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Abstract— We present a technique for the rapid and reliable
prediction of linear-functional outputs of elliptic partial differ-
ential equations with affine (or approximately affine) param-
eter dependence. The essential components are (i) rapidly
uniformly convergent global reduced-basis approximations —
Galerkin projection onto a space WN spanned by solutions of
the governing partial differential equation at N selected points
in parameter space; (ii) a posteriori error estimation — re-
laxations of the residual equation that provide inexpensive
yet sharp and rigorous bounds for the error in the outputs
of interest; and (iii) offline/online computational procedures
— stratagems which decouple the generation and projection
stages of the approximation process. The operation count for
the online stage — in which, given a new parameter value, we
calculate the output of interest and associated error bound —
depends only on N (typically very small) and the parametric
complexity of the problem.

In this paper we extend our methodology to the viscosity-
parametrized incompressible Navier-Stokes equations. There
are two critical new ingredients: first, the now-classical Brezzi-
Rappaz-Raviart framework for (here, a posteriori) error anal-
ysis of approximations of nonlinear elliptic partial differen-
tial equations; and second, offline/online computational pro-
cedures for efficient calculation of the “constants” required by
the Brezzi-Rappaz-Raviart theory — in particular, rigorous
lower and upper bounds for the Babuška inf-sup stability and
Sobolev “L4-H1” continuity factors, respectively. Numerical
results for a simple square-cavity model problem confirm the
rapid convergence of the reduced-basis approximation and the
good effectivity of the associated a posteriori error bounds.

Keywords— reduced-basis, a posteriori error estimation, out-
put bounds, incompressible Navier-Stokes, elliptic partial dif-
ferential equations

I. Introduction

The optimization, control, and characterization of an engi-
neering component or system requires the prediction of cer-
tain “quantities of interest,” or performance metrics, which
we shall denote outputs — for example deflections, maxi-
mum stresses, maximum temperatures, heat transfer rates,
flowrates, or lifts and drags. These outputs are typically
expressed as functionals of field variables associated with a

parametrized partial differential equation which describes the
physical behavior of the component or system. The param-
eters, which we shall denote inputs, serve to identify a par-
ticular “configuration” of the component: these inputs may
represent design variables, such as geometry — for example,
in optimization studies; decision variables, such as actuator
power — for example in real-time control applications; or
characterization variables, such as physical properties — for
example in inverse problems. We thus arrive at an implicit
input-output relationship, evaluation of which demands solu-
tion of the underlying partial differential equation.

Our goal is the development of computational methods
that permit rapid and reliable evaluation of this partial-
differential-equation-induced input-output relationship in the
limit of many queries — that is, in the (real-time) design, op-
timization, control, and characterization contexts. Our par-
ticular approach is based on the reduced-basis method, first
introduced in the late 1970s for nonlinear structural analy-
sis [1], [15], and subsequently developed more broadly in the
1980s and 1990s [2], [3], [6], [16], [17], [21]; extension to the
incompressible Navier-Stokes equations is considered in [8],
[9], [10], [16]. The reduced-basis method recognizes that the
field variable is not, in fact, some arbitrary member of the
infinite-dimensional solution space associated with the par-
tial differential equation; rather, it resides, or “evolves,” on a
much lower-dimensional manifold induced by the parametric
dependence.

The reduced-basis approach as earlier articulated is lo-
cal in parameter space in both practice and theory. To
wit, Lagrangian or Taylor approximation spaces for the low-
dimensional manifold are typically defined relative to a par-
ticular parameter point; and the associated a priori conver-
gence theory relies on asymptotic arguments in sufficiently
small neighborhoods [6]. As a result, the computational im-
provements — relative to conventional (say) finite element
approximation — are often quite modest [17]. Our work



[11], [12], [13], [19], [27], [18] differs from these earlier ef-
forts in several important ways: first, we develop (in some
cases, provably) global approximation spaces; second, we in-
troduce rigorous a posteriori error estimators; and third, we
exploit offline/online computational decompositions (see [2]
for an earlier application of this strategy within the reduced-
basis context). These three ingredients allow us — for the
restricted but important class of “parameter-affine” (or ap-
proximately parameter-affine) problems — to reliably decou-
ple the generation and projection stages of reduced-basis ap-
proximation, thereby effecting computational economies of
several orders of magnitude.

In earlier work [18], [19], [27] we focus primarily on lin-
ear coercive partial differential equations; more recently [26]
we address the noncoercive case (and certain simple nonlin-
earities); and in [25] we finally construct completely rigorous
error bounds for a nonlinear problem — the viscous Burgers
equation. There are two critical new ingredients in our treat-
ment of the Burgers equation: first, the now-classical Brezzi-
Rappaz-Raviart [4] framework for (here, a posteriori) error
analysis of approximations of nonlinear elliptic partial dif-
ferential equations; and second, offline/online computational
procedures for efficient calculation of all the constants re-
quired by the Brezzi-Rappaz-Raviart theory — in particular,
rigorous lower and upper bounds for the Babuška inf-sup sta-
bility and Sobolev “L4-H1” continuity factors, respectively.

