{C 2}=\langle k\rangle \Delta \beta_{2} / 2(2 \ln 2)^{1 / 2}
\end{align*}
$$

The resolution function is the product of F_{1} and F_{2} :

$$
\begin{equation*}
R_{C}(\vec{q},\langle\vec{q}\rangle)=\left[2 \pi \sigma_{C 1} \sigma_{C 2}\right]^{-1} \exp \left[-\frac{1}{-2}\left(\frac{\left(q_{1}-\langle q\rangle\right)^{2}}{\sigma_{C 1}^{2}}+\frac{q_{2}^{2}}{\sigma_{C 2}^{2}}\right)\right] \tag{1.20}
\end{equation*}
$$

where the prefactor of the exponential function has been chosen to give the proper normalization when the expression is integrated over the two-dimensional \vec{q} space. When the wavelength spread is small and the collimation effects are dominant, Eq.1.20 for the resolution function can be applied. This is the case for X-rays, as mentioned previously.

1.2.3 Resolution Function due to Detector Resolution

Consider a two-dimensional area-sensitive detector. There are usually three contributions to the spatial resolution: the division of the detector into pixels, the method of detection and the method of position determination. It is assumed that the latter two dominate and that the spatial resolution can be described by a Gaussian function of width Δ. First, the width of the resolution function in the direction parallel to $\langle\vec{q}\rangle$ is determined. Let $\langle s\rangle$ denote the distance from the beam center at the detector to the point on the detector with scattering angle $\langle 2 \theta\rangle$. Then $\langle\theta\rangle=\frac{1}{2} \arctan (\langle s\rangle / l)$ and a first-order Taylor expansion of the scattering vector with respect to s gives

$$
\begin{equation*}
q_{1}-\langle q\rangle=\langle k\rangle \cos \langle\theta\rangle \cos ^{2}\langle 2 \theta\rangle(1 / l)(s-\langle s\rangle) \tag{1.21}
\end{equation*}
$$

The Gaussian distribution of $(s-\langle s\rangle)$ with the FWHM value Δ gives a Gaussian distribution of $q_{1}-\langle q\rangle$ with the width

$$
\begin{equation*}
\sigma_{D 1}=\langle k\rangle \cos \langle\theta\rangle \cos ^{2}\langle 2 \theta\rangle \Delta\left[l 2(2 \ln 2)^{1 / 2}\right]^{-1} \tag{1.22}
\end{equation*}
$$

Similarly it can be shown that in the direction perpendicular to $\langle\vec{q}\rangle$ the distribution of the projection q_{2} of \vec{q} has the width

$$
\begin{equation*}
\sigma_{D 2} \doteq\langle k\rangle \cos \langle 2 \theta\rangle \Delta\left[l 2(2 \ln 2)^{1 / 2}\right]^{-1} \tag{1.23}
\end{equation*}
$$

Hence the resolution function due to the detector resolution is

$$
\begin{equation*}
R_{D}(\vec{q},\langle\vec{q}\rangle)=\left[2 \pi \sigma_{D 1} \sigma_{D 2}\right]^{-1} \exp \left[\because \frac{1}{2}\left(\frac{\left(q_{1}-\langle q\rangle\right)^{2}}{\sigma_{D 1}^{2}}+\frac{q_{2}^{2}}{\sigma_{D 2}^{2}}\right)\right] \tag{1.24}
\end{equation*}
$$

1.2.4 Combined Resolution Function

In this section the case for which both the wavelength spread and the effects of finite collimation are of significance is treated. Performing a first-order Taylor expansion of \vec{q} as a multi-parameter function around $\langle\vec{q}\rangle$, it can be obtained

$$
\begin{align*}
\vec{q}-\langle\vec{q}\rangle & =\binom{q_{1}-\langle q\rangle}{ q_{2}} \\
& =\left(\begin{array}{l}
-\frac{\langle q\rangle}{\langle\lambda\rangle}(\lambda-\langle\lambda\rangle)+2\langle k\rangle \cos \langle\theta\rangle(\theta-\langle\theta\rangle) \\
\langle k\rangle \delta
\end{array}\right. \tag{1.25}
\end{align*}
$$

The in-plane component $q_{1}-\langle q\rangle$ is the sum of two term which both have Gaussian distributions (Eq.1.2 and 1.15). Therefore the distribution of $q_{1}-\langle q\rangle$ is also Gaussian with the width

$$
\sigma^{2}=\sigma_{W}^{2}+\sigma_{C 1}^{2}
$$

$$
\begin{equation*}
=\left[\langle q\rangle \frac{\Delta \lambda}{\langle\lambda\rangle} \frac{1}{2(2 \ln 2)^{1 / 2}}\right]^{2}+\left[\frac{\langle k\rangle \cos \langle\theta\rangle \Delta \beta_{1}}{2(2 \ln 2)^{1 / 2}}\right]^{2} \tag{1.26}
\end{equation*}
$$

where σ_{W} and $\sigma_{C l}$ are the widths of the resolution functions due to wavelength spread and finite collimation given in Eq. 1.6 and 1.19, respectively. To the order of the calculation the out-of-plane component q_{2} does not depend on λ and the distribution is the same as already derived in Eq.1.18. The combined resolution function is[27]

$$
\begin{equation*}
R(\vec{q},\langle\vec{q}\rangle)=\left(2 \pi \sigma \sigma_{C 2}\right)^{-1} \exp \left[-\frac{1}{2}\left(\frac{\left(q_{1}-\langle q\rangle\right)^{2}}{\sigma^{2}}+\frac{q_{2}^{2}}{\sigma_{C 2}^{2}}\right)\right] \tag{1.27}
\end{equation*}
$$

which has the proper normalization when integrated over the two-dimensional \vec{q} space. Note that the wavelength spread gives rise to a broadening of the resolution function in the direction of $\langle\vec{q}\rangle$. This broadening increases for increasing values of $\langle q\rangle$. To the order of the calculations there is no influence of the wavelength spread in the direction normal to $\langle\vec{q}\rangle$. This result, which expresses the difference of the widths of the resolution function along $\langle\vec{q}\rangle$ and perpendicular to $\langle\vec{q}\rangle$, demonstrates the necessity of making a distinction between these two directions.

Finally, the effects of detector resolution is included. The total resolution function is calculated by convoluting the two contributions described by Eq.1.24 and 1.27. For an Gaussian function the result of the convolution is a Gaussian function with the width squared given by the sum of the widths squared of the two contributions. Hence, the total resolution function is given by Eq. 1.27 with σ^{2} replaced by $\sigma^{2}+\sigma_{D 1}^{2}$ and $\sigma_{C 2}^{2}$ replaced by $\sigma_{C 2}^{2}+\sigma_{D 2}^{2}$.

1.2.5 Resolution Function for Radially-Averaged Data

In many applications of the small-angle scattering technique the scattering pattern is circularly symmetric. Therefore, the two-dimensional integration involved in the convolution of the cross section and the resolution function can be replaced by a onedimensional integration in analogy with Eq.1.8. This is accomplished by introducing a resolution function integrated along circles where q is constant.

In order to get through the algebra we need to make the assumption that the
resolution function is symmetric $\left(\sigma_{C 1}=\sigma_{C 2}=\sigma\right)$ in a range around $\langle\vec{q}\rangle$. This is fulfilled in many cases since the contribution from the wavelength spread vanishes for $\langle q\rangle \rightarrow 0$. Specifically, for $\langle q\rangle<q_{0}$ it is assumed that the resolution function is symmetric and $q_{0} \gg \sigma_{C l}$. Using $q_{1}=q \cos \varphi$ where φ is the angle between $\langle\vec{q}\rangle$ and \vec{q}, we obtain

$$
\begin{equation*}
R(\vec{q},\langle\vec{q}\rangle)=\left(2 \pi \sigma^{2}\right)^{-1} \exp \left[-\frac{1}{2}\left(q^{2}+\langle q\rangle^{2}-2 q\langle q\rangle \cos \varphi\right) / \sigma^{2}\right] \tag{1.28}
\end{equation*}
$$

The radial-averaged resolution function is defined to give the measured intensity proportional to

$$
\begin{equation*}
I(\langle q\rangle)=\int_{0}^{\infty} R_{a v}(q,\langle q\rangle) \frac{d \sigma(q)}{d \Omega} d q \tag{1.29}
\end{equation*}
$$

where

$$
\begin{align*}
R_{a v}(q,\langle q\rangle) & =\int_{-\pi}^{\pi} R(q,\langle q\rangle) q d \varphi \\
& =\left(q / \sigma^{2}\right) \exp \left[-\frac{1}{2}\left(q^{2} / \sigma^{2}+\langle q\rangle^{2} / \sigma^{2}\right)\right] I_{0}\left(q\langle q\rangle / \sigma^{2}\right) \tag{1.30}
\end{align*}
$$

and I_{0} is the modified Bessel function of first kind and zeroth order. This result was first derived by Freltoft, Kjems \& Sinha[26]. For $\langle q\rangle$ approaching q_{0} the largeargument expression of the Bessel function $I_{0}(x)=e^{x} / \sqrt{2 \pi x}$ can be used together with $q \approx\langle q\rangle$:

$$
\begin{equation*}
\left.R_{a v}(q,\langle q\rangle) \approx\left[(2 \pi)^{1 / 2} \sigma\right]^{-1} \exp \left[-\frac{1}{2}(q-\langle q\rangle)^{2} / \sigma^{2}\right)\right] \tag{1.31}
\end{equation*}
$$

for $\langle q\rangle \rightarrow q_{0},\langle q\rangle<q_{0}$.
For $\langle q\rangle>q_{0}$ the resolution function is elongated along $\langle\vec{q}\rangle$ and the integration in Eq. 1.30 is not easily performed. It will be shown that one can obtain Eq. 1.31 for $\langle q\rangle>q_{0}$ by changing the integration variables in Eq.1.30. The resolution function is only different from zero in a small range around $\langle q\rangle$ and in this range $q \approx q_{1}$, where q_{1} is the component of \vec{q} along $\langle\vec{q}\rangle$ and $q d \varphi \approx d q_{2}$, where q_{2} is the component of \vec{q}
perpendicular to $\langle\vec{q}\rangle$. Therefore, the integration in Eq. 1.30 of $q d \varphi$ can be replaced by an integration of $d q_{2}$. Another way of expressing the approximation $q d \varphi \approx d q_{2}$ is that for large values of $\langle q\rangle$ the circles $q=$ constant can, in the range where the resolution function is different from zero, be replace by straight lines in the direction perpendicular to $\langle\vec{q}\rangle$. Using Eq. 1.27 for the resolution function and performing an integration of q_{2} we can obtain Eq. 1.31 as mentioned previously.

In applications it is important that Eq. 1.30 is used for small values of q and not Eq.1.31. The two functions deviate systematically for small q values, and the center of mass of Eq.1.30 is at a q value larger than $\langle q\rangle$.

1.2.6 Examples

Fig.1-4 shows the radially-averaged resolution function for a typical situation where $\langle\lambda\rangle=5.0 \AA, \Delta \lambda /\langle\lambda\rangle=0.2$ and $a_{1}=a_{2}=0.01$. One gets $\sigma_{W}=\langle q\rangle \sigma^{\prime}, \sigma^{\prime}=0.085$ (Eq.1.6), $\sigma_{C l} \approx \sigma_{C 2} \approx 0.008 \AA^{-1}$ (Eqs.1.13,1.14,1.19), and the resolution function is symmetric when $\langle q\rangle<q_{0}<\sigma_{C 1} / \sigma^{\prime} \approx 0.10 \AA^{-1}$. The relation $q_{0} \gg \sigma_{C 1}$ can easily be fulfilled and it is meaningful to calculate the radial-areraged resolution function. From these considerations it can also be concluded that when the wavelength spread is negligible, the radially-averaged resolution function is given by Eq. 1.30 with $\sigma=\sigma_{C 1}$.

The 3-component microemulsion system consisting of ionic surfactant AOT/water/decane tends to form a water-in-oil droplet microemulsion near room temperature. AOT is an ionic surfactant with a sodium sulfate hydrophilic head and two hydrophobic hydrocarbon tails. At higher temperature, these droplets percolate and form bicontinuous microemulsion[30]. Fig. 1-5 shows a SANS scattering intensity curve of this bicontinuous microemulsion and the data analysis using

$$
\begin{equation*}
I_{m}(\langle q\rangle)=\text { Background }+\left\langle\eta^{2}\right\rangle \int_{\langle q\rangle-3 \sigma}^{\langle q\rangle+3 \sigma} R_{a v}(q,\langle q\rangle) S(q) d q \tag{1.32}
\end{equation*}
$$

where I_{m} is the measured intensity and

$$
\begin{equation*}
S(q)=\left(1-A_{0}\right) \pi^{2 / 3} c^{3} e^{-q^{2} c^{2} / 4}+A_{0} \frac{8 \pi / \xi}{a^{2}-2 b^{2} q^{2}+q^{4}} \tag{1.33}
\end{equation*}
$$

Figure 1-4: The azimuthal-integrated resolution function for $\langle\lambda\rangle=5.0 \AA, \Delta \lambda /\langle\lambda\rangle=$ $0.2, r_{1}=2.0, r_{2}=1.0, L=l=200 \mathrm{~cm}$. The function is plotted for $\langle q\rangle=0.05,0.1$, $0.3,0.6$, and $1.0 \AA^{-1}$, respectively.
with $a=k^{2}+1 / \xi^{2}, b=k^{2}-1 / \xi^{2}$. The SANS experiment was performed at NIST with $(\lambda\rangle=5 \AA, \Delta \lambda /\langle\lambda\rangle=0.147, r_{1}=0.6 \mathrm{~cm}, r_{2}=1.9 \mathrm{~cm}, L=1,622 \mathrm{~cm}, l=310 \mathrm{~cm}$, and $\Delta=1 \mathrm{~cm}$. The variables are displayed in the figure.

In Fig.1-5, the dashed line is the calculation with the same variables used to obtain the solid line without the resolution function correction. The smearing by the resolution correction is clearly shown. From Figs.1-5 and 1-4, it is evident that the resolution correction is necessary for scattering curves with sharp features, especially at larger q.

A FORTRAN computer program calculates the resolution function with given parameters is listed in Appendix A.

Figure 1-5: An example of including resolution function in the data analysis. Circles are experimental data, solid line is the calculation with the resolution correction. Dashed line is the calculation without the resolution correction using the same variables as shown in the figure. ϕ is the volume fraction of AOT and water, T is the temperature of the experiment, T_{p} is the percolation temperation, k, ξ, c, and A_{0} are the fitting variables, $\left\langle\eta^{2}\right\rangle$ and Background are obtained from other SANS experiments.

Chapter 2

Structure and Dynamics of Water-in-oil Microemulsions near the Critical and Percolation Points

2.1 Introduction

The three-component ionic microemulsion system made of anionic surfactant, sodium di-2-ethylhexylsulfosuccinate (AOT), water and decane is rather unusual in terms of its phase behavior. At a constant temperature, a typical symmetric ternary microemulsion system, having equal volume fractions of water and oil, shows the wellknown 2-3-1 phase progression, as the surfactant concentration is increased from zero to more than 8%. When surfactant concentration is very low, the molecules are dispersed in water and oil just as monomers. The system is naturally phase separated into two-phases, with an oil- rich phase on the top and water-rich phase on the bottom because of high interfacial tension between water and oil. There is no organized structure in the two phases. At a temperature where the surfactant has balanced affinities toward water and oil, a three-phase coexistence, with a middle-phase microemulsion
in co-existence with an oil-rich phase on the top and a water-rich phase in the bottom, is to be expected at relatively higher surfactant concentrations simply because of a finite solubilization power of the surfactant for water and oil. The middle-phase microemulsion is an interesting liquid because there is an organized microstructure in it. The microemulsion shows ultra-low interfacial tensions between itself and the water and oil-rich phases. The microstructure of the middle-phase microemulsion is often described as being "bi-continuous" in both water and oil. With further increase in the surfactant concentration, a "minimum" concentration will be reached whereby all the excess water and oil are solubilized into a single-phase microemulsion. This minimum concentration is usually between 5 to 8% for a good microemulsion system. The value of the minimum concentration is a measure of amphiphilicity of the surfactant molecules at that temperature, being lower for higher amphiphilicity. In the vicinity of this minimum surfactant concentration, the microstructure of the one-phase microemulsion is also disordered bi-continuous[30]. As the surfactant concentration further increases, the one-phase microcmulsion transforms into a lamellar structure, which may be called ordered bi-continuous, and then to some other three-dimensional ordered structures. This disorder-to-order transition occurs usually around 15% of the surfactant concentration.

AOT/water/decane system, on the other hand, does not follow this usual pattern of phase behavior. Fig.2-1 is the phase diagram of this system. Around room temperature the surfactant film, consisting of AOT molecules, possesses a spontaneous curvature toward water due to a hydrophilicity-lipophylicity imbalance of AOT molecules in this temperature range. Thus one finds in the ternary phase diagram a large onephase region, called the L_{2} phase, extending from the decane corner into the middle of the phase triangle. In the L_{2} phase, even with equal volume fractions of water and oil, the microemulsion, instead of being bi-continuous, consists of water droplets, coated by a monolayer of AOT, dispersed in decane. With this microstructure, the microemulsion is nearly an insulator because the water droplets are separated from each other. Fig.2-2 is a schematic showing the microstructure of such a droplet. Previous Small-Angle Neutron Scattering(SANS) experiments verified that the average

Figure 2-1: Projection of the phase prism of $\mathrm{AOT} / \mathrm{H}_{2} \mathrm{O} /$ decane system, at $W=40.8$ and one atmosphere pressure, on the temperature-volume fraction plane. This phase diagram shows clearly the structural transitions in the one phase region as mentioned in the text[36]. The study in this chapter concentrates on the lower left corner of this phase diagram which is shown in Fig.2-3.

Hydrophilic head

AOT molecule

Droplet micelle

Figure 2-2: Schematic of the microstructure of a water-in-oil droplet in an AOT /water / decane microemulsion system.
radius $\langle R\rangle$ of the water droplets is determined essentially by the molar ratio of water to AOT, called W, in the system. An approximate empirical relationship between the radius (in \AA) and W is: $\langle R\rangle=\frac{3}{2} W$. Thus, for $W=40$., the average water droplet radius is about $60 \AA[31]$. This water-in-oil droplet structure is maintained even if the volume fractions of water and oil are equal[32], provided the temperature is below $25^{\circ} \mathrm{C}$. This case is in sharp contrast to the usual situation that, for equal water and oil volume fractions, the microstructure of one-phase microemulsions were generally found to be bicontinuous[33, 34]. Even for the AOT/water/decane system, when a small amount of salt (NaCl) is added, the common 2-3-1 phase progression is obtained at around the hydrophile-lipophile balance temperature of $40^{\circ} C[30]$ and a SANS experiment in the one-phase channel at this temperature conclusively showed that the microstructure is bicontinuous[35].

This persistent droplet structure in the ternary AOT/water/decane system can, however, be used to realize an interesting coexistence of a critical phenomenon at a low volume fraction and a high temperature and a percolation phenomenon at lower temperatures but at all volume fractions. In fact, this is a rare situation in which one
has, in a real system, the realization of both the critical and percolation points at the same volume fraction.

Fig.2-3 shows the $T-\phi$ phase diagram of $A O T / \mathrm{H}_{2} \mathrm{O} /$ decane system when the water to AOT molar ratio $W=40.8$. Substitution of $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{D}_{2} \mathrm{O}$ will merely shift all the phase boundaries up by about 2 degrees. ϕ denotes the volume fraction of the dispersed phase, in this case the AOT plus water. In the diagram, one sees a one- phase $\left(L_{2}\right)$ region below $40^{\circ} \mathrm{C}$. In the interval of f between zero and 0.4 , there is a cloud point curve separating the one-phase droplet microcmulsions from twophase droplet microemulsions. The previous SANS experiment established that the average droplet sizes and their size distributions are, within the experimental error, identical in the one-phase and two-phase regions[31]. The critical volume fraction is approximately 0.1 and the critical temperature is 40 degrees[36] in $\mathrm{H}_{2} \mathrm{O}$. Above the volume fraction of 0.4 there is a phase boundary between the L_{2} and a lamellar phase where the microstructure is ordered and bicontinuous in water and decane (not shown in the figure).

The novelty of this phase diagram is, however, the existence of a percolation line, extending from the left of the critical point all the way to higher volume fractions, gradually decreasing in temperature to about 23 degrecs at $\phi=0.7$. Below the percolation line the microemulsion is non-conducting but above the percolation line it becomes conducting. In crossing the line, the conductivity increases by over five orders of magnitude. Fig.2-4 shows a set of logarithm of conductivities s as functions of T and $\phi[37]$. One sees clearly a set of steeply rising sigmoidal curves that can be used to define a set of loci $\left\{T_{p}, \phi_{p}\right\}$ in terms of their inflection points. The asymptotic behavior of conductivity near the threshold, at a given ϕ, can be expressed as:

$$
\begin{equation*}
\sigma=A \cdot\left(\frac{T_{p}-T}{T_{p}}\right)^{-s^{\prime}} \tag{2.1}
\end{equation*}
$$

coming up from below, and

$$
\begin{equation*}
\sigma=B \cdot\left(\frac{T-T_{p}}{T_{p}}\right)^{t} \tag{2.2}
\end{equation*}
$$

Figure 2-3: Projection of the phase prism of $\mathrm{AOT} / \mathrm{H}_{2} \mathrm{O} /$ decane system, at $W=40.8$ and one atmosphere pressure, on the temperature-volume fraction plane. The open circles are the one phase-two phase boundary and solid circles are percolation loci[36].

Figure 2-4: DC conductivity divided by the volume fraction of the $A O T / \mathrm{H}_{2} \mathrm{O} /$ decane system as a function of volume fraction and temperature, showing the percolation behavior[36]. Note the percolation temperature starts at about $40^{\circ} \mathrm{C}$ at 9.8% and progressively decreases to about $22^{\circ} \mathrm{C}$ at volume fraction of 65%.
going down from above. The exponents s^{\prime} and t have been determined experimentally to be 1.2 ± 0.1 and 1.9 ± 0.1 respectively[37]. The exponents are the same when T is fixed but ϕ is varied[37]. The exponent s^{\prime}, determined from conductivities below the threshold, agrees with the value of the index proposed in the so called dynamic (or stirred) percolation theory $[38,39]$, which is distinct from the standard static percolation exponent $s=0.73[40]$. On the other hand, the exponent t deduced from data above the threshold agrees with the static or geometric percolation theory[40]. In the theory of dynamic percolation, the conduction of electricity is conjectured to be mediated by charge carriers (presumably the sodium counterions from the AOT molecules) which migrate rapidly among microemulsion droplets forming transient fractal clusters, due to a short range attractive interaction between the droplets. The percolation threshold is defined theoretically to be a point where the average cluster size becomes infinity, namely, when at least one cluster spans the entire sample. Fig.2-5 is a schematic explaining this concept. Note, for this definition, finite conduction can occur already below the threshold because even there an infinite cluster can exist.

We have an experimental evidence that the percolation in AOT/water/decane system in the L_{2} phase is associated with a clustering phenomenon. The phase diagram that we depict in Fig.2-3 should therefore be obtainable from the standard liquid theory with an appropriate definition of the percolation. We shall outline one such theory in the next section.

2.2 Baxter's Sticky Sphere Model and the Associated Phase Diagram

A reasonable model for a microemulsion in the L_{2} phase is to regard it as a collection of spherical colloidal particles of an average radius $\langle R\rangle$ interacting with one another via a short-range temperature-dependent attractive pair-potential. This pair-potential can, for example, be a square-well potential with a hard-core diameter of a, plus an

Figure 2-5: Schematic of a percolating cluster made of droplets that spans from one side to the other side.

Figure 2-6: The original pair potential function used in Baxter's model.
attractive tail of depth $-\epsilon$ and width Δ as shown in Fig.2-6. The liquid theory with a square-well potential in general can not be solved in an analytical form except for a limiting case in which ϵ tends to infinity and Δ to zero in such a way that the contribution to the second virial coefficient exists. This limiting potential is called Baxter's sticky sphere potential. Specifically, the pair-potential is of the form:

$$
\begin{align*}
& =+\infty & & r<\sigma \\
\beta u(r) & =-\ln [(1 / 12 \tau)(a /(a-\sigma))] & & \sigma<r<a \tag{2.3}\\
& =0 & & r>a
\end{align*}
$$

where $\beta=1 / k_{B} T$, a the outer diameter and σ the inner diameter of the attractive well. It is understood that the limit $\sigma \rightarrow a$ is to be taken in the calculation. From our discussion above, it is obvious that $a=2\langle R\rangle$. The single dimensionless parameter $1 / \tau$ is called the stickiness parameter. The sphere is stickier the smaller τ is. In the limit τ tends to infinity, the pair potential reduces to a hard sphere potential. By equating the respective second virial coefficients, one can map the square-well potential parameters into an equivalent sticky sphere potential parameter in the following way:

$$
\begin{equation*}
\frac{1}{\tau}=12 \frac{\Delta}{a} \exp (\beta \epsilon) \tag{2.4}
\end{equation*}
$$

We assume here $a \gg \Delta$. It is seen from Eq.2.4 that the stickiness increases as $\frac{\Delta}{a}$ or $\beta \epsilon$ increase. For an AOT in decane, the parameter Δ corresponds roughly to the length of the hydrocarbon tail which can stretch out as the temperature increases.

Baxter showed that[41] the Ornstein-Zernike equation using this sticky pair- potential can be solved analytically in the Percus-Yevick approximation[42]. The PY approximation in this case amounts to a reasonable ansatz that the direct correlation function $c(r)=0$ outside the range of the potential a. Combining this ansatz with the exact boundary condition for hard spheres that the pair-correlation function $g(r)=0$ inside the hard core a and has a form of delta function on the surface of the sphere, the direct correlation function inside the hard core can be found. Thus onc can obtain an analytical form of the three-dimensional Fourier transform of the
direct correlation function $c(k)$ as a function of the volume fraction of the spheres η and the stickiness parameter $1 / \tau$. Here, $\eta=\rho a^{3} \pi / 6$, and ρ is the number density of the particles. In comparing the theory with experiments for the scattering intensities, we shall identify η with ϕ.

First, the inter-particle structure factor $S(k)$ is calculated from the relation:

$$
\begin{equation*}
S(k)=\frac{1}{1-\rho c(k)} \tag{2.5}
\end{equation*}
$$

From the limiting value $S(k \rightarrow 0)=\rho k_{B} T \chi_{T}$ we can get the isothermal compressibility χ_{T}. By integrating χ_{T} with respect to the number density, one obtains the compressibility equation of states:

$$
\begin{equation*}
\frac{\beta p}{\rho}=\frac{1+\eta+\eta^{2}}{(1-\eta)^{3}}-\frac{\lambda \eta(1-\eta)(1 \mp \eta / 2)-\lambda^{3} \eta^{2}(1-\eta)^{3} / 36}{(1-\eta)^{3}} \tag{2.6}
\end{equation*}
$$

where the parameter λ is given by the smaller real root of:

$$
\begin{equation*}
\frac{\eta}{12} \lambda^{2}-\left(\tau+\frac{\eta}{1+\eta}\right) \lambda+\frac{1+\eta / 2}{(1-\eta)^{2}}=0 \tag{2.7}
\end{equation*}
$$

From the equation of states, one finds the existence of gas-liquid phase transition with a critical point occurring at $\eta_{c}=0.1213$ and $\tau_{c}=0.0976$. Again, by integrating the compressibility equation of states, Barboy[43] was able to obtain an analytical chemical potential μ valid both in the one- and two-phase regions. Having the chemical potential and pressure, one can then obtain the coexistence curve by solving for the coexisting gas and liquid densities at a given τ, which is less than τ_{c} in the twophase region. Fig.2-7a shows the cocxistence line obtained this way in a τ_{c} / τ vs. η / η_{c} plot. In the same figure the corresponding spinodal line is also plotted in a dash line. The spinodal line is the loci of $\{\tau, \eta\}$ where the isothermal compressibility diverges.

It is seen that the coexistence curve is highly skewed toward the low volume fraction side, a feature which is often seen in micellar solutions and microemulsions. This is due to the interaction which is short range and strong and is in sharp contrast to the well-known Van der Waal's case, which is derived from an interaction that is long range and weak. To see the degree of asymmetry on the gas and liquid sides, I

Figure 2-7: Theoretical percolation, cocxistence and spinodal lines according to Baxter's model. (a) gives universal relations between τ_{c} / τ and η / η_{c} according to the model. (b) shows the results after a transformation given by Eq.2.12.
have worked out the respective asymptotic behaviors:

$$
\begin{array}{ll}
1-\frac{\tau}{\tau_{c}}=0.1584\left(1-\frac{\eta}{\eta_{c}}\right)^{2} & \eta<\eta_{c} \tag{2.8}\\
1-\frac{\tau}{\tau_{c}}=0.0264\left(\frac{\eta}{\eta_{c}}-1\right)^{2} & \eta>\eta_{c}
\end{array}
$$

The skewness can be assessed from the ratio of amplitudes in Eq.2.8, namely $0.1584 / 0.0264=6$. This equation also shows that the PY approximation gives the mean field exponent $\beta=1 / 2$.

One of the nicest features of Baxter's model is, however, that one can also derive analytically the percolation loci in the $\{\tau, \eta\}$ plane. Coniglio et al[44] introduced a pair-connectedness function $P(r)$ in 1977 in connection with development of a continuum percolation theory. Given a particle at the origin, $4 \pi r^{2} \rho P(r) d r$ is the number of particles in the spherical shell $(r, r+d r)$ which are connected to this central particle and belong to the same cluster. Coniglio et al showed that $P(r)$ also satisfied an Ornstcin-Zernike type equation with a modified direct correlation function $c^{+}(r)$: By invoking the short range nature of the direct correlation function, namely, $c^{+}(r)=0$, for $r>a$, and the sticky sphere condition:

$$
\begin{equation*}
P(r)=\frac{1}{12} \lambda a \delta(r-a) \tag{2.9}
\end{equation*}
$$

Chiew and Glandt[45] was able to show that the average cluster size S is given by

$$
\begin{equation*}
S=\frac{1}{(1-\lambda \eta)^{2}} \tag{2.10}
\end{equation*}
$$

The onset of percolation can be defined as the point where S diverges. Thus percolation loci in the $\{\tau, \eta\}$ plane is given by $\eta=1 / \lambda$, leading to an equation:

$$
\begin{equation*}
\frac{1}{\tau}=\frac{12(1-\eta)^{2}}{19 \eta^{2}-2 \eta+1} \tag{2.11}
\end{equation*}
$$

Fig.2-7a shows also a percolation line according to Eq.2.11.
In order to compare the theoretical phase diagram with the actual one, we have to specify the relationship between the stickiness parameter $1 / \tau$ and the temperature.

Eq. 2.4 suggests that $1 / \tau$ is proportional to the interaction strength and the interaction strength should increase with temperature because we have a lower consolute point. The stickiness in our system is a result of entropy difference. Consider two droplets in the system as shown in Fig.2-2, when they are far apart, there are oil molecules penetrate into the hydrocarbon shell of the droplets; when they are close together, the hydrocarbon shells of them penetrate each other and expell away the oil molecules. The release of the oil molecules increases the entropy and decreases the free energy of the system so it is a favorable state for the system. At higher temperature, it is even more favorable because $U=E-T S$, where U is the free energy, E is the enthalpy, T is the temperature, and S is the entropy. Therefore, the droplets are stickier at higher temperature. The simplest relationship with two parameters α and γ is

$$
\begin{equation*}
\frac{\tau_{c}}{\tau}=1-\alpha\left(1-\frac{T}{T_{c}}\right)^{\gamma} \tag{2.12}
\end{equation*}
$$

We can try to fit the experimental coexistence curve using the sticky sphere model supplemented by Eq. 2.12 and then predict the percolation loci with it. Fig.2-7b shows the results of choosing $\alpha=13$ and $\gamma=1$.

2.3 Analysis of SANS Data Below T_{c}

SANS intensity distribution from a system of polydispersed spherical droplets can be written as[46]:

$$
\begin{equation*}
I(Q)=(\Delta \rho)^{2} \phi_{w} \frac{4 \pi}{3} \bar{R}^{3} \frac{(Z+6)(Z+5)(Z+4)}{(Z+1)^{3}}\langle\bar{P}(Q)\rangle\langle S(Q)\rangle \tag{2.13}
\end{equation*}
$$

where $\Delta \rho=\rho_{w}-\rho_{s}$ is the difference of scattering length densities of $D_{2} O$ and protonated decane, ϕ_{w} the volume fraction of $D_{2} O, \bar{R}=\langle R\rangle$, the average radius of the water core, and Z the index related to the polydispersity. The normalized, volume square averaged particle structure factor is defined as:

$$
\begin{equation*}
\langle\bar{P}(Q)\rangle=\frac{\left\langle R^{6}\left[\frac{3 j_{1}(Q R)}{Q R}\right]^{2}\right\rangle}{\left\langle R^{6}\right\rangle} \tag{2.14}
\end{equation*}
$$

The form factor of a spherical particle of radius R is $F(Q)=3 j_{1}(Q R) /(Q R)$. The form factor averaged inter-particle structure factor is defined as:

$$
\begin{equation*}
\langle S(Q)\rangle=\frac{\sum_{i, j}^{p}\left(\rho_{i} \rho_{j}\right)^{1 / 2} F_{i}(Q) F_{j}(Q) S_{i j}(Q)}{\sum_{i}^{p} \rho_{i} F_{i}^{2}(Q)} \tag{2.15}
\end{equation*}
$$

The size average is taken with respect to a Schultz distribution, which is known to be accurate in the case of AOT/water/decane system[31]. In this case the degree of polydispersity is $\Delta R /\langle R\rangle=(1+Z)^{-1 / 2}$. The partial structure factor, $S_{i j}(Q)$, for a multicomponent sticky sphere system has been given by Robertus et al[47], for $i, j=1$ to 9 , using Baxter's method. The FORTRAN package for calculating the partial structure factors has been kindly supplied to us by Dr. J.G.H. Joosten. The volume square averaged particle structure factor, assuming the Schultz distribution of sizes, had previously been given in an analytical form by Kotlarchyk et al[48].

Eq.2.13 is a theory containing three adjustable parameters $\langle R\rangle, Z$ and τ. These parameters are functions of temperature and volume fraction. Here we assume that particles of different sizes have the same degree of stickiness.

SANS experiments were performed at the National Institute of Standard and Technology (NIST). Wave-length of neutrons was selected at $\lambda=5 \AA$ with $\Delta \lambda / \lambda=0.147$. The radius of the source aperture was 1.9 cm and the radius of the sample aperture was 0.6 cm . The distance between the source aperture and the sample aperture was $1,622 \mathrm{~cm}$. Every scattering curve was a combination of two measurements at two differnt sample-to-detector distances of 300 cm and $1,110 \mathrm{~cm}$, in order to have both low Q and high Q data.

Fig.2-8 shows results of fitting Eq. 2.13 to the intensity data from samples at $\phi=$ $0.08,0.10$, and 0.12 , all measured at $T=40^{\circ} C$, closest to the critical temperature. The upper three graphs show experimental $I(Q)$, in \log scale, vs. Q plots and their theoretical analysis results (solid lines). The lower three graphs depicts the normalized, volume square averaged particle structure factor and the form factor averaged inter-particle structure factor extracted from the fits. The fits are satisfactory and from which we were able to extract, for all three samples, $\langle R\rangle=50 \AA$, close to what
we estimated in the introduction, and $Z=8$, corresponding to a polydispersity index of 33%. The dimensionless parameter $\tau=0.112$ for the 8% sample is closest to the critical value $\tau_{c}=0.0976$. From this we deduce that the critical volume fraction for the microemulsion system we studied is 8%. As can be seen, the form factor averaged inter-particle structure factor shows a zero angle peak due to critical scattering and is devoid of the first diffraction peak due to the low volume fractions.

Fig.2-9 shows results of the analyses of the temperature dependence of the scattering intensity distributions from the 8% sample. As temperature increases from 30 to 35 and to $40^{\circ} \mathrm{C}$ the stickiness parameter progressively decreases toward the critical value, while the average size decreases and width of the size distribution increases slightly.

