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Abstract— A trajectory piecewise-linear (TPWL) approach is
developed for a computational fluid dynamics (CFD) model of the
two-dimensional Euler equations. The approach uses a weighted
combination of linearized models to represent the nonlinear CFD
system. The proper orthogonal decomposition (POD) is then used
to create a reduced-space basis, onto which the TPWL model is
projected. This projection yields an efficient reduced-order model
of the nonlinear system, which does not require the evaluation
of any full-order system residuals. The method is applied to the
case of flow through an actively controlled supersonic diffuser.
With an appropriate choice of linearization points and POD basis
vectors, the method is found to yield accurate results, including
cases with significant shock motion.

I. I NTRODUCTION

Computational fluid dynamics (CFD) is now widely used
throughout the fluid dynamics community. It produces accurate
models for many problems of interest, although the cost of ob-
taining the solution may be prohibitive for some applications.
In particular, this cost becomes critical for multidisciplinary
applications such as aeroelasticity or active flow controller
design. Model order reduction techniques provide a way to
systematically determine low-order models that capture the
relevant dynamics of the CFD model while being computa-
tionally very efficient. These techniques have been applied
successfully for a range of fluid dynamic applications [1], [2],
[3], [4], [5].

While model reduction is now a well established approach
for large linear systems, addressing the problems that arise
for consideration of nonlinearity remains a challenging task.
A number of linear reduction techniques have been extended
to the nonlinear case with varying success. One approach
to generate reduced-order models for nonlinear systems is a
polynomial (Taylor) expansion of system’s nonlinearity, and
subsequent application of Krylov projection methods [6], [7],
[8]. However, the main drawbacks of those methods are that
they are limited to applications with “small” input distur-
bances, or more generally called weakly nonlinear systems,
and that the quadratic and higher order expansion terms are
very expensive to compute.

The proper orthogonal decomposition (POD) is a widely
used method of reduction for CFD applications. The approach
is to compute a set of empirical eigenfunctions using flow
solutions collected from a simulation of the CFD model.
A reduced-order model is then obtained by projecting the

governing equations onto the reduced space spanned by the
POD basis vectors. POD has been applied to nonlinear sys-
tems; however, in these applications, the issue of an efficient
representation of the nonlinearity in the reduced-order model is
inadequately addressed. While the resulting nonlinear models
do have a reduced number of states, they still require flux
evaluations of the original high-order CFD model.

In Rewienski, a trajectory piecewise-linear (TPWL) scheme,
is developed [9], [10]. The basic idea is to represent a nonlin-
ear system as a weighted combination of linear models. The
linear models are obtained by linearizing the nonlinear system
at various points along a training trajectory. This technique
aims to address some fundamental issues presented earlier,
i.e. overcoming restrictions of weak nonlinearity and creating
a cost-efficient representation of the system’s nonlinearity. By
using a weighted combination of various linear models, a
broader range of the nonlinear space is spanned compared with
using a single model. In addition, the TPWL system allows
an efficient representation of the reduced-order model. This
technique has been successfully applied to nonlinear analogue
circuits and micromachined devices [9], [10].

This paper considers the TPWL approach in conjunction
with a POD-based reduction for CFD applications. These two
techniques can be combined naturally, since both are based
upon a training simulation of the system. In the next section,
the CFD model is described, considering in particular the case
of flow through an actively controlled supersonic diffuser.
The general model reduction framework is then established,
followed by a description of the TPWL approach and its
application to the reduced-order models. Finally, results are
presented and conclusions are drawn.

