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Abstract

Ocean Acoustic Tomography inverts for the two- or three- dimensional sound speed
structure in a volume of water by measuring acoustic travel times along ray paths
traversing the volume The sensitivity of the acoustic travel times to particular modes
of sound speed variation is highly dependent on the source and receiver positions.
Autonomous underwater vehicles provide mobile instrument platforms at relatively
low cost. Tomography sources mounted on AUVs can be adaptively repositioned
to better image emerging sound speed features. The goal of optimal moving source
tomography is to make optimal use of mobile controllable tomography sources in
gaining information about the environment. The component technologies for optimal
moving source tomography are position estimation, sound speed parameterization and
estimation, ray path identification, and vehicle path optimization. This thesis makes
contributions in each of these areas.
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Chapter 1

Introduction

Ocean Acoustic Tomography estimates the two- or three-dimensional sound speed

structure in a volume of water by measuring acoustic travel times along ray paths

traversing the volume [37, 36]. In a typical application, acoustic sources and receiver

arrays are placed around the volume of interest. The acoustic travel times along the

multiple eigenrays connecting each source and receiver are predicted based on an ini-

tial estimate of parameters describing the sound speed structure. The actual acoustic

travel times are then measured for each eigenray. The differences between measured

and predicted travel times for the various eigenrays can be linearly related to paramet-

ers describing variations in the sound speed structure, assuming that these variations

are not too large. Based on this linear relationship, an inversion can be performed to

determine the sound speed parameters. This technique has been successfully applied

to estimate sound speed fields in a number of experiments [47].

The sensitivity of the acoustic travel times to a particular sound speed variation is

highly dependent on the source and receiver locations. By using mobile sources sus-
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pended from ships [8] or mounted on autonomous underwater vehicles [14] it is possible

to obtain measurements from many more locations and to determine the sound speed

field to a much higher level of accuracy than would be possible with fixed sources.

This thesis examines the use of mobile sources in ocean acoustic tomography. It lays

a foundation of improved and in some cases optimal algorithms for acoustic position

measurement, for sound speed parameterization and inversion, and for eigenray iden-

tification. It introduces source path planning for optimal measurement accuracy, and

simulates the performance of all algorithms in realistic ocean environments.

Throughout this thesis, it is assumed that sound propagation is described well

by a ray model, and ray models will be used exclusively. Acoustic tomography has

also been performed using characteristics of mode propagation, but these methods are

outside the scope of the present work.

The overall structure of a moving source tomography system is shown in Fig. 1-

1. This system takes as its input the received acoustic signal and generates as its

output source location [13] and parameters describing sound speed variability [10].

The functions of sound speed estimation and position estimation are included in the

same system because the problems are tightly coupled. Accurate acoustic positioning

depends on accurate sound propagation models, and accurate acoustic tomography

requires that the source and receiver positions be known. Each block in Fig. 1-1 is

described in greater detail below, and the contributions of the thesis to each block are

outlined.



Rpeeived rDetectdl

Figure 1-1: Block diagram of moving source tomography system.

Ray Tracing Model The ray tracing model block predicts the travel times along

the rays connecting each source and receiver based on the current estimate of sound

speed parameters and source location. The construction of ray tracing models is

well-documented in the literature [26].

Arrival Detector The arrival detector block breaks down the received acoustic

signal into its component ray arrivals and determines the time of each arrival. The

decomposition of a received signal into time delayed, amplitude scaled replicas of the

transmitted signal is well documented in the signal processing literature [20, 4. 45].

In cases where the measured travel times are calculated from actual or simulated

received signals, the travel time estimators are kept simple and standard in order to

illustrate the robustness of the new arrival identification and inversion algorithms.

Arrival Matcher As position or sound speed parameters change, the measured

arrivals will tend to either shift linearly in time or disappear. Because of these dual

aspects of arrival behavior, the inversion process is divided into two stages. The

Al



first stage is the arrival matcher block which attempts to match the measured arrival

times with the predicted arrival times to which they are linearly related, allowing for

the possibility that some arrivals may not have matches. When a measured arrival

is identified with a predicted arrival, a prediction error can be calculated as the

difference between the measured arrival time and the predicted arrival time. Chapter 4

introduces the arrival matching problem. The commonly used methods are discussed

as well as their shortcomings. Two new arrival matching techniques are presented.

The first of these is sub-optima.l but is fast and handles arrival fading well. The second

is a powerful algorithm which takes into account correlations between the time shifts

of different arrivals. The performance of the new algorithms is compared with the

standard methods.

Linear Inversion Th. arrival time prediction errors are used by the linear inversion

block to update the estimate of sound speed parameters and source location. Chapter

2 considers the estimation of source position and the coupling between position errors

and time synchronization errors. A mathematical relationship between spherical and

hyperbolic positioning is derived and illustrated graphically, and the performance of

a system which estimates both source position and transmit time synchronization is

considered. It is observed that the accuracy of a vehicle position estimate depends not

only on the present location of the vehicle but also on the path followed in reaching

the present location. This leads to formulation and solution of the optimal navigation

problem of determining the path to a destination which will result in the least error

in the position estimate upon reaching the destination.



Chapter 3 considers the estimation of sound speed profile parameters. The way

in which rays sample the sound speed field is formalized by defining ray sampling

functions such that the projection of a sound speed profile variation onto a ray sampling

function is the travel time change which that profile variation causes in the given ray.

These sampling functions prove instrumental in deriving the optimal estimator for

sound speed variability and the optimal parameterization for a sound speed field. The

ability of a tomography measurement to resolve a given sound speed variation is highly

dependent on the source and receiver positions. Based on this dependence, optimal

paths are found for moving acoustic sources to focus measurement accuracy at specific

features of interest in the environment.

Example Missions Chapters 2 through 4 describe the various component techno-

logies which comprise optimal moving source tomography. Chapter 5 integrates the

algorithms of the previous chapters into a single system and tests the system perform-

ance in several simulated missions. The ultimate test of the system is of course its

performance in the field, and the example missions are in fact a sequence of recom-

mended field tests to demonstrate the algorithms developed in this thesis.



Chapter 2

Position Estimation

This chapter considers the estimation of position from acoustic travel time measure-

ments. Acoustic positioning systems have traditionally fallen into two categories,

spherical and hyperbolic [35, 43, 6]. Spherical positioning systems determine position

by measuring acoustic travel times from beacons at known locations. To make this

travel time measurement, the receiver must know exactly when each beacon transmit-

ted. Hyperbolic positioning systems determine position by measuring differences in

travel time between signals from the beacons. The hyperbolic receiver does not need

to know when the beacons transmitted, only that they all transmitted at the same

time or with known delays relative to each other. The spherical system, which must

know transmit time exactly, and the hyperbolic system, which does not know transmit

time at all can be seen as the two endpoints of a continuum of systems parameterized

by the accuracy with which the transmit time is known. This continuum is shown

to exist for an arbitrary number of beacons in an arbitrary dimensional space. It is

illustrated for the case of three beacons in a two dimensional space.

17



Hyperbolic positioning produces much larger position estimate errors than does

spherical positioning near the baseline extensions. When the beacons transmit at reg-

ular time intervals, however, a hyperbolic system can approach spherical performance

levels by estimating transmit time in order to synchronize itself with the master beacon

clock. Examples of position estimation with clock synchronization are presented for

both stationary and moving vehicles. An approximate condition is given under which

estimating time synchronization can improve position estimate accuracy.

The accuracy of position and clock synchronization estimates depends on the loc-

ation of the vehicle with respect to the beacons. Position and particularly clock

synchronization cannot change infinitely quickly, and so past measurements as well

as the present measurement contain information about the present position and clock

synchronization. Putting these two facts together, it is observed that for a moving

vehicle, the present position estimate depends not only on where the vehicle is, but

also on the path which it followed in getting there. Optimal navigation seeks to select

the path between a fixed origin and destination which minimizes the position estimate

error achieved at the destination. In this chapter, the optimal navigation problem is

developed and solved using the method of simulated annealing, and optimal paths are

shown for several examples.

2.1 Positioning Systems

Most underwater acoustic positioning systems are either spherical or hyperbolic in

design. These two systems are analyzed, and a third system is introduced-one which



operates in a hyperbolic beacon network but estimates transmit time in addition to

position in an attempt to come closer to spherical performance levels.

2.1.1 Spherical Positioning

Spherical positioning systems determine position by measuring acoustic travel times

from beacons at known locations. In practice this is often accomplished by transpond-

ing with the beacons so that a two-way travel time is measured and then divided by

two. The travel times are converted to ranges, and each range measurement defines a

sphere, centered at the beacon, on which the receiver must lie. Range measurements

from several beacons provide several spheres, the intersection of which is the position

of the receiver. In Figure 2-1, the beacons are shown by black circles, and the receiver

is shown by a black square. The range from each beacon to the receiver defines a

circle around that beacon on which the source must lie. The point where all three

circles intersect is the position of the receiver [35, 43].

Positioning is considered in an M dimensional space (in general M = 2 or 3), where

position is determined by range measurements from N beacons. The range from the

nth beacon to the source at x = [Xi, 2, ... , M]T can be found by the Pythagorean

theorem as,

M
r(x) = (Xm - XBnm). (2.1)

The acoustic travel time measured from the nth beacon is then,



Spherical Positioning

X-Position (m)

Figure 2-1: Spherical positioning.
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r, (x)tn(x) = + vn (2.2)

where c is the speed of sound (assumed throughout this chapter to be independent

of position), and v, is measurement noise which is assumed to be zero-mean Gaussian.

The vehicle will attempt to determine its position x from the vector consisting

of travel time measurements from each beacon t. The Cram6r-Rao bound gives a

lower bound on the covariance of an unbiased position estimate formed from this

measurement. To calculate this bound, it is necessary to linearize the non-linear

equation (2.2) about the position at which the bound is to be calculated, R. Define,

= t(x)- E[t(X)] (2.3)

R = x- R7 (2.4)

This linearized equation is,

S= C + v (2.5)

The matrix of partial derivatives C can be calculated,

CE[t,(x)]C.•(•) m x• =2



1 Xm - ZBnm
m - xB(2.6)

The Crambr-Rao bound for the position estimate is [39],

CRBs= [CTR-'C]-1, (2.7)

where R is the measurement noise covariance matrix, R = E[vvT]. The standard

deviation of the position estimate given by this bound is shown as a function of position

in Figure 2-2. For this figure, the sound speed is 1500 m/s, the measurement errors

are independent identically distributed Gaussian random variables with zero mean

and standard deviations of 1 ms, and the beacons are placed at the locations indicated

by the black circles.

Notice that the position resolution is better toward the center of the beacon net-

work, but is still fairly good in far away corners. Along a baseline extension, two rows

of the measurement matrix C become identical, but in this example of three beacons

in a two-dimensional space, the position estimate is still uniquely determined along

the baseline extensions. Geometrically speaking, two circles of position are tangent

along the baseline extensions, but there is a third circle which provides the second

position constraint.

2.1.2 Hyperbolic Positioning

Hyperbolic positioning systems determine position by measuring differences in travel

times between signals from the various beacons, which are assumed to be synchronized



CRB for Spherical Position Estimate

X-Position (m)

Figure 2-2: Cram6r-Rao bound in meters for spherical position estimate.



with eachother but not with the receiver. This synchronization may be accomplished

by providing a common time base (such as GPS time) to all beacons or by having

slave beacons trigger of the acoustic transmission of a single master beacon. The

differences in travel times are converted to differences in ranges to the beacons, and

each range difference defines a hyperboloid (3-dimensional hyperbola) on which the

receiver must lie. Several of these range differences give several hyperboloids, the

intersection of which is taken to be the position of the receiver. In Figure 2-3, the

beacons are shown by black circles, and the receiver is shown by a black square. The

left hyperbola is determined by the difference in range from the receiver to the top

beacon and the receiver to the left bottom beacon. The right hyperbola is determined

by the difference in range from the receiver to the top beacon and the receiver to the

right bottom beacon. The intersection of these two hyperbola is the position of the

receiver. The advantage of the hyperbolic system is that it does not use the time at

which the beacons transmit in its calculations, so that the receiver does not need to be

synchronized with the beacons. The travel time differences can be found as long as the

beacons transmit at the same time, or with known delays relative to each other. The

disadvantage of the hyperbolic system is that it provides poorer position resolution

than the spherical system, particularly at the fringes of the beacon network [35, 43].

The hyperbolic positioning system measures the differences in travel times to the

various beacons. The linearized equation (2.5) can be modified to create the rela-

tionship between position and travel time difference by multiplying by the matrix

M



Hyperbolic Positioning
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X-Position (m)

Figure 2-3: Hyperbolic positioning.
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1 -1 0

M= . . (2.8)

1 0 -1

The linearized hyperbolic positioning equation is then,

Mt = MCi~ + Mv. (2.9)

By comparison with the spherical system (2.5) and bound (2.7), the the Cramer-

Rao bound for the hyperbolic system is found to be,

CRBH = [CTMT (MRMT)-1MC] (2.10)

The standard deviation of the position estimate given by this bound is shown as a

function of position in Figure 2-4. As in Figure 2-2, the sound speed is 1500 m/s, the

measurement errors are independent identically distributed Gaussian random variables

with zero mean and standard deviations of 1 ms, and-the beacons are placed at the

locations indicated by the black circles.