In this paper we shall extend our formulation for the Burg-
ers problem to treat the full incompressible Navier-Stokes
equations. We consider in this paper the specific case in
which the only parametric variation is the viscosity (inverse
Reynolds number). We present in Section II the general prob-
lem statement; in Section III the reduced-basis approxima-
tion; in Section IV the associated a posteriori theory; in Sec-
tion V a discussion of the offline/online computational com-
plexity; and in Section 6 illustrative numerical results for a
simple square-cavity model problem.

II. Problem Formulation

We define Y ≡ {v ∈ Ỹ |∇·v = 0}, Ỹ ≡ (H1
0 (Ω))2, H1

0 (Ω) ≡
{v ∈ H1(Ω) | v|∂Ω = 0}, and H1(Ω) ≡ {v | v ∈ L2(Ω),∇v ∈
(L2(Ω))2}, where Ω is a suitably regular bounded domain in
R2 with boundary ∂Ω. Here Lp(Ω), 1 ≤ p ≤ ∞, is the space
of measurable functions for which

‖v‖Lp(Ω) ≡
(∫

Ω

(vivi)
p/2

)1/p

, (1)

is finite; note that repeated indices shall imply summation
over the two spatial directions. We associate to Y (and Ỹ )
the inner product

(w, v)Y =
∫

Ω

∂vi

∂xj

∂wi

∂xj
, (2)

and norm ‖w‖Y = (w,w)1/2
Y . We denote the dual space of Y

as Y ′, with corresponding duality pairing 〈 · , · 〉.

Given a ν ∈ D ≡ [νmin, νmax] ⊂ R1
+, 0 < νmin < νmax, we

look for u(ν) ∈ Y such that

G(u(ν); ν) = 0 , (3)

where G : Y → Y ′ is the ν-parametrized C1 mapping given
by

〈G(w; ν), v〉 ≡ ν

∫
Ω

∂vi

∂xj

∂wi

∂xj
−
∫

Ω

∂vi

∂xj
wiwj − 〈F, v〉,

∀ w, v ∈ Y , (4)

and F ∈ Y ′ is a given linear functional describing the imposed
force. Note that, thanks to our divergence-free space, the
pressure is eliminated.

The Frechet derivative of G at (z; ν) is given by

〈DG(z; ν)w, v〉 ≡ ν

∫
Ω

∂vi

∂xj

∂wi

∂xj
−
∫

Ω

∂vi

∂xj
(ziwj + wizj),

∀ w, v ∈ Y , (5)

for any z ∈ Y . We further define

ρ ≡ sup
v∈Y

‖v‖L4(Ω)

‖v‖Y
, (6)

in terms of which we can bound the continuity constant,

γ(z; ν) ≡ ‖DG(z; ν)‖Y,Y ′ , (7)

as γ(z; ν) ≤ ν + 2ρ2‖z‖Y . Note that ρ, and hence γ(z; ν), is
finite thanks to the continuous embedding of H1(Ω) in L4(Ω)
[20].

III. Reduced-Basis Formulation

We first introduce a nested set of parameter samples S1 ≡
{ν1 ∈ D} ⊂ · · · ⊂ SNmax ≡ {ν1 ∈ D, . . . , νNmax

∈ D}. (The
samples may be constructed adaptively based on the inexpen-
sive a posteriori error estimators of Section IV [26].) Then,
for any N ≤ Nmax, we define the (divergence-free) reduced-
basis approximation space WN ⊂ Y as

WN ≡ span{ζn ≡ u(νn), 1 ≤ n ≤ N} . (8)

In practice, u(ν ·) is replaced by a “truth” Galerkin approx-
imation uN (ν ·) ∈ Y N ⊂ Y . We assume that the dimension
of Y N , N , is sufficiently large that uN (ν) may be effectively
equated with u(ν); as we shall see, the online complexity is
independent of N .

Our reduced-basis approximation is then: Given a ν ∈ D,
find uN (ν) ∈WN such that

〈G(uN (ν); ν), v〉 = 0 , ∀ v ∈WN . (9)

We shall assume that DG(uNmax(ν); ν) is an isomorphism;
more quantitatively, we suppose that βNmax(ν) ≥ β0 > 0,
∀ ν ∈ D, where

βN (ν) ≡ ‖DG(uN (ν); ν)−1‖−1
Y ′,Y . (10)

(In this paper we consider only Galerkin projection; in fact,
Petrov-Galerkin methods can provide greater stability [22].)