II. COMPUTATIONAL MODEL

The computational model is based on the case of flow
through a supersonic diffuser; however, the TPWL method-
ology is general and could be applied to any CFD model.
Figure 1 shows the Mach contours at steady-state conditions
inside the fixed geometry of a supersonic diffuser that operates
at a freestream Mach number of 2.2. In steady-state operation,
a shock forms downstream of the throat; however in practice,
the incoming supersonic flow is subject to perturbations, such
as atmospheric density disturbances. Such perturbations in
the flow may cause the shock to move upstream of the



throat, and eventually to be expelled from the diffuser. This
phenomenon, known as inlet unstart, causes huge losses in
engine performance and thus is highly undesirable. In order
to prevent inlet unstart, an active control mechanism of the
shock is required.

Fig. 1. Mach contours for steady flow through supersonic diffuser. Steady-
state inflow Mach number is 2.2.

Figure 2 presents the schematic of the actuation mechanism.
Incoming flow with possible disturbances enter the inlet and is
sensed using pressure sensors. The controller then adjusts the
bleed upstream of the throat in order to control the position
of the shock and to prevent it from moving upstream.

Fig. 2. Supersonic diffuser active flow control problem setup.

A. Nonlinear CFD Model

The full nonlinear solution of the entire flow distribution
in the inlet can be obtained using a CFD model. Here, the
problem is assumed to be two-dimensional, compressible and
inviscid, thus the solution is governed by the Euler equations.
The discrete Euler equations are derived from the integral
form of the unsteady, two-dimensional equations, which are
the usual statements of mass, momentum, and energy:

∂

∂t

∫∫
ρdV +

∮
dm = 0

∂

∂t

∫∫
ρ~QdV +

∮
~Qdm +

∮
pd ~A = 0

∂
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∫∫
ρEdV +

∮
Hdm = 0 (1)

where the flow variables are the density,ρ, the total velocity
vector,~Q, the pressure,p, the energy,E, and the total enthalpy,
H. The quantitydm = ρ~Q·d ~A is the mass flux element across
the conservation cell boundary,d ~A = dA · n̂, wheredA is a
surface element and̂n is a unit vector pointing outward from
the control volume. The discrete Euler equations approximate
the integral form of the continuous Euler equations on small
control volumes or control cells. The flow solver is fully
described in Drela [11] and Lassaux [4], and uses as state
variablesq, q⊥, ρ, andH, whereq andq⊥ are the streamwise
and normal components of the velocity, respectively.

Using a structured grid for spatial discretization, the discrete
Euler equations can be represented as a nonlinear dynamical
system of the form:

ẋ(t) = f(x(t), u(t))
y(t) = g(x(t)) (2)

where x(t) ∈ Rn is a generalized state vector containing
the n unknown flow quantities,q, q⊥, ρ and H, at each
point in the computational grid,f is a nonlinear vector-
valued function,u(t) ∈ Rl is the input to the system, and
y(t) ∈ Rk contains the system outputs, which are defined by
the nonlinear functiong.

B. Reduced Space Basis

A reduced-order model can be obtained by considering a
projection of the state vectorx

x(t) = V x̂(t) (3)

wherex̂(t) ∈ Rm is the reduced-order state vector, containing
the time-dependent amplitudes ofm basis vectors, contained
in the columns of the matrixV . The basis vectors must be
selected appropriately, so that the statex can be accurately
represented in the reduced space. In this work, POD is used
to determine the basis vectors as follows.

First, N snapshots are obtained from a CFD calculation,
where each snapshot corresponds to a flow solution at a par-
ticular instant in time. The correlation matrixR is formed by
computing the inner product between every pair of snapshots

Rij =
1
N

(
x(i), x(j)

)
(4)

wherex(i) is the flow solution at a timet(i) and
(
x(i), x(j)

)
denotes the inner product betweenx(i) and x(j). The eigen-
valuesλi and eigenvectorsψ(i) of R are then computed. The
magnitude of thejth eigenvalue,λi, describes the relative
importance of thejth POD basis vector,Vj , which is computed
by

Vj =
N∑

i=1

ψ
(j)
i x(i) (5)

whereψ
(j)
i denotes theith component of thejth eigenvector.

