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Abstract—A trajectory piecewise-linear (TPWL) approach is governing equations onto the reduced space spanned by the
developed for a computational fluid dynamics (CFD) model of the POD basis vectors. POD has been applied to nonlinear sys-
two-dimensional Euler equations. The approach uses a weighted yos: however, in these applications, the issue of an efficient
combination of linearized models to represent the nonlinear CFD . - o .
system. The proper orthogonal decomposition (POD) is then used representatlon of the nonllnea}rlty in the reQuced—order model is
to create a reduced-space basis, onto which the TPWL model is inadequately addressed. While the resulting nonlinear models
projected. This projection yields an efficient reduced-order model do have a reduced number of states, they still require flux
of the nonlinear system, which does not require the evaluation evaluations of the original high-order CFD model.
of any full-order system residuals. The method is applied to the |, Rewienski, a trajectory piecewise-linear (TPWL) scheme,
case of flow through an actively controlled supersonic diffuser. . . . .
With an appropriate choice of linearization points and POD basis is developed [9], [10]_' The basic '.dea_ Is to rgpresent a nonlin-
vectors, the method is found to yield accurate results, including €ar system as a weighted combination of linear models. The
cases with significant shock motion. linear models are obtained by linearizing the nonlinear system
at various points along a training trajectory. This technique
aims to address some fundamental issues presented earlier,

Computational fluid dynamics (CFD) is now widely used.e. overcoming restrictions of weak nonlinearity and creating
throughout the fluid dynamics community. It produces accuratecost-efficient representation of the system’s nonlinearity. By
models for many problems of interest, although the cost of obsing a weighted combination of various linear models, a
taining the solution may be prohibitive for some application&roader range of the nonlinear space is spanned compared with
In particular, this cost becomes critical for multidisciplinarysing a single model. In addition, the TPWL system allows
applications such as aeroelasticity or active flow controllan efficient representation of the reduced-order model. This
design. Model order reduction techniques provide a way technique has been successfully applied to nonlinear analogue
systematically determine low-order models that capture thi#cuits and micromachined devices [9], [10].
relevant dynamics of the CFD model while being computa- This paper considers the TPWL approach in conjunction
tionally very efficient. These techniques have been appligdth a POD-based reduction for CFD applications. These two
successfully for a range of fluid dynamic applications [1], [2}echniques can be combined naturally, since both are based
[31, [4], [5]. upon a training simulation of the system. In the next section,

While model reduction is now a well established approatche CFD model is described, considering in particular the case
for large linear systems, addressing the problems that arefeflow through an actively controlled supersonic diffuser.
for consideration of nonlinearity remains a challenging tasikhe general model reduction framework is then established,
A number of linear reduction techniques have been extendetiowed by a description of the TPWL approach and its
to the nonlinear case with varying success. One approagbplication to the reduced-order models. Finally, results are
to generate reduced-order models for nonlinear systems igrasented and conclusions are drawn.
polynomial (Taylor) expansion of system’s nonlinearity, and
subsequent application of Krylov projection methods [6], [7],
[8]. However, the main drawbacks of those methods are thafThe computational model is based on the case of flow
they are limited to applications with “small” input distur-through a supersonic diffuser; however, the TPWL method-
bances, or more generally called weakly nonlinear systenadpgy is general and could be applied to any CFD model.
and that the quadratic and higher order expansion terms &igure 1 shows the Mach contours at steady-state conditions
very expensive to compute. inside the fixed geometry of a supersonic diffuser that operates

The proper orthogonal decomposition (POD) is a widelgt a freestream Mach number of 2.2. In steady-state operation,
used method of reduction for CFD applications. The approaatshock forms downstream of the throat; however in practice,
is to compute a set of empirical eigenfunctions using flothe incoming supersonic flow is subject to perturbations, such
solutions collected from a simulation of the CFD modelks atmospheric density disturbances. Such perturbations in
A reduced-order model is then obtained by projecting thtee flow may cause the shock to move upstream of the

I. INTRODUCTION

Il. COMPUTATIONAL MODEL



throat, and eventually to be expelled from the diffuser. This Using a structured grid for spatial discretization, the discrete
phenomenon, known as inlet unstart, causes huge losse&ier equations can be represented as a nonlinear dynamical
engine performance and thus is highly undesirable. In ordgrstem of the form:
;%gcrlf\gnrte(llnulie}te;nstart, an active control mechanism of the i) = f),ul)

y(t) = g(=(t)) )

where z(t) € R" is a generalized state vector containing
the n unknown flow quantitiesg, ¢., p and H, at each
point in the computational gridf is a nonlinear vector-
valued function,u(t) € R' is the input to the system, and
t) € RF contains the system outputs, which are defined by
e nonlinear functiony.