2.4 Analysis of the Phase Diagram

What is most pleasing to see is, however, that the temperature variation of τ_{c} / τ derived from the SANS data comes out in the form as given in Eq.2.12. This situation is similar to the case of non-ionic micellar solution investigated by Menon et al[49]. These authors suggested a linear relation between τ_{c} / τ and T / T_{c}. Fig.2-10 plots the τ_{c} / τ values of obtained from SANS data against $\left(1-T / T_{c}\right)^{0.94}$. Linear relations are obtained by adjusting the value of T_{c}. For 8% case the T_{c} turns out to be $42.7^{\circ} \mathrm{C}$, close to the actual T_{c} in a $D_{2} O$ based microemulsion system. The slope of the straight line gives $\alpha=11.03$ in Eq.2.12.

We can derive Eq. 2.12 heuristically in the following way: We study the low Q behavior of the form factor averaged structure factor $S(Q)$ for a system of sticky hard spheres of an average diameter $100 . \AA$ and a polydispersity index of $Z=10$ at the critical volume fraction $\eta_{c}=0.1213$. Fig.2-11 shows that at sufficiently small Q, the Ornstein-Zernike functional form is obtained and we can thus extract the longrange correlation length ξ as a function of $1 / \tau$ as we approach the critical point. Physically, as we approach the critical point, the droplets in the microemulsion form clusters. The size of the clusters become larger as the stickiness of the surfaces of

Figure 2-8: SANS intensity distributions and their analysis by Baxter's model with a polydispersity. In the top of the figure, we show SANS intensity distributions for 8, 10 and 12% volume fraction samples at $40^{\circ} \mathrm{C}$. The analysis shows that 8% case is closest to the critical volume fraction as indicated by the lowest value of τ obtained. In the lower part of the figure we present the corresponding particle structure factor $P(Q)$ and the inter-particle structure factor $S(Q)$. It can be seen from the figure that $P(Q)$ for three cases are almost identical indicating the same size and size distribution of the microemulsion droplets.

Figure 2-9: SANS intensity distributions of the 8% sample as function of temperature. It is notable that $S(Q)$ increasingly peaks in the forward direction as the temperature approaches the critical point. But the particle sizes and size distributions stay the same.

Figure 2-10: The stickiness parameter $1 / \tau$ extracted from SANS data are plotted as functions of $\left(1-T / T_{c}\right)^{0.94}$ in order to obtain the slope $-\alpha$ and T_{c}. This value of α for 8% volume fraction is used to calculate the theoretical coexistence curve shown in Fig.2-13. It is remarkable that the T_{c} obtained from the 8% data agree with experimental T_{c} measured for the AOT microemulsion made with $D_{2} O$.
the droplets increases and finally they form a separate phase. Therefore, ξ should increase as $1 / \tau$ increases. Fig.2-12 plots \log of the correlation length against \log of ($1-\tau_{c} / \tau$). We obtain a series of straight lines implying validity of a relation

$$
\begin{equation*}
\xi \sim\left(1-\frac{\tau_{c}}{\tau}\right)^{-\nu^{\prime}} \tag{2.16}
\end{equation*}
$$

where the exponent ν^{\prime} depends on the polydispersity index Z. When Z is very large, namely when the system is a monodisperse sticky spheres, $\nu^{\prime}=0.5$; but when $Z=10$, corresponding to the system under study, $\nu^{\prime}=0.532$. On the other hand, it is known experimentally as well as theoretically that near the critical point of a fluid, the correlation length is a function of the temperature distance from the critical point according to

$$
\begin{equation*}
\xi \sim\left(1-\frac{T}{T_{c}}\right)^{-\nu} \tag{2.17}
\end{equation*}
$$

with $\nu=0.5$ as in a mean field theory like the Baxter's solution. Eq.2.16 and 2.17 taken together leads to our previous ansatz, Eq. 2.12 in which

$$
\gamma=\frac{\nu}{\nu^{\prime}}=\frac{0.500}{0.532}=0.94
$$

Fig.2-13 shows a comparison of experimental cloud point curve (open circles) and the theoretical co-existence curve (solid line) and spinodal line (dash line) calculated by taking a polydisperse sticky spheres with the stickiness parameter τ depending on temperature according to a relation:

$$
\begin{equation*}
\frac{\tau_{c}}{\tau}=1-11\left(1-\frac{T}{T_{c}}\right)^{0.94} \tag{2.18}
\end{equation*}
$$

The discrepancy on the upper-right corner of Fig.2-13 is due to the microstructure of the microemulsion in that region is bicontinuous rather than droplet. The stickysphere model doesn't apply for a bicontinuous microemulsion.

In order to account completely for the percolation loci using Eq.2.11 and 2.12, we have to introduce a temperature dependent effective sticky sphere diameter. This

Figure 2-11: Small Q behavior of $S(Q)$ function near the critical point. The graph shows that $S(Q)$ follows the Ornstein-Zernike function at sufficiently small Q so that the correlation length ξ can be extracted. It can be seen that as τ approaches $\tau_{c}(=0.0976)$ the correlation length increases.

Figure 2-12: The dependence of the extracted correlation length as a function of ($1-\tau_{c} / \tau$). It is seen that near the critical point, this is a power law dependence with an index ν^{\prime}. For a monodisperse system (corresponding to large Z), ν^{\prime} is 0.5 . As the polydispersity increases (corresponding to decreasing value of Z), the value of ν^{\prime} increases. At 33% polydispersity, ν^{\prime} is 0.532 .

Figure 2-13: Experimental cloud points and the corresponding theoretical coexistence and spinodal curves based on Baxter's model after the transformation of Eq.2.12, with $\alpha=11$ and $\gamma=0.94$ (see text). The percolation loci was fitted with the Baxter's model using the method described in next figure caption.
idea is reasonable because the definition of connectivity of two spheres should be dependent on thermodynamic state of the liquid. In fact it is intuitively appealing to postulate that the higher the temperature the easier for the counterions to migrate from one water core of a droplet to another in the neighborhood. Therefore the effective diameter of the microemulsion droplets, as far as electrical percolation is concerned, is larger for higher temperatures. Fig.2-14 shows the result of force fitting the experimental percolation loci (solid circles) with Eq.2.11 (solid line). The ratio, $\left(\eta_{S H S} / \eta\right)^{1 / 3}$, which is a measure of the ratio of the effective diameter to the actual diameter, turns out to be a linear function of T / T_{c}. It is shown in Fig.2-14 as a solid line.

2.5 Dynamics of the Droplet Number Density Fluctuation near the Critical Point

We shall turn next to the discussion of some aspects of the droplet dynamics near the critical point. The starting point of our theory is an assumption that the slow dynamics of the droplets is dominated by diffusive motions of the percolation clusters[50]. This assumption is expected to be good in the vicinity of the percolation threshold where large, transient fractal clusters are formed. Formation of the transient fractal clusters is a necessary condition for the dynamic percolation theory[38] to be valid. We have used it to explain the conductivity exponent below the percolation threshold in the introduction. In AOT/water/decane system, as one can see from the phase diagram (Fig.2-3), the critical point is only about two degrees above the percolation point. One therefore expects that the cluster structure and cluster size distribution are similar in the critical region to the percolation point.

For light scattering, the wave-length of visible light is much larger than the droplet sizes. Hence, for this Q range, the particle structure factor is nearly unity and we can ignore it.

First, we calculate the inter-particle structure factor $S_{k}(Q)$ for a cluster containing

Figure 2-14: The temperature dependence of the apparent volume fraction $\eta_{S H S}$ of sticky spheres which are needed to fit the percolation line. We plot the ratio $\left(\eta_{S H S} / \eta\right)^{1 / 3}$ versus T / T_{c} which results in a straight line. This shows that the apparent diameter of sticky spheres which is percolating increases as the temperature increases.
k particles. We do this by Fourier transforming the k-cluster pair correlation function,

$$
\begin{equation*}
\rho\left(g_{k}(r)-1\right)=\frac{D}{4 \pi R_{1}^{D}} \frac{e^{-\tau / R_{k}}}{r^{3-D}} \tag{2.19}
\end{equation*}
$$

where D is the fractal dimension of the clusters, $R_{k}=R_{1} k^{1 / D}$, the radius of gyration of the k-cluster, and R_{1} the average radius of the droplet. The result can be put in an analytical form[51]:

$$
\begin{equation*}
S_{k}(Q)=\frac{k D \Gamma(D) \sin \left[(D-1) \arctan \left(Q R_{k}\right)\right]}{(D-1) Q R_{k}\left[1+Q^{2} R_{k}^{2}\right]^{(D-1) / 2}}+1 \tag{2.20}
\end{equation*}
$$

With the structure factor, the intermediate scattering function $F(Q, t)$ can be calculated as

$$
\begin{equation*}
F(Q, t)=\frac{\sum_{k=1}^{\infty} k N(k) S_{k} \overline{(Q)} \exp \left(-D_{k} Q^{2} t\right)}{\sum_{k=1}^{\infty} k N(k) S_{k}(Q)} \tag{2.21}
\end{equation*}
$$

The discrete sum can be converted into an integral over k by introducing a cluster size distribution function of the form: $N(k) \approx k^{1-\tau} \exp (-k / S)[52]$. In this expression τ is the polydispersity exponent, S the average cluster size, $D_{k}=D_{1} k^{-1 / D}$ the translational diffusion coefficient of the k-cluster and D_{1} the Stokes-Einstein diffusion coefficient of the droplet. Numerical simulations for three-dimensional percolation clusters gave a fractal dimension $D=2.5$ and the polydispersity exponent $\tau=2.2[52]$. The measured photon correlation function is then given by $C^{2}(Q, t)=1+|F(Q, t)|^{2}$.

The first cumulant, or the average relaxation rate, is the logarithmic derivative of $C(Q, t)$ evaluated at $t=0$. It is given by:

$$
\begin{equation*}
\Gamma(Q)=\frac{\sum_{k=1}^{\infty} k N(k) S_{k}(Q) D_{k} Q^{2}}{\sum_{k=1}^{\infty} k N(k) S_{k}(Q)} \tag{2.22}
\end{equation*}
$$

2.5.1 Dynamic Slowing-Down of the Average Relaxation Rate

Eq. 2.22 for the average relaxation rate $\Gamma(Q)$ can be expressed in terms of two dimensionless variables $x=Q \xi$ and $x_{1}=Q R_{1}$, where the correlation length is defined
as $\xi=R_{1} S^{1 / D} / 3^{1 / 2}$. The complete analytical form of the $\Gamma(Q)$ near the percolation threshold has been given in [50]. We shall limit our discussion here to the particular case near the critical point. In this case the cluster structure factor Eq.2.20 is approximated by its low Q form $S_{k}(Q)=k \exp \left(-Q^{2} R_{k}^{2} / 3\right)$. An analytical expression of $\Gamma(Q)$ is obtained by converting Eq. 2.22 into an integral. It is more revealing to construct a scaling function defined as: $\Gamma^{*}\left(x, x_{1}\right)=\Gamma(Q) / D_{1} R_{1} Q^{3}$. It is given by [53]

$$
\begin{equation*}
\Gamma^{*}\left(x, x_{1}\right)=\frac{3 \pi}{8} \frac{\Gamma\left(3-\tau, x_{1}^{D}\right) \Gamma(3-\tau-1 / d, u)}{\Gamma\left(3-\tau-1 / D, x_{1}^{D}\right) \Gamma(3-\tau, u)}\left[1+\frac{1}{x^{2}}\right]^{1 / 2} \tag{2.23}
\end{equation*}
$$

where $u=\left(\frac{x_{1}}{x}\right)^{D}\left[1+x^{2}\right]^{D / 2}$, and $\Gamma(a, b)$ is the incomplete Euler gamma function. It should be remarked that the presence of the second non-universal variable x_{1} in Eq. 2.23 is due to the finite size of the constituent particles. In this regard, it is remarkable that in the limit of small particles,

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0} \Gamma^{*}\left(x, x_{1}\right) \approx \frac{K(x)}{x^{3}} \tag{2.24}
\end{equation*}
$$

where $K(x)$ is the Kawasaki universal dynamic scaling function originated from a mode coupling theory:

$$
\begin{equation*}
K(x)=\frac{3}{4}\left[1+x^{2}+\left(x^{3}-\frac{1}{x}\right) \arctan (x)\right] \tag{2.25}
\end{equation*}
$$

which is known to account for light scattering data from binary mixtures of molecular liquids very well. $\Gamma^{*}\left(x, x_{1}=0\right)$ has simple asymptotic behavior

$$
\begin{array}{ll}
\text { For } x \ll 1 & \Gamma^{*}(x)=a / x \tag{2.26}\\
\text { For } x \gg 1 & \Gamma^{*}(x)=b
\end{array}
$$

where a and b are known constants. Fig.2-15 illustrates the cross-over from the small x to large x behavior as expressed by Eq.2.26. Using light scattering data taken near the critical point of the AOT/water/decane system, we illustrate the agreement of measured first cumulants of photon correlation functions and prediction of Eq. $2.23[53]$. It is clear from the graph that the finite size effect of microemulsion

Figure 2-15: The dynamic scaling function $\Gamma^{*}\left(x, x_{1}\right)$ associated the average relaxation time of the cluster diffusion plotted as a function of $1 / x$ for two values of the scaled droplet size x_{1}. Open circles are experimental data from AOT/water/decane system near the critical point. The dashed line corresponds to Kawasaki's mode-mode coupling result. The solid line is the dynamic droplet model result presented in the text.
droplets is large enough to be detectable in a light scattering experiment.
Analogous dynamic slowing-down phenomenon near percolation points at higher volume fractions has been observed and explained by the theory [50, 54].

2.5.2 Stretched Exponential Decay of the Time Correlation Function at Long Time

Again Eq. 2.21 in its integral form can be computed analytically[55]. We then obtain the time correlation function, $C(u, v)$, in terms of the scaling variable u and a dimensionless time variable $v=D_{1} R_{1} Q^{3} t\left(1+x^{-2}\right)^{1 / 2}$. It is sufficient for the purpose here to state that at sufficiently short time, we have an exponential decay with the average relaxation rate $\Gamma(Q)$ given before,

$$
\begin{equation*}
C(u, v \rightarrow 1)=\exp [-\Gamma(Q) t] \tag{2.27}
\end{equation*}
$$

and at long time such that $\Gamma t \gg 1$, the time correlation function approaches an stretched exponential form,

$$
\begin{equation*}
C(u, v \gg 1)=\exp \left[-(\bar{\Gamma} t)^{\beta}\right] \tag{2.28}
\end{equation*}
$$

with $\bar{\Gamma}$ given by

$$
\begin{equation*}
\bar{\Gamma}=\beta^{1 / \beta} D^{1 / D} D_{1} R_{1} q^{3}\left(1+\frac{1}{x^{2}}\right)^{1 / 2} \tag{2.29}
\end{equation*}
$$

and the exponent $\beta=D /(D+1)$ is a universal number 0.713 .
Cross-over from the short-time exponential decay to the long-time stretched exponential decay of the photon correlation function occurs at the dimensionless variable $\Gamma t=1$. Near the percolation points at high volume fractions, one has a similar crossovers from exponential to stretched exponential behavior[50], except the cross-overs occur at earlier times so the stretched exponential decays can be easily observed in experiments[46].

2.6 Conclusion

We have given concrete evidence that both the structure and dynamics observed in a three-component microcmulsion system, AOT/water/decane, near the critical and percolation points can be explained in terms of a model based on the formation of transient, polydisperse fractal clusters due to a short-range attraction between microemulsion droplets. This attractive interaction increases in a specific way as the temperature increases toward the percolation and critical points. We derive a quantitative relation between the interaction strength and the temperature from analyses of SANS data in the one-phase region approaching the critical point. This relation serves to explain the over-all feature of the phase diagram, including the cloud-point curve and the percolation line.

The diffusive cluster dynamics also accounts for the Q-dependence of the first cumulant of photon correlation functions in the critical region. The dynamic scaling
function associated with the average relaxation rate deviates significantly from the well-known Kawasaki function at large Q due to the large sizes of the microemulsion droplets[53]. The long-time behavior of the photon correlation function is shown to be a stretched exponential form with a universal stretch exponent of 0.713[50].

A FORTRAN computer program used to calculate the structure factor and interparticle structure factor for a multicomponent droplet system using Baxter's model is listed in Appendix B.

Chapter 3

Structural Study of the Liquid and Gel Phases of a Semifluorinated Alkanes in a Mixed Solvent

3.1 Introduction

Fluorocarbons and hydrocarbons are both hydrophobic and apolar molecules, with very low dipolar moments, therefore in principle they are expected to form regular mixtures, due to the weakness of the intermolecular forces. Instead, binary mixtures of $C_{m} F_{2 m+2}$ and $C_{n} H_{2 n+2}$ are an interesting and surprising example of phase separating systems $[56,57,58]$.

The plot of demixing temperature $\left(T_{0}\right)$ versus concentration (x) provides the phase separation curve with an upper critical solution temperature(UCST) and a critical concentration value x_{c}. The curve is quite asymmetric and the values of x_{c} and T_{c} depend on the chemical structure of the two liquids.

Unlike other phase separating systems, mixtures of fluorocarbons and hydrogenated solvents show larger deviations from the "regular solution" theory (S2,M2) than those expected from the difference in solubility parameter δ.

In spite of their chemical similarity, fluorocarbons and hydrocarbons possess dif-
ferent properties and are immiscible below a certain demixing temperature, as a result of the different chain conformations: in fact $\left(\mathrm{CH}_{2}\right)_{n}$ segments arrange in the usual zigzag conformation with a cross-section area of $18.5 \AA^{2} /$ molecule, whereas a $\left(C F_{2}\right)_{m}$ chains possesses a typical $15 / 7$ helix conformation and the cross-section area is $28.3 \AA^{2} /$ molecule[60]. For this reason fluorocarbon/hydrocarbon mixtures show characteristic phase boundaries (demixing temperature versus either molar or volume fraction) with a broad maximum that corresponds to the upper critical solution temperature $\left(T_{c}\right)$ and to the critical concentration $\left(x_{c}\right)$ or critical volume fraction $\left(\phi_{c}\right)$.

Semifluorinated n-alkanes (or perfluoroalkyl-alkanes) are diblock short-chain copolymers that show peculiar properties in the liquid and in the solid state. They are constituted by two different blocks: a fluorinated chain linked to a hydrocarbon tail $F_{3} C\left(C F_{2}\right)_{m-1}-\left(\mathrm{CH}_{2}\right)_{n-1} \mathrm{CH}_{3}$ (shortly $F_{m} H_{n}$). Since the two segments are covalently bonded, they cannot phase separate.

The presence of both fluorinated and hydrogenated tails in a semifluorinated alkane produces interesting phenomena both in the solid and in the liquid state. In the solid state $F_{m} H_{n}$ produce liquid crystals, show peculiar ordered arrangements, and undergo some phase transitions that have been extensively studied $[62,63,64,65$, $66,67,68,69]$.

In the liquid state, semifluorinated alkanes produce micellar aggregates when dissolved in fluorinated or hydrogenated solvents[70, 71, 72, 64]. Being completely insoluble in water, they also form stable Langmuir monomolecular films and show a slight surface activity at the air/water interface[74]. Heating up a solution containing $F_{m} H_{n}$ micellar aggregates results in the destruction of these aggregates, whilst at lower temperatures the solution forms a gel, depending on the nature of the solvent and on the concentration of the copolymer. These gels are constituted by long fibers of copolymer in an extended network that entraps free solvent molecules. The gels look like soft, high viscosity materials, that partially dissolve by shaking. By heating up the gel, a clear solution is quickly restored.
$F_{m} H_{n}$ solutions in different solvents have been usually studied by several tech-
niques such as static and dynamic light-scattering, NMR, UV absorption, small-angle neutron and X-ray scattering (SANS and SAXS respectively), differential scanning calorimetry (DSC), surface tension, and dye solubilization measurements. These data clearly show that the copolymer monomers form micellar aggregates, depending on the temperature, on the chemical composition of the $F_{m} H_{n}$ and on the nature of the solvent. The incompatibility between fluorinated and hydrogenated blocks is the main factor that controls the formation of such aggregates. In fact in the presence of a selective solvent, the two blocks will establish different interactions with the solvent molecules and therefore will be confined in different regions of the supramolecular structure.

Since $F_{m} H_{n}$ copolymers are able to form aggregates when dissolved in a selective solvent, they have been named as "primitive amphiphiles"; this term refers to an apolar molecule that is formed by two incompatible units and possesses a low dipolar moment. According to this recent definition, primitive amphiphiles represent the ancestors of the whole amphiphile' family, because of the presence in the same molecule of two incompatible and immiscible moieties, and therefore it is expected that they will provide a useful tool for testing molecular theories of surfactant aggregation.

The addition of even small quantities of $F_{8} H_{16}$ to a mixture of perfluorooctane (PFO) and i-octane (i-OCT) produced a significant lowering of the upper consolute temperature and a relevant broadening of the phase separation curve. Light-scattering from the liquid sample was not ascribed to the presence of small aggregates, but to a critical scattering related to the demixing of the two solvents.

Larger amounts of copolymer added to the PFO/i-OCT system resulted in the formation of a white gel below a certain liquid-gel transition temperature, and in this case no solvent demixing was observed upon cooling. In this high-copolymer state, dynamic light-scattering and SAXS measurements performed on the liquid samples showed the presence of small aggregates characterized by an average hydrodynamic diameter of about $30 \AA$. Lowering the temperature, the system evolves toward the formation of a bigger structure and eventually to the formation of an extended, ribbonlike, sheet.

According to the model for the liquid phase[60], some copolymer molecules aggregate in the mixed solvent and form small micelles. As the temperature decreases and approaches the liquid-gel phase transition temperature, the original micelles grow and form an extended, ribbon-like structure, where the copolymer molecules produce a lamellar pattern, with the fluorinated chains closely packed in a side-by-side and head-by-head arrangement. The hydrogenated segments will interdigitate in the internal region, given the smaller cross-section of the hydrocarbon blocks respect to the section of the fluorinated helices. As the temperature lowers, other copolymer monomers will be captured and several lamellar layers will be formed, producing birefringent elongated structures that can be observed under a polarizing microscope.

Two plausible models are proposed for the gel phase based on the birefringence picture $[60,70]$ which includes both the fine structure of the crystalline part and the mesoscopic aggregational behavior that leads to the formation of the fibers. We then construct the particle structure factors which approximately describe both the internal structure and the mesoscopic structure of the fibers.

3.2 Materials and Methods

Iso-octane was purchased from Fluka (Buch, Switzerland) and perfluorooctane (98\%) was supplied by M\&G Chemicals (Stockport, England). The solvents were used without further treatments. The semifluorinated n -alkane $F_{8} H_{16}$ was obtained according to the two-step procedure already described previously[72]:

1. $\mathrm{F}\left(\mathrm{CF}_{2}\right)_{8} \mathrm{I}+\mathrm{CH}_{2}=\mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{14} \mathrm{H} \longrightarrow \mathrm{F}\left(\mathrm{CF}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CHI}-\left(\mathrm{CH}_{2}\right)_{14} \mathrm{H}$
2. $\mathrm{F}\left(\mathrm{CF}_{2}\right)_{8}-\mathrm{CH}_{2}-\mathrm{CHI}-\left(\mathrm{CH}_{2}\right)_{14} \mathrm{H}+\mathrm{H}_{2} \longrightarrow F\left(\mathrm{CF}_{2}\right)_{8^{-}}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{H}$

The synthesis was performed by Dr. P. Lo Nostro at University of Florence, Italy. $F_{8} H_{16}, \mathrm{PFO}$, and i-OCT were weighted directly in a glass tube and the sample was slowly heated in a thermostated bath $\left(\pm 0.1^{\circ} \mathrm{C}\right)$, until it became completely clear, cooled down to phase separation, and then heated up again. The cooling-heating cycle was repeated slowly and several times on each sample. The liquid-liquid phase
separation temperature $\left(T_{0}\right)$ was then calculated as the average of the cloud point temperature $\left(T_{c p}\right)$ and the reclarification temperature ($T_{r e}$). The difference between $T_{c p}$ and $T_{r e}$ was always within $\pm 0.5^{\circ} \mathrm{C}$. The sample composition was then changed, and the phase separation curve obtained by plotting T_{0} as a function of PFO molar fraction $\left(x_{1}\right)$.

For larger amounts of copolymer, the homogeneous liquid mixture does not phase scparate into two liquid phases upon cooling, but rather forms a white solid gel. The liquid-gel transition temperature $\left(T_{g}\right)$ can be measured by recording the temperature at which the gel first appears in the liquid mixture when the sample is cooled down $\left(T_{1}\right)$, and the temperature at which the gel converts into a clear liquid upon heating $\left(T_{2}\right) . T_{g}$ is then calculated as the average between T_{1} and T_{2}.

Density, refractive index and viscosity measurements were carried out following the procedures reported in [72]. Birefringence observations were made with a ReichertZetopan polarizing microscope, with crossed nicols, on the liquid and gel samples. Static and dynamic light-scattering measurements were performed with a Brookhaven Instr. Co. apparatus $\left(\lambda=514.5 \mathrm{~nm}, A r^{+}\right.$source $)$and the data analyzed with a BI-2030 AT Digital Correlator. The scattering intensity was recorded at different temperatures and at different scattering angles ($15^{\circ}<\theta<160^{\circ}$). Samples for lightscattering experiments were filtered in order to remove the dust.

Small-angle X-ray-scattering experiments were carried out at the Small-Angle X-Ray-Scattering Facility, Oak Ridge National Laboratory, Oak Ridge, TN. The spectrometer is equipped with a rotating anode X-ray source and a $20 \times 20 \mathrm{~cm}^{2}$ positionsensitive area detector with 64×64 pixels. X-Rays from $\mathrm{Cu} K_{\alpha}$ line with $\lambda=1.54 \AA$ were extracted using a graphite monochromator. The source-to-sample distance was 2 m , with three collimation pin holes, the resulting beam spot at the sample position is 1.5 mm . The sample-to-detector distance was 2.065 m . This configuration gave us a Q range of $0.01-0.25 \AA^{-1}$. The scattering data were corrected for background, detector efficiency, and sample cell scattering. The absolute normalization of the scattering intensity was made with a vitreous carbon standard.

Table 3.1: List of data extracted from the phase separation curves.

	$T_{c}(K)$	x_{c}	$\left(\phi_{P F O} / \phi_{i-O C T}\right)_{c}$
$X=\infty$ (curve A)	300.4	0.321	0.71
$X=20$ (curve B)	290.4	0.422	1.10
$X=10$ (curve C)	283.5	0.472	1.36

3.3 Phase Diagram, Light Scattering, and Birefringence

Fig.3-1(a) shows the liquid-liquid phase separation temperature $\left(T_{0}\right)$ as a function of the PFO molar fraction $\left(x_{1}\right)$, for different $\mathrm{PFO} / i-O C T / F_{8} H 16$ mixtures. Defining X as the molar ratio between i-OCT and $F_{8} H_{16}$, curve A corresponds to $X=\infty$ (no $F_{8} H_{16}$ in the mixture), while curves B and C correspond to $X=20$ and $X=10$ respectively. In all cases the phase separation curve shows an upper consolute temperature T_{c} for a critical molar fraction x_{c}. The significant asymmetry of the curves accounts for the large differences in molecular sizes between PFO and i-OCT[73, 74]. The skewness of the curve and the value of T_{c} depend on the amount of copolymer added to the PFO/i-OCT system, showing that the critical demixing is greatly affected by the presence of the semifluorinated n-alkane. In Table 3.1 we summarize the experimental parameters obtained from the coexistence curves of the $P F O / i-O C T / F_{8} H_{16}$ mixtures. ($\left.\phi_{P F O} / \phi_{i-O C T}\right)_{c}$ represents the volume fraction ratio of PFO over i-OCT at the critical point.

The effect induced by the semifluorinated compound on the PFO/i-OCT system is indicated by the relevant decrement of T_{c} as more $F_{8} H_{16}$ is added to the mixture, whereas x_{c} and $\phi_{P F O} / \phi_{i-O C T}$ change only in a slight way as a function of X.

The data reported in Table 3.1 indicate that the presence of $F_{8} H_{16}$ makes the PFO/i-OCT mixture more stable, increasing the amount of PFO that can be added before the critical phenomenon occurs; in other words the copolymer keeps the mixture in the monophase region, whereas at the same composition and temperature the PFO/i-OCT system would phase separate. $F_{8} H_{16}$ acts then as a "compatibilizing" agent for the $\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$ system, decreasing the incompatibility of the two solvents.

Figure 3-1: Phase separation curves for different $P F O / i-O C T / F_{8} H_{16}$ mixtures: curve A , no copolymer $(X=\infty)$; curve $\mathrm{B}, X=20$; curve $\mathrm{C}, X=10$.

This "compatibilizing" effect reproduces the behavior shown by other semifluorinated copolymers with different solvents[70].

In order to explain the phase separation, the Hildebrand-Scatchard equation, which is valid for mixtures of fluorocarbons and linear hydrocarbons, can be applied to the PFO/i-OCT system (curve A). This equation relates the critical temperature to the molar volume and to the solubility parameter of each component[75]:

$$
\begin{equation*}
R T_{c} \approx\left(\delta_{1}-\delta_{2}\right)^{2} \frac{2 V_{1} V_{2}}{\left(\sqrt{V_{1}}+\sqrt{V_{2}}\right)^{2}} \tag{3.1}
\end{equation*}
$$

where R is the gas constant ($1.9872 \mathrm{cal} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$), V_{i} and δ_{i} are the molar volume and solubility parameter of each component respectively; δ is defined as:

$$
\begin{equation*}
\delta_{i}^{2}=\frac{\Delta H_{i}^{v a p}-R T}{V_{i}} \tag{3.2}
\end{equation*}
$$

where $\Delta H_{i}^{v a p}$ is the molar enthalpy of vaporization of component i. According to our experiments, we calculated a value for $\left(\delta_{1}-\delta_{2}\right)^{2}$ of $5.95 \mathrm{cal} / \mathrm{cm}^{3}$, while the expected theoretical value should be $0.59 \mathrm{cal} / \mathrm{cm}^{3}$ for the $\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$ system. This discrepancy is in agreement with the general known behavior of fluorocarbon/hydrocarbon mixtures, that still remains unexplained. By comparing our data for the PFO/i-OCT system to the results published for similar mixtures, such as perfluoro-n-heptane in various n-alkanes or perfluoro- methylcyclohexane in n-octane[76, 77], we find that T_{c} decreases in the case of iso-octane. This lowering has to be related to the presence of five methyl end groups in the iso-octane molecule - instead of the two terminal CH_{3} residues as in n-alkanes - which increases the number of "contact points" with the fluorinated molecule, as described in the "segment treatment" $[78,79]$, and the interactions of the two chemicals as well.

In Fig.3-2 we reported the phase diagrams of $P F O / i-O C T / F_{8} H_{16}$ systems, plotting the phase separation temperature T as a function of the copolymer volume fraction $\phi_{C O P}$. For each curve the volume fraction ratio between PFO and i-OCT $\left(r_{v}\right)$ has been kept constant, as $\phi_{C O P}$ ranges between 0 and 80%. Curve a corresponds to $r_{v}=2.8$ and curve b refers to $r_{v}=0.81$, which is the exact ratio between the volumes

Figure 3-2: Liquid-gel phase transition curves: curve a, $\phi_{P F O} / \phi_{i-O C T}=2.8$; curve b , $\phi_{P F O} / \phi_{i-O C T}=0.81$.
of the fluorinated and the hydrogenated blocks in the copolymer[72].
The phase diagram shows a characteristic curve, with a minimum at $\phi_{0} \approx 0.05$ for curve a and 0.15 for curve b. This fact, which is quite unusual for low molecular weight compounds, can be explained by invoking some components segregation in the liquid phase, above the phase separation line. Such behavior has already been described for other systems, such as $F_{12} H_{10}$ in n-octane, and confirmed by light-scattering measurements[70]. The presence of this minimum indicates that the PFO/i - OCT/ $F_{8} H_{16}$ system changes its state depending on the amount of copolymer. In fact for $\phi_{C O P}<\phi_{0}$ the curve indicates the value of the liquid-liquid phase separation temperature, T_{0}, as a function of $\phi_{C O P}$. The addition of copolymer causes the progressive lowering of the demixing temperature, and therefore enhances the mutual solubility of PFO and i-OCT. For $\phi_{C O P}>\phi_{0}$ instead of the liquid-liquid separation we observe a liquid-gel phase transition at T_{g}. At a given $\phi_{C O P}$ value, for $T>T_{g}$ we have a homogeneous and clear solution that transforms into a white solid gel when the sample is cooled down below T_{g}. This gel is constituted by copolymer ribbons entrapping the two solvents, and extended in a tridimensional network. The addition of copolymer has the effect to increase the lateral size of the ribbon, and arises the temperature required to "melt" the lamellar structure. Moreover the evidence that curve "b" lays below curve "a" for $\phi_{C O P}>10 \%$ indicates that when the volume fraction ratio of PFO over i-OCT is exactly equal to the ratio between the molecular volumes of the two blocks in the copolymer $\left(F_{8} / H_{16}\right)$, the most favorable structure is formed as far as the mutual packing hindrances are concerned. Therefore microdomains formed when $r_{v}=0.81$ are the most stable and most closely packed, at least with respect to the aggregates produced at $r_{v}=2.8$.

Fig.3-3 reports the static intensity I of light scattered at $\theta=90^{\circ}$ by $P F O / i$ $O C T / F_{8} H_{16}$ mixtures at $22^{\circ} \mathrm{C}$ as a function of the volume fraction ratio r_{v} for different values of X; curves a, b and c correspond to $X=20,10$ and 5 respectively. Each plot shows a peak corresponding to a value of r_{v} that is comparable to the critical valuc obtained from phase diagrams, as reported in Table 3.1. The maximum intensity decreases in a significant way when the copolymer is added to the mixture. The angle-

Figure 3-3: Static intensity versus $\phi_{P F O} / \phi_{i-O C T}$ at $\theta=90^{\circ}$ and $22^{\circ} \mathrm{C}$: curve a, $X=20$; curve $\mathrm{b}, X=10$; curve c, $X=5$.
dependence of I (dissymmetry coefficient) is almost negligible, which is probably due to the small size of these particles, rather than to a nearly spherical geometry. The presence of the intensity peak has to be ascribed to the critical scattering arising from phase separation of the PFO/i-OCT mixture. Considering that the addition of the copolymer enhances the mutual solubility of the two pure solvents, it is evident that the higher the amount of copolymer in the mixture, the lower the scattered intensity peak in the plot.

Fig,3-4(a) reports the scattered intensity at 90° measured at $27^{\circ} \mathrm{C}$ for the $r_{v}=2.8$ system as a function of the volume fraction of the copolymer. The sharp break in the plot is typical for aggregate formation, and indicates the presence of scattering particles for $\phi_{C O P}>3 \%$, which can be assumed as the minimum amount of $F_{8} H_{16}$ required to form aggregates in the mixed solvent at this temperature. This data is in good agreement with the value indicated in the phase diagram (see Fig.3-2) for which the gel-liquid transition curve reaches its minimum.

Dynamic light-scattering measurements on the liquid samples indicate the presence of weakly interacting particles. The hydrodynamic radius of the equivalent sphere R can be calculated according to the following expression:

$$
\begin{equation*}
D=\frac{k_{B} T}{6 \pi \eta_{0} R} \tag{3.3}
\end{equation*}
$$

where k_{B}, T, D and η_{0} are the Boltzmann constant, the temperature, the translational diffusion coefficient and the viscosity of the solvent respectively[72]. By substituting the correct values in Eq.3.3, the average hydrodynamic diameter ranges around $30 \AA$ (see Fig. $3-4(\mathrm{~b}))$. In the case of samples with $r_{v}=0.81$ at $27^{\circ} \mathrm{C}$, the static intensity steeply increases when the copolymer volume fraction decreases, before the occurring of the complete phase separation of the two solvents. This relates to the critical scattering due to phase separation, and this effect hides any possible scattering deriving from aggregates formation.

