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Abstract

This thesis reviews the recent advances made in optical studies of single-wall carbon
nanotubes. Studying the electronic and vibrational properties of carbon nanotubes,
we find that carbon nanotubes less than 1 nm in diameter exhibit dramatic changes in
their electron and phonon dispersion relations due to the curvature of the nanotube
sidewall and the enhanced electron correlation effects associated with one dimension-
ality. The optical transition energies in small-diameter carbon nanotubes show a
strong dependence on their geometrical structure, as was first observed in the pho-
toluminescence experiments. The frequencies of the Raman-active phonon modes
also become very sensitive to the geometrical structure of small-diameter carbon
nanotubes. In particular, certain phonon modes exhibit anomalous behavior that
significantly affects resonance Raman spectra of small-diameter carbon nanotubes.
We have developed the extended tight-binding and advanced force-constant models
that properly take into account the curvature effects in the small-diameter limit. The
many-body corrections are fitted to the photoluminescence and resonance Raman
spectroscopy data. The resulting extended tight-binding model with semiempirical
many-body corrections shows a good agreement with the experimental results. The
electron-photon and electron-phonon transition matrix elements are calculated within
the framework of the extended tight-binding model. Finally, the photoluminescence
and Raman intensities in the graphene sheet and carbon nanotubes are calculated.
The calculated intensities show a reasonable agreement with the experimental results
and allow structural characterization of carbon nanotubes by their spectroscopic sig-
natures.
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Chapter 1

Introduction

Single-wall carbon nanotubes (SWNTs) are a novel form of sp2 carbon. While the

sp2 carbon normally takes the form of the flat hexagonal monolayers, SWNTs have a

cylindrical shape of variable lengths and diameters on the order of 1 pm and 1 nm, re-

spectively. The large aspect ratio makes the SWNTs almost perfect one-dimensional

(ID) wires. Also, SWNTs have a hollow interior, implying that there are no inner

atoms but only surface atoms. A virtually infinite surface-to-volume ratio in SWNTs

offers extraordinary sensitivity for gas sensor applications. However, SWNTs are not

chemically very reactive since they do not have surface dangling bonds. This reduces

the noise level for electronic circuit applications, but at the same time lowers the

quality of electric contacts. The chemical reactivity can be improved by functionaliz-

ing SWNTs with various surfactants and polymers, or by doping SWNTs with boron

or nitrogen atoms that introduce the structural defects carrying unpaired electrons.

Because of their unique structure, SWNTs exhibit unusual physical, chemical, elec-

trical, thermal, magnetic, biological, optical, mechanical, and kinetic properties. The

SWNTs can be either truly metallic, or small or large gap semiconducting depending

entirely on their geometry characterized by diameter, chiral angle, and handedness.

Truly metallic SWNTs exhibit ballistic transport at room temperature and theoret-

ically can withstand 1000 times more current density than copper conductors. Both

metallic and semiconducting SWNTs are very efficient thermal conductors operating

in the ballistic regime. Potentially good field emitters because of their atomically



sharp tips, SWNTs exhibit low optical quantum efficiency because of the dark exci-

tonic states lying lower in energy than the bright states, with the dark states acting

as traps at ambient temperatures. The SWNTs are one of the strongest materials

ever synthesized because of their strong sp2 bonds between carbon atoms within the

hexagonal rmonolayers.

The unusual properties of SWNTs suggest many potential applications such as

metallic wires, semiconducting devices, and heat sinks in integrated circuits, display

devices, gas filters and sensors, mechanical oscillators, composite fibers in polymers

and in different forms of structural enforcements. The electrical circuit applications

are complicated by the absence of a reliable technique to arrange multiple SWNTs on a

Si wafer. In display devices SWNTs might serve as electron emitters rather than field

emitters because of the low optical quantum efficiency. Future applications of SWNTs

include gas filters and sensors because of the virtually infinite surface-to-volume ratio

and the possibility for doping or functionalizing SWNTs with different impurities

or molecules. Because of their small dimensions and remarkable strength, SWNTs

are proposed as high frequency mechanical oscillators. Strong mechanical properties

suggest many different applications such as sports equipment, combat jackets, bridge

construction, electric motor brushes, and the space elevator. Finally, SWNTs provide

an ideal prototype system in which to study 1D physics.

Different techniques have been developed over the years to synthesize SWNTs in

large quantities, including arc discharge, laser ablation, high pressure CO decompo-

sition (HiPCO), chemical vapor deposition (CVD), and pyrolysis in the channels of

porous zeolite. These techniques do not provide control over the synthesis process

yielding both metallic and semiconducting SWNTs with a wide range of diameters

and of all chiral angles and two kinds of handedness. Hence, various post production

separation techniques have been introduced, such as precipitation of SWNTs function-

alized with octadecylamine, chromatography of DNA wrapped SWNTs, alternating

current dielectrophoresis, functionalization with diazonium salts, centrifugation with

diluted bromine, and burning off metallic SWNTs by high current in electrical circuits.

However, most of these techniques provide a moderate separation of SWNTs by their



metallicity along with the competitive separation by their diameter. The controlled

mass production of SWNTs for industrial applications is still an open issue.

Various probes have been employed to characterize SWNT samples including

atomic force microscopy (AFM), transmission electron microscopy (TEM), electron

diffraction, scanning tunneling microscopy (STM), scanning tunneling spectroscopy

(STS), and X-ray diffraction (XRD). Among these characterization methods, different

optical spectroscopy techniques such as absorption spectroscopy, infrared (IR) spec-

troscopy, resonance Raman spectroscopy (RRS), and band gap photoluminescence

(PL) serve a, vital role as they provide a quick, accurate, contactless, non-destructive

probe for electronic and vibrational properties of SWNTs under ambient conditions.

While molecular optical spectroscopy shows weak discrete overtones and combination

modes and solid state optical spectroscopy gives broad spectral features, the SWNT

optical spectroscopy takes the advantages of both yielding a rich and intense qua-

sidiscrete spectrum. In this thesis, we focus our attention on the RRS and PL as the

most commonly used optical spectroscopy techniques.

This thesis is organized as follows. In Chapter 2, the SWNT structure is discussed.

The concept of cutting lines leading to the zone-folding scheme is developed based

on the SWNT symmetry. The basic electronic properties of SWNTs are reviewed

in Chapter 3 using the zone-folding technique. In the light of recent advances in

the PL and RRS studies of SWNTs, an extended tight-binding model is developed

taking into account the curvature of the SWNT sidewall. Comparison of experiment

and theory indicates that optical transitions in SWNTs are governed by the excitonic

resonances, and are strongly affected by the geometry of SWNTs less than I nm in

diameter. In Chapter 4, we overview experimental measurements and force-constnat

models for the phonon dispersion relations in SWNTs. We develop an advanced tight-

binding model and we exploit the origin of the experimentally observed frequency

softening in the graphene sheet and metallic SWNTs. In Chapter 5, the electron-

photon and electron-phonon interactions are investigated within the framework of

the extended tight-binding model. The theoretical calculations of the RRS intensities

in the graphene sheet show a quantitative agreement with experimental measurements



and clarify the origin of the previously unassigned spectral features. On the other

hand, the theoretical calculations of the PL and RRS intensities in SWNTs do not

show good agreement with the experimental results. Excitonic wavefunctions must

be taken into account for the PL and RRS intensity calculations in SWNTs to achieve

better agreement with experiment. Finally, Chapter 6 gives conclusions of this thesis

along with suggestions for future research.



Chapter 2

Nanotube structure

A single-wall carbon nanotube (SWNT) can be considered as a strip of a graphene

sheet (a single layer of crystalline graphite) rolled into a seamless cylinder. Making

an imaginary cut along the axial direction on the cylinder surface, the SWNT can

be unrolled into a nanographite ribbon (a strip of a graphene sheet) and mapped

onto a graphene sheet. Properties of a graphene sheet are therefore crucial for under-

standing SWNT physics. In this Chapter, we consider the real and reciprocal space

representations of a graphene sheet and, consequently, of SWNTs.



(a) (b)

Figure 2-1: (a) A single graphene sheet. The unit cell is shaded in gray. The open
and solid dots indicate the A and B sublattices, respectively. The lattice vectors al
and a2 are shown by arrows. (b) The reciprocal lattice of a single graphene sheet.
The first Brillouin zone is shaded in gray. The dots labeled by F, K, K', M, M', and
M" indicate the high-symmetry points. The reciprocal lattice vectors bl and b2 are
shown by arrows.

2.1 Graphene sheet

A single graphene sheet consists of sp2-hybridized carbon atoms packed in a two-

dimensional (2D) hexagonal lattice. The Cartesian coordinate system is oriented

with respect to the hexagonal lattice in such a way that the armchair (A) direction

lies along the x-axis and the zigzag (Z) direction along the y-axis, as shown in Fig. 2-

1 (a). The graphene sheet is generated from the unit cell by the lattice vectors al and

a2. The lattice vectors make an angle of 600:

al =x+ ay,
2 2 (2.1)

v-aa ^ a
a 2 =- x - Y-_2 2

where a = v'acc = 0.246 nm is the lattice constant for the graphene sheet, acc

0.142 nm is the nearest-neighbor interatomic distance, and (k^, y) are the unitary basis

vectors [129].. The vectors al and a2 given by Eq. (2.1) are shown by arrows in Fig. 2-

1 (a). The choice of the unit cell is arbitrary due to the random selection of the center

of the coordinate system. Considering that the symmetry of the graphene sheet is



described by the point group D6h, we place the center of the coordinate system at the

center of the hexagon through which the high-symmetry rotation axis C6 goes. Using

the lattice vectors al and a 2, we construct the hexagonal unit cell shown in gray in

Fig. 2-1 (a). This unit cell contains two carbon atoms from the A and B sublattices

shown, respectively, by open and solid dots in Fig. 2-1 (a).

Let us now consider the reciprocal lattice of the graphene sheet. The reciprocal

lattice vectors bl and b2 are related to the real lattice vectors al and a2 according to

the standard definition:

ai -bj = 2r6ij , (2.2)

where 6ij is the Kronecker delta function. Substituting al and a 2 from Eq. (2.1) into

Eq. (2.2) yields bi and b2 making an angle of 1200:{ 2r 27r
a x a (2.3)

b2  27r 2 7

The vectors bl and b 2 given by Eq. (2.3) are shown by arrows in Fig. 2-1 (b). The

first Brillouin zone defined by these vectors is shaded in gray in Fig. 2-1 (b). Note

that the first Brillouin zone has the same hexagonal shape as the unit cell, but the

orientation of the hexagons is different. Namely, the armchair direction in real space

(x-axis in Fig. 2-1 (a)) corresponds to the zigzag direction in reciprocal space (x-axis

in Fig. 2-1 (b)), and vice versa. This orientation is switched to the opposite one if the

lattice vectors a, and a 2 are chosen to make an angle of 1200, implying the reciprocal

lattice vectors bl and b2 are making an angle of 600 [1].

2.2 Chirality and handedness

When matching a SWNT with the corresponding nanographite ribbon, the SWNT cir-

cumference corresponds to the nanographite ribbon width. Plotted on a flat graphene

sheet, this circumference/ribbon width is known as the chiral vector Ch [129]. Pro-



Z
' A

A

"2

Figure 2-2: The graphene sheet broken into 300-sectors, in one of which the chiral
vector of the SWNT lies. The zigzag and armchair directions are shown by the solid
and dashed lines labeled by Z and A, respectively. A small hexagon at the center
of the coordinates represents a C6 symmetry axis. The chiral vector and the chiral
angle of a (4, 2) SWNT are shown by the arrow and the arc labeled by Ch and 9,
respectively.

jected on the lattice vectors al and a2, the chiral vector can be written in the form:

Ch = na1 + ma2 , (2.4)

where (n, m) is a pair of indices uniquely determining the geometrical structure of an

infinitely long SWNT. For illustrative purposes, the chiral vector of a (4, 2) SWNT

is shown in Fig. 2-2. The (4, 2) SWNT is one of the smallest-diameter SWNTs ever

synthesized [167].

Switching to polar coordinates, the chiral vector is defined by its length Ch = 7rdt,

where dt is the SWNT diameter, and by its angle 0 to the closest of the three zigzag

chains in the graphene sheet, known as the chiral angle [129]. Since the symmetry of

the graphene sheet is described by the point group D6h, all the unique chiral vectors

Z

C h

A

Z

ra,
a



are confined to a 30°-sector on the graphene sheet. The total of 12 such sectors are

shaded in alternating gray and white in Fig. 2-2, separated by the three zigzag and

three armchair directions. The rightmost gray sector in Fig. 2-2 contains the chiral

vectors with the structural indices in the range 0 < m < n and the chiral angles in

the range 0 < 0 < 300. The chiral vectors aligned along the upper Z boundary of

this sector correspond to the case m = 0 and 0 = 0, while for the lower A boundary

we have m - n and 0 = 300. According to this construction, SWNTs are classified

as chiral (0 < 0 < 30') and achiral (8 = 0 and 0 = 300), which in turn are known

as zigzag (9 = 0) and armchair (9 = 300) SWNTs [129]. Choosing another 30 0 -sector

in Fig. 2-2, the range of the structural indices corresponding to chiral, zigzag and

armchair SWNTs changes but their chiral angles remain the same. For example, the

structural indices varying in the range 0 < n < m produce the chiral vectors in the

rightmost white sector in Fig. 2-2. In other words, the chiral vector (n, m) in the

rightmost gray sector is equivalent to the chiral vector (m, n) in the rightmost white

sector, where the condition 0 < m < n is maintained in both cases.

The aforementioned chiral vectors (n, m) and (m, n) correspond to the two SWNTs

of the same chiral angle 0 and diameter dt but of opposite handedness X, related to

each other by spatial inversion [138]. The two SWNTs of opposite handedness x

can be obtained from the same chiral vector (n, m) by rolling the graphene sheet in

the two opposite directions, so that the printed side of Fig. 2-2 becomes either the

outer or the inner sidewall of the SWNT [138]. Assuming the chiral vector lies in

the rightmost gray sector in Fig. 2-2 and the printed side of Fig. 2-2 is the outer

sidewall of the SWNT, two of the three zigzag chains in the graphene sheet form

right-handed helices, while the third zigzag chain follows a left-handed helix. At the

same time, two of the three armchair chains are left-handed helices, and the third

armchair chain is a right-handed helix (see Fig. 2-2). The SWNT handedness X is thus

denoted as zigzag-right/armchair-left (ZR/AL). By switching to the white sectors in

Fig. 2-2 or by rolling the graphene sheet in the opposite direction (but not both), we

obtain the SWNT of handedness X = ZL/AR. The SWNT handedness can also be

defined mathematically by a quantity x related to the classification of SWNTs given



Zigzag Armchair Chiral Chiral
(5,0) (3,3) (4,2) (4,2)

ZR/AL ZL/AR

Figure 2-3: The schematic models of zigzag (5, 0), armchair (3, 3), and chiral (4, 2)
SWNTs that contain 3, 5, and 1 translational unit cells, respectively. The chiral
(4, 2) SWNTs of both zigzag-right/armchair-left (ZR/AL) and zigzag-left/armchair-
right (ZL/AR) handedness are shown.

in Section 3.3 [136]. Note that achiral SWNTs have no handedness, implying that

there are twice as many chiral SWNTs for each pair of the structural (n, m) indices

as achiral SWNTs. This aspect must be taken into account when analyzing the

(n, m) distribution in a SWNT sample [138]. To visualize the concept of the SWNT

handedness, we draw in Fig. 2-3 the schematic models of zigzag (5, 0), armchair (3, 3),

and chiral (4, 2) ZR/AL- and ZL/AR-handed SWNTs.

We conclude that the structural indices can be defined in the range 0 < m < n

(the rightmost gray sector in Fig. 2-2) and the chiral angle in the range 0 < 0 < 300.

Chiral nanotubes (0 < m < n and 0 < 0 < 300) are either ZR/AL- or ZL/AR-

handed. Achiral SWNTs are either zigzag (m = 0 and 0 = 0) or armchair (m = n

and 0 = 30"). Once the range of the structural indices is established, the relations

between them and the SWNT diameter dt and chiral angle 0 are easily derived [129]:

a /-
dt = n2 + nm + rn2

7(2.5)

0 = arctan 2 + m
2n + m

26



Alternatively to chiral angle 0, one can consider angle q = 7/6 - 0 between the

chiral vector Ch and the closest of the three armchair chains in the graphene sheet

of Fig. 2-2 [169].

2.3 T ranslational symmetry

The fundamental property of an infinitely long SWNT is its translational periodicity

from where the concept of reciprocal space arises. The translational periodicity is

described by the translational vector T along the axial direction of the SWNT. In

the unrolled graphene sheet, the translational vector T is orthogonal to the chiral

vector Ch that spans the circumference of the SWNT. Therefore, T is proportional

to Ch rotated counterclockwise by 900. In other words, T is proportional to the

vector product of i and Ch, where i is the unit vector normal to the graphene sheet.

