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ABSTRACT

Route Deviation Bus Lines (RDBLs) constitute a hybrid between
traditional fixed-route bus lines and demand responsive,
dial-a-ride systems; they are viewed as a promising way to
combine responsive transportation services with high produc-
tivity.

We investigate the performance of Route Deviation Bus Lines
through development of some simplified probabilistic models.
The dependence of performance on such parameters as the
demand intensity at checkpoints, the magnitude and distribu-
tion of headways and the number of checkpoints are explored.

This study begins by describing the problem and then identi-
fies the different issues in the probabilistic analysis of
RDBLs with emphasis on the two generic processes of bus
systems: the arrival process of passengers, and the service
process. We derive closed form expressions for the one
call box case (Chapter III) and describe the way of solving
the two call boxes cases (Chapter IV) and then the n call
boxes case (Chapter V). Throughout this work we assume
homogeneous Poisson arrivals at the call boxes and indepen-
dent and identically distributed headways between buses.
Our analysis clearly demonstrates that relaxation of these
assumptions would have a major negative impact on the mathe-
matical tractability of our models. Several interesting
questions for further research are also identified.
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CHAPTER I

STATEMENT OF THE PROBLEM

I.1 Introduction

The goal of this thesis is to investigate the perform-

ance of Route-Deviation Bus Lines (RDBLs) through develop-

ment of some simplified probabilistic models. This can be

seen as the beginning of the evaluation of tools for

planning the operation of Route-Deviation Bus Lines.

RDBLs, some examples of which have already been

implemented in Europe, are viewed as a promising way to

combine the flexibility of demand responsive transportation

services with the higher productivity of traditional fixed

route bus lines. In addition to that characteristic, the

implementation of such systems stimulates the development

of new technologies-such as specially designed mini-buses,

call-box and checkpoint hardware, communications equipment

and system control software. As route-derivation bus line

technologies are intended to satisfy the service needs of

suburban locations and of middle- and small-size towns,

the potential market for these technologies would seem to

be very large.

So far the literature on this subject has been very

limited. Eric F. Peyrard [1] has recently reviewed the
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characteristics of existing systems in the U.S. and in

Europe and has completed an important research effort on

one of RDBL-based area-wide systems in Saumur, France.

However, to the extent of the author's knowledge, no

systematic analysis of the performance of such systems has

been performed yet. This was one of the motivations for the

the work reported herein.

1.2 Background

Route-deviation bus lines constitute a hybrid between

traditional fixed-route bus lines and demand responsive,

dial-a-ride systems. A schematic representation of a RDBL

is provided in Figure I.1. The line is designed to operate

as a fixed-route service between stations A and B most of

the time. However, one or more "deviation checkpoints"

(or simply, "checkpoints") have been established at some

distance from the regular route (see points C1 and C2 in

Figure I.1). These checkpoints are visited by a bus on

the route only in response to a demand which is made known

to the bus operator through some communications device.

The term "route-deviation" derives from the fact that a bus

must deviate from its regular route in order to serve the

checkpoints.

RDBLs are currently often mentioned by transportation

planners as one possible way of retaining some of the

flexibility of demand responsive transportation systems
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while at the same time achieving the higher productivity

and lower costs normally associated with fixed-route

services. RDBLs are most appropriate for adoption in areas

with demand of intermediate density, such as in suburban

locations. In denser urban environments, RDBLs could also

be used to serve specific locations generating infrequent

demands by special-needs passengers. For example, check-

point C1 and C2 in Figure I.1 might be the locations of

nursing homes or of clusters of housing for the elderly.

In such a context, it may not be worthwhile to design the

bus route so as to always pass from C1 and C2, but due to

the special needs of the infrequent passengers from C1 and

C2, it may be appropriate to retain the flexibility of

making a detour to these checkpoints, as needed.

Peyrard, in the first part of his thesis, reviewed

different hybrid services which can alleviate what he

called the dial-a-ride syndrome (low productivity, escalat-

ing costs, mediocre performance), then analyzed their main

features and selected route deviation systems as the most

promising ones. This selection has been made on the basis

of the evaluation of several existing systems which seem

promising in terms of technologies, operating costs and

patronage. The selected system has then been evaluated

through the case study of Saumur.

To date, RDBLs in the United States have developed

on a more or less ad hoc basis, primarily as "evolutions"

of dial-a-ride systems. A set of RDBLs, for example, is
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operating today in Natick, MA, and serves as a feeder to

the bus lines that leave Natick Common for downtown

Boston. Each route-deviation bus line at Natick (there is

one line for each of North, East, West and South Natick)

has designated stops which are visited only upon request

(made by telephone to a dispatcher). These optional stops

("checkpoints") have been located so that the great major-

ity of the population is within a short walking distance

of a checkpoint.

By contrast, West Europeans seem to be approaching

RDBLs in a more systematic way. In France, RDBL-based

area-wide systems have been operating over the last few

years in several middle-size towns around the country.

The Saumur system now in operation for nearly 4 years was

planned such that each call box has a service area of 250

meters of radius.

"At any time, there is only one bus heading in the

right direction on each line, this bus, of course, is

expected to pick up the passenger requesting service. In

a very special case (extreme delay) the dispatcher will

assign the next bus to a call box request but this is very

unlikely to happen." According to Peyrard the Saumur call

box system appears to be efficient, well planned and satis-

fying to users on both technical and social aspects.

These area-wide systems are apparently sufficiently

successful to prompt the Ministry of Transportation in

France to consider their implementation at many other
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locations. This has also stimulated development of new

call-box technology to facilitate the operation of the

systems.

In West Germany, an even more ambitious integrated

bus system, having a large RDBL component, is currently

being planned for the city of Hannover. The design of the

software and hardware for the system is the responsibility

of a consortium of three companies (MBB, Dornier and

Rufbus) all of which have been. involved in earlier West

German efforts in this field (at Friedrichshaken, Wunstorf

and West Berlin).

Despite the widespread current interest in RDBLs there

are no published materials on techniques for planning for

the efficient operation of such bus lines. Besides Peyrard's

work the only research we can cite is earlier works based on

simulation in order to compare various systems (Montgomery

[2], Englisher and Sobel [3]). These investigations provided

some insights on how carefully planned checkpoint RDBLs

can become an important aspect of an overall public trans-

portation system. This thesis will hopefully begin to fill

the need for more systematic study of RDBLs. More

precisely we will attempt to study how the performance of

a route deviation bus line is affected by such character-

istics as the number of deviation checkpoints along a

route, the intensity of the demand at these checkpoints,

the headways between buses, the location of checkpoints,

etc.
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1.3 Methodology of the Study

As pointed out in the previous paragraph we would like

to model the operation of a route-deviation bus line.

The service provided by this system faces two kinds of

uncertainties: first, as any other "more classical" trans-

portation system, it must deal with the variabilities which

characterize the operation (travel speed, traffic congest-

ion, headways, fluctuations in demand,...). The second

type of uncertainty which is specific to RDBLs is intro-

duced by the time of occurence and the number of demands

at the checkpoints.

In view of these uncertainties it is clear that any

model of a route deviation bus line must be probabilistic

in nature; furthermore, the principal motivation for sett-

ing up a RDBL is the fact that "with high probability", the

number of route deviations will not be large, meaning that

RDBLs involve probabilistic concepts by definition.

Thus, our major concerns will be to study the probabil-

istic behavior of a RDBL; this behavior will be evaluated

through the derivation (if possible) of the probability

distribution for the time length at a typical bus run.

The knowledge of this probability distribution as a

function of the demand at checkpoints and of the operation-

al characteristics of thefixed route bus line (associated

with the call boxes) may allow us to estimate many of the

parameters which might be of interest in planning for



RDBLs.

Before any attempt is made to derive some operational

implications of RDBLs such as the interface of RDBLs with

the rest of an area-wide transportation network, we have

to study the behavior of a single line; this is the aim of

this thesis.

In order to be consistent with the principle of

proceeding from the simplest situations, our methodology

will be to begin with the analysis of the one call-box

case. The complete understanding of this simple case will

allow us to derive results for the two call-boxes case

and then to generalize them to the n-call boxes case. As

we will see in subsequent chapters the derivations of our

results will depend on the assumptions we shall make on

such featurbs as the demand process and the line's opera-

tional characteristics. These simplified assumptions are

discussed in Chapter II which also describes some analyti-

cally difficult features of the real-world RDBLs.
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CHAPTER II

ISSUES IN THE PROBABILISTIC ANALYSIS OF RDBLS

II.1 Introduction

The need for a probabilistic approach for analyzing

Route Deviation Bus Lines has been pointed out in the pre-

vious chapter; besides the variabilities we face with all

real world transportation systems (travel speed, headways,

traffic congestion, fluctuations in demand, etc.) the

principal idea behind the use of probabilistic analysis

comes from the fact that "with high probability" the num-

ber of route deviations will not be large (motivation for

setting up a RBDL).

The model we would like to develop must include three

types of input variables:

1. The "geometry" of the situation (e.g. distances

between stops, distances between the fixed line route and

each of the deviation checkpoints, the number and location

of the candidate sites for establishment of deviation

checkpoints, etc.)

2. The average demand rates at each of the candidate

deviation checkpoints as a function of time of the day.

3. The operational characteristics of the line (e.g.

travel speed on the route, amount of traffic congestion,



planned frequency and headways at the starting points of the

bus lines during the course of a day, etc.)

To describe the operation of an urban bus system fully,

information must be supplied about the last two kinds of

input variables; specifically we need assumptions about:

1. the arrival process of passengers at the system;

2. the service process.

Given these input variables and this information, we

will calculate through our model the probabilistic pertur-

bations introduced by call boxes.

The rest of this chapter discusses current practices

regarding the assumptions about the two generic elements

of the system (arrival process of passengers and service

process) and evaluates them for the case of RDBLs.

11.2 Arrival Process of Passengers

11.2.1 General Assumptions on the Arrival of Passengers
at a Bus System

In urban service systems a lot of demand processes

have been modeled through a Poisson piocess; Poisson pro-

cesses are processes in which "arrivals" of demands are

distributed completely randomly in time. As Larson and

Odoni observed [1] the Poisson process can be used as a

reasonable model for the generation of fire alarms, police

calls and ambulance calls and is very often applied to

occurences of events such as requests for service, arrivals

-15-
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of vehicles at an intersection and so on.