Birefringence has been detected in all $P F O / i-O C T / F_{8} H_{16}$ gel samples observed between crossed nicols(Fig.3-5). The solid gel shows the maltese cross pattern that

Figure 3-4: (a) Static intensity at $\theta=90^{\circ}$ and $27^{\circ} \mathrm{C}$ versus copolymer volume fraction for $\phi_{P F O} / \phi_{i-O C T}=2.8$. (b) Hydrodynamic diameter of scattering particles as a function of copolymer volume fraction for $\phi_{P F O} / \phi_{i-O C T}=2.8$.

Figure 3-5: Birefringent structures indicating the presence of spherulites in a $\mathrm{PFO} / \mathrm{i}-$ $O C T / F_{8} H_{16}$ mixture(gel phase).
is typical of spherulites, and also in the liquid phase the sample rotates the plane of polarized light, indicating the presence of compartimentalized microdomains. Similar observations on semifluorinated n -alkanes have been made and published by other authors[62]. This behavior has been reported as the effect of preferential orientation of microstructures in radial symmetry.

3.4 Model of the liquid

In a Small-Angle X-Ray-Scattering experiment, the absolute scattering intensity can be expressed as:

$$
\begin{equation*}
I(Q)=n_{p} V_{p}^{2} \tilde{P}(Q) \bar{S}(Q) \tag{3.4}
\end{equation*}
$$

where n_{p} is the particle number density, V_{p} is the volume of the particle, $\tilde{P}(Q)$ is the particle structure factor and $\bar{S}(Q)$ is the inter-particle structure factor.

For a 3-layer cylindrical particle with two equal-thickness outer layers, the orientational averaged particle structure factor can be written as:

$$
\begin{align*}
\tilde{P}(Q)= & \int_{0}^{1}\left\{\frac{\left(\rho_{\text {out }}-\rho_{\text {sol }}\right) \sin \left[\frac{1}{2} Q \mu(H+2 F)\right]-\left(\rho_{\text {out }}-\rho_{\text {in }}\right) \sin \left(\frac{1}{2} Q \mu L\right)}{\frac{1}{2} Q \mu(H+2 F)}\right\}^{2} \\
& \times\left[\frac{2 J_{1}\left(Q R\left(1-\mu^{2}\right)^{1 / 2}\right.}{Q R\left(1-\mu^{2}\right)^{1 / 2}}\right]^{2} d \mu \tag{3.5}
\end{align*}
$$

where H is the thickness of the middle layer, F is the thickness of the outer layer, R is the cross section radius of the cylinder and $\rho_{o u t}, \rho_{i n}$ and $\rho_{\text {sol }}$ are the scattering length density of the outer layer, of the inner layer and of the solvent respectively. Because of the free rotational motion of the cylinders in the liquid phase, we assume that these particles interact with each other through an equivalent hard sphere potential [80] with an apparent hard sphere diameter a and a corresponding volume fraction η of the hard spheres in the solvent. This results in an inter- particle structure factor $S(Q, a, \eta)$ used in Eq.3.4.

According to the phase diagram study, light-scattering and birefrnigence experiments, we were able to elaborate a model for the formation of the gel phase from the liquid mixture. In the liquid phase, for $\phi_{C O P}>3 \%$, copolymer molecules arrange in micellar aggregates, exposing the fluorocarbon units to the external solvent, while the hydrocarbon chains remain confined in the micellar core. In this way the interactions between fluorocarbon and hydrocarbon blocks are minimized.

As the temperature decreases, approaching the liquid-gel transition temperature $\left(T_{g}\right)$, some of the copolymer molecules aggregate and form the basic micelle unit illustrated in Fig.3-6. In this structure, all fluorocarbon blocks are in a side-by-side arrangement and all hydrocarbon chains are interdigitated. The fluorocarbon-fluorocarbon and hydrocarbon-hydrocarbon interactions are in this way optimized, and the thickness of the micelle is about $44.7 \AA$. Further temperature decrement results in the formation of long, ribbon-like, lamellae that originate from a central "seed" or the basic micelle unit, and extend in many directions(see Fig.3-7) entrapping the solvent in the free cavities and the ribbon-like lamellae retain the thickness of the basic micelle as the lamellar repeating distance. Fig.3-15 shows a top view of the lamellar ribbon, and Fig.3-8 reports the side view, where many layers overlap in a head-by-head arrangement.

In order to explain the experimental results, we propose the following model for micelles. Hydrocarbon tails of $F_{8} H_{16}$ copolymers aggregate in a side-by-side and tail-to-tail arrangement to form cylinders with a cross section radius of R and a length $H+2 F$ as shown in Fig.3-6. H results to be the fully stretched length of the hydrocarbon part of the copolymer, and F is the length of the fluorocarbon segment in $F_{8} H_{16}$. The particle volume V_{p} used in Eq. 3.4 can be replaced by:

$$
\begin{equation*}
V_{p}=\pi R^{2}(H+2 F) \tag{3.6}
\end{equation*}
$$

The volume fraction η in the $S(Q, a, \eta)$ factor can be related to the particle number density by:

Figure 3-6: Model of the basic micelle unit with the fluorinated blocks(cylinders) closely packed side-by-side and the hydrocarbon chains(thick lines) interdigitated in the internal region.

Figure 3-7: Ribbon-like schematic structure for the aggregation of copolymer molecules in the gel phase. White regions indicate top surfaces: shaded regions represent side surfaces. The structure originates from a "seed" and extends randomly into 3-D space, entrapping the mixed solvent between the ribbons.

Figure 3-8: Side view of the ribbon-like structure showing the side-by-side and the head-to-head close packing of fluorinated segments. Fluorinated blocks are represented by gray ovals: hydrocarbon chains are indicated by black lines.

$$
\begin{equation*}
n_{p}=\frac{6 \eta}{\pi a^{3}} \tag{3.7}
\end{equation*}
$$

If we rewrite Eq.3.4 using Eqs.3.6 and 3.7, we have:

$$
\begin{equation*}
I(Q)=\frac{6 \eta}{\pi a^{3}}\left[\pi R^{2}(H+2 F)\right]^{2} \tilde{P}(Q) \bar{S}(Q, a, \eta) \tag{3.8}
\end{equation*}
$$

The solvent in the liquid phase is a mixture of PFO , $\mathrm{i}-\mathrm{OCT}$ and the rest of copolymer that did not aggregate to form micelles; therefore the scattering length density of the solvent can be written as:

$$
\begin{align*}
\rho_{s o l}= & \frac{\rho_{i-O C T}}{1-\phi_{m}}\left[\frac{V_{H C}}{V_{F C}+V_{H C}}\left(\phi-\phi_{m}\right)+\frac{1-\phi}{r_{v}+1}\right] \\
& +\frac{\rho_{P F O}}{1-\phi_{m}}\left[\frac{V_{F C}}{V_{F C}+V_{H C}}\left(\phi-\phi_{m}\right)+\frac{r_{v}(1-\phi)}{r_{v}+1}\right] \tag{3.9}
\end{align*}
$$

where $\rho_{i-O C T}$ is the scattering length density of iso-octane, and $\rho_{P F O}$ is the scattering length density of perfluorooctane, $V_{H C}$ is the volume of the hydrocarbon segment of the copolymer, while $V_{F C}$ is the volume of the fluorocarbon block of the $F_{8} H_{16}$ molecule, ϕ is the actual volume fraction of the copolymer, $\phi_{m}=n_{p} V_{p}$ is the volume fraction of micelles in the solution. For the SAXS data analysis the variables in the fitting routine were the radius R, the hard sphere diameter a, and the hard sphere volume fraction η.

3.5 Models of the Gel

The common understanding of the structure of a gel indicates that there are crosslinked long molecules, which constitute a entangled network with cavities. The liquids or solvents fill those cavities to complete the formation of a gel. The cross-linking is often a result of chemical bonding which gives rise to a fairly strong network structure in an ordinary gel. This chemical bonding can be hydrogen bonding, solvation, etc..

In our gel samples, there are long fibers grown by successive crystallization of
$F_{8} H_{16}$ copolymers. These long fibers play the role of the long molecules in an ordinary gel so as to form the porous networks entrapping the liquids among them. The interaction between fibers is considered to be physical contact and the subsequent cross-crystallization or cross-aggregation. Thus the strength of our gel depends on the density of the fibers, since the amount of contacts between fibers increases with the density of fibers. The entrapped liquids among the long fibers then contain the rest of the materials in the system which are not involved in the crystallization processes: PFO, i-OCT, free $F_{8} H_{16}$ monomers, and $F_{8} H_{16}$ micelles formed by the free monomers in the liquids. For the SAXS data analysis, a realistic mathematical model should include all the scattering objects in the samples. Therefore, there are two parts in the model we propose for our gel samples, the first part is the crystal part which comes from the scattering of the $F_{8} H_{16}$ crystalline networks in the gel, and the second part is the liquid part which represents the scattering of micelles in the entrapped liquids.

The scattering patterns we obtained in the experiments are the results of the scattering-length-density contrasts between different domains of the materials. Beside the contrasts inside the crystals and micelles due to the fine structures, there are contrasts between either the crystals or the micelles and the solvents. So it is important to define the solvents in our sample systems. To the crystalline fibers, the solvents are simply the liquids of homogeneous mixture of four components as described above. And to the micelles, the solvents are the homogeneous mixture of three components: PFO, i-OCT, and $F_{8} H_{16}$ monomers.

According to Fig.3-1, for $X=10, T_{c} \approx 10^{\circ} C$. Which means at temperature above $10^{\circ} \mathrm{C}$, for any value of x_{1}, the mixture is a single phase liquid or the mixture is homogeneous. For the current samples under investigation, there are two sets of data. One set has data with the volume ratio of PFO to i-OCT $r_{v}=2.8$ at $10^{\circ} \mathrm{C}$ but different $F_{8} H_{16}$ volume fraction $\phi_{C O P}$, and another set has data with $r_{v}=0.81$ and $\phi_{C O P}=0.6$ but at different temperatures above $10^{\circ} C$. For $r_{v}=2.8$ and $X=10$, $\phi_{C O P}$ can be calculated to be 7.2%, meaning the mixture will be a one phase liquid with 7.2% of $F_{8} H_{16}$ in the mixture. And the increase of $\phi_{C O P}$ will decrease X so as to decrease T_{c} and make the mixture further into the one phase region. For $r_{v}=0.81$
and $X=10, \phi_{C O P}=14.3 \%$. Since we know $F_{8} H_{16}$ form micelles in the single liquid phase, the hypothesis of homogeneous mixture of four or three components can stand if the volume fractions of $F_{8} H_{16}$ exceed 7.2% and 14.3% for $r_{v}=2.8$ and $r_{v}=0.81$ data sets respectively.

3.5.1 Crystal Part

In Ref.[70], Höpken proposed a cylindrical model for the crystallization of $F_{m} H_{n}$ from both melt and solution based on freeze fracture TEM pictures of $F_{12} H_{20}$ crystals and the fact that the cross-sections of fluorocarbon and hydrocarbon segments are different. This model has not been challenged until in Ref.[60], where we suggested a ribbon model for the networks of $F_{8} H_{16}$ crystals, which hold the solvents and form a gel phase, to explain the birefringence pictures of the gel.

In this section, we will write down the mathematical formula for both of the models and we will compare the results of data analysis using these two different models in next section.

In a small-angle X-ray-scattering experiment, the absolute scattering intensity of a system of independent particles can be expressed as

$$
\begin{equation*}
I(Q)=n_{p} \tilde{P}(Q) \tag{3.10}
\end{equation*}
$$

where n_{p} is the particle number density, Q is the magnitude of the scattering wave vector \vec{Q}, and $\tilde{P}(Q)$ is the orientationally-averaged particle structure factor. The orientationally-averaged particle structure factor can be expressed as

$$
\begin{equation*}
\tilde{P}(Q)=\frac{V_{p}^{2}}{4 \pi} \int_{-1}^{1} d \mu \int_{0}^{2 \pi} d \phi|A(\vec{Q})|^{2} \tag{3.11}
\end{equation*}
$$

in spherical coordinates $(r, \theta, \phi, \mu=\cos \theta)$, where V_{p} is the volume of the particle and

$$
\begin{equation*}
A(\vec{Q})=\frac{1}{V_{p}} \int_{V_{p}} d \vec{r}\left(\rho(\vec{r})-\rho_{s}\right) e^{i \vec{Q} \cdot \vec{r}} \tag{3.12}
\end{equation*}
$$

The integration above is a volume integral over one particle and $\rho(\vec{r})$ is the scattering length density of the particle at location \vec{r}, and ρ_{s} is the scattering length density of the solvents.

For both cylindrical and ribbon models, the first step in constructing the mathematical formula is to define the particle for the integration in Eq.3.12. Therefore, we define the particle by chopping the long fibers, either with a cylindrical crosssection or with a rectangular cross-section, into smaller building bricks with straight edges. Fig.3-9 is a two-dimensional schematic representation of the idea of chopping a branched long fiber into small bricks, and each brick has a rectangular shape which facilitates the mathematical modeling.

In the cylindrical model, it is unlikely that the cylindrical fibers can have branches, as a result, there are many very long and coiled cylindrical fibers tangled together to form the networks for the gel. Fig.3-10(a) shows one long cylindrical fibers and the details of a cylindrical brick. Fig.3-10(b) shows a small section of the branched ribbon structure and the details of a rectangular brick resulting from the chopping of the structure. The repeating distance of the layering structure in both of the models was calculated independently by examining the position of the Bragg peaks in the SAXS scattering data. The result is $\sim 45 \AA$, which equals twice the length of the fluorocarbon segment of the copolymer plus the length of the hydrocarbon segment of the copolymer. As a result, in both of the models, the internal structures are fixed with a bilayer arrangement of the copolymers, with fluorocarbon segments closely packed side-by-side and head-by-head and hydrocarbon segments interdigitally stuffed in between the fluorocarbon layers.

Cylindrical Model

For a cylindrical shape brick with internal structure as described in Fig.3-10(a),

$$
A(\vec{Q})_{c y l}=\frac{1}{V_{p c y l}} \int_{-L / 2}^{L / 2} d z e^{i Q_{z} z} \int_{0}^{2 \pi} d \theta \int_{0}^{R} d r r\left[\rho(r)-\rho_{s}\right] e^{i Q_{\perp} r \cos (\theta)}
$$

Chopping

Figure 3-9: Schematic showing a branched fiber and the results of chopping the fibers into small bricks with straight edges.

$$
\begin{align*}
= & \frac{\sin \left(Q_{z} L / 2\right)}{Q_{z} L / 2}\left\{(\rho _ { f } - \rho _ { h }) \left[\sum_{j=1}^{l}\left(\frac{j t}{R}\right)^{2}\left(2 \frac{J_{1}\left(Q_{\perp} j t\right)}{Q_{\perp} j t}\right)\right.\right. \tag{3.13}\\
& \left.-\sum_{j=0}^{l}\left(\frac{j t+H}{R}\right)^{2}\left(2 \frac{J_{1}\left(Q_{\perp}(j t+H)\right)}{Q_{\perp}(j t+H)}\right)\right] \\
& \left.+\left(\rho_{f}-\rho_{s}\right)\left(2 \frac{J_{1}\left(Q_{\perp} R\right.}{Q_{\perp} R}\right)\right\}
\end{align*}
$$

where $V_{\text {pcyl }}=\pi R^{2} L$ is the volume of the cylindrical brick, $t=2 F+H$ is the thickness of one bilayer, F and H are the lengths of fluorocarbon and hydrocarbon segments of a $F_{8} H_{16}$ molecule respectively, L is the length of the cylinder, $R=$ $(l+1) t-F$ is the cross section radius of the cylinder, l is the number of bilayers in the radial direction, and ρ_{f} and ρ_{h} are scattering length densities of fluorocarbon and hydrocarbon respectively. $Q_{z}=Q \mu$ is the component of \vec{Q} in the axial direction and $Q_{\perp}=Q \sqrt{1-\mu^{2}}$ is the component of \vec{Q} in the cross section plane.

In spite of the fact that the bricks are connected to each other to form the long fibers and are not allowed to rotate freely, by assuming randomly distributed fibers in 3-dimensional space, the resulting building bricks are indeed uniformly distributed in all the directions with respect to Q. Thus we can use Eq. 3.11 to calculate the rotation-averaged particle structure factor. We apply Eq.3.13 to Eq.3.11 and calculate the rotation-average particle structure factor by doing numerical integration. Before we can use Eq.3.10 to calculate the absolute scattering intensity, we need to find out the particle number density for this model, which can be done by using the equation $n_{p c y l}=\frac{\eta_{c y l}}{V_{\text {pcyl }}}$, where $\eta_{c y l}$ is the volume fraction of cylindrical bricks in the sample. The adjustable variables in this model include $L, l, \eta_{c y l}$, and ρ_{s}.

Ribbon Model

For a rectangular brick with internal structure as shown in Fig. 3-10(b), with length L, width W and thickness $n t$, where n is the number of bilayers. The volume of a single brick $V_{p r i b}=n \times L \times W \times t, n_{\text {prib }}=\frac{\eta_{\text {rib }}}{V_{p r i b}}$ where $\eta_{\text {rib }}$ is the volume fraction of the rectangular bricks, and

Figure 3-10: Schematic showing one piece of the random ribbons, the chopping of the ribbon, and the details of a building brick.

$$
\begin{align*}
A(\vec{Q})= & \frac{1}{n L W t} \int_{-L / 2}^{L / 2} d x e^{i Q_{x} x} \int_{-W / 2}^{W / 2} d y e^{i Q_{y} y} \int_{-n t / 2}^{n t / 2} d z\left[\rho(z)-\rho_{s}\right] e^{i Q_{z} z} \\
= & \frac{1}{n t} \frac{\sin \left(Q_{x} L / 2\right)}{Q_{x} L / 2} \frac{\sin \left(Q_{y} W / 2\right)}{Q_{y} W / 2} \tag{3.14}\\
& \times\left\{2 F (\rho _ { f } - \rho _ { s }) \left\{\cos \left(Q_{z} \frac{n t-F}{2}\right) \frac{\sin \left(Q_{z} F / 2\right)}{Q_{z} F / 2}\right.\right. \\
& \left.+2\left[\frac{n-1}{2}-m+\sum_{j=1}^{m} \cos \left(Q_{z} \frac{n-2 j}{2} t\right)\right] \frac{\sin \left(Q_{z} F\right)}{Q_{z} F}\right\} \\
& \left.+2 H\left(\rho_{h}-\rho_{s}\right)\left[\frac{n}{2}-m+\sum_{j=1}^{m} \cos \left(Q_{z} \frac{n+1-2 j}{2} t\right)\right] \frac{\sin \left(Q_{z} H / 2\right)}{Q_{z} H / 2}\right\}
\end{align*}
$$

where $m=\frac{n}{2}$ for even $n, m=\frac{n-1}{2}$ for odd n. $Q_{x}=Q \sqrt{1-\mu^{2}} \cos \phi$ is the component of \vec{Q} along the length of the brick, $Q_{y}=Q \sqrt{1-\mu^{2}} \sin \phi$ is the component of \vec{Q} along the width of the brick, and $Q_{z}=Q \mu$ is the component of \vec{Q} in the direction perpendicular to the layers. The calculation of absolute scattering intensity can be carried out following the same steps as in the cylindrical model. $L, W, n, \eta_{r i b}$, and ρ_{s} are the adjustable variables in this model.

3.5.2 Liquid Part

The liquids in our sample are homogencous mixtures of four components as mentioned above and the micellar model described in the previous section is used to analyze both liquid and gel phases data. Those micelles in the liquid serve as the seeds for the growth of long and branched ribbon-like crystalline fibers as we decrease the temperature below the liquid-gel transition temperature. It combines with the ribbon model to give an integral description of the system in both liquid and gel phase.

The micellar model gives satisfactory results compared to the scattering data for low concentration of micelles in the liquids but it fails at high concentration of micelles, due to the more complicated interaction among the micelles where a simple twobody spherical model such as the sticky-hard-sphere model does not apply anymore. Therefore, we can use this model to analyze the low concentration liquid phase data
or combine the model with ribbon model to analyze the low concentration gel phase data. This model is also applicable to the high concentration gel phase data if the micelle concentrations in the entrapped liquids are sufficiently low. Those data sets with $\phi_{C O P}=0.6$ at 20 and $30^{\circ} \mathrm{C}$ fall into that category since at those temperatures, the sample is far into the gel phase, and most of the copolymers are included in the fiber networks, there are much less monomers left in the entrapped liquid to form micelles.

For the data set that the micellar model doesn't apply, we use the measured scattering curve, which was taken at higher temperature so that the sample was in the liquid phase, as the empirical curve for the scattering of the micelles. For example, for the sets of data with $r_{v}=0.81$ and $\phi_{C O P}=0.6$, at $40^{\circ} \mathrm{C}$, the sample was in its liquid phase, and at $30^{\circ} \mathrm{C}$ the sample became a gel. Therefore, we used the scattering curve at $40^{\circ} \mathrm{C}$, with an adjustment amplitude factor to correct for the volume difference, as the background of the scattering curve at $30^{\circ} \mathrm{C}$, and use the cylindrical or ribbon model to calculate the scattering of the crystalline fibers. This data set is the only one we analyzed with the cylindrical model because the micellar model for the liquid is in fact a counter part of the ribbon model. The counter part of the cylindrical model doesn't exist.

The combined total absolute scattering intensity can be written as

$$
\begin{equation*}
I_{t o t a l}(Q)=C\left[(1-\eta) I_{l i q}(Q)+\frac{\eta}{V_{p}} \tilde{P}(Q)\right] \tag{3.15}
\end{equation*}
$$

where C is an adjustable constant to account for the possible volume expansion of the sample cells which were under high vacuum during the scattering experiment, and it also accounts for the decrease of the volume of the sample due to the formation of the gel. The empty space in the sample cell due to the formation of the gel always located at the center of the cell where the x-ray beam was going through, since it was the last position of the sample cell where the temperature would reach the set point. Fraction of empty space at the location of the x-ray beam was not controllable, the variable C in Eq.3.15 includes also this consideration. $I_{l i q}(Q)$ is the absolute scattering

Table 3.2: List of variables extracted from the data analyses for different liquid samples.

r_{v}	$\phi_{C O P}$	Temp.	R	a	τ	ϕ_{m}
2.8	0.10	$10^{\circ} \mathrm{C}$	12.8	38.3	0.15	0.024
	0.16		12.6	38.8	0.24	0.031
	0.26		9.37	33.7	1.80	0.047
	0.38		7.46	35.8	15.9	0.053

intensity of the entrapped liquid, it can be calculated using the micellar model or can be the empirical number obtained at higher temperature where the sample is in its liquid phase. η is the volume fraction of the crystals in a gel, V_{p} is the volume of a single brick, and $\tilde{P}(Q)$ is the particle structure factor for either cylindrical model or ribbon model.

3.6 Results and Discussions

In this section, the first subsection presents the results of liquid phase data analyses using the micellar model. The second subsection is the comparison of the results of data analyses using cylindrical and ribbon models for a gel sample. The third subsection summarize the data analyses of the gel phase data sets using ribbon model. And from the variables extracted in the data analyses, a mechanism for the formation of the gel is suggested.

3.6.1 Liquid Phase Data Analyses

The model for micelles was used to fit four SAXS data obtained from four samples at $40^{\circ} \mathrm{C}$ in the liquid phase, with an i-OCT/PFO volume fraction ratio of 2.8 , and copolymer volume fraction $10,16,26$, and 38% respectively. The resulting variables are listed in Table 3.2 and the fitting curves are reported in Fig.3-11.

The results of the calculations are in excellent agreement with the data; the small number of ϕ_{m} compared to the actual $\phi_{C O P}$ represents that only a small amount of copolymer molecules do aggregate in the liquid phase. From the radius of the

Figure 3-11: SAXS data for four liquid samples at $40^{\circ} \mathrm{C}$ with $\phi_{\text {cop }}=10 \%, 16 \%, 26 \%$, and 38%. For each sample the plot shows the experimental absolute intensity $I(Q)$ and the intensity calculated according to the model presented in the text. For these four liquid samples, the parameters resulting from the fits are reported in Table 3.2. The agreement between the experimental intensities and those calculated from the model is excellent.
cylinders, we can calculate the aggregration number to be around 20 and it is larger for the samples closer to T_{g}. The absolute intensity was calculated taking into account solvent and solute contrast in absolute scale, geometry and volume of particles, the excluded volume effect of the micelle and the peculiar arrangement of fluorocarbon and hydrocarbon blocks in the aggregated structure; the calculated intensity agrees with the experimental values in an excellent way, confirming that the model of the micelle is correct.

3.6.2 Comparison

We used the data set of the sample with $r_{v}=0.81$ and $\phi_{C O P}=0.6$ at $30^{\circ} \mathrm{C}$ for the comparison between cylindrical and ribbon models. As described in the previous section, for the data analysis for this particular set of scattering curve, we used the data set of the same sample at $40^{\circ} \mathrm{C}$ as the background scattering which actually came from the scattering of the micelles in the entrapped liquid. The results are displayed in Fig.3-12.

From Fig.3-12(d), The ribbon model gives much better agreement at the small Q region. The discrepancies for both models at Q ranging from 0.05 to $0.12 \AA^{-1}$ come from the liquid data shown in Fig.3-12(b), which doesn't completely represents the scattering of the micelles for the gel phase data in Fig.3-12(d). For the sharp peak in the experimental data, the ribbon model apparently fits the data better than the cylindrical model. Fig.3-12(a) and (c) display the calculations of the cylindrical model and the ribbon model respectively, the ribbon model produces a major sharp peak which matches the data better than the split peaks produced by the cylindrical model. The ribbon model indicates the brick is $966 \AA$ long and the concentration of the ribbons is 5%, which are more appropriate numbers for the approximation of treating the brick as an independent particle in Eq. 3.10 than those numbers given by the cylindrical model, $80 \AA$ and 15%. Since for the approximation of independent particle to be valid, the interaction between particles needs to be very weak or long-ranged. For the situation in our samples, the bricks are essentially connected to each other, interaction is strong. But if the particles were very long, so that the interaction
(a)

Cylindrical Model
(b)

Liquid at $40^{\circ} \mathrm{C}$
(c)

Ribbon Model

$L_{c y l}=70 A$
(d)

$$
W=86.5 \AA
$$

$\eta_{\text {cyl }}=0.13$

$$
L_{\text {rib }}=966 \AA
$$

$$
n=7
$$

$$
\eta_{\text {rib }}=0.05
$$

Figure 3-12: The results of the data analyses of using two different crystalline models. (a) is the calculation of the cylindrical model, the numbers blow the plot are the extracted variables for the model; (b) is the liquid phase data for the micelle scattering; (c) is the calculation of the ribbon model; (d) shows the $30^{\circ} \mathrm{C}$ data set of $r_{v}=0.81$, $\phi_{C O P}=0.6$, and the resulting curves of combining different models with the micelle scattering of plot (b).
between particles only affects the calculation at very small Q, the approximation is still applicable. For a $966 \AA$ long brick in our case, the effect of inter-particle interaction is mostly on $Q<\frac{2 \pi}{966 A}=0.0065 \AA^{-1}$, which is much less than the first Q position in our data.

The comparison above encouraged us to use the ribbon model to continue the data analyses with the rest of our data sets.

3.6.3 Gel Phase Data Analyses

We used the ribbon model combined with the micellar model to analyze the rest of the data sets. Fig.3-13 is an example of the comparison between the experimental data and calculation. It also displays the crystal part and liquid part of the calculation. The crystal part produces the small- Q peak and the diffraction peak around $Q=0.14$, the liquid part constitutes the smooth portion of the scattering curve. The multilayer structure of the building brick in our ribbon model also produces oscillations at all Q^{\prime} s as depicted in the figure. These oscillations are not significant for the data sets with relatively low $F_{8} H_{16}$ volume fractions, namely the data sets with $F_{8} H_{16}$ volume fractions of $0.1,0.16$, and 0.26 respectively. Fig. $3-14$ (a) displays the results of the data analyses for the samples of $r_{v}=2.8$ and three different $F_{8} H_{16}$ volume fractions at $10^{\circ} \mathrm{C}$. The agreements between the experimental data and calculations are satisfactory. The oscillations will dominate the scattering curve as the crystals dominate the structure of the gel. Fig. 3-14(b) displays the results of the data analyses for the sample of $r_{v}=0.81$ at three different temperatures with $F_{8} H_{16}$ volume fraction equals 0.1 . The sample at $10^{\circ} \mathrm{C}$ has most crystals and least liquids, therefore the oscillations are most severe in its theoretical calculation. Another reason for the worse fitting in Fig. 3-14(b) is the breakdown of the liquid model for high $\phi_{C O P}$ samples as explained in a previous section. One of the possible solutions for the oscillations in the calculation is the incorporation of diffuse boundaries between layers and the polydisersed layer thickness. Another possibility is to have a polydisperse particle system instead of the monodisperse system in use in this article. Either approach will involve a lot more computation in the data analysis process.

Figure 3-13: The comparison between the experimental data and calculation. Open circles are the experimental data points for the sample with 26% of $F_{8} H 16$ and $r_{v}=$ 2.8 at $10^{\circ} \mathrm{C}$. Long dashed line is the calculation of the crystal part calculation, short dashed line is the liquid part calculation, and solid line is the combination of them.

Figure 3-14: The results of data analyses using the combination of ribbon model for the crystal and micelle model for the liquid. Solid line are theoretical calculations. (a) shows results of three lower $\phi_{C O P}$ samples at same temperature. (b) shows results of one high $\phi_{C O P}$ sample at three different temperatures.

Table 3.3: List of variables extracted from the data analyses for different gel samples

r_{v}	$\phi_{C O P}$	Temp.	L	W	n	η	$\phi_{C O P}^{\prime}$	R	a	τ
2.8	0.1	$10^{\circ} \mathrm{C}$	3150	13.6	8	0.024	0.076	9.08	23.3	0.082
	0.16		2900	41.1	7	0.027	0.133	9.97	27.4	0.106
	0.26		2097	60.6	7	0.063	0.197	9.66	27.3	0.113
0.81	0.6	$10^{\circ} \mathrm{C}$	442	121	7	0.425	0.175	9.85	30.6	0.103
		$20^{\circ} \mathrm{C}$	913	90.1	7	0.107	0.493	7.41	31.8	9.63
		$30^{\circ} \mathrm{C}$	966	86.5	7	0.051	0.549			

Table 3.3 summaries the variables extracted from the data analyses. It is interesting that the building brick or the unit cell in our crystal model has seven or eight bilayers, which corresponds to $300-350 \AA$, and it is very long but extremely narrow. The size of the building brick varies with concentration and temperature. It is longer and narrower at low concentration, and becomes shorter and wider at high concentration. On the other hand, it is longer and narrower at higher temperature and shorter and wider at lower temperature. The fibers constructed by longer building bricks are less curly than the fibers constructed by shorter bricks. For the micelle part of the variables, the size of the micelles remains approximately the same and they have similar stickiness regarding the interaction among them. The special case is the data set of $\phi_{C O P}=0.6, r_{v}=0.81$ at $20^{\circ} \mathrm{C}$. The micellar model is about to breakdown in this case.

3.6.4 Formation of a Gel

As we have mentioned above, the combination of the ribbon model and micellar model for the gel phase is an extension of the micellar model for the liquid phase. They form an integrated description for the whole system, starting at temperature above the liquid-gel transition temperature where the micellar model applies, and ending at temperature below the transition temperature where the gel forms and the combined model applies.

Imagine the liquid phase of the system, the liquid is a homogeneous mixture of four components: perfluorooctane, iso-octane, $F_{8} H_{16}$ monomers, and cylindrical micelles
formed by $F_{8} H_{16}$ monomers. As we decrease the temperature in the liquid phase, the radius of the cylindrical micelles will increase and the number of the micelles in the liquid will also increase. When the temperature is lower than the liquid-gel transition temperature, the $F_{8} H_{16}$ monomers start to attach to the nearest micelles. Due to the particular feature of the micelle, it is easier for the monomers to attach to the micelle from the radial direction than from the axial direction. At the beginning, the micelle starts to grow uniformly in the radial direction, after a while, there are random positions around the peripheral of the micelle that catch more monomers than other positions. These positions form islands around the micelle and deplete the nearest monomers around the micelle at the moment. The tips of these islands are now the closest positions for the monomers surround the micelle to attach to, therefore, these islands grow towards the solvënt and become strips. Each strip may split into two strips due to the increasing peripheral area for cylindrical geometry as the radius increases. As the strip grows longer, the monomers can also slowly attach to the strip along the axial direction so as to make the strip thicker. The width of a strip is limited by the competition of neighboring strips. At the end of the formation process, according to the results of the data analyses, these strips become long, curly ribbons with the thickness corresponding to the width of the strips and the width corresponding to the thickness of the strips. Fig.3-15 is a two-dimensional schematic drawing(top view) of a growing structure just described. The final shape of the ribbons depends on the concentration and temperature of the sample as described in the data analyses section. It is reasonable that at lower concentration, there are less seeds to start the growing of a gel, therefore there is less interference on the growing of the ribbons, which makes the ribbons less curly. And due to the fact that there are less monomers in the solvent, the ribbons are thinner.

In the entrapped liquids among these ribbons, there are monomers and micelles. Each micelle is constructed by ≈ 20 monomers. These micelles may be the micelles from the liquid phase which fail to grow or they may be formed during the gel formation process. They keep the mixture of iso-octane and perfluorooctane from phase separation. Table 3.3 lists the volume fractions of ribbons in the samples and the re-

Figure 3-15: A two-dimensional schematic of the growing of the crystalline matrix(ribbons) of a gel
maining $F_{8} H_{16}$ in the liquid. The second set of numbers all exceed the corresponding thresholds of having homogeneous mixtures as mentioned in the models of the gel section. It verifies the entrapped liquids are indeed one-phase liquids.

3.7 Conclusions

This chapter reports on the phase separation behavior of a perfluorooctane/iso-octane mixture ($\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$) and on the effect induced by the presence of a semifluorinated di-block copolymer, $F\left(\mathrm{CF}_{2}\right)_{8}\left(\mathrm{CH}_{2}\right)_{16} H$ (shortly $\left.F_{8} H_{16}\right)$.

The $\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$ system shows a liquid-liquid phase separation of the two components below a certain temperature $\left(T_{0}\right)$. The coexistence curve indicates the presence of an upper consolute point corresponding to a critical molar fraction of PFO $x_{c}=0.321$ (volume fraction of PFO $\phi_{c}=0.422$) and to a critical temperature $T_{c}=27.4^{\circ} \mathrm{C}$.

The addition of even small amounts of semifluorinated copolymer produces a significant lowering of T_{c} and a relevant broadening of the coexistence curve. Lightscattering measurements do not indicate the presence of stable aggregates in this lowcopolymer regime, but only a critical scattering peak, depending on the composition of the mixture. Further addition of copolymer to the liquid mixture results in the formation of a gel phase below a gel-liquid phase separation temperature $\left(T_{g}\right)$.

Phase diagrams of the $P F O / i-O C T / F_{8} H_{16}$ mixture show that the liquid-gel transition temperature depends on the volume fraction ratio $\phi_{P F O} / \phi_{i-O C T}$, and on the copolymer volume fraction $\phi_{C O P}$. For $\phi_{C O P}$ smaller than a critical value ϕ_{0} the system still separates in two liquid phases, and the copolymer dissolves in the two components. In this case $F_{8} H_{16}$ is not able to form stable aggregates and has the mere effect to make the $\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$ mixture more stable, by reducing the mutual incompatibility of the two solvents. On the other hand, for $\phi_{C O P}>\phi_{0}$ the liquid phase produces a solid gel upon cooling. This region of the phase diagram indicates the presence of copolymer aggregates that avoid the liquid-liquid phase separation and compatibilize perfluorooctane and iso-octane even at relatively low temperatures.

Birefringence experiments show the presence of spherulites in the gels, with the typical maltese cross patterns, indicating the formation of compartimentalized domains in the gel phase. Optical activity is revealed also in the liquid samples, and supports the existence of microdomains in liquid phases as well. Quasi elastic lightscattering (QELS) and small-angle X rays-scattering (SAXS) confirm the presence of aggregates in the liquid samples, with an average hydrodynamic diameter of about $30 \AA$.