This orthonormal set of POD basis vectors can be used to
project the solution onto the reduced-space basis using (3). The
size ofx̂, m, will depend on the number of components taken
in the basisV . This number can be chosen using a heuristic
criterion based on capturing a sufficiently large amount of the
“energy” contained in the snapshot collection. The relative
energy ej captured by each modej is given by the POD
eigenvalues as

ej =
λj∑N
i=1 λi

(6)

Applying the projection (3) to the nonlinear system (2), the
resulting reduced-order model is of the form

˙̂x(t) = V T f(V x̂(t), u(t))
ŷ(t) = g(V x̂(t)) (7)



While the system (7) has a reduced number of states, it still
requires evaluation of the full order flux termf(·). To obtain
a truly reduced model, a more efficient representation of the
nonlinearity in the reduced space is required.

C. Linearized Models

Efficient linearized models can be extracted from the system
(2) by using a polynomial expansion of the nonlinearity, or
more specifically a Taylor expansion about some state(xi, ui),
which, following Phillips [12], expandsf as:

f(x, u) = f(xi, ui) + Ai(x− xi) + Bi(u− ui)

+
1
2
Wi(x− xi)⊗ (x− xi) + . . . (8)

where ⊗ is the Kronecker product, andAi and Wi are,
respectively, the Jacobian and the Hessian off(·) evaluated
at the state(xi, ui). The matrixBi = ∂f

∂u is also evaluated at
(xi, ui). Dropping the quadratic and higher terms of (8), the
nonlinear system (2) can be linearized about a given state to
yield a state-space model of the form:

ẋ(t) = Aix(t) + Biu(t) + (f(xi, ui)−Aixi(t)−Biui)
y(t) = Cix(t) (9)

whereCi = ∂g
∂x is also evaluated at(xi, ui).

The vector of unknownsx(t) can be written as

x(t) = xi + x′i(t) (10)

wherexi, fixed in time, is the value of state vectorx at the
linearization pointi, andx′i(t) contains the perturbation of the
n unknown flow quantities about that linearization pointxi.
The linearized equation (9) can then be expressed as

ẋi
′(t) = Aix

′
i(t) + B1iu(t) + B2i

y(t) = Cix
′
i(t) + C0i (11)

whereB2i = f(xi, ui)−Biui andC0i = Cixi.
The linearized system (11) is efficient for time computa-

tions, but remains too large for applications such as controller
design. A reduced-order linearized model can be obtained by
applying the projection (3) to the system (11) yielding

d

dt
x̂′i(t) = Âix̂

′
i(t) + B̂1iu(t) + B̂2i

ŷi(t) = Ĉix̂
′
i(t) + C0i (12)

where the reduced-order matrices are given by

Âi = V T AiV

B̂1i = V T B1i

B̂2i = V T B2i

Ĉi = CiV (13)

The system (12) is truly reduced since the projections can
be carried out to calculate the reduced-order matrices a priori
and no CFD-order computations are required for simulation.
However, the linearized models do not accurately capture
nonlinear behavior. The next section will therefore focus on
finding a suitable way to capture nonlinear behavior within
the reduction framework.

D. Trajectory Piecewise-Linear Scheme

In Rewienski [9], an efficient, approximate method to rep-
resent nonlinear circuit systems is presented and tested. It is
proposed that by using a weighted combination of multiple
linear models, nonlinear behavior can be modelled. The linear
models are obtained via linearization of the nonlinear system at
different solutions in time. An approximation to the nonlinear
system can then be obtained by using a weighted combination
of the closest linear models to the current solution in time.

Fig. 3. Collection of linearization pointsx0, x1, x2 andx3 in a 2D state
space. Circles denotes suitable region for use of each linearization point.
Trajectory A is called the training trajectory. Figure from Rewienski [9].