The assumption of random arrivals of passengers has

been widely used in most of the research relating to tran-

sit systems and above all in the field of transit relia-

bility where these arrivals must be modeled in order to

determine the expected passenger waiting time. The in-

creasing concern with improving the quality of transit

service in urban areas through improvements in the "reli-

ability" of this service stimulated the development of

explicit relationships between passenger arrival behavior

at stations and the service characteristics. Empirical

evidence suggests that passengers often coordinate their

arrival times with the bus schedule in order-to reduce

their waiting time; O'Flaherty and Manoan [91 and Seddon

and Day [10] have provided data showing that under certain

conditions (published timetable for the service, buses

running at fixed times, "commuters") the bus and passenger

arrival times at the stop will be associated so as to

reduce the average waiting time. The expression for

average waiting time under the assumption of random arri-

vals of passengers is

E[W] = (1 + 2 2f)  (2.1)
E[H]

where:

E[W]: expected wait time for a randomly arriving

passenger



E[H]: mean headway between passage of buses

aH : standard deviation of the headway

The "awareness" of the schedule of service by some

passengers have been investigated in the studies of Okrent

[2], Jackson [3], Jolliffe and Hutchinson [4]. Turnquist

[5], and Bowman and Turnquist [6].

Okrent and Jackson estimated continuous distributions

(beta and gamma distributions) to fit some observed data,

(Okrent), attempted to estimate the share of "aware arri-

vals" and tried to estimate arrival rate functions for the

proportion who are aware of the schedule (Jackson).

Jolliffe and Hutchinson proposed a discrete model con-

sidering passengers to be of three types: a proportion q

whose arrival time is coincidental with the bus; a propor-

tion p(l - q) who arrive at the optimal time (the time at

which the expected waiting time is smallest); and a propor-

tion (1 - p)(1 - q) who arrive at random.

Turnquist tried to incorporate the effect of service

reliability on passenger into the study of passenger wait-

ing times.

Bowman and Turnquist highlighted the problems of the

previous models (lack of explanation of the mechanism

underlying the "aware" passenger's choice of arrival time

for the continuous distribution fit by Okrent and Jackson;

no guarantee of accurately predicting the magnitude of the

change in wait time resulting from changes in system

-17-
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performance for the discrete nature of the models developed

by Jolliffe and Hutchinson) and related the parameters of

the distribution of "aware" passenger arrivals to the ser-

vice level provided by the bus system. They derived a model

based on the limiting form of the discrete choice logit

model

eU (t)
f(t) = H e(2.2)

J HU(t)dt
0

where:

U(t) = utility of arrival at time t

H = scheduled headway

They calibrated their model testing the form

U(t) = a E[W(t)]b (2.3)

for the utility.

where:

E[W(t)] is the expected waiting time for an arrival

at t.

They concluded that their "passenger-choice arrival

model" indicates a much greater sensitivity to schedule

deviation, and a much lower sensitivity to frequency, than

does the random arrival model. According to them it also

provides a more plausible behavioral hypothesis than do

previous models.



Before concluding this general presentation we give a

schematic representation of the difference in the mean

waiting time between a random passenger and an "aware"

passenger (see Figure II.1). This is just an abstraction

of a possible situation and it is based on the following

assumptions:

1. For a random passenger the expected waiting time

is given by equation (2.1); it is well known that:
2

- for buses maintaining perfect headway aH = 0. Sub-

stituting in (2.1), we have

E[H] =E[] (2.4)

- for buses with completely random (Poisson) headway,

aH = E[H]. By substitution in (2.1), we have

E[W] = E[H] (2.5)

We assume that for bus systems the range of plausible

values of the expected waiting time of random passenger

E[H]
goes from -2- ("perfectly scheduled" system) to E[H]

(Poisson headway). Thus we exclude systems with irregular-

ity greater than the Poisson process (that is, aH > E[H]).

When the mean headway E[H] increases the buses tend to

adhere better to perfectly regular headways; thus we
2

assume that as E[H] goes to infinity aH goes to zero

E[H]2
E[H]H]

so E[W]·Y 2 for very large values of E[H].
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E [W

Figure II.1 Schematic Representation of the One Call Box Case

1 = E[W] function of E[H] for random passengers and random
headway for bus system (equation 2.5).

2 = E[W] function of E[H] for random passengers given by
equation 2.1 and with the coefficient of variation

2 / 2
H /E [H] approaching 0 as E[H] increases bus system
between random headway and "perfectly scheduled" headway)

3 = E[W] function of E[H] for random passengers and
"perfectly scheduled" bus system (equation 2.4)

4 = E[W] function of E[H] for "aware" passengers and bus
system as in 2.

I
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Inversely when the mean headway E[H] decreases, the

buses tend to have completely random headways; thus we

assume that as E[H] goes to zero, aH approaches E[H]
2

(random headway) so the coefficient of variation aH
E[H]

goes to 1 and E[W]~E[H] for very small values of E[H]

(typical values are under 5 minutes (Turnquist)).

2. We have seen that passengers may coordinate their

arrival times with the bus schedule and reduce their wait-

ing time. We expect that for these "aware" passengers the

mean waiting time will be less than the expression given in

equation (2.1). However, the ability of users to do so

will be related to the reliability of the service; as this

reliability decreases with the mean headway (indeed, in

this case we have seen that the buses tend to have complete-

ly random headway) we assume that for small values of E[H]

all passengers are random passengers. It is only when E[H]

will be large enough to ensure some reliability, that we

begin to have "aware" passengers and thus a distinguishable

curve for them. (12 minutes is a value for E[H] given by

Okrent).

To conclude we can say that in the case of "aware"

passengers we face a much more complex process which in

fact becomes a clustered process: the next arrival of a

prospective passenger is much more likely to occur just

after the previous passenger's arrival; this is due to

the tendency of passenger arrivals at the stops to be
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grouped around the time corresponding to the known

schedule. One example of a process with such probabilistic

properties is the Negative Binomial Process.

11.2.2 Specification of Checkpoints

We have seen in Chapter I that by definition RDBLs are

most appropriate for adoption in areas with demand of inter-

mediate density such as in suburban locations, or in denser

urban environments for infrequent demands by special-needs

passengers. In both cases we can expect that the number of

route deviations will not be too large. We can also reason-

ably expect that the behavior of these passengers will be

different from those observed at fixed stops; indeed the

conditions required by the checkpoints system for its possi-

ble passengers are closer to those for demand responsive

systems rather than to those set by conventional fixed

route line. That is, the prospective passenger is more

likely to consider this service as a demand responsive one

(according to whether he will make a call or not, the bus

will make a deviation to pick him up or not) rather than a

prescheduled fixed route service. Thus, we feel that in

this case it is appropriate to ignore the complications

arising from the existence of "ajare" passengers and to

assume quite reasonably that passengers at checkpoints

arrive randomly. Though this cannot be completely true in

a real-world system, we think that a Poisson process for
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modeling the arrival of passengers at checkpoints can re-

main the basis for our model.

The average demand rates at each of the candidate

deviation checkpoints wid1- be a function of time of the

day; in an urban context we can assume that these average

demand rates A (t) are periodic with period r = 24 Hr. Thus

we can define subperiods during which the variations of

A(t) are-weak enough to allow us to derive a model for each

subperiod with the assumption of a homogeneous Poisson pro-

cess with rates X.

The last assumption we will make is the independence

of the arrival processes at different checkpoints. Though

convenient and somewhat reasonable for such a system (where

the demand this system typically addresses is relatively

low), we must be aware that it may not be entirely true. In

practice, we may indeed find statistical correlations (posi-

tive or negative) between demands at various checkpoints.

II.3 The Service Process

This section presents the assumptions we will make for

the operation of buses on the fixed route. We then discuss

the perturbations introduced by the checkpoints and finally

the general assumptions we will make for the construction

of our model.
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11.3.1 Assumptions About the Fixed Route

a. Time Spent by a Bus on a Route

To be consistent with the notation generally used in

the literature (e.g. Chapman [7]), the time spent by buses

in service on the road is referred to as the bus journey

time. Bus movements along a route can be analysed in terms

of three components: time at bus stops, time between bus

stops (travel time) and time at terminals. Time at termin-

als is usually less than 10 per cent of the journey time

(Chapman) and a major part of it is intended to allow for

variations in the other components of journey time; so we

will assume that the bus journey time refers to time at and

between bus stops, but not time at terminals.

Mean Time at Stops

The time spent by a bus on a route at stops is to

allow for passenger boarding and passenger alighting and for

opening and closing bus doors. Depending on the number of

passengers boarding or alighting it has been found that the

time spent at a stop by a bus is usually a linear function

of the number of passengers boarding or alighting.

We have the following formula:

T = C + Bn (2.6)

where:

T = stop time

C = Constant (often called dead time)
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n = number of passengers boarding or alighting

B = estimate of the marginal boarding or alight-

ing time taken by an extra passenger to

board or alight.

The proportion of bus journey time spent by a bus at

a bus stop will depend on the number of stops on the route,

the boarding and alighting time of passengers and the pas-

sengers loadings (vary throughout the day).

Mean Time Spent Between Stops

The mean time spent between stops is the bus travel

time (excluding time at stops). The proportion of bus

journey time spent by a bus between stops will depend on

the speed of other traffic on link, road design, probability

of delay, amount of time in each delay.

The overall speed of buses, including stopping time at

bus stops, is referred to as the journey speed.

The travel speed (mean travel speed) is the length of

a section of route divided by the bus travel time (exclud-

ing time at bus stops) over that section. Chapman found

that the journey speed is typically about 4 km/h lower

than the travel speed (according to a summary of bus surveys

in various areas).

b. Sources of Irregularity

From our discussion so far, it is clear that we have

several sources of variation for the time spent by a bus on



-26-

a route:

- at bus stops = different numbers of passengers board-

ing (alighting), different boarding

(alighting) time;

- between stops = different travel time, different

amounts of traffic delay.

All these cause variations in bus headways which are

amplified along the route (bus bunching mechanisms).

Chapman showed that during the morning peak period on

a Newcastle-upon-Tyne bus route the main features of the

variations included in order:

1. variation in time spent between stops (variation

in queue delay);

2. variation due to the probability of buses stopping

at bus stops

3. variation at bus stops.

c. Assumptions About the Speed of the Vehicles

We have seen two definitions relating to the speed:

the journey speed and the travel speed; journey speed is

likely to have greater variations than the travel speed

due to the added variations in time spent at stops, and

constitutes what we will call the speed of the bus.

For any given fixed route, we shall define a random

variable S representing the speed of the bus, and its

probability density function fs (s ). This random variable

S (for one bus) depends on the location of the bus along
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the route and the time during the day when it makes its trip.

Formally if the variables Z,t represent respectively

the position along the line (0<£ < L) and the time of the

day, then the speed of the bus is given by the pdf fS(£,t)(so).

The pdf fs(zt) (s ) can be assumed to be identical for

any bus on the system (in other words, we do not include

variabilities due to bus types, driver behavior, etc.)

If we consider that we have a "homogeneous" fixed route

(that is, either CBD line or suburban line but not a mix-

ture of those) then we can reasonably assume that the ran-

dom variable S((£,t) does not depend strongly on the location

along the route and then can be assumed to be constant

according to Z: S(£,t) = S(t).