In order to explain the results a model for the copolymer aggregation in the $\mathrm{PFO} / \mathrm{i}-\mathrm{OCT}$ system in its liquid phase is proposed. In the liquid phase the semifluorinated copolymer aggregates in the mixed solvent and form small micelles. When the temperature is cooled down below the liquid-gel phase transition temperature, the basic micelle unit grows as an extended, ribbon-like, lamella with the fluorinated segments closely packed in a side-by-side and head-by-head arrangement, and the hydrogenated blocks interdigitated in the internal region. Eventually several lamellar layers are formed and produce the birefringent elongated structures that can be observed at the polarizing microscope.

Two models are investigated: cylindrical model and ribbon model, for the microstructure of the gel phase of $F_{8} H_{16}$ dissolved in a mixture of perfluorooctane and iso-octane. By analyzing a SAXS absolute intensity curve with both models, we conclude the ribbon model is the better representation for our samples.

Using a combined model of ribbon model for the crystal part and micellar model for the liquid part of the gel, we find the fibers in a gel are ribbons with widths of 300-350 \AA, thicknesses of 13.6-121 \AA, and these ribbons have persistent lengths of 442$3150 \AA$, depending on the volume ratio of perfluorooctane to iso-octane, the volume fraction of $F_{8} H_{16}$, and temperature. Within the persistent lengths, the ribbons are practically straight. We also verify the entrapped liquids among the fibers are one phase liquids composed of perfluorooctane, iso-octane, $F_{8} H_{16}$ monomers, and micelles.

From the structural parameters obtained in the data analyses, a growing mechanism for the formation of a gel starting from the liquid phase of a sample is proposed. This mechanism gives a reasonable explanation for the final shape of the crystalline
fibers in a gel of the system.
The models used in this article are approximations of a very complicated system. These calculations include two-dimensional integration, therefore the data analyses process is rather time consuming. As mentioned in the data analyses section, it is possible to improve the ribbon model by including polydispersed layer thickness, etc.. However, these additional improvements will result in extremely cumbersome computations. Even at the present level of the model, the overall agreement with absolute intensity data is good enough to warrant a serious consideration.

A FORTRAN computer program of data analysis with various models is listed in Appendix C.

Chapter 4

Conclusions

This thesis contains two different but related works that have been done during my study at MIT. They are related in the sense thät the small-angle scattering technique has been utilized in both works to yield important information about the systems under study.

In the first work, a theory based on extensions of Baxter's model has been developed for the phase diagram and SANS data analysis of a droplet microemulsion system, specifically the AOT/water/decane microemulsion system. These extensions include:

1. The incorporation of polydispersity of the size of the droplet in the SANS data analysis.
2. Identifying the specific temperature dependence of the stickiness parameter $1 / \tau$ from both theoretical study of Baxter's model and systematic SANS experiments.
3. Identifying the percolation threshold as a point where the cluster size diverges and the experimental temperature dependent effective droplet size.

This theory provides explanation successfully for both the critical and percolation phenomena possessed by the AOT/water/decane microemulsion system.

The second work is the study of short chain copolymer $\mathrm{SF}_{3}\left(\mathrm{CF}_{2}\right)_{7}(\mathrm{CH} 2)_{15} \mathrm{CH}_{3}$ in a mixed solvent of perfluorooctane and iso-octane. In the solvent, the copolymers form micellar aggregates and gels.

The phase diagram has been determined, which identifies the regions of micellar formation and gel formation. From the information provided by light scattering and birefringence picture, models for the microstructures in each of these regions have been investigated and finalized by the SAXS experiments. It is for the first time that SAXS cross section formula is developed for analysis of gel. This analysis accounts for both the internal structure of the basic scattering unit with the length scale $\sim 45 \AA$, and the random orientation of the ribbons with the length scale $\sim 1000 \AA$.

A mechanism for the growth of the gel in the system is then suggested based on the structural information provided by the analyses of SAXS data.

The test of the Baxter's model, as described in this thesis, has explained all the phenomena in this particular droplet phase region of the system. On the other hand, the copolymer system still has lots of unexplored phenomena that need to be explained. For example, the volume contraction phenomena observed in the gel phase, the possible phase transition in the crystalline structure of the gel, and the effect of different solvents, etc.. More experimental and theoretical evidences are necessary to reconfirm the models presented in the thesis, and the models also welcome further modifications. Although the cylindrical model is not the choice in this study, it can be applied to different systems having cylindrical conformation. The model for the gel phase in this thesis has set a ground of a different approach for the small-angle scattering data analysis of other gels, which is a still wide open field.

The following is a list of publications related to my works toward the degree, which includes publications included in this thesis and publications not included in this thesis, which are studies done with Professor Sow-Hsin Chen and other collaborators, and with my co-supervisor, Professor Xiaolin Zhou. One and a half years ago, Professor Zhou started a project of constructing a neutron reflectometor at MITR II rescarch reactor, since I am interested in instrumentation, we worked together on the design of the spectrometer and generated several new concepts of utilizing the neu-
tron beam in a more efficeint way. It is an exciting experience to put a new idea into a experiment. We have successfully finished one of the experiments and the results will be published soon.

1. "Structure and Dynamics of Water-in-oil Microemulsions near the Critical and Percolation Points,"
C. Y. Ku, S. H. Chen, J. Rouch, and P. Tartaglia, invited to "Thermo-Physical Properties", Colorado, USA, June 1994. Int. J. Thermophys 16 (1995) 1119.
2. "The MIT Specular and Diffuse Neutron Reflectometer for the Investigation of Surfaces and Interfaces,"
C. Y. Ku and X. L. Zhou,
in Neutron Scattering in Materials Science, eds., D. A. Neumann, T. P. Russell, and B. J. Wuensch, MRS Proc. 376 (1995).
3. "Structural Study of the Gel Phase of a Semifluorinated Alkane in a Mixed Solvent,"
C. Y. Ku, P. LoNostro, and S. H. Chen,

In manuscript. This will be a paper emphasizing on the construction of gel model as described in the thesis.
4. "Aggregation and Counterion Distribution of Polyelectrolyte: PODMA in Water,"
C. Y. Ku, S. L. Chang, and S. H. Chen,

In preparation. We have done SANS experiments in order to determine the dimension of the micelle formed by PODMA with cesium counterions, and SAXS experiments of the same samples for the information on the distribution of the cesium counterions dissolved in water to test the theory of ion condensation.
5. "Effect of a Semifluorinated Copolymer on the Phase Separation of a Fluorocarbon/Hydrocarbon Mixture,"
P. LoNostro, C. Y. Ku, S. H. Chen, and J. S. Lin, J. Phys. Chem. 99 (1995) 10858.
6. "Ion Correlations in a Micellar Solution Studied by Small-Angle Neutron and X-Ray Scattering,"
Y. C. Liu, C. Y. Ku, P. LoNostro, and S. H. Chen, Phys. Rev. E51 (1995) 4598.
7. "Measurement and Interpretation of Counterion Distributions around Cylindrical Micelles,"
S. L. Chang, C. Y. Ku, S. H. Chen, and J. S. Lin, invited to "Small Angle Scattering," Saclay, France, April 1993. J. de Physique IV, Col. C8, Suppl. au J. de Phys. I 3 (1993) 117.
8. "Structure and Dynamics of Dense Water-in-oil Microemulsions below and above the Percolation Threshold,"
S. H. Chen, C. Y. Ku, J. Rouch, P. Tartaglia ,C. Cametti, and J. Samseth, invited to "Complex Liquid Systems", Calabria, Italy, July 1992. J. de Physique IV, Col. C1, Suppl. au J. de Phys. II 3 (1993) 143.
9. "Measurement of Thermal Neutrons Spectrum Using Total Reflection Edge," X. L. Zhou and C. Y. Ku, In preparation. Theoretical assessment and experiments have been done on using the total reflection edge of a super mirror to determine the thermal neutron spectrum of MITR II research reactor. Which is the fundamental research for better utilization of the neutrons produced by a reactor in a spectrometer.

Appendix A

Resolution Function

This is a source code listing of two FORTRAN functions which calculate the resolution function with given parameters.

```
c
    FUNCTION FRES(SIGQ,QCEN,Q)
    X=QCEN*Q/SIGQ
        T=X/3.75
        IF(ABS(X).GT. 3.75) GOTO }10
        BESS=1.+3.5156229*'T*T+3.0899424*T**4.+1.2067492*T**6.
    !+0.2659732*T**8.+0.0360768*T**10.+0.0045813*T}\mp@subsup{\textrm{T}}{}{**}12
    FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ)*BESS
        GOTO 200
BESSX=(0.39894228+0.01328592/T+0.00225319/T**2.
    !-0.00157565/\mp@subsup{T}{}{**}3.+0.00916281/T**4.-0.02057706/T**5.
    !+0.02635537/T**6.-0.01647633/T}\mp@subsup{\textrm{T}}{}{**}7.+0.00392377/\mp@subsup{T}{}{**}8.
    FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ+X)*BESSX/SQRT(X)
        FRES=FRESX
        RETURN
        END
c
C
    FUNCTION SIGQ(X)
        COMMON/RES_PAR/R1,R2,RL1,RL2,RLAM,DLAM,RDET
```

 PI=3.1415927
 C Rl=0.8 ! RAD IN CM OF SOURCE SLIT
C R2=0.2 ! SAMPLE
C RL1=600. ! DISTANCE IN CM SOURCE-SAMPLE
C RL2=600. ! SAMPLE-DETECTOR
C RLAM=6.00 ! WAVELENGTH IN A
C DLAM=0.18 ! RELATIVE WAVELENGTH SPREAD OF MONOCHR. 30
C RDET}=1.
WK0=2.*PI/RLAM
SIGDET=RDET*WK0/RL2*0.4246609
C SIGRAV =0.0048*0.4246609
SIGRAV =0.000
C
THET0}=\textrm{ASIN}(\textrm{X}(1)/2./WK0
AAl=R1/(RL1+RL2/COS(2.*THET0)**2)
A2=R2*COS(2.*THET0)**2./RL2
C
IF(A2. GT. AA1) GOTO 125
C
BET1=2.*R1/RL1-0.5*R2*R2*(COS(2*THET0))**4.*(RL1
!+RL2/COS(2.*THET0)**2)**2./RL1/RL2/RL2/R1
GOTO 127
C
125 BET1=2.*R2*(1./RL1+COS(2.*THET0)**2/RL2)
!-0.5*R1*R1*RL2/(R2*COS(2.*THET0)**2.*
!RL1*(RL1+RL2/COS(2.*THET0)**2))
C
C
127 DELQ1=SQRT((WK0*COS(THET0)*BET1)**2.+(X(1)*DLAM)**2.)
CC127 DELQ1=SQRT((WK0*COS(THET0)*BET1)**2.)
C
SIGQ =(0.4246609*DELQ1)**2.+SIGDET**2.+SIGRAV **2.

```

RETURN
END

\section*{Appendix B}

\section*{Baxter's Model}

This is a source code listing of a FORTRAN program which calculates the structure factor and inter-particle structure of a multi-component droplet system based on Baxter's model.
c CORE version
c NEW STICKYNESS PROGRAM LAST UPDATE 17/03/91
c
12/04/92
сссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссс
c This program calculates structure factors or scattering
c intensities for a system of polydisperse sticky hard
c spheres. The calculations are based on the theory in the
c following articles :
c
c R.J. Baxter J.Chem.Phys. 49(1968) 2770
c R.J. Baxter J.Chem.Phys. 52(1970) 4559
c J.W.Perram en E.R.Smith Chem.Phys.Lett. 35(1975) 138
c A.Vrij J.Chem.Phys. 69(1978) 1742
c P.van Beurten en A.Vrij J.Chem.Phys. 74(1981) 2744
c
c The above authors do not agree in their notations.
c For the particle size the diameter is used but to make
c life difficult this quantity is called \(R\) by Baxter,
c A by P\&S and d by Vrij. In this program it is called r .
c \(\quad \mathrm{q}\) is the scattering vector magnitude (Vrij:K)
c rm mean diameter
c tau the mysterious factor which according to
c Baxter(1968) is the stickyness / the temperatuur.
c phi volumefraction hardspheres. (Baxter 68: eta,

c
c We are using the following COMMON blocks:
c [blank] p, atau, btau, tau(200), pi
/fu/ k2, k3, h, h2, pi12, pi24
constants, belonging to a certain set of
phi, rm, tau and sigma
/ve/ \(\quad \mathrm{v}(20), \mathrm{la}(200), \mathrm{la} 2(200)\)
index in labda in the 1 d -form of labda( \(\mathrm{i}, \mathrm{j}\) )
/pa/ \(\quad \mathbf{x}(20), r(20)\)
particle densities and diameters
/wl/ i, j
/ri/ r1 \((20,20), \mathrm{r} 2(20,20), \mathrm{rr}(20,20)\)
factors to speed up \(S(i, j)\) - calculations
            constants in \(\mathrm{S}(\mathrm{i}, \mathrm{j})\)
c /in/ istat, qa(200), ina(200)
c /pl/ iplot
c \(/ \mathrm{vg} / \mathrm{nvg}, \operatorname{vgq}(200), \operatorname{vgi}(200)\)

c ROUTINES CALLED :
c calc, show_tau, deal, intens, subint, contact,
c wijzlab, set_deeltje
C
c FUNCTIONS CALLED :
c igetval, agetval
c
program labda
c
c
implicit none
integer MAXSPEC, MAXPNT
parameter ( \(\mathrm{MAXSPEC}=2, \mathrm{MAXPNT}=128)\)
real*8 rm, sig, phi, aint0, ai
    character*2 ch

C
c FUNCTION calls
real*8 agetval
integer igetval
c We will first initialize a few things
c
idistr \(=1\)
iform \(=1\)
100
\(\operatorname{rho}(1)=1.0 \mathrm{~d} 0\)
\(\operatorname{rho}(2)=0.0 \mathrm{~d} 0\)
\(\operatorname{rho}(3)=0.0 \mathrm{~d} 0\)
dlayer \((1)=0.0 \mathrm{~d} 0\)
nlayer \(=0\)
nrho \(=2\)
c
\[
\mathrm{pi}=4.0 \mathrm{~d} 0 * \operatorname{datan}(1.0 \mathrm{~d} 0)
\]
c
\(\mathrm{rm}=100.0 \mathrm{~d} 0 \quad 110\)
\(\operatorname{sig}=.10 \mathrm{~d} 0\)
phi \(=0.1 \mathrm{~d} 0\)
\(\mathrm{p}=9\)
atau \(=0.0 \mathrm{~d} 0\)
btau \(=99.0 \mathrm{~d} 0\)
do \(5 \mathrm{i}=1,100\)
\(5 \quad x(i)=0.0 \mathrm{~d} 0\)
\(\mathrm{l}=1\)
\(\mathrm{lj}=1\)
\(v(1)=0\)
do \(6 i=1,19\)
\[
v(i+1)=v(i)+i
\]
c
c User may mess around now
c
10 write (*,1000)
\(\operatorname{read}(*, 2000) \mathrm{ch}\)
if (ch.eq. ' \(k\) ') goto 99
if (ch.eq. 'h') write \((6,1001)\)
if (ch.eq. '?t') call show_tau
if (ch.eq.'?') then
write ( \({ }^{*}, 1002\) ) rm/2,sig,phi,
- p, idistr,
- atau,btau
endif
if (ch.eq. 'p') then
\(\mathrm{p}=\operatorname{igetval}(1,19)\)
if (idistr.eq.3) \(p=2\)
endif
if (ch.eq.' id') then 140
idistr \(=\operatorname{igetval}(1,3)\)
if (idistr.eq.3) \(\mathrm{p}=2\)
endif
if (ch.eq.' \(r\) ') then
c User supplies a radius... Immediately converted to a diameter
c rm \(=2.0 \mathrm{~d} 0 *\) agetval( \(10.0 \mathrm{~d} 0,100.0 \mathrm{~d} 0\) )
c
call calc(rm,sig,phi)
endif
if (ch.eq.'s') then
\(\operatorname{sig}=\operatorname{agetval}(0.0 \mathrm{~d} 0,0.5001 \mathrm{~d} 0)\)
c
call calc(rm,sig,phi)
endif
if (ch.eq.' \(t\) ') then
write(*,' (A,\$)')' Enter value atau '
atau \(=\operatorname{agetval}(-1.0 \mathrm{~d} 0,1.0 \mathrm{~d} 0)\)
write(*,' (A,\$)')' Enter value btau '
btau \(=\operatorname{agetval}(-0.089 \mathrm{~d} 0,99.001 \mathrm{~d} 0)\)
c call calc(rm,sig,phi)
endif
if (ch.eq.' \(f\) ') then \(\mathrm{phi}=\operatorname{agetval}(0.0 \mathrm{~d} 0,1.0 \mathrm{~d} 0)\)
```

 endif
 if (ch.eq. 'l') call wijzlab(p)
 if (ch.eq. ' c') then
 call calc(rm,sig,phi)
 endif
 if (ch.eq.'a') call set_deeltje
 if (ch.eq.'i') then
 call deal(rm,sig,phi,.false.)
 call intens
 endif
 if (ch.eq. '0') then
 call subint(0.0d0,ai,aint0)
 write (*,1007) ai/aint0
 endif
 goto }1
 99
continue
stop 'Aaaarch!!!'
1000 format(' Give instruction : ',\$)
1001 format (' INSTR name min max EXPLANATION '/

- '==='/
- , f phi_hb 0 1 : volume fraction inner spheres'/
- , id idistr 1 3 : type of distribution'/
- , p p 3 11 : number of classes'/
_ , r rm 10 100 : hard spheres radius'/
- , s sigma 0 . 3 : relative variance'/
_ , t tau-s 0 100 : stickiness'/
- l=='/
- ' c calc : call calc'/
- , h help : display this menu'/
- , i intens : calculate I(q) or S(q) '/
- , k kill : terminate program'/
- , l lambda : display or change lambda'/
_ , o S(0) : calculate S(q=0)'/
_ ? show : display parameters'/
- , ?t show tau : display tau'/
- '===')

```
```

1002 format(' rm :',3x,f5.0,' sigma :',3x,f5.3,' phi :',f5.3,/,
_' p :',6x,i2, ' idistr :',6x,i2,/,
- ' atau :',f8.3, ' btau :',f8.3)
1007 format(' S(q=0) = ',e14.5)
2000 format (a)
end
c
c

```

```

 subroutine calc(rm,sig,phi)
 c}++2++++++++
c PURPOSE: calculate labda(i,j) given:
c idistr, p, rm, sig, tau(i,j), phi
c
c ROUTINES CALLED:
c deal, ZSPOW
c
c FUNCTIONS CALLED : none
c
implicit none
c
c GLOBAL variables :
integer p, v, idistr
real*8 atau, btau, tau, pi, f_value
real*8 x , x 2
common p, idistr, atau, btau, tau(200), pi
common /ve/v(20), $\mathrm{x}(200), \mathrm{x} 2(200)$
common /ltrap/ f_value
c
c SUBROUTINE variables:
real*8 rm, sig, phi
C
c LOCAL variables:
integer i
c
c ZSPOW variables :

```
integer ier, \(n\), nsig, itmax
real \(\quad \mathrm{wk}(4000), \operatorname{par}(1), \operatorname{xla}(45)\)
real fnorm
external fen

\(\mathrm{n}=\mathrm{p}^{*}(\mathrm{p}+1) / 2\)
call deal( rm,sig,phi,true.)
\(n s i g=5\)
itmax \(=10\)
do \(2 \mathrm{i}=1, \mathrm{n}\)
\(\operatorname{xla}(\mathrm{i})=\operatorname{sngl}(\mathrm{x}(\mathrm{i}))\)
2
call ZSPOW (fcn, nsig, n, itmax, par, xla, fnorm, wk, ier)
f value \(=\) dble(fnorm)
do \(3 \mathrm{i}=1, \mathrm{n}\)
3
\(\mathrm{x}(\mathrm{i})=\operatorname{dble}(\mathrm{xla}(\mathrm{i}))\)
if (f_value.gt.1.d-4) write \(\left({ }^{*}, 1000\right)\) fnorm
999 return
1000 format(' No real solution : ',e10.2)
end
\(\mathrm{c}+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\) subroutine deal( rm, sig, phi, labdas )
\(\mathrm{c}+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\)
c PURPOSE: deals with frequent initialisations.
c
c CALLED BY: calc
c
c ROUTINES CALLED:
c schultz, setconst
C
implicit none
c
c GLOBAL variables :
integer \(\mathrm{p}, \mathrm{v}\), idistr
real*8 atau, btau, tau, pi, x, x2
270
common p, idistr, atau, btau, tau(200), pi
common \(/ \mathrm{ve} / \mathrm{v}(20), \mathrm{x}(200), \mathrm{x} 2(200)\)
c
c SUBROUTINE variables :
real* \(8 \mathrm{rm}, \mathrm{sig}\), phi
logical labdas
c
c LOCAL variables :
real*8 sr, x0
c FUNCTION calls
c \(x 0 . . .\).
\(\mathrm{sr}=\mathrm{sig}^{* *} 2\)
if (idistr.eq.1) then
\[
\mathrm{x} 0=6.0 \mathrm{~d} 0{ }^{*} \mathrm{phi} / \mathrm{pi} / \mathrm{rm}^{* *} 3
\]
\(-\quad /(1.0 \mathrm{~d} 0+2.0 \mathrm{~d} 0 * \mathrm{sr}) /(1.0 \mathrm{~d} 0+\mathrm{sr})\)
else if (idistr.eq.3) then
\(\mathrm{x} 0=6.0 \mathrm{~d} 0\) * \(\mathrm{phi} / \mathrm{pi} / \mathrm{rm}^{* *} 3\)
\(-\quad /(1.0 \mathrm{~d} 0+6.0 \mathrm{~d} 0 * \mathrm{sr})\)
endif
c
call schultz( \(\mathrm{x} 0, \mathrm{rm}, \mathrm{sig}\) )
call setconst(labdas)
return
end

subroutine set_tau

c PURPOSE: Set values for the stickyness parameter tau. This may be done
c two ways.
c 1: through curious function relating the particle diameters to a
c stickyness
c or 2: by reading data from a file. (Code is COMMENTED away)
c
c CALLED BY: main, setconst
c
c ROUTINES CALLED: errmsg
c
implicit none
c
c GLOBAL variables :
real*8 \(\mathrm{x}, \mathrm{r}\), atau, btau, tau, pi
integer \(p\), idistr
common p, idistr, atau, btau, tau(200), pi
common /pa/ \(x(20), r(20)\)
c
c LOCAL variables :
integer \(\mathrm{i}, \mathrm{j}\)
real* \(8 \mathrm{rm}, \mathrm{xi}\)
c
cc character*80 fln, filename
cc integer jchar, ios, iopt
c
c FUNCTION calls :
integer inx
cc integer igets

c calculate average diameter
\[
\begin{aligned}
& \mathrm{rm}=0.0 \mathrm{~d} 0 \\
& \mathrm{xi}=0.0 \mathrm{~d} 0 \\
& \mathrm{do} 10 \mathrm{i}=1, \mathrm{p} \\
& \quad \mathrm{rm}=\mathrm{rm}+\mathrm{x}(\mathrm{i})^{*} \mathrm{r}(\mathrm{i}) \\
& \quad \mathrm{xi}=\mathrm{xi}+\mathrm{x}(\mathrm{i})
\end{aligned}
\]

10 continue
\(\mathrm{rm}=\mathrm{rm} / \mathrm{xi}\)
c
c
cc100 iopt \(=0\)
cc write \((6,1000)\) atau, btau
cc \(\quad \operatorname{read}\left(5, \mathrm{fmt}='^{\prime}(\mathrm{i} 1)^{\prime}, \mathrm{end}=101, \mathrm{err}=100\right.\) ) iopt
cc 101 if (iopt.eq.0) iopt \(=1\)
cc if (iopt .eq. 1 ) then
cc iopt \(=1\) tau data calculated
```

cc
do 20 i=1,p
tau(inx(i,i))=btau *
(1.0d0 + 2.0d0/pi * datan (atau* (r(i)-rm)))
do 30 i=1,p
do 40 j=1,p
tau(inx(i,j)) = 0.5d0* (tau(inx(i,i)) + tau(inx(j,j)))
continue
continue
cc
cc iopt =2 tau data from file!
cc else
c%%%%%
cc 50 filename = , '
cc write(6,1020)
cc if (igets(5,filename).eq.0) goto 100
cc if (filename.eq.' ') filename='tau.dat' 360
cc jchar = index(filename,' ') - 1
cc fln(1:jchar) = filename(1:jchar)
cc open(unit=1,file=fln(1:jchar),blocksize=2048,recl=32766,
cc - form='formatted',status='old',iostat=ios)
cc if (ios.ne.0) then
cc call errmsg ('Error: File does not exist')
cc goto 50
Cc else
cc write(6,1010) fln(1:jchar)
cc read(unit =1,fmt=1040)p
cc read (unit=1,fmt=*,err=999) ((tau(inx(i,j)),i=1,p),j=1,p)
cc do 20 i=1,p
cc do 21 j=1,p
cc read(unit=1,fmt=*,err=999) tau(inx(i,j))
cc 21 continue
ce 20 continue
cc close(unit=1)
cc endif
cc endif

```
return
```

c999 call errmsg(' Error read tau-data ')

```
c close (unit=1)
c goto 50
1000 format (' Option for tau-data : ',/,
- , (1) Function with ',/,
- , atau : ',f5.2,' btau = ', \(77.3, /\),
- , (2) From File [1] : \(\$\) )

1010 format(' Reading from datafile : ', a)
1020 format(' >>> Enter file name or <crtl Z> [tau.dat] : ',\$)
1040 format(i4)
end

subroutine setconst(labdas)

c PURPOSE: calculate constants belong to a set of \(x(i)\) and \(r(i)\)
c results in common blocks /fu/,/ri/,/ve/,/be/
c
c CALLED BY: deal
c
c ROUTINES CALLED : set_tau 400
c
c FUNCTIONS CALLED : fksi, inx
c
implicit none
c
c GLOBAL variables :
real*8 atau, btau, tau, pi, k2, k3, h, h2, pi12, pi6
real* \(8 \mathrm{x}, \mathrm{r}, \mathrm{rl}, \mathrm{r} 2, \mathrm{rr}, \mathrm{la}, \mathrm{l} 2, \mathrm{~b}\)
integer \(p, v\), idistr
common /fu/k2, k3, h, h2, pil2, pi6
common p, idistr, atau, btau, tau(200), pi /pa/x(20), r(20)
common /ri/ rl \((20,20), \operatorname{r2}(20,20), \operatorname{rr}(20,20)\)
common /ve/ v(20),la(200), \(12(200) / \mathrm{be} / \mathrm{b}(20)\)
c
logical labdas
c
c LOCAL variables :
real*8 bla, dla, b0, alab, som
integer \(\mathrm{i}, \mathrm{j}\)
c FUNCTION calls
real*8 fksi
integer inx

\(\mathrm{k} 2=\mathrm{fksi}(2)\)
\(\mathrm{k} 3=\mathrm{fksi}(3)\)
\(\mathrm{h}=1.0 \mathrm{~d} 0-\mathrm{k} 3\)
\(\mathrm{h} 2=\mathrm{h}^{* * 2}\)
\(\mathrm{pi} 12=\mathrm{pi} / 12.0 \mathrm{~d} 0\)
pi \(6=\mathrm{pi} / 6.0 \mathrm{~d} 0\)
do \(200 \mathrm{i}=1, \mathrm{p}\) do \(100 \mathrm{j}=1, \mathrm{p}\)
\(r 1(i, j)=0.5 d 0^{*}(r(i)+r(j))\)
\(r 2(i, j)=r 1(i, j)^{* *} 2\)
\(\operatorname{rr}(\mathrm{i}, \mathrm{j})=\mathrm{r}(\mathrm{i})^{*} \mathrm{r}(\mathrm{j})\)
100 continue
200 continue
c
cr(i)'s are calcultated now calculate tau-array
c
call set_tau
440
if (labdas) then
bla \(=\mathrm{k} 3 / \mathrm{h}+\operatorname{tau}(\operatorname{inx}(1,1))\)
\(\mathrm{dla}=\mathrm{bla**2}-\mathrm{k} 3 / 3.0 \mathrm{~d} 0 *(1.0 \mathrm{~d} 0+0.5 \mathrm{~d} 0 * k 3) / \mathrm{h} 2\)
if (dla.ge.0.0d0) then
\(\mathrm{alab}=6.0 \mathrm{~d} 0 / \mathrm{k} 3 *(\mathrm{bla}-\mathrm{dsqrt}(\mathrm{dla}))\)
else
alab \(=6.0 \mathrm{~d} 0 / \mathrm{k} 3 * \mathrm{bla}\)
endif
do \(300 \quad i=1,200\) \(l a(i)=\mathrm{alab} \quad 450\)

300
continue
```

 endif
 c
do 400 i=1,p
som = 0.0d0
do 350 j=1,p
som = som +
- x(j) * la(inx(i,j)) * r2(i,j) * r(j)
continue
return
end

```

```

subroutine schultz(0 , rmean, sig)

```

```

c PURPOSE :
$c \quad$ The number densities of particles with diameter $r(i)$ are given
c by the size distribution (determined by 'idistr')
c $->$ result calculation passed to $x(i)$ and $r(i)$ in /pa/
c
c !!! Normal distribution not yet implemented !!!
c idistr :
c 1 Schulz
c 2 Normal
c The diameter run between plus
c and minus three times sigma of the mean.
c 3 Bimodal
c
c CALLED BY : deal
c
c ROUTINES CALLED : none
c
c INPUT
c --------
c xO : normalisation ie phi $=$ ksi(3).

```
c rmean : mean of the distribution.
\(c\) sig : relative variance of the distribution.
C
implicit none
real*8 del
parameter (del=3.0dO)
C
c GLOBAL variables :
integer p , idistr
real*8 atau, btau, tau, pi
real*8 \(x, r 1\)
common p, idistr, atau, btau, tau(200), pi
common /pa/ \(\mathrm{x}(20), \mathrm{r} 1(20)\)
C
\(r 1(i)\) is everywhere else \(r(i)\)
C
c SUBROUTINE variables :
real*8 \(x 0\), rmean, sig
c
c LOCAL variables :
integer i
real*8 \(z p, d r, r, f a c, r m, z\)
c
c FUNCTION calls :
real*8 sch, dgamma
c dgamma : library gamma-function
c sch : schulz distribution function

rm=rmean
C
c pathological cases \(p=1\) or \(\operatorname{sig}=0\)
if (p.eq. 1 .or. sig.eq. 0.0 ) then
do \(11 i=1, p\)
\(r 1(i)=r m\)
                \(x(i)=x 0 /\) dfloat \((p)\)

11 continue return
endif
c
c more interesting cases \(p>1\), sig <> 0
c
if (idistr.eq.1) then
c SCHULZ option
c normalisation of Schulz distributionfunction
c
c
c
( \(\mathrm{Z}+1\) )
c \(\quad \mathrm{fac}=\)
c \(\quad \operatorname{Gamma}(Z+1) * r m * \exp (Z+1)\)
c
\[
z=(1.0 \mathrm{~d} 0 / \text { sig }) * * 2-1.0 \mathrm{~d} 0
\]
\[
z p=z+1.0 \mathrm{~d} 0
\]
if (sig.lt.0.25d0) then
\(\mathrm{fac}=\mathrm{dsqrt}(\mathrm{zp} / 2.0 \mathrm{~d} 0 / \mathrm{pi}) / \mathrm{rm} /(1.0 \mathrm{dO}+1.0 \mathrm{~d} 0 / 12 . \mathrm{dO} / \mathrm{zp} \quad 540\)
- \(\quad+1.0 \mathrm{~d} 0 / 2.88 \mathrm{~d} 2 / \mathrm{zp} * * 2\) - \(1.39 \mathrm{~d} 2 / 5.1840 \mathrm{~d} 4 / \mathrm{zp} * * 3\)
- - 571.0d0/2.488320d6/zp**4)
c approximation of Gamma function for large arguments
c Zie Handbook of Chemistry and Physics, Gamma function else
c
c exact expression for Gamma function for small arguments
            \(\mathrm{fac}=\operatorname{dexp}(\mathrm{zp} * \mathrm{~d} \log (\mathrm{zp})-\mathrm{zp}) / \mathrm{rm} / \operatorname{dgamma}(\mathrm{zp})\)
endif
c
c !!! for large sigma distribution is skewed --->
c
```

 dr = 2.0dO * del * sig * rm/ dfloat(p-1)
 r = rm - del * sig * rm
 if (r.lt.0.0d0) r = dr/2.0d0
 do 200 i=1,p
 r1(i) = r
 x(i) = x0 * sch(r, fac, rm, z) * dr
 r = r + dr
    ```
```

200
continue
return
c end of SCHULZ option
endif
c
c if (idistr.eq.2) then
c NORMAL distribution
c end of NORMAL distribution
c return
c endif
c
if (idistr.eq.3) then
c BIMODAL option
x(1) = 0.5d0 * x0
x(2) = x(1)
r1(1) = rm - rm * sig
r1(2) = rm + rm * sig
c end of BIMODAL option
return
endif
end

```

```

 real*8 function sch(r, fac, rm, z)
 c PURPOSE :
c Calculate given fac, rm \& z the
c value of the schultz distribution function f(x) at x = r
c
c CALLED BY : schultz
c
implicit none
c
c SUBROUTINE variables :
real*8 r, fac, rm, z
c
c LOCAL variables :

```
```

 real*8 rf
    ```

```

 rf =r / rm
 sch}=\textrm{fac}*\operatorname{dexp}(z*\operatorname{dlog}(rf)+(z+1.0d0)*(1.0d0-rf)
 return
 end
 C++
real*8 function fksi(n)
C+++
c PURPOSE: Calculate worldfamous ksi2 and ksi3 from x(i) and r(i), i=1..p
c (See: Vrij 1979 (17))
c
c CALLED BY: setconst
C
c ROUTINES CALLED: none
c
implicit none
c
c GLOBAL variables :
integer p, idistr
real*8 atau, btau, tau, pi, x, r
common p, idistr, atau, btau, tau(200), pi /pa/ x(20),r(20)
C
c SUBROUTINE variables :
integer n
c
c LOCAL variables :
integer i

```

```

 fksi=0.0d0
 do 100 i=1,p
 100 fksi=fksi+x(i)*r(i)**n
 fksi=fksi*pi/6.0d0
 return
 end
 6 3 0

```

subroutine \(\mathrm{fcn}(\mathrm{xla}, \mathrm{f}, \mathrm{n}, \mathrm{par})\)

c PURPOSE :
c This function is the obedient victim of the IMSL routine ZSPOW
c It is a sad compromise between readability and speed.
c In \(f(i)\) the Perram\&Smith 1975 (14) equations are held.
c
c CALLED BY :
c ZSPOW (in calc)
c
c ROUTINES CALLED : none
c
c FUNCTIONS CALLED : inx
c
c GLOBAL variables :
integer p , idistr
real*8 \(\mathrm{x}, \mathrm{r}, \mathrm{r} 1, \mathrm{r} 2, \mathrm{rr}, \mathrm{b}\)
real*8 atau, btau, tau, pi, k2, k3, h, h2, pi12, pi6
common p, idistr, atau, btau, tau(200), pi \(/ \mathrm{pa} / \mathrm{x}(20), \mathrm{r}(20)\)
c LOCAL variables :
real*8 \(\mathrm{xc}(20), \mathrm{a}(20)\)
real*8 som, bo
integer iq
c FUNCTION calls
integer inx
c In the following loop the coefficients as used in Perram\&Smith
c 1975 (9) are calculated. The b(i)'s are put in a common block
c as these are used later for calculation of the structure factor.
c
c------
c
c write( \(\left.{ }^{*}, 1015\right)\)
c 1015 format('\$Concentrations : ')
c write( \({ }^{*}, 1016\) ) ( \(\left.\mathrm{x}(\mathrm{i}), \mathrm{i}=1,5\right)\)
c 1016 format(' ',5e14.7)
c write( \(\left.{ }^{*}, 1018\right)\)
c 1018 format('\$Radii : ')
c write \((\) *,1019 \()(\mathrm{r}(\mathrm{i}), \mathrm{i}=1,5) \quad 690\)
c 1019 format(' ',5e14.7)
```

