" Truth Maintenance Systems for Problem Solving
by

Jon Poyle

B. S., University of Houston
(1974)

Submitted in Partial Fulfiliment of the
Requirements for the Degree of
Master of Science

atthe
Massachusetts Institute of Technology

May, 1977

s‘mtu"‘ of Author - ww - - - - - . ‘....OOOIOQOOOOQ....O.'.....0......'
Depar tment of Ele‘ltr!cal Engingering and Computer Science)
May 12, 1977

Ve
COl‘Nfled bg QOUOouocoon3.oo‘oooo"o";rfvrzoooooood:ooooooo/,/.ﬁooaoooooooooo-

Thesis Supervisor

—.

Accepted e sessevsssnes
- Chairman, Departmental Committee on Graduate Students

- Archives

WAL WY s
@\I 29 1977

Truth Maintenance Systems for Problem Solving
by

Jon Doyle

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1977 in partial fulfiliment of the requirements
for the Degree of Master of Science.

ABSTRACT

This report describes progress that has been made in the ability of a computer
system to understand and reason about its own reasoning faculties. A new method for
representing knowledge about beliefs has been developed. This representation, called a
non-monotonic dependency system, extends several similar previous representation forms
for such knowledge, and has been employed in developing new strategies for representing
assumptions, describing hierarchical structures, backtracking, and controlling problem
solving systems.

This representation is employed by a set of computer programs called the Truth
Maintenance System (TMS), which makes these abilities available as a domain-independent
tool for problem solving. The TMS accepts as input justifications for belief in components
of program knowledge, and uses these justifications to determine which beliefs endure the
discovery of new information and the changing of hypotheses.

The ma jor points of the report are that appropriately recorded justifications for
beliefs can be used to efficiently maintain the current set of program beliefs, and can
further be used in a variety of tasks, including those of hypothetical reasoning, separating
levels of detail in explanations, and dependency-directed backtracking.

Thesis Supervisor: Gerald Jay Sussman
Title: Associate Professor of Electrical Engineering

To my parents

Acknowledgements
I owe much to many for their attention and cooperation during this research. Many of the
ideas in this report are due, directly or indirectly, to Gerald Jay Sussman, Guy Lewis Steele
Jr.. and Richard Matthew Staliman. Much of my progress on these problems has derived
from the patient advice, inspiring encouragement, and close cooperation of Gerry Sussman.
I particularly wish to thank:
Tomas Lozano-Perez and Drew McDermott for explaining planning to me,

Johan de Kileer, Scott Fahiman, Richard Brown, Kurt VanLehn, Joseph Schatz, and
Marvin Minsky for discussion of related problems of problem solving,

Marilyn Matz for her informed perspective on the frame problem, which substantially
influenced my own view,

Gerry Sussman, Beth Levin, and Marilyn Matz for several appreciations,

Bob Woodham, Scott Fahiman, Mitch Marcus, Howie Shrobe, Ben Kuipers, Ken Forbus,
Bob S joberg, Brian Smith and Tom Knight for putting up with me, even when I was
obviously out to lunch,

Eric Grimson, Kent Stevens, and Chuck Rich for encouragement,

Johan de Kleer and Marilyn Matz for careful reading,

The Maharal of Prague for several recursions, and

The Fannie and John Hertz Foundation, which supported my research.

CONTENTS
L Introduction 6
A. Overview of the Report 6
B. A Functional Description of Truth Maintenance Systems 7
C. An Example 9
IL Truth Maintenance Systems Applied 19
A. Historical Introduction 19
B. Representing Knowledge About Beliefs 24
C. Hypothetical Reasoning 30
D. Backtracking 32
E. Generalization and Levels of Detail 38
F. Comparison With Other Current Work 16
IIL Truth Maintenance Mechanisms 50
A. Historical Introduction 50
B. Facts and Dependencies 52
C. Well-Founded Support Relations 55
D. Truth Maintenance 60
E. Truth Maintenance Efficiency 68
F. Dependencies and Contexts 4
G. Comparison With Other Current Work 81
IV. Discussion ' , 84
A. Summary of the Key Ideas 84
B. Future Work 86
References 89
Appendices |
1. A TMS Glossary 94
2. Monotonic Truth Maintenance Systems 101

3. An Implementation of a TMS 104

I. Introduoction
A. Overview of the Report

This report describes progress that has been made in the ability of a computer
system to understand and reason about its own reasoning faculties. A new method for
representing knowledge about beliefs has been developed. This representation, called a
non-monotonic dependency system, extends and clarifies several similar previous
representation forms for such knowledge, and has been employed in developing new
strategies for representing assumptions, backtracking, and controlling problem solving

systems.

The report begins with a functional description of the TMS (Truth Maintenance
System), a set of running programs that embodies the representation and strategies
mentioned above. An illustrative example is then presented to lend substance to the

following discussion.

The following two chapters discuss in detail the npre;entation for knowledge
about belief, efficient techniques for maintaining beliefs in the event of changing
information, and techniques for using the representation in several interesting problems of
reasoning and control in problem solving systems. Both of these chapters begin with a

brief historical perspective on the theme of the chapter. Both chapters end by surveying

relevant current problem solving efforts from the perspective of the ideas developed in the
chapter. Readers wishing an overview of the current work are encouraged to read the

initial sections of these chapters.

The final chapter provides a summary discussion of the key ideas developed in
the report, accotﬁpanied by a discussion related problems for future research. Three
appendicies provide a glossary of the concepts and terms employed herein, a discussion of

related representational systems, and an implementation of a truth maintenance system.

B. A Functional Description of Truth Maintenance Systems

A truth maintenance system is a combination of a representation for recording
dependencies between program beliefs and procedures for effecting any updating of beliefs
necessary upon the addition of new dependencies. Such a system can easily be used by
processes for reasoning about the recorded program reasoning. In particular, processes for
non-chronological, dependency-directed backtracking and hypothetical reasoning are
particularly straightforward in implementation given the representations of a truth

maintenance system.

The basic operation of a truth maintenance system is to attach a justification to a
fact. A fact can be linked with any component of program knowledge which is to be

connected with other components of program information. Typically, a fact might be

connected with each assertion and rule in a data base, or might be attached, with differing
meanings, to various subsystem structures. The TMS decides, on the basis of the
justifications attached to facts, which beliefs in the truth of facts are supported by the
recorded justifications. From the justifications used in this judgement of beliefs, a number
of relations between beliefs are determined, such as the set of beliefs depending on each

particular belief or the beliefs upon which a particular belief depends.

The more complex operation of the TMS is required when new justifications
change previously existing beliefs. In such cases, the status of all beliefs depending on the
changed beliefs must be redetermined. This process is termed truth maintenance, and can

be efficiently implemented.

Several useful processes are supported by the above functions and
representations. It is a straightforward matter to interrogate the TMS representation for
the basic material of explanations of beliefs. More sophisticated uses of the recorded
Justifications are in hypothetical reasoning, in which the method of conditional proof is
supported, in the process of generalization, which is a particular application of hypothetical
reasoning, and in dependency-directed backtracking, which employs the recorded
dependencies to locate precisely those hypotheses relevant to the failure, and which uses the
conditional proof mechanisms to summarize the cause of the contradiction in terms of these

hypotheses to prevent its future occurrence.

C. An Example

On the ground,

Sleep sound.

I'll apply

To your eye,

Gentle lover, remedy.

When thou wakest,

Thou takest

True delight

In the sight

Of thy former lady'’s eye.

And the country proverb known,

That every man should take his own,

In your waking shall be shown.
Jack shall have Jili,
Nought shall go ill,

The man shall have his mare again

and all shall be well.