Fig. 1. Mach contours for steady flow through supersonic diffuser. Steaoz%g
state inflow Mach number is 2.2. t

B. Reduced Space Basis
Figure 2 presents the schematic of the actuation mechanisma reduced-order model can be obtained by considering a
Incoming flow with possible disturbances enter the inlet and jgojection of the state vectar
sensed using pressure sensors. The controller then adjusts the
bleed upstream of the throat in order to control the position z(t) = Vi(t) ©)

of the shock and to prevent it from moving upstream. wherei(t) € R™ is the reduced-order state vector, containing
the time-dependent amplitudes wof basis vectors, contained
in the columns of the matri¥’. The basis vectors must be
Avemgt} e conpessor selected appropriately, so that the statean be accurately
mach | shock —_— represented in the reduced space. In this work, POD is used
e : to determine the basis vectors as follows.
First, N snapshots are obtained from a CFD calculation,
where each snapshot corresponds to a flow solution at a par-
Fig. 2. Supersonic diffuser active flow control problem setup.  ticular instant in time. The correlation matrik is formed by
computing the inner product between every pair of snapshots
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A. Nonlinear CFD Model Fij=x (x(z)7x(3)) “)
The full nonlinear solution of the entire flow distributionwherez(? is the flow solution at a time(®) and (z(?,z(9))

in the inlet can be obtained using a CFD model. Here, tienotes the inner product betweefi) and z(9). The eigen-
problem is assumed to be two-dimensional, compressible aradues); and eigenvectorg(?) of R are then computed. The
inviscid, thus the solution is governed by the Euler equatiommagnitude of thej*” eigenvalue,);, describes the relative
The discrete Euler equations are derived from the integiaiportance of thg‘" POD basis vectoly;, which is computed
form of the unsteady, two-dimensional equations, which aby

. N
the usual statements of mass, momentum, and energy: v = Zqﬁﬁj)x(i) )
%//pdV + j{dm:() ‘ =1
9 . B B Wherewfj) denotes the!” component of thg*" eigenvector.
En // pQdV  + %Qdm + j{pdA =0 This orthonor_mal set of POD basis vectors can pe used to
) p.YOJeCt the solgtlon onto the reduced-space basis using (3). The
5 // pEdV  + %Hdm =0 (1) size ofz, m, will depend on the number of components taken

in the basisV. This number can be chosen using a heuristic
where the flow variables are the density,the total velocity criterion based on capturing a sufficiently large amount of the
vector,(, the pressure, the energyE, and the total enthalpy, “energy” contained in the snapshot collection. The relative
H. The quantitydm = p@-dA is the mass flux element acros$nergy e; captured by each modg is given by the POD
the conservation cell boundayA = dA - 7, wheredA is a eigenvalues as
surface element and is a unit vector pointing outward from ej = :f‘iJ (6)
the control volume. The discrete Euler equations approximate Doimi i
the integral form of the continuous Euler equations on small Applying the projection (3) to the nonlinear system (2), the
control volumes or control cells. The flow solver is fullyresulting reduced-order model is of the form
described in Drela [11] and Lassaux [4], and uses as state .
variablesg, ¢, p, andH, whereq andq, are the streamwise (t) VIF(Va(t),u(t))
and normal components of the velocity, respectively. gt) = g(Vz(t)) @)



While the system (7) has a reduced number of states, it sbll Trajectory Piecewise-Linear Scheme

requires evaluation of the full orde_r flux terf(-). To qbtain In Rewienski [9], an efficient, approximate method to rep-
a truly reduced model, a more efficient representation of thesent nonlinear circuit systems is presented and tested. It is
nonlinearity in the reduced space is required. proposed that by using a weighted combination of multiple
C. Linearized Models linear models, nonlinear behavior can be modelled. The linear

odels are obtained via linearization of the nonlinear system at
OQ| erent solutions in time. An approximation to the nonlinear
system can then be obtained by using a weighted combination
of the closest linear models to the current solution in time.