IV. A POSTERIORI Error Estimation

Our a posteriori error estimators require a rigorous upper
(respectively, lower) bound for the continuity constant ρ (re-
spectively, the inf-sup “constant” βN (ν)). We now discuss
the methods by which we evaluate these bounds; we then
assemble the full a posteriori error estimators.

A. Continuity Constant

To construct an upper bound for ρ, ρ̃, we define

ρ̃ ≡ sup
v∈Ỹ

‖v‖L4(Ω)

‖v‖Y
=

[
inf
v∈Ỹ

‖v‖2Y
‖v‖2L4(Ω)

]−1/2

; (11)

since Y ⊂ Ỹ , it follows that ρ ≤ ρ̃. To evaluate ρ̃ we introduce
the Euler-Lagrange equation [23], [24] associated with (11),∫

Ω

∂vi

∂xj

∂ψ∗i
∂xj

= λ∗
∫

Ω

viψ
∗
i ψ

∗
jψ

∗
j , ∀ v ∈ Y , (12)∫

Ω

(ψ∗i ψ
∗
i )2 = 1 ; (13)

we then set ρ̃ = (λ∗min)−1/2, where (λ∗, ψ∗)min ∈ (R+, Y ) is
the ground state of the system. In actual practice, it is diffi-
cult to isolate the requisite lowest-energy state; we therefore
employ a homotopy approach.

In particular, given α ∈ [0, 1], we define (λ(α), ψ(α)) ∈
(R+, Y ) by

∫
Ω

∂vi

∂xj

∂ψi(α)
∂xj

= λ(α)
(
α

∫
Ω

vi ψi(α)ψj(α)ψj(α)

+ (1− α)
∫

Ω

vi ψi(α)
)
, ∀ v ∈ Y , (14)

α

∫
Ω

(ψiψi)2 + (1− α)
∫

Ω

ψiψi = 1 ; (15)

clearly, (λ(0), ψ(0))min is the ground state of the standard
(vector) Laplacian, while (λ(1), ψ(1))min ≡ (λ∗, ψ∗)min is
the ground state of the desired nonlinear system (12)-(13).
We thus first set α = 0 and find (λ(0), ψ(0))min by stan-
dard eigenvalue solution methods; then, for α = i∆α, i =
1, . . . , 1/∆α, we find (λ(α), ψ(α))min by Newton iteration
with initialization (λ(α − ∆α), ψ(α − ∆α))min; finally, we
evaluate ρ̃ = (λ∗min)−1/2 ≡ (λmin(1))−1/2.

Note, if we prefer, we may calculate ρref for a reference do-
main Ωref (e.g., the unit square). Then, for any Ω ⊂ “σΩref”
— here σ > 0 is a dilation factor — ρ may be bounded by√
σρref . This embedding/scaling approach (applicable only

to Dirichlet problems) eliminates the need for case-by-base
evaluation of the Sobolev constant — albeit at some loss of
sharpness.

B. Inf-Sup “Constant”

To construct a lower bound for βN (ν), β̃(ν), we first intro-
duce a parameter set UJ ≡ {ν̃1 ∈ D, . . . , ν̃J ∈ D}, a distance

d(ν, ν̃;N) ≡ 4
3
β−1

Nmax(ν̃) [|ν − ν̃|+

2ρ̃2‖uN (ν)− uNmax(ν̃)‖Y

]
, (16)

and a mapping INν ≡ arg minν̃∈UJ
d(ν, ν̃;N). We then define

β̃(ν) ≡ 1
4
βNmax(INν) , (17)

and prove
Lemma 1: The inf-sup approximation β̃(ν) satisfies

0 <
1
4
β0 ≤ β̃(ν) ≤ βN (ν), ∀ ν ∈ D̃N (UJ) , (18)

where D̃N (UJ) ≡ {ν ∈ D | d(ν, INν;N) ≤ 1}.
Proof We first observe from (6) and (11) that∣∣∣∣∫

Ω

∂vi

∂xj
wizj

∣∣∣∣ ≤ ‖v‖Y ‖w‖L4(Ω)‖z‖L4(Ω)

≤ ρ̃2‖v‖Y ‖w‖Y ‖z‖Y .