We can also assume that we can divide the day in

"homogeneous" periods (e.g. morning peak period, off peak

period, evening peak period) and then estimate for each

period only one random variable S which does not depent on

t.

Finally, with these conditions, we can derive for each

bus a probability density function fs (So).

Furthermore, we have seen that the assumption of an

identical distribution of random variable S1, S2, S3"'

S3....,Sk *.... representing respectively the speed of the

first, second, third,...,k th ,....bus is reasonable (all of

those functions being derived for a given fixed route and
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a given period of the day).

The assumption of independence between these random

variables is stronger; indeed the speed of a given bus will

be correlated with the speed of the previous bus because of

the components of time spent by a bus on route (see above)

and their variabilities (for example, because of the varia-

tion of passenger loads, the time spent at bus stops will

not be independent; in other words, the probability of

stopping at a fixed stop for a given bus will depend on

what the previous bus did and thus its journey speed will be

affected.).

But if we assume that the spacing of bus stops is such

that the occurence of passenger arrivals and of passenger

alighting are sufficiently high to ensure that almost all

buses stop (wihich is a possible way of reducing variability

in journey time caused by time at stops) the assumption of

independence will depend mainly on the traffic conditions

between stops. Here again the "homogeousness" of the route

and the application to a specific period of the day will

allow us to consider the within-variation sufficiently small

to keep the assumption of independence valid.

Under these condtions we can go a step further and

assume for a given area and a given subperiod of the day

that these random variables can be reasonably estimated by

using the average ourney speeds = s (identical for all

buses).
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d. Assumptions about the Headways

We have seen that variations in journey time due to the

sources discussed previously cause irregularities in bus

headways; the kind of variations we are talking about are

not systematic and cannot be predicted to a great extent.

Then we can think of bus headways as also being random var-

iables. We will use Hk to denote the random variable that

represents the time interval between the passage of the kth

and k-lth bus from a given point.

Using the same arguments as for the speed we can assume

that for a given area (given route) and given period of the

day (both being "homogeneous") these random variables are

identially distributed with a pdf fH(h).

The assumption of independence between successive head-

ways is more difficult. Indeed in addition to the same

considerations as for the journey speed, the dependence be-

tween bus headways is amplified along the route by means of

the bus bunching mechanism. However, the assumption of

independence between headways is very often indispensable to

obtain a tractable model.

Newell and Potts [8] have suggested that the pairing of

buses is primarily caused by the variation in the time taken

to load passengers. They considered a service of buses

which leave at regular intervals to pick up passengers in a

city during a busy period. In the mathematical model of the

pairing of buses, they showed that two "passenger rates"
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play an important role, namely the rate at which passengers

arrive at a stop, and the rate at which passengers load on

a bus. The ratio of these two rates, a dimensionless con-

stant, determines the strength of the tendency of the bus

to pair. The smaller this ratio the slower will be the

amplification of this tendency, and the better will be the

approximation given by the assumption of independence be-

tween headways.

In the derivation of our model we will consider a gener-

al distribution, if possible, for our headways. The assump-

tion of perfect scheduled headways Ho will be a convenient

one for beginning our analysis but is very difficult to

support even if we assume the conditions given above about

the homogeneity of the operation of the line. Its interest

resides in the tradeoffs between the difficulties of the

real world and the simplifications needed for a tractable

model. However it should be emphasized that this last

assumption (perfectly scheduled headways) must be viewed only

as a way of obtaining insights into the proposed problem

and that the need for a general distribution is indispensable

to represent the reality to an acceptable degree of

approximation.

II.3.2-Irregularity Introduced by the Checkpoints

We have seen (Chapter I) that checkpoints are.establish-

at some distance from the regular route and are visited
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by a bus only in response to a demand. So each time a

request arises at these checkpoints the bus which will res-

pond to this demand will undergo a change in its mode of

operation.

Since the system is designed to make a small number of

deviations, the number of buses affected by this will have

to be not too large. However it is worthwhile for us to

understand the two main effects of these deviations.

First, we will have to consider the time spent at route

deviation stops; we know that the time spent by a bus on a

route at fixed stops is due to three factors: passengers

boarding, passengers alighting, and opening and closing of

doors. In the case of checkpoints stops, where boarding

events govern the stop time, the formula given by equation

(2.6) can be approximated by a constant: T1; indeed, by

definition of a RDBL the ratio indicated by Newell and

Potts (ratio of passenger arrival rate to passenger board-

ing rate) will be small and so will be the variations of

time spent at these checkpoints for different buses.

The second effect is introduced by the penalty for

stopping. If the cruising speed is v, the average decel-

eration b, and the average acceleration a, then the penalty

for stopping is given by

v 1 1S ( + ) (2.7)2 a b

(assuming that the bus stops are not closer together than
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v2 1 1
-- ( + !); otherwise buses could not reach their cruising2 a b
speed v before having to slow down for the next stop). Here

again we can assume that this is a constant T2 for all buses.

Thus for the derivation of our models, each time a bus

makes a deviation, in addition to the time needed to go to

the checkpoints (travel time), we will add what we call a

dwell time which will be td = T1 + T2.

II.4 Overall Assumptions

Before concluding Chapter II we summarize our overall

assumptions concerning the conditions under which we will

derive our models.

11.4.1 Ridership

We will consider the demand

in our model; in other words, we

ship, that is, not influenced by

as fares, levels of service, etc.

tion can be seen as reasonable ir

time in which we will explore the

11.4.2 Bus Capacity

variables as a given input

will assume a fixed rider-

any characteristics such

Obviously, this assump-

i the short run, lapse of

RDBLs.

We will assume that the capacity of buses is suffi-

ciently large so that a prospective passenger, at any

checkpoint along the route, during any time of the day, can

board the first vehicle which responds to this demand.
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This assumption avoids the difficulties which could arise in

case of capacity constraints; namely, the waiting time of

the passenger at the checkpoint would increase, the oper-

ating strategy would become more complicated and above all

the behavior of buses would become less "predictible" even

in probabilistic terms (indeed, in case of a capacity con-

straint, the probability of making a deviation for a bus

would not be simply related to the probability of having a

request) introducing more complexities in the deviation of

our results.

In the real world the determination of capacity (system

capacity) is the result of tradeoffs between users ("level

of service") and operator ("cost of providing this level of

service") and it is true that such guarantee (no capacity

constraints) is not always met along the whole route ("over-

load" section) or during all periods of the day ("peak"

period).

However for our purposes, by assuming a "homogeneous"

line (e.g. CBD only) and by isolating "homogeneous" periods

during the day (e.g. peak period) we can assume that the

level of service for each period may approach our theoreti-

cal situation of infinite capacity.

II.4.3 Control Strategy

Our "standard" operating behavior will be the following:

in case of a request at one checkpoint, this checkpoint will

be visited by the next bus on the route (this bus being
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either on the fixed route, or proceeding on a deviation to-

ward this checkpoint in response to a previous call, or

already at.this checkpoint).

We may note that implicit in this strategy is the

assumption of infinite capacity of the bus; we must empha-

size also that this "strategy" implies that a single and

isolated call (in time, at a given checkpoint) makes the

deviation necessary for the next bus.

Alternative strategies might be to place a lower bound

on the number of calls at a checkpoint before a deviation

can be made toward this checkpoint (decreasing the operat-

ing cost but increasing the waiting time of passengers at

call boxes); or one might place an upper limit on the number

of deviation checkpoints that can be visited during any

single trip no matter what the number of requests is; or,

one might establish that some combinations of checkpoints

will be given priority over other combinations.

However it seems reasonable to first look at our

simple "standard" strategy before going through these al-

ternative strategies (certainly more appropriate for a

real world system).

11.5 Conclusion

We have reviewed in that chapter common problems for

the operation of buses and specifically studied the two

generic processes of a bus system:
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- arrival process of passenger at the system

- service process.

We have noted the strong interdependence between these

two processes: the arrival process of the passenger depends

on the reliability and frequency of the bus schedule and

this reliability depends on the arrival process of the

passengers.

By decomposing each process we have been able to

explain the assumption we are going to use in the next

chapters.

We will derive closed form expressions for the one call

box case in Chapter III and will describe the way of solving

the two call boxes case (Chapter IV) and then the n call

boxes case (Chapter V) next.
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CHAPTER III

ANALYSIS OF THE ONE-CALL BOX CASE

III.1 The Problem; Introduction, Notation

III.1.1 Introduction

A schematic representation of a simple route-deviation

bus line with one call box (or "deviation checkpoint",) is

given in Figure III.1. The general operating characteris-

tics of RDBLs are described in Chapter I (1.2).

Assuming that we know the characteristics of the fixed

route bus line without deviations (that is, the effective

travel speed of the vehicles, the headways between buses)

we would like to study the probabilistic effects introduced

by the perturbations of a call box. As pointed out in

Chapters I and II the effects introduced can be estimated

by deriving the probability mass function of the random

variable "time between A and B for a given bus".

Before introducing our notation it is important to

clarify one additional point regarding the operation of

RDBLs We have seen in 1.2 that the call box is visited

by a bus on route only in response to a demand made known

to the bus operator (and then bus driver) through a

communication device. It will be assumed in all the

following chapters that the technology chosen allows direct
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communications between the demand and the bus driver. It

will be assumed that a demand is known instantly by the

bus driver currently driving the bus. Thus, the bus

driver will be able to respond to this demand as long as he

is still either waiting at A to depart on his route or

driving between A and G (see Figure III.1). If this

demand were not known instantly we would have to consider

only the length AG1 to be a possible field of reception

(G' being the point along the fixed route after which a

bus driver would not be able to respond to a demand; that

is, if the bus driver is between G1 and G1 when a demand

arises, this demand would not be accepted by this bus).

The assumption of instantaneous communications allows us

to consider GIG1 as negligible,

III.1 Notation

a. The Geometry of the Situation (see Figure 111.2)

Without loss of generality we can assume that the bus

goes to C, picks up passengers there and then comes back

through the same route; with reference to Figure III.1, we

have assumed that G1 and F1 are the same (G in Figure

111.2). The reason is very simple: the only thing that

matters (with respect to these distances) is the distance

added through a deviation. In terms of probabilistic

behavior this added distance is a deterministic value

(that is, the route chosen to go to the call box is defined
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as fixed) and thus the above assumption is only made for the

purpose of making the derivation as simple as possible.