William Shakespeare, A Midsummer Night's Dream

To demonstrate the flavor of the use of recorded justifications in determining
belief ind in hypothetical reasoning, this section presents a simple example involving the
making of assumptions, truth‘maintenance, and dependency-directed backtracking. Further
examples in the body of the report will elaborate some of the finer points of truth

maintenance and the separation of levels of detail.

For this example, we set modesty aside and attempt to imitate William

Shakespeare in designing the plot of 4 Midsummer Night's Dream. The ma jor problem in

10

this is to prevent the story from turning into a tragedy. Dependency-directed backtracking
provides the tool by which changes in the players’ attitudes are determined, such that these
changes eventually result in a consistent (happy) set of attitudes. Unfortunately, these

methods do not hint at what magic is required to effect these changes.

The problem involves the four individuals Demitrius, Helena, Hermia, and

Lysander. Initially, the following beliefs are entertained.

(assert (loves Hermia Lysander) (premise))

F-1 (LOVES HERMIA LYSANDER) (PREMISE)

(assert (loves Helena Demitrius) (premise))

F-2 (LOVES HELENA DEMITRIUS) (PREMISE)

The information and rules of our example will be framed in a simple rule-based language
called SCHPDS, developed by G. J. Sussman and J. de Kleer. Assertions, as above, are of
the form (ASSERT <assertion pattern> <justification>) and should be read as
"belief in <assertion pattern> is justified by <justification>." The justifications
refer to functions which will accept the information transmitted in the justifications and

implement the necessary TMS justifications between facts.

The next specification is that of the amatory preferences of the men, who are

il

Creatures easily swayed by flowers and dependency-directed backtracking.

(assume (loves Demitrius Hermia) (premise))
F-3 ,(ASSUI‘IED (LOVES DEMITRIUS HERMIA)) (PREMISE)
F-4 (NOT (LOVES DEMITRIUS HERMIA)) ()

F-5 (LOVES DEMITRIUS HERMIA) (ASSUMPTION F-3 F-4)

Assumptions are the fundamental use of non-monotonic justifications in the dependency
system. Thus the assumption of F-5 above is accomplished by asserting the reason for the
assumption, F-3, and establishing belief in F-5 based on this reason and on, as will be
explained further in the next chapter, the lack of belief in F-4. Thus as long as there are
no reasons for believing otherwise, F-5 will be believed. At this point, F-4 is not believed,
for no reasons exist supporting such belief, and F-5 is believed, since F-3 is believed and

F-4 is not.

(assume (loves Lysander Hermia) (premise))
F-6 (ASSUMED (LOVES LYSANDER HERMIA)) (PREMISE)
F-7 (NOT (LOVES LYSANDER HERMIA)) ()

F-8 (LOVES LYSANDER HERMIA) (ASSUMPTION F-8 F-7)

(rule (sn (not (loves Demitrius Hermia)))

(assert (ioves Demitrius Helena) (quality-not-quantity :n)))

12

This rule provides for Demitrius’ love if he falls from love with Hermia by providing the
alternative of Helena. The format of the rule is a pattern, which specifies both a variable
(marked by the colon prefix) to be bound to the fact name of the matching assertion, and
the pattern which assertions are to Be matched by for the body to be executed. If a
matching assertion is present, the rule will bind the variables of the pattern to the
appropriate values and evaluate each expression of the body. In the ruie above, if it
becomes known that Demitrius does not love Hermia, the rule will justify the belief that

Demitrius loves Helena.

(rule (sn (not (loves Lysander Hermia)))

(assert (loves Lysander Helena) (love-in-idieness :n)))
Next, some of the more unfortunate aspects of the world are specified.

(assert (jealous Lysander) (premise))

F-9 (JEALOUS LYSANDER) (PREMISE)

(rule (:) (jealous 1x))
(rule (:11 (loves :x :y))
(rule (212 (loves :2 :y))

(if (not (equal :x :2))

18

(assert (kills sx 31z) (jealousy 3j 311 :12))))))

This rule embodies the knowledge that jealous people tend to react unpleasantly against

others loving the object of their jealousy. The conditional of the rule body ensures that

jealousy is not self-applicable.

(rule (311 (loves 1x ty))
(rule (12 (loves 3y 32))
(if (not (equal 1x 312))

(assert (kills tx 1x) (unrequited-liove 311 :12)))))
This rule expresses the depression and consequent action resuiting from unrequited love.
The final rule provides the means by which the happy nature of this comedy is ensured.
This is accomplished by watching for killings, and a statement of contradiction implying
that the set of assumptions about the loves of the characters which lead to such a tragedy

must be changéd.

(rule (sk (kills 3x 3y))

(assert (tragedy :k) (contradiction :k)))

With these assertions and rules we begin the analysis of the conflicts between the

It

desires of the four lovers. For this example, we will choose an order for applying the rules

to matching assertions which provides for maximal entertainment.

The first derived assertion notes the conflict caused by Lysander’s jealousy.

F-18 (KILLS LYSANDER DEMITRIUS) (JEALOUSY F-3 F-8 F-5)

This, however, is noticed to be a tragedy, and so ruled out as a happy state of affairs.

F-11 (TRAGEDY F-18) (CONTRADICTION F-18)

The reaction of the system to contradictions is the invocation of dependency-
directed backtracking. This process begins by examining the reasons for the contradiction
in order to locate the inconsistent set of assumptions underlying the contradiction. In this
case, the contradiction F-11 depends upon F-18, which in turn depends upon F-3, F-8, and
F-5. F-8 and F-5 are recognized as assumptions by the system, since the reasons for their
beliefs include the lack of belief in the assertions F~7 and F-4 respectively. Beliefs
supported by a lack of knowledge in other assertions are suspect, since an inconsistency can
be interpreted as indicating that some unbelieved assertion must be believed. Thus the
backtracking system will use the support for the contradiction to justify belief in one of

these unbelieved facts.

15

Note at this point one of the efficiencies of dependency-directed backtracking
relative to the traditional chronological backtracking schemes. In the above, the set of
inconsistent assumptions underlying the contradiction is a subset of all extant assumptions.
(I neglected to inentlon the assumed loves of Theseus, Hippolyta, Oberon, Titania, Bottom,
Pyramus and Thisby, which may have been determined after the current choices for
Lysander and Demitrius.) Thus where chronological systems for choosing alternatives might
search through sets of choices involving these independent assumptions, the dependency-
directed system will only consider those assumption actually affecting the discovered

contradiction.

The next step in the backtracking procedure is the creation of a nogood, an
assertion summarizing the support for the contradiction which is independent of the

inconsistent set of assumptions.

F-12 (NOGOOD F-11) (CP F-11 (F-8 F-5))

This statement of independent support is made by means of a conditional proof
justification, stating that F-12 should be believed if when F-8 and F-5 are believed, so is
F-11. In the present situation, this reduces to the question of belief in F-3, for all that is
necessary to believe in Demitrius’ murder is the jealousy of Lysander. In effect, then, belief

in F-12 is supported solely by belief in F-9.

16

To remove the possibility of simultaneously holding beliefs in the inconsistent set
of assumptions, the nogood is used to justify beliefs in the previously unbelieved assertions
underlying these assumptions. All that is necessary, in general, to accomplish this is to
justify belief in one of the unbelieved assertions supporting one of the assumptions.
However, to prevent future recurrences of belief in the contradiction due to believing a set
of assumptions including the current set of inconsistent assumptions, it is necessary to set up
new justifications providing for belief in any of the unbelieved assertions underlying the
assumptions, so that the knowledge of the inconsistency will be preserved even if the wrong

assumption is temporarily retracted.

F-7 (NOT (LOVES LYSANDER HERMIA)) (NOGOOD F-12 F-5)
TRUTH MAINTENANCE PROCESSING DUE TO F-7.