Substituting Ch from Eq. (2.4) into T c( i x Ch yields T oc (2m + n) al/xf -

(2n + m) a2/V/. Clearly, T must be further multiplied by V3 to extend over an

integer number of hexagons in the graphene sheet. We then obtain T cc (2m + n) al -

(2n + m) a 2. The two integer numbers (2m + n) and (2n + m) may have a common

divisor dR > 1, and in this case T spans dR translational unit cells in the axial

direction of the SWNT. Dividing T by dR yields:

T = tlal + t2 a2 , (2.6)

where t1 = (2m + n) /dR, t2 = - (2n + m) /dR, dR = gcd(2n + m, 2m+ n), and

the function gcd (i, j) denotes the greatest common divisor of the two integers i and

j [129].

The chiral vector Ch and the translational vector T given by Eqs. (2.4) and (2.6)

define the translational unit cell of the SWNT. The area of the translational unit cell

is given by the absolute value of the vector product of these two vectors, ICh x Tj =

/-3a 2 (n2 + nm + m 2) /dR. Dividing it by the area of the hexagonal unit cell in the

graphene sheet, jal x a2 -= -3a2/2, we obtain the number of hexagons in the trans-



lational unit cell of the SWNT:



Figure 2-4: The rectangle shows the translational unit cell of the (4, 2) SWNT pro-
jected on the graphene sheet. The dashed lines indicate the edges of the nanographite
ribbon corresponding to the unrolled SWNT. The arrows show the chiral vector Ch
that spans the circumference of the SWNT, the rotational vector Ch/d, the transla-
tional vector T, and the screw vectors Z and R. The angular-helical (Ch/d, Z) and
the helical-linear (R, T) reduced unit cells are shaded in gray.

2 (n2 + nm + m 2)
N = (2.7)dR

For the (4, 2) SWNT, we find dR = 2, (tl, t2 ) = (4, -5), and N = 28. The trans-

lational unit cell of the (4, 2) SWNT projected onto the graphene sheet is shown by a

rectangle in Fig. 2-4, where the chiral vector Ch is the same as in Fig. 2-2. One can

see in Fig. 2-4 that the vector T connects the two equivalent hexagons in the adjacent

translational unit cells. Since gcd (t, t 2) = 1 by definition in Eq. (2.6), the vector

T can never connect the two inequivalent hexagons within the same translational

unit cell. On the contrary, the structural indices can be arbitrary within the range

0 < m < n, so that d = gcd (n, m) can take any values between 1 and n. Therefore,

the chiral vector Ch connects d inequivalent hexagons in the circumferential direction

of the SWNT. The rotational vector in the circumferential direction is thus given

by Ch/d. For the (4, 2) SWNT, we find d = 2. Indeed, the chiral vector Ch of the

(4, 2) SWNT connects the two inequivalent hexagons within the same translational



unit cell, as one can see in Fig. 2-4.

The quantity d = gcd (n, m) defined above for the chiral vector Ch is related

to the quantity dR = gcd (2n + m, 2m + n) introduced in Eq. (2.6) for the trans-

lational vector T. Applying Euclid's law [gcd (i, j) = gcd (i - j, j) if j < i] yields

d = gcd (n - m, m) and dR = gcd (n - m, 3m). We then conclude that dR = 3d if

mod (n - m, 3d) = 0 and dR = d otherwise, where mod (i, j) is the remainder of the

division of i by j [129]. Depending on whether dR = d or dR = 3d, the length of

the translational vector T differs according to Eq. (2.6). Therefore, the two types of

SWNTs for which dR = d and dR = 3d, respectively, have distinct physical properties,

and in particular very different electronic dispersion relations [136].

2.4 Helical symmetry

The vectors Ch/d and T define the pure rotational and translational symmetries of the

SWNT, respectively. Additionally, the SWNT has the helical symmetry described by

the screw vector comprised of both rotational and translational components. Among

the N - 1 inequivalent vectors connecting the pairs of hexagons within the transla-

tional unit cell of the SWNT, d - 1 are the pure rotations iCh/d (i = 1,... , d - 1).

The remaining N - d are inequivalent screw vectors. In principle, any non-collinear

pair of the N roto-translational vectors (d - 1 rotational, N - d screw, and 1 trans-

lational) generates a unit cell with the number of hexagons anywhere between 1 to

N. However, we restrict our consideration to the smallest possible single-hexagon

unit cells (thereafter called reduced unit cells) in order to fully utilize the symmetry

of the SWNT. This approach provides a direct mapping of the reciprocal space of

SWNTs to that of the graphene sheet. Such mapping is the origin of the zone-folding

technique, as will be discussed in Section 2.5.

The choice of a reduced unit cell is not unique. An obvious choice is the unit cell

of the graphene sheet formed by the lattice vectors al and a2, as shown in Fig. 2-

1 (a). The disadvantage of this approach is that both the al and a 2 vectors become



the screw vectors in chiral SWNTs.' The helical symmetry mixes the angular M and

linear k momenta associated with the pure rotational and translational symmetry

into the two helical momenta [12]. We therefore refer to this unit cell as the helical-

helical reduced unit cell [12]. To decouple the angular i and linear k momenta, we

can set the lattice vectors to be Ch/d and T, but then the number of hexagons

in the unit cell increases to number N/d that exceeds one. 2 As an intermediate

solution, we choose only one of the lattice vectors to be either rotational Ch/d or

translational T and we pick an appropriate screw vector as the other lattice vector,

thus decoupling either the angular , or linear k momentum without extending the

reduced unit cell beyond one hexagon. In the first case, we select the screw vector Z

that has the smallest component in the axial direction of the SWNT,3 as proposed

by M. Damnjanovid et al. [32]. In the second case, we select the screw vector R that

has the smallest component in the circumferential direction of the SWNT, as defined

by R. Saito et al. [129]. The pairs of lattice vectors (Ch/d, Z) and (R, T) define the

angular-helical and the helical-linear reduced unit cells, respectively [12]. For the

(4, 2) SWNT, the screw vectors satisfying these constraints are given by Z = al and

R = al - a2 , as one can see in Fig. 2-2. Note that the reduced unit cells shaded in

gray in Fig. 2-2 cover distinct parts of different hexagons. What matters, however, is

that the reduced unit cells consist of two carbon atoms, A and B, just like the unit

cell of the graphene sheet shown in Fig. 2-1.

In the above we have determined the screw vectors Z = al and R = al - a 2 for

the (4, 2) SWNT. For a general (n, m) SWNT, we can write the screw vectors Z and

R in the form:
Z = ual + va2  (2.8)
R = pal + qa2

In order to find the unknown integers (u, v) and (p, q), we rewrite the aforementioned

constraints on the screw vectors Z and R in terms of vector algebra. For the screw

vector Z, having the smallest component in the axial direction yields ICh x Z =

1For zigzag SWNTs, al is a pure rotation. For armchair SWNTs, al - a 2 is a pure translation.
2It is easy to show that mod (N, d) = 0 and therefore the number N/d is an integer.
3Among d such vectors, we choose the one that has the smallest component in the Ch direction.



d la2 x all. There are d distinct vectors that satisfy this condition. Among these d

vectors, choosing the one with the smallest component in the circumferential direction

implies 0 <: IZ x T I < N/d a2 x all. Substituting Z, Ch, and T from Eqs. (2.8),

(2.4), and (2.6) into these expressions, we obtain [140]:

mu - nv = d7 (2.9)
0 < tlv - t2u < N/d.

For the screw vector R, having the smallest component in the circumferential direction

suggests IR x TI = la2 x all, while being confined within the translational unit cell

implies 0 < ICh x RI < N ja2 x al1. Substituting R, T, and Ch from Eqs. (2.8),

(2.6), and (2.4) yields [129]:

tiq- -t 2p = 1, (2.10)
0< mp-nq<N.

Eqs. (2.9) and (2.10) uniquely determine the (u, v) and (p, q) components of the screw

vectors Z and R given by Eq. (2.8). For the (4, 2) SWNT, we find (u, v) = (1, 0) and

(p, q) = (1, -1).

The screw vectors Z and R defined by Eq. (2.8) are expressed in terms of the

graphene unit vectors al and a 2. However, it is more instructive to rewrite them

in terms of the SWNT unit vectors Ch and T. Reversing Eqs. (2.4) and (2.6) and

utilizing Eq. (2.7) gives Nal = mT - t2Ch and Na2 = tlCh - nT. Substituting these

expressions into Eq. (2.8) and using Eqs. (2.9) and (2.10), we find [129, 140]:

NZ= WCh •dT, (2.11)
NR = Ch + MT,

where the new quantities W = tIv - t2 u and M = mp - nq are defined. For the (4, 2)

SWNT, we obtain W = 5 and M = 6.

The helical symmetry of the SWNT can be understood from Eq. (2.11). The screw

vectors Z and R applied N times span over all the N inequivalent hexagons in the
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Figure 2-5: The screw vectors NZ (left panel) and NR (right panel) applied to the
translational unit cell of the (4, 2) SWNT. Both the NZ and NR vectors cover all
the N = 28 inequivalent hexagons in the translational unit cell. While NZ makes
W = 5 revolutions around the SWNT axis and spans the d = 2 translational unit
cells, NR extends over the M = 6 translational unit cells per revolution.

translational unit cell of the SWNT, since the unit cell is reduced to one hexagon.

The vector NZ makes W revolutions around the SWNT circumference and extends

over the d translational unit cells. On the other hand, the vector NR makes one

revolution around the SWNT circumference and extends over the M translational

unit cells. The numbers W and M therefore play the roles of the rotational and

translational components of the screw vectors Z and R, respectively. For illustrative

purposes, the vectors NZ and NR for the (4, 2) SWNT (d = 2, N = 28, W = 5, and

M = 6)are shown in Fig. 2-5.

2.5 Cutting lines

Let us now consider the reciprocal space of the SWNT. Just like the real lattice of

the SWNT is formed by rolling the real lattice of the graphene sheet, the reciprocal

lattice of the SWNT is obtained by folding the reciprocal lattice of the graphene

sheet. This is known as the zone-folding technique [129]. It allows one to obtain the



dispersion relations of the SWNT from the corresponding dispersion relations of the

graphene sheet. It is equally applicable to electrons, phonons, and other quasiparticle

excitations that may occur in SWNTs. In this Section, we develop the zone-folding

technique for SWNTs. We first consider the quantum confinement phenomena in

SWNTs from the real space and reciprocal space point of views.

The basic condition for the charge carriers in the SWNT to experience quantum

confinement is Ch < 10, where Ch = 7rdt is the SWNT circumference length and 10 is

the quantum phase coherence length. The diameter dt of a typical SWNT is about

1 nm, while 1€ is estimated to be about 20 nm at room temperature [157], so the

above condition holds. Then, the electron plane waves form standing wave patterns

in the circumferential direction of the SWNT. The standing waves are characterized

by their angular momentum pL that shows how many nodes the wavefunction exhibits

along the circumference of the SWNT. The modulation patterns of the standing

waves with u = 0, ±1, ±2, ±3 are shown in Fig. 2-6 (a). The angular momentum A

of a standing wave in the SWNT corresponds to the linear momentum k of a plane

wave in the graphene sheet such that k Ch = 27rp. Thus, the allowed wavevectors

in the reciprocal space of the graphene sheet are given by:

2p Ch Tk i + k (2.12)dt Ch T'

where k is the linear momentum along the SWNT axis and T = (IT is the SWNT

translational period. For discrete values of p, the above expression generates a set

of equidistant parallel lines separated by 2/dt, where k changes continuously along

the lines. These lines are known as the cutting lines. The cutting lines for the (4, 2)

SWNT are shown by the solid lines in Fig. 2-6 (b).

A formal approach to the reciprocal space of the SWNT requires construction of

the reciprocal lattice vectors K 1 and K 2 . In Section 2.1 devoted to the graphene

sheet, we derived the reciprocal lattice vectors bl and b 2 of Eq. (2.3) from the lattice

vectors a, and a 2 of Eq. (2.1) using the standard definition of Eq. (2.2). For SWNTs,

the chiral Ch and translational T vectors play the role of al and a 2 in Eq. (2.2),
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Figure 2-6: (a) Standing waves in the circumferential direction of the SWNT with
angular momenta p = 0, ±1, ±2, ±3. The SWNT cross-section is shaded in gray. The
red and green curves represent the standing wave modulation patterns with respect to
the SWNT sidewall (the gray disc circumference) shifted by a half-period with respect
to each other. (b) The first Brillouin zone of the graphene sheet. The solid lines,
known as the cutting lines, represent the quantized states with angular momenta
p = 0, ±1, ±2, ±3 for the (4, 2) SWNT. The linear momentum k varies along the
solid lines. The dashed lines break the solid lines into equivalent segments, indicating
the periodicity of the linear momentum k due to the translational symmetry of the
SWNT. The arrows show the reciprocal lattice vectors K 1 and K 2 . The black dot
denotes the F point.

while K 1 and K 2 stand for bl and b2. Since the vectors Ch and T are orthogonal,

we conclude from Eq. (2.2) that K 1 = 27Ch/Ch2 and K 2 = 27T/T 2 . Substituting

Ch and T from Eqs. (2.4) and (2.6) into these expressions yields K 1 and K 2 in terms

of a, and a2. By comparing Eqs. (2.1) and (2.3), we express al and a2 as functions

of bl and b 2 in the form 47al = a2 (2bl + b2) and 47ra 2 = a2 (2b2 + bl). We then

rewrite K 1 and K 2 in terms of bl and b2 [129]:

tlb 2 - t 2 bl

(2.13)
K - mbl - nb2

N

The vector K 1 defines the separation between the adjacent cutting lines. Its mag-

nitude K1 = 2r/Ch = 2/dt is related to the formation of the standing waves in the

circumferential direction of the SWNT, as discussed above. The standing waves, and

therefore the cutting lines, are associated with discrete values of the angular mo-

mentum p. The vector K 2 defines the length of the cutting lines. Its magnitude

K2 = 27/T determines the periodicity of the linear momentum k that continuously



changes along the cutting lines. The periodicity of k originates from the translational

symmetry of the SWNT described by the vector T. The length of the cutting lines

for the (4, 2) SWNT is indicated by the dashed lines in Fig. 2-6 (b). In terms of the

vectors K 1 and K 2 , the momentum quantization condition expressed by Eq. (2.12)

takes the following form:
K 2k = K + Ik K, (2.14)

Considering that there are N hexagons in the translational unit cell of the SWNT,

we conclude that the first Brillouin zone of the SWNT consists of N cutting lines.

These cutting lines must be arranged into a rectangle with the sides parallel to the

K 1 and K 2 vectors. Only then can the first Brillouin zone be folded into a one-

dimensional (ID) reciprocal space of the SWNT. The dimensions of the rectangular

Brillouin zone are determined by the choice of the reduced unit cell. The reduced

unit cell generates the reciprocal lattice vectors Q1 and Q2 that arrange the N cut-

ting lines into the first Brillouin zone of a rectangular shape. Below we construct

the first Brillouin zones for the angular-helical and helical-linear reduced unit cells

defined in Section 2.4. We show that these Brillouin zones have rectangular shapes

of different dimensions, so that the angular It and linear k momenta vary in different

ranges [140]. Furthermore, either the linear k or angular I momentum become a

projection of the helical momentum and therefore it is not conserved at the Brillouin

zone boundaries [12]. The resulting momentum discontinuities must be taken into

account for Umklapp scattering processes. Any angular or linear momentum transfer

beyond the first Brillouin zone is translated back into the first Brillouin zone, correct-

ing for the momentum discontinuities at the Brillouin zone boundaries. The selection

rules that govern the scattering processes in SWNTs thus depend on the choice of the

reduced unit cell. However, none of the symmetry-related properties of SWNTs are

affected by the changes to the selection rules. The choice of the reduced unit cell is

a matter of convenience, whether one is more interested in the angular tL or linear k

momentum conservation for an analysis of the scattering processes in SWNTs [140].