Our geometrical parameters are then reduced to the

following three:

L = distance of the fixed route between the two

fixed stops A and B;

Z = distance of the fixed route between the fixed

stop A and the point G where the possible

deviation begins;

y = distance added by a deviation; Y is two

times the distance between G and C.

b. The Demand Characteristics at the Call Box

As explained in Chapter II (11.2) we assume that the

arrival of requests at the call box is described by an

homogeneous (non-time dependent) Poisson process with an

average demand rate X.

c. The Operational Characteristics

As described in Chapter II (II.3) our assumptions are

the following:

We assume a constant effective travel speed so for

all the buses; thus, we will call to = - the time needed
o

by a bus to go from A to B without deviation.

- The headways between buses are described by the

random variable Hk k = 2, 3, 4.... Hk = number of units

of time the kth bus will start after the k-1th bus from A.
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We assume that the random variables H k = 2, 3, 4.... are

independently and identically distributed with a probability

density function fH (h).

d. The Probabilistic Modeling Experiment

We start observing the system at t = 0; we assume that

at this time the first bus starts from A and that before

t = 0 no requests were registered.

The random variable of interest is Tk: this is the

time duration of the kth trip between A and B (including

or not including a deviation).

So what we want to find is the probability mass

function fTk (t) of the random variable Tk for k = 1, 2, 3,

4,.... We denote as Vk the event: "there is a deviation

during the kth tri'; and p(Vk) represents the probability

that the event V occurs; we will note V the complement
k k

of event Vk

e. Summary of all the notations: (see Figure 111.2)

L = length (distance) of the fixed route between

the two fixed stops A and B;

Z = distance between A and G;

y = average demand rate of the Poisson process

modeling the arrival of requests at the call

box C.

so = constant effective travel speed for all buses.

Hk, k = 2, 3, 4,.... = headway between the kth trip
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th
and the k-1 trip at A;

f H(h) = probability density function of the headways;

Tk = random variable time between A and B for the kth

trip (including or not a deviation);

V = event: "there is a deviation for the kth trip";
k

p(Vk ) = probability of occurence of Vk

t = dwell time at call box C (time to account for the

process of picking up passengers);

E [ ] = expectation of the random variable used in

argument.

III.2 Case With a Deterministic Headway

It will be assumed in this section that H = Ho k =

2, 3, 4,...., In other words, the headways between success-

ive buses are considered as deterministic variables, all

equaled to the constant Ho

III.2.1 Derivation for the First Bus

We have two possibilities for T1 the random variable

representing the time between A and B for the first bus.

Either we have no deviation and then t = t = - oro0
we have a deviation and then t = t + + t +

o o

(when we have a deviation the bus covers the additional

distance Y at a speed so and the dwell time td must be also

added). We have now to determine the probability of these

events; the first one corresponds to V1 and the second

to V1 .
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We have:

there is at least
one call during the

p(Vl) = Pr (there is a deviation) = Pr time the bus is
between A and G

The time between A and G is - and as we have a Poisson1 s0

Process with rate X.

rthere are no callse =1 e
p •)during /s

p(l1 ) = 1 - p(V 1 ) = e

(3.1)

(3.2)

So the probability mass function (pmf) for T1 is described

by:

s
e

if t = L
so

fT (t)
11 if t= L+Y +tdS0

otherwise

The expected value of T1 is given by:

-X -Xz
s sL o L+ )(e

E[T 1 ] = - (e ) +( + td)( - e )
o o

s
-e (3.3)

A
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-X

or E[T =(- + td ) [ - e o + L1 so d s
0 0

We can easily check that if:

1. A = 0 (never requests at C)

then

L
E[T] s toos0

(time without deviation)

2. A ÷ + - (always requests at C)

lim E[T I ] = L+y +I s t (time without deviation)

The variance of T1 is given by aT
1

2 = E[T 12 ] - E[T

and we obtain

-Xk -Xz
s s

2 = ( + t)2(e o)(1 e o) (3.5)T s c1 o

III.2.2 Derivation of f Tk,k = 2,3,4...T

According to the previous section (III.1 2)d) and

since we have a constant headway Ho between successive

buses, we know that the second bus starts H0 units of time

after the first bus from A. Then the third one starts H

(3.4)
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time units after the second and so on. In order to fully

describe the behavior of the second bus (or more precisely

of the second trip) we have to introduce conditional prob-

abilities. Indeed, depending on what was done by the first

bus the results for the second will differ. So we will

have to determine p(V 2 1V1 ) and p(V2 V1 ) where:

p(V2 1V1 ) = probability that the second bus makes a

deviation (given that the first bus made one)

P(V 2 IV1 ) = probability that the second bus makes a

deviation (given that the first bus did not

did not make one)

To understand why the event V2 depends on what the

first bus did let's look at the difference of time which

separatesthe two buses at point G: (see Figure 111.3 for

a graphical explanation).

- if the first bus did not make a deviation, the

second (which behaves like the first in terms of its speed)

will arrive at G exactly Ho times after the first one, and

since we have a Poisson process modeling the demand at the

call box, the probability of deviation for this second bus

will simply be the probability that we have at least one

request at C during these H units of time.
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At a given t the first bus arrives at G

(Ho units of time separate the second bus from
the first

Ho (time)

second bus
tG

first bus

At t + dt

if we have a deviation:

dt/

H,-dt

(A new call at this time is still answered by the first bus)

if we have no deviation:

Ho-dt 4t
t e-

(The new request will be answered by the second bus)

Figure III.3 Schmatic Representation of the Dependence
Between Successive Buses
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so pCV2 1V) = Pr at least one request during H =

1- Pr I no requests during H4

thus -AH
pLV 2 1V) = 1 - e (3.6)

- if the first bus made a deviation, the second will

still arrive at G exactly Ho units of time after the first

one did; but two situations can be possible:

1. either H is smaller than the time required to go
Y

from G to C (that is so ) plus the dwell time required at

C (that is td). In that case the second bus will pass G

before the first one will leave C and so all the possible

requests for the second bus will be answered by the first

one

thus P(V 2 1V1) = 0 (3.7a)

2. or H is greater than + t . In that case theo 2s d

probability of a deviation for the second bus will be the
Y

probability of having at least a request during H - 2s° - td

(length of time between the instant the first bus leaves

C and the instant the second bus reaches G).

-X H o-2 - td )o 2s d
0

PlV21V1 ) = 1 - ethus (3.7b)



New assumption:

We have seen (equations C3.7a) and C3.7b)) that

0 2s dd= 1 - e 0

P(V2 V1) =1
0

y
if Ho>2s + td

if H Y
o 2s + t d0 d

Let's assume that H + t
o 2s d

o

That means that the 2n d bus will never make a deviation if

the first one made one; so for the third bus we have only

one possibility: p(V 3) = p(V3 1V2 ). But this probability

depends again on what did the first bus and on the value of

H (2Ho>  + td or 2H°  2s+ td)
o o 2s d o 2s do o

For the purpose of this thesis we will address only

the case where H > + t
o 2s d'

As V1 and V1 are complementary and collectively ex-

haustive we have

p(V 2 ) = P(V 2 1V1 )pCV1) + P(V 2 1V1 )p(Vl)

or, using p(V 1) = 1 - pCV1)

p(V 2 ) = p(V 1 ) (PCV2 1V) - P(V 2 IVl)) + P(v 2 Il)

The pmf for T2 is then described by:

(3.8)



p(V 2 )  if t L + + td

f~ t) V2 = 1 pV 2  if t (3.9)
2 o

0 otherwise

where P(V 2 ) is given by substitution of (3.1), (3.6) and

(3.7b) in (3.8).

The reasoning that we have just applied between the

second bus and the first one can be applied between the

third bus and the second bus and so on. Because of the

way the system is operated (every bus starts, from A,Ho

time units after the previous one) we can easily see that

p(V3 1V2) = p(V2 1V1)

p(V3J 2) = p(V2 lVl)

and that for k = 2,3,4....

P(VklVk-1 ) = p(V 2 1V1)

p(VkVlk-1 = pCV2 1V) (3.10)

Thus in writing equations C3.8) between the kth bus and

the k-lth bus we obtain

P Vk) k- ) P VkVk-l) PkV +

p(VkVk-1)

and in using (3.10) we get for k = 2,3,4,....

p (Vk ) = P(Vk-1l)[P(V2 V) - (V2 1Vl)] + p(V21V 1)
(3.11)
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To simplify the notation, let us call

p(V 2 1VI) = Qo

pCV2 IV1) = Ro

Using (3.11) for: k = 2, we obtain

P(V 2 ) = P(VI) (Qo - Ro) + Ro

k = 3, we obtain

p(V 3 ) = P(V2)(Q - R ) + R = (p(V 1)(Q - Ro) + R ) x

(Q - Ro) + R
0 0 0

or

p(V 3) = p(V 1 )(Q - R) + R 2 + (1 + Q - R )

k = 4, we obtain

p(V 4 ) = p(V 3 ) (Qo - Ro) + Ro = ((V 1) Qo - Ro) +

R (1 + Q - Ro) (Q - Ro) + Ro0 0 o 0 o o

or

P(V 4) = PVl)(Qo- Ro) + Ro (l + (Q - Ro +

(Q - R ) 2 )

Thus we can easily see that

k-2

P(Vk) = p(V 1 (Q0 - Ro)k-l + Ro( Q - Ro)m)
m= 0 (3.12)
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If we now recall that

p(V 1 ) = 1

Qo = 1 - e

R =l-eo

-Ak
s

o
- e

-A (H - Y t)o 2s d

-.H

we can check that:

I. if I = 0 (no demand at the call box at any time)

p(V 1 ) = 0 Q = 0 Ro = 0 so pCVk) = 0 (reasonable)

2, if X++m (always a demand at the call box)

lim p(V ) = 1
1

lim Q 1A- +o
lim R = 1
-++o o

lim (Vk) = 1X-*.+O (reasonable)

Having derived p(Vk) the probability of deviation of the

kth bus (or kth trip) we have

f (t) =

1 - p (Vk)

p (Vk)

0

L
s

otherwise

(3.1)

(3.7b)

(3.6)

if t = L + Y + td
S

0
(3.13)
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III.2.3 Study of p(Vk) as k Goes to Infinity

One important question would be to know if PCVkL

reaches a limit as k goes to infinity; in other words, does

the system reach a kind of steady state where the probabil-

ity of deviation would be this limit?