F-4 (NOT (LOVES DEMITRIUS HERMIA)) (NOGOOD F-12 F-8)

Note that truth maintenance occurred after the new support for belief in F-7, since this
change in belief affected F-8, in which belief depended on a lack of belief in F-7. The
invocation of truth maintenance affected only those beliefs determined from the changed
belief, namely F-7, F-8, F-18, and F-11. All other facts aré known, by means of the
recorded dependencies, to be independent of these changes. Following truth maintenance,
F-7 is believed, and F-8, F-18, and F-11 are unbelieved. Because of this, the next
justification made by the backtracking system, that of F-4 via F-12 and F-8, fails to

support belief in F-4 due to the lack of belief in F-8, and so does not cause F-4 to be

Y

believed.

The backtracking concluded, we continue our analysis of the consequences of the
rules. The next focus for attention is Lysander's subsequent change of lover, due to the
retraction of his love for Hermia, and then the condition of poor Hermia, who has now lost

her love and is despondent.

F-13 (LOVES LYSANDER HELENA) (LOVE-IN-IDLENESS F-7)
F-14 (KILLS HERMIA HERMIA) (UNREQUITED-LOVE F-1 F-13)

F-15 (TRAGEDY F-14) (CONTRADICTION F-14)

Another bout of backtracking is invoked. This time, tracing backwards from the
contradiction finds, after passing by F-14, F-13, F-1, F-7, and F-12, only the assumption
F-5 of Demitrius’ love for Hermia. The nogood mechanism then forces the retraction of

this assumption.

F-16 (NOGOOD F-15) (CP F-15 (F-5))
F-4 (NOT (LOVES DEMITRIUS HERMIA)) (NOGOOD F-16)

TRUTH MAINTENANCE PROCESSING INVOKED BY F-4.

In this situation, the support of the nogood consists of the beliefs F-1 and F-12. This

invocation of truth maintenance involves checking the beliefs in F-4, F-5, F-7, F-8, F-13,

18

F-14, and F-15. The supporting of belief in F-4 now removes the reason for the
retraction of Lysander's love for Hermia, and so truth maintenance determines that F-4

and F-8, are believed, and that F-5, F-7, F-13, F-14, and F-15 are not.

The end of the example comes as now Demitrius has seen the error of his ways,

with a little help from the backtracking system.

F-17 (LOVES DEMITRIUS HELENA) (QUALITY-NOT-QUANTITY F-4)

This satisfies Helena's love, and since Hermia and Lysander are now happy also by means

of truth maintenance, all is well.

19

II. Truth Maintenance Systems Applied

A. Historical Introduction

Some mistakes we must carry with us.

Larry Niven, Ringworld

Problem solving programs have traditionally been plagued by blowups in the size
of the computations involved in producing solutions. Such blowups were most clearly
visible in the early general problem solving efforts, in which a lack of careful control over
generated information required large fruitless searches. The problems inherent in such
approaches were so great that a new approach to problem solving was developed, that of
procedural knowledge [Moses 1967, Winograd 1972, Hewitt 1972, Sussman 1975, Goldstein
19741 This approach called for formalizing the knowledge of the domain as a set of
programs, in which the uses of the basic knowledge were automatic and compiled. This
approach proved some ma jor achivements, notably the SIN symbolic integration program
of Moses [1967], the SHRDLU natural language understanding program of Winograd

(1972), and Sussman’s [1975] HACKER.

20

The PLANNER problem solving language [Hewitt 1972] was developed as a part
of the growing awareness of the power of the procedural knowledge approach. PLANNER
(and its implemented subset, MICRO-PLANNER (Sussman, Winograd and Charniak 1971])
embodied a data and control structure which abstracted those employed in previous
heuristic problem solvers like SAINT [Slagle 1963] and GPS [Ernst and Newell 1969].
PLANNER provided consequent theorems for specifying methods for proposing solutions
and answering questions, antecedent and erasing theorems for deriving and maintaining
data, and a pervasive system of automatic backtracking. The automatic backtracking of
PLANNER caused many problems, however, making the language unusable for
sophisticated problem solving, and soon drew much criticism [Sussman and McDermott
19721

A principal reason for these problems was the chronological nature of control and
backtracking in PLANNER. PLANNER kept track of the chronological order of all
choices made. This produced several difficulties. First, the list of failpoints was
inaccessible to the programmer, which meant that the only means available for dealing with
untenable slt;aations was to FAIL, causing the chronologically most recent decision to be
changed and all subsequent computations to be discarded. This was bad because
PLANNER assumed that each choice and action possibly affected all subsequent choices
and actions. Since this is usually false, this assumption resulted in the discarding of much
useful, independently derived information. It is this assumption of extreme chronology

which leads (quite literally) to most of the failings of PLANNER.

2

The CONNIVER language [McDermott and Sussman 1974] was developed to
alleviate some of these problems of PLANNER, primarily by separating the control state
from the data base. Unfortunately, CONNIVER provided no theory of standard problem
solving mechanisms. In particular, the typical uses of contexts (including those of QA4
[Rulifson, Derksen and Waldinger 1973] and the similar mechanisms of situational tags
[McCarthy and Hayes 1969]) tended to be reminiscent of PLANNER’s use of its data bases.
Because of this, CONNIVER suffered problems similar to those experienced by
PLANNER in that the context mechanism fostered the assumption that all information in a
context (and in its subcontexts) depended uﬁon the reason for creating the context. Thus
CONNIVER, like PLANNER, provided mechanisms leading to needless discarding of
information and an inability to connect failures with the assumptions underlying the
failures. CONNIVER, however, did not produce as many anomalous chronological
dependencies as did PLANNER, since contexts could be structured into trees. Other
advances of CONNIVER over PLANNER were that information could be extracted from
a failure, and that other than the most recent choice could be selected as the choice for

retraction.

Many of these problems have been overcome or greatly reduced by the
innovations introduced in several recent problem solving programs. The EL-ARS
electronics circuit analysis system of Stallman and Sussman [1976] automatically records a

Jjustification for each assertion in its data base. By operating via a system of rules of a

22

local nature, ARS factors mast of the chronology out of its beliefs, providing a foundation
for the determination of current beliefs by means of these justifications, thus reducing the |
number of anomalous dependencies even more than CONNIVER. Similar but less
powerful dependency-directed contexts are also used in Fikes' (1975] data base system, in the
data base of McDermott’s NASL system [McDermott 1978, 1976}, and. in Hayes' (1975]
planning system. ARS further demonstrates that these same justifications can be used to
effect a particularly efficient form of backtracking known as non-chronological,
dependency-directed backtracking. This system of backtracking uses the recorded
Jjustifications to locate those assumptions relevant to the failure under consideration. It then
summarizes and records the infeasibility of the conjunction of these assumptions. These
summarizations are consulted whenever making assumptions. This combined process of
dependency-direction and summarization permits a great many fruitiess assumptions to be

avoided.

Another probiem encauntered in problem solving is the use of multiple
representations of information, and in particular, the representation of multiple levels of
detail for use in hierarchical systems. In the past, such representations have involved
subroutines, with varying evaluation methods, such as depth first subgoaling as in
SHRDLU [Winograd 1972}, or NOAH-like [Sacerdoti 1975] hierarchical planning, or have
involved some variety of redescription mechanism, such as those presented in KRL
[(Bobrow and Winograd 1976}, OWL [Hawkinson 1975], Merlin [Moore and Newell 1973],

and [Fahlman 1975] The integration of dependency-based methods with these mechanisms

2

introduces a number of problems stemming from the need for hierarchical descriptive
mechanisms to separate levels of dependencies appropriate to the levels of description. The
truth maintenance mechanisms developed in this report enable this separation by means of
a modtflqd form of hypothetical reasoning, which uses conditional proof mechanisms to
restructure arguments in ways which preserve the meaning of the justifications and

separate relationships at one level from those at other levels.