Notice the greatly deteriorated position resolution outside the center of the beacon

network. The resolution is particularly poor along the baseline extensions. Along

a baseline extension, two rows of the hyperbolic measurement matrix MC become

identical. In the example of three-beacons in two-dimensional space, the hyperbolic

measurement matrix is square, and when two rows become identical along the baseline

extensions, the position estimate becomes underdetermined. Geometrically speaking,



CRB for Hyperbolic Position Estimate

-2000 -1500 -1000 -500 0 500 1000 1500 2000
X-Position (m)

Figure 2-4: Cram6r-Rao bound in meters for hyperbolic position estimate.



two hyperbolas of position are tangent along a baseline extension, so with only two

hyperbolas available, position is unconstrained in the tangent direction.

2.1.3 Positioning with Time Synchronization

In the spherical po3itioning system, the transmit time of the beacons must be known

exactly so that travel times can be determined. In the hyperbolic positioning system,

the transmit time falls out of the equations when the travel time differences are taken.

The spherical system, which requires zero variance in the transmit time estimate, and

the hyperbolic system, which allows infinite variance in the transmit time estimate,

represent the endpoints of a continuum of intermediate systems in which the transmit

time is known with a finite, but non-zero, variance [10]. In this section, it is shown that

the spherical and hyperbolic bounds are indeed the endpoints of a whole continuum

of bounds for systems in which the transmit time variance ranges between zero and

infinity.

We will now consider a system in which the beacons all transmit at a predetermined

time. The vehicle knows the scheduled transmit time, but its internal clock may be

running fast or slow with respect to the beacons. Because of this clock synchronization

error, the vehicle will miscalculate all the travel times by a constant amount, which

will be called 7. The measured travel time now consists of the true travel time plus

a time synchronization error plus measurement noise, and the linearized navigation

equation (2.5) can be extended to reflect this.



, = Cij + 71 + v, (2.11)

where 1 is the N x 1 vector with all elements equal to one. If 7 is treated as a

random variable with zero mean and variance ao, this time synchronization error can

be grouped into the error covariance matrix which becomes o211T + R.

Using this new measurement covariance in (2.7), the Cram&r-Rao bound on po-

sition for a system having a time synchronization error with standard deviation a,

is

CRBT = CT ll 1 1T + R)-IC . (2.12)
L

Next, it is shown that the limit of this equation as a, -+ 0 is the Cramer-Rao

bound for spherical positioning, and the limit as o, -+ oo is the Crambr-Rao bound

for hyperbolic positioning.

The Spherical Positioning limit, 'a -+ 0 In the limit o, -_ 0, performance

approaches that of the spherical positioning system in (2.7).

lim CRBT = lim [CT (o211 T+ R) - 1 C]- 1

-+0 a2-+0

-[CTR-'C]-'

= CRBs. (2.13)



The Hyperbolic Positioning limit, a' -+ oo Verifying the hyperbolic limiting

case is somewhat more complicated. To evaluate the limit, a matrix N is introduced

where the lower submatrix M is the one defined in (2.8). Note here that the first

row of N is orthogonal to all of its other rows, and that N is symmetric and invertible.

lim CRBT = lim [CT (a11 + R)C]

Slim [CTNT(N( ollT + R)NT)-INC I

r NTlim [N(211T + R)NT]- 1 NC
ra2)_+1

-- 1 -NC

NC (2.15)

Using the relation that for a partitioned matrix A, where

A, Az
A -- (2.16)

A3 A4

SCTNT lim

ZV
1T

(2.14)
m:



the inverse can be written [3],

A' 1

the calculation continues from (2.15) after taking the limit of the inverse,

lim CRBT = CTNT
-+o0o [ NC-1

[CTMT (MRMT)- 1 MC] -

= CRBH. (2.18)

This bound is the same as the one derived for the hyperbolic positioning system

in (2.10), which demonstrates that the performance approaches that of the hyperbolic

positioning system in the limit where the uncertainty in transmit time becomes infinite.

Figure 2-5 shows the spherical and hyperbolic endpoints of the performance bounds,

as well as some intermediate values. It is clear from Figure 2-5 that even a rough

estimate of the time synchronization can greatly improve the positioning accuracy,

particularly in the regions of the baseline extensions.

In Figure 2-6, the Crambr-Rao bound for the time synchronization estimate is

shown. Contour labels are in milliseconds. The ability to estimate time synchroniza-

tion is greatest in the center of the positioning array, and poorest along the baseline

(2.17)
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Figure 2-6: Cramer-Rao bound for time synchronization estimate in milliseconds.

extensions.

Position errors and time synchronization errors are coupled. In a hyperbolic pos-

itioning system, each point along a hyperbola of position corresponds to a particular

time synchronization. In general, when a time synchronization error occurs, the posi-

tion estimate will be pulled in different directions by the different hyperbolas of posi-

tion. Along a baseline extension, however, two hyperbolas of position become tangent,

and if there are a total of only two hyperbolas of position, time synchronization errors

and vehicle position errors along the tangent direction become indistinguishable.



2.2 Position Estimators

The fact that hyperbolic and spherical positioning systems represent the two end-

points of a continuum of possible performance levels has practical consequences. If

the beacons in a hyperbolic navigation system repeat their transmissions at regular

time intervals, it is possible to produce a running estimate of the transmit time. The

accuracy of this synchronization determines where the system lies in the performance

continuum between hyperbolic and spherical positioning. In many underwater applic-

ations, this synchronization actually affords significant improvement over hyperbolic

performance bounds [11]. A simulation is conducted to demonstrate this, and the

conditions are discussed under which estimating transmit time provides a substantial

improvement in position accuracy.

The Cramer-Rao bounds describe the amount of information available about one

set of unconstrained variables from a single noisy observation of another set of vari-

ables. If multiple observations are possible, and if the covariance matrix of the vari-

ables to be estimated is known, improved estimates can be obtained. The Kalman

filter provides a framework for incorporating both the multiple observations over time

and the covariance matrix for the variables of interest [22].

In the examples which follow, vehicle position and time synchronization, which

we will call the vehicle state, will be estimated over the course of simulated vehicle

missions. During a mission, the beacons will transmit K times, so the estimator will

go through K iterations. There are three steps per iteration, a prediction step in which

the new vehicle state at the time of a transmission is predicted, a linearization step



where a linear approximation of the relationship between arrival time change and state

change is calculated centered about the current state estimate, and a correction step

in which the measured arrival times are used to correct the state prediction. These

three steps are described in greater detail below.

Prediction As the vehicle moves between acoustic transmissions, models of vehicle

dynamics and clock drift attempt to predict the change in state. In this thesis, we

will not touch on models of vehicle dynamics or models of clock drift, but will simply

assume that when such models have given their best prediction, an additional error

has accumulated in the state described by the zero-mean Gaussian vector w(k), which

has covariance matrix Q. The true state estimate error will be the vector z,

z = (2.19)

Let z(klk) be the error at the kth iteration based on travel time measurements up

to the kth transmission, and z(k + 1lk) will be the state estimate error at the k + Ith

iteration based on measurements up to the kth transmission, i.e. the error after the

prediction phase but prior to the measurement phase of the k + 1 iteration.

z(k + Ilk) = z(klk) + w(k) (2.20)

The covariance matrix of z will be P, which evolves as,

P(k + Ilk) = P(kjk) + Q (2.21)
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Once the state is predicted, the arrival times based on the new state prediction are

calculated.

Linearization In the linearization step, the equations relating travel time changes

to state changes are relinearized around the new state estimate which was formed in

the prediction step. The differences y(k) between the measured and predicted arrival

times can be related to the state estimate errors,

y(k) = H(k)z(klk) + n(k) (2.22)

where this equation has been linearized about the position prediction .(klk - 1)

from the predicted vehicle state vector, so that

H(k)= [C(R(kk k-1)) 1]. (2.23)

Correction In the correction step, the vehicle will use the measured arrival times

to correct its state estimate. The correction added to the predicted state is,

i(klk) = P(klk - 1)HT (k) (H(k)P(klk - 1)HT (k) + R)- y(k). (2.24)

The covariance of the new state estimate acquired by adding this correction to the

old predicted state is,



P(klk) = P(klk-1)-P(klk-1)H T (k) (H(k)P(klk - 1)HT(k) + R)- 1 H(k)P(klk-1)

(2.25)

This process of prediction, linearization, and correction is carried out for each of

the K beacon transmissions which compose the vehicle mission.

Implementation Issues

The time synchronization errors measured in seconds will tend to be small compared

to the position errors measured in meters. To avoid the computational problems which

this can create, the actual software uses units of milliseconds to express time errors,

though the equations in this thesis are setup to use standard MKS units.

There is a complexity for a moving vehicle in that the three beacons are not heard

by the vehicle at the same location, because the vehicle moves some distance in the

time interval between when the first and last beacons are heard. Incorporating this

complexity into the calculation adds little insight, so for purposes of this thesis, it will

be assumed that the travel times have already been back-corrected so that the travel

times from all three beacons correspond to the vehicle being at the same location.

2.2.1 Vehicle Sitting Still

In the first example, the beacons are arranged as shown by the grey spots in Fig. 2-7.

The beacons transmit 21 times during this mission, while the vehicle attempts to hold

station at (X, y) = (1000, -1500), the point indicated by the circle labeled "vehicle" on



Fig. 2-7. The vehicle will attempt to estimate both position and time synchronization,

and the accuracy of its position estimate will be graphed over the course of the 21

receptions. The position estimate accuracy will be compared with the hyperbolic and

spherical bounds for three different sizes of clock drift errors. The system errors are

chosen to be realistic for a vehicle receiving transmissions every 50 seconds and using

a crystal oscillator as its time base. The system errors are as follows:

* Initial position variance (m2): 1002 (in each axis)

* Initial time sync. variance (s2): 12

* Travel time measurement variance (s2): 0.0012

* Increase in position variance between transmissions (m2 ): 202 (in each axis)

* Increase in time sync. variance between transmissions (s2 ): (10-4)2, (10-3)2, (10-2)2

The position errors for spherical and hyperbolic navigation are shown in Fig. 2-

8 in solid lines (labeled to the right of the graph). These lines are lower and upper

bounds respectively on the position error of the system which attempts to estimate time

synchronization. The lower the drift which the receiver clock experiences, the closer

to the spherical performance limit the position estimates come. Roughly speaking,

the time synchronization estimate is only useful if the clock drift per second converted

to an equivalent range drift per second is smaller than range drift of the receiver

navigation sensors.

cAr < Ax, (2.26)
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Figure 2-7: Vehicle location.

where c is the speed of sound. When this condition fails, time synchronization

information is lost too quickly to be useful compared to position information. A

consequence of this is that while this technique is helpful in improving resolution for

acoustic positioning, where c = 1500m/s, it provides little improvement for radio

positioning systems like LORAN, where c = 3 x 10Sm/s, without a very stable time

base.

2.2.2 Vehicle Moving

In this second example, the beacon arrangement is the same, but the vehicle will be

moving. The initial transmission will be heard by the vehicle at (x, y) = (-1000, -1500).

Between transmissions the vehicle will move 100m in the x-direction, so that on the
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last transmission it ends its mission at (x, y) = (1000, -1500). This vehicle path is

shown in Fig. 2-9, with the dots indicating the points at which transmissions are

heard. The accuracy of the position estimate will be graphed over the course of the

21 receptions. The system errors are as in the previous example and are reasonable

for a dead reckoning vehicle traveling at 2m/s.

The results of this second mission are shown on Fig. 2-10. The old bounds for the

stationary source are shown in light dotted lines for comparison. Note that the ultimate

hyperbolic and spherical performance bounds are nearly identical to those achieved in

the previous example by a vehicle simply waiting at the destination point. However,

the time estimating system ends up with better performance because of the trip it

took. The time synchronizing system was able to get improved time information near

the middle of its path. Although the benefit of the accurate positions was lost due to

higher drift rates in position sensors, the benefit of the accurate time synchronization

remained.

2.3 Optimal Navigation

The vehicle has the ability to move, and, in general, some flexibility in the path it

selects from its origin to its destination. In this section, a set of feasible vehicle paths

is parameterized, and the path is selected from this set which results in the least

position estimate error at the end of the journey. The selection of such a path is

known as the optimal navigation problem.
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Figure 2-9: Vehicle path.

2.3.1 Path Parameterization

The set of feasible vehicle paths must be parameterized in some way so that the set can

be searched to find the optimal path. Path parameterization begins with identifying the

features of the path which are significant to the solution of the problem. Information is

only obtained along the path when the vehicle receives the beacon transmissions, and

thus the only significant points on the vehicle path are the points at which reception

occurs. The path is therefore represented as a set of connected reception points. It

is assumed that the source is transmitting at evenly spaced time intervals, so the

maximum vehicle speed imposes a constraint on the maximum separation between

consecutive reception points. A mission time duration specifies the total number of

reception points in the path, and the starting point and final destination point are
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Figure 2-10: Position estimate accuracy comparison.



fixed. The path constraints are listed below:

* The time between vehicle transmissions is a constant At.

* The path will have a fixed number of reception points K, which is equivalent to

constraining the total mission time to be (K - 1)At

* The first transmission point will be at a fixed origin, and the last transmission

point will be at a fixed destination.

* The vehicle has a maximum speed v, so the maximum separation between trans-

mission points is vAt.

Thus the feasible path consists of a set of K transmission points with the first

and last of these pcints fixed and the maximum distance between consecutive points

constrained.

2.3.2 Optimization Algorithm

A simulated annealing algorithm was used to find the optimal path [28, 34]. An initial

feasible path is chosen as the working path, and the objective is evaluated for this

path. In this case, the initial working path is taken to be the straight path between

the origin and the destination, and the objective is the final position error at the

destination point.