2.5.1 Helical-helical representation

Before considering the angular-helical and helical-linear reduced unit cells, let us dis-

cuss the simplest case of the helical-helical reduced unit cell. As defined in Section 2.4,

the helical-helical reduced unit cell is formed by the lattice vectors al and a2 . The

reciprocal lattice vectors Q1 and Q2 are therefore given by Q1 = bl and Q2 = b2 ,

according to the definition in Eq. (2.2). By reverting to Eq. (2.13), we express the

vectors bl and b 2, and therefore Q1 and Q2, in terms of K 1 and K 2:

Q1 = nK1 + tK2, (2.15)
Q2 = mKg + t2K2

The reciprocal lattice vectors Qi and Q2 given by Eq. (2.15) are misaligned with

respect to the K 1 and K2 vectors. 4 Therefore, the N cutting lines cannot be arranged

into the rectangular Brillouin zone. Let us consider the first Brillouin zone for the

(4, 2) SWNT as an example. Figure 2-7 shows the cutting lines for the (4, 2) SWNT in

the reciprocal space of the graphene sheet, similar to Fig. 2-6 (b). The first Brillouin

zone defined by the vectors Q1 = bl and Q2 = b2 is shaded in dark gray in Fig. 2-7,

while the adjacent Brillouin zones are shown as light gray. Since the first Brillouin

zone is not rectangular, it contains cutting lines of different lengths, as one can see in

Fig. 2-7. Because of their different lengths, the cutting lines cannot be folded into a

1D reciprocal space of the SWNT. Hence, the zone-folding technique is not applicable

to the helical-helical representation of the cutting lines.

The absence of the rectangular Brillouin zone implies the breaking of momentum

conservation across the Brillouin zone boundary. Let us consider the cutting line

passing through the F point of the first Brillouin zone (the dot in the dark gray

hexagon in Fig. 2-7). This cutting line carries angular momentum /L = 0 within the

first Brillouin zone (the dark gray hexagon in Fig. 2-7). Crossing the boundaries to

the adjacent Brillouin zones (the upper and lower light gray hexagons in Fig. 2-7),

this cutting line changes its angular momentum to either p = +2 (the upper hexagon)

4According to the definition in Eq. (2.6), tl and t2 are never equal to zero. For zigzag SWNTs,
m = 0 and therefore Q2 is parallel to K1.



Q1= n K+
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Figure 2-7: The reciprocal space of the graphene sheet. The solid lines represent the
cutting lines for the (4, 2) SWNT. The dashed lines indicate the length of the cutting
lines. The first Brillouin zone of the helical-helical reduced unit cell formed by the
vectors (al, a 2) is shaded in dark gray. The adjacent Brillouin zones are shaded in
light gray. The arrows show the reciprocal lattice vectors Q1 = nK 1 + t1K 2 and
Q2 = mK 1 + t2 K 2 and the cutting line vectors K 1 and K 2. The dots show the F
points.

or p = -2 (the lower hexagon). According to Eq. (2.15), the angular momentum A

changes by -:m at the Brillouin zone boundaries. In a similar fashion, we can trace

the change of linear momentum k along the dashed lines in Fig. 2-7. The F point of

the first Brillouin zone (the dot in the dark gray hexagon in Fig. 2-7) corresponds

to the linear momentum k = 0. Crossing over the 6 cutting lines brings us to the

adjacent Brillouin zones (the right and left light gray hexagons in Fig. 2-7). The

linear momentum changes to either k = +27/T (the right hexagon) or k = -2ir/T

(the left hexagon). According to Eq. (2.15), the linear momentum k changes by

± (tl + t 2) 2A/T at the Brillouin zone boundaries. Thus, both the angular p and

linear k momenta exhibit discontinuities at the Brillouin zone boundaries [140].

The conservation of the angular p and linear k momenta is associated with rota-

tional and translational symmetries of the SWNT, respectively. The helical-helical

reduced unit cell is formed by the screw vectors al and a2 that mix rotational and

translational symmetries of the SWNT. The screw vectors al and a 2 give rise to the

helical momenta, whose angular p and linear k projections exhibit discontinuities at



the Brillouin zone boundaries. Accordingly, the reduced unit cell formed by the screw

vectors al and a 2 is called the helical-helical reduced unit cell [12].

2.5.2 Angular-helical representation

The angular-helical reduced unit cell is formed by the lattice vectors Ch/d and Z, as

defined in Section 2.4 above. The reciprocal lattice vectors Q1 and Q2 can be derived

from the standard definition in Eq. (2.2). The orthogonality conditions Qi - Z = 0

and Q2 Ch/d = 0 suggest that Q1 oc i x Z and Q2 oc T. Substituting Z from

Eq. (2.8) and using Eq. (2.1) yields Q1 oc (2v + u) al - (2u + v) a 2. The normalization

conditions require that Q1 - Ch/d = 27 and Q2 - Z = 27r. Substituting Ch and Z of

Eqs. (2.4) and (2.8) we obtain Q1 = 47r [(2u + v) a2 - (2v + u) al] / (3a 2) and Q2 =

4r [(2m + n) al - (2n + m) a 2] / (3da 2) with the help of Eqs. (2.9) and (2.6). These

expressions give Q1 and Q2 in terms of a1 and a2. By comparing Eqs. (2.1) and (2.3),

we can write al and a2 as functions of bl and b2 in the form 47ral = a2 (2bl + b 2) and

47a 2 = a2 (2b2 + bl). We then express bl and b2 in terms of K 1 and K 2 as follows,

bl = nK 1 + tlK 2 and b2 = mK 1 + t2K 2, according to Eq. (2.15). Finally, we obtain

Q1 and Q2 as functions of K 1 and K 2 using Eqs. (2.6), (2.7), (2.9), and (2.11) [140]:

Q1 = dK1 - WK2,

N (2.16)
Q2 = dK2 .d

For the (4, 2) SWNT (d = 2, W = 5, and N = 28), the reciprocal lattice vectors

Q1 and Q2 of Eq. (2.16) are shown by arrows in Fig. 2-8. Note that the vector Q2 is

parallel to the cutting lines. The rectangular Brillouin zone can thus be constructed

from the N cutting lines, even though the vector Q1 is misaligned with respect to the

K 1 and K 2 directions. For the (4, 2) SWNT, the rectangular Brillouin zone contains

2 cutting lines of length 14K 2, as shown in dark gray in Fig. 2-8. For a general (n, m)

SWNT, the borders of the rectangular Brillouin zone are given by the vectors dK 1 and

N/dK 2, which follows from Eq. (2.16). The rectangular Brillouin zone thus consists

of the d cutting lines of length NK2/d = 27N/ (dT). The zone-folding technique
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Figure 2-8: The reciprocal space of the graphene sheet. The solid lines represent the
cutting lines for the (4, 2) SWNT. The dashed lines indicate the length of the cutting
lines. The first Brillouin zone of the angular-helical reduced unit cell formed by the
vectors (Ch/d, Z) is shaded in dark gray. The adjacent Brillouin zones are shaded
in light gray. The arrows show the reciprocal lattice vectors Q1 = dK 1 - WK 2 and
Q2 = N/dK, and the cutting line vectors K 1 and K 2. The dots show the F points.

projects the d cutting lines into the 1D Brillouin zone of length NK2/d.

Fig. 2-8 shows the rectangular Brillouin zone (in dark gray) and the two adjacent

Brillouin zones shifted by the vectors ±Q1 (in light gray) for the (4, 2) SWNT. We can

consider the momentum conservation across the Brillouin zone boundary using Fig. 2-

8, similar to the preceding discussion in Section 2.5.1. Moving along the cutting lines,

the angular momentum p is conserved when crossing the Brillouin zone boundaries.

In contrast, the linear momentum k changes by ±WK2 = ±5K2 when crossing the

zone boundaries perpendicular to the cutting lines (from the dark gray to one of the

light gray rectangles in Fig. 2-8). Thus, k represents the linear projection of the

helical momentum, and the reduced unit cell formed by the lattice vectors Ch/d and

Z is called the angular-helical reduced unit cell [12].

The shape of the rectangular Brillouin zone and the linear momentum noncon-

servation at its boundaries can be understood from the shape of the angular-helical

reduced unit cell. The latter is formed by the vectors Ch/d and Z. The vector Ch/d

is a pure rotation, thus Q2 of Eq. (2.16) has no K 1 component, and the angular mo-

1



mentum p is conserved across the Brillouin zone boundary. The vector Ch/d spans

1/d-th of the SWNT circumference, so the d distinct values of the angular momentum

p appear, and the rectangular Brillouin zone consists of the d cutting lines. The screw

vector Z plays the role of the translational vector, therefore the linear projection k

of the helical momentum exhibits discontinuities at the Brillouin zone boundaries.

The translational component of the screw vector Z is given by dT/N, according to

Eq. (2.11), so the size of the rectangular Brillouin zone in the cutting line direction

is equal to NK 2/d = 27rN/(dT). The rotational and translational components of

the screw vector Z are proportional to W and d, respectively, and thus the linear

projection k exhibits discontinuities of magnitude WK 2 when crossing over the d

cutting lines in the direction perpendicular to them [140]. The linear projection k

nonconservation can be demonstrated within the formalism of the line groups [12].

2.5.3 Helical-linear representation

The helical-linear reduced unit cell is formed by the lattice vectors R and T, as

defined in Section 2.4. The reciprocal lattice vectors Q1 and Q2 can be derived from

the definition in Eq. (2.2). The orthogonality conditions Q1 - T = 0 and Q2 -R = 0

suggest that Q1 oc Ch and Q2 oc Z x R. Substituting R from Eq. (2.8) and using

Eq. (2.1) yields Q2 Oc (2q + p) al - (2p + q) a2 . The normalization conditions require

that Q -R := 2w7 and Q2 -T = 27. Substituting R and T of Eqs. (2.8) and (2.6) we

obtain Q1 =: 47 [nal + ma 2] / (dRa 2) and Q2 = 47 [(2q + p) al - (2p + q) a 2]/ (3a2)

with the help of Eqs. (2.4), (2.6), and (2.10). These expressions give Q1 and Q2 in

terms of al and a 2 . By comparing Eqs. (2.1) and (2.3), we can write al and a2 as

functions of b, and b 2 in the form 4ral = a2 (2bl + b 2) and 4w7a 2 = a2 (2b2 + bl).

We then express bl and b2 in terms of K 1 and K 2 as follows, bl = nK 1 + tlK 2 and

b2 = mK 1 + t2K 2, according to Eq. (2.15). Finally, we obtain Qi and Q2 as functions

of K 1 and K 2 using Eqs. (2.6), (2.7), (2.10), and (2.11) [140]:

Q 1 = NK 1 , (2.17)
Q2 = -MK 1+ K2



Q2=-MK

Figure 2-9: The reciprocal space of the graphene sheet. The solid lines represent
the cutting lines for the (4, 2) SWNT. The dashed lines indicate the length of the
cutting lines. The first Brillouin zone of the helical-linear reduced unit cell formed by
the vectors (R, T) is shaded in dark gray. The adjacent Brillouin zones are shaded
in light gray. The arrows show the reciprocal lattice vectors Q1 - NK 1 and Q2 =

-MK 1 + K 2 and the cutting line vectors K 1 and K 2 . The dots show the F points.

For the (4, 2) SWNT (N = 28 and M = 6), the reciprocal lattice vectors Qi

and Q2 of Eq. (2.17) are shown by arrows in Fig. 2-9. Note that the vector Q1

is perpendicular to the cutting lines. The rectangular Brillouin zone can thus be

constructed from the N cutting lines, even though the vector Q2 is misaligned with

respect to the K 1 and K 2 directions. For the (4, 2) SWNT, the rectangular Brillouin

zone contains 28 cutting lines of length K 2, as shown in dark gray in Fig. 2-9. For a

general (n, m.) SWNT, the borders of the rectangular Brillouin zone are given by the

vectors NK 1 and K 2 , which follows from Eq. (2.17). The rectangular Brillouin zone

thus consists of the N cutting lines of length K 2 = 27r/T. The zone-folding technique

projects the N cutting lines into the 1D Brillouin zone of length K 2.

Fig. 2-9 shows the rectangular Brillouin zone (in dark gray) and the two adjacent

Brillouin zones shifted by the vectors +Q2 (in light gray) for the (4, 2) SWNT. We

can consider the momentum conservation across the Brillouin zone boundary using

Fig. 2-9, similar to the preceding discussions in Sections 2.5.1 and 2.5.2. Moving along

the cutting lines, the angular momentum pt changes by +M = ±6 when crossing the

)1= NK1



Brillouin zone boundaries (from the dark gray to one of the light gray rectangles

in Fig. 2-9). In contrast, the linear momentum k is conserved when crossing the

zone boundaries perpendicular to the cutting lines. Thus, p represents the angular

projection of the helical momentum, and the reduced unit cell formed by the lattice

vectors R and T is called the helical-linear reduced unit cell [12].

The shape of the rectangular Brillouin zone and the angular momentum noncon-

servation at its boundaries can be understood from the shape of the helical-linear

reduced unit cell. The latter is formed by the vectors R and T. The screw vector R

plays the role of the rotational vector, therefore the angular projection I of the helical

momentum exhibits discontinuities at the Brillouin zone boundaries. The vector R

spans 1/N-th of the SWNT circumference, according to Eq. (2.11), so the N distinct

values of the angular projection p appear, and the rectangular Brillouin zone consists

of the N cutting lines. The vector T is a pure translation, thus Q1 of Eq. (2.17)

has no K 2 component, and the linear momentum k is conserved across the Brillouin

zone boundary. The length of the vector T determines the size of the rectangular

Brillouin zone in the direction of the cutting lines K 2 = 27r/T. The rotational and

translational components of the screw vector R are proportional to 1 and M, respec-

tively, and thus the angular projection p exhibits discontinuities of magnitude M per

cutting line length when crossing the rectangular Brillouin zone along the cutting

line direction [140]. The angular projection p nonconservation can be demonstrated

within the formalism of the group of the wavevector [12].

2.6 Summary of results

In this Chapter, we considered the SWNT structure in real and reciprocal space. We

reviewed the rotational, translational, and helical symmetries of the SWNT in real

space. We developed the helical-helical, angular-helical, and helical-linear represen-

tations of the cutting lines in reciprocal space. The angular-helical representation is

associated with pure rotations and is commonly used with the formalism of the line

groups [12]. The helical-linear representation, also known as the extended represen-



tation of the cutting lines [140], is associated with pure translations and is commonly

used with the formalism of the group of the wavevector [12]. In the angular-helical

and helical-linear representations, the linear k and angular it momenta, respectively,

become projections of the helical momentum and therefore are not conserved at the

Brillouin zone boundaries. The momentum nonconservation must be treated as fol-

lows. Any angular or linear momentum transfer beyond the first Brillouin zone is

translated back into the first Brillouin zone, correcting for the momentum discon-

tinuities at the Brillouin zone boundaries. We thus obtain different selection rules

within the angular-helical and helical-linear representations. However, none of the

symmetry-related properties of SWNTs are affected by this difference. The choice of

the representation is arbitrary, and it depends on whether we are interested in the an-

gular ip or linear k momentum conservation for an analysis of the scattering processes

in SWNTs. Because of the helical symmetry of SWNTs, there is no representation

that would conserve both it and k and allow application of the zone-folding technique.

The structural parameters of the SWNT introduced in this Chapter are summarized

in Table 2.1.