It then follows from (5) that, ∀ ν, ν̃ ∈ D,

|〈(DG(uN (ν); ν)−DG(uNmax(ν̃); ν̃))w, v〉|

=
∣∣∣∣(ν − ν̃)

∫
Ω

∂vi

∂xj

∂wi

∂xj
−
∫

Ω

∂vi

∂xj
(uN (ν)− uNmax(ν̃))iwj

−
∫

Ω

∂vi

∂xj
wi(uN (ν)− uNmax(ν̃))j

∣∣∣∣
≤ |ν − ν̃| ‖w‖Y ‖v‖Y

+2ρ̃2‖uN (ν)− uNmax(ν̃)‖Y ‖w‖Y ‖v‖Y ; (19)

hence, ∀ ν ∈ D̃N (UJ),

‖DG(uN (ν); ν)−DG(uNmax(INν); INν)‖Y,Y ′

≤ |ν − INν|+ 2ρ̃2‖uN (ν)− uNmax(INν)‖Y

≤ 3
4
βNmax(INν) , (20)

and

‖DG(uNmax(INν); INν)−1

(DG(uN (ν); ν)−DG(uNmax(INν); INν))‖Y,Y ≤ 3
4
. (21)



We conclude [5], [14] that DG(uN (ν); ν)−1 exists for all ν ∈
D̃N (UJ). We now note [5] that, ∀ ν ∈ D̃N (UJ),

β−1
N (ν)≡ ‖DG(uN (ν); ν)−1‖Y ′,Y

= ‖[DG(uNmax(INν); INν) + (DG(uN (ν); ν)

−DG(uNmax(INν); INν))]−1‖Y ′,Y

= ‖DG(uNmax(INν); INν)−1[
I +DG(uNmax(INν); INν)−1

(DG(uN (ν); ν)−DG(uNmax(INν); INν))]
−1 ‖Y ′,Y

≤ ‖DG(umax
N (INν); INν)−1‖Y ′,Y /[

1− ‖DG(umax
N (INν); INν)−1 (DG(uN (ν); ν)

−DG(uNmax(INν); INν))‖Y,Y ]

≤ 4β−1
Nmax(INν) . (22)

The desired result then follows from (17) and our assumption
βNmax(ν) ≥ β0, ∀ ν ∈ D. �

C. Error Bounds

To begin, we define

εN (ν) ≡ sup
v∈Y

〈G(uN (ν); ν), v〉
‖v‖Y

, (23)

which is simply the dual norm of the residual. Note it is
crucial that we define the dual norm (and hence the inf-sup
parameter) with respect to Y , and not Ỹ , since the residual
is of course small only with respect to divergence-free func-
tions. The central result is a direct application of the Brezzi-
Rappaz-Raviart framework [4], [5], [7], [9] for approximation
of nonlinear problems: for εN (ν) sufficiently small, there ex-
ists a solution to (3) in a small neighborhood of uN (ν).

More precisely, given τmax ∈ ]0, 1[ , we define

τN (ν) ≡ 4ρ̃2εN (ν)
β̃(ν)2

, (24)

∆N (ν) ≡ β̃(ν)
2ρ̃2

[
1−

√
1− τN (ν)

]
, (25)

ΥN (ν) ≡ 2γ(uN (ν); ν)
β̃(ν)(1− τmax)

, (26)

and prove
Theorem 1: For ν in D̃N (UJ), and τN (ν) ≤ τmax < 1, there
exists a unique solution of (3), u(ν), in B

(
uN (ν), β̃(ν)

2ρ̃2

)
.

Furthermore,

‖u(ν)− uN (ν)‖Y ≤ ∆N (ν) , (27)

and
∆N (ν) ≤ ΥN (ν) ‖u(ν)− uN (ν)‖Y . (28)

Here B(z, r) = {w ∈ Y | ‖w − z‖Y < r}.
Proof The proof follows directly from Lemma 1 and the
Brezzi-Rappaz-Raviart framework, in particular Theorem 2.1
of [5] (slightly specialized to the quadratic nonlinearity of in-
terest here). Only the effectivity result requires some elabo-
ration.

To derive the effectivity result, (28), we note that e(ν) ≡
u(ν)− uN (ν) satisfies

〈DG(uN (ν); ν) e(ν), v〉

= −〈G(uN (ν); ν), v〉+
∫

Ω

∂vi

∂xj
(e(ν))i(e(ν))j . (29)

We now note from standard duality arguments that εN (ν) =
‖ê(ν)‖Y , where ê(ν) ∈ Y satisfies

(ê(ν), v)Y = −〈G(uN (ν); ν), v〉, ∀ v ∈ Y . (30)

We next choose v = ê(ν) in (29) and apply continuity to
obtain

‖ê(ν)‖Y ≤ γ(uN (ν); ν)‖e(ν)‖Y + ρ̃2‖e(ν)‖2Y . (31)

However, since 0 ≤ τN (ν) < 1, it follows that
√

1− τN (ν) ≥
1− τN (ν) and hence

∆N (ν) ≤ β̃(ν)
2ρ̃2

τN (ν) =
2εN (ν)
β̃(ν)

. (32)