 \(\mathrm{iq}=0\)
 do \(500 \mathrm{i}=1, \mathrm{p}\)
 do \(400 \mathrm{j}=1, \mathrm{i}\)
 som \(=0.0 \mathrm{~d} 0\)
 do \(300 \mathrm{k}=1, \mathrm{p}\)
 som \(=\operatorname{som}+x(k)^{*} d b l e(x \operatorname{la}(\operatorname{inx}(j, k)))\)
 \(-\quad{ }^{*} \mathrm{r} 2(\mathrm{j}, \mathrm{k}) / \mathrm{rl}(\mathrm{i}, \mathrm{j}) *\)
 - (
 - \(\quad-0.5 \mathrm{~d} 0 * a(\mathrm{i})^{*} \mathrm{rr}(\mathrm{i}, \mathrm{k})-\mathrm{b}(\mathrm{i})^{*} \mathrm{r}(\mathrm{k})\)
 \(-\quad+\operatorname{dble}(x \operatorname{la}(\operatorname{inx}(\mathrm{i}, \mathrm{k})))^{*} \mathrm{r} 2(\mathrm{i}, \mathrm{k}) / 12.0 \mathrm{~d} 0\)
 -)
 300 continue

```
```

 iq}=\textrm{iq}+
 f(iq) = sngl(som*pi6 + b(i)/rl(i,j) +a(i)
 - - tau(inx(i,j))* dble(xla(inx(i,j))))
 4 0 0 ~ c o n t i n u e
 5 0 0 ~ c o n t i n u e
 write(*,1004) n
 c do 15 ih=1,5
 return
 end
 c}+++
integer function inx(i,j)

```

c Omdat E04CGF insisteert op een array van variabelen, terwijl
c labda toch een heuse matrix is, simuleert inx een pxp-matrix.
c Het array v bevat offsets zodat de symmetrie behouden blijft.
c B.v. \(\mathrm{v} 1=0\), v2 \(=1\), v3 \(=3\) etc. (Zie SUBROUTINE setconst)
c
implicit none
c
c GLOBAL variables :
integer v
real*8 la, 12
common /ve/ \(\mathrm{v}(20), \mathrm{la}(200), \mathrm{l} 2(200)\)
c
c SUBROUTINE variables :
```

integer i, j

```

```

 if (i.lt.j) goto 100
 inx = v(i)+j
 return
 100 inx = v(j)+i
return
end

```

```

 subroutine wijzlab(p)
 c+++
c PURPOSE : mess-around and display current values of labda(i,j)
c
c CALLED BY: main
c
c ROUTINES CALLED : none
c
implicit none
c
c GLOBAL variables :
integer $\mathrm{v}, \mathrm{i}, \mathrm{j}$
real*8 la, 12
760
common /wl/i, j/ve/v(20), la(200), 12(200)
c
c SUBROUTINE variables :

```
integer \(p\)
c
c LOCAL variables :
character* \({ }^{*}\) ch
real*8 aux (9)
integer ih, jh
c
770
c FUNCTION calls
integer inx, igetval
real*8 agetval

10 write ( \({ }^{*}, 1000\) ) \(\mathrm{i}, \mathrm{j}, \mathrm{la}(\mathrm{inx}(\mathrm{i}, \mathrm{j}))\)
```

 read(*,1001) ch
 if (ch.eq.'i') i = igetval(1,p)
 if (ch.eq.'j') j = igetval(1,p)
 if (ch.eq. '1') la(inx(i,j))=agetval(0.0d0,30.0d0)
 if (ch.eq.'q') return 780
 if (ch.ne.'?') goto 20
 do }15\textrm{ih}=1,\textrm{p
 do 14 jh=1,p
 14 aux(jh)=la(inx(ih,jh))
write (*,1003) (aux(jh),jh=1,p)
15 continue
20 continue
goto 10
1000 format (' i =',i2,', j =',i2,', l(i,j) =',f5.2,' ? '\$)
1001 format (a)
1003 format (' ',9f6.2)
end

```

```

 subroutine show_tau
 c}+++
c PURPOSE : display current values of tau(i,j)
c CALLED BY: main
c ROUTINES CALLED : none
implicit none
c GLOBAL variables :
real*8 atau, btau, tau, pi
integer p, idistr.
integer v, i, j
real*8 la, 12
common p, idistr, atau, btau, tau(200), pi
common /wl/i, j/ve/v(20), la(200), 12(200)
c
c
c
c
c LOCAL variables :
real*8 aux(9)
integer ih, jh
c FUNCTION calls
integer inx

do $15 \mathrm{ih}=1, \mathrm{p}$
do $14 \mathrm{jh}=1, \mathrm{p}$
14
$\operatorname{aux}(\mathrm{jh})=\operatorname{tau}(\mathrm{inx}(\mathrm{ih}, \mathrm{jh}))$
820
write (${ }^{*}, 1003$) (aux(jh),jh=1,p)
15 continue
1003 format (9 ($1 \mathrm{x}, \mathrm{f} 6.2$))
end
c
c

subroutine struct(q, s, ifail)
c++
c PURPOSE:
c S is the inverse of $\mathrm{E}-\mathrm{C}^{-}(\mathrm{q})$ [Vrij 1979 (8)] and can be determined
c from Q^{-}. As $\mathrm{Q}^{-}(-\mathrm{q})=\mathrm{Q}^{*}(\mathrm{q})\left({ }^{*}=\right.$ complex conjugated) we find
c $E-\mathrm{C}^{-}(\mathrm{q})=\mathrm{Q}^{-}+(\mathrm{q}) \mathrm{Q}^{-}(\mathrm{q})\left(\mathrm{Q}^{-}\right.$times its hermitian conjugated). The
c inverse is determined by the modified to double precision IMSL
c routine D_LEQTID.
c
c CALLED BY :
c subint
c
c ROUTINES CALLED :
c D_LEQT1D, qik
c
implicit none
c
c GLOBAL variables : integer p , idistr
real*8 atau, btau, tau, pi
common p, idistr, atau, btau, tau(200), pi
c
c SUBROUTINE variables :
real*8 q
integer ifail
complex*16 s(20,20)
C
c LOCAL variables :
complex*16 $q q(20,20)$
complex*16 $A(20,20), B(20,20)$, som
real*8 WA(20)
integer ier, $\mathrm{N}, \mathrm{M}, \mathrm{IA}, \mathrm{IB}, \mathrm{IJOB}$
integer $\mathrm{i}, \mathrm{j}, \mathrm{k} \quad 860$

ifail $=0$
call qik(q,qq)
do $300 \mathrm{i}=1, \mathrm{p}$
do $200 \mathrm{j}=1, \mathrm{p}$

$$
A(i, j)=q q(i, j)
$$

$B(i, j)=$ dcmplx ($0.0 \mathrm{~d} 0,0.0 \mathrm{~d} 0)$
if (i.eq.j) $B(i, j)=$ dcmplx ($1.0 \mathrm{~d} 0,0.0 \mathrm{~d} 0)$
200 continue
300 continue
c
$N=p$
$\mathrm{IA}=20$
IB $=20$
$M=p$
IJOB $=0$
CALL D_LEQT1C (A,N,IA,B,M,IB,IJOB,WA,IER)
if (ier.ne.0) ifail $=1$
c Q
do $400 \mathrm{i}=1, \mathrm{p}$
som $=(0.0 \mathrm{~d} 0,0.0 \mathrm{~d} 0)$
do $600 \mathrm{k}=1, \mathrm{p}$

$$
\text { som }=\operatorname{som}+B(i, k)^{*} d \operatorname{conjg}(B(j, k))
$$

C
continue
write ($6,{ }^{*}$) i, j, som
$s(i, j)=s o m$
continue
end

```
c}++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
```

subroutine subint(q,ai,aint0)
$\mathrm{c}+++$
c PURPOSE :
c Calculate scattering value including interactions (ai) for the
c system at scat.vector $=\mathrm{q}$, and excluding interactions (aint0)
c
c !! NOTE !! in principle different particle electron density profiles
c can be introduced through the function 'form_factor'. Caution should
c be taken here as strange results may be introduced. (negative overall
c particle radii)
c For homogenous particles IFORM=1 (and dlayer $(i)=0$ and dzeep $=0$)
c no problems arise.
c
c ROUTINES CALLED :
c struct
c
c FUNCTIONS CALLED :
C form_factor 910
c
implicit none
C
c GLOBAL variables :
integer p , idistr, istat, nrho, nlayer, iform
real*8 atau, btau, tau, pi, dzeep
real*8 x, r, rho(12), dlayer(10), qa, ina
common p, idistr, atau, btau, tau(200), pi
common /pa/ $x(20), r(20) / \mathrm{in} /$ istat, $\mathrm{qa}(200)$, ina(200)
common / deeltje / iform,rho,nrho,dlayer,nlayer,dzeep
C
c SUBROUTINE variables:
real*8 q, ai, aint0
c
c LOCAL variables:
real*8 $\quad \mathrm{a}(20), \mathrm{p} 43$
complex*16 s(20,20)
integer i, j, ifail
c FUNCTION calls
real*8 form_factor
aint0 $=0.0$
if (q.lt.0.0001) then
$\mathrm{p} 43=4.0 \mathrm{~d} 0 * \mathrm{pi} / 3.0 \mathrm{~d} 0$
do $5 \mathrm{i}=1, \mathrm{p}$
$\mathrm{a}(\mathrm{i})=\mathrm{p} 43^{*} \mathrm{r}(\mathrm{i})^{* *} 3$
aint0 $=$ aint0 $+\mathrm{a}(\mathrm{i})^{* *} 2 * \mathrm{x}(\mathrm{i})$
continue
else
do $10 \mathrm{i}=1, \mathrm{p}$
$a(i)=$ form_factor(iform, q,

- $\quad \mathrm{r}(\mathrm{i})^{*} 0.5 \mathrm{~d} 0-\mathrm{dzeep}$ - dlayer(1),
- nrho, rho, nlayer, dlayer)
$\operatorname{aint0}=\operatorname{aint} 0+\mathrm{a}(\mathrm{i})^{* *} 2^{*} \mathrm{x}(\mathrm{i})$
10
continue
endif
call struct(q, s, ifail)
if (ifail.ne.0) then
if (ifail.eq.1) write (*,'(a)') '\$SNAG: Complex diagonal.'
if (ifail.eq.2) write (*,'(a)') '\$SNAG: $Q Q+$ is not pos. def.'
write (*,'(a)') '\$Intens Abort - You lose.'
return
endif
110 continue
$\mathrm{ai}=0.0 \mathrm{~d} 0$

```
c --- intens ---
do 300 i=1,p
        do 200 j=i+1,p
            ai = ai + 2. * dreal(s(i,j))
    - * a(i)*a(j)* dsqrt(x(i)*x(j)) the sum this way.
continue
\(\mathrm{ai}=\mathrm{ai}+\mathrm{a}(\mathrm{i})^{* *} 2^{*} \operatorname{dreal}(\mathrm{~s}(\mathrm{i}, \mathrm{i}))^{*} \mathrm{x}(\mathrm{i})\)
c
c
\(s(i, i)\) is real, but the machine
does not know.
300 continue
return
end
```


subroutine qik(q,qq)

c PURPOSE:
c This routine determines $\mathrm{Q}^{\sim}(\mathrm{i}, \mathrm{k})$ as defined in Vrij 1979 (23) but now
c with stickyness included. For insiders we note that the variables
c start with vr.
c
c CALLED BY: struct
c
c ROUTINES CALLED: none
c
implicit none
c
c GLOBAL variables :
integer p, v, idistr
real*8 atau, btau, tau, pi, k2, k3, h, h2, pil2, pi6
real* $8 \mathrm{la}, \mathrm{l} 2, \mathrm{x}, \mathrm{r}, \mathrm{b}$
common p, idistr, atau, btau, tau(200), pi
common/ve/ v(20), la(200), 12(200)
common /pa/ $x(20), r(20) / f u / k 2, k 3, h, h 2$, pi12, pi6
common /bc/b(20)
c
c SUBROUTINE variables:
real*8 q
complex*16 $\mathrm{qq}(20,20)$
c
c LOCAL variables :
integer i, k
real*8 $\mathrm{sq}(20), \mathrm{cq}(20), \operatorname{vrx}(20), \operatorname{vrphi}(20), \operatorname{vrpsi}(20)$
c FUNCTION calls
integer in x

if (q.lt.0.0001d0) then do $30 \mathrm{i}=1, \mathrm{p}$
$\operatorname{vrx}(\mathrm{i})=0.0 \mathrm{~d} 0$
$\mathrm{sq}(\mathrm{i})=0.0 \mathrm{~d} 0$
$\mathrm{cq}(\mathrm{i})=1.0 \mathrm{~d} 0$
$\operatorname{vrphi}(\mathrm{i})=1.0 \mathrm{~d} 0$
$\operatorname{vrpsi}(\mathrm{i})=1.0 \mathrm{~d} 0$
continue
1010
else
do $10 \mathrm{i}=1, \mathrm{p}$
$\operatorname{vrx}(\mathrm{i})=\mathrm{r}(\mathrm{i}) * 0.5 \mathrm{~d} 0 * \mathrm{q}$
$\mathrm{sq}(\mathrm{i})=\mathrm{d} \sin (\mathrm{vrx}(\mathrm{i}))$
$\mathrm{cq}(\mathrm{i})=\operatorname{dcos}(\operatorname{vrx}(\mathrm{i}))$
$\operatorname{vrphi}(\mathrm{i})=3.0 \mathrm{~d} 0 / \operatorname{vrx}(\mathrm{i})^{* *} 3$

* $(\mathrm{sq}(\mathrm{i})-\mathrm{vrx}(\mathrm{i}) * \mathrm{cq}(\mathrm{i}))$
$\operatorname{vrpsi}(\mathrm{i})=\mathrm{sq}(\mathrm{i}) / \operatorname{vrx}(\mathrm{i})$
continue
endif
c
do $200 \mathrm{i}=1, \mathrm{p}$
do $100 \mathrm{k}=1, \mathrm{p}$ $\mathrm{qq}(\mathrm{i}, \mathrm{k})=\mathrm{dcmplx}\left(\mathrm{pi} 6{ }^{*} \operatorname{dsqrt}\left(\mathrm{x}(\mathrm{i})^{*} \mathrm{x}(\mathrm{k})\right), 0.0 \mathrm{~d} 0\right)$
* dcmplx
- (
$-\quad-0.25 \mathrm{~d} 0 * \operatorname{la}(\operatorname{inx}(\mathrm{i}, \mathrm{k})) * r(\mathrm{k})$

```
                    * (r(i) +r(k) )** 2 * vrpsi(k)
                    .... and Q"(i,k)!
```

c
c
c
c
$-\quad+r(k)^{* *} 3 / h^{*} \operatorname{vrphi}(k)$
$+\mathrm{r}(\mathrm{k})^{* *} 2^{*} \mathrm{r}(\mathrm{i}) / \mathrm{h}^{*} 3.0 \mathrm{~d} 0 * \operatorname{vrpsi}(\mathrm{k})$
$-r(k)^{* *} 3^{*} b(i) / r(i)$

* 2.0d0 * $\operatorname{vrphi}(\mathrm{k})$
,
$-r(i)^{*} r(k)^{* *} 2 / h^{*} \operatorname{vrx}(k)^{*} \operatorname{vrphi}(k)$
)
* $\operatorname{dcmplx}(\mathrm{cq}(\mathrm{i}), \mathrm{sq}(\mathrm{i}))$
$=\operatorname{cdexp}(\operatorname{vrx}(\mathrm{i}))$
continue
Now we've got $2(i, k) \ldots$

```
qq(i,i) = qq(i,i) + dcmplx ( 1.0d0, 0.0d0 )
```

```
qq(i,i) = qq(i,i) + dcmplx ( 1.0d0, 0.0d0 )
```

continue
return
end
c

```
1050
subroutine intens
```



```
c PURPOSE :
c Calcute scattering intensity or structure factor.
c Write to file.
c
c ROUTINES CALLED :
c subint, schrijf
c
c
c GLOBAL variables :
integer p, idistr, istat, iplot
real*8 atau, btau, tau, pi
```

```
        real*8 x, r, ina, qa
        common p, idistr, atau, btau, tau(200),pi /pa/ x(20),r(20)
        common /pl/ iplot /in/ istat, qa(200), ina(200)
c
c LOCAL variables :
        real*8 a(20)
        real*8 q, dq, smint, ai, aint0 1070
        real xxx(200),yyy(200)
        character*1 ch
        complex*16 s(20,20)
c
c FUNCTION calls :
    integer igets
    1 write (*,1000)
        read (*,*) q
        if (q.ne.0.0) goto 10
        1080
        write (*,1030)
        read (*,1031) ch
        if (ch.eq.'s') istat=1
        if (ch.eq.'i') istat=0
        if (ch.eq.'o') goto 950
        if(.true.) goto 1
    10
    continue
    write (*,1002)
    read (*,*) dq
    write (*,1004)
        1 0 9 0
    read (*,*) nq
    smint = 0.0d0
    do }900\textrm{n}=1,\textrm{nq
        call subint (q,ai,aint0)
        qa(n)=q
        if (istat.eq.1) goto 500
        ina(n) = ai
        if (ina(n).lt.smint) smint = ina(n)
        goto }80
```

```
    continue
```

1100

```
    1031 format (1a)
        end
```

```
            integer function igetval(il,ih)
```



```
c
    implicit none
    integer il, ih
```



```
    write (*,20)
    read (*,fmt=*,err=11) igetval
    if((igetval.ge.il).and.(igetval.le.ih)) return
    write (*,30) il,ih
    if (.true.) goto 10
    format ('Value: '$)
    format ('',i3,'< value < ',i4,'.'/' Again : '$)
    end
C + + + +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    real*8 function agetval(bl,bh)
```



```
c
    real*8 bl, bh
c===============================================================================
    write (*,20)
    read (*,fmt=*,err=11) agetval
    if((agetval.ge.bl).and.(agetval.le.bh)) return
    write (*,30) bl,bh
    if (.true.) goto 10
    20 format ('Value: '$)
    format ('',f6.2,'<= value <=',f6.2,'.'/' Again : '$)
    end
                            1160
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    REAL*8 FUNCTION FSPHERE(DELRHO,R,Q)
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A HOMOGENEOUS
C SPHERE OF RADIUS R AT SCATTERING VECTOR Q
C
C GLOBAL :
    REAL*8 DELRHO, R, Q
C LOCAL :
    REAL*8 PI, RQ
    1 1 7 0
C
```

```
    PI = 4.0DO * DATAN (1.0DO)
    RQ = R * Q
    IF (Q.LT.1.OD-7) THEN
        FSPHERE=4.0DO*PI*DELRHO*R*R*R/3.0DO
    ELSE
        FSPHERE=4.ODO*PI*DELRHO*(DSIN(RQ)-RQ*DCOS(RQ))/(Q*Q*Q)
            ENDIF
            RETURN
            END
            REAL*8 FUNCTION FORM_FACTOR(IFORM,Q_VECTOR,RADIUS,NRHO,RHO,
            >
                                    NLAYER,DLAYER)
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C IMPLICIT NONE
C NRHO,NLAYER: Number of RHO(),DLAYER()
C RHO(I) : Electron densities (MAX = 12)
C DLAYER(I) : Transition layer distances (MAX = 10)
C
C Q_VECTOR : SCATTERING ANGLE 1190
C RADIUS : MEAN OF THE GAUS DISTRIBUTION
C
C ROUTINES CALLED :
C ====================
C SCATTERED AMPLITUDE (NOT INTENSITY) OF
C FSPHERE : HOMOGENOUS SPHERE
C FLINSPHERE : DIFFUSE SPHERE (LINEAR DECREASING DENSITY)
C FSHELL : SHELL
C
    INTEGER IFORM, NRHO, NLAYER 1200
    REAL*8 Q_VECTOR, RADIUS
            REAL*8 DLAYER(10), RHO(12)
            REAL*8 FSPHERE,FLINSPHERE,FSHELL
C LOCAL :
C
REAL*8 PI, PPI, Y, YZERO
```



```
    PI=4.0D0*DATAN(1.0D0)
    PPI=4.0DO*PI/3.0DO 1210
    IF (IFORM.EQ.1) THEN
    Y=FSPHERE (RHO (1)-RHO (2),RADIUS,Q_VECTOR)
    YZERO = (RHO(1)-RHO (2))*(RADIUS**3)
    ELSE IF (IFORM.EQ.2) THEN
    Y=FLINSPHERE(RHO (1)-RHO (2), RADIUS,DLAYER (1),Q_VECTOR)
    YZERO = (RHO(1)-RHO(2))*RADIUS**3 +
> 0.75EO*(RHO(1)-RHO(2))/DLAYER(1) * ((RADIUS+DLAYER(1))**4
> -RADIUS**4) + (RHO(1)-RADIUS*(RHO(1)-RHO(2))/DLAYER(1))*
> ((RADIUS+DLAYER(1))**3-RADIUS**3)
    ELSE IF (IFORM.EQ.3) THEN 1220
    Y=FSHELL(RHO(1)-RHO(2),RHO(2)-RHO(3),RADIUS,
> DLAYER(1),Q_VECTOR)
    YZERO = RADIUS**3*(RHO(1)-RHO(2))+
> (RADIUS+DLAYER(1))**3*(RHO(2)-RHO(3))
    ELSE IF (IFORM.EQ.4) THEN
    Y=FLINSPHERE(RHO (2) -RHO (3), RADIUS,DLAYER (1),Q_VECTOR)
> -FSPHERE(RHO (2)-RHO(1),RADIUS,Q_VECTOR)
    YZERO = (RHO(1)-RHO(2))*RADIUS**3 + (RHO(2)-RHO(3))*RADIUS**3
> 0.75EO*(RHO(2)-RHO(3))/DLAYER(1) * ((RADIUS+DLAYER(1))**4
> -RADIUS**4) + (RHO(2)-RADIUS*(RHO(2)-RHO(3))/DLAYER(1))* }123
> ((RADIUS+DLAYER(1))**3-RADIUS**3)
    ELSE IF (IFORM.EQ.5) THEN
    Y=FLINSPHERE(RHO(1)-RHO (2),RADIUS,DLAYER(1),Q_VECTOR)
> +FSPHERE(RHO(2)-RHO(3),RADIUS+DLAYER (1),Q_VECTOR)
    YZERO = (RHO(1)-RHO(2))*RADIUS**3 +
> 0.75EO*(RHO(1)-RHO(2))/DLAYER(1) * ((RADIUS+DLAYER(1))**4
> -RADIUS**4) + (RHO(1)-RADIUS*(RHO(1)-RHO(2))/DLAYER(1))*
> ((RADIUS+DLAYER(1))**3-RADIUS**3) +
> (RHO(2)-RHO (3))*(RADIUS+DLAYER(1))**3
    ELSE IF(IFORM.EQ.6) THEN
    Y=FSPHERE(RHO(1)-RHO(2),RADIUS,Q_VECTOR)+
>FLINSPHERE(RHO (2)-RHO (3),RADIUS+DLAYER(1),DLAYER(2),Q_VECTOR)
YZERD=1.ODO
```

```
    ELSE IF(IFORM.EQ.7) THEN
    Y=FLINSPHERE(RHO (1)-RHO (2),RADIUS,DLAYER(1) ,Q_VECTOR)+
    >FLINSPHERE(RHO (2)-RHO(3),RADIUS+DLAYER (1),DLAYER (2),Q_VECTOR)
    YZERO=1.ODO
    ELSE IF(IFORM.EQ.8) THEN
    Y=FLINSPHERE(RHO(1)-RHO (2),RADIUS ,DLAYER(1) ,Q_VECTOR) +
>FSPHERE(RHO (2)-RHO (3),RADIUS+DLAYER (1)+DLAYER(2),Q_VECTOR)
    YZERO=1.ODO
    ELSE IF(IFORM.EQ.9) THEN
    Y=FLINSPHERE(RHO (1)-RHO (2),RADIUS,DLAYER(1),Q_VECTOR)+
>FLINSPHERE(RHO (2)-RHO (3),RADIUS+DLAYER(1)+DLAYER(2),
> DLAYER(3),Q_VECTOR)
    YZERO=1.ODO
    ELSE IF (IFORM.EQ.10) THEN
    Y=FSPHERE (RHO(1)-RHO(2), RADIUS,Q_VECTOR) +
    > FSPHERE(RHO (2)-RHO (3),RADIUS+DLAYER (1),Q_VECTOR)+
    > FSPHERE(RHO(3)-RHO(4),RADIUS+DLAYER(1)+DLAYER(2),Q_VECTOR) (260
    YZERO = (RHO(1)-RHO(2))*(RADIUS**3) +
> (RHO(2)-RHO(3))*((RADIUS+DLAYER(1))**3)+
> (RHO(3)-RHO(4))*((RADIUS+DLAYER(1)+DLAYER(2))**3)
    ENDIF
    FORM_FACTOR = Y
C FORM_FACTOR = Y / YZERO / PPI
    RETURN
    END
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    REAL*8 FUNCTION FLINSPHERE(DELRHO,R,D,Q)
1 2 7 0
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C IMPLICIT NONE
C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A HOMOGENEOUS
C SPHERE OF RADIUS R , WITH A LINEAR DECREASING ELECTRON DENSITY
C OVER A DISTANCE D , AT SCATTERING VECTOR Q
C
    REAL*8 DELRHO, R, D, Q
    REAL*8 X, Y, PI
    PI=4.ODO*DATAN(1.ODO)
```

```
            X=R*Q
            Y=(R+D)*Q
    FLINSPHERE= 4.0DO * PI * DELRHO / (Q*Q*Q) *
    > ((2.0DO*(DCOS (Y)-DCOS (X))-X*DSIN (X)+Y*DSIN (Y))/(X-Y))
    RETURN
    END
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    REAL*8 FUNCTION FSHELL(DELRH1,DELRH2,R,D,Q)
C IMPLICIT NONE
C FUNCTION CALCULATES THE SCATTERED AMPLITUDE FROM A SHELL PARTICLE
C WITH INNER RADIUS R, OUTER RADIUS R+D AT SCATTERING VECTOR Q.
C
REAL*8 DELRH1,DELRH2,R,D,Q
C
REAL*8 FSPHERE
C
FSHELL = FSPHERE (DELRH1,R,Q) + FSPHERE (DELRH2,R+D,Q)
RETURN
END
subroutine print_profile(iform)
c++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
c implicit none
integer iform
c
write(*,99) iform
goto ( \(1,2,3,4,5,6,7,8,9,10\) ) iform
1 write (*, 101)
return
2
write (*, 102)
return
3 write (*,103)
return
4
write (*, 104)
return
```

```
    5 write(*,105)
    return
    write(*,106)
    return
    write(*,107)
    return
    write(*,108)
    return
    write(*,109)
    return
    write(*,110)
    return
format(1h ,/,'$Density profile: iform =',i4)
format(1h ,/,"----",/," |",/," |----"$)
format(1h ,/,' ',/,"---- /",/," /",/," /----"$) 1330
format(1h ,/," ---",/," | |",/,"----| |",/,
    " |----"$)
104 format(1h ,/,"----",/," /",/," /----"$)
format(1h ,/,'Not yet drawn?'$)
format(1h ,/," ----",/," | /",/,"----1 /",/,
    > " /-----"$)
107 format(1h,/," ---",/," / |",/,"----/ |",/,
    > " 1-----"$)
108 format(1h ,/," //",/,"----/ /",/," /-----"$)
109 format(1h ,/," __-",/," / /",/,"----/ /",/
    > " /----"$)
110 format(1h ,/,'Not yet drawn?'$)
    end
    subroutine set_deeltje
```



```
c implicit none
c
c GLOBAL :
    integer nrho, nlayer, iform
    1 3 5 0
    real*8 rho(12), dlayer(10)
```

```
        real*8 dzeep
        common / deeltje / iform, rho, nrho, dlayer, nlayer, dzeep
C
c LOCAL :
    integer i
C
c FUNCTION calls
    real*8 agetval
    integer igetval
```


FORMAT('$Give IFORM :'$)
IFORM = IGETVAL(1,11)
IF (IFORM.EQ.1) THEN
RHO(1) = 1.ODO
RHO(2) = 0.ODO
DO 1002 I=1,10
1002
DLAYER(I) = 0.0DO
NRHO = 2
NLAYER = 0
ELSE IF (IFORM.EQ.2) THEN
NRHO = 2
NLAYER = 1
ELSE IF ((IFORM.GE.3).AND.(IFORM.LE.5)) THEN
NRHO = 3
NLAYER = 1
ELSE IF ((IFORM.GE.6).AND.(IFORM.LE.8)) THEN
NRHO = 3
NLAYER = 2
ELSE IF (IFORM.EQ.9) THEN
NRHO = 3
NLAYER = 3
ELSE IF (IFORM.EQ.10) THEN
NRHO = 4
NLAYER = 2
ENDIF

```
```

 WRITE (*,103)
 103 FORMAT('$Give inner density : '$)
 RHO(1) = AGETVAL (0.d0, 1000.d0)
 1 3 9 0
 104 FORMAT('$Give outer density : '$)
WRITE (*,104)
RHO(NRHO) = AGETVAL (-1000.d0,1000.d0)
DO 98 I=2,NRHO-1
WRITE(*,100) I-1
100 FORMAT(1H ,'\$ Give electron density in transition layer no.', I4)
RHO(I) = AGETVAL(-1000.d0,1000.d0)
CONTINUE
DO 97 I=1,NLAYER
WRITE(*,101) I
1400
101 FORMAT(1H ,'\$ Give transition layer thickness no.', I4)
DLAYER(I) = AGETVAL(0.d0,1000.d0)
CONTINUE
IF(.TRUE.) GOTO 999
DO 95 I=1,10
CALL PRINT_PROFILE(I)
IF (.TRUE.) GOTO 99
9 9 9
RETURN
END
C
C

```

```

 subroutine schrijf(nnn, xxx, yyy)
 c PURPOSE : save data xxx and yyy in a file
c
c ROUTINES CALLED :
c errmsg
c
c FUNCTIONS CALLED :
c askno, igets
c
c implicit none

```
```

 real*8 xxx(1), yyy(1)
 integer nnn
 c LOCAL:
 c
 character*80 dumfln, infln
 integer jchar, ios, irc
 logical answer 1430
 c
c FUNCTION calls:
logical askno
integer igets

```

```

 10 write(*,1000)
 dumfln = ',
 if (igets(5, dumfln).eq.0) then
 return
 else 1440
 jchar = index(dumfln,'') - 1
 if (jchar.eq.0) then
 infln = 'tt.dat'
 jchar = 6
 else
 infln = dumfln
 endif
 endif
 c
c
open(UNIT=2, FILE=infln(1:jchar),
- STATUS='OLD', IOSTAT=ios)
if (ios.ne.0) then
c -----> CREATE NEW FILE
open(UNIT=2, FILE=infln(1:jchar), STATUS='NEW',IOSTAT=ios)
if (ios.ne.0) then
c ---------> CANNOT CREATE NEW FILE
goto 9990
endif

```
```

 else
 c ----> FILE EXISTS, APPEND NEW DATA
write(6,1001)
answer = askno(5,irc)
if (answer) then
c --------> DO NOT APPEND
close(UNIT=2)
goto 10
endif
endif
c
c
c ----> write to file
c
do $40 \mathrm{k}=1$, nnn
write(UNIT=2, FMT=1020, ERR=9991) xxx(k), yyy(k)
close(UNIT=2)
return
c
c ERRORS
9990 call errmsg('Error opening datafile ')
close(UNIT=2)
goto 10
9991 call errmsg(' Error writing datafile ')
close(UNIT=2)
goto 10
1000 format (' >>> Enter filename or <crtl Z> [TT.DAT]: '\$)
1001 format (' File already exists! Overwrite ? [Y/N] [N]: '\$)
1002 format(a)
1010 format (2i5)
1020 format(2f16.7)
end
C LAST UPDATE $16 / 03 / 89$
C+++
C

```
    C IMPLICIT NONE
    C
    C PURPOSE: READ A CHARACTER STRING FROM THE TERMINAL AND REPORT IF
    C CTRL-Z ISSUED.
    C 1500
    C NB : PRINT *,'' is for the CONVEX
    C
    INTEGER ITERM
    CHARACTER*(*) TBUFF
C
C ITERM : TERMINAL INPUT STREAM
C TBUFF : TERMINAL BUFFER
C--------------------------------------------------------------------------------
    READ (ITERM,'(A)',END=999) TBUFF
    IF( (ICHAR(TBUFF(1:1)) .EQ . 26) .OR. (ICHAR(TBUFF(1:1)) .EQ. 4) )
LOGICAL FUNCTION ASKNO (ITERM, IRC)
C
C Purpose: Read user response to a yes/no question and either assign
C the default answer if <cr> is entered or interpret the reply
C and return the relevant logical value. If <ctrl-Z> is
\(C\) entered the return code is -1.
C
INTEGER ITERM,IRC
C
C ITERM : Terminal input stream
C IRC : Return code 0 - successful
```

```
C 1-<ctrl-Z>
C
C Calls 1: ERRMSG
C
C-+-+-+-+-+-+-++-+-+-++-+-+-+-+-+-+-+-+-++-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+
C Local variables:
C
    INTEGER JCHAR
    CHARACTER*80 TBUFF
C
C JCHAR : Nos. of chars entered
C TBUFF : Terminal buffer
C
C--------------------------------------------------------------------------------------
C
            ASKNO=.TRUE .
            IRC=1
C
10 READ (ITERM,'(A)',END=999) TBUFF
            JCHAR=INDEX(TBUFF,'')-1
            IF (JCHAR.EQ.0) THEN
                IRC=0
            ELSEIF (TBUFF(1:1).EQ.'N'.OR.TBUFF(1:1).EQ.'n') THEN
                IRC=0
            ELSEIF (TBUFF(1:1).EQ.'Y'.OR.TBUFF(1:1).EQ.'y') THEN
                IRC=0
                ASKNO=.FALSE.
            ELSE
            CALL ERRMSG ('Error: Reply Y' or N', Please re-enter') 1560
            GOTO 10
            ENDIF
999 END
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
    LOGICAL FUNCTION ASKYES (ITERM,IRC)
C
```

```
C Purpose: Read user response to a yes/no question and either assign
C the default answer if <cr> is entered or interpret the reply
C and return the relevant logical value. If <ctrl-Z> is
C
    ASKYES=.TRUE .
    IRC=1
C
10 READ (ITERM,'(A)',END=999) TBUFF
    JCHAR=INDEX(TBUFF,'')-1
    IF (JCHAR.EQ.0) THEN
        IRC=0
    ELSEIF (TBUFF(1:1).EQ.'N'.OR.TBUFF(1:1).EQ.'n') THEN
        IRC=0
        ASKYES=.FALSE.
        ELSEIF (TBUFF(1:1).EQ.'Y'.OR.TBUFF(1:1).EQ.'y') THEN
        IRC=0
```

```
    ELSE
            CALL ERRMSG ('Error: Reply Y or N, Please re-enter')
            GOTO 10
        ENDIF
9 9 9
    END
C+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
C
```

```
C
```