This chapter details the basic uses and some important applications of truth
mainienanoe systems. The first section presehts the methods for representing standard types
of knowledge about beliefs, including premisehood, deductive connections, support by
conditional proof and the representation of assumptions. This section also describes the use
of these basic techniques as tools in representing several useful relationships among belief's,
such as ordered and unordered sets of alternatives and equivalence classes. The next
section discusses the use of truth maintenance system structures in hypothetical reasoning.
These mechanisms are then used in the important applications of dependency-directed
backtracking, generalization and separation of levels of detail. The chapter concludes with

a comparison with other current work.

24

B. Representing Knowledge About Beliefs

The basic components of a truth maintenance system are facts, representations for
justifications of belief in facts, and processes for determining belief's in facts consistent with
these justifications. The details of these representations and processes are not critical, and
are discussed in Chapter III. This section instead enumerates several basic forms of

Justifications for belief and their important properties and uses.

Facts are those components of program knowledge which may be invested with
belief and justifications. Typically, facts might be attached to assertions, rules and
procedures in a programming system data base. It should be realized, however, that
different subsystems of a large system can each use the truth maintenance system for
different purposes, and can each attach facts to different types of knowledge. For example,
a system employing facts attached to assertions and procedures in a PLANNER-like data
base might also employ a subsystem which uses its own representations for efficiency, but
which also attaches justifications to items in this representation in terms of its own

operation and communication with the supersystem.

Facts are not isolated ob jects, but are connected to each other by dependencies, the
relationships of antecedence and consequence in which belief in a fact is related with belief
in other facts by means of a justification. Justifications for belief in a fact are predicates

of other facts, predicates whose internal structure is accessible to the truth maintenance

25

system to allow efficient processing and the determination of various dependency
relationships. Belief in a fact may or may not be supported by the existence of a valid
(that is, evaluating true) justification for the fact. If a fact has at least one valid
Justification for belief, we say the fact is in; otherwise the fact is out. The distinction
between in and out is not that of true and false; indeed, there is no imposed notion of
falsity in a truth maintenance system. Instead, a support-status of in for a fact denotes the
existence of knowledge supporting belief in the truth of the fact, and out denotes the lack
of such knowledge. The function of the truth maintenance system is to mark each fact in

or out in accordance with the validity of its justifications.

The basic types of justifications for belief in facts are premises, deductions,
conditional proofs, and assumptions. Premises are created through giving facts
justifications corresponding to the constantly true predicate. Facts which are premises are
thus always in independent of any other beliefs. Premises are useful in expressing the

basic knowledge of a program, as well as in hypothetical reasoning.

Deductions are justifications in which belief in a fact is expressed as a monotonic
function of belief in other facts. Deductions typically express belief in a fact as following
from belief in a set of facts. Deductions are thus the most common form of justification in

normal computations.

Conditional Proofs are justifications for supporting belief in a fact on the basis

2%

of the derivability of some fact, called the consequent of the conditional proof, from belief
in a set of facts, called the hypatheses of the conditional proaf. The support implied by the
conditional proof justification is the support of the consequent independent of the
hypotheses. The most important applications of such justifications are in summarizations,
such as in dependency-directed b‘cﬂtucking. in which the support of an inconsistency is

noted independent of the set of hypotheses leading to the inconsistency.

Assumptions are deductions based on a lack of knowledge about belief in facts,
that is, deductions based in part on some facts being out. Assumptions are uses of non-
monotonic dependency relationships, in that unlike other types of justifications, assumption
justifications can be invalidated by the addition of new beliefs. Assumptions can
effectively model the non-monotonic primitives of previous systems, such as MICRO-
PLANNER’s THNOT (Su:sma,n, Winograd and Charniak 1971), McCarthy and Hayes’
(1969] PRESUMABLY, Sandewall's (1972] UNLESS, etc. The dependency-implemented
assumptions have the advantage over these systems in that the nature of the assumption is
made explicit and accessible in future deductions. In MICRO-PLANNER, for example,
THNOTS were indistinguishable from other forms of deductions once performed, and
could not be affected by subsequent discoveries of relevant information. In the non-
monotonic dependency system, however, assumptions are easily distinguishable from normal
deductions and explicitly indicate which beliefs are sub ject to change when specific beliefs
change. For instance, to assume a fact f true unless proven otherwise, f may be justified by

the predicate (QUT ~f), where ~f denotes a fact representing the negation of f. This

2

Justification will then support belief in f as long as there are no valid reasons for believing

~f.

These basic forms of justifications for belief can be employed to represent several
standard relations among belief', such as ordered and unordered sets of alternate belief's,

and equivalence class representatives.

Sets of alternatives between which an arbitrary choice is to be made are easily
represented by means of assumptions. There are several dimensions along which the
representation can be varied, for instance, whether the set is fixed or is dynamically
changing, whether the choice of alternatives might be independently decided, and whether

a default order for making the choice is desired.

Perhaps the simplest such structure is that effecting a static unordered set of
alternatives {F, .., F }. If G is the fact representing the reason for the alternative set, at
least one of set will be believed if each F, is provided with the antecedent

(AND (IN G) (QUT Fy ... Fi Fpyp oes Fp)).
With this structure, the selected alternative is.assumed on the lack of belief in the other
alternatives, which will lead the backtracking system to justify belief in one of the other
alternatives if the selected alternative fails. This structure, however, does not prevent more
than one of the F; from being in via independent means of support. To impose this

exclusiveness, a contradiction (see section ILD) must be supported by a justification (IN F,

28

F j) for each distinct pair of alternatives F;, F),

To allow dynamic additions to the set of alternatives, or to order the alternatives,
somewhat more mechanism is necessary. To represent a dynamically extendable, unordered
set of alternatives, the following justifications should be implemented. For each possible
alternative 4, two facts, 54, ('A‘ is the selected alternative”) and NS4, ("4, is not the

selected alternative”) should be created and justified as follows:

SA;: (AND (IN A) (OUT NSA))

NSA; (IN SAJ) {for each jdistinct from {}

Those processes wishing to reference the selected alternative should then reference
whichever S4, is currently in. New alternatives can be added to the set by collecting all
existing alternatives and creating the above justifications for the the new selected-

alternative fact and for all of the not-selected-alternative facts.

An ordered, extendable (at the end of the order) set of alternatives can be
obtained by creating, for each possible alternative A, three facts, S4; ("4, is the selected
alternative”), NS4, ("4, is not the selected alternative”), and RO4, ("4, is a ruled-out

alternative®), and justifications as follows:

SA; : (AND (IN A; NSA; ... NSA.)) (OUT ROAp)

NSA;: (OUT 4)), (IN RO4)

As before, those processes wishing to reference the selected alternative should reference
whichever 54, is currently in. Processes can independently rule out some of the alternatives

by justifying the appropriate ruled-out-alternative fact.

Slight extensions of these mechanisms can be used to represent sets of equivalent
objects. Justifications can be arranged so that one of the set will be distinguished as the
typical member, and this typical member will not depend upon the choice from the set.

This can be done as follows. For each possible member, M, create two new facts R; ("M, is

the set representative”) and ' 5; ("M, is the selected member”), with justifications as follows:

S; : (AND (IN M) (QUT S ... §.p)

R‘ : (CP of S‘ relative to (OUT Sl ree SH))

The alternative mechanism selects one of the members M, as the representative R, and the
conditional proof justifications for the representatives remove all dependence of the

representative on the choice mechanism, that is, all dependencies of S; other than M,.

C. Hypothetical Reasoning

Je m'en vais chercher un grand peut-gtre.