Figure 3 presents a two-dimensional conceptual view of
a series of linearized models. Plotted are four linearization
points,x0, x1, x2 andx3, along a “training trajectory”, which
is obtained using a simulation of the nonlinear system. The
range of validity of each of the corresponding linearized
models is denoted by the circles. In order to capture the
most relevant dynamics of the system, the range of inputs
simulated for the training trajectory should reflect dynamics of
interest for the application at hand. For instance, in Figure 3,
trajectories such as B and C will be well represented by the set
of linear models, while trajectories D and E may demonstrate
poor results, since they lie beyond the range of validity.

The linearization points can be chosen using the following
approach. ConsiderN snapshots, taken from the training
trajectory. The algorithm compares each pair of snapshots by
computing the two-norm of the distance between them. When
this difference is larger than a specified criterion,δmin, a new
linearization point is selected. The value ofδmin sets the
distance between subsequent linearization points; therefore,
lowering its value implies increasing the number of models
in the system. This approach is described by the pseudo-
algorithm below, which takes as inputsδmin and the matrix
U containingN CFD snapshots

U = {x(0), x(1), ..., x(N−1)} (14)

and returns the vectorlinP t, which contains the column
index in U of the selected linearization points.



Algorithm 1
(Choice of linearization points on the fly)
Function linPt = linearizationPoint(U, δmin)

N = size(U, 2)
linP t = [0]
for i = 1 : N

k = size(linP t)
δ = ∞
for j = 1 : k

δ′ = ‖U(i)−U(linP t(j))‖
‖U(linP t(j))‖

δ = min[δ, δ′]
end
if (δ > δmin)

linP t = [linP t i]
end

end

With the set of linear models created, a TPWL scheme
can be assembled in order to model nonlinearity. Consider
a weighted combination ofs linearized models of system (11)

s−1∑

i=0

ω̃i(x)
{

ẋ′i(t) = Aix
′
i(t) + B1iu(t) + B2i

}

s−1∑

i=0

ω̃i(x)
{

yi(t) = Cix
′
i(t) + C0i

}
(15)

where ω̃i(x) are weights depending on the value of the
perturbation about the linearization pointxi. It is assumed
that for all x,

∑s−1
i=0 ω̃i(x) = 1. The weights ω̃i(x) are

then obtained using the distance‖x(t) − xi‖ between the
linearization point xi and the current solutionx(t). The
procedure below, following Rewienski [9], ensures that the
“dominant” modeli is that corresponding to the linearization
point xi that is the closest to the current state of the system:

Algorithm 2 (Weights computation)
1) For i = 0, ..., (s− 1) compute:

di = ‖x(t)− xi‖2.
2) [m, k] = min{di : i = 0, ..., (s− 1)}.
3) a) For i = 0, ..., (s− 1) compute:

ω̃i = (exp(di)/m)−25.
or

b) For i = 0, ..., (s− 1), ω̃i = 0
ω̃k = 1.

4) Normalizeω̃i.
First, Algorithm 2 obtains the differencedi between the

current statex(t) and the linearization pointxi. The minimum
distance is given bym and corresponds to the model with
index k. Then, the weights can be computed in two different
ways. The first method shows a weighted sum strongly con-
centrated on the closest model, while the second uses only
the closest model at the time. As will be presented later, each
formulation yields slightly different results. The last step in
the algorithm ensures that the summation of thes weights is
unity.

E. Reduced-Order TPWL Model

Using the TPWL representation of the nonlinear system, an
efficient reduced-order model can now be obtained using the
projection (3) applied to (15), yielding a reduced-order TPWL
model as follows.

s−1∑

i=0

ω̃i(x̂)
{ d

dt
x̂′i(t) = Âix̂

′
i(t) + B̂1iu(t) + B̂2i

}

s−1∑

i=0

ω̃i(x̂)
{

ŷi(t) = Ĉix̂
′
0i(t) + C0i

}
(16)

where the reduced-order matrices are defined as before in (13).
As in the linear case, this representation is efficient, since
all reduced-order matrices in (16) can be precomputed. Note
also that the weights̃ωi are computed as a function of the
reduced-order statêx. The TPWL approach fits well within
the context of POD-based model reduction, since a simulation
of the nonlinear system can provide both the snapshots for
computation of the POD basis vectors and also a set of
instantaneous flow states from which to select the linearization
points.