Subtracting equation (3.7b) from (3.6) gives us:

-XH
Qo - R = e 0
0 0

-X (H - Y -o 2s td)
- e

thus -1 Q - R 0

If we define Wo = Ro - Q we have:

k-2

p (Vk) = (-1)k- P(V 1 )Wo + m

m=0

(O0 W 0 1)0

but,

k-l
lim (-1) k-1 W

k-*+oo

= 0 (0oW <l)

and as

lim x Xk
o

m=O

1
l-X

o

for IXIl 1

we finally obtain (taking X = -W )o o

(3.14)

(3.15)
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R .... Rlim pCVk 1 0k+k 1oo 0

Furthermore, since 0<Q <1, then 1 - Q > 0 and
0 0

R + 1 - Q >R !0 meaning *that

0 1 + R - Qo0

So when the "st.eady state" is reached the probability of

making a deviation for a given bus is given by lim p(Vk) =
k+wo

where

R

1 - R - Qo0 0 -XH
o1 - e

-XH
1 -e

-XH -

+ e o

We can check that if:

I." X =0

2. X-+oo

P = o (no demand, so no deviation)

(always a demand, always a deviation)

3 + t d <<Ho Y
3. 2s d 2s + t d negligible compared to H )

0 0

-XH

then P is approximately equal to 1 - e -which is the

probability that a given bus makes a deviation given that

the previous one did not make a devition; this makes sense

(the importance of the added distance in case of a

- tdd

(3.16)
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deviation becomes negligible).

The pmf for the time T between A and B of a trip when

this steady state is reached is given by

Vp" if t = L + + td

fT(t) 1-P if t = S (3.17)

0 otherwise

111.3 Case with a General Distribution for the Headways

As explained in Chapter II we are next going to study

a more general case for the headways Hk , k = 2,3,4,.... It

will be assumed here that all the random variables Hk , k =

2,3,4,..... are independent and identically distributed with

a probability density function (pdf) fH(h). As we did in

the previous section for Ho , we are going to assume that

the possible values of Hk , k = 2,3,4,.... are greater than

+ td; that is, fH(h) is defined for h > 2 + t d . The
0 0

reasons for such an assumption are the same as for the

deterministic case (see 111.2). The system is still des-

cribed by Figure III.1

For the first bus nothing has changed and the probab-

ility of making a deviation for this first bus is still

p(V 1) = 1 - e so (3.1)
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For buses after the first one, however, the assumption that

headways are random variables is going to introduce addi-

tional complications compared to the deterministic case.

We first examine the case of the second bus.

In order to understand the situation we have to break

down the procedure into several different steps. (All

notations employed below have been defined in III.1.)

First, let's assume that the random variable H2 took

the experimental value h; that is given H2 = h:

p(V 2 V1 and H2 = h) = 1 - e-h
2P

(3.18)

-X(h - - t )2s d
p(V21V1 and H2 = h) = 1 - e o (3.19)

and the probability of making a deviation for the second bus

given H2 = h is

P(V 2 1H2 = h) = P(V 2 1V1 and H2 = h)p(V1) +

p(V 2 1V1 and H2 = h) p(V1 ) (3.20)

then the pmf of T2 given H2 = h is given by:

p(V 2 IH2 = h) if t = L

L

fT 2 H 2 = h ( tl H 2 = h ) = 10-p(V2 H2 = h) if t = s

0 otherwise

Y td

(3.21)
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And the expected value of T2 given H2 = h is

E[T 2 jH 2 = h] = (Y + t d ) P(V2H 2 = h) + LS
o o0

(3.22)

To find the unconditional expectation (this is the

second step) we integrate over all possible values of H2 to

obtain:

E[T 2 ] = E[T2 H2 = h]fH(h)dh (3.23)

(where ac -2 + t d )2s td

Using (3.22) we have

E[T 2] = (o + td)0o

L +

0S 0f o

p(V 2 1H2 = h) fH(h)dh +

fH (h)dh

And since
fH(h)dh = 1

E[T2 ] = (oY + td) /

rmpute f p(V 2 1H2 =

p(V 2 1H2 = h)fH(h)dh + L

h)fH(h)dh we use (3.20) and

(3.24)

To co
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through substitution obtain:

f p(V 2 1V1 and H2 = h)fH(h)dh = +(1 - e )fH(h)dh

(3.25)

and =

1.0- -X(h-c)

SJ p(V2 V1 and H2 = h)f (h) dh = (1 - e )fH(h)dh

(3.26)

Now that we understand how to derive the result for

the second bus let's look at the following ones. An addi-

tional difficulty will arise from the fact that now we will

have to take into account in the derivation of P(V3) the

fact that P(V2 ) is a function of h as well, which was not

the case for P(V1 ) when we derived P(V2 ).

Given H3 = h:

p(V 3 1V2 and H3 = h) = 1 - e-Xh

-X(h - Y td)2so
P(V3 1V2 and H3 = h) = 1 - e

Since fH 2(h) = fH (h) = fH(h)

E[p(V3IV 2 ] = (1 - e-Xh)fH(h)dh = E[p(V2 1Vl)]
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E[p(V 3 1V2)] =/ (1 - e -X(h - ))f (h)dh = E[p(V2 1Vl)

Applying the same reasoning and using the important

feacture that all the random variables Hk, k = 2,3,4....

are identically distributed we find that

E[p(VklVk-1)] = E[p(V2 1V,)] k = 2,3,4...
(3.27)

E[p(VklVk_-)] = E[p(V2 1V )] k = 2,3,4...

These relations are similar to those we derived between

P(VkiVk.-1 ( P(VkiVk-1l)) and p(V2 VI)((P(V 2 1V1 )) in the deter-

ministic case; but it is important to notice that we cannot

derive the same formula as in this deterministic case for

(Vk) as a function of (V1) (see Eq. (3.12)). The equalities

given above (3.27) suggest that we could find a similar

relationship between E[p(Vk) and E[p(V) ]:

Given Hk = hk, Hk-l = hk-1 :

p(VklHk = hk) = P(Vk-1IHk-1 = hk- )P(VklVk-1 and Hk = h k)

+ p(Vk-1IHk-1 = hk-l)P(VklVk-1 and Hk = hk)

(3.28)

Since Hk and Hkl are independent and identically distributed

we have linear independence between

p(VkllHk-1 = hk-1) and P(VklVk-1 and Hk = hk)
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and between

p(Vk- 1 IHk-i = hk-1) and p(Vk lV k l and Hk = hk)

That is:

E[p(Vkl)p(Vk Vk1l)]

E[p( Vk-)p(Vk _k-)]

= E[p(Vk_l) ]E[p(Vk Vk-_)

= E[p(Vk_-1]*E[p(Vk!Vk- )
(3.29)

(the formal demonstration is given in Appendix A)

Since

E[p(Vk) ] I+p(VklHk = h)fH(h)dh =

J +(1 - p(VkIHk = h)fH(h)dh

We have E[p(Vk! = 1 - E[P(Vk)]

Thus taking the expected value of the equation

and taking advantage of equations

same reasoning as for eq. (3.12)

E[p(Vk)] = E[p(V1 ) ][E[p(V2 1V1 )I

k-2

E[p(V2 1V1)][E (E[p(V2 1V1 )
m=0

(3.29) we derive by the

p - k-i-E [p (V2 [ V1) ]

(3.31)

- E[p(V21V 1)])]

In 111.2 we called P(V 2 1V1 ) = Ro

(3.30)

(3.28) •

P(V21V) = Qo This
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time we will call E[p(V21V 1 )1 = R E[p(V2 1VI )] = Qo and

since E[p(V1)] = p(V 1 ), equation (3 31) becomes

k-2

E[p(Vk)] = p(V1 [Qo - R ] - 1 + Ro
m=0

(Qo - Ro) m ] (3.32)

where

P(V 1) = 1 - e (3.1)

00=

Qo j
ci

= +WR =0 f

(1 - e - (h )f(h)dh

-Xh
(1 - e )f (h)dh

3.33)

(3.34)

The expected value of Tk given Hk = h is

E[TklHk = h] = (- + td) p(VkHk = h) + L
o So

(3.35)

So as for eq. (3.23) the unconditional expectation is

E[Tk] = (-C + td) E[p(Vk)] + L (3.36)

Once again the nice result we obtained for lim P(Vk) in the
k-+

deterministic case can sill be obtained in this more gener-

al case:

0- p(V2 IV1 and H2 = h) 5 p(V2 V1 and H2 = h)<lSince



-60-

for all

then

or

h > -12s + t2s0  d

0 < E[p(V21V1)] - E[p(V2 1VI)] 1

0 Qo R 1
0 0

0 Ro- Qo- 1
o0 (3.37)

Applying this result and using eq. (3.14) eg. (3.15)

k-l - k-1
lim (-1) 1[R - Q ] = 0

k-2 R
lim Ro [ F (-l)m(o om o

0 0 *

m=0
-% '

L1 + -( I0o 0

As we did in the deterministic case we can chbck that P

behaves correctly; that is:

1. if 2- + t becomes negligible then Ro~ Qo and
2s dRo

o-R

2. if I = 0

3. if X-.,

P=0

P+1
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III.4 Conclusion; Introduction to the Two Call Boxes Case

2
We have been able to derive f k(t), E[T] and aTk

both the deterministic headway and for the more general

assumption of a general distribution function for the head-

ways.

It must be emphasized that for the case of non deter-

ministic headways all our derivations have been strongly

based on the assumptions of independent and identically

distributed random variables. If we eliminate this assump-

tion our results are not true any more. To be convinced

of that, one only has to look at p(Vk) which must be con-

ditioned by Hkl = hk-1 which is not independent of the

fact that Hk-2 = hk-2 and so on; we thus cannot establish

a tractable kelationship between E[p(Vk)] and E[p(Vk_l)]

as we did before.

Considering that we have understood pretty well the

one call box case, we are going to look next at a more

complicated problem = the two call boxes case. The added

complexity comes from the fact that in addition to the

dependence between successive buses, we also have a depend-

ence between deviations at the two call boxes. That is,

the probability of deviation of the second bus at the sec-

ond call box will depend not only on what the first bus has

done during the previous trip but also on what this second

bus did at the first call box. We shall address this new

problem in Chapter IV.
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CHAPTER IV

THE TWO CALL BOXES CASE

IV.1 The Problem; Notation, Approach

A schematic representation of a simple route-deviation

bus line with two call boxes is given in Figure IV.1.

In this chapter we would like to study the probabilis-

tic effects introduced by the perturbations of two call

boxes. Here again the assumption of instantaneous communi-

cations allows us to consider G1 G1 and G2 G2 as negligible.

IV.1.1 Notation

a. Geometry of the Situation: (see Figure IV.2)

By analogy to the one call-box case we assume, without

loss of generality, that G1 CG2 ) and F 1 (F 2 ) are the same

and we call these points G1 for the first call box and G2

for the second call box.

Our "geometrical" parameters are then:

L = distance of the fixed route between the two fixed

stops A and B

£1 = distance of the fixed route between A and G1

£2 = distance of the fixed route between A and G2
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Y1 = distance added by a deviation at the first call box

box C1

Y2 = distance added by a deviation at the second call

box C2

b. The Demand Characteristics at the Call Boxes

We assume that the arrival of requests at the two call

boxes are described by two independent homogeneous (non-

time dependent) Poisson Processes with average demand rates

XA for C1 and 12 for C2'

c. The Operational Characteristics

They are the same as for the one call box (see sec-

tion 111.2 c). We consider the added time given by

possible fixed stops between G1 and G2 as already included

in what we call the time to needed by a bus to fo from A

to B without deviations.

d. The Probabilistic Modeling Experiment

We start observing the system at t = 0; we assume

that at this time the first bus starts from A and that

before t = 0 no requests were registered. The random

variable of interest is Tk: this is the time duration of

the kth trip between A and B (including or not including

a deviation at C1 and C2 ).