Thus from ‖e(ν)‖Y ≤ ∆N (ν), (31), and (32),

∆N (ν) ≤ 2γ(uN (ν); ν)
β̃(ν)

‖e(ν)‖Y

+
(

2ρ̃2

β̃(ν)

)(
2εN (ν)
β̃(ν)

)
∆N (ν)

≤ 2γ(uN (ν); ν)
β̃(ν)

‖e(ν)‖Y + τmax∆N (ν) ; (33)

the desired result directly follows. �
We re-iterate that the dual norm of the residual is small

only with respect to functions in Y , the space of functions
in Ỹ that are divergence-free. Thus, with the exception of ρ̃
(which we have explicitly and conservatively defined in terms
of Ỹ ), all quantities must be calculated with respect to the
divergence-free space Y . However, we shall see in Section V
that this affects only the offline — and not the online —
computational complexity; the online complexity remains in-
dependent of the dimension of Y .

V. Computational Complexity: Offline-Online
Decomposition

In actual practice, our interest is not in u(ν) per se, but
rather in a (say) linear-functional output, s(ν) ≡ 〈L, u(ν)〉,



where L is a prescribed member of Y ′. We wish to reli-
ably evaluate s(ν) rapidly in the limit of many queries — as
demanded in the (adaptive) design optimization and (real-
time) control contexts. For “rapidly,” we approximate s(ν)
by sN (ν) ≡ 〈L, uN (ν)〉. For “reliably,” we provide the a pos-
teriori bound ∆s

N (ν) ≡ ‖L‖Y ′ ∆N (ν); under the hypotheses
of Theorem 1, |s(ν)− sN (ν)| ≤ ∆s

N (ν).
We now discuss the computational stratagem by which we

efficiently evaluate sN (ν) and ∆N (ν) (and hence ∆s
N (ν)).

The fundamental ingredient is an offline/online computa-
tional decomposition [2], [11], [19] that breaks the requi-
site calculations into two parts: an expensive offline stage
performed once, and an inexpensive online stage performed
many times — for each new evaluation ν → sN (ν),∆N (ν).
The complexity of the online stage will depend on N , which
is typically small (see Section VI), but not on N , which is
typically large; we will thus realize marginal real-time — and,
thanks to ∆s

N (ν), reliable — response.

A. Calculation of uN (ν) and sN (ν)

We begin with the calculation of uN (ν) and sN (ν) ≡
〈L, uN (ν)〉. To obtain uN (ν), we apply Newton iteration:
Given uk

N (ν) ∈ WN , find δk
N (ν) ≡ uk+1

N (ν) − uk
N (ν) ∈ WN

such that

〈DG(uk
N (ν); ν) δk

N (ν), v〉
= −〈G(uk

N (ν); ν), v〉, ∀ v ∈WN . (34)

This can be expressed in terms of our reduced-basis expan-
sions

uk
N (ν) =

N∑
n=1

uk
N n(ν) ζn , δk

N (ν) =
N∑

n=1

δk
N n(ν) ζn (35)

as
N∑

n=1

(
νAN m,n +

N∑
n′=1

uk
N n′(ν)BN m,n′,n

)
δk
N n(ν)

= Fm −
N∑

n=1

(
νAN m,n +

1
2

N∑
n′=1

uk
N n′(ν)BN m,n′,n

)
uk

N n(ν),

1 ≤ m ≤ N , (36)

where

AN m,n ≡
∫

Ω

∂(ζn)i

∂xj

∂(ζm)i

∂xj
, 1 ≤ n,m ≤ N , (37)

BN m,n′,n ≡ −
∫

Ω

∂(ζm)i

∂xj
((ζn)i(ζn′)j + (ζn′)i(ζn)j) ,

1 ≤ n, n′,m ≤ N , (38)

and FN m = 〈F, ζm〉, 1 ≤ m ≤ N . Upon convergence, we
evaluate our output as

sN (ν) =
N∑

n=1

uN n(ν) LN n , (39)

where LN n = 〈L, ζn〉, 1 ≤ n ≤ N .

The offline/online decomposition is clear. In the off-
line stage, we form the parameter-independent quantities
ANmax ∈ R(Nmax)2 , BNmax ∈ R(Nmax)3 , and FNmax ∈ RNmax

,
LNmax ∈ RNmax

— at cost bounded by O((Nmax)3N •)
(where • indicates a “solver-dependent” exponent greater
than unity). In the online stage, for any given ν, we first
construct and solve (36) — at cost (per Newton iteration)
O(N3); and then, upon convergence, we evaluate sN (ν) —
at cost O(N). The crucial observation is that, in the online
stage, the complexity is independent of N .