The final TPWL reduction approach can be summarized as
follows. First, simulate the nonlinear CFD model for a range
of forcing functions and conditions that are representative of
the application at hand. Second, from the resulting snapshot
collection, calculate a set of POD basis vectors. Third, from
the same snapshot collection, select a set of linearization points
using Algorithm 1. Fourth, using the dominant POD basis vec-
tors, project each linearized model to obtain a set of reduced-
order linear state-space systems. Finally, combine these low-
order state-space systems using the TPWL representation and
a set of weights from Algorithm 2.

This approach will now be demonstrated for the case of flow
through the supersonic diffuser shown in Figure 2. Both full-
order and reduced-order TPWL models will be constructed,
and the results compared with full nonlinear CFD outputs.

III. R ESULTS

A number of test cases will be presented to demonstrate
the TPWL methodology. In all cases, the input considered is
an incoming density disturbance and the output of interest is
the average Mach number at the throat of the diffuser. The
six different temporal distributions considered for the input
are presented in Figure 4, and vary temporally either with a
Gaussian pulse or a sinusoidal distribution of various frequen-
cies and amplitudes. The Gaussian distribution is described
by

ρ′(t) = −Λρ0e
−α(t−tpeak/f0)

2
(17)

while the sinusoidal distribution is described by

ρ′(t) = −Λρ0 sin ω0t (18)

where the nominal frequencyf0 equalsa0/h, the inlet speed
of sound divided by the height of the inlet,ω0 = 2πf/f0, and
the non-dimensional time,tpeak, sets the time at which the
perturbation peaks. The parameterα sets the sharpness of the
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Fig. 4. Incoming density disturbances. Top: Gaussian distributions. Bottom:
sinusoidal distributions.

Case Λ tpeak α

1 1% 20 0.03f2
0

2 2% 20 0.03f2
0

3 3% 20 0.03f2
0

TABLE I

DATA USED FOR THEGAUSSIAN DISTRIBUTION.

perturbation (i.e. its frequency content),Λ corresponds to the
amplitude of the perturbation, andρ0 is the nominal value of
freestream density. The parameter values corresponding to the
six different input functions are presented in Tables I and II.

Nonlinear CFD results are obtained by simulation of the
full system, and snapshots at each timestep are saved. Using
Algorithm 1 for different values ofδmin and the snapshots just
obtained, various sets of models are found. Table III shows the
number of models as a function of the choice ofδmin for four
of the cases, where Algorithm 1 was applied to each case
separately. For each case, it can be seen by how much the
number of models grows as the distance between linearization
points is decreased. By comparing the number of models for
a given δmin, one gains some insight to the importance of
nonlinearity in each case. For example, a Gaussian distribution
of 3% can be seen to introduce more nonlinearity into the
system than one of 1%, requiring substantially more models
for a givenδmin.

A. Full-Order TPWL Models

Once the linearization points have been determined, the
validity of the TPWL representation must be tested. This was

Case Λ ω0

4 1.5% 0.65
5 2% 0.35
6 3% 0.65

TABLE II

DATA USED FOR THE SINUSOIDAL DISTRIBUTION.