Efficient linearized models can be extracted from the syst
(2) by using a polynomial expansion of the nonlinearity,
more specifically a Taylor expansion about some stateu;),
which, following Phillips [12], expandg as:

flz,u) = flag,w) + Aif(x — ;) + Bi(u — u;) %
+%Wi(x—xi)®(x—xi)+... 8)

where ® is the Kronecker product, andi, and W; are,
respectively, the Jacobian and the Hessiary@j evaluated

at the statgx;, ;). The matrixB; = % is also evaluated at
(x4, u;). Dropping the quadratic and higher terms of (8), the
nonlinear system (2) can be linearized about a given state to
yield a state-space model of the form:

i(t) = Ax(t) + Bu(t) + (f (i, ui) — Aizi(t) — Biug)
y(t) - Cim(t) (9) Fig. 3. Collection of linearization pointsg, z1, z2 andzs in a 2D state

90 - G . - . > int.
whereC; = az is also evaluated é(tri,ui). space. Circles denotes suitable region for use of each linearization point

; Trajectory A is called the training trajectory. Figure from Rewienski [9].
The vector of unknowns(t) can be written as jectony g frajecioty. 719 Il

/

2(t) = @i+ zi(t) (10) Figure 3 presents a two-dimensional conceptual view of
wherez;, fixed in time, is the value of state vectorat the a series of linearized models. Plotted are four linearization
linearization point, andx;(t) contains the perturbation of thepoints, z,, 21, z» and 3, along a “training trajectory”, which
n unknown flow quantities about that linearization point is obtained using a simulation of the nonlinear system. The
The linearized equation (9) can then be expressed as range of validity of each of the corresponding linearized

@/(t) = Ai(t)+ Buu(t) + B models is denoted by the circles. In order to capture the
, most relevant dynamics of the system, the range of inputs
y(t) = Cii(t) + Coi (11 simulated for the training trajectory should reflect dynamics of
where By; = f(z;,u;) — Byu; and Cy; = Cix;. interest for the application at hand. For instance, in Figure 3,
The linearized system (11) is efficient for time computarajectories such as B and C will be well represented by the set
tions, but remains too large for applications such as controllef linear models, while trajectories D and E may demonstrate
design. A reduced-order linearized model can be obtained jpgor results, since they lie beyond the range of validity.

applying the projection (3) to the system (11) yielding The linearization points can be chosen using the following
d . . . approach. ConsidetN snapshots, taken from the training
%xi(t) = Aidi(t) + Buu(t) + Bai trajectory. The algorithm compares each pair of snapshots by
. A 4 computing the two-norm of the distance between them. When
i) = Cary(t) + Cos (12) this difference is larger than a specified criteriép,,,, a new
where the reduced-order matrices are given by linearization point is selected. The value &f;, sets the
A, = VTAV distance between subsequent linearization points; therefore,
A T lowering its value implies increasing the number of models
]?” = V' By in the system. This approach is described by the pseudo-
By = V'By algorithm below, which takes as inpuds,;, and the matrix
Ci = GV (13) U containing N CFD snapshots
The system (12) is truly reduced since the projections can U= {z® O ON-1) (14)

be carried out to calculate the reduced-order matrices a priori ) . .

and no CFD-order computations are required for simulatio?\r‘OI re_zturns the vectoth_t, W.h'ch C°”t?"”3 the column
However, the linearized models do not accurately captu'lrédex inU of the selected linearization points.
nonlinear behavior. The next section will therefore focus on

finding a suitable way to capture nonlinear behavior within

the reduction framework.