Table 2.1: Structural parameters for single-wall carbon nanotubes

Graphene sheet
symbol name formula value
acc interatomic distance - 0.142 nm
a lattice constant a = /3/acc 0.246 nm
al lattice vector a, = (V3R1/2 + k/2) a
a2  lattice vector a 2 = (/-•k/2 - S/2) a
b, reciprocal lattice vector b1 = (i/2 + V3r/2) 47r/(v~Ja) -
b2 reciprocal lattice vector b 2 = (k/2 - V3/2) 47r/(/Va) -

Nanotube parameters
symbol name formula range value

(n, m) -0 < m < n (4,2)
dt diameter dt = n2 + nm + m 2 a/r - 0.41 nm
0 chiral angle 0 = arctan(vFAm/(2n + m)) 0' < 9 < 300 190

x handedness X = ZR/AL, ZL/AR ZR/AL

Additional coefficients

symbol formula range value
d d == gcdt(n, m) 1 < d < n 2

dR dR = gcdt(2n + m, 2m + n) dR difmod(n m,3d)0 2
dR = 3d if modt(n - m, 3d) = 0

(tl) t2) := (2m + n)/dR (45)
t2 = -(2n + m)/dR

(u, v) mu - nv = d 0 < tiv - t2u < N/d (1, 0)
(p, q) tiq - t2p = 1 0 < mp - nq < N (1, -1)
N N = 2(n 2 +nm + m 2)/dR - 28
W W = tlv - t2u 1 < W < N 5
M M =mp- nq 1 < M < N/d 6

tgcd (i, j) denotes the greatest common divisor of the two integers i and j
tmod (i, j) is the remainder of the division of i by j

Symmetry vectors
symbol name formula magnitude value
Ch chiral vector Ch = nal + ma 2  Ch = 7rdt 1.30 nm
Ch/d rotational vector Ch/d = nal/d + ma 2/d - 0.65 nm
T translational vector T = tlal + t2a 2  T = v4/rdt/dR 1.13 nm

Z = ual + va 2  - 0.246 nm
NZ = WCh + dT - 6.89 nm

R screw vector [129] R = pal + qa 2  0.246 nm
NR = Ch + MT - 6.89 nm

-------



Cutting lines
symbol name formula magnitude
K1  angular reciprocal lattice vector K 1 = t1b 2/N- t 2b,/N K 1 = 27/Ch
K 2  linear reciprocal lattice vector K 2 = mbi/N - nb 2/N K 2 = 2r/T

Helical-helical representation
symbol name formula
RI screw lattice vector R1 = -t 2Ch/N + mT/N
R2 screw lattice vector R2 = tCh/N - nT/N

Qi helical reciprocal lattice vector Q1 = nK 1 + t1 K 2
Q2 helical reciprocal lattice vector Q2 = mK 1 + t2K 2

symbol name range conserved
/p angular projection undefined no
k linear projection undefined no

Angular-helical representation
symbol name formula
R1 rotational lattice vector R1 = Ch/d
R2 screw lattice vector R2 = Z
Q1 angular reciprocal lattice vector Q1 = dK 1 - WK 2

Q2 helical reciprocal lattice vector Q2 = NK 2/d
symbol name range conserved
/p angular momentum 1 - d/2 < p < d/2 yes
k linear projection -(N/d)Tr/T < k < (N/d)/rlT no

Helical-linear representation
symbol name formula
R, screw lattice vector R, = R
R 2  translational lattice vector R2 = T
Q1 helical reciprocal lattice vector Q1 = NK 1

Q2 linear reciprocal lattice vector Q2 = -MK 1 + K 2

symbol name range conserved
1p angular projection 1 - N/2 < p < N/2 no
k linear momentum -7r/T < k < r/T yes



Chapter 3

Electronic properties

Using the zone-folding technique developed in Section 2.5, the electronic dispersion

relations of SWNTs are derived from those of a graphene sheet. We start this Chapter

by reviewing a simple tight-binding (STB) model that provides important insights for

understanding the key electronic properties of a graphene sheet and, consequently, of

SWNTs. We further develop an extended tight-binding (ETB) model that gives good

agreement with recent optical spectroscopy measurements as well as with accurate

first-principles calculations.
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Figure 3-1: A schematic of the is, 2s, 2px, 2py, and 2pz atomic orbitals of the carbon
atom. The gray and white shaded areas denote the wavefunction phase difference
of 7r. For example, the gray shaded area corresponds to a positive sign of the wave-
function amplitude, while the white shaded area indicates the negative wavefunction
amplitude.

3.1 Tight-binding framework

The electronic dispersion relations of a graphene sheet are obtained by solving the

single-particle Schr6dinger equation:

HJb(k, r, t) = ihfJb(k, r, t), (3.1)

where H = T + V(r) is the single-particle Hamiltonian, T = p 2/ (2m) is the kinetic

energy operator, p = -ihV is the momentum operator, V is the gradient operator, h

is Planck's constant, m is the electron mass, V(r) is the effective periodic potential,
I b(k, r, t) is the one-electron wavefunction, b is the band index, k is the electron

wavevector, r is the spatial coordinate, t is time, and i is imaginary unity. The

electron wavefunction Ib(k, r, t) is approximated by a linear combination of atomic

orbitals (LCAO) in terms of Bloch sums [147]:

Sb(k, r, t) = exp (-iEb(k)t/h) E C/o(k)>so(k, r),

I U (3.2){Dso(k, r) = 1 exp (ikRus) o(r - Rs)

where Eb(k) is the one-electron energy, COo(k) is the Bloch amplitude, 5o0(k,r) is

the Bloch wavefunction, o0(r) is the atomic orbital, Ru, is the atomic coordinate, the



index u = 1... , U spans all the U unit cells in a graphene sheet, the index s = A, B la-

bels the two inequivalent atoms in the unit cell, and the index o = Is, 2s, 2px, 2p,, 2Pz

enumerates the atomic orbitals of a carbon atom schematically shown in Fig. 3-1.

Upon multiplying Eq. (3.1) by ,o, (k,r) of Eq. (3.2) and integrating over r, we

obtain the stationary Schr6dinger equation for the Bloch amplitudes Cb,~(k) in the

matrix form:

Z Hsoso,(k)C o(k) = Eb(k)Sso'so(k)Cbo(k) , (3.3)
so so

where the Hamiltonian H8,,so(k) and overlap S,,o,so(k) matrices are given by:

U

H,~oso (k) = exp (ik (RuI Ru,)) /,(r - Ruy)H o(r - RI.)dr,
u 

(3.4)
U

S,oso(k) =1 exp (ik (R~. - R,)) , (r - Ru,)o0 (r - Rus)dr,

and the index u' labels the unit cell under consideration. The orthonormality condi-

tion for the electron wavefunction of Eq. (3.2) then becomes:

Sb'* (k, r, t)b(k, r, t)dr -= CS (k)Soo(k)Cbo(k) = bb (3.5)
s'O' so

where 3 b'b is the Kronecker delta function [129].

To evaluate the integrals in Eq. (3.4), the effective periodic potential V(r) in

the single-particle Hamiltonian H of Eq. (3.1) is expressed by a sum of the effective

spherically-symmetric potentials U(r - R ,,,,) centered at the atomic sites Rus•,,:

V(r) = y U(r - ,,,,,) . (3.6)

The Hamiltonian matrix Hoso(k) then contains the three-center integrals that involve

two orbitals €*, (r - Rus,) and o (r - Ru,) at two different atomic sites Ruy,, and

Ru,, while the potential U(r - Rus,,,,) originates from a third atomic site Ruty,. In

contrast, the overlap matrix S,,oso(k) contains two-center integrals only. Neglecting

the three-center integrals in Hs,,,o(k) [144], the remaining two-center integrals in both



H s,oqso(k) and Sstso(k) can be parameterized as functions of the interatomic vector

R = R,, - R•,•, and of the symmetry and relative orientation of the atomic orbitals

*,(r) and qo(r):

Eo = *(r)Hqo(r)dr,

to0 o(R) = Jo, (r) (T + U (r) + U (r - R)) o(r - R)dr, (3.7)

Soo(R) = J0, (r)¢o(r- R)dr,

where 5o is the atomic orbital energy,1 to,o(R) is the transfer integral, and s,o,(R) is

the overlap integral. A numerical calculation of parameters eo, to,o(R), and so,o(R)

defines the non-orthogonal tight-binding model. Within the orthogonal tight-binding

model, soo(R) is set to zero.

The transfer too(R) and overlap soo(R) integrals of Eq. (3.7) depend on the sym-

metry of the atomic orbitals denoted by indices o' and o. A schematic of the atomic

orbitals occupied by electrons in a carbon atom is shown in Fig. 3-1. The ground state

electronic configuration of atomic carbon reads as 1s 22s 22p2 . When carbon atoms are

put together to form a graphene sheet, one of the two 2s electrons is excited to the

2p state, so that the electronic configuration becomes 1s22s'2p3 . The 182 atomic

orbitals are localized near the nucleus and lie far below the Fermi level on the energy

scale, so that they are not involved in chemical bonding and will not be considered

thereafter. The 2s atomic orbitals mix with the 2Px and 2p, atomic orbitals to form

the hybridized a molecular orbitals. The hybridized a molecular orbitals produce

covalent bonds arranging carbon atoms into the hexagonal lattice. The 2Pz atomic

orbitals form the 7r molecular orbitals normal to the graphene plane and therefore are

uncoupled from the a molecular orbitals. The 7r energy bands lie near the Fermi level

on the energy scale, and thus are most relevant for transport and optical properties

of a graphene sheet and SWNTs [129].

The transfer to,o(R) and overlap so,(R) integrals of Eq. (3.7) depend on the relative

orientation of the atomic orbitals o' and o with respect to the interatomic vector R.

1Note that Eo differs from the atomic orbital energy of the free atom because of the effective
periodic potential V(r) in the single-particle Hamiltonian H in Eq. (3.1).



= COSa + sin a

Figure 3-2: 'The a and 7r projections of the 2p atomic orbital. The 2p atomic or-
bital makes an angle a with respect to the interatomic vector R represented by the
horizontal line. The coefficients cos a and sin a follow from the projections of the
spherical harmonic Y2 1 (0, q) of the 2p atomic orbital and therefore are not valid for
other atomic orbitals.

While the 2sý atomic orbital is spherically symmetric, the 2p atomic orbital has the

symmetry of the spherical harmonic Y21 (0, q). The spherical harmonic Y2 1 (0, q) can be

decomposed along two mutually orthogonal directions, parallel and perpendicular to

the interatomic vector R, as shown in Fig. 3-2. We refer to these two projections of the

2p atomic orbital as a and 7, respectively, in accordance with the above definitions

of the a and r molecular orbitals, while the 2s atomic orbital is referred to as s

for brevity. It is therefore sufficient to determine the transfer too(R) and overlap

so,o(R) integrals between the pairs of o' = s, a, 7r and o = s, a, 7r atomic orbitals as

functions of the interatomic distance R = IRI. Among of nine possible pairs, five

(o'o = ss, sU, as, aa, 7r7r) shown in Fig. 3-3 (a) give nonvanishing transfer and overlap

integrals. For the remaining four pairs (o'o = s7r, rs, acr, 7a) shown in Fig. 3-3 (b),

the transfer and overlap integrals are identically zero by symmetry requirements.

Considering that the two pairs o'o = so and as, connected by a dashed line in Fig. 3-

3 (a), yield transfer and overlap integrals of equivalent magnitudes and opposite signs,

we conclude that there are a total of four independent pairs (o'o = ss, sa, aa, 7rr).

The number of tight-binding parameters is therefore reduced to ten, namely, the two

atomic orbital energies (E2s,E2p), the four transfer integrals (t,,(R), ts,(R), to,(R),

t,,(R)), and the four overlap integrals (s,,(R), s,,(R), s,,(R), s,,(R)).

The Hamiltonian H,,0oo(k) and overlap S',o,,o(k) matrices of Eq. (3.4) can now be

constructed for a given lattice geometry. For each pair of carbon atoms, the 2p atomic

orbitals are decomposed into three mutually orthogonal projections, one of which is

parallel to the interatomic distance. The integrals in Eq. (3.4) for this atom pair are
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Figure 3-3: (a) Five molecular orbital configurations o'o = ss,sa,as,o•,wrw that give
nonvanishing transfer to,(R) and overlap soo(R) integrals. The two configurations
o'o = so,as connected by a dashed line yield the transfer and overlap integrals of
equivalent magnitudes and opposite signs. (b) The remaining four configurations
o'o = s5r,irs,ar,iro- for which the transfer and overlap integrals are identically zero by
symmetry requirements. The dashed lines connect the equivalent configurations.

then written as linear combinations of the transfer (tss(R), ts,(R), to,(R), tr,(R))

and overlap (s,,(R), ss(R), so,(R), s,,(R)) integrals. Considering that there are

four atomic orbitals per carbon atom (o', o = 2s, 2px, 2py, 2Pz) and two carbon atoms

per unit cell (s', s = A, B), we obtain the 8 x 8 Hamiltonian Ho,,1 o(k) and overlap

Ssloso(k) matrices. In a flat graphene sheet, these matrices are partitioned into the

6 x 6 and 2 x 2 subblocks corresponding to the a and 7r molecular orbitals, respectively.

In Section 3.2, we solve for the 2 x 2 subblock to determine the dispersion relations



and the Bloch amplitudes for the 7r electrons in a flat graphene sheet.

3.2 Simple tight-binding model

Within the framework of the simple tight-binding (STB) model [129], we neglect the a

molecular orbitals and the long-range atomic interactions, R > acc. The STB model

thus employs three parameters, the atomic orbital energy %2p, the transfer integral

4t(acc), and the overlap integral s,,(acc). Thereafter we refer to these parameters

as E, t, and s, respectively.

To construct the Hamiltonian H,oy,so(k) and overlap Ss,,so(k) matrices of Eq. (3.3),

let us consider the nearest-neighbor interactions (R = acc) in the unit cell of a

graphene sheet shown in Fig. 2-1 (a). The unit cell contains two atoms, A and B,

each of which has three nearest neighbors of the opposite atom type. The absence of

nearest-neighbor interactions within the same A or B sublattice yields the diagonal

Hamiltonian and overlap matrix elements, HA-rA1 r = HBrBSr = E and SArA7 = SB7rBIr =

1, independent of the transfer t and overlap s integrals. For the HAB, and SAB?

matrix elements, the interatomic vectors R from atom A to its three nearest-neighbors

in Eq. (3.3) are given by (al + a2 ) /3, (al - 2a2) /3, and (a2 - 2al) /3, as one can see

in Fig. 2-1 (a). Substituting these vectors from Eq. (2.1) into Eq. (3.3), we obtain

HAxB1i = tf(k) and SArBII = sf(k), where f(k) is the sum of the phase factors over

the nearest neighbors given by:

f(k) = exp +i + exp + i + exp - - . (3.8)) 2 2 2 2

The HBrA, and SBrAR matrix elements are derived in a similar fashion. The in-

teratomic vectors R have the opposite signs, implying that HBxA, = tf*(k) and

SBA, = sf* (k). The Hamiltonian and overlap matrices are thus Hermitian. The

Schrodinger equation in the matrix form, Eq. (3.3), can then be written as follows:

( tf(k) C,(k) kk) 1 sf(k) (CI,(k) (3.9)

tf * C(k) sf * (k) 1 ) C (k)



Solving the secular equation yields the energy eigenvalues:

e + tw(k)E'(k) = E +tw(k)
1 + sw(k) '(3.10)
E = - tw(k)
1 - sw(k) '

where the band index b = v, c indicates the valence and conduction bands, taking

into account that t < 0, and w(k) is the absolute value of the phase factor f(k), that

is, w(k) = vf*(k)f(k). For f(k) given by Eq. (3.8) we obtain:

vjk a kza kaw (k) = 1 + 4 cos cos k +4 cos 2  (3.11)
2 2 2

According to Eq. (3.10), the atomic orbital energy E is an arbitrary reference point

in the orthogonal STB model (s = 0), while e is a relevant parameter in the non-

orthogonal STB model (s $ 0).

Substituting the energy eigenvalues Eb(k) of Eq. (3.10) into Eq. (3.9) yields the

wavefunction amplitudes C,(k) and CB,~(k) for the valence (b = v) and conduction

(b = c) electrons. Using the orthonormality condition of Eq. (3.5), we obtain the

Bloch amplitudes for the valence band:

S(k f(k)
2w(k)(1 + sw(k)) (3.12)Cf*((k) = k)
2w(k) (1 + sw(k)) '

and for the conduction band:

f(k)C)(, (k) = + 2w(k) (1 - sw(k)) '

c f )f*(k)
Cf3 (k) = -

BI x 2w(k) (1 - sw(k))

The Bloch amplitudes thus vary with the phase of square root of f(k). The phase
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Figure 3-4: The phase of f(k) given by Eq. (3.8) in the reciprocal space of the
graphene sheet shown in Fig. 2-1. The color scale from blue to red represents the phase
from 0 to 2r. The sharp boundaries between the blue and red regions correspond to
small phase oscillations around the zero value.

of f(k) in the reciprocal space of the graphene sheet is shown in Fig. 3-4. There

are three types of Brillouin zones in Fig. 3-4, blue-red, cyan-green, and green-yellow,

where the phase of f(k) is about 0, 27r/3, and 47/3, respectively. By going around

the K point in Fig. 3-4 along the blue-cyan-green-yellow-red color direction, the phase

of f(k) changes from 0 to 27. The phases of the Bloch amplitudes, however, change

from 0 to 7 and from r to 0 because of the square roots in Eqs. (3.12) and (3.13).

This phase change of i7 is known as Berry's phase. Berry's phase of ir leads to a

half-integer quantum Hall effect in the graphene sheet [103, 176].

Fitting the dispersion relations of the graphene sheet given by Eq. (3.10) to the

energy values obtained from an ab initio variational approach [109], yields the values

of the transfer t = -3.033eV and overlap s = 0.129 integrals, after setting the

atomic orbital energy equal to zero of the energy scale, E = 0 eV [129]. Figures 3-5 (a)

and (b) show the dispersion relations of the graphene sheet given by Eq. (3.10) with

the above parameters throughout the entire first Brillouin zone and along the high-

symmetry directions in the first Brillouin zone, respectively, where the first Brillouin



zone is shown in Fig. 2-1 (b). The lower band is completely filled with electrons in

the ground state and is labeled by v as the valence band in Fig. 3-5 (b). The upper

band is completely empty of electrons in the ground state and is labeled by c as the

conduction band in Fig. 3-5 (b). The formation of the valence and conduction bands

can be understood from the Bloch amplitudes given by Eqs. (3.12) and (3.13) and

from the phase of f(k) shown in Fig. 3-4. At the F point, k = 0 and CI, = C',,

while CA, =: -CB,. The wavefunctions given by Eq. (3.2) then become 9" coc QAr +

OIB, and T" Oc CA, - (BS. The wavefunction v9 represents the electron density

concentrated between the A and B atoms, and thus is identified as the bonding ir

molecular orbital with the lower energy. The wavefunction IC represents the electron

density concentrated at the A and B atoms, and thus is identified as the antibonding

7r* molecular orbital with the higher energy. Away from the F point, k # 0 and the

Bloch wavefunctions for the A and B sublattices, QA,(k, r) and QsB,(k, r), have, in

general, different phase factors. Therefore, the standing wave modulation patterns

shown in Fig. 2-6 (a) by solid and dashed curves represent the envelope functions

given by the exponential factors in the Bloch wavefunctions 'so(k, r) of Eq. (3.2). To

obtain the actual standing wavefunctions Vb(k, r, t), these envelope functions must

be multiplied by the atomic orbitals 0o,(r - R,), by Bloch amplitudes Cbo(k), and

by the phase factors exp (- iEb(k)t/h), according to Eq. (3.2).