Frangois Rabelais, Gargantua

In one form or another, a ma jor use of truth maintenance system; isin
hypothetical reasoning, the process of extracting information from the exploration of the
consequences of hypotheses. Such extraction is a necessary component of any problem
solving system which attempts to limit the extent of its forays into possible solutions, for
such systems must be able to decide a train of thought unfruitful, summarize the result of
the exploration, and try new hypotheses, while guiding the subsequent effort in light of the
information determined in previous attempts. Such abilities require the facility to discuss
with one set of beliefs, what would be true if other hypotheses were entertained. One

aspect of truth maintenance systems is the provision of mechanisms to support these forms

of behavior and reasoning.

The basic mechanisms employed in hypothetical reasoning are the ability to make
hypotheses, to summarize results in terms of hypotheses, and to reconcile existing beliefs
with new hypotheses. A truth maintenance system fulfills these requirements by providing
the ability to make premises and assumptions as discussed above, the ability to summarize
results by means of conditional proofs, and the reconciliation of beliefs and hypotheses by

means of truth maintenance and backtracking.

K|

Truth maintenance systems do not directly address some of the problems of
hypothetical reasoning. There is a large body of research on knowledge-based reasoning
concerned with the proposal of hypotheses and differential diagnosis between them.
(Winston 1970, Fahiman 1973, McDermott 1974, Rubin 1975, Kuipers 1975, Brown 1976] T hese
issues are beyond the immediate capabilities of truth maintenance systems because they
require knowledge of the semantics of facts, and such knowledge is not available to the

domain-independent methods described here.

The making of hypotheses is a straightforward application of the justification
forms described in the previous section. The balance of this chapter describes the topics of
summarization and reconciliation in discussions of backtracking, generalization, and

defining levels of detail.

32

D. Backtracking

“I should have more faith,” he said; I ought to know by this time that
when a fact appears opposed to a long train of deductions it invariably
proves to be apable of bearing some other interpretation.”

Sir A. C. Doyle, 4 Study in Scarlet

Systems engaging in hypothetical reasoning require mechanisms for reconciling
beliefs upon the introduction of new hypotheses. Two types of hypotheses can be
distinguished; speculative hypotheses and counterfactual hypotheses. Speculative
hypotheses are those which are consistent with existing beliefs and justifications.
Speculative hypotheses are useful when a lack of knowledge forces the making of an
assumption for the purpose of exploration. Counterfactual hypotheses, on the other hand,

contradict previous beliefs. Such hypotheses are useful in exploring the results of actions

and in deriving constraints existing in different worlds.

In the context of the computations modelled by the beliefs and justifications of a
truth maintenance system, there is an overlap between these two forms of hypotheticals.
This overlap results from the orientation of the truth maintenance system towards apparent
consistency. Since there is no imposed notion of negation in the belief system, any set of
belief's is considered consistent. It is thus the responsibility of the external system to

indicate contradictory sets of beliefs. Thus what may have originally been speculative

3

hypotheses may later be discovered to be counterfactual hypotheses requiring special

treatment. This treatment is called backtracking.

The general reaction necessary to counterfactual hypotheses and the
contradictions they induce is to determine the set of hypotheses so discovered to be
inconsistent and to resolve the inconsistency by rejecting belief in one or more of these
hypotheses until the inconsistency disappears. It is normally desirable to discard as few
hypotheses as possible, so the handling of counterfactuals has been characterized as the
selection of a maximal consistent subset of the set of inconsistent hypotheses. [Rescher 1964]
This process of selection is not amenable to a purely logical solution, since as far as logic
and truth maintenance systems are concerned, premises are independent of all other belief's.
This independence means that there are no inherent relations to other beliefs which can be

used in discriminating among premises in consistent subset selection.

Unlike premises, assumptions can be related to each other and to other belief's.
Assumptions can be related to the reasons for their introduction and to the specific lack of
information allowing their entertainment. Thus if an inconsistency is discovered involving
assumptions, the occurence of the inconsistency is information indicating not only that one
of the assumptions must be retracted, but also that belief is justified in one of the
unbelieved facts whose lack of valid justifications lead, by means of an assumption, to the
inconsistency. Because of this, the recognition of an inconsistency can be used to add

information which controls the introduction and consideration of further assumptions.

These mechanisms are embedded in truth maintenance systems in two ways. The
making of speculative hypotheticals and the necessary reconcilation of these hypotheses
with previous justifications for belief are handled by the normal mechanisms of non-
monotonic justifications and truth maintenance processing. The process of backtracking
becomes in a truth maintenance system the method of dependency-directed backtracking,
for the explicit justifications and dependency relationships provide the raw material for the

analysis and summarization of the inconsistent set of hypotheses.

There are several steps to the process of dependency-directed backtracking, the
first of which is the signalling of an inconsistency by means of a contradiction, a fact
justified by the inconsistent beliefs which the external system indicates to the truth
maintenance system as a focus for backtracking. All contradictions h;ve the semantics of
Jfalse, so there need be only one such contradiction fact, with new inconsistencies recorded as
new justifications for this fact. As far as the truth maintenance system is concerned,

however, there can be several representations for false, and so several contradiction facts.

The second step of backtracking is the determination of the inconsistent set of
hypotheses underlying the contradiction. Since the wisdom of premises and monotonic
Jjustifications is inscrutable to the truth maintenance system, the only hypotheses of interest

are those based on incomplete knowledge, that is, assumptions.

35

At this point one of the strong advantages of dependency-directed backtracking
over traditional methods is evident, for the hypotheses underlying a contradiction are
found by a simple recursive search of the antecedents of the coﬁtradiction. Because of this,
beliefs in other hypotheses not involved in the support of the contradiction are irrelev;n;
and are ignored in the choosing of a hypothesis for retraction and in the summarization of
the causes of the inconsistency. Because irrelevant hypotheses are ignored, a great many
sets of possible assumptions are automatically ruled out, thus preventing combinatorial
explosions due to independent assumptions. Staliman and Sussman [1976] illustrate this
with the example of transistor state-choices in electronic circuit analysis, where traditional
methods of backtracking would consider a number of choice sets the product of the sizes of
the independent choice-sets. The use of dependency-direction can reduce this to the sum of
the sizes of the independent choice-sets. On one six transistor circuit (which would require
3406 = 729 states using traditional backtracking methods), this process reduces the number
of contradictions to 2 when heuristic orderings are used on alternate choices. The number
of contradictions increases to only 13 when the worst choice is made in each decision. [G.].

Sussman, personal communication]

The third step of backtracking is tllme summarization of the inconsistency of the
set of hypotheses underlying the contradiction. This is accomplished by the creation of a
nogood, a fact signifying, if {A, B, .., Z} is the set of inconsistent assumptions, that
A A .. AZ> false,

or alternatively, that ~ (A A .. A Z). By justifying the nogood with a conditional proof of

36

the contradiction relative to the set of assumptions, the inconsistency of the set of
assumptions is recorded as a fact which will be believed even after the contradiction has

been disposed of by the retraction of some hypothesis.

The last step of backtracking uses the summarized causes of the contradiction, the
nogood, to at one blow retract one of the inconsistent assumptions and to prevent future
contradictions for the same reasans. This is accomplished by deriving new justifications
which will provide for belief in at least one of the facts whose disbelief enabled one of the
assumptions. This step is reminiscient of the justification of results on the basis of_ the

occurrence of contradictions in reasoning by reductio ad absurdum.

The above description has glossed over two points of some interest, the process by
which the inconsistent set of assumptions is derived, and the nature of the nogood-based

justifications. These topics are discussed below.