Algorithm 1
(Choice of linearization points on the fly)
Function linPt = linearizationPoirtf, 6,,;.)
N = size(U, 2)
linPt = [0]
fori=1: N
k = size(linPt)
d=o0
forj=1:k
5 — |JU® —gnPtGy
- ||U(l7'nPt(j))||
d = min[d, ')
end
linPt = [linPt i
end
end

With the set of linear models created, a TPWL scheme
can be assembled in order to model nonlinearity. Consi
a weighted combination of linearized models of system (11)

s—1
Zd}i(x){dcg(t) - Aix;(t)—&—Buu(t)—kBgi}
i=0

§&,(I){yz(t) = Cix;(t)JrCOi}
i=0

where @;(x) are weights depending on the value of th
perturbation about the linearization point. It is assumed
that for all =, Y7, @;(x) = 1. The weights@;(z) are

then obtained using the distande:(t) — x;|| between the
linearization pointz; and the current solutione(t).
procedure below, following Rewienski [9], ensures that the
“dominant” modeli is that corresponding to the Iinearization[h
point z; that is the closest to the current state of the system:

Algorithm 2 (Weights computation)
1) Fori=0,...,(s — 1) compute:
di = ||lz(t) — zil|2.

2) [m,k] =min{d; :i=0,...,(s—1)}.

3) a) Fori=0,...,(s—1) compute:
;= (exp(d;) /m) .
or

b) Fori=0,...,(s—1),& =0

Op = 1.

4) Normalize®;.

E. Reduced-Order TPWL Model

Using the TPWL representation of the nonlinear system, an
efficient reduced-order model can now be obtained using the
projection (3) applied to (15), yielding a reduced-order TPWL
model as follows.

Z@i(i){%ié(ﬂ = Aii;(t)—i—éliu(t)—i—égi}

=0
i@i(i‘){@i(f) = éz'%i(t)wLCm} (16)
=0

where the reduced-order matrices are defined as before in (13).
As in the linear case, this representation is efficient, since
all reduced-order matrices in (16) can be precomputed. Note
also that the weightg); are computed as a function of the
reduced-order state. The TPWL approach fits well within
the context of POD-based model reduction, since a simulation
of the nonlinear system can provide both the snapshots for

dpeomputation of the POD basis vectors and also a set of

InStantaneous flow states from which to select the linearization
points.

The final TPWL reduction approach can be summarized as

follows. First, simulate the nonlinear CFD model for a range
of forcing functions and conditions that are representative of
the application at hand. Second, from the resulting snapshot
collection, calculate a set of POD basis vectors. Third, from
éhe same snapshot collection, select a set of linearization points
using Algorithm 1. Fourth, using the dominant POD basis vec-
tors, project each linearized model to obtain a set of reduced-
order linear state-space systems. Finally, combine these low-
order state-space systems using the TPWL representation and
a set of weights from Algorithm 2.
This approach will now be demonstrated for the case of flow
rough the supersonic diffuser shown in Figure 2. Both full-
order and reduced-order TPWL models will be constructed,
and the results compared with full nonlinear CFD outputs.

Ill. RESULTS

A number of test cases will be presented to demonstrate
the TPWL methodology. In all cases, the input considered is
an incoming density disturbance and the output of interest is
the average Mach number at the throat of the diffuser. The
six different temporal distributions considered for the input
are presented in Figure 4, and vary temporally either with a
Gaussian pulse or a sinusoidal distribution of various frequen-
cies and amplitudes. The Gaussian distribution is described

First, Algorithm 2 obtains the differenceé; between the by

current stater(t) and the linearization point;. The minimum

pl(t) = —Apge™(ttrear/ fo)® (17)

distance is given byn and corresponds to the model with

index k. Then, the weights can be computed in two differenhile the sinusoidal distribution is described by

ways. The first method shows a weighted sum strongly con- / .

cer)(trated on the closest model, whi?e the second uggs only p(t) = —Aposinwot (18)
the closest model at the time. As will be presented later, eaghere the nominal frequencfy equalsay/h, the inlet speed
formulation yields slightly different results. The last step if sound divided by the height of the inlety = 27 f/ fo, and
the algorithm ensures that the summation of ¢heeights is the non-dimensional time,..;, sets the time at which the
unity. perturbation peaks. The parametesets the sharpness of the
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perturbation (i.e. its frequency content),corresponds to the i
amplitude of the perturbation, ang is the nominal value of
freestream density. The parameter values corresponding to the *©  © = = @ = w© ©
six different input functions are presented in Tables | and II.