\qquad

```
C
\(C=====\) REVERSE VIDEO MODE
C
PRINT *, 1000 , ESC , '[' , 7 , 'm'
C
C======PRINT ERROR MESSAGE AND RING BELL
C
```

```
    PRINT *,1010,MESAGE,BELL
C
C=====REVERT TO PREVIOUS VIDEO MODE
C
    PRINT *,1020 , ESC , '[' , 0 , 'm'
    RETURN
C
1000 FORMAT (' ', 2A1,I1,A1)
1010 FORMAT ('+',A)
1020 FORMAT ('+',2A1,I1,A1)
    END

\section*{Appendix C}

\section*{Least-Square Fitting}

This is a source code listing of a FORTRAN program which performs the least-square fitting of various models to the experimental data with the option of the incoporation of the resolution function.

\footnotetext{
c main program
implicit none
character*20 filein(3), title, fileout, state, xsectype
character*50 junk
real*8 sigq, ave, fave, \(\mathrm{STP}, \mathrm{QBE}\), Qres
real*8 reso, ftemp
integer pnumber, i, estart(3), enumber, imax, j, imequ
integer iprint, resyn, nfold, sets, ii
real*8 prm, step, bound, fres, oldchi, sig
real*8 edat \((3,4,200)\), rl,r2,rl1,rl2,rlam,dlam,rdet
common/general/estart, enumber(3), prm(200), bound(2,200), imax
common/resof1/reso(3,200,200),rl,r2,rl1.rl2,rlam,dlam,rdet,resyn
common/resof2/sig \((3,200)\),nfold
common/QQQ/ave(200), fave(200), imequ, iprint, sets
C
c
open(unit=5,file='fitcontrol',status='old')
rewind (unit \(=5\) )
\(\operatorname{read}(5,1201)\) title
}
```

 print*,'title :',title
 3333 read(5,1201) state
if(state.cq.'stop') go to 4444
read(5,*) sets
do 170 i=1,sets
read(5,1201) filein(i)
read(5,*) estart(i)
read(5,*) enumber(i)
170 continue
1201 format(a20)
read(5,1201) fileout
c
c
open(unit=10,file='test', status='unknown') --
rewind(unit=10)
do }190\textrm{ii}=1\mathrm{ ,sets
open(unit=7,file=filein(ii), status='old')
rewind(unit=7)
if(estart(ii).eq.1) go to 117
do 2 i=1,estart(ii)-1
read(7,1202) junk
continue
1202 format(a50)
117 do 3 i=1, enumber(ii)
read(7,*) edat(ii,1,i), edat(ii,2,i), edat(ii,3,i)
if(title.eq.'ORNL') then
edat(ii,1,i) = edat(ii,1,i)/10.
endif
write(10,1023) edat(ii,1,i),edat(ii,2,i),edat(ii,3,i)
3
continue
close(unit=7)
190 continue
close(unit=10)
c
c
$\operatorname{read}(5,1201)$ xsectype

```
print \({ }^{*}\), xsectype
read(5, \({ }^{*}\) ) pnumber
do \(1 \mathrm{i}=1\),pnumber
\(\operatorname{read}\left(5,{ }^{*}\right) \operatorname{prm}(\mathrm{i}), \operatorname{bound}(1, \mathrm{i}), \operatorname{bound}(2, \mathrm{i})\)

1 continue
c input the predetermined volume fraction as prm(pnumber +1 )
\(\operatorname{read}\left(5,{ }^{*}\right)\) step
\(\operatorname{read}\left(5,{ }^{*}\right)\) ftemp
\(\operatorname{read}\left(5,{ }^{*}\right)\) imequ
\(\operatorname{read}\left(5,{ }^{*}\right)\) imax
\(\operatorname{read}\left(5,{ }^{*}\right)\) iprint
\(\operatorname{read}\left(5,{ }^{*}\right)\) resyn
c
c
open(unit \(=7\), file='reso.fun',status='unknown')
rewind(unit=7)
nfold \(=50\)
do \(180 \mathrm{ii}=1\),sets
        read(5,*) rl
        \(\operatorname{read}\left(5,{ }^{*}\right) \mathrm{r} 2\)
        \(\operatorname{read}\left(5,{ }^{*}\right)\) rl1
        \(\operatorname{read}\left(5,{ }^{*}\right) \mathrm{rl} 2\)
        \(\operatorname{read}\left(5,{ }^{*}\right)\) rlam
        \(\operatorname{read}\left(5,{ }^{*}\right)\) dlam
        \(\operatorname{read}\left(5,{ }^{*}\right)\) rdet
        DO \(200 \mathrm{I}=1\),enumber(ii)
        \(\operatorname{SIG}(\mathrm{ii}, \mathrm{I})=\mathrm{dSQRT}(\operatorname{SIGQ}(\operatorname{edat}(\mathrm{ii}, 1, \mathrm{I})))\)
        STP=6.*SIG(ii,I)/FLOAT(NFOLD)
        QBE=edat(ii, \(1, \mathrm{I}\) ) \(-0.5^{*}\) FLOAT(NFOLD)*STP
```

 IF(QBE .LE. 0.0) QBE=1.d-10
 DO 300 J=1,nfold
 Qres=QBE+(J-0.5)*STP
 RESO(ii,I,J)=STP*FRES(SIG(ii,I)**2,
 + edat(ii,1,I),Qres)
 write(7,1023) Qres,reso(ii,i,j)
 close(unit=7)
 c
C
1 9 call anneal(edat,ftemp,pnumber,step,oldchi,state,xsectype)
C
c
open(unit=7,file=fileout,status='unknown')
rewind(unit=7)
write(7,*) title
write(7,*) xsectype 110
write(7,1023) oldchi
write(7,*) ' '
do 20 i=1,pnumber
write(7,1023) prm(i),ave(i),fave(i)
20 continue
1023 format(3e15.6)
close(unit=7)
c
go to 3333
4444 close(unit=5)
stop
end
c
c
real*8 function xsec(Q, prm, xsectype)
C
c Scattering Intensity of a Monodispersed Sticky-Hard-Sphere System

```

C
implicit none
character*20 xsectype
real* 8 prm(200), Q, eta, a, R, tau, bgd, dsld, pi
real*8 QR, \(\mathrm{P}, \mathrm{np}, \mathrm{mu}\), alpha
real*8 Sshs, alp, G1, G2
real* 8 const, thy, \(\mathrm{d}, \mathrm{AA}, \mathrm{BB}, \mathrm{Z}, \mathrm{Z} 1, \mathrm{Z} 2, \mathrm{Z} 3, \mathrm{G} 11, \mathrm{G} 12, \mathrm{G} 13\)
real* 8 bet, arb, thy 1 , thy \(2, \mathrm{f}, \mathrm{S}\), center, deviat, Na
real*8 L, Vfc, Vhc, fcop, fpfo, foct, rsol, rhc, rfc
real*8 cylindform, etaa, SHSStr, Vp, phim
real*8 cylind3form, RectStr, W,liq P ,liqSshs
real* 8 H, rhoF,rhoH,rhoS,pstep,sspo,pp(7),liq,phii
real*8 mstep,step,phi,ssm,fhcfun,ssmn,sspn,ssmo
real* 8 fhcylfun,rv, phio,tt,rhoC,ang
integer \(\mathrm{n}, \mathrm{j}, \mathrm{kk}\)

C

C
\(\mathrm{pi}=3.141592653\)
C
c Monodisperse \& Polydisperse Sticky Hard Spheres
C
if(xsectype.eq.'monoshs'.or.xsectype.eq. 'polyshs') then
c Define the parameters
c 1. Sticky Sphere Diameter for Structure Factor Calculation
\(a=\operatorname{prm}(1)\)
c 2. Hard Sphere Radius for Form Factor Calculation
\(\mathrm{R}=\mathrm{prm}(2)\)
c 3. Stickiness in Sticky Sphere Model
\(\operatorname{tau}=\operatorname{prm}(3)\)
c 4. Difference of Scattering Length Density between Spheres and solvent dsld \(=\operatorname{prm}(4)\)
c 5. Incoherent Scattering Background
\(\mathrm{bgd}=\operatorname{prm}(5)\)
if(xsectype.eq.'monoshs') then
c 6. Volme Fraction
c
cta \(=\operatorname{prm}(6)^{*} a^{* *} 3 . / R^{* *} 3 . / 8\).
\[
\text { eta }=\operatorname{prm}(6)
\]
else
c 6. Width parameter in Schultz distribution
\[
\mathrm{Z}=\operatorname{prm}(6)
\]
c
7. Volme Fraction
c
\(\mathrm{eta}=\operatorname{prm}(7) * \mathrm{a} * 3\).
c
\({ }^{*}(\mathrm{Z}+1 .)^{* *} 2 . /(\mathrm{Z}+2) /.(\mathrm{Z}+3.) / \mathrm{R}^{* *} 3 . / 8\).
eta \(=\operatorname{prm}(7)\)
endif
c
c
if(eta.gt.0.74) then
\[
\mathrm{xsec}=1 . \mathrm{d} 30
\]
return
endif
c
c
c Form Factor
if(xsectype.eq.'monoshs') then
\[
\mathrm{QR}=\mathrm{Q} * \mathrm{R}
\]
\[
\mathrm{P}=\left(4 \cdot .^{*} \mathrm{pi}^{*} \mathrm{R}^{* *} 3 . *\left(\mathrm{~d} \sin (\mathrm{QR})-\mathrm{QR}^{*} \mathrm{~d} \cos (\mathrm{QR})\right) / \mathrm{QR}^{* *} 3 .\right)^{* *} 2
\]
else
c
c
c
c
C
c \(\quad \mathrm{G} 13=-2 .{ }^{*} \mathrm{Z}^{*}\left(4 .+\mathrm{alp}^{* *} 2\right)^{* *}(-\mathrm{Z} 2 / 2)\)
c * *dsin(Z2*datan(2./alp))
\[
\operatorname{alp}=(\mathrm{Z}+1 .) / \mathrm{Q} / \mathrm{R}
\]
\(\operatorname{alp}=\mathrm{Q}^{*} \mathrm{R} /(\mathrm{Z}+1\).
\(\mathrm{Z} 1=\mathrm{Z}+1\).
\(\mathrm{Z} 2=\mathrm{Z}+2\).
\(Z 3=Z+3\).

G11 \(=\) alp \(^{* *}(-\mathrm{Z} 1)-\left(4 .+\mathrm{alp}{ }^{* *} 2\right)^{* *}(-\mathrm{Z} 1 / 2\).
* \(\quad{ }^{\operatorname{d} \cos (Z 1 *}\) datan(2./alp))
\(\mathrm{G} 12=\mathrm{Z} 2^{*} \mathrm{Z} 1^{*}\left(\right.\) alp \(^{* *}(-\mathrm{Z} 3)+\left(4 .+ \text { alp }{ }^{* *} 2\right)^{* *}(-\mathrm{Z} 3 / 2)\)
* \(\quad\) *dcos(Z3*datan(2./alp)))
\(\mathrm{G} 11=1-\left(1 .+4 .{ }^{*} \text { alp }^{* *} 2 .\right)^{* *}(-\mathrm{Z} 1 / 2 .)^{*}\)
* \(\quad \operatorname{dcos}\left(\mathrm{Z} 1^{*}\right.\) datan(2.*alp))
\(\mathrm{G} 12=\) alp \(^{* *} 2 .{ }^{*} \mathrm{Z} 1^{*} \mathrm{Z} 2^{*}\left(1 .+\left(1 .+4 . \text { alp }^{* *} 2 .\right)^{* *}(-\mathrm{Z} 3 / 2)\right.\).

\footnotetext{
* \(\quad\) d dcos(Z3*datan(2.*alp))) G13 \(=-2 .{ }^{*}\) alp \(^{*} 1^{*}\left(1 .+4 .{ }^{*} \text { alp**2. }\right)^{* *}(-\mathrm{Z} 2 / 2\).
* \(\quad{ }^{*} \operatorname{dsin}\left(Z 2^{*}\right.\) datan(2.*alp)) \(\mathrm{G} 1=\mathrm{G} 11+\mathrm{G} 12+\mathrm{G} 13\)
c
\[
\mathrm{P}=8^{*} \mathrm{pi}^{* *} 2 .{ }^{*} \mathrm{R}^{* *} 6^{*} \mathrm{alp}^{* *}(\mathrm{Z}+7)^{*} \mathrm{G} 1 / \mathrm{Z} 1^{* *} 6
\]
\[
\mathrm{P}=8 .{ }^{*} \mathrm{pi}^{* *} 2 .{ }^{*} \mathrm{G} 1 / \mathrm{Q}^{* *} 6 .
\]
endif
c
c Structure Factor
Sshs \(=\operatorname{SHSStr}(\mathrm{Q}\), eta, \(\mathrm{a}, \mathrm{tau})\)
c
if(xsectype.eq.'monoshs') then
\[
\mathrm{xsec}=\mathrm{np} \mathrm{p}^{\mathrm{dsld}} \mathrm{D}^{*} \mathrm{P}^{*} \text { Sshs }+\mathrm{bgd}
\]
else
c
c
            \(\mathrm{G} 2=\mathrm{dsin}\left(\mathrm{Z1}{ }^{*} \operatorname{datan}(1 . / \mathrm{alp})\right)-\mathrm{Z1} 1^{*}\left(\left(1+\mathrm{alp}^{* *} 2 .\right)^{* *}(-0.5)\right)\)
c
    \({ }^{*} \operatorname{dcos}\left(Z 2^{*}\right.\) datan(1./alp))
        \(\mathrm{G} 2=\mathrm{d} \sin \left(\mathrm{Z1}{ }^{*}\right.\) datan(alp)) \(-\mathrm{Z1}{ }^{*}\) alp*
    * ((1.+alp**2.)**(-0.5))*dcos(Z2*datan(alp))
        bet \(=2 . .^{*}\left(1 . /\left(1 .+\mathrm{alp}{ }^{* *} 2 .\right)\right)^{* *} \mathrm{Z1}^{*} \mathrm{G} 2^{* *} 2 . / \mathrm{G} 1\)
        \(\mathrm{xsec}=\mathrm{np}^{*} \mathrm{dsld}^{*} \mathrm{P}^{*}\left(1 .+\right.\) bet \({ }^{*}(\) Sshs -1.\(\left.)\right)+\mathrm{bgd}\)
endif
c
return
endif
c
c
if(xsectype.eq.'polylor') then
c Define the parameters
c 1. Hard Sphere Radius for Form Factor Calculation
\(\mathrm{R}=\operatorname{prm}(1)\)
c 2. Difference of Scattering Length Density between Spheres and solvent dsld \(=\operatorname{prm}(2)\)
c 3. Constant in Lorentzian
\[
\text { const }=\text { prm(3) }
\]
c 4. Corelation length in Lorentzian
thy \(=\operatorname{prm}(4)\)
}
c 5. Incoherent Scattering Background
\[
\mathrm{bgd}=\operatorname{prm}(5)
\]
c 6. Width parameter in Schultz distribution
\[
\mathrm{Z}=\operatorname{prm}(6)
\]

C
\[
\text { alp }=Q^{*} R /(Z+1 .)
\]
\[
\mathrm{Z} 1=\mathrm{Z}+1
\]
\[
\mathrm{Z} 2=\mathrm{Z}+2
\]
\[
\mathrm{Z} 3=\mathrm{Z}+3
\]
\[
\mathrm{G} 11=1-\left(1 .+4 .^{*} \text { alp }{ }^{* *} 2 .\right)^{* *}(-\mathrm{Z} 1 / 2 .)^{*}
\]
* \(\quad \operatorname{dcos}\left(\mathrm{Z} 1^{*}\right.\) datan(2.*alp))
\[
\mathrm{G} 12=\operatorname{alp}^{* *} 2 .{ }^{*} \mathrm{Z} 1 * \mathrm{Z} 2^{*}\left(1 .+\left(1 .+4 .{ }^{*} \operatorname{alp}^{* *} 2 .\right)^{* *}(-\mathrm{Z} 3 / 2 .)\right.
\]
* \(\quad\) *dcos(Z3*datan(2.*alp)))
\(\mathrm{G} 13=-2\). alp \(^{*} \mathrm{Z}_{1}{ }^{*}\left(1 .+4 .^{*} \text { alp }^{* *} 2 .\right)^{* *}(-\mathrm{Z} 2 / 2.) \cdots\)
* \(\quad\) d \(\sin \left(\mathrm{Z} 2{ }^{*}\right.\) datan(2.*alp))
\(\mathrm{G} 1=\mathrm{G} 11+\mathrm{G} 12+\mathrm{G} 13\)
\(\mathrm{P}=8 .{ }^{*} \mathrm{pi}^{* *} 2 .{ }^{*} \mathrm{G} 1 / \mathrm{Q}^{* *} 6\).
\(\mathrm{G} 2=\mathrm{d} \sin \left(\mathrm{Z} 1^{*}\right.\) datan(alp))\(-\mathrm{Z} 1^{*}\) alp*
* \(\quad\left(\left(1 .+\mathrm{alp}^{* *} 2 .\right)^{* *}(-0.5)\right)^{*} \mathrm{~d} \cos \left(\mathrm{Z} 2^{*}\right.\) datan \(\left.(\mathrm{alp})\right)\)
bet \(=2 .{ }^{*}\left(1 . /\left(1 .+ \text { alp }^{* *} 2 .\right)\right)^{* *} \mathrm{Z1}^{*} \mathrm{G} 2^{* *} 2 . / \mathrm{G} 1\)
\(\mathrm{S}=1 .+\) const \(/\left(1 .+\mathrm{Q}^{* *} 2^{*}\right.\) thy \(\left.{ }^{* *} 2\right)\)
\(\mathrm{xsec}=\operatorname{dsld}^{*} \mathrm{P}^{*}\left(1 .+\right.\) bet \(\left.^{*}(\mathrm{~S}-1).\right)+\mathrm{bgd}\)
return
endif
c
c
if(xsectype.eq.'pshslor') then
c Define the parameters
c 1. Hard Sphere Radius for Form Factor Calculation
\[
\mathrm{R}=\operatorname{prm}(1)
\]
c 2. Difference of Scattering Length Density between Spheres and solvent dsld \(=\operatorname{prm}(2)\)
c 3. Constant in Lorentzian
\[
\text { const }=\operatorname{prm}(3)
\]
c 4. Corelation length in Lorentzian
c 5. Incoherent Scattering Background
\[
\operatorname{bgd}=\operatorname{prm}(5)
\]
c 6. Width parameter in Schultz distribution
\[
\mathrm{Z}=\operatorname{prm}(6)
\]
c 7. volume fraction in sticky spheres model
\[
\text { eta }=\operatorname{prm}(7)
\]
c 8. sticky sphere diameter
\[
a=\operatorname{prm}(8)
\]
c 9. stickness
\(\mathrm{tau}=\mathrm{prm}(9)\)
c 10. fraction of sticky spheres part in structrure factor
\(\mathrm{f}=\mathrm{prm}(10)\)
c
\(\mathrm{np}=6 .{ }^{*} \mathrm{eta} / \mathrm{pi} / \mathrm{a}^{* *} 3\).
\(\mathrm{alp}=\mathrm{Q} * \mathrm{R} /(\mathrm{Z}+1\).
\(\mathrm{Z} 1=\mathrm{Z}+1\).
\(Z 2=Z+2\).
\(Z 3=Z+3\).
G11 \(=1-\left(1 .+4 .{ }^{*}\right.\) alp**2.) \({ }^{* *}(- \text { Z1/2. })^{*}\)
* \(\quad \operatorname{dcos}\left(\mathrm{Z} 1^{*}\right.\) datan(2.*alp))
\(\mathrm{G} 12=\) alp \(^{* *} 2 .{ }^{*} \mathrm{Z} 1^{*} \mathrm{Z} 2^{*}\left(1 .+\left(1 .+4 .{ }^{*}{ }^{\text {alp }}{ }^{* * 2} 2 .\right)^{* *}(-\mathrm{Z} 3 / 2)\right.\).
* \(\quad\) * \(\operatorname{dcos}\left(\mathrm{Z} 3^{*} \operatorname{datan}\left(2 .{ }^{*}\right.\right.\) alp \(\left.\left.)\right)\right)\)
\(\mathrm{G} 13=-2 .{ }^{*}\) alp*Z1* \({ }^{*}\left(1 .+4 .{ }^{*} \text { alp }^{* *} 2 .\right)^{* *}(-\mathrm{Z} 2 / 2\).
* \(\quad\) *dsin(Z2* \({ }^{*} \operatorname{datan}(2 . *\) alp \()\) )
\(\mathrm{G} 1=\mathrm{G} 11+\mathrm{G} 12+\mathrm{G} 13\)
\(\mathrm{P}=8 .{ }^{*} \mathrm{pi}^{* *} 2 .{ }^{*} \mathrm{G} 1 / \mathrm{Q}^{* *} 6\).
\(\mathrm{G} 2=\operatorname{dsin}\left(\mathrm{Z} 1^{*}\right.\) datan(alp)) \(-\mathrm{Z1}^{*}{ }^{*}{ }^{\text {alp }}{ }^{*}\)
* ((1.+alp**2.)**(-0.5))*dcos(Z2*datan(alp))
bet \(=2 .{ }^{*}\left(1 . /\left(1 .+\mathrm{alp}^{* *} 2 .\right)\right)^{* *} \mathrm{Z1}^{*} \mathrm{G} 2^{* *} 2 . / \mathrm{G} 1\)
c Structure Factor
```

Sshs = SHSStr(Q,eta,a,tau)
S = f*Sshs+(1.-f)*(1.+const/(1.+Q**2*thy**2))

```
c
```

xsec = dsld*P*(1.+bet*(S-1.))+bgd

```
return
endif

C
C
if(xsectype.eq.'mshslor') then
c Define the parameters
c 1. Hard Sphere Radius for Form Factor Calculation
\(R=\operatorname{prm}(1)\)
c 2. Difference of Scattering Length Density between Spheres and solvent \(\mathrm{dsld}=\operatorname{prm}(2)\)
c 3. Constant in Lorentzian
const \(=\) prm(3)
c 4. Corelation length in Lorentzian
thy \(=\operatorname{prm}(4)\)
c 5. Incoherent Scattering Background
c 6. volume fraction in sticky spheres model
eta \(=\operatorname{prm}(6)\)
c 7. sticky sphere diameter
\[
\mathrm{a}=\operatorname{prm}(7)
\]
c 8. stickness
\(\operatorname{tau}=\operatorname{prm}(8)\)
c 9. fraction of sticky spheres part in structrure factor
\[
\mathrm{f}=\operatorname{prm}(9)
\]
c
\(\mathrm{np}=6 .{ }^{*} \mathrm{eta} / \mathrm{pi} / \mathrm{a}^{* *} 3\).
c Form Factor
\(\mathrm{QR}=\mathrm{Q}^{*} \mathrm{R}\)
\(\mathrm{P}=\left(4 . \mathrm{pi}^{*} \mathrm{R}^{* *} 3 . .^{*}\left(\mathrm{~d} \sin (\mathrm{QR})-\mathrm{QR}^{*} \mathrm{~d} \cos (\mathrm{QR})\right) / \mathrm{QR}^{* *} 3 .\right)^{* *} 2\).
c Structure Factor
Sshs \(=\operatorname{SHSStr}(\mathrm{Q}\), eta,a,tau)
c
```

 xsec = f*np*dsld*P*Sshs+
 + (l.-f)*(const/(1.+Q**2*thy**2))+bgd
 return
 endif
    ```
C
c
if(xsectype.eq.'mcylind') then
c Define the parameters
c 1. Radius of the cylinder
\[
R=\operatorname{prm}(1)
\]
c 2. Length of the cylinder \(\mathrm{L}=\operatorname{prm}(2)\)
c 3. Core scattering length density
rhoC \(=\operatorname{prm}(3)\)
c 4. Solvent scattering length density
\[
\mathrm{rhoS}=\operatorname{prm}(4)
\]
c 5. Particle volume fraction
\[
\text { eta }=\operatorname{prm}(5)
\]
c 6. Background
\[
\mathrm{bgd}=\operatorname{prm}(6)
\]
c
\[
P=\operatorname{cylindform}(Q, R, L)
\]
\[
\mathrm{xsec}=1 . \mathrm{d} 8^{*} \mathrm{eta}^{*} \mathrm{pi}^{*} \mathrm{R}^{* *} 2 . \mathrm{d} 0{ }^{*} \mathrm{~L}^{*}(\mathrm{rhoC}-\mathrm{rhoS})^{* *} 2 . \mathrm{d} 0^{*} \mathrm{P}+\mathrm{bgd}
\]

\section*{return}
endif
c
c
if(xsectype.eq.'mcylshs') then
c Define the parameters
c 1. Aggregation Number
\[
\mathrm{Na}=\operatorname{prm}(1)
\]
c 2. volume fraction in sticky spheres model
eta \(=\operatorname{prm}(2)\)
c 3 Adjustment to the absolute scale
const \(=\mathrm{prm}(3)\)
c 4. Incoherent Scattering Background ( \(1 / \mathrm{cm}\) ) \(\mathrm{bgd}=\mathrm{prm}(4)\)
c 5. stickness
\[
\operatorname{tau}=\operatorname{prm}(5)
\]
c 6. Length of Cylinder in Form Factor Calculation (A)
\(\mathrm{L}=\operatorname{prm}(6)\)
c 7. Length of the perfluorocarbon chain in copolymer (A)
\[
\mathrm{F}=\operatorname{prm}(7)
\]
c 8. Volume of fluorocarbon chain in copolymer ( \(\mathrm{A}^{\wedge} 3\) )
\(\mathrm{Vfc}=\operatorname{prm}(8)\)
c 9 . Volume of hydrocarbon chain in copolymer ( \(\mathrm{A}^{\wedge} 3\) )
Vhc \(=\operatorname{prm}(9)\)
c 10. Copolymer volume fraction
\[
\mathrm{fcop}=\operatorname{prm}(10)
\]
c 11. Perffrorooctane volume fraction
\(\mathrm{fpfo}=\operatorname{prm}(11)\)
c 12. iso-octane volume fraction
\[
\text { foct }=\operatorname{prm}(12)
\]
c 13. Scattering length density of fluorocarbon ( \(\mathrm{A}^{\wedge}-2\) )
\[
\mathrm{rfc}=\operatorname{prm}(13)
\]
c 14. Scattering length density of hydrocarbon ( \(A^{\wedge}=2\) ) \(\mathrm{rhc}=\operatorname{prm}(14)\)
c 15. Cylinder Cross Section Radius for Form Factor Calculation
\[
\mathrm{R}=\operatorname{prm}(15)
\]
c 16. sticky sphere diameter
\[
\mathrm{a}=\operatorname{prm}(16)
\]
c 17. correlation length in Lorentzian
\[
\text { thy }=\operatorname{prm}(17)
\]
c 18. constant for Lorentzian
\[
\operatorname{arb}=\operatorname{prm}(18)
\]
c
c
c first approximation 5/27/94
\[
\mathrm{R}=\operatorname{dsqrt}(\mathrm{Na} * \mathrm{Vhc} / 21.74 \mathrm{~d} 0 / \mathrm{pi})
\]
\(\mathrm{c} \quad \mathrm{a}=\left(6 . \mathrm{R}^{* *} 2 . *(\mathrm{~L}+2 . * \mathrm{~F})\right)^{* *}(1 . / 3\).
etaa \(=6 .{ }^{*}\) eta \(^{*} \mathrm{R}^{* *} 2 .{ }^{*} \mathrm{~L} / \mathrm{a}^{* *} 3\).
rsol \(=(\) rhc* \((\) fcop*Vhc \(/(V h c+V f c)+\) foct-etaa \()+\)
\[
\left.+\quad \mathrm{rfc}^{*}(\mathrm{fcop} * \mathrm{Vfc} /(\mathrm{Vhc}+\mathrm{Vfc})+\mathrm{fpfo})\right) /(1-\mathrm{etaa})
\]
c Form Factor
\[
\mathrm{P}=\text { cylindform(Q,R,L) }
\]

\section*{c Structure Factor}
\[
\text { Sshs }=\text { SHSStr }(Q, \text { eta }, \mathrm{a}, \mathrm{tau})
\]
c
```

 xsec = 6.d8*const* eta*Na**2.*
 * (L/21.74)**2.*(3.635d-3-Vhc*rsol)**2.*
 * P*Sshs/a**3./pi+arb/(1.+thy**2.*Q**2.)+bgd
 return
 endif
    ```
if(xsectype.eq.'m3cyshs') then
c Define the parameters
1. Aggregation Number \(\mathrm{Na}=\operatorname{prm}(1)\)
c
2. volume fraction in sticky spheres model
\[
\text { eta }=\operatorname{prm}(2)
\]
c 3 Adjustment to the absolute scale const \(=\operatorname{prm}(3)\)
c 4. Incoherent Scattering Background (1/cm)
\[
\mathrm{bgd}=\operatorname{prm}(4)
\]
c 5. stickness
\[
\operatorname{tau}=\operatorname{prm}(5)
\]
c 6. Length of the hydrocarbon chain in copolymer (A)
\[
\mathrm{L}=\operatorname{prm}(6)
\]
c 7. Length of the perfluorocarbon chain in copolymer (A)
\[
\mathrm{F}=\operatorname{prm}(7)
\]
c 8. Volume of fluorocarbon chain in copolymer ( \(\mathrm{A}^{\wedge} 3\) )
\[
\mathrm{Vfc}=\operatorname{prm}(8)
\]
9. Volume of hydrocarbon chain in copolymer ( \(\mathrm{A}^{\wedge} 3\) )
\(\mathrm{Vhc}=\operatorname{prm}(9)\)
c 10. Copolymer volume fraction
\[
\mathrm{fcop}=\operatorname{prm}(10)
\]
c 11. Perffrorooctane volume fraction
\[
\mathrm{fpfo}=\operatorname{prm}(11)
\]
c 12. iso-octane volume fraction foct \(=\operatorname{prm}(12)\)
c 13. Scattering length density of fluorocarbon ( \(A^{\wedge}-2\) ) \(\mathrm{rfc}=\mathrm{prm}(13)\)
c 14. Scattering length density of hydrocarbon ( \(\mathrm{A}^{\wedge}-2\) )
\[
\mathrm{rhc}=\operatorname{prm}(14)
\]
c 15. Cylinder Cross Section Radius for Form Factor Calculation \(R=\operatorname{prm}(15)\)
c 16. sticky sphere diameter
\[
a=\operatorname{prm}(16)
\]
c 17. correlation length in Lorentzian
\[
\text { thy }=\operatorname{prm}(17)
\]
c 18. constant for Lorentzian
\(\operatorname{arb}=\operatorname{prm}(18)\)
c 19. solvent scattering length density correction factor
\[
\text { alpha }=\operatorname{prm}(19)
\]
c
C
c first approximation 5/27/94
\[
\begin{aligned}
& \mathrm{np}=6 . \mathrm{d}^{*} \mathrm{eta} / \mathrm{pi} / \mathrm{a}^{* *} 3 . \mathrm{d} 0 \\
& \mathrm{Vp}=\mathrm{pi}^{*} \mathrm{R}^{* *} 2 . \mathrm{d} 0^{*}\left(\mathrm{~L}+2 . \mathrm{d} 0^{*} \mathrm{~F}\right) \\
& \mathrm{phim}= \\
& \mathrm{np} \mathrm{p}^{*} \mathrm{Vp} \\
& \mathrm{rsol}= \\
& \quad \operatorname{alpha}^{*}\left(\mathrm{rhc}{ }^{*}\left((\mathrm{Vhc} /(\mathrm{Vfc}+\mathrm{Vhc}))^{*}(\mathrm{fcop}-\mathrm{phim})+\mathrm{foct}\right)+\right. \\
& \left.\quad \mathrm{rfc}^{*}\left((\mathrm{Vfc} /(\mathrm{Vfc}+\mathrm{Vhc}))^{*}(\mathrm{fcop}-\mathrm{phim})+\mathrm{fpfo}\right)\right) /(1-\mathrm{phim})
\end{aligned}
\]
c Form Factor
\[
P=\text { cylind3form }(Q, R, L, F, r f c, r h c, r s o l)
\]
c Structure Factor
Sshs \(=\) SHSStr \((\mathrm{Q}\), eta, \(\mathrm{a}, \mathrm{tau})\)
C
```

 xsec = 6.d8* const*eta*
    ```
* \(\quad\left(\mathrm{pi}^{*} \mathrm{R}^{* *} 2 \cdot \mathrm{~d} 0^{*}\left(\mathrm{~L}+2 . \mathrm{d} 0^{*} \mathrm{~F}\right)\right)^{* *} 2 . \mathrm{d} 0^{*}\)
* \(\quad \mathrm{P} *\) Sshs \(/ \mathrm{a} * * 3 . / \mathrm{pi}+\mathrm{arb} /\left(1 .+\right.\) thy \(\left.{ }^{* *} 2 .{ }^{*} \mathrm{Q}^{* *} 2.\right)+\mathrm{bgd}\)
return
endif
C
c
if(xsectype.eq.' complex') then
c Define the parameters
c 1. volume fraction of crystal
\[
\mathrm{phii}=\operatorname{prm}(1)
\]
c 2. Adjustment to the absolute scale
const \(=\operatorname{prm}(2)\)
c 3. Incoherent Scattering Background ( \(1 / \mathrm{cm}\) )
\(\operatorname{bgd}=\operatorname{prm}(3)\)
490
c 4. stickness
\[
\operatorname{tau}=\operatorname{prm}(4)
\]
c 5. Length of the hydrocarbon chain in copolymer (A)
\[
\mathrm{H}=\operatorname{prm}(5)
\]
c 6. Length of the perfluorocarbon chain in copolymer (A) \(\mathrm{F}=\operatorname{prm}(6)\)
c 7. Scattering length density of fluorocarbon ( \(A^{\wedge}-2\) )
rhoF \(=\operatorname{prm}(7)\)
c 8. Scattering length density of hydrocarbon ( \(A^{\wedge}-2\) )
rhoH \(=\operatorname{prm}(8)\)
c 9. Cylinder Cross Section Radius for liquid Form Factor Calculation \(\mathrm{R}=\operatorname{prm}(9)\)
c 10. sticky sphere diameter
\(\mathrm{a}=\operatorname{prm}(10)\)
c 11. Volume fraction of micelles
\[
\text { eta }=\operatorname{prm}(11)^{*} \mathrm{a}^{* *} 3 \cdot \mathrm{~d} 0 / \mathrm{R}^{* *} 2 . \mathrm{d} 0 /\left(2 . \mathrm{d} 0^{*} \mathrm{~F}+\mathrm{H}\right) / 6 \cdot \mathrm{~d} 0
\]
c 12. Number of lamellar layers in a crystal
\[
\mathrm{n}=\operatorname{prm}(12)
\]
c 13. Length of the crystal
\[
\mathrm{L}=\operatorname{prm}(13)
\]
c 14. Width of the crystal
\[
\mathrm{W}=\operatorname{prm}(14)
\]
c 15. Steps size for the integration in crystal part
\[
\text { step }=\operatorname{prm}(15)
\]
c 16. Crystal part on/off switch (0. is off)
\[
\operatorname{arb}=\operatorname{prm}(16)
\]
c 17. Volume ratio of PFO to \(\mathrm{i}-\mathrm{OCT}\)
\[
\mathrm{rv}=\operatorname{prm}(17)
\]
c 18. Total volume fraction of COP in the sample
\[
\text { phio }=\operatorname{prm}(18)
\]
c 19. Copolymer angle
```

ang = prm(19)

```
```

c
c date 11/4/95
c
c Liquid Form Factor
if(rv.eq.0.81d0) then
rhoS = 1.028d-5
elscif(rv.eq.2.9d0) then
tt = 2.d0*F}+\textrm{H
rhoS == ((phio-phii-prm(11))

+ *1.028d-5+(1.d0-phio)*1.238d-5)
+ /(1.d0-phii-prm(11))
else
print *, 'Wrong Volume Ratio'
return
endif
liqP = cylind3form(Q,R,H,F,rhoF,rhoH,rhoS)
c Liquid Structure Factor
liqSshs = SHSStr(Q,eta,a,tau)
c
liq = 6.d8* (1.d0-phii)*eta*
 * (pi*R**2.d0*(H+2.d0*F))**2.d0*
 * liqP*liqSshs/a**3./pi
c Crystal part
H= H*ang
F}=\mp@subsup{F}{}{*}\textrm{ang
ssm = 0.d0
if(arb.eq.0.d0) go to 407 550
if(rv.eq.0.81d0) then
rhoS = 1.028d-5
elseif(rv.eq.2.9d0) then
rhoS = ((phio -phii)*1.028d-5+(1.d0-phio)}\mp@subsup{)}{}{*}1.238d-5
 + /(1.d0-phii)
else
print *, 'Wrong Volume Ratio'
return
endif

```
```

 mstep =1.d0/step 560
 pstep = pi/2.d0/step
 ssmo = 0.d0
 sspo = fhcfun(0.d0,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
 do 405 kk = 1,step
 phi = dfloat(kk)* pstep
 sspn = fhcfun(0.d0,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
 ssmo = ssmo +pstep*(sspo+sspn)/2.d0
 sspo = sspn
 continue
 do 205 j = 1,step 570
 mu = dfloat(j)*mstep
 sspo = fhcfun(mu,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
 ssmn = 0.d0
 do 305 kk = 1,step
 phi = dfloat(kk)*pstep
 sspn = fhcfun(mu,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
 ssmn = ssmn+pstep*(sspo+sspn)/2.d0
 sspo = sspn
 continue
 ssm = ssm +mstep*(ssmo+ssmn)/2.d0
 ssmo = ssmn
 continue
 c
4 0 7
xsec = const*(2.d8*ssm*phii*W*L*n* (2.d0*F+H)/pi+liq})+\mathrm{ bgd
c
return
endif
c
c if(xsectype.eq.'rect3cy') then
c Define the parameters
c 1. volume fraction in sticky spheres model
eta $=\operatorname{prm}(1)$
c 2. Adjustment to the absolute scale const $=\operatorname{prm}(2)$