Next, one of the points in the working path is then perturbed to form a new path.

The point of the perturbation is chosen randomly, with all points being equally likely

(excluding the start point and end point, which are fixed). The new location of the
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Figure 2-11: Feasible perturbation region.

perturbed point is constrained. It must be no further than vAt from the previous and

following points in the path. It is also desirable to decrease the perturbation size as

the annealing process continues. To accomplish this, the perturbed point is further

constrained on the kth iteration to lie no further than a distance p(k) from its original

location, where p(k) = poa k for some a.

The combination of these constraints means that the perturbed point lies in the

intersection of three circles: one circle centered at the previous point and having

radius vAt, one circle at the following point and having the same radius, and one circle

centered at the current point location and having radius p(k). These constraints are

shown in Fig. 2-11.

The desired probability distribution for selecting the perturbed point is one uni-



formly distributed over the feasible region and zero elsewhere. This is difficult to

create numerically, so instead, a rectangular region is found which contains the feas-

ible region, and points are guessed with a uniform distribution over this rectangular

region until one is found which lies in the feasible region. The rectangular bounding

region is found by taking an axis connecting the points preceeding and following the

current point. Let d be the length of this axis. The zero of this axis is taken to be

the preceding point with positive numbers in the direction of the following point. The

coordinate of all feasible points along this axis must lie in the interval, [d - vat, vAt].

A second axis is defined perpendicular to the first, and having its zero at its inter-

section with the first axis. The coordinate of all feasible points along this second

axis must lie in the interval, [- rva - d2, maz - d2. The maximum perturbation

constraint consists of a circle of radius p(k) around the current point. This circle is

approximated by the square with sides 2p(k) which contains it. The intersection of the

rectangle from the maximum separation constraint and the square from the maximum

perturbation constraint defines a rectangular region which bounds the feasible region.

This combined constraint is the shaded region in Fig. 2-12. Perturbed points are

guessed with uniform distribution in this rectangular region until one is found which

lies in the feasible region.

Once the perturbed path is created, its objective function is evaluated. If the

perturbed path achieves a lower (better) objective function value, then the perturbed

path becomes the new working path. If the perturbed path achieves a higher (worse)

objective function value, then it is only chosen as the new working path with a prob-

ability of
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Figure 2-12: Feasible region with bounding rectangle.

e new - i'old
exp(- ) (2.27)T(k)

where Onew and 4old are the new and old values of the objective function. and T(k)

is a temperature term at the kth iteration, T(k) = Toak, where a will be the same

value as was used in the definition of the maximum perturbation p(k). Note that the

probability of accepting the path with the higher (worse) objective depends on two

factors. First, it depends on how much worse the perturbed path is. It is more likely

to choose a path which is a little bit worse than one which is much worse. Second, it

depends on the iteration number k. As the algorithm proceeds, it becomes less likely

to accept a worse path. This technique of selecting at times worse paths is intended

to allow the minimization algorithm to escape from local minima [34].
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The algorithm terminates after a fixed number of iterations, and is repeated 5

times to insure that the same optimal path is achieved each time. If the solutions from

each run are not the same, then the number of iterations for each run is increased

until a consistant answer is obtained.

2.3.3 Examples of Optimal Navigation

The simulated annealing algorithm is now applied to find optimal navigation paths,

for the conditions below.

* Maximum vehicle speed: 2 m/s

* Time Between Transmissions: 50 s

* Number of Transmissions K: 31

* Initial position variance (m'): 1002 (in each axis)

* Initial time sync. variance (s2): 12

* Travel time measurement variance (s2): 0.0012

* Increase in position variance between transmissions (m2 ): 202 (in each axis)

* Increase in time sync. variance between transmissions (s2 ): (10-4)2

* Number of Iterations N: 10000

* Initial search radius po: 500m

* Initial temperature To: 1



* Decay Coefficient a: 0.01(/N)

There are two kinds of variables in the vehicle state vector for the optimal nav-

igation case, position and time synchronization. The position estimate error grows

rather quickly with time, so that previous position estimates contain far less inform-

ation about present position than does the present measurement. Time synchroniza-

tions, however, drift slowly, so that an accurate time synchronization obtained at some

past time continues to be useful well into the future. The usefulness of accurate time

synchronization can be seen by comparing the hyperbolic and spherical Cramer-Rao

bounds described earlier.

The resulting optimal path is shown in Fig. 2-13 superimposed on the bounds for

time synchronization. The vehicle diverts toward the center of the array to acquire

better time synchronization. This time synchronization results in much improved

resolution in the region near the baseline extension, where hyperbolic positioning

would be quite poor.

If the path length is extended to 51 transmissions, the diversion toward the center

of the array becomes more clear, as seen in Fig. 2-14. The vehicle in fact moves at

its full speed to the center of the array, then sits there, and then moves at full speed

to the destination point.

Finally, in Fig. 2-15 the start point of the path is changed. Again, the vehicle

travels to the center of the array and sits there before proceeding to its destination.
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Figure 2-13: Optimal navigation, 31 transmissions.
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Figure 2-14: Optimal navigation, 51 transmissions.
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Figure 2-15: Optimal navigation, 51 transmissions, different starting point.

2.4 Conclusion

Spherical and hyperbolic positioning systems represent end points of a continuum of

possible systems. This continuum is parameterized by the variance of the transmit

time synchronization error. By estimating the time synchronization in a hyperbolic

navigation system which transmits at regular intervals, it is possible to improve the

position resolution, possibly up to the re -'ution which a spherical system would

provide. To achieve substantially improved resolution, however, the drift rate of the

clocks multiplied by the sound speed must be small compared to the position drift

of the inertial position sensors. In acoustic systems, clock drift multiplied by sound

speed is generally much smaller than the drift in position sensors, so time synchronizing

position estimation works well. Another consequence of the slow drift of sensors is that
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the position estimate at a destination point depends not only on local measurement

geometry, but also on the path followed in reaching the destination. The problem of

optimal navigation is to find the vehicle path which provides the least error in the final

position estimate at the destination. This problem was solved for several examples,

and it was found that the optimal path was one which diverted toward the center of

the positioning array where the most accurate time synchronization estimates could

be obtained.



Chapter 3

Sound Speed Estimation

Ocean acoustic tomography seeks to estimate variations in the sound speed profile

within a volume by measuring travel time changes in rays traversing the volume. The

analysis of this estimation problem begins with quantifying the travel time effect of an

arbitrary sound speed perturbation on an eigenray in section 3.1. Toward this end,

ray sampling functions are derived such that the projection of a sound speed variation

onto the ray sampling function is the travel time change produced in the ray by the

sound speed variation. By discretizing the sound speed variation and the ray sampling

function, the forward problem of determining travel time variation from sound speed

variation can be written as a linear matrix equation.

The inverse problem of determining sound speed variation from travel time per-

turbations is considered in section 3.2. The first observation which is made about the

inverse problem is that it is very underdetermined. There are far more dimensions

of possible sound speed profile variation than there are eigenrays through a typical

environment. For this reason, the sound speed profile variation is approximated by a
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weighted sum of basis function, and the profile estimate is formed simply by estimating

the weights for each basis function.

The fact that tomography works with a reduced order model has implications

for the design of the optimal weight estimator-implications which have been largely

overlooked in the acoustics literature. The commonly-used weight estimators are

suboptimal because they do not account for sound speed profile variations orthogonal

to the basis set, some of which may have a travel time effect disproportionate to their

size because of the sensitivity characteristics of the tomography measurement. In

section 3.3, the optimal weight estimator is derived.

The basis functions used to represent sound speed profile variability are usually

chosen using the method of empirical orthogonal functions. However, the empirical

orthogonal functions are a suboptimal basis because they are chosen without taking

into account how accurately their weights can be measured by the tomography ex-

periment. In section 3.4, an optimal orthogonal function expansion for sound speed

profile variability is derived.

In se::ion 3.5, the sound speed profile estimate accuracy using the optimal estim-

ator and the optimal orthogonal function basis is compared with the estimate accuracy

using conventional methods. The difference in performance is demonstrated for typical

temperate and arctic environments.

The optimal estimator and optimal basis functions were derived under the assump-

tion that the profile covariance matrix was known. In practice, the profile covariance

matrix must be estimated from a limited set of historical profile measurements. In

section 3.6, the effect of using estimated covariance matrices is considered.
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Finally, in section 3.7, the advantage in coverage obtained by mounting tomo-

graphy sources on moving platforms is demonstrated, and the question of how to

optimally utilize moving sources to focus tomographic accuracy at features of interest

is analyzed.

3.1 The Forward Problem

In ocean acoustic tomography, the variation x in a mean sound speed profile within

a volume is estimated using a measurement y of the resulting variation in ray travel

times through that volume. A consequence of Fermat's principle is that the size of the

travel time variations can be linearly related to the size of the sound speed variations,

assuming that the measured ray arrivals in the received acoustic signal can be correctly

matched with predicted eigenray paths. Although the sound speed profile change is a

continuous function, it is sufficient to treat it as a large vector of sound speed samples

taken at closely spaced depths. This allows the linear relationship between x and y

to be written as,

y = Cx + n. (3.1)

Unfortunately, there is noise n associated with making the measurement y. In the

tomography problem, the noise vector n includes both true measurement noise as

well as any non-conformance of the true travel time perturbations to the linear model.

The ray sampling function is defined such that the projection of a sound speed

profile perturbation onto the ray sampling function is the travel time change which

that profile perturbation causes in the ray. In terms of (3.1), the ray sampling functions
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are the rows of the measurement matrix C, and they can be calculated as follows. The

travel time ti along the ith ray which follows path Si through an environment with

sound speed profile c(z) is [26],

t= i -ds (3.2)
Iis c(z)

Add a small sound speed perturbation x(z) to the sound speed profile, and write a

Taylor expansion for the perturbed profile, retaining only the first two terms.

1 1 x(z) . (3.3)
c(z) + x(z) c(z) c2(z)

Now consider the effect of this profile perturbation on ray travel time. According to

Fermat's principle, the time integral will be independent of a small perturbation in the

integral path, so the time may be calculated as if the path had been unchanged by the

sound speed perturbation. The perturbation in travel time for the ith ray will be yi.

ti +•Y = ds - X(ds (3.4)

The relation between the variations is then,

i = - ds (3.5)

Changing this path integral to an integral over depth between the starting depth

Zbottom and the ending depth ztop of a ray segment, and adding a term ki(z) which is



the number of times the ith ray passes the depth z,

Yi x(z)k(z) dz (3.6)
JZbotom c2(z)Isin(O(z))j

where 0 is the angle with respect to horizontal of the ray. Using Snell's law, and

defining ct as the sound speed for which the ray would become horizontal, i.e. the

sound speed at a refractive turning point of the ray,

"Z'op x(z)ki(z)

Yi - c(z)dz (3.7)

For purposes of this thesis, this integral equation must be written in a finite difference

form so that the continuous integral above can be represented by the discrete equation,

y = Cx (3.8)

The integral could be put into finite difference form by letting the ith row of C which

corresponds to the ith eigenray be,

Cin = - (nAz) Az (3.9)
c2(nAz) 1 (1Z)

However, this function has a singularity at the turning depth of the ray, so the discrete

approximation becomes poor near the turning depth. Since the singularity is integ-

rable, and the ultimate goal is to approximate the integral in (3.7), a better solution



is to let Cin be the integral in (3.7) over a depth interval (n - 1)Az to nAz,

7nIn ki(z)
Cin = - )(z) dz. (3.10)

For sufficiently fine sampling of the profile (small Az), we may assume that the sound

speed profile changes linearly between our sample points, so that c(z) = c((n-1 )Az)+

3(z - (n - 1)Az), where p = (c(nAz) - c((n - 1)Az))/(Az). The next step will be

changing the variable of integration from z to c. The variable k(z) has thus far

prevented the integrand from having a non-zero value outside of the depth range of

the ray. When k(z) becomes discretized to k(nAz), care will have to be taken with

the limits of integration so that the integral does not extend outside the depth range

of the ray.

ki(nAz) rmin(ctc(nAz)) 1
Cin = k(nAz) min(ct,c((n-1)z)) dc. (3.11)

Using the integral [23],

dxz a2 va2 - 2  (3.12)x2• •- a2 2X2 a2 "

the expression for Cin becomes

Jzmin(ct,c((n)-)Az))
~ cl
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3.1.1 Ray Sampling Functions
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hree ray sampling functions.

Ray sampling functions are shown in Figs. 3-2, 3-3, and 3-4 for rays in environments

with the three sound speed profiles shown in Fig. 3-1.

The first example deals with Profile 1 in Fig. 3-1. In this case the sound speed is

constant everywhere in the environment. The ray which will be analyzed is the one

shown in the right section of Fig. 3-2. This ray leaves a source at 1000m depth and

is received 100km away at 3000m depth. The ray does not pass through water below

3000m, and so the ray sampling function is equal to zero below this depth. The ray

passes twice through water above 1000m depth, once on the way up and once on the

way down, so the ray sampling function above 1000m is twice as large as it is between

1000m and 3000m.

Profile I (constant) Profile 2 (Arctic)
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Figure 3-2: A sampling function and ray for profile 1-constant sound speed.

The second example deals with Profile 2 in Fig. 3-1. In this case the sound speed

is a linearly increasing function of depth, a simple Arctic profile. The ray which will

be analyzed is the one shown in the right section of Fig. 3-3. This ray leaves a source

at 1000m depth, is turned by refraction, and is received 30km away at 1000m depth.