When contradiction strikes, the best cure may not be obvious. Although the set
of all assumptions supporting the contradiction is easily calculable, recording the
inconsistency of this set directly may be inefficient for several reasons. First of all, there is
a definite structure, a partial order, relating these assumptions. The partial order is derived
from the graph defined by the well-founded support relationship of one fact being an
antecedent-fact of another. When assumptions are examined in light of these relationships,

some assumptions will be independent of the other assumptions, and some will be

87

dependent on lower level assumptions, that is, some assumptions will have others among
their foundations. Given that the partial order relating assumptions is the only
information available to the backtracking system, it makes sense to only consider
assumptions which are maximal in this partial order. Subordinate assumptions, if retracted,
result in a greater loss of information than is necessary. This seems to be the only clearly
worthwhile criterion for selecting an inconsistent subset of hypotheses. Other
discriminations are possible, for instance, on the basis of assumption height in the partial
order, or on component size in the partial order, but there does not seem to be any clear

Justification for the use of either of these criteria.

Finally, the occurrence of a contradiction based on a set of hypotheses can be

used to construct new justifications for the out facts supporting the selected assumptions.
Let the inconsistent assumptions be 4;, ..., 4,,. Let §;;, .. §;; be the out facts among the
antecedent-facts of the assumption 4;. To effect the retraction of one of the assumptions,
Justify S; ./ with the predicate

(AND (IN NG Ap «eo AppApp ooe Ap) (OUT Sy oee Sy 0y Sy pg oee Spd).
This will ensure that the justification supporting 4; by means of this set of out facts will no
longer be valid whenever the nogood, NG, and the other assumptions are believed. This
process is repeated for each assumption in the inconsistent set. If the assumptions and the

contradiction, are still believed following this, the backtracking process is repeated.

E. Generalization and Levels of Detail

The lunatic, the lover, and the poet,
Are of imagination all compact.

William Shakespeare, A Midsummer Night’s Dream

An important characteristic of hypothetical reasoning is that results can be named
in terms of hypotheses through the mechanism of conditional proof. Such a naming has
two important applications in problem solving, those in generalization and in defining
levels of detail. Techniques for generalization are derived by discarding the names of
results once summarized, and levels of detail are defined by using the supporting

hypotheses as abbreviated names for the computations producing the resuits.

One ma jor technique of problem solving is to generalize from the solution to a
particular instance of a problem to a solution of the problem itself. This technique is
typically useful when a result holding for a range of entities is desired, but computations
can be performed only on specific entities. In such cases, conditional proofs may be used to
support the general result in terms of the justification of the specific result independent of
the specific entity used. For example, the EL electronic circuit analysis program requires
specific (numerical) input voltages to calculate circuit gains, although the computed gain is
valid over the entire linear region of the device. To compute the gain for all input

voltages, it suffices to compute the gain using a typical numeric value of the input voltage,

39

and justify the result on the basis of the support of this particular computed gain
independent of the specific iﬁ‘put voltage used. (This neglects the problems introduced of

the dependence of the computation on inequalities.)

This technique of énm!intion, however, is a special case of a powerful method
for separating levels of detail. This method uses the naming function of conditional proofs
to support results in terms of the methods uses to compute them (or, as in generalization,
independent of the methods used to compute them), thus summarizing the lower level of
detail by the name of the method which produced it. This application of hypothetical
reasoning is critically important iﬁ hierarchical systems employing truth maintenance, as
otherwise explanations of results involve all the detailed results at all levels of detail used in
computing the result. This not only produces incredibly long, incomprehensible arguments,
but also degrades the effecti\;eness of backtracking. In many cases, a resuit may be
computed by any of several alternate methods. If levels of detail are not separated,
involvement of the result in an inconsistency will cause the choice of method to be suspect,
and sub ject to retraction, even if the result is known to be independent of the choice of the

method by which it was éom;”:%ned.

The solution to these problems is to represent ob jects with substructure as follows.
The ob ject is separated into its type, its implementation choice, and a boundary which maps
connections to the ob ject to connections to the substructures. To separate the operation of

the substructure from that of the ob ject, the boundary maps transfer information from the

40

outside to the interior, adding the facts representing the ob ject and its implementation
choice to the dependencies of this information. The boundary maps transfer information
from the inside to the outside by means of a conditional proof. Specifically, the
information relevant to the outside boundary point is justified by the conditional proof of
the information at the inside boundary point relative to the implementation choice. By this
means, the only dependencies possible in the resulting outside information is in terms of the
ob ject, the choice of its implementation, and the information at the outside boundary

points. All dependencies from the internal structure of the ob ject have been removed.

By this scheme, contradictions involving the outside boundary points of the ob ject
can only cause backtracking through the implementation choice (if it is in fact an
assumption, or depends upon an assumption), and can never penetrate to the inside of the
structure of the object. Contradictions discovered by the internal structure of the ob ject,
however, can propagate outwards, possibly transferring the inconsistency to the first level at

which an assumption is present.

The following example demonstrates the use of this technique in a hierarchical
electronic circuit analysis program patterned after the EL program [Sussman and Staliman
1975). This new program is currently under development by G.]. Sussman, G. L. Steele Jr.,
M. Matz, and myself. The example has been simplified somewhat, but preserves the

pertinent aspects of the program’s operation.

41

The basis of the example will be the conservation of current by a resistor.
Resistors are modelled as devices with two constraints overlayed in parallel on the basic

resistor device, the constraints of 2-terminalness (conservation of current) and ohms-lawness.

(rule (st (type :r resistor))
(assert (type :r 2-terminal) (overlay :t))

(assert (type :r ohms-lau) (overlay :t)))

In this example we will ignore the ohms-law part of the resistor. The implementation of
the 2-terminal constraint is in terms of a lower level of detail, in which equations are
implemented as adder boxes and multiplier boxes connected together. The point of this
example will be to show how although the arithmetic box level of devices is used to
compute and propagate numerical constraints, the nature of this computation is
uninteresting from the view of 'higher levels dealing with electrical laws and devices, and

that the mechanism of conditional proof can be used to isolate the higher level of detail

from the lower.

12

(rule (1t (type :1d 2-terminal))
(assert (implementation :d (arithmetic-boxes 2-terminainess)) (method :t))
(rule (simpl (implementation :d (arithmetic-boxes 2-terminalness)))
(assert (type (kcl :d) adder) (part :t :impl))
{assert (map (current (#1 :d)) (al (kct :d)))
(make-map :t simpl))
(assert (map (current (#2 :d)) (a2 (kcl :d)))
{make-map :t :impl))
(assert (value (sum (kcl :d)) !0Or)

(implementation :t :impl))))

Here the 2-terminalness is implemented as an adder box. The constraint that the currents
of the terminals of the resistor sum to zero is effected by mapping each of the currents to
an addend of the adder box, and declaring the sum of the adder to be zero. These maps
will serve as the boundary separating the electrical level of detail, the currents on resistor

terminals, from the arithmetical level of detail, the connections of adder boxes.

13

{rule (:m (map :varl :var2))
(rule (:f (value :varl :val))
(assert (value tvar2 :val) (inmap sf sm)))
(rule (:f (value svar2 sval))

(assert (value svarl :val) (outmap :f :m))))

This rule sets up the channels by which pieces of information, in this case value assertions,
are transmitted across the map boundary. The inmap justification does nothing special; it
merely transmits the value across, adding the justification of the map in passage. The
OUTMAP justification is the fneans by which the mapping level is separated from the lower
level. The OUTMAP operates by picking up the implementation fact which the MAKE-MAP
justification (used in the previous rules) has attached to the map fact. The transmitted
value is then asserted on the higher level by means of the conditional proof of the lower
level value fact relative to the implementation fact. Since both the mapping structure and

the lower level internal structure depend upon this implementation fact, they are absent

from the resulting explanations.
As a particular example, we demonstrate the paséage of current through a resistor.
(assert (type rl resistor) (premise))

F-1 (TYPE R1 RESISTOR) (PREMISE)

F-2 (TYPE Rl 2-TERMINAL) (OVERLAY F-1)

F-3 (TYPE Rl OHMS-LAW) (OVERLAY F-1)

This defines a particular resistor, Rl. The next level of detail is then implemented.