Case number
δmin 1 2 3 6

∞ 1 1 1 1
0.030 1 3 4 7
0.020 2 4 8 16
0.015 3 6 16 31
0.012 4 11 23 41
0.010 5 16 28 50
0.008 6 20 34 70
0.006 12 29 48 100
0.005 15 36 56 118
0.004 20 42 69 147

TABLE III

NUMBER OF MODELS GIVEN BY DIFFERENT VALUES OFδmin FOR FOUR

OF THE INPUT CASES.
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Fig. 5. Nonlinear response plotted against various TPWL model combinations
for a Gaussian incoming disturbance of 3% amplitude. Training trajectory
obtained from the same simulation.

done by comparing nonlinear CFD results with those obtained
using a full-order TPWL approximation as in Equation (15).
The results using different sets of models from Table III
are shown on Figure 5, where the average Mach number
at the throat is plotted against time. Here, both the training
trajectory and the disturbance were a Gaussian distribution of
3% amplitude. Figure 5 shows the number of models needed
to accurately represent the nonlinear behavior. It can be seen
that only one linearized model cannot capture the nonlinear
behavior of a shock. As the value ofδmin is decreased, the
match improves with increasing number of models. It can be
seen in Figure 5 that with 28 models (δmin = 0.01), the
nonlinear CFD results are matched by the combination of full-
order linear models.

Figures 6 and 7 show TPWL results for all of the Gaussian
amplitudes, using values ofδmin equal to 0.01 and 0.005,
respectively. For each case, the training trajectory corresponds
to the desired incoming disturbance. Comparing these figures,
one gains insight to the value ofδmin required in order to
obtain a good match between the piecewise-linear combination
of models and the nonlinear CFD. As Figure 5 shows, a
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Fig. 6. Nonlinear response plotted against TPWL models for a Gaussian
incoming disturbance of various amplitudes. From top, amplitude of 1%, 2%
and 3%. The training trajectory for each case was the same as the simulation.
Linearized models were selected usingδmin = 0.01.
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Fig. 7. Nonlinear response plotted against TPWL models for a Gaussian
incoming disturbance of various amplitudes. From top, amplitude of 1%, 2%
and 3%. The training trajectory for each cases was the same as the simulation.
Linearized models were selected usingδmin = 0.005.

minimum number of models is needed to capture a suffi-
ciently high degree of nonlinearity. However, as Figure 7
demonstrates, taking too many models may cause undesirable
results. In particular, oscillations may be observed or behavior
may be inaccurately captured in sensitive regions. This is
observed in the lower plot of Figure 7 at a timet/T0 ≈ 50
corresponding to the point at which the shock returns to a
position downstream of the throat. These problems are further
demonstrated in Figure 8, where even a small increase in the
number of models leads to oscillations and inaccuracies in
sensitive regions. Systematic strategies to avoid this behavior
are the subject of ongoing research.

In the context of finding a reduced-order model that is valid
over a range of flow conditions, the different input cases would
not be considered separately. Rather, the snapshots from each
would be combined to find a TPWL system that captures all
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Fig. 8. Nonlinear response plotted against various TPWL model combinations
for a Gaussian incoming disturbance of 3% amplitude. Training trajectory
obtained from the same simulation.
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Fig. 9. Nonlinear CFD response plotted against TPWL model with 74
linearization points chosen from three different training trajectories. From
top: Gaussian amplitude of 1.5% and 2.5%. Training trajectories obtained
from incoming density disturbances of Gaussian amplitudes of 1%, 2% and
3%.

training trajectories. To achieve this, all snapshots obtained
from the three different training trajectories of 1%, 2% and 3%
Gaussian disturbances were combined to form one large data
set. Linearization points were then selected from the complete
set using Algorithm 1 withδmin = 0.005, which resulted
in the selection of 74 points. Results for simulations of this
TPWL model for Gaussian amplitudes of 1.5% and 2.5% are
shown on Figure 9. Note that these cases were not considered
as part of the training trajectory set; however, they would be
expected to fall within the range of validity of the existing
ensemble. Very good agreement between the full nonlinear
CFD and the set of combined models can be seen for the 1.5%
case. For the larger amplitude 2.5% case, some discrepancy
with the CFD is observed, but the TPWL approach shows a
dramatic improvement over using a single linearized system.