Nonlinear CFD results are obtained by simulation of thiig.5. Nonlinear response plotted against various TPWL model combinations
full system, and snapshots at each timestep are saved. Ué?l':l . Gaussian incoming ‘distur_bance of 3% amplitude. Training trajectory

. . . _,obtdined from the same simulation.
Algorithm 1 for different values o#,,,;,, and the snapshots just
obtained, various sets of models are found. Table 11l shows the
number of models as a function of the choicegf,, for four
of the cases, where Algorithm 1 was applied to each cadene by comparing nonlinear CFD results with those obtained
separately. For each case, it can be seen by how much tiseng a full-order TPWL approximation as in Equation (15).
number of models grows as the distance between linearizatiime results using different sets of models from Table IlI
points is decreased. By comparing the number of models fare shown on Figure 5, where the average Mach number
a givend,,;,, one gains some insight to the importance dit the throat is plotted against time. Here, both the training
nonlinearity in each case. For example, a Gaussian distributiajectory and the disturbance were a Gaussian distribution of
of 3% can be seen to introduce more nonlinearity into ti#% amplitude. Figure 5 shows the number of models needed
system than one of 1%, requiring substantially more modédts accurately represent the nonlinear behavior. It can be seen
for a givend,,in. that only one linearized model cannot capture the nonlinear
behavior of a shock. As the value 6f,;,, is decreased, the

A. Full-Order TPWL Models match improves with increasing number of models. It can be

Once the linearization points have been determined, theen in Figure 5 that with 28 models,(,, = 0.01), the
validity of the TPWL representation must be tested. This wagnlinear CFD results are matched by the combination of full-

order linear models.

Figures 6 and 7 show TPW.L results for all of the Gaussian

[Case[[ A [ wo | . .
2 15% | 0.65 amplitudes, using values of,,;, equal to 0.01 and 0.005,
5 2% | 0.35 respectively. For each case, the training trajectory corresponds
6 3% | 0.65 to the desired incoming disturbance. Comparing these figures,
TABLE Il one gains insight to the value @f,;, required in order to

obtain a good match between the piecewise-linear combination
of models and the nonlinear CFD. As Figure 5 shows, a

DATA USED FOR THE SINUSOIDAL DISTRIBUTION
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incoming disturbance of various amplitudes. From top, amplitude of 1%, 2?11 8. Nonll_nea_r response plotted against various T.PWL mod_el_combmahons
f@ Gaussian incoming disturbance of 3% amplitude. Training trajectory

and 3%. The training trajectory for each case was the same as the simulatq) ined f h imulati
Linearized models were selected usifig;, = 0.01. obtained from the same simulation.
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Fig. 7. Nonlinear response plotted against TPWL models for a Gaussigig. 9. Nonlinear CFD response plotted against TPWL model with 74

incoming disturbance of various amplitudes. From top, amplitude of 1%, 2fipearization points chosen from three different training trajectories. From

and 3%. The training trajectory for each cases was the same as the simulatiop. Gaussian amplitude of 1.5% and 2.5%. Training trajectories obtained

Linearized models were selected usiflg;, = 0.005. from incoming density disturbances of Gaussian amplitudes of 1%, 2% and
3%.

minimum number of models is needed to capture a suffi-
ciently high degree of nonlinearity. However, as Figure {faining trajectories. To achieve this, all snapshots obtained
demonstrates, taking too many models may cause undesiréghben the three different training trajectories of 1%, 2% and 3%
results. In particular, oscillations may be observed or behavi@aussian disturbances were combined to form one large data
may be inaccurately captured in sensitive regions. This get. Linearization points were then selected from the complete
observed in the lower plot of Figure 7 at a timély ~ 50 set using Algorithm 1 withd,,;, = 0.005, which resulted
corresponding to the point at which the shock returns toim the selection of 74 points. Results for simulations of this
position downstream of the throat. These problems are furtfiePWL model for Gaussian amplitudes of 1.5% and 2.5% are
demonstrated in Figure 8, where even a small increase in #teown on Figure 9. Note that these cases were not considered
number of models leads to oscillations and inaccuracies a8 part of the training trajectory set; however, they would be
sensitive regions. Systematic strategies to avoid this behawisipected to fall within the range of validity of the existing
are the subject of ongoing research. ensemble. Very good agreement between the full nonlinear
In the context of finding a reduced-order model that is vali@FD and the set of combined models can be seen for the 1.5%
over a range of flow conditions, the different input cases woutthse. For the larger amplitude 2.5% case, some discrepancy
not be considered separately. Rather, the snapshots from eaith the CFD is observed, but the TPWL approach shows a
would be combined to find a TPWL system that captures atamatic improvement over using a single linearized system.
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B. Reduced-Order TPWL Models 10