The valence and conduction bands of a graphene sheet touch each other at the

K and K' points, as one can see in Fig. 3-5. The touching points defined by the

condition w(k) = 0 are referred to as the Fermi points, kF and k'., respectively. The

Fermi level EF passes through the kF and k' points, as shown by the horizontal

line in Fig. 3-5 (b) lying at zero energy, since the atomic orbital energy e is set to

zero. The density of electronic states (DOS) shown in Fig. 3-5 (c) goes to zero at

the Fermi level, indicating that a graphene sheet is a zero-gap semiconductor [165].

Unlike for most semiconductors, the band structure of a graphene sheet shows a linear

dispersion relations around the K and K' points near the Fermi level, as one can see

in Fig. 3-5. Indeed, we can write the electron wavevector around the K point in the

first Brillouin zone of Fig. 2-1 (b) in the form k, = Ak. and ky = -47r/(3a) + Aky,
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Figure 3-5: Electronic dispersion relations of a graphene sheet given by Eq. (3.10) with
STB parameters t = -3.033eV, s = 0.129, and e = 0eV (a) throughout the entire
first Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in
the first Brillouin zone. The valence and conduction bands are labeled by v and c,
respectively. (c) The density of electronic states (DOS). The Fermi level is shown by
the horizontal line at zero energy.

where Ak. and Aky are small compared to 1/a. Substituting this wavevector into

Eq. (3.11) and making the expansion in a power series in Aka and Akya up to the

second order, we obtain w = Z-A ka, where Ak = VAk2 + Ak2 is the distance from

the electron wavevector to the K point. Substituting w into Eq. (3.10) yields the

electronic dispersion relations in the valence and conduction bands:

Ev (Ak) E-%3 (ES _ t) a Ak,2 (3.14)

Ec (Ak) = E / + (Es - t) a Ak,2

which are linear in Ak. The linear dispersion relations near the Fermi level imply

that the effective mass approximation of the non-relativistic Schrodinger equation

used for conventional semiconductors with parabolic energy bands is not applicable

to a graphene sheet. The conducting 7r electrons in a graphene sheet mimic massless

1 r

I



particles whose behavior is governed by the relativistic Dirac equation. Note that

Berry's phase of Dirac fermions is equal to ir, in accordance with the above discus-

sion of Fig. 3-4. Furthermore, the linear dispersion relations increase the mobility of

the conducting 7r electrons in a graphene sheet compared to conventional semiconduc-

tors [69]. In contrast to the 7 electrons, the a electrons are involved in covalent bonds,

and therefore are not mobile. Indeed, the a energy bands lie several eV away from

the Fermi level, as obtained by solving Eq. (3.3) for the a molecular orbitals [129].

3.3 Metallicity

As discussed in Section 3.2, a graphene sheet is a zero-gap semiconductor with the

valence and conduction bands touching at the K and K' points of the first Brillouin

zone. Let us consider the electron wavefunction defined by Eq. (3.2) at the K point.

The electron wavevector k is given by the FK distance in reciprocal space. The

wavevector k points towards the zigzag (Z) direction in a graphene sheet of Fig. 2-

1 (a), and its magnitude k = 4-/ (3a) can be obtained from Fig. 2-1 (b) and Eq. (2.3).

The adjacent unit cells in the Z direction of the graphene sheet are separated by

distance a/2, as one can see in Fig. 2-1 (a). Therefore, the metallic wavefunction

phase factor takes three distinct values: 0, ka/2 = 27r/3, and ka = 47r/3, at the

three adjacent unit cells. We thus conclude that the metallic wavefunction is periodic

over the three unit cells. The metallic wavefunction periodicity is described by the

supercell of six carbon atoms, as shown in dark gray in Fig. 3-6 (a). The supercell is

spanned by the vectors cl and c2 defined as follows:

I 3a 3a .
S2 (3.15): v: a . 3a

2 2

similar to Eq. (2.1) for the lattice vectors al and a 2. These vectors are shown by

arrows in Fig. 3-6 (a) along with a, and a 2. Using the definition of Eq. (2.2), we

construct the reciprocal supercell vectors dl and d2 by analogy with the reciprocal
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Figure 3-6: (a) A single graphene sheet. The two-atom unit cell (in light gray) and
the six-atom supercell at the K point (in dark gray). The open and solid dots indicate
the A and B sublattices, respectively. The lattice vectors al and a2 and the supercell
vectors ci and c2 are shown by arrows. (b) The reciprocal lattice of a single graphene
sheet. The first Brillouin zone (in light gray) and the supercell Brillouin zone of the
K point supercell (in dark gray). The dots labeled by F, K, K', M, M', M", L, L', N,
N', and N" indicate the high-symmetry points. The reciprocal lattice vectors bl and
b2 and the reciprocal supercell vectors dl and d2 are shown by arrows.

lattice vectors bl and b2 given by Eq. (2.3):

2F 27
di = ' X + a Y,

2 3 a (3 .16)
d2- - Y

3d a 3a

The reciprocal supercell vectors dl and d 2 form the supercell Brillouin zone of a

graphene sheet shown in dark gray in Fig. 3-6 (b). The supercell Brillouin zone (the

dark gray hexagon in Fig. 3-6 (b)) is obtained by cutting the first Brillouin zone (the

light gray hexagon in Fig. 3-6 (b)) along six M-L lines and folding it along six L-L

lines into one third of its actual size. The supercell Brillouin zone is therefore triple-

folded, with both the K and K' points mapped to the F point. The K point metallic

wavefunction thus appears at the F point of the supercell Brillouin zone, indicating

that the supercell approach establishes the periodicity of a graphene sheet at the

K point. Note the visual correspondence in Fig. 3-6 between the unit cell and the

supercell Brillouin zone, as well as between the supercell and the first Brillouin zone.



This correspondence arises from the choice of the supercell vectors cl and c2 making

an angle of 1200, as discussed in Section 2.1.

,VWhen a graphene sheet is rolled into a SWNT, the SWNT becomes either metallic

or semiconducting, depending on whether the metallic wavefunction of a graphene

sheet is commensurate with the SWNT circumference or not, respectively [127]. For

the SWNT to be metallic, its chiral vector must connect the two supercells shown in

Fig. 3-6 (a) or, in other words, it must span an integer number of the supercell vectors

cl and c2 . According to Eq. (2.4), the chiral vector is defined by its projections on

the lattice vectors at and a2. By comparing Eq. (3.15) with Eq. (2.1), we can express

a, and a 2 in terms of c1 and c2 as follows, al = (2cl + C2 ) /3 and a 2 = (2c2 + c1) /3.

Substituting a1 and a2 into Eq. (2.4) yields Ch, = (2n + m) c 1/3 + (2rn + n) c2/3. We

thus conclude that for metallic SWNTs, quantities (2n + m) /3 and (2m + n) /3 must

be integers. The latter two conditions are equivalent between themselves, taking into

account that (2n + m) /3 = n + m - (2m + n) /3. Therefore, we find that a SWNT

is metallic if mod(2n + m, 3) = 0 and semiconducting otherwise, where mod (i, j) is

the remainder of the division of' i by j. The latter condition implies that there are

twice as marny semiconducting SWNTs (mod(2n + m, 3) = 1 or 2) as metallic SWNTs

(rnod(2n. + mn, 3) = 0). Indeed, considering that the supercell is three times larger

than the unit, cell, only one-third of all SWNTs have an integer number of supercells

around their circumference, thus being commensurate with the metallic wavefunction

of a graphene sheet.

The classification of SWNTs by their metallicity can also be obtained by consider-

ing tlhe cutting lines defined by Eq. (2.14) in the reciprocal space of a graphene sheet.

The SW NT can be either metallic or semiconducting, depending on whether one of

the cutting lines crosses the K point or not, respectively [50, 131]. Considering the

cutting lines in the helical-helical representation shown in Fig. 2-7, we can evaluate

the projection of the FK vector pointing towards the K point on the K1 direction

normal to the cutting lines. Choosing the right top corner of the dark gray hexagon

in Fig. 2-7 gives FK = (2b, + b 2) /3. Using the expression for K1 given in Table 2.1,

we then find the projection (FK - Kl)/(KI - K1) = (2n + m)/3. If (2n + mr)/3 is an
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Figure 3-7: Three possible configurations of the cutting lines in the vicinity of the K
and K' points depending on the value of mod(2n + mi, 3). The solid lines represent the
cutting lines, the solid dots show the K and K' points, and the dashed lines indicate
the 1KM directions which are the boundaries of the first Brillouin zone.

integer, FK has an integer number of K 1 components, so that one of the cutting lines

crosses the K point, and the SWNT turns out to be metallic. If (2n + m)/3 is a frac-

tional number, namely 1/3 or 2/3, none of the cutting lines crosses the K point and the

SWNT becomes semiconducting. Thus, a SWNT is metallic if mod(2n + m, 3) = 0

and senmicolnducting if mod(2n + in, 3) = 1 or 2, in agreement with the results of the

previous paragraph. These three types of' SWNTs are referred to as MO, S1, and S2,

respectively. Different configurations of the cutting lines in the vicinity of the K and

K' points, depending on the value of mod(2n + m, 3), are shown in Fig. 3-7.

The chira.l vector Ch, forms different patterns for MO, S1. and S2 SWNTs in

the rightmost gray sector in Fig. 2-2. We redraw this sector in Fig. 3-8 where the

hexagons to which the chiral vectors for MO, S1, and S2 SWNTs point are shaded

in white, light gray, and dark gray, respectively. The hexagons of each color form a

triangular sublattice in the graphene sheet, as one can see in Fig. 3-8. Within each

triangular sublattice, the adjacent hexagons are connected by the lines of constant

mod(2n+m,3)=2mod(2n+m,3)=1
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Figure 3-8: The 300-sector in a graphene sheet identical to the rightmost gray sector
in Fig. 2-2 where the chiral vector is defined. The solid dots indicate the centers of
the hexagons to which the chiral vectors point. The white, light gray, and dark gray
hexagons correspond to the chiral vectors of MO, S1, and S2 SWNTs, respectively.
The dashed lines represent the families of constant 2n + m, n - m, and 2m + n. The
numbers give the values of constant 2n + m, n - m, and 2m + n for each family. The
chiral vector of a (4, 2) SWNT is shown by an arrow.

2n + m, n - in, and 2m + n in three different directions, as shown by the dashed lines

in Fig. 3-8. These lines are called the family lines, and all MO, SI, or S2 SWNTs

along the same dashed line in Fig. 3-8 are said to belong to the same family. Each

family line in Fig. 3-8 is labeled by a number that indicates the value of constant

2n + m, n - m, or 2m + n. As an example, the chiral vector of a (4, 2) SWNT is

shown by an arrow in Fig. 3-8. The arrow points to a light gray hexagon that belongs

to families 2n + m = 10, n - m = 2, and 2m + n = 8, as one can see in Fig. 3-8.

The light gray color of the hexagon implies that the (4, 2) SWNT is of SI type, since

mod(2n + m, 3) = mod(10, 3) = 1. Note, however, that for the same (4, 2) SWNT,

mod(n - m, 3) = mod(2, 3) = 2 and mod(2m + n, 3) = mod(8, 3) = 2. The definition

of S1 and S2 types thus depends on the choice of the family lines, 2n + m, n - m, or

2m + n. For a general semiconducting (n, m) SWNTs, the value of mod(2n + m, 3)

is always opposite to the values of mod(n - m, 3) and mod(2m + n, 3), where the



latter two are equivalent between themselves. This can be seen in Fig. 3-8, and it

also follows from the aforementioned relation (2n + m) /3 = n + mn - (2m + n) /3

taking into account that (n - m) /3 = (2r + m) /3 - (2m + n) /3. Furthermore, S1

and S2 types switch when going to SWNTs of the opposite handedness defined in

the rightmost white sector in Fig. 2-2. Indeed, by hypothetically drawing this sector

in Fig. 3-8, we find that the two semiconducting SWNTs of the same (n, mn) indices

but opposite handedness correspond to the two hexagons of different shades of gray

in the two sectors in Fig. 3-8. In what follows, we stick with the definition of S1

and S2 types according to the values of mod(2n + m, 3) within the sector shown in

Fig. 3-8. Our choice is based on the fact that the 2n + m family lines group together

MO, S1, and S2 SWNTs of the closest diameters, compared to the n - m and 2mn + n

family lines. This can be seen in Fig. 3-8, taking into account that the diameter is

proportional to the magnitude of the chiral vector, and the latter is measured from

the leftmost hexagon in Fig. 3-8 labeled by the zero family numbers.

The MO/S1/S2 classification of SWNTs can be further developed [136]. In Sec-

tion 2.3, we classified SWNTs according to whether dR = 3d or d1i = d, and we showed

that diF = 3d if mod ('n - mi, 3d) = 0 and dR = d otherwise. Since mod (n - min, 3d) = 0

implies mod (n - rr, 3) = 0, we conclude that for MO SWNTs either one of the two

conditions, dR = 3d or dR = d, can be satisfied, while for S1 and S2 SWNTs the

condition d1 = d is always maintained. Thus, MO SWNTs divide into M1 and M2

subtypes for which dR = d and d1t = 3d, respectively [136]. Furthermore, M1 SWNTs

can be classified as M1+ and Ml- depending upon mod ((2n + 7n) /d, 3) = 1 or 2,

respectively [136]. Similarly, M2 SWNTs can be either M2+ or M2- according to

whether mod (3m/d1 , 3) = 1 or 2 [136]. Finally, SWNTs of S1 (S2) type divide

into S1+ and Sl- (S2+ and S2-) subtypes for which mod (N, 3) = 1 and 2, corre-

spondingly [136]. We, however, do not go into details of these classifications. While

SWNTs of MO, S1, and S2 types have shown distinct optical properties in various

spectroscopic measurements, there was no experimental evidence of any difference

between M1 and M2, M1+ and Ml-, M2+ and M2-, S1+ and Sl-, or S2+ and

S2- subtypes of SWNTs. We therefore stick with the MO/S1/S2 classification.



3.4 Density of electronic states

As we showed above in Section 3.3, SWNTs become metallic if one of the cutting

lines defined by Eq. (2.14) crosses the K point. The electronic dispersion relations

around the K point of a graphene sheet can be approximated by a linear function of the

electron wavevector measured from the K point, according to Eq. (3.14). We plot these

linear dispersion relations in the vicinity of the K point in Fig. 3-9 (a), where the lower

and upper cones represent the valence and conduction bands, respectively. The solid

lines superimposed on the dispersion relations in Fig. 3-9 (a) are the cutting lines for

a metallic (15, 0) SWNT. Following the zone-folding technique, the energy dispersion

along the cutting lines is projected into the 1D Brillouin zone of the (15, 0) SWNT.

The resulting 1D dispersion relations are shown in Fig. 3-9 (b). The horizontal axis of

Fig. 3-9 (b) represents the 1D wavevector k of the (15, 0) SWNT, or the 2D wavevector

k of the graphene sheet along the cutting lines in Fig. 3-9 (a), according to Eq. (2.14).

The 1D wavevector changes in the range -7r/T < k < ir/T, where T = V/a is the

translational length of the (15, 0) SWNT, according to Table 2.1. Each cutting line

in Fig. 3-9 (a) generates an energy subband in Fig. 3-9 (b). These energy subbands

are labeled by band index b = v, c and by subband number i progressively increasing

away fromn the Fermi level E. = 0 eV shown by the horizontal line in Fig. 3-9 (b). The

density of electronic states (DOS) of the (15, 0) SWNT derived from the dispersion

relations of Fig. 3-9 (b) is shown in Fig. 3-9 (c).