```
c 3. Incoherent Scattering Background ( \(1 / \mathrm{cm}\) ) \(\operatorname{bgd}=\operatorname{prm}(3)\)
c 4. stickness
\[
\operatorname{tau}=\operatorname{prm}(4)
\]
c 5. Length of the hydrocarbon chain in copolymer (A)
\[
\mathrm{H}=\operatorname{prm}(5)
\]
c 6. Length of the perfluorocarbon chain in copolymer (A)
\[
F=\operatorname{prm}(6)
\]
c 7. Scattering length density of the solvent
\[
\operatorname{rhoS}=\operatorname{prm}(7)
\]
c 8. Scattering length density of fluorocarbon ( \(\mathrm{A}^{\wedge}-2\) )
\[
\mathrm{rhoF}=\operatorname{prm}(8)
\]
c 9. Scattering length density of hydrocarbon ( \(A^{\wedge}-2\) )
\[
\mathrm{rhoH}=\operatorname{prm}(9)
\]
c 10. Cylinder Cross Section Radius for Form Factor Calculation
\[
\mathrm{R}=\operatorname{prm}(10)
\]
c 11. sticky sphere diameter
\[
a=\operatorname{prm}(11)
\]
c 12. half with of the rectangular distribution
\[
\mathrm{W}=\operatorname{prm}(12)
\]

C
c
c date \(\quad 11 / 4 / 95\)
if(W.gt.a) \(\mathrm{W}=\mathrm{a}\)
c Form Factor
\(P=\) cylind 3 form \((Q, R, H, F\), rhoF, rhoH, rhoS \()\)
c Structure Factor
Sshs \(=\operatorname{RectStr}(\mathrm{Q}\), eta \(, \mathrm{a}, \mathrm{W})\)
c
\[
x \sec =6 . d 8^{*} \text { const }^{*} \operatorname{cta}^{*}
\]
* \(\quad\left(\mathrm{pi}^{*} \mathrm{R}^{* *} 2 \cdot \mathrm{~d} 0^{*}\left(\mathrm{~L}+2 \cdot \mathrm{~d} 0^{*} \mathrm{~F}\right)\right)^{* *} 2 \cdot \mathrm{~d} 0^{*}\)
* \(\quad \mathrm{P} * \mathrm{Sshs} / \mathrm{a}^{* *} 3 . / \mathrm{pi}+\mathrm{bgd}\)

\section*{return}
endif
c
c
if(xsectype.eq.'lorentzian') then
\[
\begin{aligned}
& \text { const }=\operatorname{prm}(1) \\
& \text { thy }=\operatorname{prm}(2) \\
& \text { bgd }=\operatorname{prm}(3)
\end{aligned}
\]
c
c
return
endif
if(xsectype.eq. 'teubadd') then
```

 \(\mathrm{d}=\operatorname{prm}(1)\)
 thyl \(=\operatorname{prm}(2)\)
 thy2 \(=\operatorname{prm}(3)\)
 const \(=\operatorname{prm}(4)\)
 \(\operatorname{arb}=\operatorname{prm}(5)\)
 \(\operatorname{bgd}=\operatorname{prm}(6)\)
 $A \mathrm{~A}=\left(1 . / \text { thy } 1^{* *} 2 .+\left(2 .{ }^{*} \mathrm{pi} / \mathrm{d}\right)^{* *} 2 .\right)^{* *} 2$.
$\mathrm{BB}=2 .^{*}\left(1 . /\right.$ thy $\left.1^{* *} 2 .-\left(2 .{ }^{*} \mathrm{pi} / \mathrm{d}\right)^{* *} 2.\right)$

```
c
c
\[
\begin{aligned}
\mathrm{xsec} & =\text { const } /\left(\mathrm{AA}+\mathrm{BB} \mathrm{Q}^{* *} 2 .+\mathrm{Q}^{* *} 4 .\right) \\
+\quad & + \text { const }^{*} \operatorname{arb} /\left(1+\mathrm{Q}^{* *} 2 .^{*} \text { thy } 2^{* *} 2 .\right)^{* *} 2 .+\mathrm{bgd}
\end{aligned}
\]
c
return
endif
C
c
if(xsectype.eq.'gaulor1') then
center \(=\operatorname{prm}(1)\)
deviat \(=\operatorname{prm}(2)\)
const \(=\operatorname{prm}(3)\)
thy \(=\operatorname{prm}(4)\)
\(\operatorname{arb}=\operatorname{prm}(5)\)
\(\operatorname{bgd}=\operatorname{prm}(6)\)
C
\[
\begin{aligned}
\mathrm{xsec}= & \text { const }^{*} \exp \left(-(\mathrm{Q}-\text { center })^{* *} 2 . / \text { deviat }^{* *} 2 . / 2 .\right) \\
+\quad & +\operatorname{arb} /\left(1 .+ \text { thy }^{* *} 2 . .^{*} \mathrm{Q}^{* *} 2 .\right)+\mathrm{bgd}
\end{aligned}
\]
c

\section*{return}
endif
c
C 690
if(xsectype.eq.'fhcryst') then
\[
\begin{aligned}
& \text { eta }=\operatorname{prm}(1) \\
& \mathrm{n}=\operatorname{prm}(2) \\
& \mathrm{F}=\operatorname{prm}(3) \\
& \mathrm{H}=\operatorname{prm}(4) \\
& \mathrm{L}=\operatorname{prm}(5) \\
& \mathrm{W}=\operatorname{prm}(6) \\
& \mathrm{rhoF}=\operatorname{prm}(7) \\
& \mathrm{rhoH}=\operatorname{prm}(8) \\
& \text { rhoS }=\operatorname{prm}(9) \\
& \text { const }=\operatorname{prm}(10) \\
& \text { bgd }=\operatorname{prm}(11) \\
& \text { step }=\operatorname{prm}(12)
\end{aligned}
\]

C
        \(\begin{aligned} \operatorname{liq}= & p p(1)^{*} Q^{* *} 6 \cdot d 0+p p(2)^{*} Q^{* *} 5 \cdot d 0+p p(3)^{*} Q^{* *} 4 . d 0 \\ +\quad & +\mathrm{pp}(4)^{*} \mathrm{Q}^{* *} 3 \cdot \mathrm{~d} 0+\mathrm{pp}(5)^{*} \mathrm{Q}^{* *} 2 . \mathrm{d} 0+\mathrm{pp}(6)^{*} \mathrm{Q}+\mathrm{pp}(7)\end{aligned}\)
        \(\begin{aligned} \operatorname{liq}= & p p(1)^{*} \mathrm{Q}^{* *} 6 \cdot \mathrm{~d} 0+\mathrm{pp}(2)^{*} \mathrm{Q}^{* *} 5 \cdot \mathrm{~d} 0+\mathrm{pp}(3)^{*} \mathrm{Q}^{* *} 4 . \mathrm{d} 0 \\ +\quad & +\mathrm{pp}(4)^{*} \mathrm{Q}^{* *} 3 \cdot \mathrm{~d} 0+\mathrm{pp}(5)^{*} \mathrm{Q}^{* *} 2 \cdot \mathrm{~d} 0+\mathrm{pp}(6)^{*} \mathrm{Q}+\mathrm{pp}(7)\end{aligned}\)
c
c \(\quad \mathrm{S}=1 . \mathrm{d} 0-\left(3^{*}\left(\mathrm{~d} \sin \left(\mathrm{Q}^{*} \mathrm{R}\right)-\mathrm{Q}^{*} \mathrm{R}^{*} \mathrm{~d} \cos \left(\mathrm{Q}^{*} \mathrm{R}\right)\right) /\left(\mathrm{Q}^{*} \mathrm{R}\right)^{* *} 3 . \mathrm{d} 0\right)\)
        continue
            \(\operatorname{ssm}=\operatorname{ssm}+\mathrm{mstep}^{*}(\mathrm{ssmo}+\mathrm{ssmn}) / 2 . \mathrm{d} 0\)
        ssmo \(=\operatorname{ssmn}\)
            continue
\(p p(1)=-5.4325 \mathrm{~d} 4\)
\(p p(2)=5.6746 \mathrm{~d} 4\)
\(p p(3)=-2.1513 \mathrm{~d} 4\)
\(p p(4)=3.4672 d 3\)
\(p p(5)=-2.1285 \mathrm{~d} 2\)
\(p p(6)=5.5331 \mathrm{~d} 0\)
\(p p(7)=3.8840 \mathrm{~d}-1\)
mstep \(=1 . d 0 /\) step
pstep \(=\) pi/2.d0/step
\(\operatorname{ssmo}=0 . d 0\)
sspo \(=\) fhcfun(0.d0,0.d0,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
do \(400 \mathrm{kk}=1\),step
        phi \(=\operatorname{dfloat}(\mathrm{kk})^{*}\) pstep
        sspn \(=\) fhcfun(0.d0,phi,L,W,F,H,n,rhoF,rhoH,rhoS,Q)
        \(\operatorname{ssmo}=\operatorname{ssmo}+\) pstep \(^{*}(\) sspo + sspn \() / 2 . d 0\)
        \(\operatorname{sspo}=\operatorname{sspn}\)
        continue
    \(\mathrm{ssm}=0 . \mathrm{d} 0\)
    do \(200 \mathrm{j}=1\),step
        \(\mathrm{mu}=\mathrm{dfloat}(\mathrm{j})^{*}\) mstep
        sspo \(=\) fhcfun(mu, \(0 . d 0, L, W, F, H, n\), rhoF, rhoH, rhoS,\(Q\) )
        \(\operatorname{ssmn}=0 . d 0\)
        do \(300 \mathrm{kk}=1\),step
            phi \(=\operatorname{dfloat}(\mathrm{kk})^{*}\) pstep
            \(\operatorname{sspn}=\) fhcfun( \(\mathrm{mu}, \mathrm{phi}, \mathrm{L}, \mathrm{W}, \mathrm{F}, \mathrm{H}, \mathrm{n}, \mathrm{rhoF}, \mathrm{rhoH}, \mathrm{rhoS}, \mathrm{Q})\)
            \(\operatorname{ssmn}=\operatorname{ssmn}+\) pstep \(^{*}(\) sspo +sspn\() / 2 . \mathrm{d} 0\)
            sspo \(=\operatorname{sspn}\)
c
c

c
return
endif
c
c
if(xsectype.eq.'fhcylin') then
\[
\text { eta }=\operatorname{prm}(1)
\]
\(\mathrm{n}=\operatorname{prm}(2)\)
\(\mathrm{F}=\operatorname{prm}(3)\)
\(H=\operatorname{prm}(4)\)
\(\mathrm{L}=\operatorname{prm}(5)\)
rhoF \(=\operatorname{prm}(6)\)
rhoH \(=\operatorname{prm}(7)\)
rhoS \(=\operatorname{prm}(8)\)
const \(=\operatorname{prm}(9)\)
\(\operatorname{bgd}=\operatorname{prm}(10)\)
step \(=\operatorname{prm}(11)\)
\(R=n^{*}\left(2 . d 0^{*} F+H\right)+F+H\)
\(\mathrm{pp}(1)=-5.4325 \mathrm{~d} 4\)
\(p p(2)=5.6746 \mathrm{~d} 4\)
\(p p(3)=-2.1513 \mathrm{~d} 4\)
\(\mathrm{pp}(4)=3.4672 \mathrm{~d} 3\)
\(p p(5)=-2.1285 \mathrm{~d} 2\)
\(\mathrm{pp}(6)=5.5331 \mathrm{~d} 0\)
\(p p(7)=3.8840 \mathrm{~d}-1\)
mstep \(=1 . \mathrm{d} 0 /\) step
\(s s m o=\) fhcylfun(0.d0,L,F,H,n,rhoF, rhoH,rhoS, Q )
            do \(209 \mathrm{j}=1\),step
            \(\mathrm{mu}=\operatorname{dfloat}(\mathrm{j}) *\) mstep
            ssmn \(=\) fhcylfun( \(\mathrm{mu}, \mathrm{L}, \mathrm{F}, \mathrm{H}, \mathrm{n}\), rhoF, rhoH,rhoS, Q )
            \(\mathrm{ssm}=\mathrm{ssm}+\mathrm{mstep}^{*}(\mathrm{ssmo}+\mathrm{ssmn}) / 2 . \mathrm{d} 0\)
        \(\operatorname{ssmo}=\operatorname{ssmn}\)

209
continue
\(\operatorname{liq}=\mathrm{pp}(1)^{*} \mathrm{Q}^{* *} 6 \cdot \mathrm{~d} 0+\mathrm{pp}(2)^{*} \mathrm{Q}^{* *} 5 . \mathrm{d} 0+\mathrm{pp}(3)^{*} \mathrm{Q}^{* *} 4 . \mathrm{d} 0\)
\(+\quad+\mathrm{pp}(4)^{*} \mathrm{Q}^{* *} 3 \cdot \mathrm{~d} 0+\mathrm{pp}(5)^{*} \mathrm{Q}^{* *} 2 \cdot \mathrm{~d} 0+\mathrm{pp}(6)^{*} \mathrm{Q}+\mathrm{pp}(7)\)

C
\(+\)
C

C
print *,'Wrong Xsec Type!'
\(\mathrm{xsec}=1 . \mathrm{d} 30\)
return
end

C

C
real*8 function fhcylfun( \(\mathrm{mu}, \mathrm{L}, \mathrm{F}, \mathrm{H}, \mathrm{n}\), rhoF, rhoH,rhoS, Q )
implicit none
real* \(8 \mathrm{mu}, \mathrm{L}, \mathrm{F}, \mathrm{H}, \mathrm{rhoF}, \mathrm{rhoH}, \mathrm{rhoS}, \mathrm{Q}, \mathrm{t}, \mathrm{Qz}, \mathrm{Qj} 1 \mathrm{tt}, \mathrm{Qj} 1 \mathrm{t}, \mathrm{Q} 22 \mathrm{tt}\)
real*8 R,F1,F2,QR,QRt,pi,Qj2t,bessj1
integer \(n, j\)
```

$\mathrm{pi}=3.141592653$
$\mathrm{t}=2 . \mathrm{d} 0^{*} \mathrm{~F}+\mathrm{H}$
$\mathrm{R}=\mathrm{n}^{*} \mathrm{t}+\mathrm{F}+\mathrm{H}$
$\mathrm{F} 1=0 . \mathrm{d} 0$
if(mu.eq.0.d0) then
Qj2tt $=\mathrm{Q}^{*} \mathrm{H}$
$\mathrm{Qj} 2 \mathrm{t}=2 . \mathrm{d} 0^{*}$ bessj1(Qj2tt)/Qj2tt
$\mathrm{F} 2=(\mathrm{H} / \mathrm{R})^{* *} 2 . \mathrm{d} 0^{*} \mathrm{Qj} 2 \mathrm{t}$
$\mathrm{Qz}=1 . \mathrm{d} 0$
$\mathrm{QRt}=\mathrm{Q}^{*} \mathrm{R}$
$\mathrm{QR}=2 . \mathrm{d} 0^{*}$ bessj1(QRt)/QRt
if(n.gt.0) then
do $10 \mathrm{j}=1, \mathrm{n}$
810
$\mathrm{Qj}_{\mathrm{jlt}}=\mathrm{Q}^{*}$ dfloat $(\mathrm{j})^{*} \mathrm{t}$

```
\[
\begin{aligned}
& \mathrm{Qj} 1 \mathrm{t}=\left(\mathrm{d} \text { Hoat }(\mathrm{j})^{*} \mathrm{t} / \mathrm{R}\right)^{* *} 2 . \mathrm{d} 0^{*} 2 . \mathrm{d} 0^{*} \text { bessj1 }(\mathrm{Qj} 1 \mathrm{tt}) / \mathrm{Qj} 1 \mathrm{tt} \\
& \mathrm{Qj} 2 \mathrm{tt}=\mathrm{Q}^{*}\left(\mathrm{dfloat}(\mathrm{j})^{*} \mathrm{t}+\mathrm{H}\right) \\
& \mathrm{Qj} 2 \mathrm{t}=\left(\left(\mathrm{dfloat}(\mathrm{j})^{*} \mathrm{t}+\mathrm{H}\right) / \mathrm{R}\right)^{* *} 2 . \mathrm{d} 0^{*} 2 . \mathrm{d} 0^{*} \text { bessj1}(\mathrm{Qj} 2 \mathrm{tt}) / \mathrm{Qj} 2 \mathrm{tt} \\
& \mathrm{~F} 1=\mathrm{F} 1+(\mathrm{Qj} 1 \mathrm{t}-\mathrm{Qj} 2 \mathrm{t})
\end{aligned}
\]
continue
endif
elseif(mu.eq.1.d0) then
\(\mathrm{F} 2=(\mathrm{H} / \mathrm{R})^{* *} 2 . \mathrm{d} 0\)
\(Q z=\sin \left(Q^{*} L / 2 . d 0\right) /\left(Q^{*} L / 2 . d 0\right)\)

Qj2t \(=\left(\left(\text { dfloat }(\mathrm{j})^{*} \mathrm{t}+\mathrm{H}\right) / \mathrm{R}\right)^{* *} 2 . \mathrm{d} 0^{*} 2 . \mathrm{d} 0^{*}\) bessj1 \((\mathrm{Qj} 2 \mathrm{tt}) / \mathrm{Qj} 2 \mathrm{tt}\)
\(\mathrm{F} 1=\mathrm{F} 1+(\mathrm{Qj} 1 \mathrm{t}-\mathrm{Qj} 2 \mathrm{t})\)
continue
endif
endif
fhcylfun \(=\left(\mathrm{Qz}^{*}\left((\mathrm{rhoF}-\mathrm{rhoH})^{*}(\mathrm{~F} 1-\mathrm{F} 2)+(\mathrm{rhoF}-\mathrm{rhoS})^{*} \mathrm{QR}\right)\right)^{* *} 2 . \mathrm{d} 0\)
return
end
c
c
real \(^{*} 8\) function fhcfun(mu,phi,L,W,F
implicit none
real* \(8 \mathrm{mu}, \mathrm{phi}, \mathrm{L}, \mathrm{W}, \mathrm{F}, \mathrm{H}, \mathrm{rhoF}, \mathrm{rhoH}\), rho
real* \(8 \mathrm{~F} 1, \mathrm{~F} 2, \mathrm{~F} 3, F 4, F 6, F 7, \mathrm{Qxx}, \mathrm{Qyy}, \mathrm{pi}\)
integer \(m, n, j\)
\(\mathrm{pi}=3.141592653\)
\(\mathrm{t}=2 . \mathrm{d} 0^{*} \mathrm{~F}+\mathrm{H}\)
\(\mathrm{m}=\mathrm{n} / 2\)
\(\mathrm{F} 6=0 . \mathrm{d} 0\)
\(\mathrm{F} 7=0 . \mathrm{d} 0\)
do \(10 \mathrm{j}=1, \mathrm{~m}\)
\(\mathrm{F} 6=\mathrm{F} 6+\mathrm{d} \cos \left(\mathrm{Q} * \mathrm{mu}{ }^{*} \operatorname{dfloat}\left(\mathrm{n}-2^{*} \mathrm{j}\right) * \mathrm{t} / 2 . \mathrm{d} 0\right)\)
\(\mathrm{F} 7=\mathrm{F} 7+\mathrm{d} \cos \left(\mathrm{Q}^{*} \mathrm{mu}^{*}\right.\) dfoat \(\left.\left(\mathrm{n}+1-2^{*} \mathrm{j}\right){ }^{*} \mathrm{t} / 2 . \mathrm{d} 0\right)\)
10 continue
if(mu.eq.0.d0) then
\(\mathrm{QzF} 2=1 . \mathrm{d} 0\)
\(\mathrm{QzF}=1 . \mathrm{d} 0\)
\(\mathrm{QzH}=1 . \mathrm{d} 0\)
else
\(\mathrm{QzF} 2=\mathrm{d} \sin \left(\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~F} / 2 . \mathrm{d} 0\right) /\left(\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~F} / 2 . \mathrm{d} 0\right)\)
\(\mathrm{QzF}=\mathrm{d} \sin \left(\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~F}\right) /\left(\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~F}\right)\)
\(\mathrm{QzH}=\mathrm{d} \sin \left(\mathrm{Q}^{*} \mathrm{mu} u^{*} \mathrm{H} / 2 . \mathrm{d} 0\right) /\left(\mathrm{Q}^{*} \mathrm{mu} u^{*} \mathrm{H} / 2 . \mathrm{d} 0\right)\)
endif
if(mu.eq.1.d0) then
\(\mathrm{Qxx}=1 . \mathrm{d} 0\)
Qyy \(=1 . \mathrm{d} 0\)
elseif(phi.eq.0.d0) then
\(\mathrm{Qx}=\mathrm{Q}^{*} \mathrm{dsqrt}\left(1 . \mathrm{d} 0-\mathrm{mu}^{* *} 2 . \mathrm{d} 0\right)^{*} \mathrm{~L} / 2 . \mathrm{d} 0\)
\(Q x x=d \sin (Q x) / Q x\)
Qyy \(=1 . \mathrm{d} 0\)
elseif(phi.eq.(pi/2.d0)) then
\(\mathrm{Qxx}=1 . \mathrm{d} 0\)
\(\mathrm{Qy}=\mathrm{Q}^{*} \mathrm{dsqrt}\left(1 . \mathrm{d} 0-\mathrm{mu}^{* *} 2 . \mathrm{d} 0\right)^{*} \mathrm{~W} / 2 . \mathrm{d} 0\)
```

 \(\mathrm{Qyy}=\mathrm{d} \sin (\mathrm{Qy}) / \mathrm{Qy}\)
 else
$\mathrm{Qx}=\mathrm{Q}^{*} \mathrm{dsqrt}\left(1 . \mathrm{d} 0-\mathrm{mu}^{* *} 2 . \mathrm{d} 0\right){ }^{*} \mathrm{~d} \cos (\mathrm{phi}) * \mathrm{~L} / 2 . \mathrm{d} 0$
$\mathrm{Qxx}=\mathrm{d} \sin (\mathrm{Qx}) / \mathrm{Qx}$
$\mathrm{Qy}=\mathrm{Q}^{*} \mathrm{dsqrt}\left(1 . \mathrm{d} 0-\mathrm{mu}^{* *} 2 . \mathrm{d} 0\right)^{*} \mathrm{dsin}(\mathrm{phi}) * \mathrm{~W} / 2 . \mathrm{d} 0$
$\mathrm{Qyy}=\mathrm{dsin}(\mathrm{Qy}) / \mathrm{Qy}$

```
    endif
\(\mathrm{F} 1=\mathrm{Qxx}\) Qyy \(/\) dfloat( n\() / \mathrm{t}\)
\(\mathrm{F} 2=2 . \mathrm{d} 0^{*} \mathrm{~F}^{*}(\mathrm{rhoF}-\mathrm{rhoS})^{*} \mathrm{QzF2}{ }^{*} \mathrm{~d} \cos \left(\mathrm{Q}^{*} \mathrm{mu}^{*}\left(\mathrm{dfloat}(\mathrm{n})^{*} \mathrm{t}-\mathrm{F}\right) / 2 . \mathrm{d} 0\right)\)
\(\mathrm{F} 3=4 . \mathrm{d} 0^{*} \mathrm{~F}^{*}(\mathrm{rhoF}-\mathrm{rhoS})^{*} \mathrm{QzF}{ }^{*}(\mathrm{~F} 6+\mathrm{dfloat}(\mathrm{n}-1) / 2 . \mathrm{d} 0-\mathrm{dfloat}(\mathrm{m}))\)
\(\mathrm{F} 4=2 . \mathrm{d} 0 * \mathrm{H}^{*}(\text { rhoH }-\mathrm{rhoS})^{*} \mathrm{QzH}^{*}(\) dfloat \((\mathrm{n}) / 2 . \mathrm{d} 0-\mathrm{dfloat}(\mathrm{m})+\mathrm{F} 7)\)
fhcfun \(=\left(\mathrm{F} 1^{*}(\mathrm{~F} 2+\mathrm{F} 3+\mathrm{F} 4)\right)^{* *} 2 . \mathrm{d} 0\)
return
end
C
C
real*8 function \(\operatorname{SHSStr}(\mathrm{Q}\), eta, a, tau)
c
c This function is to calculate the structure factor of sticky hard spheres
c
c
implicit none
real*8 Q,eta,a,tau,K,gamma,epsilon,lambda,mu,alpha,beta
real* \(8 \mathrm{cl}, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c} 4, \mathrm{c} 5, \mathrm{c}\)
c
\(\mathrm{K}=\mathrm{Q}^{*} \mathrm{a}\)
gamma \(=\operatorname{eta}^{*}(1 .+\) eta \(/ 2.) /(1 .- \text { eta })^{* * 2} 2 / 3\).
epsilon \(=\) tau + eta \(/(1 .-\) eta \()\)
if((epsilon \({ }^{* * 2 .-g a m m a) . l t .0 .) ~ t h e n ~}\)
SHSStr \(=1 . \mathrm{d} 30\)
c print *, 'Negative Root!'
return
endif
lambda \(=6 .{ }^{*}\left(\right.\) epsilon \(-\mathrm{dsqrt}\left(\right.\) epsilon \({ }^{* * 2}\).-gamma) \() /\) eta
\(\mathrm{mu}=\) lambda \(^{*}\) eta \(^{*}(1 .-\) eta \()\)
alpha \(=\left(1 .+2 .{ }^{*} \text { eta }-\mathrm{mu}\right)^{* *} 2 . /(1 .-\mathrm{eta})^{* *} 4\).
    return
    end
    real* 8 function \(H S S t r(Q\), eta, a)
c
c This function is to calculate the structure factor of hard spheres
c
c

\section*{implicit none}
real*8 Q,eta,a,K,gamma,alpha,beta,pi,np
real* \(8 \mathrm{cl}, \mathrm{c} 2, \mathrm{c} 3, \mathrm{c}\)
c
\[
\mathrm{pi}=3.141592653
\]
c
\[
\mathrm{K}=\mathrm{Q}^{*} \mathrm{a}
\]
\[
\mathrm{np}=6 . \mathrm{d} 0^{*} \mathrm{eta} / \mathrm{pi} / \mathrm{a}^{* *} 3 . \mathrm{d} 0
\]
\[
\text { alpha }=\left(1 . d 0+2 . d 0^{*} \text { eta }\right)^{* *} 2 . d 0 /(1 . d 0-\text { eta })^{* *} 4 . d 0
\]
\[
\text { beta }=-6 . \mathrm{d}^{*} \operatorname{eta}^{*}(1 . \mathrm{d} 0+\mathrm{eta} / 2 . \mathrm{d} 0)^{* *} 2 . \mathrm{d} 0 /(1 . \mathrm{d} 0-\mathrm{eta})^{* *} 4 . \mathrm{d} 0
\]
\[
\text { gamma }=\text { eta*alpha/2.d0 }
\]
\(\mathrm{cl}=\) alpha* \(\mathrm{K}^{* *} 3 . \mathrm{d} 0^{*}\left(\mathrm{~d} \sin (\mathrm{~K})-\mathrm{K}^{*} \mathrm{~d} \cos (\mathrm{~K})\right)\)
\(\mathrm{c} 2=\operatorname{beta}^{*} \mathrm{~K}^{* *} 2 . \mathrm{d} 0^{*}\left(2 . \mathrm{d} 0^{*} \mathrm{~K}^{*} \mathrm{~d} \sin (\mathrm{~K})-\left(\mathrm{K}^{* *} 2 . \mathrm{d} 0-2 . \mathrm{d} 0\right)^{*} \mathrm{~d} \cos (\mathrm{~K})-2 . \mathrm{d} 0\right)\)
\(\mathrm{c} 3=\) gamma* \(^{*}\left(\left(4 . \mathrm{d} 0^{*} \mathrm{~K}^{* *} 3 . \mathrm{d} 0-24 . \mathrm{d} 0^{*} \mathrm{~K}\right)^{*} \mathrm{~d} \sin (\mathrm{~K})-\right.\)
\(\left.-\quad\left(\mathrm{K}^{* *} 4 \cdot \mathrm{~d} 0-12 \cdot \mathrm{~d} 0^{*} \mathrm{~K}^{* *} 2 \cdot \mathrm{~d} 0+24 \cdot \mathrm{~d} 0\right)^{*} \mathrm{~d} \cos (\mathrm{~K})+24 \cdot \mathrm{~d} 0\right)\)
\(\mathrm{c}=-4^{*} \mathrm{pi}^{*} \mathrm{a}^{* *} 3 \cdot \mathrm{~d} 0^{*}(\mathrm{cl}+\mathrm{c} 2+\mathrm{c} 3) / \mathrm{K}^{* *} 6 . \mathrm{d} 0\)
c
```

 HSStr = 1.d0/(1.d0-np*c)
    ```
c
    return
    end

C
c
real*8 function \(\operatorname{RectStr}(Q\), eta, \(a, W)\)
c
c This function is to calculate the structure factor of a rectangularly
c distributed polydispersed hard-sphere system
c
implicit none
real*8 Q,eta,a,beta
real*8 c1,c2,c3,c4,c5,c,W,HSStr,S,QW,QR 970
c
\(\mathrm{S}=\operatorname{HSStr}(\mathrm{Q}, \mathrm{eta}, \mathrm{a})\)
c
\(\mathrm{QW}=\mathrm{Q}^{*} \mathrm{~W}\)
\(\mathrm{QR}=\mathrm{Q}^{*} \mathrm{a} / 2 . \mathrm{d} 0\)
c
\[
\mathrm{c} 1=-\mathrm{QW} / 2 . \mathrm{d} 0+\mathrm{QW}^{*} \mathrm{QR}^{* *} 2 . \mathrm{d} 0+\mathrm{QW}^{* *} 3 \cdot \mathrm{~d} 0 / 3 . \mathrm{d} 0-
\]
- \(5 . \mathrm{d} 0^{*} \mathrm{~d} \cos \left(2 . \mathrm{d} 0^{*} \mathrm{QR}\right){ }^{*} \mathrm{~d} \sin (\mathrm{QW})^{*} \mathrm{~d} \cos (\mathrm{QW}) / 2 . \mathrm{d} 0\)
\(\mathrm{c} 2=\left(\mathrm{QR} * * 2 . \mathrm{d} 0+\mathrm{QW}{ }^{* *} 2 . \mathrm{d} 0\right)^{*} \mathrm{~d} \cos (2 . \mathrm{d} 0 * \mathrm{QR})^{*} \mathrm{~d} \sin (2 . \mathrm{d} 0 * \mathrm{QW}) / 2 . \mathrm{d} 0\)
\(\mathrm{c} 3=\mathrm{QR} * \mathrm{QW}^{*} \mathrm{~d} \sin \left(2 . \mathrm{d} 0^{*} \mathrm{QR}\right)^{*} \operatorname{dcos}\left(2 . \mathrm{d}^{*} \mathrm{QW}\right)+\)
\(+3 . d 0 * W^{*}(d \cos (\mathrm{QR}) * d \cos (\mathrm{QW}))^{* *} 2 . \mathrm{d} 0\)
\(\mathrm{c} 4=3 . \mathrm{d} 0^{*} \mathrm{QW}^{*}\left(\mathrm{~d} \sin (\mathrm{QR})^{*} \mathrm{~d} \sin (\mathrm{QW})\right)^{* *} 2 . \mathrm{d} 0-\)
- 6.d0*QR*d \(\cos (\mathrm{QR})^{*} \mathrm{~d} \sin (\mathrm{QR})^{*} \mathrm{~d} \cos (\mathrm{QW}) * \mathrm{~d} \sin (\mathrm{QW})\)
\(\mathrm{c} 5=\mathrm{c} 1+\mathrm{c} 2+\mathrm{c} 3+\mathrm{c} 4\)
\(\mathrm{c}=2 . \mathrm{d} 0^{*} \mathrm{~d} \sin (\mathrm{QR})^{*} \mathrm{~d} \sin (\mathrm{QW})-\mathrm{QR}^{*} \mathrm{~d} \cos (\mathrm{QR}) * \mathrm{~d} \sin (\mathrm{QW})-\)
- \(\mathrm{QW}^{*} \mathrm{~d} \sin (\mathrm{QR})^{*} \mathrm{~d} \cos (\mathrm{QW})\)
beta \(=2 . \mathrm{d} 0^{*} \mathrm{c}^{* *} 2 . \mathrm{d} 0 / \mathrm{c} 5 / \mathrm{QW}\)
c
RectStr \(=1 . \mathrm{d} 0+\) beta \(^{*}(\mathrm{~S}-1 . \mathrm{d} 0)\)
c
```

 return
 end
 c
c
real*8 function cylindform(Q, R, L)
C
c This function is to calculate the form factor of cylinder
c
c
implicit none
real*8 Q,R,L,QR,QL,CFfunction,P1,P2,PP,QQ,RR,LL,bessj1
common/CFF/QQ,RR,LL
QQ=Q
RR=R
LL=L
QR=Q*R
QL}=\mp@subsup{Q}{*}{*}\textrm{L}/
Pl = ((2.*bessj1(QR)/QR)**2.+
+ CFfunction(1.d-4))*0.0001d0/2. 1010
P2 = (CFfunction(0.9999d0)+(dsin(QL)/QL)**2.)*0.0001d0/2.
call qromb(0.0001d0,0.9999d0,PP)
cylindform = P1+PP}+\textrm{P}
return
end
c
c
real*8 function cylind3form(Q, R, L, t,rhoo,rhoi,rhos)
c
c This function is to calculate the form factor of a 3-layer cylinder
c
c
implicit none
real*8 Q,R,L,QR,QL,CF3function,P1,P2,PP,QQ,RR,LL,bessj1
real*8 t,tt,rhoo,rhooo,rhoi,rhoii,rhos,rhoss,QLt,PP1,PP2
common/CFF3/QQ,RR,LL,tt,rhooo,rhoii,rhoss
$Q Q=Q$

```
\[
R R=R
\]
\[
\mathrm{LL}=\mathrm{L}
\]
\[
\mathrm{tt}=\mathrm{t}
\]

1030
rhooo \(=\) rhoo
rhoii \(=\) rhoi
rhoss \(=\) rhos
\(\mathrm{QR}=\mathrm{Q}^{*} \mathrm{R}\)
\(\mathrm{QLt}=\mathrm{Q}^{*}\left(\mathrm{~L}+2 . \mathrm{d} 0^{*} \mathrm{t}\right) / 2\)
\(\mathrm{QL}=\mathrm{Q}^{*} \mathrm{~L} / 2\)
PP1 \(=\left((\text { rhoo }- \text { rhos })-L^{*}(\text { rhoo }- \text { rhoi }) /\left(\mathrm{L}+2 . \mathrm{d} 0^{*} \mathrm{t}\right)\right)^{*}\)
* \(2^{*}\) bessj1(QR)/QR
\(\mathrm{Pl}=\left(\mathrm{PP} 1^{* *} 2 . \mathrm{d} 0+\text { CF3function(1.d-4))}\right)^{*} 1 . \mathrm{d}-4 / 2 . \mathrm{d} 0\)
PP2 \(=(\text { rhoo-rhos })^{*}\) dsin \((\) QLt \() /\) QLt -
- \(\quad\left(\mathrm{L} /\left(\mathrm{L}+2 . \mathrm{d} 0^{*} \mathrm{t}\right)\right)^{*}(\mathrm{rhoo}-\mathrm{rhoi})^{*} \mathrm{~d} \sin (\mathrm{QL}) / \mathrm{QL}{ }^{-}\)
\(\mathrm{P} 2=\left(\text { CF3function }(0.9999 \mathrm{~d} 0)+\mathrm{PP} 2{ }^{* *} 2 . \mathrm{d} 0\right)^{*} 0.0001 \mathrm{~d} 0 / 2 . \mathrm{d} 0\)
call qromb3(0.0001d0,0.9999d0,PP)
cylind3form \(=\mathrm{P} 1+\mathrm{PP}+\mathrm{P} 2\)
return
end
real*8 FUNCTION bessj1(x)
REAL* 8 x
REAL*8 ax,xx,z
DOUBLE PRECISION p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,
*s1,s2,s3,s4,s5,s6,y
SAVE p1,p2,p3,p4,p5,q1,q2,q3,q4,q5,r1,r2,r3,r4,r5,r6,s1,s2,s3,s4,
*s5,s6
DATA r1,r2,r3,r4,r5,r6/72362614232.d0,-7895059235.d0,
*242396853.1d0,-2972611.439d0,15704.48260d0,-30.16036606d0/,s1,s2,
*s3,s4,s5,s6/144725228442.d0,2300535178.d0,18583304.74d0,
*99447.43394d0,376.9991397d0,1.d0/
DATA p1,p2,p3,p4,p5/1.d0,.183105d-2,-. \(3516396496 \mathrm{~d}-4\),
*.2457520174d-5,-.240337019d-6/, q1,q2.q3,q4,q5/.04687499995d0,
*-. \(2002690873 \mathrm{~d}-3, .8449199096 \mathrm{~d}-5,-.88228987 \mathrm{~d}-6, .105787412 \mathrm{~d}-6 /\)
if(abs(x).lt.8.)then
```

 y=x**2
    ```

```

 * y*(s4+y*(s5+y*s6)))))
 else
 ax=abs(x)
 z=8./ax
 y=z**2
 1070
$\mathrm{xx}=\mathrm{ax}-2.356194491$
bessj1 $=\operatorname{dsqrt}(.636619772 / a x)^{*}\left(\cos (x x)^{*}\left(\mathrm{p} 1+\mathrm{y}^{*}\left(\mathrm{p} 2+\mathrm{y}^{*}\left(\mathrm{p} 3+\mathrm{y}^{*}\left(\mathrm{p} 4+\mathrm{y}^{*}\right.\right.\right.\right.\right.$
$\left.\left.\left.{ }^{*} \mathrm{p} 5\right)\right)\right)$) $\left.-\mathrm{z}^{*} \sin (\mathrm{xx})^{*}\left(\mathrm{q} 1+\mathrm{y}^{*}\left(\mathrm{q} 2+\mathrm{y}^{*}\left(\mathrm{q} 3+\mathrm{y}^{*}\left(\mathrm{q} 4+\mathrm{y}^{*} \mathrm{q} 5\right)\right)\right)\right)\right)$
endif
return
END