F-4 ('IHPLEHENTATION Rl (ARITHEMTIC-BOXES 2-TERMINALNESS)) (METHOD F-2)
F-5 (TYPE (KCL R1) ADDER) (PART F-2 F-4)

F-6 (MAP (CURRENT (#1 R1)) (Al (KCL R1))}) (MAKE-MAP F-2 F-4)

F-7 (MAP (CURRENT (#2 R1)) (A2 (KCL R1))) (MAKE-MAP F-2 F-4)

F-8 (VALUE (SUM (KCL R1)) @) (IMPLEMENTATION F-2 F-4)

With the wiring of the resistor completed (the wiring of ohms-law and of the
adder have been omitted for brevity), we can specify the current on one side of the resistor

and examine the resulting explanations.

(assert (value (current (#1 rl)) 7) (premise))

F-9 (VALUE (CURRENT (#1 R1)) 7) (PREMISE)

F-18 (VALUE (Al (KCL R1)) 7) (INMAP F-3 F-8)

F-11 (VALUE (A2 (KCL R1)) -7) (SUBTRACTION F-5 F-18 F-8)

F-12 (VALUE (CURRENT (#2 R1)) -7) (OUTMAP F-11 F-B)

A query for the explanation of this last fact produces the following result, in which the

level of arithmetic detail is absent by means of the OUTMAP conditional proof of the

45

computed value, as given in F-11, relative to the implementation fact F-4. The conditional
proof is used to derive the set of independently supporting beliefs for the computed value,
and these are the facts used in the explanation. (The mechanisms for handling conditional

proofs and deriving sets of supporting beliefs from them are described in Chapter IIL.)

(explain *£-12)

PROOF OF F-12 = (VALUE (CURRENT (#2 R1)) -7) (OUTMAP F-3 F-6)

F-9 (VALUE (CURRENT (#1 R1)) 7) (PREMISE)
F-2 (TYPE R1 2-TERMINAL) (OVERLAY F-1)

F-1 (TYPE Rl RESISTOR) (PREMISE)

This example has indicated the usefulness of conditional proofs in clarifying
explanations by separating levels of detail. More important benefits are possible in
improving the information examined by backtracking systems. Just as concise explanations
are more useful to humans, improved explanation structures relating beliefs can ease the
task of dependency-directed backtracking, both by reducing the number of fact involved in
the support of a contradiction, an in isolating levels of assumptions reflecting the levels of
detail in the support of the contradiction. These techniques are still being developed,

however.

F. Comparison With Other Current Work

There are three ma jor areas of research relevant to the current effort, the
representation of knowledge about belief, hypothetical reasoning, and levels of detail, which

we discuss in turn.

Representing knowledge about belief has never been a very strong point in Al
programs. Many data base systems dealing with incomplete knowledge have adopted the
simple strategy of using three states of knowledge about a particular assertion. In these
schemes, an assertion can be explicitly stated to be true or false in the data base, with an
absence from the data base indicating an unknown state of knowledge. This scheme is
sufficient without the linking of beliefs to their justifications. Our non-monotonic
dependency scheme is perhaps the simplest extension of previous systems (particularly the
ARS system) which effectively allows belief's to be explicitly based on a lack of knowledge,

that is, upon an unknown truth value.

Perhaps the most sophisticated Al effort at understanding the nature of beliefs
was that of McDermott [1974]. Although his TOPLE program used little more than the
three-state belief system explicitly, it made heavy use of CONNIVER programs to decide
which belief's could be plausibly held and to construct complicated structures describing the
reasons for the necessity of certain sets of beliefs. This might be interpreted as the use of

learned, pattern indexed nogood sets, used to organize beliefs to avoid standard types of

17

contradictions and to construct the necessary beliefs. Unfortunately, CONNIVER programs
are not inspectable for causes of failures as are explicitly recorded justifications for belief.
In addition to efforts in artificial intelligence, there is also a substantial literature in
philosophical logic about the logics of knowledge and belief. Some of the systems, such as

that of Hintikka [1962], would seem sufficient to define the semantics of in and out.

Hypothetical reasoning has also been the source of much work in philosophical
logic. Rescher's [1964] classic monograph on the sub ject develops a theory of hypothetical
reasoning involving modal categories of beliefs. Such categories are intended to describe
the "strength of attachment” of the reasoner to premises involved in inconsistencies. Modal
categories are used to discriminate "preferred” maximal consistent subsets of sets of
inconsistent premises, that is, subsets which are reduced by discarding as few of the weakest
premises as possible to achieve consistency. Truth maintenance systems provide, of course,
the ability to determine those premises underlying a particular belief, but do not possess the
(domain specific) knowledge of the semantics of facts required to rank these premises in the
event of a contradiction. Assumptions, on the other hand, do admit a measure of
“fundamentalness” which the backtracking system utilizes. This is the measure derived
from the partial order among assumptions, which interprets the partial order as indicating
that non-maximal assumptions are more fundamental than maximal assumptions. This
measure is used to retract only the maximal assumptions to remove inconsistencies. This is
perhaps analogous to a dynamlcilly computed sef of modal categories for ranking the

strength of beliefs.

48

Hypothetical reasoning has been approached from several directions in artificial
intelligence research. The earliest approach was that of some mechanical theorem provers,
in which no backtracking occurred. The more traditional approach is that of domain-
independent automatic backtracking. This form of hypothetical reasoning includes blind
MICRO-PLANNER chronological backtracking and several more careful methods, such as
the unification-tree method of Cox and Pietrzykowski [1976], memoizing search [Greenblatt,
Eastlake and Crocker 1967], and dependency-directed backtracking, which is perhaps the

most sophisticated semantics-free automatic backtracking method possible.

An alternative approach to hypothetical reasoning seems to underlie the paradigm
advanced by Minsky [1974] for problem solving:
"The primary purpose in problem solving should be better to understand the problem
space, to find representations within which the problems are easier to solve. The
purpose of search is to get information for this reformulation, not - as is usually
assumed - to find solutions; once the space is adequately understood, solutions to
problems will more easily be found.”
Several recent efforts have developed techniques with this flavor, including the
“debugging” approach of gaining information through failures, applied with some success
in salvaging information from hypothetical situations. [Fahiman 1974, Sussman 1973,
Goldstein 1974] Other efforts, such as Winston [1970], McDermott [1974), Kuipers [1975], and

Rubin [1975), have focused on using information in unsucessful hypothetical explorations in

49

differential diagnosis between hypotheses.

There has also been a considerable body of research on developing hierarchical
structures for representing knowledge. Much of this has focused on recursively
embeddable structures, such as frames [Minsky 1974]. The primary concern of many of
these efforts, however, seems to be in mainly on the problems of muitiple description and
recognition, and little effort seems to have been devoted to elaborating mechanisms for
controlling reasoning in systems with multiple levels of detail. [Zdonik, S joberg, and Matz
1976] With the advent of dependency-based reasoning systems, it has become clear that the
interaction of control and description is an important consideration. A ma jor component of
this problem is that of structuring explanations to reflect the hierarchy of the computation,
so that each level is explained in terms of itself and higher levels, with indicators of the

structures at lower levels.