Rays are most sensitive to sound speed variations at their turning depth, and this

is reflected by the sampling function for this ray which becomes large at the turning

depth of the ray. The sampling function is actually unbounded but integrable at

the turning depth, however this discontinuity is removed while maintaining the same

integrated travel time effect using the discretization proposed in (3.10). Note that the

ray sampling function is again equal to zero for depths which the ray does not pass

through.

Ray
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Figure 3-3: A sampling function and ray for profile 2-the Arctic profile.

The third example deals with Profile 3 in Fig. 3-1. In this case the sound speed

has a minimum at 1000m depth, a simple temperate profile. The ray which will be

analyzed is the one shown in the right section of Fig. 3-4. This ray leaves a source at

1000m depth, is turned by refraction several times both above and below the source

depth, and is received 100km away at 1000m depth. Rays are most sensitive to sound

speed variations at their turning depth, and this is reflected by the sampling function

for this ray which becomes large at both the upper and lower turning depths of the

ray. Note that the ray sampling function is 50% larger for depths just above 1000m

than for depths just below 1000m. This is because the ray passes six times through

depths above 1000m and only four times through depths below 1000m.

It should be noted that point measurements of sound speed can also be represented
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and ray for profile 3-the temperate profile.

as sampling functions. The sampling function of a point measurement is simply a delta

function at the depth of the measurement.

3.2 The Inverse Problem

The goal of tomography is to produce sound speed profile estimates within a volume

based on a limited number of travel time measurements along eigenrays passing

through the volume. As such, the tomography problem is grossly underdetermined

[36]. However, most sound speed profile variability can be represented by a relatively

small number of modes of variation about the local mean profile [32]. If the sound

speed profile variation is approximated as a weighted sum of a small number of basis

functions corresponding to the dominant modes of variation, then a reasonable profile
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estimate can be obtained simply by estimating the weights for the basis functions.

The variation x in a mean sound speed profile within a volume is estimated using

a measurement y of the resulting variation in ray travel times through that volume.

In the linear model of (3.1),

y = Cx + n, (3.14)

it will be assumed that the sound speed perturbation vector x and the noise vector n

are zero-mean Gaussian with covariance matrices P = E [xxT] and R = E [nnT].

The vector x has far more elements than the measurement y which contains only as

many elements as there are eigenrays through the environment. As a linear equation

the tomography problem is very underdetermined, and, were it not for knowledge

of the covariance matrix P, little could be said about x from the measurement y.

Knowledge about the sound speed profile covariance P is usually incorporated into

the tomography problem by approximating x as a weighted sum of a small number

of orthonor:nal basis vectors corresponding to the most important modes of variation

in x. If these basis vectors compose the columns of 4 and the appropriate weight for

each basis vector is contained in a, then the approximation is made,

x - 4a (3.15)

where a -= Tx. The weight vector a is much smaller in size than the original unknown

vector x, and the inverse problem can be solved.

One step in designing a tomography experiment is to pick a set of basis functions



4' and specify a method for determining an estimate a of the weights for those basis

functions based on the measurement y. For purposes of this thesis, the optimal choice

of a and d will be defined as the one which minimizes the expected mean squared

error e in the resulting profile estimate,

e = E [(x - a~))] . (3.16)

This scalar error can be equivalently written as the trace of the covariance matrix,

e = tr E [(x - )(x -aa)T]. (3.17)

Section 3.3 derives and analyzes the optimal weight estimator, and section 3.4 de-

rives and analyzes the optimal set of basis functions for representing profile variability.

3.3 Weight Estimators

For now, let us set aside the question of how to select the basis vectors which compose

4 and examine the choice of i. While novel if less direct techniques have been applied

to ray-based inversions, such as neural networks [40] and simulated annealing [7], the

most common estimators for sound speed profile weights are ones which express the

weight estimate as a matrix function of the travel time variations [36].

Because the system is linear and the variables are Gaussian, the optimal estimator

& in the mean squared error sense will also be the linear least squares estimator [15],



so with no loss of generality, it may be assumed that

S=Ky. (3.18)

The problem of choosing the optimal estimator is reduced to one of selecting a gain

matrix K.

3.3.1 Suboptimal estimators

After selecting a basis set, it is common practice to rewrite (3.1) and (3.16) using the

reduced order model for x in (3.15). (3.1) then becomes

Yr = Cra + n

where Cr = C4. Using (3.15) and the fact $ was defined to have orthonormal

columns so that ITI = I, (3.16) becomes

(3.20)

or equivalently,

e = tr E [(a- a)(a- a)T]

(3.19)

(3.21)



Basing the weight estimate on the reduced order measurement model of (3.19), a =

Kyr, the error objective e in (3.21) can be rewritten,

e = tr [Pr - KCPr - PrCTKT + K(CrPrCT + R)KT] , (3.22)

where Pr = E [aaT] = 4ýTp. The optimal gain matrix K is found by setting the

derivative of this error objective with respect to the matrix K to zero. The following

symbolic matrix derivatives are helpful in this calculation [18, 42, 19, 44].

dAtr [AB] = BT (3.23)

tr [BTAT] = BT (3.24)

tr [ABAT] = AB + ABT (3.25)

Taking the derivative of (3.22) with respect to K and setting it to zero yields,

2PrC - 2K(CrPrCT + R) = 0. (3.26)

Solving for K produces the gain matrix for the reduced order estimator,

K = PrC• (CrPrCr + R)-. (3.27)



Since Cr = Cl and Pr = NTpý, this equation can also be written in expanded

form,

K = 4TpjT C T (C,#TP.CTCT + R)-. (3.28)

3.3.2 Optimal Estimator

If the full measurement equation is retained instead of making the reduced order

approximation, a different answer is found [12]. The estimate a will be chosen to

minimize the original error objective in (3.17),

e = tr E [(x - a)(x - 9&)T], (3.29)

and the weight estimator will be based on the full order measurement model of (3.1),

so a = Ky. In this case, the error objective which K must minimize is

e = tr [P - 4KCP - PCTKT1T + 4K(CPCT + R)KTT] . (3.30)

The order of multiplications within a trace can be rearranged without changing the

value of the trace, that is, for A an n x m matrix and B and m x n matrix, tr AB =

tr BA. Rearranging (3.30), and recalling that the columns of 4 are orthonormal so

that IT 4 = I, (3.30) becomes,

e = tr [P - KCP _ - $TpCTKT + K(CPCT + R)KT]. (3.31)



Taking the derivative of this trace with respect to the matrix K with the help of the

identities in (3.23), (3.24), and (3.25), and setting the derivative to zero yields

24TpCT - 2K(CPCT + R) = 0. (3.32)

Solving for the optimal gain matrix K produces,

K = 4TpCT (CPCT + R)-1. (3.33)

Note that this is the Kalman gain for the full order system projected onto the basis C,

so the estimate of the weights is the same as if the estimate of the full vector x were

formed and then projected onto the selected basis.

Simple Comparison A simple example illustrates the advantage of the optimal

estimator in (3.33) over the reduced order estimator in (3.27). Assume that the noise

covariance matrix R = I, and

C= 1 9 , P = . (3.34)

The dominant mode of variation in x is in the direction 1 0 , since this is the

eigenvector corresponding to the larger eigenvalue of P. However the matrix C makes

the measurement vector y most sensitive to variations in x along the direction of the

eigenvector corresponding to the smaller eigenvalue of P, O0 1 ] T



The basis vector t will be chosen to represent the dominant mode of variation in

x

S= 1 0 •. (3.35)

The two-element vector x will be approximated by a single weight applied to this basis

function. The mean squared error for the resulting estimate of x is given in the table

below when the weight is estimated using the suboptimal estimator and the optimal

estimator.

Suboptimal

67.5 (actual)

0.9 (predicted)

Optimal

9.1

There are two error terms listed under the suboptimal estimator. The error labeled

"actual" is in fact the mean squared error achieved by the suboptimal estimator.

Before the estimators are applied, the mean squared error associated with x is tr P =

10. The error after the application of the suboptimal estimator is 67.5, far worse than

before. The job of an estimator-any estimator-is to account for all of the measurement

vector. It does this by attributing some of the measurement to a weight change and the

rest to noise. In the reduced order model used by the suboptimal estimator, neither the

weight change nor the noise model accommodate well the large measurement changes

produced by the unmodeled direction of variation in x. Yet all measurement change



must be accounted for, so the estimator is forced to introduce large weight shifts to

explain the measurement change within the context of the reduced order model.

Not only does the suboptimal estimator perform poorly, but within the context of

the reduced order model, there is no indication of the performance problem. The error

which would be predicted if the reduced order model were accurate is a very satisfying

0.9. The reduced order model takes no account of the unmodeled direction of variation

in x which, though smaller than the modeled variation, has the greater effect on the

measurement y. The reduced order model not only results in an estimator with poor

performance but also produces a false prediction of estimate accuracy.

The optimal estimator produces a realistic evaluation of its own performance, be-

cause it is based on a full order error model. The initial uncertainty in x was 10.

Using the measurement, the optimal estimator is only able to reduce this to 9.1. This

is a result of the fundamental ambiguity in the measurement, which the suboptimal

estimator does not account for, since it uses a reduced order model where the ambigu-

ity is not reflected. The optimal estimator makes the best use possible of the limited

information afforded by the measurement.

In this example, a simple system was created specifically to reveal the weakness of

the suboptimal estimator. The simulations in Section 3.5 will demonstrate that these

problems are not only a property of carefully crafted examples, but in fact are present

in realistic tomography experiments.



3.4 Basis Functions

Having determined the optimal estimator A for the weights of arbitrary basis vectors

4 , the question of choosing the optimal basis vectors is now addressed. The earliest

tomography experiments used constant velocity layers to parameterize sound speed

[37]. Presently, the method of Empirical Orthogonal Functions (EOF) is commonly

used in tomography to select a set of basis vectors to represent variations in the sound

speed profile. This method of EOFs is known in other fields as principal component

analysis or the Karhunen-Loeve expansion, and is well described in [27]. It seems to

have been first developed by [29]. Early oceanographic applications were representing

currents [30] and temperature fields [9], and since that time it has been widely used

to represent sound velocity data. In the method of EOFs, historical profiles are used

to estimate a profile covariance matrix, and the eigenvectors corresponding to the

largest eigenvalues of the covariance matrix are taken for the basis vectors. First. the

method of empirical orthogonal functions is reviewed. Then, a method for generating

the optimal set of basis functions is derived. Finally, the functions generated by

the two methods are tested in the simple example of the previous section, and their

performance compared.

3.4.1 Empirical Orthogonal Functions

In selecting the optimal basis function, the same error objective from (3.17) will be

used, except that now the free variable is the basis set Q4 instead of the estimator gain

matrix K. Empirical orthogonal functions (EOFs) are the set of basis functions which



minimize the error objective under the assumption that the weights are determined

exactly, that is, A = a = 4Tx. The error objective is,

e = tr E [(x - #4)(x - A)T]. (3.36)

If it is assumed that the coefficient weights are determined correctly, then the objective

function becomes,

e = tr [P -- ITp - P T + -TP.jT] . (3.37)

Using the fact that within a trace the order of multiplication can be rearranged and

the fact that 4TQ = I, the error is rewritten,

e = tr [P -_Tp4]. (3.38)

This function is clearly minimized if the basis vectors which form the columns of 4

are the eigenvectors corresponding to the largest eigenvalues of the covariance matrix

P. These columns of A are the EOFs. The first use of EOFs to represent sound speed

profile variability seems to have been for the purpose of compressing large archives of

historic profiles [32]. In this application, the EOFs are optimal, because the weights

can be calculated directly as a = ITx.



3.4.2 Optimal Orthogonal Functions

Acoustic tomography differs from the data compression application of EOFs in that the

weights are estimated from travel time variations rather than being calculated exactly.

The travel time variations are not equally sensitive to all modes of profile variation,

and as a result, all weights cannot be estimated with the same accuracy. The process

of creating EOFs does not take into account these measurement resolution issues.

This section presents a method for calculating optimal orthogonal functions (OOFs)

which are the basis that provides the smallest mean squared error in the final profile

estimate by taking into account not only the sizes of the different profile variations

but also the ability of the tomographic experiment to measure the variations [12].

The error objective which will be minimized is, as before, (3.17),

e = tr E [(x- Ba)(x - I )T]. (3.39)

In acoustic tomography, the weights must be estimated from the data, so & = Ky.

Using (3.1), this error objective can then be rewritten,

e = tr[P - 4KCP - PCTKT@T + K(CPCT + R)KT4T]. (3.40)

Using the optimal K from (3.33), and rearranging the multiplication order within the

trace, the error objective becomes,

e = tr P -_TPCT (PCCT + R) - 1 CP] (3.41)



By comparison with (3.38) it is clear that the function is minimized when the columns

of 4 are the eigenvectors corresponding to the largest eigenvalues of the matrix

PCT (CPCT + R) - 1 CP. These eigenvectors which comprise the columns of 4 are

the OOFs. They minimize an error function which contains information about both

the size of the profile variations, P, and the sensitivity of the tomography measurement

to these variations, C.

Simple Comparison The two techniques for creating basis sets are applied to the

simple example problem where R = I, and

C =[ 1 9] (3.42)

The resulting EOF and the resulting OOF are given in the table below, along with the

mean squared errors for both when used in conjunction with the optimal estimator.