B. Calculation of ∆N (ν) and τN (ν)

We now turn to the a posteriori error bound, in partic-
ular the calculation of the quantities — ∆N (ν) and τN (ν)
— required by Theorem 1. The three critical computational
tasks are the calculation of of ρ̃, the construction of β̃(ν),
and the evaluation of εN (ν). We note that ρ̃ is computed
(for a particular problem) only once — offline; the procedure
is summarized in Section IV-A, and is not discussed further
here.

We thus begin by considering the construction of β̃(ν) of
(17): we must first find INν and verify ν ∈ D̃N (UJ); we can
then evaluate 1

4βNmax(INν). To determine INν we need only
compare

d(ν, ν̃;N) =
4
3
β−1

Nmax(ν̃)

(
|ν − ν̃|

+2ρ̃2
Nmax∑
n=1

Nmax∑
n′=1

σN n(ν, ν̃) σN n′(ν, ν̃)ANmax n,n′

)
(40)

at a few points ν̃ ∈ UJ in the vicinity of ν; here σN n(ν, ν̃) ≡
uN n(ν) − uNmax n(ν̃), 1 ≤ n ≤ Nmax, and ANmax n,n′ is de-
fined in (37). (Note that we set uN n = 0, N < n ≤ Nmax.)
Once ν̃i = INν is obtained, we simply evaluate 1

4βNmax(ν̃i).

The offline/online decomposition is clear. In the offline
stage we compute uNmax(ν̃j), 1 ≤ j ≤ J — at cost O(JN3);
and we tabulate βNmax(ν̃j), 1 ≤ j ≤ J — at cost O(JN •).
In the online stage, for any given ν and uN (ν), we evalu-
ate d(ν, ν̃j ;N) of (40) for ν̃j ≈ ν to obtain ν̃i = INν — at
cost O((Nmax)2); then, assuming d(ν, ν̃i;N) ≤ 1, we “look
up” βNmax(ν̃i). (To minimize the risk that d(ν, ν̃i;N) > 1,
we choose UJ such that D̃N (UJ) = D for some suitably
large N (< Nmax). This condition can be verified only by
quasi-exhaustive evaluation of d(ν, INν;N) over a fine grid
of parameter values in D; however, these offline evaluations
can be effected very efficiently by repeated application of our
O((Nmax)2) “online” d(ν, ν̃;N) procedure.)

We now consider the calculation of εN (ν) = ‖ê(ν)‖Y . We



recall from (30) that ê(ν) ∈ Y satisfies

(ê(ν), v)Y = 〈F, v〉 −
N∑

n=1

(
ν

∫
Ω

∂vi

∂xj

∂(ζn)i

∂x

)
uN n(ν)

+
N∑

n=1

N∑
n′=1

(∫
Ω

∂vi

∂xj
(ζn)i(ζn′)j

)
uN n(ν) uN n′(ν),

∀ v ∈ Y . (41)

It follows from linearity that

ê(ν) = ẑ0 + ν
N∑

n=1

ẑ1
n uN n(ν)

+
N∑

n=1

N∑
n′=1

ẑ2
nn′uN n(ν) uN n′(ν) , (42)

where

(ẑ0, v)Y = 〈F, v〉, ∀ v ∈ Y , (43)

(ẑ1
n, v)Y = −

∫
Ω

∂vi

∂xj

∂(ζn)i

∂xj
, ∀ v ∈ Y,

1 ≤ n ≤ Nmax , (44)

(ẑ2
nn′ , v)Y =

∫
Ω

∂vi

∂xj
(ζn)i(ζn′)j , ∀ v ∈ Y,

1 ≤ n, n′ ≤ Nmax . (45)

We thus obtain

‖ê(ν)‖2Y = (ẑ0, ẑ0)Y

+
N∑

n=1

uN n(ν)
{
2ν(ẑ0, ẑ1

n)Y

+
N∑

n′=1

uN n′(ν)
{
2(ẑ0, ẑ2

nn′)Y + ν2(ẑ1
n, ẑ

1
n′)Y

+
N∑

n′′=1

uN n′′(ν)
{
2ν(ẑ1

n, ẑ
2
n′n′′)Y

+
N∑

n′′′=1

uN n′′′(ν)
{
(ẑ2

nn′ , ẑ2
n′′n′′′)Y

}}}}
,(46)

which is a nested quadruple sum.
The offline/online decomposition is now clear. In the

offline stage, we form (ẑ0, ẑ0)Y , . . . — at dominant cost
O((Nmax)4N •). Note that ẑ0, ẑ1

n, and ẑ2
nn′ , 1 ≤ n, n′ ≤

Nmax, are in the divergence-free space Y ; although there are
ways to calculate the requisite quantities without forming
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Fig. 1. Horizontal velocity u1((−0.25, x2); ν) as a function of the y-
coordinate for ν = 3.8× 10−1, 9.6× 10−3, and 4.0× 10−3.

the nullspace of the divergence operator, for our purposes
here we choose the simpler option of direct construction of
the nullspace. In the online stage, we simply evaluate (46)
— at dominant cost (exploiting symmetries [26]) N4/4. The
N4 scaling is steeper than desired, but not prohibitive for
the small values of N typically required. In summary, we
may compute not only sN (ν), but also ∆N (ν), at online cost
independent of N .