We denote as:
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Vkl the event: "There is a deviation at the call box C1

during the kth trip"

Vk2 the event: "there is a deviation at the call box C2

during the kth trip"

and p(VklVk2) represents the probability of the event

VklN Vk 2 , intersection of the two events Vkl, Vk2.

e. Other Notations: (See Figure IV.2 for a summary)

td = dwell time at call box C1 or C2 (time to account

for the process of picking up passengers; assumed

to be the same for C1 and C2)

E[.] = expectation of ".".

IV.1.2 Approach

What we want to find is the probability mass function

fT k(t) of the random variable Tk for k = 1,2,3,4,....

In the two call boxes case we have four different

situations (events) for describing the trip of the kth bus

(k = 1,2,3,.... ) between A and B:

1. No deviations; then the random variable Tk takes on

the experimental value to . This event is described by

Vkln Vk2 and its probability of occurence is p(Vkl',Vk2)

2. A deviation only at C1 ; then Tk takes on the
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Y1
experimental value to + L + td and the probability of

occurence of such an event is P(VklVk2)

3. A deviation only at C2; then Tk takes on the
22

experimental value to + + t d and-the probability of

occurence of such an event is p(VklVk2)

4. Deviations both at C1 and C2 ; then Tk takes on

Y1 + 72
the experimental value to + s + 2td and the probabil-

0

ity of occurence of such an event is p(Vkl,Vk 2)

Thus, to sum up we have:

f (t) =

P(Vkl,Vk2)

P(Vkl vk2

p (Vkl,Vk2

p(Vkl,v2 )

0

if t= t0

Yl
if t = t + + t d

Y2
if t = to + s + t d

Y1 + h 2
if t = to + + 2 td

otherwise

In order to solve this problem we have to determine

the following four probabilities: p(Vkl,Vk2); P(Vkl,Vk2);

p(Vkl,Vk2); P(Vkl,Vk2). It should be emphasized that the

events Vkl' Vk2, Vkl n Vk2 and VklfVk2 form a mutually ex-

clusive and collectively exhaustive list of events.

(4.1)

(They
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form an event space.)

Similarly to what we did in the one call box case we

are going to derive our result in the deterministic case

(Hk = Ho = constant k = 2,3,4....), then we will address

the problem of a general distribution for Hk . However, as

noted in the previous chapter, we shall limit our study to

the case where H > max + t + t in the deter-
o  2s d 2s d

ministic case and to a pdf fH(h) defined for

h > max -o + t  A2 t in the general case.2s 0 d' 2s d

IV.2 Derivation with Deterministic Headways

It will be assumed in this section that Hk = Ho , k =

2,3,4,....

IV.2.1 Derivation with Deterministic Headways

The four probabilities of interest for this first bus

p(VlI,V 1 2 ), P(Vll,V1 2 ), p(V1 1 ,V 1 2 ), and P(V 1i,V 1 2 ) can

be derived by taking advantage of the relations:

p(A) = 1 - p(A)

(4.2)

p(A,B) = p(AIB)p(B)

1. p(V11 ) is derived by using the equation (3.1)
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-x kl111
s:

p(V11 ) = 1 - e o (4.3)

2. p(V12 iV1 1)

P(V1 2 Vll) = pr there is a call from C2 during so

s from C2 during1 -pr Ino calls from C2 during -

then -X2 22a2

P(V 121 11) = 1- e
s oS

(4.4)

3. p(V12 1V1 1 ) (The bus makes deviation at C1 so its

Y1
time of arrival at G2 is increased by - + td)

O

p(V12 V11)

there is at least a call from C2 during

S2 Y1
the length of time -- + s + td

0 -0

21 - pr no calls from C2 during +
o0

-A2 ( + td )

then p(V12JVl l ) = 1 - e (4.5)

So the probability mass function'(pmf) for T1 is described

by:

Yl-- + t
s d
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-1 1 ( 1)
s

(e o )(e

-22 ( 2 )
S

0) if t = t

S

s(1 -e o )(e

(e o )(1-e

-X1 (k1)

(l-e s
(1 - e o )(0 - e

2 2 +s + td)

- 22( 2 )

s o )

-2 2 92 + Y
s d0

if t = t + + td
0 s d

0

(4.6)

Y2if t = t + - + t
S s d

0

if t = t0 + e12 +t

a

otherwise

IV.2.2 Derivation for Successive Buses

We know that the second bus starts H0 units of time

after the first bus from A. Then the third one starts H

units of time after the second and so on.

Here again, in order to fully understand the behavior

of the second bus we have to introduce conditional proba-

bilities. (depending on what the first bus did on its

trip, the results for the second one will differ.)

What we would like to find is a relationship between

what the bus does and what its previous bus did (by analogy

of the one call box case, see equations (3.8), (3.10), and
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(3.11)

To simplify the notation we will note:

Ak = (Vkl n Vk2) Bk = (Vkln Vk2)

(4.7)

Ck = (Vkl n Vk2 ) Dk = (Vkln Vk2)

and we would like to determine

P(Ak), p(Bk), P(Ck), and p(Dk)

We have seen in section IV.1 that for k = 1,2,3,.... the

events Ak, Bk, Ck, and Dk are mutually exclusive and

collectively exhaustive, so:

P(Ak) + P(Bk) + P(Ck) + P(Dk) = 1; k, = 1,2,3,... (4.8)

Thus we can find four relationships between the kth bus and

the k-1th bus:

p(Ak) = p(Ak Ak-1)p(Ak-1)

p (Ak ICk- 1 ) p (Ck-1)

P(Bk) = p(Bk Ak-1)p(Ak-1)

P (Bk Ck1) P (Ck- )

p(Ck) = (CklAk-l)p(Ak-1)

p(D k Ck-1)P(Ck-1)

+ P(AkIB.k-1)p(Bk-l)

+ p(AklDkl-)p(Dk()

+ p(Bk Bk-1)P(Bk-1)

+ p (BklDk-1)P(Dk-1)

+ P(Ck Bk-1)p(Bk-1)

+p(Dk IDk-) P (Dk-1)
(cont'd.)

(4.9)
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P(Dk) = P(DkJAk-l)P(Ak-1) + p(DkIBk-l)P(Bk I ) +

p(DklCk-l)P(Ck-1) + p(DkiDk_-)p(Dk-I )

and using the relation (4.8) for k and k-1 we see that the

system of equations (4.9) is equivalent to three of the

four equations of (4.9) plus the relation (4.8).

The operation of the system allows us to say that:

p(AklAk_,) = p(Ak A1 ) (4.10)

and this is true for the 15 other conditional probabilities

of system (4.9) (that is, p(AkBk-1) = p(A2 1B1),

p(DklCk-l) = P(D21C1 ), etc.

We denote all these conditional probabilities in the

form

PA,A = P(AklAkl-) = p(A2 1A1) (4.11)

The system (4.9) becomes

P(Ak) = PA,A P(Ak- l)

PA,D p (Dk-l)

P (Bk) = PB,A p (Ak-l)

PBD p (Dk-1)

P (Ck) = PC,A p (Ak-l)

+ PA,B p(Bk-1)

+ PB,B p (Bk-l)

+ PC,B p (Bk-l)

+ PA,C P(Ck-)

+ PB,C P (Ck-l)

+ PC,C P(Ck- 1)

PC,D p (Dk-l)

p(Dk) = 1 - p(Ak) = p(Bk) = p(Ck)

P(Dk-1) = 1 - p(Ak-1) - p(Bk-1) - P(Ck-l)

(4.12)



The derivation of closed form expressions for p(Ak)

p(Bk), p(Ck), or p(Dk) as functions of p(A1 ), p(Bl), p(C I ),

and p(D I ) , from this system is a cumbersome procedure. So

instead, we are going to use a different method in order to

find these probabilities in the steady state; that is, when

k goes to infinity (if they exist). This method is quite

simple and could also have been used in order to derive P

in the one call box case:

Let us assume that p(Ak), p(Bk), p(Ck), and p(Dk) tend

to a limit when k goes to infinity and let us note these

limits lim p(Ak) PA lim p(Bk) B lim p(Ck) = PC and
k-+ k-+ k*+

lim p(Dk) = PD Then taking the limits of the system (4.12)
k+-

gives us at infinity:

PA A,A A + PA,B PB A,C PC A,D PD

P = PBA PA + PB,B PB + PBC PC + PBD PD
(4.13)

PC C,A PA PC,B PB + PC,C PC C,D PD

P 1 - P- P P

And solving this system of four equations with four unknowns

allows us to find PA' PB' PC, and PDo

Recalling that

PA = lim p(Ak) = lim p(Vkl,Vk2)
k+4 k+4

PB = lim p(Bk) = lim P(Vkl,Vk2)
kwe k+-c (4.14)

PC = lim p(Ck) = lim p(Vkl,Vk2)
k-*I k-+.w

PD = lim P (Dk) = lim p(V )
D k+ k k+ kl Vk2
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we find that the pmf for the time T between A and B of a

trip when this steady state.is reached is given by:

PA if t = t o

fT(t) =

T1if t = t + S + t d

if t = t + + td

Y1 + Y2

if t = to  + + 2t
o

PC

0 otherwise

As noted earlier this method could have been used for the

one call box case in order to find P (see section III.2.3)

Assuming that lim p(Vk) = P we could have found P
k-)-m

by taking the limit in equation (3.11); that is:

lir p(Vk) = lim p(Vk l ) [Qo - R ] + Ro
k+0 k+0

or

P = P(Qo - RO) + Ro

which gives
R

P =
1+ Ro - Qo

as before.

Note:

Though we are not going to solve the system (4.13), we

could show how to derive PD in this two call boxes casebefore going to the non deterministic case:
before going to the non deterministic case:

(4.15)

I
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= p(D2 DI )1) V221V11, V21 ) (using 4.11

4.7)

P(V 1 2 , V2 2 1Vl 1 , V2 1 ) = (V1 2 , V2 2 ' V 1 V2 1 )
P(V1 1 , V2 1)

Using
I.