Using EOFs

e = 9.1

Using OOFs

0.71

0.71

e = 8.2

The EOF is simply chosen to be the largest mode of variation in x. The OOF

includes a component of the larger mode as well as a component of the smaller mode in
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x. Because of the choice of C, the smaller mode has a greater effect on the measurement

than the larger mode, and the balance between mode size and measurement sensitivity

in this example is such that the OOF happens to contain equal components of each

mode.

The OOF improves the estimate by spanning the subspace where the greatest re-

duction in error is possible using the tomographic measurement rather than simply

spanning the subspace where the greatest a priori uncertainty exists. Any two or-

thonormal bases which span the same subspace will produce the same estimate error.

A consequence of this is that the improvement in mean squared error from using the

OOF instead of the EOF will never be greater than the amount of variance in x un-

modeled by the EOF. In this simple example, 10% of the variance in x is not modeled

by the EOF, and the reduction in mean squared error is about 9% of the total variance

in x.

3.5 Examples

Two examples are given to demonstrate the effect of the estimator and basis choice on

inversion accuracy in environments with canonical temperate and arctic sound speed

profiles.

3.5.1 Temperate Example

In the first example, a 4000m deep temperate ocean with a Munk sound speed profile

[38] is considered. The source and receiver are both at 1000m depth and are separated



by 100km. The sound speed profile and the eigenrays connecting source and receiver

are shown in Fig. (3-5). Added to this mean profile are two possible sound speed

profile perturbations which are shown in the right half of Fig. (3-6). One corresponds

to a surface warming and the other to axial warming adjusted so that the two variations

are orthonormal. If a profile covariance matrix were formed for this ocean, these would

be its only two eigenvectors with non-zero eigenvalues. In this example, the eigenvalue

or variance of the weight for the surface warming eigenvector will be 400, and for the

axial warming 100. The basis functions are orthonormal, so the total variance in the

profile is 500 meters-squared per second-squared, with 80% of the variance of the

profile in the direction of the surface warming variation, and only 20% in the direction

of the axial warming. The noise covariance matrix is R = (0.01)21I seconds-squared.

On the left side of Fig. (3-6) are the ray sampling functions shown on the same

axes for all four eigenrays. These sampling functions are the rows of the matrix C,

so the inner product of each sampling function with a profile variation is the travel

time change which that profile variation will cause in a particular eigenray [10]. These

sampling functions are derived from the ray travel time equations and described in

greater detail in the Appendix. It is important to note here that most of the area of the

sampling functions is in the region where the axial warming is large and the surface

warming variation is small. This means that the ray travel times will be more sensitive

to the small axial warming variation than to the large surface warming change. This

condition of being more sensitive to the small mode and less sensitive to the large

mode is similar to that demonstrated in the simple example of the previous section.

In this example, a single basis function will be chosen to approximate the two
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Figure 3-5: Sound speed profile and eigenrays for the temperate example.

independent modes of variation in the profile. When the method of EOFs is used to

select this basis function, the mode with the larger eigenvalue, the surface warming

mode, is chosen as shown on the left side of Fig. (3-7). The OOF method, however,

selects a basis function which contains a component of both the larger mode and the

more measurable mode. This OOF is shown on the right side of Fig. (3-7).

The table below shows the error in the profile estimate when the suboptimal es-

timator is used with the EOF and when the optimal estimator is used with both the

EOF and then with the OOF.

&,uuu
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Total Variance of Sound Speed Profile Estimate (-)

Suboptimal Estimator

EOF

447 (actual)

255 (predicted)

Optimal Estimator

EOF

3833

OOF

369

As in the simple example, the suboptimal estimator predicts an error much smaller

than its true error because it takes no account of the unmodeled mode of sound speed

profile variation. The optimal estimator makes a significant improvement in estimate

accuracy because it takes into account the effect of the unmodeled mode. Using

the OOF with the optimal estimator makes a slight additional improvement. The

EOF already represents 80% of the profile variation, so the maximum improvement

possible with a different basis is 20% of the total variance. The OOF achieves a small

improvement of about 3% of the initial total sound speed profile variance.

3.5.2 Arctic Example

In the second example, a 4000m deep Arctic ocean with a linear profile is considered.

As before, the source and receiver are both at 1000m depth and are separated by

100km. The sound speed profile and the eigenrays connecting source and receiver are

shown in Fig. (3-8). The same two orthonormal sound speed profile perturbations



are considered as shown in the right half of Fig. (3-9). As before, the variance of the

weight for the surface warming eigenvector will be 400 and for the deep warming 100,

so that the total profile variance is 500 meters-squared per second-squared, with 80%

of the variance of the profile in the direction of the surface warming vector, and only

20% in the direction of the deep warming. As before, the noise covariance matrix is

R = (0.01)2' seconds-squared. On the left side of Fig. (3-9) are the ray sampling

functions shown on the same axes for all the eigenrays. It is important to note here

that most of the area of the sampling functions is in the region where the deep warming

is large and the surface warming variation is small. This means that the ray travel

times will be more sensitive to deep warming than surface warming.

A single basis function will be chosen to approximate the two independent modes

of variation in the profile. When the method of EOFs is used to select this basis

function, the mode with the larger eigenvalue, the surface warming mode, is chosen

as shown on the left side of Fig. (3-10). The optimal orthogonal function method,

however, selects a basis function which contains a component of both the larger mode

and more measurable mode. The OOF is shown on the right side of Fig. (3-10).

The table below shows the error in the profile estimate when the suboptimal es-

timator is used with the EOF and when the optimal estimator is used with the EOF

and then with the OOF.
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Figure 3-8: Sound speed profile and eigenrays for the Arctic example.
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Figure 3-9: Sampling functions and profile variations for the Arctic example.
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accuracy because it takes into account the effect of the unmodeled mode. Using the

OOF with the optimal estimator makes a slight additional improvement. The EOF

already represents 80% of the profile variation. Po the maximum improvement possible

with a different basis is 20% of the tot.l variance. The OOF achieves an improvement

of about 11% of the initial total sound speed profile variance.

3.6 Using Estimated Profile Covariance Matrices

Up to this point, it has been assumed that the profile covariance matrix P is known.

In practice, this covariance matrix is estimated from a finite set of historical profile

measurements combined with whatever physical constraints are appropriate to the

environment. There are usually much fewer profile measurements than there are points

in each measurement, so the estimate of P, P is far from being full rank. This means

that the estimate 1P is in fact a reduced order model of the true covariance P, and

as such renders the inversion subject to the some of the same frailties as intentional

model order reduction. This section considers what can be done in practical terms

to improve the profile estimate, recognizing that the profile covariance estimate is

imperfect.

3.6.1 The Covariance Matrix Estimate

In most tomography experiments, a profile mean and covariance matrix are estim-

ated from an ensemble of actual profile measurements, {(1, 62,... , N }. From these



measurements, a mean is estimated as,

1 Nand a covariance is estimated as,

= (N--(i - - (3.44)

In general there many fewer sample profiles than the dimension of P, so beyond a

few dominant eigenvalues and their associated eigenvectors the estimate is poor.

3.6.2 Weighting the Noise Covariance Diagonal

The common method for dealing with this problem is to make the approximation.,

P = AD$T (3.45)

where D has along its diagonal the largest eigenvalues of P from (3.44), and P has as

its columns the associated eigenvectors. To deal with the fact that certain directions

of variation in x have been ignored in this approximation, the diagonal of the noise

covariance matrix R is increased to accommodate not only measurement noise, but

also the measurement effect of unmodeled directions of variation in x.

Reff = R + aI (3.46)



3.6.3 Wrapping Profile Covariance into Noise

The problem with this blind increase of the diagonal of the measurement error cov-

ariance is that it does not reflect the true directions of measurement variation caused

by profile changes. A better method is to write x as the sum of its reduced order

approximation and an approximation error term, x

x = a + i. (3.47)

Using this new representation in (3.1),

y = C4a + Ci- +n. (3.48)

Grouping the Ci + n together as "noise", and assuming that the unmodeled profile

variations have covariance E [fiT] = ,I: the new noise covariance matrix becomes.

Rnew = R + aCCT. (3.49)

3.6.4 Comparison of Methods

In Fig. (3-11), the mean squared error resulting from both methods in the temperate

profile case is shown as a function of the weight a. The dashed line shows the effect of

the method in (3.46), and the solid line'shows the effect of the method in (3.49). The

significant feature is the depth of the minimum. The second method, which takes into

account the direction of measurement variation caused by unmodeled profile changes,



produces a lower minimum.

In Fig. (3-12), the mean squared error resulting from both methods in the Arctic

profile case is shown as a function of the weight a. The dashed line shows the effect of

the method in (3.46), and the solid line shows the effect of the method in (3.49). The

significant feature is the depth of the minimum. The second method, which takes into

account the direction of measurement variation caused by unmodeled profile changes,

produces a minimum which is slightly lower, 394 versus 396.

Note that the limit in both cases for large a is 500, the a priori error in the profile.

When a is large, the noise has been made to dominate the measurement, and the

measurement contains essentially no information. When the added noise is small, the

performance approaches that of the suboptimal estimator. Note that a = 0 does NOT

mean the measurement is taken to be noise free. Rather it means that there is no

additional weight added to the existing noise covariance matrix R.

3.7 Optimal Moving Source Tomography

The more ray paths through the environment which are available, the more accurate

the inversion will be. Using mobile acoustic sources, it is possible to obtain a greater

diversity of ray paths and, in general, more information about the environment than

with fixed sources. Fig. 3-13 shows a top view of a typical tomography problem.

Four moorings, represented by black circles, have been put in place. Each mooring

has a source and a receiver array. The goal of the experiment is to localize a front,

represented by the wavy line, which is in within the mooring configuration. The
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Figure 3-13: Rays with fixed source.

acoustic paths available for this localization are the straight lines shown. In Fig. 3-14,

and AUV carrying a source moves around the outside of the array while transmitting.

The circles represent the transmission points. With the AUV, there are many more

acoustic paths which interact with the front, and localization of the front will be much

more accurate. The usefulness of moving horizontally to obtain better sampling has

been recognized in the acoustics literature [8].

While the source is moving, the environment is changing, and in large scale tomo-

graphic measurements, it may not be possible to move a source quickly enough to get

an effectively contemporaneous image of the environment. Even if temporal-spatial

aliasing is a problem for horizontally moving sources, it may still be possible to benefit

from moving source technology by moving the source vertically.
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Figure 3-14: Rays with moving source.

Fig. 3-15 shows the ray paths through a slice of temperate ocean for a fixed source

at 1000m depth and seven receivers throughout the water column at 100km range.

If the number of receivers is increased, additional rays will fill in the spaces between

the existing rays, however the shallow shadow zone between 15 and 35km range will

still remain as will the deep shadow zone between 50 and 65km range. If the source

moves, however, it is able to project sound into the shadow zones, and also provide a

much larger number of rays to aid in the inversion, as shown in Fig. 3-16.

This section takes moving source tomography one step further and asks the ques-

tion of where a moving source should go to obtain the most information about the

environment, or about a specific feature within the environment.
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3.7.1 Tomographic Resolution

Moving the source provides more constraints on the inversion by providing a greater

diversity of ray paths. It also can be used to focus measurement resolution at a

particular region in the environment. This principle is shown in the example below.

Consider an environment of 200m deep water and 4km range. The mean sound speed

profile and a single basis function representing all profile variability are shown in Fig.

3-17. The 4km range from source to receiver is divided into ten 400m segments, with

the weight for the basis function of equal variance and uncorrelated from segment

to segment. The two pictures in Fig. 3-18 show the variance of the profile estimate

throughout the environment for two different source locations. Lighter is larger errors.

In every range section, the variance has the shape of the one basis function, largest at

100m, and smallest at the surface and bottom, but the size of the weight error changes

depending on how the rays sample that range. There are three eigenrays which sample

the environment. In the top figure, in the first range division (0-400m), the rays are

near the surface where the profile variation is small, and as a result, the errors are still

fairly large. In the second range division (400-800m), the rays are deeper, and pass

through depths where the profile variation is larger, so the weight error is smaller.

In the third range division (800-1200m), the rays pass through the depths where the

profile variation is largest, and so the weight error is even smaller. As the rays head

into deeper water for range segments four, five, and six (1200-2400m), they are further

and further away from the large part of the profile variation, and so the weight errors

begin increasing again. Oddly, the error is quite small in range bin seven (2400-
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Figure 3-17: Sound speed profile and basis function.
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2800m), even though two of the three rays are below the depth of significant profile

variation. The reason for the excellent accuracy in segment seven is that in the earlier

segments, the travel times of all three rays are influenced approximately the same

amount by the variation, while in segment seven, two of the rays are unaffected by the

profile variation, but one of them is very sensitive to the variation. Thus a variation in

range segment seven produces a travel time shift in the rays which is nearly orthogonal

to the variation caused by profile changes in all the other range segments.

When the source is moved, the location of these regions of high accuracy changes,

as shown in the bottom picture of Fig. 3-18. Here range segments six (2000-2400m)

and eight (2800-3200m) have good resolution. This is again due to the characteristics

of the ray sampling. Refer to the ray which reflects off the surface and bottom once the

Profile Variation
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SB-ray, and the ray which reflects of the surface twice and bottom once the SBS-ray.

In range bin six, the SB-ray is very sensitive to the profile variation, while the SBS-ray

is insensitive to it because of their depths. In range bin eight, the sensitivities are

reversed. In the other bins the rays both have somewhat similar sensitivities to the

profile variation.

3.7.2 Optimal Tomography

The accuracy of the tomographic measurement depends on how the various rays

sample the region of interest in the environment, which depends on the source depth.