Finally, we close this section by noting that the off-
line/online decomposition in fact applies more generally to
any affine, or approximately affine, parameter (data, prop-
erty, or geometry) dependence [19]. The latter, in turn, ad-
dresses a relatively large class of problems.

VI. Numerical Results

We consider the flow of a fluid of viscosity (inverse
Reynolds number) ν ∈ D ≡ [νmin = 4.0 × 10−3, νmax =
4.0 × 10−1] in a unit square (x1, x2) ∈ Ω ≡ ]- 1

2 ,
1
2 [ × ]- 1

2 ,
1
2 [

with imposed force

〈F, v〉 =
∫

Ω

x1v2, ∀ v ∈ Y ; (47)

for this problem we obtain ρ̃ = 0.2852. Standard proofs
demonstrate that (3) admits a unique solution for ν suffi-
ciently large; observations suggest that, in fact, (3) admits a
unique solution for all ν ∈ D. We present in Figure 1 the
horizontal velocity profiles u1((−0.25, x2); ν) as a function of
x2 for several values of ν (for a truth resolution N = 4,802).
Clearly, for ν = 4.0 × 10−3 the nonlinear contributions are
significant: the flow exhibits marked inertial effects.

We now present results for the case Nmax = 10.
We present in Figures 2, 3, and 4 the stability factor
βNmax(ν), the continuity factor γ(uNmax(ν); ν), and the ratio
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Fig. 2. The stability constant, βNmax (ν), and the lower bound for

βN (ν), β̃(ν), as a function of ν.
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Fig. 3. The continuity factor γ(uNmax (ν); ν) as a function of ν.

γ(uNmax(ν); ν)/βNmax(ν) as a function of ν; we also present in
Figure 2 our lower bound for βN (ν), β̃(ν). For the particular
UJ=181 results presented here, D̃N (UJ) = D for all N ≥ 5;
thus β̃(ν) ≤ βN (ν) for all ν ∈ D for all N ≥ 5. For future
work we shall consider more efficient techniques such that
D̃N (UJ) = D is achieved for smaller samples UJ . We fur-
ther note from (26) and Figure 4 that, even at the lower ν,
we expect effectivities — ∆N (ν)/‖e(ν)‖Y — no worse than
O(100); in fact, as we shall see, this bound is (pleasantly)
pessimistic.

We begin with the reduced-basis prediction for u(ν),
uN (ν). In all the numerical examples, we shall consider
three test values of ν: ν = 1.0 × 10−1, ν = 1.4 × 10−2, and

10−3 10−2 10−1 100
100

101

102

Fig. 4. The ratio γ(uNmax (ν); ν)/βNmax (ν) as a function of ν.

ν = 4.1 × 10−3. We present in Table I the normalized error
‖e(ν)‖Y /‖u(ν)‖Y as a function of N for our three test values
of ν. We observe that the error e(ν) ≡ u(ν)−uN (ν) tends to
zero (uniformly in ν) quite rapidly. Recall that ‖ · ‖Y is the
H1-norm, and hence measures the error in both the velocity
and the velocity gradient.

‖e(ν)‖Y /‖u(ν)‖Y

N ν = 1.0× 10−1 ν = 1.4× 10−2 ν = 4.1× 10−3

1 2.14× 10−1 1.94× 10−1 7.66× 10−3

2 6.34× 10−4 2.97× 10−2 7.52× 10−3

3 3.95× 10−4 1.51× 10−2 1.74× 10−3

4 1.52× 10−4 3.14× 10−3 1.28× 10−3

5 1.09× 10−4 2.00× 10−3 1.12× 10−4

6 1.27× 10−5 6.19× 10−5 8.99× 10−5

7 5.25× 10−6 1.92× 10−5 3.53× 10−5

8 3.77× 10−6 1.26× 10−5 1.19× 10−6

9 1.26× 10−7 1.14× 10−6 7.31× 10−7

10 9.26× 10−8 7.17× 10−7 1.61× 10−7

TABLE I

Normalized error in the reduced-basis approximation as a

function of N .