P(V 1 2 , V2 2 1 V11 , V2 1 ) = p(V22jV1 2 , V2 1 , V2 1 , V1 1)

and

p(V 1 2, V2 1 , V11 ) = P(V 2 1 1V1 2 , V11 ) p(V 1 2 , V11)

and through substitution in (4.16) we get

= P(V 2 2 IV1 2 , V2 1 , Vll)p(V21 IV12 ,

p(V2 1, V11)

Noting that p(V 2 1 'V1 2 , V11) = p(V2 1 1V1 1)

and
- - .L L1 -1

we finally found that

D,D = P(V22 1V1 2,
V2 1 , V1 1 )p(Vl 2 1V11 )

p(V 1 2 KV1 1 )

p(V 2 2 V1 2 ,

is given by (4.5)
Y2

-2 (Ho 2s,
oV2 1 , V11 ) = 1 - e

PD,D

Also

and

(4.16)

PDD
V1 1)

(4.17)

where

and

(4.18)

t )
d

(4.19)

= p(V12,

Vll)P(V12,

V ll)p(vl2*

p(V 2, Vll) = p(V 21V

)p(V11
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The fifteen other probabilities are derived in the same way

(PA,A ; PAD etc.)

Thus, using a computer to determine the numerical values

of all these probabilities and then using an algorithm for

solving the system of equations (4.13) will allow us to

determine the exact pmf for T, the time for the trip between

A and B when steady state is reached. From the pmf-we can

also obtain E[T] and a 2 . As we can note from our work, the

simplified derivation in case of this "steady state" raises

the interesting practical issue of the speed of convergence

toward steady state.

In the next section of this chapter we are going to

address the case of a general distribution fH(h) for the

headways.

IV.3 General Distribution for the Headways

Instead of giving closed-form derivation of the re-

sults for this section we are going to describe its outline

relying heavily on what we did for the one call box case

and pointing out the differences (if any).

Recall that all the random variables, Hk, k = 2,3,4...

are independently and uniformly distributed with pdf fH(h).

Given Hk = h we can, by conditioning all the probabil-

ities on this event, derive a system of equations which is

analogous to (4.9).
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Using the same approach as for the one call box case we

we can show (Appendix A) that for finding the unconditional

expectation we can apply

E[p (Ak lAk1) p(Ak_1) I = E[p(AkIAk_1)]E[p(Ak)_1I

The same is true for all the other conditional probabilities

in (4.9).)

Then by noting that E[p(Ak Ak-_ l )] = E[p(A2 1A1 )] (see 3.27)

we obtain the following system (using the notation of PA,A

for E[p(A2 1Al)]

E[p(Ak) PA

as we used P

,A E[p(Ak-l)]

E[p(Bk)

E[p(Ck)

PA,C E[p(Ck-l)

PBC E[p(Ck-1 H

=C,A E[p(Ak l )]

PC,C E[p(Ck-1 ]

A,A for p(A2 1A1 ))

+ PA,B E[p(Bk-1)]

+ PA,D E[p(Dk-1)

+ PB,B E[p(Bk-)]

SPB,D E[p(Dk-

+ PC,B E[p(Bk-1)

SPC,D E[p(Dk- ) ]

E[p(Dkk-
) ]

E[p(Dk)] =

= 1 - E[p(Ak-_) ]

1 - E[p(Ak)]

- E[p(Bk-1) ]

E[p(Bk) - E[

- E[p(Ck- )

P(Ck)

Letting k go to infinity and assuming that

lim E[p(Ak)] = PA

E[p (Bk) I P
B

lim
k÷c
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lim E[p(Ck) = PC
k•m

2im E[p(Dk)] = PD
k+.

We obtain a system of four equations (4.20) with four

unknowns PA' PB' PC, and PD

As we pointed out in section 111.3 this derivation

allows us to find E[T] the expectation of the time between

A and B for a trip when steady state is reached.

~ P1 ~ 2 ~
T] = t P+ (t + -- + td)P + (t + -- + td)PE[T] o A o s d B o s d C

Y1 + Y2 ~+ (t + + 2 td) PD

IV. 4 Conclusion

We have been able to derive fT(t) in the deterministic

case when the system reaches the steady state; we have

highlighted the way we could find this expression for a more

general distribution for the headways. Before concluding

this thesis we are going to generalize these results to the

case of n call boxes with deterministic headways; this is

done in Chapter V.
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CHAPTER V

GENERALISATION TO N CALL BOXES
IN THE DETERMINISTIC CASE

V.1 Notation

The notation used in this Chapter is just an extension,

to the general case, of the notation used in Chapter IV.

Here again a schematic representation of a simple route-

deviation bus line with n call boxes has been drawn and is

given in Figure V.1.

The assumptions we made about the instantaneous

communications between the call b6x requests and the bus

drivers are"still valid.

Examination of the geometry of the situation, the

demand characteristics at the call boxes, the operational

characteristics, and the probabilistic modeling experiment

leads us to the following notation:

L = length (distance) of the fixed route between the

two fixed stops A and B

to = time needed by a bus to go from A to B without

deviations

k. = distance of the fixed route between A and the ith

call box

Yi = added distance by a deviation at Ci (2 x GiC i)
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X. = average demand rates at C. Cindependentl

s = constant effective travel speed for all buses

Hkk = 2,3,4 = headways between the kth bus and the

k-1th bus at A

fH(h) = probability density function of the headways.

Tk = random variable "time between A and B for the

kth trip"

Vki = event: "there is a deviation at Ci for the k

trip"

td = dwell time at Ci (same for all Ci i =1,2,3...,m)

To be consistent with what we have already done (see

section 111.2.2) we are going to suppose that we will

restrict our study to the case where the headways (H in

the deterministic case, or the experimental value h of Hk

in the general case) are always greater than the maximum
Yi

of Y-- + td that is:

H > max - + t) i = 1,2,3,....,n.
0 i o

V.2 Derivation

Our approach is very close to the two call boxes and

consists, in fact, of extending the earlier notation such

that derivations are not too cumbersome.
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V.2.1 Extension of the Two Call Boxes Case

We saw in Chapter TV that we had four different events

to describe the trip behavior of the kth bus (see IV.1.2).

This was due to the fact that we had 2 call boxes and

for each call box 2 possible events: "deviation or not",

giving a total of 2 x 2 = 4 different events.

This time we have n call boxes and we still have 2

possible events for each of them, so the characteristic of

a trip for the kth bus are described by a set of 2 x 2 x 2

x 2....x2 = 2n different events. For each of these n times

2n events we have the corresponding probabilities. For

example, we will write P(VklVk2,Vk3 ,.. ,Vkn) to denote

the probability of Vkl Vk 2 .. nVkn, that is, the probabil-

ity that the bus makes a deviation at all the n call boxes.

Corresponding to these 2n events and associated

probabilities we are going to have specific and known

values of the random variable Tk (time of the trip between

A and B) (Possibly different events may result in identi-

cal times for the whole trip but for the time being we

are going to keep the probabilities of these different

events distinct in order to get our pmf).

Thus, in the most general case we can say that the pmf

of Tk will be given by the knowledge of the probabilities

of these 2n different events and is described as follows:
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[p (Vkl ,Vk2 ,Vk3

P (Vkl 'Vk 2'Vk 3 '

.. ,Vkn)

• -Vkn)

if
0

if t = to +

if t = t
0

p(Vkl Vk2

P (Vkl Vk2

p(Vkl,Vk2,Vk 3 '...

S... Vkn) if t = to +

.*,Vkn) if t = t o +

,Vkn) if t = to +

Y1
S

Y2
S
o

_n
s 0

p (VklVk2,Vk3,

n II II

sH II iI

.. ,Vkn) if t t o

if t = to +

otherwise

Yn-l±Y%

S
+ 2t

We can easily see that this way of ordering our differ-

ent events gives the right number of events that is

O+ + +...+ n
n

k=O
S1

n k
1 = (l + 1) n = 2

In fact, using the fact that these 2n events are

mutually exclusive and collectively exhaustive we only have

2n-1 probabilities to determine.

+ td

+ td

+ t
d

(t)fTk
Tk

+ 2t
d

Yl+Y2

0

Yl+Y3

o

(5.1)

2t
d

i=l Yi

s + ntd

P(nl'k k2,V k3f ..fkn)

,Vk3

p(VklVk2,Vk3,...,Vk# r~c

--
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V.2.2 Derivation for the First Bus

We are going to use the same method as in Chapter IV.

We begin with the first call box C1; the probability

for the first bus of making a deviation at C1 is still

given by the equation (4.3) -1 1

(P(V11) = 1 - e o .

We then consider the second call box C2 ; the necessary

probabilities p(V12 Iv11 ) and P(V12jV1 1 ) in order to fully

describe the behavior of this bus are given by the equations

(4.4) and (4.5). Using p(V1 1 ), P(V12 1711 ), and P(V12 1V1 1 )

we are able to derive the four probabilities of interest.

We go to the next step which is the call box C3; we con-

dition V1 3 by the four different events V 1
N V1 2 '

V11In V12' V11 V12 and V1 1n V12 and we evaluate these four

conditional probabilities; then we can evaluate the eight

joint probabilities (four for V1 3 and four for V1 3 ) which

fully describe this new state.

We then go on to the fourth call box and we keep on

using the same method until we arrive at the nth call boxes.

This "algorithm" allows us to determine systematically our

2n probabilities and gives us the pmf for Tk for the first

bus.

V.2.3 Successive Buses

We first examine the case of deterministic headways,

that is each bus starts H units of time after the previous00
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one (from A).

The same analysis we did in the two call boxes case

still applies (in principle) in this general n call boxes

case; indeed depending on what the first bus did on its

trip, the results for the second one will differ and so

on. Here again we will consider the case when k goes to

infinity, that is when the "steady state" is reached. At

this point we should make an important simplification of

notation.

We wish to find a notation for describing these 2 n

events.

Assuming that we have prespecified the order in which

these events are listed, we can choose to say that

Xlk represents the event of the first event

X2k represents the event of the second event

and so on. We can use for this purpose the order of events

presented in equation (5.1) Then p(Xj,k) represents the

probability of the event associated with the jth line of

(5.1).