In this example, a set of four transmission depths is found which give the maximum

accuracy in a prescribed region of interest. In this example, a tomography problem

is considered in a slice of 200m deep water at 4km range. The environment is di-

vided horizontally into 8 range slices of 500m each. The sound speed profile variation

within each range slice is represented by a sum of five basis functions, which allow

representation of piecewise linear profiles. The mean sound speed profile and the basis

functions are shown in Fig. 3-19. There is a single receiver in this environment at

a depth of 50m. The source is able to move vertically, and the optimization problem

we will consider is one of choosing the depths at which the source will transmit. The

source is allowed to transmit four times, and the transmission depths will be chosen to

minimize the integrated variance over the region enclosed by a box in the figures which

follow. In the top picture of Fig. 3-20 the boxed region of interest is between 100

and 150m depth and between 500 and 1500m range. The shading of the plot indicates
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Figure 3-19: Sound speed profile and basis functions.

the variance of the sound speed estimate as a function of position. The lower picture

of Fig. 3-20 shows the estimate variance for each of the 40 weights in this example

(5 weights for each range segment). The dotted line is the variance for a stationary

source transmitting 4 times at 100m depth. The dashed line is the variance for a

moving source transmitting at 40, 80, 120, and 160m. The solid line is the variance

for a moving source transmitting at the optimal depths. The circles on the solid line

indicate the four parameters which influence the variance of the sound speed estimate

in the focusing region. In Fig. 3-21, the plots of Fig. 3-20 are repeated, except that

the boxed region of interest is between 0 and 50m depth and between 1500 and 2500m

range, and new optimal transmission depths for the new region of interest have been

determined.
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3.8 Conclusion

The travel time measurement in ocean acoustic tomography is not equally sensitive to

all modes of sound speed profile variability. To be optimal, a profile parameterization

or inversion must take into account both the expected size of the profile variations

and the resolution with which each variation can be measured. An optimal paramet-

erization and inversion were derived which take both of these factors into considera-

tion, and the accuracy enhancement which these techniques offer was demonstrated

in tomography examples for typical temperate and arctic environments. In addition

to optimizing the parameterization and the estimator, it is possible to optimize source

locations for the bet resolution in a region of interest. This optimization problem

was also demonstrated here.



Chapter 4

Arrival Matching

Before a tomographic inversion can be performed, the measured ray arrivals in the

received signal must be matched with predicted arrivals to generate travel time pre-

diction errors. If the predicted arrivals are identified with the wrong measured ar-

rivals, errors will result in the inversion. This chapter examines the problem of arrival

matching. A test environment is described in Section 4.1, and four different matching

algorithms are described and evaluated in Sections 4.2, 4.3, 4.4, and 4.5. Finally, the

advantages of the new correlated matching algorithm are analyzed in Section 4.6.

4.1 Test Scenario

If the predicted acoustic environment exactly matches the true acoustic environment,

then the predicted arrivals will occur at the same times as the measured arrivals, and

all of the methods described will identify the arrivals perfectly. What differentiates

the methods is their ability to correctly identify arrivals when the true environment is



different from the predicted environment. To evaluate the methods presented in this

chapter, a test scenario is created. The acoustic environment is described by a sound

speed profile. The predicted sound speed profile is a constant 1500m/s, as shown on

the left in Fig. 4-1. The true sound speed profile c(z) is the predicted profile Co(z)

with some amount of a profile variation O(z) added to it,

c(z) = co(z) + a(z) (4.1)

The parameter a determines how much of the profile variation is included in the

true profile. The profile variation used in this trial is shown on the right of Fig. 4-1.

Values of a ranging from 1 to 20 were used to generate the family of 20 profiles shown

on the left of Fig. 4-2. The eigenrays connecting the source at 70m depth with the

receiver at 120m depth for the predicted profile are shown on the right of Fig. 4-2.

Figure 4-3 shows the predicted arrival times for the predicted profile numbered

from one to seven along the x-axis. The x's above the axis show the measured arrival

times corresponding to values of a ranging from 1 to 20. Note that the travel times

tend to change linearly with the parameter value. The matching algorithm will attempt

to determine which of these linear arrival trends each measured arrivals is part of and

match the measured arrival with the predicted arrival at the bottom of the linear

trend. Note that while the graphs show the measured arrival times for all parameter

values, the matching algorithm will only be given measured arrival times for a single

parameter value at a time, and it will not know what that parameter value is.

In the sections which follow, each matching algorithm will be applied to this test
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Figure 4-3: Predicted arrival times and measured arrival times for parameter values
of I to 20.

data set. Once a matching is selected, a Gauss-Markov estimate of the parameter

value will be made, based on the linearized model of the relationship between travel

time prediction error t and parameter a,

t = Ca + n. (4.2)

The noise vector n is zero-mean Gaussian with covariance matrix R = alI, where

a = 0.001 seconds and a has variance a equal in each case to the true value of a

squared.

For each value of a, the selected match will be shown by replacing the x's for

the measured arrivals in Fig. 4-3 with the numbers of the predicted arrivals to which
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each measured arrival was matched. A correct matching would then show all measured

arrivals along each linear trend matched to the predicted arrival at the starting point of

that trend. Once the matching for a parameter value is established and the resulting

arrival time differences are calculated, the parameter value is estimated using the

Gauss-Markov estimator,

a = aCT (CaoCT + 42)-'t. (4.3)

The parameter estimate error will then be shown as a function of parameter value

for all matching methods.

4.2 Simple Ordering

The simplest matching algorithm matches arrivals according to their order of recep-

tion. The earliest measured arrival is matched to the earliest predicted arrival. The

next measured arrival is matched to the next predicted arrival, and so forth until all

the arrivals of interest have been matched.

The results of applying this matching algorithm to the test data set are shown in

Fig. 4-4. When the parameter value is less than 4, the matching works well. When

the parameter value reaches 4, one of the ray paths disappears, and as result, the

paths are mismatched. Note that the appearance and disappearance of ray paths is a

common phenomenon. A path also disappears at parameter value 9 and one appears

at parameter value 14. The matchings shown in Fig. 4-4 are used as the basis for

estimating the parameter value, and the resulting parameter estimate error is shown
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Figure 4-4: Ordered matching.

as a function of the true parameter value in Fig. 4-5. Note that the estimate errors are

small for parameter values of 1,2, and 3, since all the paths were identified correctly

in these cases. A large jump in the error occurs at parameter value 4, since this is the

first value for which paths are incorrectly identified. Other discontinuities in the error

occur at parameter value nine where a second ray path disappears and at 14 where a

new path appears.

The order matching method will produce the correct matching as long as arrivals

do not appear, disappear, or change in order. Although arrivals may be consistent in

long-range deep-ocean tomography, there is often significant fading in shallow water

or in the shallow Arctic sound channel. A missing or appearing arrival will cause all

subsequent arrivals to be incorrectly identified, so fading environments call for a more
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Figure 4-5: Error for ordered matching.

robust arrival identification algorithm.

4.3 Validation Windows

A method which is more robust to fading than the simple ordering is one using val-

idation windows. A time window is drawn around each predicted arrival, and if one

and only one measured arrival falls within this window, it is matched to the predicted

arrival.

In this example, the window for each arrival is centered around the predicted

arrival time, and the width of the window is the smaller of the distance to the previous

arrival and the distance to the subsequent arrival. The application of this matching

algorithm to the test data set is shown in Fig. 4-6. The validation windows used are
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Figure 4-6: Validation window matcher

shown as shaded regions on the graph. Note that when one and only one measured

arrival falls within a window, it is matched to the predicted arrival within that window.

The method fails when the shifts in arrival time are greater than the widths of the

windows. At a parameter value as small as 1 this method has failed to identify the

second arrival. At parameter value 3, it mistakes arrival 7 for arrival 6, and significant

inversion errors result, as shown in Fig. 4-7.

The validation window method is most useful when arrival fading occurs before

the arrival time shifts become significant compared to the separation between arrivals.

The validation window method is often used for deep-ocean tomography where the

arrival time separations can be quite large, but the method is problematic in shallow

water where the arrival time separations are smaller.
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Figure 4-7: Estimate error using validation window matcher

4.4 Independent Matching

The linear model relating travel time variations to parameter variations provides in-

formation about the behavior of arrivals which can be useful in solving the matching

problem. This section describes a matching algorithm which uses the linear model

to determine the travel time variance for each measured arrival and based on these

variances finds the most likely match between measured and predicted arrivals. This

algorithm also allows for the possibility that some arrivals may not have matches.

The formulation of this algorithm allows the matching problem to be posed as an

assignment problem and solved using standard linear programming techniques [10].

Let the predicted travel times be the elements of a vector t,, and the corresponding

measured travel times be elements of a vector ti. The travel time prediction error t
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t = tm - tp. (4.4)

The travel time prediction errors can be related to parameter changes according

to the linear model,

t = Cx + n. (4.5)

where the parameter vector x and the measurement noise vector n are independent

and Gaussian with covariance matrices P and R respectively. The probability density

for the ith element of the vector of matched measured arrivals is,

p(tmi) = (2 exp - , tpi (4.6)

where a? = (CPCT +R)ii. The travel time measurements are correlated since they

all depend on the same parameter vector x. However, for purposes of this algorithm,

it will be assumed that they are independent so that the joint probability density for

the whole vector of matched measured arrivals becomes,

P

p(tm) = J1 p(tm,) (4.7)
i=1

The goal of the independent matcher is to form the vector tm by ordering a subset

of the measured arrivals in such a way as to maximize the above likelihood function

(4.7). It is possible that some of the predicted arrivals may not have suitable matches
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in the set of measured arrivals. In this case, the probability for the missing element of

tm is replaced by a constant penalty value in (4.7). This allows the matcher to leave

some predicted arrivals unmatched, but assigns a penalty for doing so.

Taking the natural logarithm of (4.7), removing some constant terms, and mul-

tiplying by -1, the maximum likelihood problem can be rewritten as an equivalent

minimization problem with objective function,

fP(tm i -tpi) (4.8)
fobj(tm)-- E 0?2(4.8)

i=1

If an arrival is left unmatched, then the corresponding term in this sum is replaced

by a constant ca.

This minimization problem can be posed as an assignment problem and solved with

standard linear programming techniques. A cost matrix for the assignment problem

is defined where the columns of the matrix correspond to the M measured arrivals

and the rows correspond to the P predicted arrivals. The elements of the matrix are

then,

4ij = cost of matching the ith prediction to the jth measurement (4.9)

(Tj - tpi) 2  (4.10)

where Tj is the jth measured arrival (before a subset of these measurements are

ordered in the vector tm).
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The possibility that some arrivals may not have matches is handled by the assign-

ment of "dummy" rows and columns [25]. The fixed penalty a is assessed for leaving

an arrival unmatched. To incorporate this, M - 1 dummy rows are added to the P

prediction rows so that as many as M - 1 of the M measured arrivals may remain

unmatched if necessary, but at least one measured arrival will be matched to a pre-

dicted arrival. The cost penalty for these unmatched measurements is set to the value

a. Similarly, P - 1 dummy columns are added to the M measurement columns, so

that as many as P - 1 of the P predicted arrivals may remain unmatched if necessary,

but at least one predicted arrival will be matched to a measured arrival. The cost

penalty for these unmatched predictions is also a. A small constant f is subtracted

from the penalty for matching the jth dummy column with the jth dummy row. This

ensures that the algorithm will not waste time seeking a "best match" between the

dummy rows and columns. The cost matrix constructed in this way is shown below.

In this example P < M,
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In this thesis, Mack's method was used to solve this assignment problem [5].

The results of this independent matcher are shown in Fig. 4-8. The linear model

informs the matcher about which arrivals will experience large time shifts as the para-

meter value changes, like arrival 2, and which will experience small time shifts, like

arrival 3. This information enables good matchings to be made until the parameter

value reaches 6. This technique retains only the variances of the arrival times from

the model, not the covariances between arrival times. As a result, for parameter value

6, it sees nothing inconsistent with attributing an increases in travel time to arrivals

2 and 4 and at the same time attributing decreases in travel time to arrivals 6 and 7.

The estimate error plot in Fig. 4-9 shows the large jump in error at parameter value
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Figure 4-8: Independent matching.

6 where the first significant arrival identification errors are made.

In summary, the independent matching algorithm uses information about which

arrivals move significantly and which will tend to remain fixed with parameter value

changes to offer some improvement in performance over conventional methods.

4.5 Correlated matching algorithm

The correlated matching algorithm proposed in this section takes into account correl-

ations between the time shifts in the various arrivals, fully utilizing the information

provided by the model in (4.5).

Based on the statistics of the linear model (4.5) and using (4.4), a joint probability

density function can be written for the matched measured arrival vector tin.
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Figure 4-9: Error for independent matching.

1 exp (1(tm - tp)TE-1(tm - tp)), (4.12)p(tm)-= - -2

where E = CPCT + R. The goal of the independent matcher is to form the vector

tm by ordering a subset of the measured arrivals in such a way as to maximize the

above likelihood function (4.12).

It is possible that some of the predicted arrivals in tp may not have suitable matches

in the set of measured arrivals. In this case, the empty spaces in tm are filled in with

the expected value for these measured arrival times, given the information about the

parameter vector contained in the arrival times which were matched. Specifically, let

t' and t'm be the matched prediction and measurements respectively, and let t' be

the unmatched predictions. If the prediction vector is,
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t,= (4.13)

and the measurement matrix is also partitioned as

C'
C = (4.14)

then the completed matched measurement vector tm becomes,

tm = (4.15)

Where R' the measurement noise covariance matrix for t'm.