50

III. Truth Maintenance Mechanisms

A. Historical Introduction

The earliest recording of dependency information by Al programs is found in
mechanical theorem provers, in which justifications for beliefs were recorded in the form
of proofs. Unfortunately, the traditional preoccupation with consistency of theorem prover
designers seems to have led these efforts to ignore any possible uses of the recorded proofs.
Since beliefs can never become false in their monotonic systems, no attention was devoted to
methods for judging belief rather than truth. The ma jor use of the recorded proofs in
theorem proving programs has been in the use of records of variable unifications as
answer substitutions [Green 1969). Recently, somewhat more sophisticated uses of these
substitution histories have been used in improving theorem proving backtracking
techniques [Cox and Pietrzykowski 1976], but these still suffer from the tree-structured

environments produced by unifications.

Non-theorem proving automatic recording of dependency information is a rather
recent innovation. Systems such as those of Hayes [1975], Fikes [1975], and McDermott [1975]
recorded simple forms of dependency information, but made no sophisticated use of these
recorded dependencies beyond a simple scheme for erasing data. The first sophisticated use

and recording of dependency information seems to have been in the ARS system of

51

Stallman and Sussman (1976}, in which the method of dependency-directed backtracking
was introduced. This system was also the first to realize the importance of multiple
Justifications, well-founded support and circularities, and the use of primitive truth
maintenance. All of these systems will be discussed in more detail at the close of this

chapter.

This chapter presents the details of the representation for knowledge about
beliefs. The concepts of facts, justifications, in and out support-statuses, negatives,
antecedents, antecedent-sets, and consequences are introduced. Next, the question of weil-
founded support for belief is discussed, and the related concepts of supporting-antecedent,
antecedent-facts, supporting-facts, affected-consequences, foundations, ancestors, and
repercussions are introduced. With this structure for reasons for belief, the process of truth
maintenance is described. This is the process whereby beliefs are redetermined in
circumstances of gaining or losing information about reasons for beliefs. Some
considerations involved in the efficiency of this process are discussed, and the chapter
concludes with a comparison of this approach to mechanisms employing contexts or

situational tags, and to other dependency-based systems.

52

B. Facts and Dependencies

And there is no ob ject so soft but it makes
a hub for the wheel'd universe.

Walt Whitman, Song of Myself

The basic components of a truth maintenance system are facts, dependencies
connecting the facts, and processes for determining well-founded support for all beliefs in
facts. As described in Section ILB, facts are those components of program knowledge

which may be invested with belief and justifications.

Facts are not isolated ob jects, but are connected to each other by dependencies, the
relationships of antecedence and consequence in which belief in a fact is related with belief
in other facts by means of a justification. Justifications for belief in a fact have a simple
structure discussed below, but typically amount to sets of other facts such that belief in the
fact is justified if all the facts in at least one of these sets are believed. Belief in a fact
may or may not be supported by virtue of its justifications. If a fact is believed to be true
by way of its justifications, we say the fact is in, otherwise the fact is out. The distinction
between in and out is not that of true and false: rather the former represent the presence or
absence of knowledge supporting belief, and the latter actual truth value. For this reason,
all facts are intially considered out; that is, with no justifications, no beliefs are justified.

The inness or outness of a fact is also termed the fact’s support-status. IN and OUT are

53

predicates of facts which are true if and only if their arguments are respectively in or out.

Jﬁstiflmtions for belief in a fact are embodied in the antecedent-set of the fact, a
set of antecedents. Each antecedent provides one possible justification for belief in the fact.
Recording multiple justifications is important, as it both saves work when hypotheses
change, and avoids certain problems (discussed in detail in the following sections) relating
to circularities in justifications for beliefs. Because of these circularities, some schemes for
retaining a single justification for each belief can lead to permitting un justified beliefs in

some facts.

Two formats for the strucure of antecedents provide simple descriptions of most
forms of justifications. These two forms are called support-list antecedents (SL-antecedents)
and conditional-proof antecedents (CP-antecedents). SL-antecedents are just a pair of lists,
called the inlist and outlist, and are interpreted (and will be written) as the predicate (AND
(IN inlist) (OUT outlist)). SL-antecedents are valid if each fact of the inlist is in, and
each fact of the outlist is out. CP-antecedents consist of a fact (thg consequent of the
conditional proof), and two lists of facts, called the inmoduli and the outmoduli. CP-
antecedents will be written as the predicate (CP consequent inmoduli outmoduli), and are

valid if consequent is in whenever each inmoduli is in and each outmoduli is out.

Premises, then, are simply SL-antecedents with null inlists and outlists.

Deductions are SL-antecedents with null outlists, assumptions are SL-antecedents with non-

54

null outlists, and conditional proof are represented by CP-antecedents in the obvious

fashion (normally with null outmoduli).

The antecedents of facts are also used to construct other sets of dependency
relationships. The consequences of a fact are those facts such that the fact occurs in an

~ antecedent of each consequence. The CP-consequent-list of a fact is a list of all those facts

possessing a CP-antecedent with the given fact as the consequent of the conditional proof

antecedent.

C. Well-Founded Support Relations

Stallman and Sussman [1976] make the important observation that a supporting-
antecedent must be distinguished in the antecedent-set of each in fact, such that the
supporting-antecedent determines a proof of belief in the fact in terms of other facts with
well-founded (non-circular) support. This requirement of well-founded support is necessary
because circularities in dependency relationships arise in a large variety of circumstances,
particularly in situations involving simultaneous constraints on a number of ob jects. If not
handled properly, these circularities lead to un justified beliefs which both allow
unnecessary computations to be performed and confuse dependency-examining processes

like backtracking.

Consider, for example, the situation in which the fact f represents (= (+ x y) 4},
g represents (= x 1), and A represents (= y 3). If fis believed and g is supported, it is
reasonable to assume that some rule will justify belief in 4 with the antecedent (AND (IN f
g) (OUT)). This will cause 4 to become in. If the support for g is now retracted, due to
changing hypotheses, and if A becomes independently supported, the rule will then justify g
with the antecedent (AND (IN £4) (OUT)). If the independent support for 4 is then
retracted, the incautious strategy of reevaluating antecedent-sets one at a time would declare
both g and 4 as in, since their justifications are mutually satisfactory. By distinguishing
well-founded support, the situations requiring careful examination of support are

highlighted.

One might observe that the supporting-antecedent of a fact could be generalized
to a set of antecedents, each of which provides well-founded support for belief in the fact.
This, however, only causes unnecessary work. Since the fact will be believed as long as
there is at least one supporting-antecedent, there is no point in propagating involvment in
truth maintenance processing through the fact until the last supporting-antecedent is
invalidated. Recording muitiple supporting-antecedents fails to discriminate in cases where

only one supporting-antecedent becomes invalid but others are invariant.

To avoid doing more work than necessary, then, only one supporting-antecedent
should be distinguished. Furthermore, if several candidates present themselves as providing
well-founded support, the best choice is that antecedent which will be valid the longest.
This problem, like that of memory paging, is intractable in general, and so heuristics should
be employed to guess the best antecedent to use. One simple heuristic, the one used in the
programs of Appendix 3, is to choose the chronologically oldest of the possible antecedents,
on the theory that chronologically older justifications are likely to be more "fundamental” in
some sense, and so are less suceptible to change. Another device is to employ a self -
organizing heuristic [Rivest 1976] to order the antecedent-set of the fact. The current
research has not included any experimentation to see if benefits accrue from the use of
these heuristics, or to see which provides the better performance. One might also imagine
schemes by which facts had “certainty factors” attached, with the likelihood of a

Jjustification being computed from the certainty factors of the mentioned facts. Except for

57

those using actual probabilities, however, such schemes have had a reputation for

questionable semantics, and so have not been investigated in this research.

For the purpose of tracing through justifications, it is convenient to extract
another dependéncy relationship from the supporting-antecedents of facts. The antecedent-
facts of a fact are those facts w