We will use p(Xj) = lim p(X ) = P

k-ýo jk 3

Each of the 2n events Xj,k for the kth trip can be

conditioned by one of the 2n mutually exclusive collectively

exhaustive events Xj,k-1 for the k-lth trip and we obtain

the following system:
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p(Xl,k) = (X1kXlk- ) p ( l k -l)+.. p(xl kl n )K-1P)(X2n k-1)

p(X2,k) + (X2,k X2,k-1)p(X2,k-1l)+..p (X2 ,k X2 n k
2 ,k-1

)p(X _
2 11,k-1

(X ) = p(X IX2  )p(X )+.
2 ,k 2 ,k ,k- 2,k-1

(5.2)

Which is very similar (and

call boxes) of the system

The operations of the

in fact is the extension to n

(4.9) obtained in Chapter IV.

system allows us to say that

P (X,k Xl,k-1) = p(X 1 ,2 1X, 1 ) (5.3)

for all the conditional probabilities of the system (5.8)

Here again, as we did for the two call boxes (see (4.11))

we will denote these probabilities

P(Xi,21Xj1 ) = Pij

Then assuming that

k goes to infinity

referred to (4.13)

P1 = PP1

i and j = 1,2,3,...2 n

all our p(Xjk) tend to a limit P. when

the system (5.2) becomes (the reader is

to see the analogy):

+ P P +...+P- P
1,2n 2n

(5.4)P = P 2 , 1 P + P2 P +...+P P2 2,11 2,2 2 n n
2,2 2~, I~·,~~···~··~·~··· · · ~~·~t

+p(X IX )(x
2" ,k 2n ,k-1 2",k-1

~~·~~····~·~~·~····~~···
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P- = P n-l + P P 2+...+P P

P + P + P3+...+P = 1
1  2  3 2n

which is a system of 2n equations with 2n unknowns.

Thus using a computer and a package for solving systems

of linear equations we can obtain the 2n probabilities

which fully describe the behavior of a trip when the steady

state is reached; that is the pmf of the Time T between A

and B.

V.3 Conclusion

Before concluding this Chapter it should be emphasized

that the case of general distributions for the headways is

still derivable in the n call boxes case and requires the

same analysis but is much more cumbersome in terms of

notations. Here again the important assumption is that

the headways are independently and identically distributed.

As in the two call boxes case we end up at the last step

of the analysis with the expectation of the time needed

between A and B when the steady state is reached.
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CHAPTER VI

CONCLUSION

The major concern of this thesis has been to study the

probabilistic behavior of a single Route Deviation Bus Line.

The need for a probabilistic analysis has been pointed out

in Chapter I, and Chapter II allowed us to clarify the

issues in such an analysis. In Chapter III we have been

able to derive closed form expressions for the probability

distribution for the time length of a typical bus run; this

derivation has been done for both deterministic headways

between successive buses and for a general probability dis-

tribution function for the headways. For the case of non-

deterministic headways all our deviations have been strongly

based on the assumptions of independent and identically

distributed random variables; we demonstrated the difficul-

ties associated with the elimination of such assumptions.

Chapter IV. was concerned with the two call boxes case. The

closed-form derivation turned out to be a more cumbersome

procedure than in the one call box case; however we indi-

cated a way of obtaining results in the case when a "steady

state" is reached. (This steady state has been defined to

characterize the behavior of the kth trip as k goes to in-

finity; it is achieved when a finite limit is obtained for

the probabilities of deviation at the call boxes). We
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generalized the simple method developed in Chapter IV to

the n call box case in Chapter V.

On the basis of our work so far, the promising direc-

tions for new research must include the following consider-

ations.

First, a numerical analysis of the two call boxes and

n call boxes cases through computer work seems indispensable

in order to determine the sensitivity of the time length of

a typical bus run with respect to the distance of check-

points from the fixed route, to the demand density at call

boxes, to vehicle speed, etc.

It would then be interesting to study the single RDBL

under much more general assumptions such as dependence in

the headways between successive buses, or a general dis-

tribution function for the speed of the vehicles, or under

the utilization of a more realistic process for modeling

the demand at checkpoints, considering and including depend-

ence between checkpoints. The utilization of simulation

techniques will certainly turn out to be useful in order

to fully treat these problems. The study of probabilistic

performance characteristics other than the length of time

for a bus run could be useful (e.g. the probability density

function for the number of deviation checkpoints that will

be visited during a typical bus run, passenger waiting

times and ride times, etc.)

In addition to pursuing the analysis of the single
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Route Deviation Bus Line, other topics of interest exist.

They correspond to the operational implications of RDBLs

and a systematic approach to this topic would ideally ex-

plore the following types of questions:

(a) What are the possible savings in operating costs

that may result from declaring a particular point to be a

"deviation checkpoint" -- as opposed to a stop that is on

the fixed route and will always be visited? Clearly the

answer will depend on such considerations as the location

of the demand point, the intensity of demand, the bus oper-

ating costs and the cost associated with deviation routing

(communications equipment requirements, control and dis-

patching, etc.)

(b) At what level of demand should a deviation check-

point become a permanently visited stop on the route and

vice-versa? For example it is conceivable that the bus

line shown in Figure I.1 might best be operated as a

fixed route consisting of stops A-C1-C2-B during the

morning and evening peak-demand periods and then be changed

to a RDBL with stops A-B (and deviation checkpoints at

el and C2) during the rest of the day.

(c) What are good operating strategies for serving

deviation checkpoints? Note that in the case of RDBL, the

line's operator retains some control regarding the way that

service is provided to deviation checkpoints. It would be

interesting to see if we can identify some general
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characteristics of good strategies under various sets of

circumstances.

(d) Finally, how do RDBLs interface with the rest of

an area-wide transportation network? This clearly calls

for an investigation of how RDBLs can best be operated

within the context of an integrated transportation system.
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APPENDIX A

Formal demonstration of the linear independence
between p(Vk-1 IHk-l = hk- ) and p(VklVk 1l and

Hk = hk) given that Hk and Hk-_ are independent

and identically distributed random variables.

. P(Vk- IHk-1 = hk-l) is a random variable function of

hk•l so let p(Vk_llHk_l = hk-l) be represented by g(hk_1 )

The expected value of this random variable is given by

E[p(Vk-_)] =f g (hk-1) fHk (hk-l)dhk-l (A.1)

-Xhk
2. P(VklVk_ 1 and Hk = hk) = 1 - e

so the expected value of this random variable is given by

+0

EBp(VkiVk-l) = - e hk
(1 - e )fHk(hk)dhk

3. p(Vk-l lHk-1 = hk-1)p(Vk Vk-1 and Hk = hk) =

(1 - e' )g(hk- 1) so the expected value of this random

variable is given by

E[-] =ff
-A hk

[(1 - e )g(hk-1 H , (hk_,lh k ))h•hkldhk

(A. 3)

A.1, A.2 and A.3 have been derived using the fact that the

Hk, k = 2,3,4... are independent. Using again this

(A.2)



characteristic and the fact that Hk and Hk_ 1 are identically

distributed we have:

E[p(Vk-1)] =f

E[p(Vk IVk-1)] =
a

g(h)fH(h)dh

(1 - e )fH(h)dh

E[p(Vk-lI)P(Vk IVkl) ] = g(H)fH(h)dh r (I - e- ' h ) x

fH (h) dh

and this demonstrates the linear independence we wanted.

The demonstration for the case between P(Vk_ IHkl = h -1

and p (VkIVk_1 and Hk = hk) is identical.
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APPENDIX B

Solution of the System of Equations (4.13)
in Chapter IV

We have a system of four equations with four unknowns PA'

PB' PC' PD'

PA A,A PA A,B PB A,C C A,D PD

P = PBA PA + PBB PB + PBC PC + PBD PD

C C,A PA + PC,B PB + PC,C PC + PC,D PD

PD 1 - PA B C

Before solving (B.1) we find the value of Pij

j = A,B,C,D.

By the same- argument we have:

PA,A = P ( 2 21 V21 ,V1' 2,'V1 )p( 21 V11 ) -

B,A = P(V 2 2 V2 1 V 2 , V11 )p(V 2 1 Vll). =

PC,A = p(V 2 2 V2 1
',V 1 2

' Vll)p(V2 1 V1 1 ) -

PD,A = p(V 2 2 V2 1
, v I

2 , vi l l )p(V 2 1jV 1 1 ) =

PB,C = P(V 22 V21 'V12,V11 )p(V21IVll) =

PC,C = P(V 2 2 V2 1 1V1 2 V1 1 )p(V2 1 Vll) =

(B.1)

i = A,B,C,D

(1 - 2)(1 - R 1)

(1 - 84)R
1

a2(1 - R1)

a4 R1

(1 - ý 1)(1 - R )

(1 - 83)R 1

1i(1 - RI
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PRB = P(7221V21fi12fVl2)P(V21V11) = (i - 6)(1 - Q1 )

pB,B = pV 2 2 V2 1 PV1 2 ,V 1 1)p(V 2 1 IVll) = (1- B2)Q

PC,B = P(V 2 2 V2 1 ,V 1 2 'VllV)p(V2 1 V1 1 ) = 6(1 - Q1 )

PB = p(V 22 1V2 1 ,V12 ,V11 )P(V 21IV11) = Q1

PAD = P( 2 2 1 2 1,V 1 2,Vll)P(V 2 1 V11 ) = (1 - 5)(1 - Q1 )

PB,D = P(V 22 1V21 V12 ,V11 )P(V 2 1 V11 ) = (1 - B1)Q 1

PC,D = P(V 2 2 1V2 1 'V1 2'Vll)p(V2 1 V11 ) = B5(1 - Q1 )

PD,D = p(V2 2 1V 2 1 'V 1 2 ,Vll)p(V2 1 Vll) = QI

where: Y2
- 2 (Ho - - t d )

0
l = 1 - e

- 2 Ho
B = 1 - e

Y1 Y2
-1 (H + s)i

o 0
3 = 1 - e

Y1  Y
- 2 ( Ho - S 2s o  2ttd)

B = 1 - e Y1
2(H " s t d)

B = 1 - e

Y1

- 1 (Ho  t )

Q1 = 1 - e
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SloR1 = 1 -e

In solving the system (B.1) we implicitly assumed that all

our probabilities PAPBPC' and PD are greater than 0

(otherwise some of the P ij would not be defined; indeed a

conditional event must be of strictly positive probability).

By transforming Bl (essentially through substitution) we

obtain the equivalent system;

xlPA + YlPB + 21 = 0

x2PA + Y2PB + Z2 = 0
(B2)

P [PA (P -1-P (P -P +P D]
PC A,D-PA, AA,B A, ,D

PD = 1 - PA B C

The solution of this system is the following:

PA = YlZ2 - Y2Zl
x1l2 - x2Y1

PB X X 2 - x 2 Zl
x2Y1 - Y2Xl

1
C =(PD - PAC) [PA (PAA--P A,D )+PB (PA,B-PA,D+PA,D]
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where:

x1 = (P 2P ) (P -P )+(P -1-P )(PB.C-P
S B,A B,D A,D A,C A,A A,D B.C B,D

Yl = (P BB'-PBD) (PAD-PAC)+(PAB-PAD)(PBC-PBD

Z = PB,DB (P B,D A, D , AP , B A, D BD)C B,

x2 = (PA CD)(PA A C+(P cc-l-P ) (PA,A' -PA )ZA 1 Pc,D ,DA, ,D ) B,D

Y2 = (P cB"" ) (PA CA) C + (Pc c lPc )(PAFB .P D)
C,B C~ D  AD A ,  CC C,D B A,

z2 =C,D A,D A,C A,D C,C C,D