In addition to filling in expected values for the missing arrivals, (4.12) is also

multiplied by a constant penalty factor for each unmatched arrival. This provides

a disincentive to leaving arrivals unmatched. Taking the natural logarithm of (4.12),

and removing terms independent of tm, the problem of finding the maximum likelihood

matching for tm becomes one of minimizing the objective function below,

fobj(tm) = (tT - t)E-(t - t) - U(m)a (4.16)

where u(rT) is the number of arrivals left unmatched in tm, and a is the penalty

for an unmatched arrival.

The correlated matcher which minimizes (4.16) provides correct matches for much

larger changes in parameter value by fully utilizing the information contained in the
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Figure 4-10: Correlated matching.

linear model about correlations in arrival time changes. It starts to fail at parameter

value 15 where non-linearities in the travel time shift become significant compared to

the time separation between arrivals. The first major failure occurs at parameter valuc

18 when the non-linearities have become quite large. This major failure at parameter

value 18 is reflected on the estimate error graph in Fig. 4-11, where the solid line

is the error for the correlated matching algorithm, and the other lines were the error

performances for the other algorithms. Note that error is slowly increasing up to this

point as a *result of non-linearities in the travel time shifts which are not accounted

for by the linear model.

Implementation Issues For a small number of arrivals and a small number of

beacons, it is practical to evaluate the objective function in (4.16) for all possible
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Figure 4-11: Error comparison.

choices of tin. For more than a few arrivals and beacons, however, the calculation

would become cumbersome. Specifically, for N predicted arrival times and M meas-

ured arrival times, the number of possible match vectors is:

min(N,M) M N

n (M - n)! (n=O N-n

The summation is over the number of predictions which will be matched out of

the total of N predictions. The maximum number of matches possible is the lower

of N and M. There are n predictions which must be matched from the M possible

measurements giving the M! term. This leaves N - n unmatched predictions,
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Figure 4-12: Number of possible matches.

which may be chosen in N ways. In the example problem which has been

N-n

considered, there were seven predicted arrivals and typically seven measured arrivals.

In this situation, there would be 130,992 possible combinations which would have to

be evaluated. Fig. 4-12 shows the scaling of the number of possible matches with

the number of predicted and measured arrivals. It is assumed in the graph that the

number of predicted and measured arrivals is the same.

In an experiment with multiple receivers in the water, the arrival times at any

one receiver contain information about the whole environment and therefore about the

arrival times at all other receivers. This means that the objective functions for all the

receivers must be evaluated together. As a result, the total number of matches which

117



must be tried is the product of the numbers of matches for each of the individual

receivers. It is clear that for systems beyond a very limited size, this can become

cumbersome.

Most of the possible matches, however, are quite obviously wrong. For example,

the first arrival in the predicted multipath sequence is unlikely to be matched with the

last arrival in the measured sequence, and the value of the objective function for such

a match reflects this. As a result, the set of possible matches can be quickly pruned

using a branch-and-bound algorithm [31]. In such an approach the match vector tm

is constructed one element at a time. As each element is matched, upper and lower

bounds can be found for the objective function value for the best match among all

possible matches for the remaining undecided elements. An upper bound is the value

obtained by assuming that all remaining undecided arrivals find measurements equal

to their expected values. A lower bound is the value obtained by assuming that all

remaining undecided arrivals are unmatched. Using these bounds, a branch-and-bound

algorithm is able to quickly search out the optimal choice of tin. Fig. 4-13 shows the

number of active branches in the search tree as a function of depth through the tree

for the matchings generated in Fig. 4-10. At small depths, the tree grows, though not

nearly as fast as it would if there were no pruning. At the greater depths near the

end of the tree, the bounds on each branch tighten, enabling more pruning, and the

tree width actually begins shrinking. Overall, the total number of trial matches which

must be evaluated is far smaller than it would be for an exhaustive search.
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4.6 Advantage of the Correlated Matcher

The systems described in this thesis seek to invert a linearized forward model of the

form

t = Cx + n, (4.18)

where t is the difference between the predicted and measured travel times, and

x is the corresponding difference between the estimated and true parameters, where

these parameters may be source position and time synchronization as described in

chapter 2 or weights for an orthogonal function expansion of the sound speed profile

as described in chapter 3. Associated with the measurement is a noise vector n, which
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includes both true measurement noise as well as the travel time effect of unmodelled

sound speed features and non-linearities.

For the inversion to be successful, two conditions are necessary. First, it must be

possible to accurately identify the measured arrivals with certain predicted eigenrays,

since an incorrect ray path identification will lead to large estimation errors. Second,

the travel time effect of the parameter change Cx must be larger than the noise

n, otherwise the measurement will contain little information about x. These two

conditions are shown graphically in Fig. 4-14. The horizontal axis of this figure is the

standard deviation of the noise an divided by the time separation between adjacent

arrivals T, and the vertical axis of this figure is the standard deviation of the travel

time changes due to parameter variation acx divided by the time separation between

adjacent arrivals T. The vertically lined region is where the total standard deviation

of travel time variation, including both parameter and noise effects, is greater than the

separation between adjacent arrivals T. This is the region where identification tends

to become unreliable by conventional methods. The horizontally lined region is where

to travel time effect of parameter changes is smaller than the travel time effect of noise

and therefore the inversion is poor. Thus with conventional matching algorithms, the

system is limited to operation in the unshaded region labeled conventional tomography.

While the difficulties of ray path identification for scenarios of larger travel time

shifts has been noted in the literature [33], little effort has been devoted to improved

identification algorithms. The disinterest in the problem seems to be due to the

fact that conventional methods are often adequate for the early arrivals in the deep

ocean where most ray-based tomography has occured. In shallow water, however,
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ray path identification is more challenging. An algorithm has been presented which

fully utilizes the linear model for travel time shifts to allow arrival identification in

cases where the parameter-induced travel time shifts may be larger than the time

spacing between arrivals. By accounting for the predicted linear shifts in arrivals,

this correlated matching algorithm is able to identify arrivals correctly as long as the

measurement noise (or non-linearities, which are treated by the model as measurement

noise) are not larger than the arrival separations, even for large parameter induced

travel time shifts. In Fig. 4-15, the vertically lined region is where arrival identification

fails using the new correlated matching algorithm. The horizontally lined region is

where the inversion is poor due to the travel time effect of noise being larger than

the travel time effect of the parameters of interest. With the new correlated matching
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Figure 4-15: Region where tomography is possible using correlated matching method.

algorithm, the system can operate in the unshaded region of Fig. 4-15 which is much

larger than the region of operation using conventional matching techniques shown in

Fig. 4-14.

This expanded region of arrival identifiability has several useful applications. It

makes tomographic inversions possible in environments which are changing quickly.

In slowly changing environments, it makes it possible to do all arrival matching from

a single initial prediction, instead of having to track arrival shifts. Unlike a tracking

system, this system would contain no state, and therefore have no trouble recovering

from false matchings. Finally, if an exhaustive search is to be done of a parameter

space which is large enough to present significant non-linearity, it allows the parameter

space to be carved up into fewer linear search regions than would be possible with
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conventional matching techniques, since the size of the search regions is limited by the

size of the non-linearity rather than a maximum acceptable size for linear shifts.

4.7 Future Direction

The demonstrations in this section have considered the problem of matching a single

set of measured arrival times, or perhaps a set of measured arrival times enhanced

by averaging over a period short enough that the parameter values remain constant.

Tomography experiments, however, will run over a period of time where parameter

values change significantly. Thus the problem of arrival matching becomes a problem

of arrival tracking, which has some interesting solution techniques [1].

The most powerful matching technique presented in this section was the correlated

matcher which used an objective function that fully exploited the linear model. The

problem with the correlated matcher is that even using a branch and bound algorithm

it is still rather slow. It may be advantageous, then, to consider some suboptimal

matching search strategies that are faster than the branch and bound search. One

possible approach to matching would be to begin with only the most certain of the

matches, and then use the information obtained from the certain matches to achieve

better accuracy in handling the less certain matches [41]. Some help may also be

found in the image processing literature, where the matching problem appears in other

contexts [17].
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4.8 Conclusion

To perform a tomographic or position inversion, it is first necessary to identify the

multipath arrivals in the received signal with physical paths through the environment,

so that the sensitivity of each arrival to the various sound speed parameters can be

determined. In deep ocean tomography, the time spacing between ray arrivals is

typically large compared to the parameter induced changes in arrival times, so ray

path identification is not difficult. In shallow water, however, ray path identification

can be more challenging. An algorithm has been presented which allows tomography

using rays where the parameter induced arrival time shifts may be larger than the time

spacing between arrivals. The algorithm is also robust to the unexpected appearance

and disappearance of subsets of the measured and predicted arrivals.
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Chapter 5

Test Experiments

The examples in this chapter will tie together the various contributions of the thesis,

and at the same time provide examples in simulation of recommended field trials.

In section 5.1, the correlated matching algoritbrh= will be used to enhance navigation

accuracy where ambient noise and unknown bottom topography cause unexpected

disappearance and appearance of arrivals. The simulation is designed to reflect what

can be achieved with existing navigation hardware, so the arrival time measurements

are made by a simulated wide-band narrow-band detector of the sort commonly used

for acoustic navigation receivers. In section 5.2, vertical moving source tomography

is demonstrated in a simulation which includes measurement noise, and accounts for

errors introduced by the matching algorithms.
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5.1 Multipath Navigation

Acoustic positioning systems typically use the first acoustic arrival from each beacon

to determine ranges to known beacon locations, and subsequent multipath arrivals

are blanked out. As long as the first arrival is reliably present, these systems are

dependable, but in many realistic positioning scenarios, the expected first arrival may

be blocked by underwater obstacles or masked by noise. If a subsequent multipath

arrival is mistaken for the missing first arrival, a position error will result [46].

One attempt at positioning in a fading multipath environment deployed extra

redundant beacons and selected for each position estimate only those beacoas whose

travel times produced a mutually consistent position estimate. This made the system

robust to the loss of first arrivals from a few of the beacons. [16]. When it is possible to

predict where additional arrivals in the multipath structure will appear, the multipath

arrivals can be used to produce a positioning system which is robust to fading without

having to add redundant beacons. This thesis presents a positioning system which

uses the full multipath structure of the received signal to make the system robust to

the fading of individual arrivals. Localization based on multipath delays has been

demonstrated by many authors [21, 24]. A unique feature of the system presented

here is the ability to deal with missing arrivals and with travel time prediction errors

which are larger than the arrival separation.

The system determines its position by a two-step process. First, the detected ar-

rivals in the multipath structure are identified with physical ray paths through the

environment using the new correlated matching algorithm which is robust to the dis-
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Figure 5-1: Block diagram of the multipath positioning system

appearance of a subset of the predicted and measured arrivals. Then, the differences

in arrival times between the measured arrivals and the predicted ray arrivals are used

in a linear inversion to produce a position estimate. The multipath positioning system

was developed for use in the shallow under-ice sound channel in the Arctic where the

expected first arrival may fade in and out due to small changes in the sound speed

profile [13, 2]. The operation of the system is simulated in a typical coastal environ-

ment where arrivals become unexpectedly absent due to blocking by unknown bottom

topography, and where a high ambient noise level often produces missed arrivals and

false detections [14].

The structure of the multipath utilization algorithm is shown in Figure 5-1. The

received acoustic signal is broken down into a set of ray arrival times by the arrival

detector. At the same time, a ray tracing model predicts which eigenrays it expects to

see based on its estimate of its current position. The arrival matcher tries to associate

each of the predicted eigenrays with one of the detected arrivals, while allowing for

the possibility that there may be some blocked arrivals or false detections. Once the
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Figure 5-2: Positioning demonstration setup (top view)

detected arrivals have been associated with eigenrays, arrival time prediction errors

can be calculated as the differences between the detected arrival times and the arrival

times predicted for the associated eigenrays. These arrival time prediction errors are

used in an inversion to improve the position estimate [10].

Two important causes of positioning errors in conventional positioning system

are missed arrivals or false arrivals caused by noise, and blocking of rays by bottom

topography. A simulation was conducted comparing the performance of a conventional

positioning system with the multipath system described here under such conditions.
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5.1.1 Simulation of Noise Effects

The simulation results presented here assume a receiver which uses a wide-band /

narrow-band detector of the sort which is used in most acoustic releases and transpon-

ders. In this system, the received signal is filtered by a wide band filter, and then hard

limited. The output of the hard limiter has constant power. It is followed by a narrow

band filter tuned to the beacon frequency. If most of the constant power in the limiter

output is concentrated at the beacon frequency (as when the beacon signal is present),

then a large signal comes out of the narrow band filter. If the constant power in the

limiter output is evenly distributed over frequency (as when noise only is present).

then a small signal comes out of the narrow band filter. A fixed threshold detector on

the output of the narrow band filter is triggered by a certain signal-to-noise ratio at

the limiter input, regardless of the absolute signal and noise levels. This wide-band

/ narrow-band detector eliminates the need for careful gain readjustments when the

system is moved to environments with different signal and noise levels and it is easy

to implement in hardware so it is widely used for transponders and acoustic releases.

This common circuit is chosen for this simulation to show that the new multipath nav-

igation algorithm can be added with only a software modification to many existing

navigation systems. The acoustical specifications for the simulated system are:

* Source Level: 190dB re 1 Pa

* Ambient Noise Level: 130dB re 1 1zPa (Vehicle noise)

* Ping Frequency: 10kHz
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* Ping Duration: 3ms

* Wide Band Filter: 8-16kHz, 8-Pole Butterworth

* Narrow Band Filter: 9.7-10.3kHz (3dB Bandwidth), 2-Pole

The relatively high ambient noise specification represents the noise environment

for a positioning system mounted on an AUV. The largest sources of noise in this

case are motors and gears (and sometimes noise from inductors in the switching DC

to DC converters!)