```

\section*{SUBROUTINE qromb(a,b,ss)}
```

INTEGER JMAX,JMAXP,K,KM 1080

```

C
C

REAL*8 a,b,ss,EPS
PARAMETER (EPS \(=1 . \mathrm{e}-6, \mathrm{JMAX}=20, \mathrm{JMAXP}=\mathrm{JMAX}+1, \mathrm{~K}=5, \mathrm{KM}=\mathrm{K}-1\) )
CU USES polint,trapzd
INTEGER \(\mathbf{j}\)
REAL*8 dss,h(JMAXP),s(JMAXP)
\(h(1)=1\).
do \(11 \mathrm{j}=1, \mathrm{JMAX}\)
call trapzd \((\mathrm{a}, \mathrm{b}, \mathrm{s}(\mathrm{j}), \mathrm{j})\)
if (j.ge.K) then call polint( \(\mathrm{h}(\mathrm{j}-\mathrm{KM}), \mathrm{s}(\mathrm{j}-\mathrm{KM}), \mathrm{K}, 0 ., \mathrm{ss}, \mathrm{dss})\) 1090 if (abs(dss).le.EPS*abs(ss)) return
endif
\(\mathrm{s}(\mathrm{j}+1)=\mathrm{s}(\mathrm{j})\)
\(h(j+1)=0.25^{*} h(j)\)
continue
pause 'too many steps in qromb'
END
c
c

SUBROUTINE qromb3(a,b,ss)
INTEGER JMAX,JMAXP,K,KM
REAL* 8 a,b,ss,EPS
PARAMETER (EPS \(=1 . \mathrm{e}-6, \mathrm{JMAX}=20, \mathrm{JMAXP}=\mathrm{JMAX}+1, \mathrm{~K}=5, \mathrm{KM}=\mathrm{K}-1\) )
CU USES polint,trapzd
INTEGER j
REAL*8 dss,h(JMAXP),s(JMAXP)
\(h(1)=1\).
do \(11 \mathrm{j}=1\), JMAX
call trapzd3 \((\mathrm{a}, \mathrm{b}, \mathrm{s}(\mathrm{j}), \mathrm{j})\)
if (j.ge.K) then 1110
call polint \((\mathrm{h}(\mathrm{j}-\mathrm{KM}), \mathrm{s}(\mathrm{j}-\mathrm{KM}), \mathrm{K}, 0 ., \mathrm{ss}, \mathrm{dss})\)
if (abs(dss).le.EPS*abs(ss)) return
endif
\(s(j+1)=s(j)\)
\(\mathrm{h}(\mathrm{j}+1)=0.25^{*} \mathrm{~h}(\mathrm{j})\)
11 continue
pause 'too many steps in qromb'
END
c
c
SUBROUTINE trapzd( \(\mathrm{a}, \mathrm{b}, \mathrm{s}, \mathrm{n}\) )
INTEGER n
REAL*8 a,b,s,CFfunction
external CFfunction
INTEGER it,j
REAL* 8 del,sum,tnm, \(x\)
if (n.eq.1) then
\(\mathrm{s}=0.5^{*}(\mathrm{~b}-\mathrm{a})^{*}(\) CFfunction \((\mathrm{a})+\) CFfunction \((\mathrm{b}))\)
else
\(\mathrm{it}=2^{* *}(\mathrm{n}-2)\)
tnm=it
\(\operatorname{del}=(b-a) / t n m\)
\(x=a+0.5^{*} \mathrm{del}\)
sum \(=0\).
do \(11 \mathrm{j}=1\), it
```

sum=sum}+\mathrm{ CFfunction(x)
x=x+del

```

\section*{SUBROUTINE trapzd3(a,b,s,n)}

INTEGER n
REAL* \(8 \mathrm{a}, \mathrm{b}, \mathrm{s}, \mathrm{CF} 3\) function
external CF3function
INTEGER it,j
REAL*8 del,sum,tnm,x 1150
if (n.eq.1) then
\(\mathrm{s}=0.5^{*}(\mathrm{~b}-\mathrm{a})^{*}(\) CF3function(a) + CF3function(b))
else
it \(=2^{* *}(n-2)\)
tnm \(=\) it
\(\mathrm{del}=(b-a) / \mathrm{tnm}\)
\(x=a+0.5^{*} \mathrm{del}\)
sum \(=0\).
do \(11 \mathrm{j}=1\), it
sum \(=\) sum + CF3function \((x)\)
\(\mathrm{x}=\mathrm{x}+\mathrm{del}\)
continue
\(\mathrm{s}=0.5^{*}\left(\mathrm{~s}+(\mathrm{b}-\mathrm{a})^{*} \operatorname{sum} / \mathrm{tnm}\right)\)
endif
return
END
\(c\)
c

SUBROUTINE polint(xa,ya,n,x,y,dy)
INTEGER \(n, N M A X\)
REAL* \(8 \mathrm{dy}, \mathrm{x}, \mathrm{y}, \mathrm{xa}(\mathrm{n}), \mathrm{ya}(\mathrm{n})\)

PARAMETER (NMAX=10)
INTEGER \(\mathrm{i}, \mathrm{m}, \mathrm{ns}\)
REAL*8 den,dif,dift,ho,hp,w,c(NMAX),d(NMAX)
\(\mathrm{ns}=1\)
\(\operatorname{dif}=\operatorname{abs}(x-x a(1))\)
do \(11 \mathrm{i}=1, \mathrm{n}\)
dift \(=\mathrm{abs}(\mathrm{x}-\mathrm{xa}(\mathrm{i}))\)
if (dift.lt.dif) then
ns \(=\mathrm{i}\)
\(d i f=\operatorname{dift}\)
endif
c(i) \(=\mathrm{ya}(\mathrm{i})\)
\(d(i)=y a(i)\)
continue
\(y=y a(n s)\)
\(\mathrm{ns}=\mathrm{ns}-1\)
do \(13 m=1, n-1\)
do \(12 \mathrm{i}=1, \mathrm{n}-\mathrm{m}\)
\(\mathrm{ho}=\mathrm{xa}(\mathrm{i})-\mathrm{x}\)
\(h p=x a(i+m)-x\)
\(\mathrm{w}=\mathrm{c}(\mathrm{i}+1)-\mathrm{d}(\mathrm{i})\)
\(\mathrm{den}=\mathrm{ho}-\mathrm{hp}\)
if(den.eq.0.)pause 'failure in polint'
den \(=w /\) den
\(d(i)=h p * \operatorname{den}\)
\(c(i)=h o^{*} \operatorname{den}\)
continue
if \(\left(2^{*}\right.\) ns.lt. \(\left.n-m\right)\) then
\(d y=c(n s+1)\)
else
\(\mathrm{dy}=\mathrm{d}(\mathrm{ns})\)
\(\mathrm{ns}=\mathrm{ns}-1\)
endif
\(y=y+d y\)
continue
return

\section*{END}
c

C
real* 8 function CFfunction(mu)
implicit none
real* \(8 \mathrm{mu}, \mathrm{Q}, \mathrm{R}, \mathrm{L}, \mathrm{QRmu}, \mathrm{QLmu}\), bessj1
common/CFF/Q,R,L
print*, Q,R,L
\(\mathrm{QRmu}=\mathrm{Q}^{*} \mathrm{R}^{*} \operatorname{dsqrt}\left(1 .-m u^{* *} 2.\right)\)
\(\mathrm{QLmu}=\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~L} / 2\).
CFfunction \(=(\mathrm{d} \sin (\mathrm{QLmu}) / \mathrm{QLmu})^{* * 2} .^{*}\)
* \(\quad\left(2 .{ }^{*} \operatorname{bessj} 1(\mathrm{QRmu}) / \mathrm{QRmu}\right)^{* *} 2\).
return
end
c
c
real*8 function CF3function(mu)
implicit none
real*8 mu,Q,R,L,QRmu,QLmu,bessj1,QLtmu,F1,F2
real* 8 t , rhoo,rhoi,rhos
common/CFF3/Q,R,L,t,rhoo, rhoi, rhos
\(\mathrm{QRmu}=\mathrm{Q}^{*} \mathrm{R}^{*} \mathrm{dsqrt}\left(1 . \mathrm{d} 0-\mathrm{mu}^{* *} 2 . \mathrm{d} 0\right)\)
QLtmu \(=\mathrm{Q}^{*} \mathrm{mu}^{*}\left(\mathrm{~L}+2 . \mathrm{d} 0^{*} \mathrm{t}\right) / 2 . \mathrm{d} 0\)
QLmu \(=\mathrm{Q}^{*} \mathrm{mu}^{*} \mathrm{~L} / 2 . \mathrm{d} 0\)
\(\mathrm{F} 1=(\text { rhoo }-\mathrm{rhos})^{*} \mathrm{~d} \sin (\mathrm{QLtmu}) / \mathrm{QLtmu}\)
\(\mathrm{F} 2=\left(\mathrm{L} /\left(\mathrm{L}+2 . \mathrm{d} 0^{*} \mathrm{t}\right)\right)^{*}(\mathrm{rhoo}-\mathrm{rhoi})^{*} \mathrm{~d} \sin (\mathrm{QLmu}) / \mathrm{QLmu}\)
CF3function \(=(\mathrm{F} 1+\mathrm{F} 2)^{* *} 2 . \mathrm{d}^{*}\)
* (2.d0*bessj1(QRmu)/QRmu)**2.d0
return
end
c
c
real* 8 function func(prm, \(Q, j\), xsectype, ii)
c
c This function is to convolute the calculated scattering intensity c with given resolution function or not to

C
C
implicit none
character*20 xsectype
integer \(\mathrm{i}, \mathrm{j}\), resyn, nfold, ii
real* 8 prm(200), sum, reso, \(\mathrm{Q}, \mathrm{QBE}\), xsec
real*8 r1,r2,rl1,rl2,rlam,dlam,rdet, sig, QSTEP
1250
real*8 Qres
common/resof1/reso(3,200,200),r1,r2,rl1,rl2,rlam,dlam,rdet,resyn
common/resof2/sig(3,200),nfold
c
c
if(resyn.eq.0) go to 1
QBE=Q-3.*SIG(ii,J)
\(\mathrm{IF}(\mathrm{QBE} . \mathrm{LE} .0 .0) \mathrm{QBE}=1 . \mathrm{d}-10\)
QSTEP=6.*SIG(ii,J)/FLOAT(NFOLD)
SUM \(=0.0\)
DO \(20 \mathrm{I}=1\),NFOLD
\[
\begin{aligned}
& \text { Qres }=\text { QBE }+(\mathrm{I}-0.5)^{*} \text { QSTEP } \\
& \text { SUM }=\text { SUM }+(\mathrm{XSEC}(\text { Qres,prm,xsectype }) * \operatorname{RESO}(\mathrm{ii}, \mathrm{~J}, \mathrm{I}))
\end{aligned}
\]

\section*{GOTO 2}

1 sum \(=\mathrm{xsec}(\mathrm{Q}\), prm, xsectype)
2 func \(=\) sum
return
end
c
c This subroutine is trying to use anneal method to get the optimal fit
c of some functional data to experimental data
c
subroutine anneal(edat,ftemp,pnumber,step,oldchi,state,xsectype)
c
c
implicit none
external func, ran3
character*20 state,xsectype
integer i , ii, accept, reject, estart(3), enumber, pnumber
integer j, iloop, idum, imax, imequ, equ, iprint, sets
integer etotal
real*8 edat (3,4,200), prm, fdat(200),temp, step, oldchi, ran3
real* 8 chisqu, edge, func, chiave, outchi, IQ
real* 8 limit, sumchi, delchi, sumchi2, chidvi
real* 8 bound,thy,thyplum,dbound,p,ftemp
real* 8 ave, fave, outsum, avesum(200), favesum(200), chimin
common/general/estart, enumber(3), prm(200), bound(2,200), imax
common/QQQ/ave(200), fave(200), imequ, iprint, sets
ccccce
c
c assign initial values
C
print *,state
do \(10 \mathrm{i}=1,200\)
fdat \((\mathrm{i})=0\).
\(\operatorname{avesum}(\mathrm{i})=0\).
favesum \((i)=0\).
\(\operatorname{ave}(\mathrm{i})=0 . \mathrm{d} 0\)
fave \((\mathrm{i})=0 . \mathrm{d} 0\)
10 continue
c
c First chisqu
ctotal \(=0\)
do \(260 \mathrm{ii}=1\), sets
etotal \(=\) etotal + enumber \((i i)\)
260 continue
oldchi \(=0 . \mathrm{d} 0\)
chimin \(=1 . \mathrm{d} 10\)
do \(250 \mathrm{ii}=1\), sets
```

 do 231 i=1, enumber(ii)
 fdat(i) = func(prm, edat(ii,1,i), i, xsectype, ii)
 oldchi = oldchi}
 + ((fdat(i)-edat(ii,2,i))/edat(ii,3,i))**2.
231 continue
250 continue
oldchi = oldchi/float(etotal)
limit = 1.e-6
iloop = 0
edge =0.
accept =0
reject =0
idum = -100
chiave =1.e30
outchi = 1.e30
1 3 3 0
sumchi =0.
sumchi2 = 0.
equ =0
outsum = 0.
if(state.eq.'continue') then
open(unit=8,file='tmpprm.fit',status='unknown')
rewind(unit=8)
read(8,*) iloop
read(8,*) oldchi
read(8,*) outsum
read(8,*) sumchi
read(8,*) sumchi2
read(8,*) accept
read(8,*) reject
read(8,*) temp
read(8,*) step
read(8,*) equ
read(8,*) iprint
read(8,*) pnumber
read(8,*) sets
read(8,*) prm(pnumber+1)

```
```

 do 12 i=1, pnumber
 read(8,*) prm(i), avesum(i),
 + favesum(i)
 1 2
 continue
 close(unit=8)
 endif
 open(unit=7, file='intave.fit',status='unknown')
 rewind(unit=7)
 open(unit=9, file='intprm.fit',status='unknown')
 rewind(unit=9)
 open(unit=11, file='intprmav.fit',status='unknown')
 rewind(unit=11)
 open(unit=13, file='intprmfa.fit',status='unknown')
 rewind(unit=13)
 cccccc
c
c outer loop of all parameters
c
1000 iloop = iloop+1
temp = oldchi*ftemp
c
c inner loop of individual parameter
c
do 100 j=1, pnumber
c
c update prm(j)
c.
p = prm(j)
if(xsectype.eq.' complex'.and.j.eq.11) then
bound(2,j) = bound(2,1)-prm(1)
endif
dbound = bound(2,j)-bound}(1,\textrm{j}
if(dbound.eq.0.) go to 100
thy = ran3(idum)
thyplum = 2.*thy-1.
prm(j) = prm(j)+thyplum*step*prm(j)

```
```

 if(prm(j).lt.bound(l,j)) then
 prm(j) = prm(j)+
 * dbound*float(int((bound(1,j)-prm(j))/dbound)+1)
 cndif
 if(prm(j).gt.bound(2,j)) then
 prm(j) = prm(j)-
 * dbound*float(int((prm(j)-bound(2,j))/dbound)+1)
 endif
 c
cccccc
c
c calculate chisquare of the current parameter set
c
chisqu = 0.
do 270 ii=1,sets
do 20 i=1, enumber(ii)
fdat(i) = func(prm, edat(ii,1,i), i, xsectype, ii)
chisqu = chisqu }
+ ((fdat(i)-edat(ii,2,i))/edat(ii,3,i))**2.
20 continue
270 continue
chisqu = chisqu/float(etotal)
c
c accept the current parameter set or not by comparing the chisquare c to the previous one, accept when smaller then the previous one, but
c also accept if exp(-chisq/temp) < random number(between 0 and 1)
C

$$
\text { edge }=\text { ran3(idum) }
$$

delchi $=$ chisqu - oldchi
c
c
if(delchi.le.0.) then
accept $=$ accept +1
oldchi $=$ chisqu
else
if($\exp (-$ delchi/temp).gt.edge) then

```
```

 accept = accept+1
 oldchi = chisqu
 else
 reject = reject+1
 prm(j) = p
 endif
 endif
avesum(j) = avesum(j)+prm(j)
favesum(j) = favesum(j)+prm(j)
outsum = outsum+oldchi
sumchi = sumchi+oldchi
sumchi2 = sumchi2+oldchi**2.
100 continue
cccccc
c
c
if(((float(iloop)/float(iprint)) 1440
+ -int(float(iloop)/float(iprint))).eq.0.) then
if(oldchi.le.chimin) then
chimin = oldchi
do 200 i=1,pnumber
ave(i) = avesum(i)/float(iprint)
fave(i) = favesum(i)/float(iloop)
continue
outchi = outsum/float(iloop*pnumber)
chiave = sumchi/float(iprint* pnumber)
chidvi = sumchi2/float(iprint* *number)-chiave**2.
c
2000
open(unit=8,file='tmpprm.fit',status='old')
rewind(unit=8)
write(8,*) iloop
write(8,1023) oldchi
write(8,1023) outsum
write(8,1023) sumchi
write(8,1023) sumchi2
write(8,*) accept

```
```

 write(8,*) reject 1460
 write(8,1023) temp
 write(8,1023) step
 write(8,*) equ
 write(8,*) iprint
 write(8,*) pnumber
 write(8,*) sets
 write(8,1023) prm(pnumber +1)
 write(8,*) ' '
 do 21 i=1,pnumber
 write(8,1023) prm(i),
    ```
endif
c check convergence or equilibration
c
```

 if(equ.ge.1) then
 if(iloop.ge.(10.*iprint).and.
 + abs(outchi-chiave)/outchi.le.limit) then
 print *,'Out by Deviation'
 go to 9999
 endif
 if(oldchi.le.0.5) then
 print *,'Out by Chi Square'
 go to 9999
 endif
 if(iloop.eq.imax) then
 print *,'Out by Steps'
 go to 9999 1510
 endif
 else
 if(iloop.eq.imequ) then
 iloop = 0
 equ = 1
 accept =0
 reject = 0
 sumchi = 0.d0
 sumchi2 = 0.d0
 outsum = 0.d0
 do 25 i=1,pnumber
 avesum(i) = 0.d0
 favesum(i) = 0.d0
 continue
 close(unit=7)
 close(unit=9)
 close(unit=11)
 close(unit=13)
 open(unit=7,file='intave.fit',status='unknown')
 rewind(unit=7)
 open(unit=9, file='intprm.fit',status='unknown')
    ```
25
```

 rewind(unit=9)
 open(unit=11, file='intprmav.fit',status='unknown')
 rewind(unit=11)
 open(unit=13, file='intprmfa.fit',status='unknown')
 rewind(unit=13)
 endif
 endif
 cccccc
c
go to }100
cccccc
C
9999 close(unit=7)
close(unit=9)
close(unit=11)
close(unit=13)
return
end
c
C

```

\section*{FUNCTION ran3(idum)}
```

INTEGER idum
INTEGER MBIG,MSEED,MZ
real* 8 ran3
REAL FAC
PARAMETER ($\mathrm{MBIG}=1000000000, \mathrm{MSEED}=161803398, \mathrm{MZ}=0, \mathrm{FAC}=1 . / \mathrm{MBIG}$)
INTEGER $\mathrm{i}, \mathrm{iff}, \mathrm{ii}$, inext,inextp,k
INTEGER mj, mk, ma(55)
SAVE iff,inext,inextp,ma
DATA iff /0/
if(idum.lt.0.or.iff.eq.0)then
iff $=1$
$\mathrm{mj}=\mathrm{MSEED}-\mathrm{iabs}(\mathrm{idum})$
$m j=\bmod (m j, M B I G)$
$\mathrm{ma}(55)=\mathrm{mj}$
$m k=1$

```
```

 do 11 i=1,54
 ii}=\operatorname{mod}(21*i,55
 ma(ii)=mk
 mk=mj-mk
 if(mk.lt.MZ)mk=mk+MBIG
 mj=ma(ii)
 continue
 do 13k=1,4
 do 12 i=1,55
 ma(i)=ma(i)-ma(1+mod(i+30,55))
 if(ma(i).lt.MZ)ma(i)=ma(i)+MBIG
 continue
 continue
 inext=0
 inextp=31
 idum=1
 endif
inext=inext+1
if(inext.eq.56)inext=1
inextp=inextp+1
if(inextp.eq.56)inextp=1
mj=ma(inext) - ma(inextp)
if(mj.lt.MZ)mj=mj+MBIG
ma(inext)=mj
ran3=mj*FAC
return
END
c
c
real*8 FUNCTION SIGQ(X)
implicit none
integer resyn, nfold
real*8 pi,r1,r2,rl1,rl2,rlam,dlam,rdet,wk0,sigdet,x,thet0
1600
real*8 aa1,a2,bet1,delq1,reso,sig
common/resof1/reso(3,200,200),rl,r2,rl1,rl2,rlam,dlam,rdet,resyn
common/resof2/sig(3,200),nfold

```
c
\(\mathrm{PI}=3.1415927\)
c
c \(\quad \mathrm{rl}=1.9\)
c \(\quad \mathrm{r} 2=0.545\)
c \(\quad \mathrm{rll}=1636\).
c \(\quad \mathrm{rl} 2=127.73\)
\(\mathrm{c} \quad \mathrm{rlam}=6\).
c \(\quad\) dlam \(=0.147\)
c \(\quad\) rdet \(=0.39\)
c
\(\mathrm{WK} 0=2 . * \mathrm{PI} / \mathrm{RLAM}\)
SIGDET \(=\) RDET*WK0/RL2*0.4246609
THET0 \(=\mathrm{dASIN}(\mathrm{X} / 2 . / \mathrm{WK} 0)\)
\(\mathrm{AA} 1=\mathrm{R} 1 /\left(\mathrm{RL} 1+\mathrm{RL} 2 / \mathrm{dCOS}\left(2 .{ }^{*} \mathrm{THET} 0\right)^{* *} 2\right)\)
\(\mathrm{A} 2=\mathrm{R} 2{ }^{*} \mathrm{dCOS}\left(2 .{ }^{*} \mathrm{THET} 0\right)^{* *} 2 . / \mathrm{RL} 2\)
C
IF (A2.le.AA1) then
C
\(\mathrm{BET} 1=2 .{ }^{*} \mathrm{R} 1 / \mathrm{RL} 1-0.5^{*} \mathrm{R} 2 * \mathrm{R} 2 *\left(\mathrm{dCOS}\left(2^{*} \mathrm{THET}\right)\right)^{* *} 4 .{ }^{*}(\mathrm{RL} 1\)
! \(\quad\) RL2/dCOS(2.*THET0) \(\left.{ }^{* *} 2\right)^{* *} 2 . / R L 1 / R L 2 / R L 2 / R 1\)
else
C
\[
\mathrm{BET} 1=2 .{ }^{*} \mathrm{R} 2 *\left(1 . / \mathrm{RL} 1+\mathrm{COS}\left(2 .{ }^{*} \mathrm{THET} 0\right)^{* *} 2 / \mathrm{RL} 2\right)
\]
\(!\quad-0.5^{*} \mathrm{R} 1^{*} \mathrm{R} 1 * \mathrm{RL} 2 /\left(\mathrm{R} 2{ }^{*} \mathrm{dCOS}\left(2 .{ }^{*} \mathrm{THETO}\right){ }^{* *} 2\right.\).*
\(\left.!\quad \mathrm{RL}^{*}\left(\mathrm{RL} 1+\mathrm{RL} 2 / \mathrm{dCOS}\left(2 .{ }^{*} \mathrm{THET} 0\right)^{* *} 2\right)\right)\)
C
endif
C
\(\mathrm{DELQ} 1=\mathrm{dSQRT}\left(\left(\mathrm{WK} 0^{*} \mathrm{dCOS}(\mathrm{THET} 0)^{*} \mathrm{BET} 1\right)^{* *} 2 .+\left(\mathrm{X}^{*} \mathrm{DLAM}\right)^{* *} 2.\right)\)
C
SIGQ \(=\left(0.4246609^{*} \text { DELQ1 }\right)^{* *} 2 .+\) SIGDET \(^{* *} 2\).
RETURN
END
c
c
```

 real*8 FUNCTION FRES(SIGQ,QCEN,Q) 1640
 implicit none
 real*8 x,sigq,qcen,q,t,bess,fresx,bessx
 X=QCEN*Q/SIGQ
 T=X/3.75
 IF(ABS(X).le.3.75) then
 BESS}=1.+3.5156229*T*T+3.0899424*T**4.+1.2067492*T**6.
 ! +0.2659732*T**8.+0.0360768*T**10.+0.0045813*T}\mp@subsup{\textrm{T}}{}{**}12\mathrm{ .
 FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ)*BESS
 else
 BESSX=(0.39894228+0.01328592/T+0.00225319/T**2.
 ! -0.00157565/\mp@subsup{T}{}{**3}3+0.00916281/\mp@subsup{T}{}{***}4.-0.02057706/\mp@subsup{T}{}{**5}5.
! +0.02635537/T**6.-0.01647633/T T**7.+0.00392377/T**8.)
FRESX=Q/SIGQ*EXP(-0.5*(QCEN*QCEN+Q*Q)/SIGQ +X)*BESSX/dSQRT(X)
endif
FRES=FRESX
RETURN
END
c
c

Bibliography

[1] A. Guinier, Nature(London) 142 (1938) 569-570.
[2] G. Porod, Acta Phys. Austriaca 2 (1948) 255-292.
[3] O. Kratky, Z. Elektrochem. 58 (1954) 49-53.
[4] V. Luzzati, Acta Crystallogr. 13 (1960) 939-945.
[5] P. W. Schmidt, Acta Crystallogr. 19 (1965) 938-942.
[6] A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (1955) Wiley, New York.
[7] O. Glatter and O. Kratky, eds. Small-Angle X-Rays Scattering (1982) Academic Press, London.
[8] L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (1987) Plenum Press, New York.
[9] P. W. Schmidt and B. A. Fedorov, J. Appl. Cryst. 11 (1978) 411-416.
[10] O. Glatter, J. Appl. Cryst. 10 (1977) 415-421.
[11] P. W. Schmidt, J. Appl. Cryst. 21 (1988) 602-612.
[12] V. Ramakrishnan, J. Appl. Cryst. 18 (1985) 42-46.
[13] G. D. Wignall, D. K. Christen, and V. Ramakrishnan, J. Appl. Cryst. 21 (1988) 438-451.
[14] W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Cryst. 7 (1974) 96-116.
[15] P. A. Seeger, Nucl. Instrum. Methods 178 (1980) 157-161.
[16] P. A. Seeger, Physica (Utrecht) 136B (1986) 106-109.
[17] D. F. R. Mildner and J. M. Carpenter, J. Appl. Cryst. 17 (1984) 249-256.
[18] D. F. R. Mildner and J. M. Carpenter, J. Appl. Cryst. 20 (1987) 419-424.
[19] P. A. Seeger and R. Pynn, Nucl. Instrum. Methods A245 (1986) 115-124.
[20] J. A. Miller, S. L. Cooper, C. C. Han, and G. Pruckmayr, Macromolecules 17 (1984) 1063-1071.
[21] D. F. R. Mildner, J. M. Carpenter and D. L. Worcester, J. Appl. Cryst. 19 (1986) 311-319.
[22] R. P. Jr Hjelm, J. Appl. Cryst. 21 (1988) 618-628.
[23] P. B. Moore, J. Appl. Cryst. 13 (1980) 168-175.
[24] R. W. Hendricks and P. W. Schmidt, Acta Phys. Austriaca 26 (1967) 96-122.
[25] R. W. Hendricks and P. W. Schmidt, Acta Phys. Austriaca 37 (1973) 20-30.
[26] T. Freltoft, J. K. Kjems, and S. K. Sinha, Phys. Rev. B 33 (1987) 269-275.
[27] J. S. Pedersen, D. Posselt, and K. Mortensen, J. Appl. Cryst. 23 (1990) 321-333.
[28] N. Holt, Rev. Sci. Instrum. 28 (1957) 1-3.
[29] K. Ibel, J. Appl. Cryst. 9 (1976) 296-309.
[30] S. H. Chen, S. L. Chang, and R. Strey, J. Chem. Phys. 93 (1990) 1907.
[31] M. Kotlarchyk, S. H. Chen, J. S. Huang, and M. W. Kim, Phys. Rev. A29 (1984) 2054.
[32] M. Kotlarchyk, S. H. Chen, J. S. Huang, and M. W. Kim, Phys. Rev. Lett. 53 (1984) 914.
[33] L. Auvray, J. P. Cotton, R. Ober, and C. Taupin, J. Phys. Chem. 88 (1984) 4586.
[34] F. Lichterfeld, T. Schumeling, and R. Strey, J. Phys. Chem. 90 (1986) 5762.
[35] S. H. Chen, S. L. Chang, R. Strey, J. Samseth, and K. Mortensen, J. Phys. Chem. 95 (1991) 7427.
[36] J. Rouch, A. Safouane, P. Tartaglia, and S. H. Chen, J. Chem. Phys. 90 (1990) 3756.
[37] C. Cametti, P. Codastefano, P. Tartaglia J. Rouch, and S. H. Chen, Phys. Rev. Lett. 64 (1990) 1461.
[38] G. S. Grest, I. Webman, S. Safran, and A. L. R. Bug, Phys. Rev. A33 (1986) 2842.
[39] M. Lagues, J. Phys.(Paris)Lett. 40 (1979) L331.
[40] J. P. Clerc, G. Giraud, J. M. Laugier, and J. M. Luck, Advances in Phys. 39 (1990) 191.
[41] R. J. Baxter, J Chem. Phys. 49 (1968) 2770.
[42] J. K. Percus and G. J. Yevick, Phys. Rev. 110 (1958) 1.
[43] B. Barboy, J. Chem. Phys. 61 (1974) 3194.
[44] A. Coniglio, U. De Angelis, and A. Forlani, J. Phys. A10 (1977) 1123.
[4j] Y. C. Chiew and E. D. Glandt, J. Phys. A16 (1983) 2599.
[46] E. Y. Sheu and S. H. Chen, J. S, Huang, and Y. C. Sung, Phys. Rev. A39 (1989) 5867.
[47] C. Robertus, W. H. Philipse, J. G. H. Joosten, and Y. K. Levine, J. Chem. Phys. 90 (1989) 4482.
[48] M. Kotlarchyk and S. H. Chen, J. Chem. Phys. 79 (1983) 2461.
[49] S. V. G. Menon, V. K. Kelker, and C. Manohar, Phys. Rev. A43 (1990) 1130.
[50] P. Tartaglia, J. Rouch, and S. H. Chen, Phys. Rev. A45 (1992) 7257.
[51] S. H. Chen and J. Teixeira, Phys. Rev. Lett. 57 (1986) 2583.
[52] D. Stauffer, Phys. Report 54 (1979) 1.
[53] J. Rouch, P. Tartaglia, and S. H. Chen, Phys. Rev. Lett. 71 (1993) 1947.
[54] S. H. Chen, F. Mallamace, J. Rouch, and P. Tartaglia, in "Slow Dynamics in Condensed Matter" K. Kawasaki, T. Kawakatsu and M. Tokuyama eds., American Institute of Physics, New York, p. 301, 1992.
[55] S. H. Chen, J. Rouch, and P. Tartaglia, Croatica Chemica Acta 65 (1992) 353.
[56] J. B. Gilmour, J. O. Zwicker, J. Katz, and R. L. Scott, J. Phys. Chem. 71 (1967) 3259.
[57] R. L. Scott, J. Phys. Chem. 62 (1958) 136.
[58] D. G. Le Grand and G. L. Gaines, J. Colloid Interface Sci. 50 (1975) 272.
[59] P. Mukerjee, J. Am. Oil Chem. Soc. 59 (1982) 573.
[60] P. LoNostro, C. Y. Ku, S. H. Chen, and J. S. Lin, J. Phys. Chem. 99 (1995) 10858-10864.
[61] P. LoNostro, Advances Colloid Interface Sci. 56 (1995) 245-287.
[62] J. Höpken and M. Möller, M. Macromolecules 25 (1992) 2482.
[63] C. E. Hoyle, D. Kang, C. Jariwala, and A. C. Griffin, Polymer 34 (1993) 3070.
[64] J. Höpken, C. Pugh, W. Richtering, and M. Möller, Makromol. Chem. 189 (1988) 911.
[65] D. L. Dorset, Macromolecules 23 (1990) 894.
[66] V. Percec, D. Tomazos, A. E. Feiring, Polymer 32 (1991) 1897.
[67] J. F. Rabolt, T. P. Russell, R. J. Twieg, Macromolecules 17 (1984) 2786.
[68] T. P. Russell, J. F. Rabolt, R. J. Twieg, R. L. Siemens, B. L. Farmer, Macromolecules 19 (1986) 1135.
[69] C. Viney, T. P. Russell, L. E. Depero, R. J. Twieg, Mol. Cryst. Liq. Cryst. 168 (1989) 63.
[70] J. Höpken, Fluorocarbon-Hydrocarbon Mixtures. Ph. D. Thesis, University of Twente, The Netherlands, (1991).
[71] M. P. Turberg, J. E. Brady, J. Am. Chem. Soc. 110 (1988) 7797.
[72] P. Lo Nostro, S. H. Chen, J. Phys. Chem. 97 (1993) 6535.
[73] C. Viney, R. J. Twieg, and T. P. Russell, Mol. Cryst. Liq. Cryst. 182B (1990) 291.
[74] G. L. Gaines, Langmuir 7 (1991) 3054.
[75] M. S. B. Munson, J. Phys. Chem. 68 (1964) 796.
[i6] J. Hildebrand, B. B. Fisher, and H. A. Benesi, J. Am. Chem. Soc. 72 (1950) 4348.
[77] V. P. Skripov and M. Z. Faizullin, J. Chem. Thermodyn. 21 (1989) 687.
[i8] C. L. Young, Trans. Faraday Soc. 65 (1969) 2639.
[79] A. J. B. Cruickshank, B. W. Gainey, and C. L. Young, Trans. Faraday Soc. 64 (1968) 337.
[80] C. Y. Ku, S. H. Chen, J. Rouch, and P. Tartaglia, Int. J. Thermophys. 16 (1995) 1119-1134.