Since one of' the cutting lines in Fig. 3-9 (a) goes through the K point, the cor-

responding i = 0 valence and conduction subbands in Fig. 3-9 (b) touch at the 1D

Fermi point kF = 0 making the (15, 0) SWNT metallic. These subbands exhibit linear

dispersion around the Fermi level E,. = 0 eV resembling that of a graphene sheet from

Fig. 3-5 (b). Nevertheless, the DOSs of the (15, 0) SWNT and of the graphene sheet

show quite different behavior near EF. The DOS of the graphene sheet vanishes at EF,

as shown in Fig. 3-5 (c), thus making the graphene sheet a zero-gap semiconductor,

as discussed in Section 3.2. In contrast, the (15, 0) SWNT has a finite DOS at EF,

as one can see in Fig. 3-9 (c). The finite DOS at EF arises from the 1D nature of the
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Figure 3-9: (a) The electronic dispersion relations of a graphene sheet around the
K point, as approximated by Eq. (3.14). The lower and upper cones represent the
valence and conduction bands, respectively. The solid lines are the cutting lines for a
metallic (15, 0) SWNT. (b) The electronic dispersion relations of the (15, 0) SWNT
when different cutting lines are folded together into the 1D Brillouin zone. The length
of the 1D Brillouin zone is 2r/T. The energy subbands are labeled by band index
b = v, c and by subband number i progressively increasing away from the Fermi level
EF = 0 eV shown by the horizontal line. The vertical line denotes the Fermi point
kF = 0 and the critical wavevectors k = 0. (c) The density of electronic states (DOS)
of the (15, 0) SWNT. A finite DOS at EF indicates that the SWNT is metallic. The
sharp spikes in the DOS typical for 1D systems are known as Van Hove singularities
(VHSs). The VHSs associated with different subband edges are labeled by Eb.

SWNT. As a result, the (15, 0) SWNT is a true metal, unlike the graphite sheet, and

so are all other MO SWNTs. In fact, however, the curvature of the SWNT sidewall

breaks the nearest-neighbor bond symmetry of a graphene sheet, changing the phase

factors in f(k) of Eq. (3.8) and correspondingly shifting the 2D Fermi points, kF and

k/, away from the K and K' points [75]. This shift opens a mini band gap at the

Fermi level in MO SWNTs [75]. The width of the mini band gap is given by:

(Es - t) a2 cos 30
E = 4d (3.17)



For the (15, 0) SWNT, the mini band gap width E, = 33 meV is comparable to

the thermal energy kBT = 26 meV at room temperature T = 300 K, where kB =

0.086173 meV/K is the Boltzmann constant. The mini band gap width scales in-

versely with the square of the diameter, which is a measure of the curvature-induced

bond asymmetry in the SWNTs sidewall. The mini band gap width also depends on

the chiral angle 0, vanishing for armchair SWNTs and reaching its maximum value

for zigzag SWNTs, in which cases kF and k' move parallel and perpendicular to the

cutting lines, respectively [75]. This result agrees with the group theory prediction

that the linear energy bands in armchair SWNTs have different symmetry and there-

fore are not split by the curvature of the SWNT sidewall [12]. We thus conclude that

among MO SWNTs, only armchair SWNTs are truly metallic, while the other MO

SWNTs have mini band gaps of width about the thermal energy at room tempera-

ture. Since the concept of zone-folding excludes the curvature of the SWNT sidewall,

the zone-folding technique fails to predict the mini band gap opening for the (15, 0)

SWNT, as one can see in Fig. 3-9 (c). The curvature effects and the limitations of

zone-folding will be considered in more detail in Section 3.6.

While the i = 0 subbands in Fig. 3-9 (b) demonstrate a linear dependence on

the 1D wavevector kA, the dispersion relations for the i = 1 and 2 subbands show a

hyperbolic behavior:

E'(k)= T 2 (es - t) a2i 2 + k2  (3.18)

as obtained by superimposing the cutting lines of Eq. (2.14) on the linear dispersion

relations of a graphene sheet given by Eq. (3.14) and taking into account the separa-

tion between the adjacent cutting lines expressed by the reciprocal lattice vector K1

listed in Table 2.1. The hyperbolic dispersion relations present some flat regions in

Fig. 3-9 (b) close to the subband edges:

E' = E i (ES - t) a (3.19)

at the critical angular and linear momenta, p.b and kb , where k b = 0 in Fig. 3-9 (b).
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Figure 3-10: The density of electronic states (DOS) of typical 3D, 2D, 1D, and OD
systems. The DOSs of 3D and 2D systems are both monotonously increasing functions
of energy. The DOSs of 1D and OD systems both exhibit singularities at certain values
of energy.

The flat dispersion regions give rise to the spikes in the density of electronic states,

as one can see in Fig. 3-9 (c), where each spike is labeled with the corresponding

subband edge Eb . These spikes are known as Van Hove singularities (VHSs).

The Van Hove singularities (VHSs) typically dominate the density of electronic

states (DOS) of one-dimensional (ID) systems. The DOS profiles for systems of dif-

ferent dirnensionality are usually very different from one another, as one can see in

Fig. 3-10. Given the parabolic dispersion relations, the DOS dependence on energy

is governed by g(E) oc (E - Eo)d/ 2 - 1 , where d is an integer that denotes the dimen-

sionality, assuming the values 1, 2, and 3 for 1D, 2D, and 3D systems, respectively.

Here E0 can be considered as a critical energy in the DOS. For a 3D system, E0

might correspond to an energy threshold for the onset of optical transitions, or to a

band edge state in a semiconductor. For a 2D system, Eo would correspond to the

energy at which a new subband or a quantum confinement level is formed. For a 1D

system, Eo0 is equal to the subband edge energy El, given by Eq. (3.19), where the

magnitude of the DOS becomes very large. One can see from Fig. 3-10 that 1D sys-

tems exhibit DOS profiles which are quite similar to the case of OD systems, having

very sharp maxima at certain energies, in contrast to the DOS profiles for 2D and

3D systems, which show a more monotonic increase with energy. However, the 1D

DOS is different from the OD DOS in that the 1D DOS has a sharp threshold and a

decaying tail, so that the 1D DOS does not go to zero between the sharp maxima, as

the OD DOS does (see Fig. 3-10). Also, the values of the DOS at the peak positions

3D 2D 1D OD



are generally much higher for 1D objects (nanotubes and nanowires) than for OD

objects (molecules and quantum dots), because of much larger number of atoms in

1D objects. The extremely high values of the DOS at the VHSs allow the observation

of the resonance Raman spectra from individual SWNTs grown by chemical vapor

deposition (CVD) on a Si/SiO2 substrate, where the Raman bands of the SWNT

and those of' Si have comparable intensities, even though the ratio of the number of

carbon atorns to the number of silicon atoms in the laser spot is as low as 10-6 [65].

The VHSs along with the mini band gaps in the DOS of individual metallic SWNTs

on an Au substrate are observed by scanning tunneling spectroscopy [107].

The critical wavevectors kib at which the VHSs Ei' are observed appear at the

center of the 1D Brillouin zone of the (15, 0) SWNT, ki = 0. as one can see in

Fig. 3-9 (b). The Fermi point kF that can be considered as a critical wavevector k'

or k' also appears at the zone center, kF = 0. A question arises, whether the same

conditions kV = 0 and kF = 0 are maintained for a general (n, mn) SWNT. Assuming

the isotropic dispersion relations around the K point, as approximated by Eq. (3.14)

and plotted in Fig. 3-9, we need to evaluate the projection of the EK vector pointing

towards the K point in the K 2 direction parallel to the cutting lines, according to

Eq. (2.14). Choosing the right top corner of the dark gray hexagon in Fig. 2-7 gives

FK = (2bI + b2 ) /3. Using the expression for K2 given in Table 2.1, we then find

the projection (FK . K2)/(K 2 . K 2) = m/dR. Since dr = d in the case of M1, S1,

and S2 SWNTs, the ratio m/dR is an integer, and therefore the critical wavevectors

ki and the Fermi point kF appear at the center of the 1D Brillouin zone, k' = 0

and k. = 0. For M2 SWNTs, however, dR = 3d, which implies mod(m, dR) = 1

or 2. The critical wavevectors ki and the Fermi point kF thus appear at two-third

of the distance from the center F to the edge X of the 1D Brillouin zone, ±K2/3,

which is related to the shortening of the translational length T by a factor of 3, as

explained in Section 2.3. Due to time-reversal symmetry, each VHS Eib is doubly

degenerate, with two critical wavevectors k and kI ' near the K and K' points in the

2D Brillouin zone of a graphene sheet, and the same is true for the Fermi points, kF

and k'{. It follows that kb = kF = +fK2 /3 and k0' = kf' = -K 2 /3 for M2+ SWNTs,
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Figure 3-11: (a) The electronic dispersion relations of a graphene sheet within the STB
model replicated from Fig. 3-5. The solid lines are the cutting lines for a semiconduct-
ing (4, 2) SWNT in the helical-helical representation. (b) The electronic dispersion
relations of the (4, 2) SWNT when different cutting lines are folded together into the
1D Brillouin zone. The length of the 1D Brillouin zone is given by 27r/T. (c) The
density of electronic states (DOS) of the (4, 2) SWNT. Vanishing DOS at the Fermi
level EF = 0 eV indicates that the SWNT is semiconducting. The sharp spikes in the
DOS typical for 1D systems are known as Van Hove singularities.

while kb = ký = -K 2 /3 and b' = k'k = +K 2/3 for M2- SWNTs [136]. On the other

hand, the critical wavevectors for S1 and S2 SWNTs, as well as the Fermi points

for M1 SWNTs, are doubly degenerate, k = k1' = 0 and kF = k' = 0, given the

isotropic dispersion relations around the K and K' points. In a similar fashion, the

expressions for the critical angular momenta /t and 1-' can be derived for different

types of SWNTs [136].

The degeneracy of the critical wavevectors, k1 and kb', only holds for achiral

SWNTs due to the presence of a horizontal mirror plane [12]. For chiral SWNTs,

the anisotropy of the electronic dispersion relations around the K point of a graphene

sheet lifts the degeneracy, 1k = -k4' # 0. The anisotropy also shifts the critical points

for M2 SWNTs, k1 = -k1' - ±K2/3. While the anisotropy is neglected under the

linear approximation of Eq. (3.14), it appears within the exact STB solution given

I, II I I



by Eq. (3.10). In Fig. 3-11 (a), we replicate the STB electronic dispersion relations

of a graphene sheet shown in Fig. 3-5 (a), and we superimpose the cutting lines

defined by Eq. (2.14) in the helical-helical representation for the (4, 2) SWNT over

the dispersion surface, similar to Fig. 3-9 (a). We then construct the 1D dispersion

relations and the DOS of the (4, 2) SWNT in Figs. 3-11 (b) and (c), respectively,

by analogy with Figs. 3-9 (b) and (c). The critical wavevectors ký corresponding to

the subband extrema in Fig. 3-11 (b) are slightly shifted from the center F of the

1D Brillouin zone, kV $ 0. The shift of the critical wavevectors is induced by the

anisotropy of the electronic dispersion relations around the K point of a graphene

sheet. This anisotropy is in fact naturally embedded into the STB model, and it is

known as the trigonal warping effect [130]. We will discuss the trigonal warping effect

in more detail in Section 3.5. Also, one can see in Figs. 3-11 (b) and (c) that a band

gap opens up at the Fermi level EF = 0eV of the (4, 2) SWNT. Indeed, the (4, 2)

SWNT is a semiconductor of S2 type, according to the definitions in Section 3.3.

The width of the band gap E, can be estimated similar to Eq. (3.19) from the linear

approximation of Eq. (3.14) shown in Fig. 3-9. A more accurate estimate of Eg

implementing the trigonal warping effect is obtained from the exact STB solution of

Eq. (3.10) shown in Fig. 3-11. The latter, however, ignores the curvature of the SWNT

sidewall. The curvature shifts the subband edges Ei and the critical wavevectors k b

(and the Fermi points kF for M2 SWNTs) even further than the trigonal warping

effect does, especially in small diameter SWNTs such as (4, 2). We will consider the

curvature eff:cts in more detail in Section 3.6.

3.5 Trigonal Warping Effect

'FiThe presence of VHSs in the DOS of SWNTs has a great impact on their physical

properties, such as optical absorption, transport dynamics, thermal conductivity, etc.

Generally speaking, a significant enhancement in the SWNT response is observed

when the excitation energy for the probe matches one of the VHSs in the DOS in

the valence and conduction bands of the SWNT. For example, optical absorption is
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Figure 3-12: (a) The electronic dispersion relations and (b) the density of electronic
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strongly enhanced when the photon energy is in resonance with the allowed transi-

tion between two VHSs in the valence and conduction bands. This enhancement is

generally interpreted in terms of the joint density of electronic states (JDOS) which

takes into account the dipole selection rules. The dipole selection rules can be derived

from the optical dipole transition matrix elements using the zone-folding technique

expressed by Eq. (2.14) [2, 48, 133], or from group theory [12, 14], as discussed in

Section 5.1.1. The slope of the electronic dispersion relations in the graphene sheet

is given by ± I (es - t) a according to Eq. (3.14), while the slope of the photon dis-

persion relations is equal to hc, where h is Planck's constant and c is the speed of

light. Taking into account that v (es - t) a < hc suggests that IIJ < Ik" - FK I

and I, << Ik' - FK , where . is the photon wavevector and k" and kc are the elec-

tron wavevectors in the valence and conduction bands. The momentum conservation

k" - k' = ±i for light absorption and emission then implies kv = kc, or in other



words, the optical transitions in the graphene sheet are vertical. Upon substituting

the relation kV = kc into Eq. (2.14), we express the dipole selection rules in SWNTs

in the form pv = pc and kv = kc within the zone-folding approximation. The optical

transitions thus conserve both angular and linear momenta in SWNTs. For illustra-

tive purposes, we replicate in Fig. 3-12, the electronic dispersion relations and the

DOS of the (15, 0) SWNT from Fig. 3-9. The allowed optical transitions are shown

in Figs. 3-12 (a) and (b) by the vertical arrows (conservation of the linear momentum

k) connecting the mirror subbands (conservation of the angular momentum p). In

Fig. 3-12 (c), we show the density of allowed optical transitions as a function of the

photon energy (the length of the vertical arrows in Figs. 3-12 (a) and (b)), which

is known as the joint density of electronic states (JDOS). The VHSs in the JDOS

labeled by E.i (i = 1,2) in Fig. 3-12 (c) correspond to transitions between the mirror

valence E,, and conduction Ey VHSs in the DOS shown by the vertical arrows in

Fig. 3-12 (b), implying that Ei = Eý - El'.

The optical response of SWNTs is thus dominated by the VHSs in the JDOS

labeled by Ei., The optical transition energies Eii for i = 1, 2, 3, . .. and for all the

possible (n, mn) SWNTs are summarized in the Kataura plot [71] as a function of the

SWNT diameter d,. The Kataura plot is a useful tool for analyzing Raman spectra

of SWNTs, since the frequency of the Raman-active radial-breathing phonon mode

S"RBM is inversely proportional to dt, as will be shown in Chapter 4. In Fig. 3-13 (a),

we show the Kataura plot calculated within the STB model of Section 3.2. The

same STB Kataura plot is shown in Fig. 3-13 (b) as a function of the inverse SWNT

diameter 1/df, which is more convenient for direct comparison with experiments, since

1/d, is proportional to wRBM . Furthermore, the 1/dt scale allows us to explore the

small d, region (d, < 1.2 nm), which has a lower density of (n, m) indices and the more

pronounced 1D character. As one can see from Fig. 3-13, the Ei, energies for MO, S1,

and S2 SWNTs show distinct behavior, while there is no obvious difference between

M1 and M2 subtypes of MO type, and neither between the other subtypes discussed

in Section 3.3. Within the MO, S1, and S2 types, the Eii energies that belong to the

families of constant 2n + mr group together in the Kataura plot. Indeed, as we recall



from Section 3.3, the members of the families of constant 2n + m have the closest

diameters compared to the members of the families of constant n - rn or constant

2m + 'n. The Eii energies within each family of constant 2n + rn are connected by

gray lines labeled by 2n + m values in Fig. 3-13.

Within the isotropic dispersion relations of Eq. (3.14), the VHSs in the DOS for

M SWNTs are given by Eq. (3.19). A similar expression can be derived for S SWNTs,

where i is substituted with [i/2 + mod(i, 2)/6 - 1/3], taking into account that the

K point appears at the 1/3 or 2/3 distance between the cutting lines, as shown in

Fig. 3-7. This suggests that the Eii energies for M and S SWNTs are given by:

3 ([2i], (3.20)
ES = dE [i + mod(i, 2)/3 - 2/3] .

Indeed, the .E, energies group into bands labeled by ES, ES, and E' in Fig. 3-13.

These bands exhibit a hyperbolic dependence on dt and a linear dependence on l/dr

in Figs. 3-13 (a) and (b), respectively, in accordance with Eq. (3.20). However, in the

small it region of the Kataura plot in Fig. 3-13, the Eii energies deviate from the sim-

ple hyperbolic (linear) dependence given by Eq. (3.20). This is a manifestation of the

trigonal warping effect [130], which introduces anisotropy in the electronic dispersion

relations around the K point, omitted in the linear approximation of Eq. (3.14).