5.1.2 Simulation of Blocking

Underwater obstacles can lead to the unexpected disappearance of one or more mul-

tipath arrivals from the blocked source. This effect is introduced by placing a shallow

region in the simulated environment. The underwater obstacle (a shallow region) and

the beacons and receiver are arranged as described below.

* Water Depth (Normally): 200m

* Water Depth (Shallow Region): 150m

* Shallow Region Width: 400m (along the acoustic path to the vehicle)

* Beacon Depths (all 3 beacons): 175m

* Receiver Depth: 50m

* Sound Speed: 1500m/s
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Figure 5-3: Ray blocking by shallow region

The horizontal arrangement of the beacons and the shallow region is shown in

Figure 5-2.

The effect of the shallow region is to block some of the ray paths from the beacon

which is behind it. The geometry of the positioning network is such that it doesn't

effect the other two beacons. This blocking is shown in the ray trace in Figure 5-3.

The eigenrays are shown for two source locations, 300m range (dotted lines) and 800m

range (solid lines). Note that the bottom-reflected path is blocked at the longer range.

As the vehicle continued to even longer ranges, eventually the direct path would also

be blocked, leaving only the surface reflection.
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5.1.3 Demonstration Plot

The vehicle follows the path shown on Figure 5-2 traveling along a strait line from a

position 200m from the first beacon to a position 1800m from the first beacon. In the

left frame of Figure 5-4, the dashed line shows the magnitude of the position error at

50 meter intervals for a conventional positioning system, and the solid line shows the

error for the new multipath positioning system. The arrival times from each of the

three beacons are shown to the right of the error to aid in understanding the cause of

the errors. These times are shifted so that the direct path would come in at t = 0. The

dots represent times when arrivals are expected (without knowing about the shallow

region), and the circles represent times when arrivals were actually detected. At all

locations and all times, the receiver is subject to noise-induced false detections. If a

false detection precedes the first arrival, the conventional system will mistake it for

the first arrival, resulting in a range error. Noise may also mask a true arrival. In this

case, the conventional system mistakes a subsequent arrival in the multipath structure

for the first arrival, resulting in a range error. In addition to these noise induced

errors, there is loss of arrivals due to blocking by the shallow region. At ranges of

500m and greater, the receiver is shielded from the bottom reflected arrival (second

arrival) from Beacon 1. At ranges of 1000m and greater, the receiver is also shielded

from the direct path arrival from Beacon 1 so the conventional system consistently

makes position errors. Since the multipath positioning system uses multiple arrivals

from each beacon, it is immune to the disappearance of arrivals which causes such

large errors for the conventional system.
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In summary, when the position of multipath arrivals can be predicted, the inform-

ation provided by the multipath can be used to create a positioning system which is

robust to the disappearance or unexpected appearance of a subset of the arrivals. The

speed of the arrival matching algorithm and the fact that the system can utilize ex-

isting conventional receiver electronics, make feasible the upgrading of many existing

positioning systems with only a software change.

5.2 Moving Source Tomography

It was demonstrated in Chapter 3 that moving the acoustic source can focus tomo-

graphic resolution at environmental features of interest, assuming that ray paths are

identified correctly. An important question then is whether, with the possibility of

ray path identification errors, a system can still achieve predicted performance levels.

In this example, optimal source locations are found and the tomography problem is

solved in a shallow water environment. Repeated trials allow characterization of the

true system performance taking into account the effect of arrival matching errors.

5.2.1 Estimator Options

In the examples which follow, sound speed parameters, contained in a state vector,

will be estimated over the course of a simulated mission. During a mission, the source

will transmit K times, and is free to move vertically between transmissions.

The state vector could be estimated recursively over the course of K iterations,

with one iteration per source transmission. There would be three steps per iteration, a
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prediction step in which the new vehicle state at the time of a transmission is predicted,

a linearization step where a linear approximation of the relationship between arrival

time change and state change is calculated centered about the current state estimate,

and a correction step in which the measured arrival times are used to correct the state

prediction.

The recursive estimator provides the same final parameter estimate as would be

obtained if all of the transmissions were taken together in a single inversion assuming

the arrival matchings are the same. However, the matchings obtained in conjunction

with a recursive estimator are often not the same as the matchings which would

be obtained by taking all the arrivals together. At each iteration where a correct

matching is made, information is obtained about the true parameter values. This

means the predicted arrival times will be closer to the measured arrival times for the

next iteration, and the matching will be more accurate. On the other hand, when an

incorrect matching is made, a poor parameter estimate will be obtained, which will

make the next matching even less reliable, though the estimated parameter covariance

matrix will give no indication of this increasing parameter estimate error. Thus the

recursive system will tend either to converge on a good environment estimate and

good matchings or diverge resulting in continuing poor matchings.

The recursive estimation process allows the matcher to utilize the correlations

between arrival times from one transmission to the next by passing on an updated

state estimate. It does not utilize the full arrival time covariance matrix, however. For

example, it does not utilize the correlations between the travel time shifts in the last

transmission and the first transmission to aid in matching for the first transmission.
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For this reason, recursive estimators will generally perform worse than a one-time

estimator using the correlated matching algorithm.

The disadvantage of a one-time inversion using the correlated matching algorithm

is the computational burden presented by the correlated matcher, and real-time im-

plementations may want to consider obtaining an initial environment estimate using

several transmissions simultaneously, with the number of transmissions incorporated

in each inversion decreasing as the environmental estimate improves. For purposes of

this simulation, however, the computational burden of the correlated matcher is not

large, and so one-time inversions will be used.

5.2.2 Experiment Description

An acoustic source is attached to a cable crawler which is able to move vertically on

a mooring cable. It is assumed in this example that the source position and transmit

time are known. The receiver consists of a single hydrophone at a depth of 50m. The

water depth is 200m in this simulation, and the source and receiver are separated by

a 4000m range.

Example 1: Two Parameters / Six Rays

In the first example, the water between source and receiver is horizontally uniform,

and the sound speed is described as a mean sound speed profile shown in the left half

of Fig. 5-5, with the two variations represented by the basis functions in the right half

of Fig. 5-5. The weights for these two variations are considered to be independent.

In the example which follows the source will transmit twice, with the optimal depths
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Figure 5-5: Mean sound speed profile and profile variations

for transmission selected as in Chapter 3 to minimize the total variance throughout

the environment, assuming a weight variance of one. The true weight values will

be selected as independent identically distributed Gaussian random variables with

variance ao. Based on the true parameter vector, the true ray travel times from each

source location to the receiver will be determined. These true travel times will then be

corrupted by adding measurement noise which is independent identically distributed

Gaussian random variables with variance an'. The matching algorithms described in

Chapter 4 will be employed to match measured and predicted arrivals, and an inversion

will be performed based on the results of each matching. The parameter estimate error

will be recorded for each inversion, and the estimate variance for each parameter will

be determined experimentally by averaging the results of 1000 trials. These variance
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estimates will be compared with the theoretical variance which is calculated based

on the assumption of perfect matching, and the differences are analyzed for various

values of o, with an = 0.001s.

The optimal depth selection is shown in Fig. 5-6 to minimize the total weight

error assuming a weight variance of one. Parameter estimates are formed for 1000

trials. One test of how well the true system performance compares with the theoretical

performance bounds is to determine what fraction of the parameter estimate errors

falls within the theoretical one standard deviation limit. If the theoretical bound is

correct, then this ratio should be 0.683. The ratio is shown in Fig. 5-7 for various

values of a.. The solid line indicates the ratios for the correlated matcher. The dashed

line indicates the ratios for the uncorrelated matcher. The dash-dot line indicates the

ratios for the validation window matcher, and the dotted line indicates the ratios for

the order matcher.

The correlated and uncorrelated matchers have equal ratios when the parameter

variances are small, since the observed travel time shifts are uncorrelated being due

mostly to noise. The measured ratios approach their theoretical values since all pre-

dicted ray paths are present, non-linearities are small, and the probability of incorrect

identifications is also small.

As the parameter variances increase, three effects cause the ratio to decrease. First,

some of the predicted arrivals may not have matches anymore among the measured

arrivals due to fading. If the remaining matches are correctly matched, the estimate

variance will still be larger than its theoretical value, since the information provided

by the faded path has been lost. This results in a small decrease in the ratio. Second,
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some of the arrivals will begin to be incorrectly matched. An incorrect matching can

cause a large inversion error, lowering the ratio. Third, when the parameter changes

become large, non-linearities become important. These non-linearities have the effect

of measurement noise, though they are not accounted for in the measurement noise

covariance matrix. Thus, they make the effective measurement noise larger than the

modeled measurement noise, and cause a decrease in the ratio.

Note that the correlated matcher remains closer to its theoretical bound than any

of the other matchers, due to its lower likelihood of making incorrect matches. It is,

however, still subject to reductic;, ;, the ratio due to faded arrivals and non-linearity.

Example 2: Eight Parameters / Nine Rays

In this second example, The water between source and receiver is divided into 4 range

segments, and within each segment, the sound speed is described as a mean sound

speed profile shown in the left half of Fig. 5-8, with variations represented by the basis

functions in the right half of Fig. 5-8. The weights for these variations are considered

to be independent.

The source will transmit three times. The optimal depth selection is shown in

Fig. 5-9 to minimize the error in the estimate of parameter 6, the weight of the mid-

column variation in the second range division from the left for a' = 10. The parameter

estimate errors for the 1000 trials are shown for each parameter as pluses on Fig. 5-10.

The horizontal axis is the parameter number. The even parameter numbers correspond

to the mid-water variation and the odd parameter numbers correspond to the surface

variation, with parameter numbers 1 and 2 corresponding to the range division nearest
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and profile variations

the receiver and increasing toward the source. The theoretical standard deviations for

a perfect matching are shown as lines. These errors were based on oa = 1, and

an = 0.0001s.

The fraction of the parameter estimates which have errors within one standard

deviation is shown in Fig. 5-11 for various values of a,. The solid line indicates

the ratios for the correlated matcher. The dashed line indicates the ratios for the

uncorrelated matcher. The dash-dot line indicates the ratios for the validation window

matcher.

In the first example there were a total of six rays sampling the environment and

only two parameters to estimate. In this example, there are nine rays and eight

parameters, so the inverse here is only slightly overdetermined. Since there are so
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many more parameters relative to the number of ray paths, the correlated matcher

does not offer as large a benefit in performance as it did for the very over-determined

case.
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Chapter 6

Conclusion

This thesis contributes techniques and analysis tools for optimal moving source tomo-

graphy in ray environments, as well as offering insights into the estimation problems

which underly moving source tomography.

The first problem in moving source tomography is determining where the sources

are located. The standard navigation techniques of spherical and hyperbolic position-

ing are shown to be two end points of a continuum of possible systems. It is then

shown that hyperbolic systems can move along this continuum toward spherical per-

formance limits if the time synchronization between the vehicle clock and the master

beacon clock is estimated. A rule of thumb is given for when such time synchroniz-

ing systems offer significant position accuracy improvement over hyperbolic systems.

Finally, it is observed that navigation accuracy depends on both present and past

vehicle positions, and optimal navigation is defined as the problem of determining the

vehicle path from an origin to a destination such that the position estimate error is

minimized upon reaching the destination.
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The second problem in moving source tomography is representation and estimation

of sound speed profile variability. The fundamental contribution of the thesis in this

area is the derivation of ray sampling functions which describe the sensitivity of ray

travel time variations to sound speed profile variations at any depth. These ray

sampling functions allow the derivation of an optimal orthogonal function expansion

for sound speed profile variability which leads to more accurate tomographic inversions

than are possible with the commonly used method of empirical orthogonal functions.

The ray sampling functions also allow derivation of a minimum variance reduced order

estimator for the sound speed profile, which again offers improved performance over

standard methods, particularly in the rejection of errors due to unmodelled profile

variations. The ray sampling functions illustrate that tomographic resolution at a

given region in the environment is highly dependent on source and receiver locations.

This leads to posing the optimal moving source tomography problem of finding the

locations where a moving source should transmit in order to minimize the variance of

the sound speed estimate in a certain region of interest.

The third problem in moving source tomography is ray path identification. Two

new algorithms are presented for ray path identification. The common thread in both

algorithms is that they incorporate the linear model for travel time variability that

includes the effect of both parameter changes and noise. The better (though slower)

of these two algorithms accounts for correlations between travel time shifts to allow

accurate arrival identification over much larger ranges of parameter uncertainty than

is possible with commonly used techniques. This algorithm enables tomography in a

broader range of environments, and also enables moving source tomography where the

146



travel time changes due to source motion can thwart standard arrival identification

techniques.

The contributions of the preceding chapters are brought together in Chapter 5,

which presents realistic simulations demonstrating the application of the algorithms.

These simulations serve not only to demonstrate the capabilities of the algorithms

developed in this thesis, but are also intended as suggestions for simple proof of

concept demonstrations.

Moving source tomography is a powerful tool for improving the information return

from oceanographic experiments. Constraints of energy and time make it important

to utilize moving sources in an optimal way. It is the author's hope that this thesis has

added to our understanding of the moving source tomography problem, and that the

techniques presented here will find useful application in efficient oceanographic and

seismic imaging.
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