We now turn to our error estimators. We present in Ta-
bles II, III, and IV τN (ν), ∆N (ν)/‖u(ν)‖Y (the normal-
ized error bound), and ∆N (ν)/‖e(ν)‖Y (the effectivity) as
a function of N for ν = 1.0 × 10−1, ν = 1.4 × 10−2 and
ν = 4.1 × 10−3; here “∗” indicates that ν 6∈ D̃N (UJ), and
“−” indicates that τN (ν) > 1. For ν = 1.0×10−1 we observe
that τN (ν) < 1 for N ≥ 2 — and hence we can provide a
definitive error bound even for small N ; that the relative er-



ror bound ∆N (ν)/‖u(ν)‖Y tends to zero rapidly; and that the
effectivity is very good. For this value of ν, the “uniqueness
radius” β̃(ν)/(2ρ̃2) = 0.19 (ν = 1.0 × 10−1) is comfortably
large relative to ‖u(ν = 1.0× 10−1)‖Y .

For ν = 1.4 × 10−2 (respectively, ν = 4.1 × 10−3) we ob-
serve that, for N < 2 (respectively, N < 3), ν 6∈ D̃N (UJ),
and for N < 6 (respectively, N < 8), τN (ν) > 1 — and
hence we can obtain rigorous error bounds only for very ac-
curate reduced-basis approximations; that the relative error
bound ∆N (ν)/‖u(ν)‖Y still tends to zero rapidly with N
— our sample SN is constructed to provide uniform conver-
gence; and that the effectivity is much better than the theo-
retical upper bound. Note also that the “uniqueness radii,”
β̃(ν)/(2ρ̃2) = 2.0×10−2 (ν = 1.4×10−2) and 3.2×10−3 (ν =
4.1× 10−3), are small relative to ‖u(ν = 1.4× 10−2)‖Y = 1.4
and ‖u(ν = 4.1 × 10−3)‖Y = 4.7. The rapid convergence of
the reduced-basis method is important not only in efficiently
reducing the error, but also in efficiently satisfying τN (ν) < 1;
accuracy is required both to predict and to certify.

N τN (ν)
∆N (ν)
‖u(ν)‖Y

∆N (ν)
‖e(ν)‖Y

1 1.38× 100 − −
2 4.08× 10−3 2.04× 10−3 3.22
3 2.54× 10−3 1.27× 10−3 3.22
4 9.77× 10−4 4.88× 10−4 3.22
5 7.01× 10−4 3.50× 10−4 3.22
6 8.20× 10−5 4.10× 10−5 3.22
7 3.38× 10−5 1.69× 10−5 3.22
8 2.43× 10−5 1.21× 10−5 3.22
9 7.73× 10−7 3.86× 10−7 3.05

10 5.27× 10−7 2.63× 10−7 2.84

TABLE II

Numerical results for ν = 1.0× 10−1; 1.0× 10−1 ∈ D̃N (UJ ) for

all N .

Finally, we note that the incremental cost to evaluate
uN (ν) (and therefore sN (ν)) for any given new ν is very
small: first, because N is very small — thanks to the good
convergence properties of WN , and the “stopping criterion”
provided by ∆N (ν); and second, because (36) can be very
rapidly assembled and inverted — thanks to the offline/online
computational decomposition. For our example, the online
computation time (on a Pentium r© M 1.6MHz processor) is
typically 10-60 ms; the resulting computational savings rel-
ative to standard (well-designed) finite-element approaches
are significant, typically O(103)-O(104).
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N τN (ν)
∆N (ν)
‖u(ν)‖Y

∆N (ν)
‖e(ν)‖Y

1 1.15× 102 ∗− ∗−
2 1.82× 101 − −
3 9.08× 100 − −
4 1.86× 100 − −
5 1.18× 100 − −
6 3.61× 10−2 2.71× 10−4 4.38
7 1.12× 10−2 8.35× 10−5 4.34
8 7.34× 10−3 5.47× 10−5 4.33
9 6.72× 10−4 5.00× 10−6 4.39

10 4.24× 10−4 3.16× 10−6 4.40

TABLE III

Numerical results for ν = 1.4× 10−2; for N < 2,

1.4× 10−2 6∈ D̃N (UJ ).

N τN (ν)
∆N (ν)
‖u(ν)‖Y

∆N (ν)
‖e(ν)‖Y

1 2.85× 102 ∗− ∗−
2 4.69× 102 ∗− ∗−
3 7.88× 101 − −
4 6.08× 101 − −
5 4.56× 100 − −
6 3.41× 100 − −
7 1.22× 100 − −
8 4.01× 10−2 1.40× 10−5 11.83
9 2.87× 10−2 1.00× 10−5 13.69

10 7.46× 10−3 2.59× 10−6 16.07

TABLE IV

Numerical results for ν = 4.1× 10−3; for N < 3,

4.1× 10−3 6∈ D̃N (UJ ).
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