δmin # of Models

∞ 1
0.010 27
0.008 38
0.006 58
0.005 74
0.004 93

TABLE IV

NUMBER OF MODELS GIVEN BY DIFFERENT VALUES OFδmin APPLIED TO

THE THREE GAUSSIAN DISTRIBUTIONS COMBINED TOGETHER.

B. Reduced-Order TPWL Models

The POD basis calculation and the selection of linearization
points can be performed efficiently using the same ensemble
of snapshots. It is important that this snapshot selection span
all operating conditions of interest. For the results presented
here, three training trajectories were used, which corresponded
to the three Gaussian input pulses given in Table I. For each
trajectory, 480 snapshots were collected corresponding to the
solution at every timestep, yielding a total of 1440 snapshots.
POD basis vectors were then calculated, resulting in the POD
eigenvalue spectrum plotted in Figure 10. To capture99%,
99.9%, 99.99% and99.999% of the snapshot energy defined
by (6), 9, 18, 33 and 61 basis vectors are required, respectively.
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Fig. 10. First 50 POD eigenvalues of a total of 1440.

The second step in creating the reduced-order TPWL model
is to determine appropriate linearization points using Algo-
rithm 1. This algorithm is applied to the entire set of available
training trajectories, i.e. the three Gaussian disturbances from
Table I. Table IV presents the resulting number of models as
a function of the criterionδmin.

Using δmin = 0.005 and the corresponding 74 linearization
points, a set of reduced-order models was created by projection
of each linearized model onto the reduced space spanned by
the first 50 POD basis vectors. If a sufficient number of POD
basis vectors is used to define the reduced space, accurate
reduced-order models can be obtained; however, it should be
noted that there are no accuracy or stability guarantees associ-
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Fig. 11. Transfer function from incoming density disturbance to average
throat Mach number for model number 37 out of 74 (δmin = 0.005), with
50 states.

ated to these reduced models. The accuracy can be checked a
posteriori by comparing the transfer functions of the full-order
and reduced-order models at each linearization point. Figure
11 shows this comparison for the transfer function between an
incoming density disturbance and the throat Mach number for
one particular model. The reduced model uses 50 states, which
corresponds to 99.998% POD energy. The frequency content
of the input disturbances used for the training trajectories
lies in the rangef/f0 < 1.3. The reduced-order model is
expected to produce accurate results for behavior contained
in the snapshot samples. It can be seen in Figure 11 that
a good match is obtained for the frequencies included in
the sampling process; however, the figure demonstrates the
danger of applying the reduced models outside their range
of validity and emphasizes the importance of selecting the
training trajectories appropriately.

The 74 models were then combined to form a TPWL
system as defined by (16). Simulation results are presented for
the second weighting procedure given in Algorithm 2, which
uses only the closest model. Figures 12 and 13 present the
simulation results of this final model for a range of different
incoming density disturbances. For the Gaussian pulses in
Figure 12, it can be seen that good agreement is achieved for
disturbances of smaller amplitude. For the lower two cases,
with 2.5% and3% amplitudes, some discrepancy is noted. In
particular, the point at which the shock returns downstream of
the throat continues to show extreme sensitivity. In Figure 13,
a similar trend is observed. Results for the smaller amplitude
sinusoids are excellent, but discrepancy is again observed for
the 3% amplitude in the lower plot.

IV. CONCLUSION

The TPWL methodology has been demonstrated as a viable
approach for obtaining accurate, efficient, reduced-order mod-
els for nonlinear CFD applications. For many of the cases
considered, the performance of the method is excellent. For
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Fig. 12. Reduced-order TPWL simulation for Gaussian inputs. From top:
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Fig. 13. Reduced-order TPWL simulation for sinusoidal inputs. From top:
Case 4, Case 5, Case 6.

cases where the nonlinearity is significant and leads to very
large shock motion, the results are found to be sensitive to
the choices of linearization points and model size. Systematic
strategies to reduce this sensitivity are the subject of ongoing
research.
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