When deriving Eq. (3.14), we expressed the electron wavevector near the K point

in the graphene sheet as k = (kr, k,) = (Ak., -47r/(3a) + Aky). Making the ex-

pansion of Eq. (3.11) in a power series in aAk. and aAky up to the second order,

we obtained w = v3aAk/2, where Ak = VAk + Ak 2 is the electron wavevector

measured from the K point. Now we expand Eq. (3.11) up to the third order:

w a1 3k± - 3AkxAk 2

S= ak + -a (3.21)2 8 Ak

Referring to the angle between the wavevector (AkX, Aky) and the direction KE as

, we express Akx and Ak, in the form Akx = Ak sin o and Aky = Ak cos p. Sub-
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stituting Ak:,: and Aky into Eq. (3.21) yields

v• 1
w = - aAk + - cos 3ý a2Ak 2 , (3.22)

2 8

taking into account that cos 3 ýo = cos3p - 3 sin 2p cos ýp. Substituting Eq. (3.22) into

Eq. (3.10) yields the electronic dispersion relations of the graphene sheet:

_1 3
E" (Ak, ) = - - (es - t) a Ak - - (ES - t) cos 3P a2 Ak2 - sta 2Ak2

2 8 4

E'- (Ak, )= E + ES ) a + s (ES - ) COs 3sp a2Ak2 - -sta2Ak22 8 4
(3.23)

Eq. (3.23) describes the distortion of the isotropic electronic dispersion relations of

A A r•



(a) AE=1.53eV (b) AE=0.2eV

Figure 3-14: (a) The contours of constant transition energy Ec - EV in the first
Brillouin zone of the graphene sheet shown in Fig. 2-1 calculated within the STB
model described in Section 3.2. The square box indicates the area of linear dimensions
KF/3 = 47r/(9a) centered at the K point. (b) A zoom in of area within the square box
in (a). The transition energy difference between the adjacent contours AE = 1.53 cV
and AE = 0.2 eV are shown above the figures.

Eq. (3.14), referred to as the trigonal warping effect [130]. This distortion has a

triangular symmetry around the K point in the reciprocal space of the graphene

sheet, because of the factor cos 3p in Eq. (3.23). The triangular distortion is clearly

seen in Fig. 3-14 where we plot the electronic equi-energy contours around the K

point in the reciprocal space of the graphene sheet calculated within the STB model.

The critical angular and linear momenta, p/ and k0, introduced in Section 3.4 after

Eq. (3.19) for M SWNTs, correspond to the critical wavevector in the reciprocal space

of the graphene sheet, ki = (±2i sin O/dt, -47r/(3a) ± 2i cos 8/dt), where 0 is the chiral

angle, according to Eq. (2.14). A similar expression can be obtained for S SWNTs,

where i is substituted with [i + mod(i, 2)/3 - 2/3], as follows from Eq. (3.20) and

discussion therein. The trigonal warping effect shifts the critical linear momenta k'

along the cutting lines away from the 0 and ±K2/3 points, as discussed in Section 3.4,

thus affecting ki. However, the changes to ki are quadratic in 1/dr, that yield the

cubic in Ak corrections in the band energy of Eq. (3.23). These corrections can

therefore be neglected. Substituting Ak = 2i/dt and ýp = 0 or 0 + ir into Eq. (3.23)



yields the transition energies for M and S SWNTs:

__ -(ES-t)a ES- t)a2-E \ - td [ 2i] + M 4d a cos 30 [ 2i ]2,
dt 4dt

E s 0 (es - t) a [. mod(i, 2) 2' ± +'S- i + 3 3+ [ I1 - 2 mod(S + i, 2)] (3.24)

(es - t) a2  mod(i, 2) 2]2
x 2 cos 30 i+ + - I

where M = -1, +1 for the lower and higher components off EM usually labeled by

E LL and E,• ., and S = 1, 2 for SI and S2 SWNTs. Equation (3.24) describes the

deviation of the families of constant 2n + m from a pure hyperbolic dependence on dt

and a pure linear dependence on 1/dt given by Eq. (3.20), as shown in Figs. 3-13 (a)

and (b), respectively. This deviation, known as the family spread, can be understood

from the trigonal warping of the electronic equi-energy contours shown in Fig. 3-

14. For a given family of constant 2n + m, the chiral angle 0 of the family members

changes from armchair (A) to zigzag (Z), thus rotating the cutting lines superimposed

on the reciprocal space of the graphene sheet shown in Fig. 3-14. For A SWNTs, the

cutting lines in Fig. 3-14 are vertical, and the critical wavevectors ki on the two sides

of the K point (ýo = +7r/2) give rise to the same Eii value that appears at the mean

hyperbolic curves in Fig. 3-13 (a) and at the mean straight lines in Fig. 3-13 (b). For

Z SWNTs, the cutting lines in Fig. 3-14 are horizontal, and the critical wavevectors

ki on the opposite sides of the K point ((p = 0 and 7r) give rise to the two distinct

Eii values that deviate from the mean hyperbolic curves in Fig. 3-13 (a) and from the

mean straight lines in Fig. 3-13 (b). The family spread then appears in Fig. 3-13.

To Ietter illustrate the effect of the trigonal warping on the 2n+m family patterns,

we construct three distinct Kataura plots: (1) for the isotropic dispersion relations of

Eq. (3.14) yielding Eq. (3.20), (2) for the trigonally distorted dispersion relations of

Eq. (3.23) yielding Eq. (3.24), and (3) for the purely triangular equi-energy contours

described by Eq. (3.14) multiplied by 2cos p in the range pl < 7/3. The three

Kataura plots along with the corresponding equi-energy contours are shown in Fig. 3-

15. One can see from Fig. 3-15 how the family patterns in the Kataura plot are affected
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by the trigonal warping effect. For the isotropic dispersion relations (the top trace

in Fig. 3-15 (a)), the 2n + m families follow a linear dependence on 1/dr. When the

trigonal distortion develops (the middle trace in Fig. 3-15 (a)), the 2n + m families

deviate below and above the mean line, similar to Fig. 3-13. For the completely

trigonal dispersion relations (the bottom trace in Fig. 3-15 (a)), the higher 2n + m

families rapidly increase in energy, while the lower 2n + rn families become flat.

3.6 Extended tight-binding model

Early resonance Raman studies of SWNT bundles [125] were interpreted in terms of

the STB Kataura plot described in Section 3.5. Later on, resonance Raman scattering

(R.RS) from individual CVD SWNTs on a Si/SiO2 substrate was observed [65], and

the Kataura plot was calibrated by adjusting the STB parameters [65]. The fitted

STB parameters, E = 0eV, t = -2.89eV, and s = 0, scale the Kataura plot as a

whole, maintaining the relative positioning of the Eii bands and the family patterns

in Fig. 3-13. All these studies were carried out on samples of SWNTs with large

diameters (dt > 1.2 nm), where the curvature of the SWNT sidewall is small. The

electronic properties of large diameter SWNTs resemble those of the graphene sheet,

thus validating the use of the zone-folding technique for constructing the STB Kataura

plot. The electronic properties of SWNTs start to deviate from the graphene-like

behavior in the small diameter region (dt < 1.2 nm), and the STB Kataura plot fails

to explain resonance Raman spectra of small diameter SWNTs.

An experimental Kataura plot in the small diameter region was recently obtained

by the band gap photoluminescence (PL) measurements [8] on SWNTs synthesized

by high-pressure CO decomposition (HiPCO) [15] and suspended by sodium dodecyl

sulfate (SDS) surfactant in deuterium oxide (D20) [104]. The excitation-emission

density map from Ref. [8] is shown in Fig. 3-16 (a), where each bright spot corresponds

to a distinct pair of (n, m) indices. For each bright spot, the excitation and emission

wavelengths are resonant with the ES2 and ES, transitions, respectively. The Est and

Es2 energies extracted from Fig. 3-16 (a) are summarized in Fig. 3-16 (b) in the form
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Figure 3-16: (a) The photoluminescence excitation-emission density map measured
on wrapped HiPCO SWNTs suspended by SDS surfactant in aqueous solution [8].
(b) The experimental Kataura plot derived from the density map in (a) [168]. The
numbers show the families of constant 2n + m.

of the Kataura plot [168], that is, as a function of the inverse SWNT diameter.

Later on, resonance Raman studies were performed on the same sample using a

quasi-continuous set of excitation laser lines [42]. The excitation-emission density

map in the frequency range of the radial-breathing mode (RBM) taken from Ref. [42]

is shown in Fig. 3-17 (a). Again, the bright spots in Fig. 3-17 (a) are associated

with individual (n, m) SWNTs. For each bright spot, the excitation laser energy is

resonant with ES, ES2, or En, while the RBM frequency is inversely proportional

to the SWNT diameter, as discussed in Section 3.5. The excitation-emission density

map thus directly gives the experimental Kataura plot [63]. For clarity, we replicate

the Eii energies from Fig. 3-17 (a) in Fig. 3-17 (b) as a function of the inverse SWNT

diameter.

Comparison of Figs. 3-16 (b) and 3-17 (b) indicates that both techniques, PL and

RRS, give the same Eii energies for the same SWNT sample. However, the experi-

mental Kataura plots in Figs. 3-16 (b) and 3-17 (b) differ from the theoretical STB
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Kataura plot in Fig. 3-13 (b) in the two different ways, in the large diameter limit and

in the small diameter limit. In the large dt limit, the ratio of Es2 to ESl reaches 1.8

in the experimental Kataura plots, while the same ratio goes to 2 in the theoretical

Kataura plot [8]. The ratio problem is an indication of the many-body interactions in

SWNTs [70] that will be discussed in Section 3.7. In the small dt limit, the families of

constant 2n-1-m deviate from the mean Eii energy bands in the experimental Kataura

plots, while the family spread in the theoretical Kataura plot remains relatively mod-

erate [168]. The family spread is related to the trigonal warping effect, as shown in

Section 3.5 and particularly in Fig. 3-13. However, even the ultimate trigonal warping

illustrated in the bottom trace of Fig. 3-15 (b) cannot reproduce the family patterns

found in the experimental Kataura plots in Figs. 3-16 (b) and 3-17 (b). A half of the

2n + m families bends down with increasing the inverse diameter in Figs. 3-16 (b)

and 3-17 (b), while the same families appear as straight horizontal lines in the bot-

tom trace of Fig. 3-15 (a). In fact, the trigonal warping effect can never bend the



families down with increasing inverse diameter. On the other hand, the second half

of the 2n + m families rapidly increase with the inverse diameter in the bottom trace

of Fig. 3-15 (a), but they show very little spread away from the mean Eii bands in

Figs. 3-16 (b) and 3-17 (b). It is therefore clear that the trigonal warping effect alone

cannot explain the family spread observed by PL and RRS measurements.

In search for the origin of the family spread, we reconsider the limitations of the

STB model introduced in Section 3.2. Within the framework of the STB model, we

neglected the long-range atomic interactions and the a molecular orbitals. Mean-

while, the long-range atomic interactions are known to alternate the electronic band

structure of the graphene sheet and SWNTs [126]. On the other hand, the a molec-

ular orbitals are irrelevant in the graphene sheet and large diameter SWNTs as they

lie far away in energy from the Fermi level. In small diameter SWNTs, however, the

curvature of the SWNT sidewall changes the lengths of the interatomic bonds and

the angles between them. This leads to the rehybridization of the a and r molecular

orbitals, which affects the band structure of rr electrons near the Fermi level. Fur-

thermore, the a-7r rehybridization suggests that the geometrical structure of a small

diameter SWNT deviates from the rolled up graphene sheet. A geometrical structure

optimization must thus be performed to allow for atomic relaxation to equilibrium

positions. This in turn affects the Eii energies of the small diameter SWNTs.

We extend the STB model introduced in Section 3.2 by including the long-range

atornic interactions and the a molecular orbitals, and by optimizing the geometrical

structure. The resulting model is thereafter referred to as the extended tight-binding

model (ETB). Within the framework of the ETB model, we use the tight-binding

parametrization determined from density-functional theory (DFT) employing the

local-density approximation (LDA) and using a local orbital basis set [122]. The ETB

model makes use of all the ten tight-binding parameters introduced in Section 3.1.

The two atomic orbital energies are given by 2s, = -0.4988 and E2p = -0.1974

(in units of the Hartree energy Eh; Eh = 27.21138eV). The four transfer integrals

(t3 (R), ts,(R), tj,(R), tG(R)) and the four overlap integrals (s,,(R), sso(R), so,(R),

s,7(R)) are finctions of the interatomic distance R. These integrals are fitted to the



Table 3.1: Coefficients C, of the Chebyshev polynomial expansion according to
Eqs. (3.25) and (3.26) for the ETB transfer to,o(R) = S(R) (in units of the Hartree
energy Eh; Eh = 27.21138 eV) and overlap soo(R) = S(R) (dimensionless) integrals
as functions of the interatomic distance R. Boundaries of R are at R 1 = 1.0 and
R2 = 7.0 (in units of the Bohr radius ao; ao = 0.052917721 nm). The molecular
orbital configurations o'o = ss,sa,aa,7rir are shown in Fig. 3-3. The calculated too(R)
and s,0 o(R) dependencies are shown in Fig. 3-18 [122].

tSs tst tat 7r7r

Co -0.4663805 +0.3395418 +0.2422701 -0.3793837
C1 +0.3528951 -0.2250358 -0.1315258 +0.3204470
C2 -0.1402985 +0.0298224 -0.0372696 -0.1956799
CQ +0.0050519 +0.0653476 +0.0942352 +0.0883986
C4 +0.0269723 -0.0605786 -0.0673216 -0.0300733
C5 -0.0158810 +0.0298962 +0.0316900 +0.0074465
C6 +0.0036716 -0.0099609 -0.0117293 -0.0008563
C7 +0.0010301 +0.0020609 +0.0033519 -0.0004453
Cs -0.0015546 +0.0001264 -0.0004838 +0.0003842
C9 +0.0008601 -0.0003381 -0.0000906 -0.0001855

Sss Ss 80 S7r7r
Co +0.4728644 -0.3662838 -0.1359608 +0.3715732
C1 -0.3661623 +0.2490285 +0.0226235 -0.3070867
C2 +0.1594782 -0.0431248 +0.1406440 +0.1707304
Ca -0.0204934 -0.0584391 -0.1573794 -0.0581555
C4 -0.0170732 +0.0492775 +0.0753818 +0.0061645
C5 +0.0096695 -0.0150447 -0.0108677 +0.0051460
C0 -0.0007135 -0.0010758 -0.0075444 -0.0032776
C7 -0.0013826 +0.0027734 +0.0051533 +0.0009119
Cs +0.0007849 -0.0011214 -0.0013747 -0.0001265
C09 -0.0002005 +0.0002303 +0.0000751 -0.0000227

functional form:
9

S(R) = CT
n=0

(3.25)2R-R2- R 1

R2 -R )1
where R 1 and R 2 are the boundaries of R, and T,(x) are the modified Chebyshev

polynomials of the first kind:

1
To(x) = -, Ti(x) = x, T2(x) = 2x2 - 1,

T,,(x) = 2xTn-~(x) - T,- 2 (x) for n = 3,...,9.
(3.26)
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are shown in Fig. 3-3. The dashed and dotted vertical lines indicate the first- and
second-neighbor interatomic distances, acc = 0.142 nm and a = V'3acc = 0.246 nm,
respectively.

The coefficients C,, and boundaries (R 1,R 2) for the transfer to,,(R) = S(R) and

overlap so,o(R) = S(R) integrals are listed in Table 3.1.2 The dependence of the

transfer and overlap integrals on the interatomic distance is shown in Fig. 3-18. At

2The function S(R) of Eqs. (3.25) and (3.26) with coefficients Cn from Table 3.1 exhibits dis-
continuities at the cutoff distance R = R 2. These lead to discontinuities in the total energy that
prevent finding its absolute minimum during optimization of the geometrical structure. To avoid
this problem, we extrapolate S(R) with exponential tails at R > R2.
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Table 3.2: Coefficients C,, of the Chebyshev polynomial expansion according to
Eqs. (3.25) and (3.26) for the ETB short-range repulsive potential v(R) = S(R)
(in units of the Hartree energy Eh; Eh = 27.21138 eV) as a function of the inter-
atomic distance R. Boundaries of R are at R1 = 1.0 and R2 = 4.1 (in units of the
Bohr radius ao; ao = 0.052917721nm) The calculated v(R) dependency is shown in
Fig. 3-19 [122].