The POD basis calculation and the selection of linearization % o1 02 03 0a os
points can be performed efficiently using the same ensemble
of snapshots. It is important that this snapshot selection spaf 11. Transfer function from incoming density disturbance to average
all operating conditions of interest. For the results presenttxbat Mach number for model number 37 out of B4,{,, = 0.005), with
here, three training trajectories were used, which correspond8gtates:
to the three Gaussian input pulses given in Table |. For each
trajectory, 480 snapshots were collected corresponding to the
solution at every timestep, yielding a total of 1440 snapshotted to these reduced models. The accuracy can be checked a
POD basis vectors were then calculated, resulting in the P@Dsteriori by comparing the transfer functions of the full-order
eigenvalue spectrum plotted in Figure 10. To capt99€;, and reduced-order models at each linearization point. Figure
99.9%, 99.99% and 99.999% of the snapshot energy definedl1 shows this comparison for the transfer function between an
by (6), 9, 18, 33 and 61 basis vectors are required, respectivéigoming density disturbance and the throat Mach number for

one particular model. The reduced model uses 50 states, which
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ corresponds to 99.998% POD energy. The frequency content
L | of the input disturbances used for the training trajectories
lies in the rangef/fy < 1.3. The reduced-order model is
0L 1 expected to produce accurate results for behavior contained
+ in the snapshot samples. It can be seen in Figure 11 that
+ a good match is obtained for the frequencies included in
= the sampling process; however, the figure demonstrates the
e danger of applying the reduced models outside their range
of validity and emphasizes the importance of selecting the
training trajectories appropriately.
*++++++ The 74 models were then combined to form a TPWL
”**mm—, system as defined by (16). Simulation results are presented for
the second weighting procedure given in Algorithm 2, which
o 5 1 15 Méie 0 s w s % uses only the closest model. Figures 12 and 13 present the
simulation results of this final model for a range of different
Fig. 10. First 50 POD eigenvalues of a total of 1440. incoming density disturbances. For the Gaussian pulses in
Figure 12, it can be seen that good agreement is achieved for

The second step in creating the reduced-order TPWL modliturbances of smaller amplitude. For the lower two cases,
ith 2.5% and 3% amplitudes, some discrepancy is noted. In

is to determine appropriate linearization points using Alggy . . .
rithm 1. This algorithm is applied to the entire set of availabl articular, the point at which the shock returns downstream of

training trajectories, i.e. the three Gaussian disturbances fr6 _th_roat contlnues to show extreme sensitivity. In Flgurg 13,
similar trend is observed. Results for the smaller amplitude

Table I. Table IV presents the resulting number of models as . . . .
: . sinusoids are excellent, but discrepancy is again observed for

a function of the criteriony,,,;,,. ) ;

Using é,,;» = 0.005 and the corresponding 74 Iinearizatioﬁhe 3% amplitude in the lower plot.

points, a set of reduced-order models was created by projection

of each linearized model onto the reduced space spanned by

the first 50 POD basis vectors. If a sufficient number of POD The TPWL methodology has been demonstrated as a viable

basis vectors is used to define the reduced space, accuagtgroach for obtaining accurate, efficient, reduced-order mod-

reduced-order models can be obtained; however, it shoulddis for nonlinear CFD applications. For many of the cases

noted that there are no accuracy or stability guarantees assooisidered, the performance of the method is excellent. For
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Fig. 12. Reduced-order TPWL simulation for Gaussian inputs. From tof0]
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Fig. 13. Reduced-order TPWL simulation for sinusoidal inputs. From top:
Case 4, Case 5, Case 6.

cases where the nonlinearity is significant and leads to very
large shock motion, the results are found to be sensitive to
the choices of linearization points and model size. Systematic
strategies to reduce this sensitivity are the subject of ongoing
research.
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