Co
C1

C2
C3
C4
C5
Co
07
C8
C9

v

+2.2681036
-1.9157174
+1.1677745
-0.5171036
+0.1529242
-0.0219294
-0.0000002
-0.0000001
-0.0000005
+0.0000009

the nearest neighbor interatomic distance R = acc = 0.142 nm shown by the dashed

lines in Fig. 3-18, the ETB transfer and overlap integrals t,,(acc) = -3.351eV

and s,,(acc) = 0.150 differ slightly from the STB integrals t,,(acc) = -3.033eV

and s,,(acc) = 0.129 introduced in Section 3.2. At the second neighbor distance

R = = = v- acc = 0.246 nm shown by the dotted lines in Fig. 3-18, the ETB transfer

and overlap integrals t,,(a) = -0.248eV and s,,(a) = 0.008 decrease significantly,

and the STB integrals are neglected. While the STB integrals are defined at a fixed

interatomic distance R = acc, the ETB integrals shown in Fig. 3-18 are continuous

functions of R vanishing at R e 0.3 nm. The continuous dependence of the trans-

fer and overlap integrals on the interatomic distance is essential for performing the

geometrical structure optimization.

The geometrical structure optimization is performed by minimizing the total en-

ergy of the system. The total energy within the ETB model is given by a sum of

the band structure energy and the repulsive energy [122]. The band structure energy

is obtained by summing the electronic band energy over all occupied states on the

Monkhorst-Pack grid in the first Brillouin zone [97], taking into account the twofold
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Figure 3-19: The ETB short-range repulsive potential v(R) as a function of the in-
teratornic distance R calculated by the Chebyshev polynomial expansions given in
Table 3.2. The dashed and dotted lines show the first- and second-neighbor inter-
atomic distances, acc = 0.142 nm and a = -3acc = 0.246 nm, respectively.

spin degeneracy. The repulsive energy is equal to a sum of the short-range repulsive

potentials between pairs of atoms. The short-range repulsive potential v(R) as a

function of the interatomic distance R is calculated with the help of DFT-LDA and is

fitted to the functional form of Eq. (3.25) [122]. The coefficients Cn and boundaries

(RI, R2 ) for the short-range repulsive potential v(R) = S(R) are listed in Table 3.2.

The dependence of the short-range repulsive potential on the interatomic distance is

shown in Fig. 3-19. At the first and second neighbor distances R = acc and a shown

by the dashed and dotted lines in Fig. 3-19, the short-range repulsive potential is

given by v(acc) = 2.331 eV and v(a) = 0eV. The short-range repulsive potential is

thus restricted to the nearest neighbor interactions.

The total energy per carbon atom of a graphene sheet is given by:

1 W 8 1 U 2 3
2E = V ZE Z b(kw)Eb(k,,) + 4U E Z Z v(IRus - RuS, ), (3.27)

2W b u' s' us

where WV is the number of the Monkhorst-Pack mesh points kw in the first Brillouin

zone of the graphene sheet, nb(kw) is the electron occupation number, Eb(k,,) is the

electronic band energy, U is the number of the two-atom unit cells in the graphene

sheet, and the summation on atomic site s in unit cell u is carried out over the three

nearest neighbors of atomic site s' in unit cell u'. The factors of 1 and I arise from the

facts that there are two atoms per unit cell and that each atomic pair in the second



term of in Eq. (3.27) is counted twice. At zero temperature T = 0 K, the valence

bands are filled and the conduction bands are empty, nb(k,) = 2 for b = 1,..., 4 and

nb(k,) = 0 for b = 5,.... ,8. The summation on band index b in the first term of

Eq. (3.27) is thus performed over the valence bands.

Minimization of the total energy given by Eq. (3.27) with respect to the atomic

coordinates R,,,,, requires knowledge of the forces acting on the atoms. The electronic

part of the interatomic forces is given by the partial derivatives of the electronic band

energy Eb(k,,,) with respect to R,,,1 ,. Upon differentiating Eq. (3.3) with respect to

RIS'', multiplying it by CA,, (kw,) and summing it over indices s' and o', we find:

OEb(k'kk) 8 8 (&H''(k,) ob &OSo(kw) b
,,= C, Co(kw) E Eb( So~(k,) C(o (k,,,) , (3.28)
8sso

t 
s0slot ORa/Sl aRIt s

where the second term arises from the rigid movement of the atomic orbitals along

with the atoms, taking into account the nonorthogonality of the atomic orbitals. The

interatomic forces are thus determined by the partial derivatives of the Hamiltonian

Hs 0,oso(kw) and overlap S,o,,so(kw) matrices, but are independent of the partial deriva-

tives of the Bloch amplitudes Cbo(kw), which is known as the Hellmann-Fevnman

theorem. The partial derivatives of nb(kw) with respect to Re,s, vanish at T = 0 K

because the graphene sheet and M SWNTs are zero-gap semiconductors. Finally,

the repulsive part of the interatomic forces is given by the derivatives of the short-

range repulsive potential v(|R,, - Rs, I) with respect to R,,st. We thus express the

interatomic forces in terms of the derivatives of to,o(R), soo(R), and v(R) with re-

spect to R. These derivatives can be solved analytically from Eqs. (3.25) and (3.26)

and Tables 3.1 and 3.2. Alternatively, a finite difference technique can be used to

numerically compute the partial derivatives of the total energy given by Eq. (3.27)

with respect to Ru,,. For systems with large unit cells, the numerical calculation is

considerably slower than the analytical Hellman-Feynman approach. However, both

methods are equally applicable for the two-atom unit cell of the graphene sheet.

The two-atom unit cell of the graphene sheet has six degrees of freedom. However,

the symmetry of the graphene sheet described by the point group D6h reduces the
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Figure 3-20: The ETB electronic dispersion relations of the optimized graphene sheet
with acc - 0.141751 nm (a) throughout the entire first Brillouin zone shown in Fig. 2-
1 and (b) along the high-symmetry directions in the first Brillouin zone. The valence
and conduction bands are labeled by v and c, respectively. (c) The density of elec-
tronic states (DOS). The Fermi level is shown by the horizontal line at zero energy.

number of independent degrees of freedom to one. Namely, the interatomic distance

acc (or, equivalently, the lattice constant a) should be optimized to minimize the

total energy given by Eq. (3.27). The total energy of the graphene sheet as a function

of ace is shown in Fig. 3 of Ref. [122]. The total energy reaches its minimum value

at acc = 0.141751nm, and that value should be used instead of acc = 0.142 nm

for calculating the electronic structure of the graphene sheet at T = 0K within the

ETB model. The ETB parameters for the nearest and second neighbor interatomic

distances change slightly to the new values, t4,(acc) = -3.370 eV, s,,(acc) = 0.151,

v(acc) = 2.357eV, t,,(a) = -0.251 eV, s,,(a) = 0.009, and v(a)= 0eV.

At finite temperature T > 0 K, the geometrical structure is optimized by mini-

mizing the Helmholtz free energy F = E - TS, where E is the total energy given

by Eq. (3.27) and S is the vibrational entropy [99]. The electron occupation number

aA A-- ý
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Figure 3-21: (a) The ETB electronic dispersion relations of the optimized graphene
sheet with acc = 0.141751 nm replicated from Fig. 3-20. The solid lines are the cut-
ting lines for a semiconducting (4, 2) SWNT in the helical-helical representation. (b)
The electronic dispersion relations of the (4, 2) SWNT when different cutting lines
are folded together into the 1D Brillouin zone. The length of the 1D Brillouin zone
is given by 2ir/T. (c) The density of electronic states (DOS) of the (4, 2) SWNT.
Vanishing DOS at the Fermi level EF = 0eV indicates that the SWNT is semicon-
ducting. The sharp spikes in the DOS typical for 1D systems are known as Van Hove
singularities.

nb(k,) in E is now given by the Fermi-Dirac distribution:

nb(kw) = (3.29)
Eb(k,) - EF

exp kBT +1
kcBT

The vibrational entropy S is determined by the out-of-plane transverse acoustic (oTA)

phonon mode that has the lowest frequency (woTA) in the graphene sheet, as will be

shown in Chapter 4. Considering that WoTA increases with increasing acc, S decreases

and the minimum of F shifts to the lower value of acc [99]. Hence, the graphene sheet

exhibits an anomalous contraction upon heating [99]. However, finite temperature

phenomena are beyond the scope of this Thesis. We therefore limit our consideration

to the graphene sheet with acc = 0.141751 nm optimized at T = 0 K.
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In Figs. 3-20 (a) and (b), we plot the ETB electronic dispersion relations of the op-

timized graphene sheet with acc = 0.141751 nm throughout the entire first Brillouin

zone and along the high-symmetry directions in the first Brillouin zone, respectively.

The corresponding density of electronic states (DOS) is shown in Fig. 3-20 (c). By

comparing Fig. 3-20 with the analogous Fig. 3-5 calculated within the STB model, we

find little difference between the two except for the overall redshift of the top of the

conduction band in Fig. 3-20 associated with the long-range atomic interactions in

the graphene sheet [126]. In Fig. 3-21 (a), we replicate the ETB electronic dispersion

relations of the optimized graphene sheet with acc = 0.141751 nm shown in Fig. 3-

20 (a), and we superimpose the cutting lines defined by Eq. (2.14) in the helical-helical

representation for the (4, 2) SWNT over the dispersion surface, similar to Fig. 3-11 (a)

for the STB dispersion relations. We then construct the 1D dispersion relations and

the DOS of the (4, 2) SWNT in Figs. 3-21 (b) and (c), respectively, analogous to the

STB dispersion relations in Figs. 3-11 (b) and (c). Again, comparison of Figs. 3-21 (b)

and 3-11 (b) reveals an overall redshift of the top of the conduction band within the

ETB model.

3.6.1 Long-range interactions

Similar to the VHSs in Fig. 3-21 (c) for the (4, 2) SWNT, the entire ETB Kataura

plot is constructed by applying the zone-folding technique defined by Eq. (2.14) to

the ETB electronic dispersion relations of the optimized graphene sheet with acc =

0.141751 nm shown in Fig. 3-20 (a). The resulting ETB Kataura plot is shown in

Fig. 3-22. By comparing Figs. 3-22 and 3-13, we observe the overall blueshift of

the ETB Kataura plot from the STB Kataura plot, while the family spread in the

ETB Kataura plot is similar to the family spread in the STB Kataura plot. Since

the zone-folding technique neglects the curvature of the SWNT sidewall and the

optimized geometrical structure of the SWNT, the ETB Kataura plot in Fig. 3-

22 only differs from the STB Kataura plot in Fig. 3-13 by including the long-range

atomic interactions. Hence, the family spread in the ETB Kataura plot arises from the

trigonal warping effect. The trigonal warping effect in the ETB model is illustrated in
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Figure 3-22: The ETB Kataura plot as a function of (a) the SWNT diameter dt
and (b) the inverse diameter 1/dt similar to the STB Kataura plot in Fig. 3-13.
The ETB Kataura plot is calculated by applying the zone-folding technique to the
ETB electronic dispersion relations of the optimized graphene sheet with acc =
0.141751 nm. This approach takes into account the long-range atomic interactions
in the graphene sheet. The red, green, and blue dots correspond to MO, S1, and S2
SWNTs, respectively. The families of constant 2n + m are connected by gray lines
and labeled by 2n + m values.

Fig. 3-23 where we show the electronic equi-energy contours around the K point in the

reciprocal space of the graphene sheet. By comparing Fig. 3-23 with the analogous

Fig. 3-14 calculated within the STB model, we find that the trigonal warping effect

in the ETB model is similar to the trigonal warping effect in the STB model. Both

are described by Eq. (3.23) with different sets of tight-binding parameters (6, s, t),

neglecting the long-range atomic interactions. The ETB Kataura plot obtained by

the zone-folding technique is thus similar to the STB Kataura plot. To take into

account the effects of curvature and relaxation within the framework of the ETB

model, we must go beyond the zone-folding approximation.



(a) AE=1.24eV (b) AE=0.2eV

Figure 3-23: (a) The contours of constant transition energy EC - E" in the first
Brillouin zone of the graphene sheet shown in Fig. 2-1 calculated within the ETB
model similar to the STB contours in Fig. 3-14. The square box indicates the area
of linear dimensions KF/3 = 47r/(9a) centered at the K point. (b) A zoom in of area
within the square box in (a). The transition energy difference between the adjacent
contours AE = 1.24 eV and AE = 0.2 eV are shown above the figures.

3.6.2 Curvature-induced rehybridization

Within the zone-folding approximation, the electronic dispersion relations of SWNTs

are obtained by solving the stationary Schrodinger equation, Eq. (3.3), with the

Hamiltonian and overlap matrices of Eq. (3.4) calculated for the planar geometry of

the graphene sheet with the ID angular and linear momenta, /t and k, substituted

for the 2D momentum k, according to Eq. (2.14). Calculation for the cylindrical

geometry of SWNTs involves the translational unit cell of 2N carbon atoms, yielding

the 8N x 8N Hamiltonian and overlap matrices. Alternatively, the two-atom unit

cell of the graphene sheet can be used, and the cylindrical geometry of the SWNT is

taken into account by aligning the atomic orbitals •o(r - R,,,) in Eq. (3.4) along the

tangential and normal directions to the SWNT sidewall [119]. Upon aligning the z-

axis with the SWNT axis, the atomic coordinates R,, are expressed in the cylindrical

coordinate system as follows:

RUS = 2du I duss, zS 1 (3.30)
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Figure 3-24: The ETB Kataura plot as a function of (a) the SWNT diameter dt and
(b) the inverse diameter l/dt similar to the STB Kataura plot in Fig. 3-13. The ETB
Kataura plot is calculated directly from the ETB electronic dispersion relations of the
SWNTs rolled up from the optimized graphene sheet with acc = 0.141751 nm. This
approach takes into account the long-range atomic interactions and the curvature of
the SWNT sidewall. The red, green, and blue dots correspond to MO, S1, and S2
SWNTs, respectively. The families of constant 2n + m are connected by gray lines
and labeled by 2n + m values.

where the SWNT diameter dt is an average value of the atomic coordinate d,,. The 2p

atomic orbitals 0o(r - R,,) in Eq. (3.4) are then rotated around the z-axis by angles

U,,,. The rotation operation consists of multiplying the argument of ¢o(r - R,,) in

Eq. (3.4) by the rotation matrix RZ(O,,) defined by:

cos 0"s sin OS 0

RZ(us) =  -sin s,, cos IS 0 . (3.31)

0 0 1

The electronic dispersion relations of SWNTs are calculated by solving Eq. (3.3)



within the framework of the ETB model upon substituting Eqs. (2.14) and (3.31)

into Eq. (3.4) and using the atomic coordinates R,, of SWNTs rolled up from the

optimized graphene sheet with ace = 0.141751 nm. The ETB Kataura plot obtained

from these dispersion relations is shown in Fig. 3-24. This approach takes into account

not only the long-range atomic interactions but also the curvature of the SWNT side-

wall, but omits the optimized geometrical structures of the SWNTs. By comparing

Figs. 3-24 and 3-13, we find the overall redshift of the ETB Kataura plot from the

STB Kataura plot. Besides, the curvature opens the mini band gaps in M SWNTs

labeled by Ejof in Fig. 3-24, in accordance with Eq. (3.17). Finally, the family spread

in the ETB Kataura plot is slightly enhanced compared with the family spread in

the STB Kataura plot, and the family patterns for S1 and S2 SWNTs within the ES4

band switch their behavior. However, the family spread in Fig. 3-24 is still much less

than the family spread observed in the experimental Kataura plots of Figs. 3-16 (b)

and 3-17 (b). To investigate the origin of the experimentally observed family spread,

we perform an optimization of the geometrical structures of the SWNTs.

3.6.3 Geometrical structure relaxation

The geometrical structure optimization of SWNTs is performed by minimizing the

total energy of SWNTs with respect to the atomic degrees of freedom. The two-

atom unit cell of the SWNT has six degrees of freedom. Because of the translational

symmetry of the two-atom unit cell of the SWNT described by the lattice vectors

a, and a 2 projected on the cylinder surface, it is convenient to express the unit cell

degrees of freedom in the cylindrical coordinate system. The cylindrical degrees of

freedom are illustrated in Fig. 3-25 where we replicate the translational unit cell

of the (4, 2) ZR/AL SWNT shown in Fig. 2-3. The three degrees of freedom are

described by the relative positions of the A and B atoms within the two-atom unit

cell along the axial, angular, and radial directions, TAB, ýSAB, and dAB, respectively, as

shown in Fig. 3-25 (a). In terms of Eq. (3.30), TAB = ZuA - ZuB, cAB = uA - uB, and

dAB = duA - duB. The three other degrees of freedom are described by the macroscopic

deformations of the SWNT, the axial strain e, the torsion angle T, and the radial



expansion g. The macroscopic deformations are associated with microscopic changes

in the dimensions of the translational unit cell. The dimensions of the translational

unit cell in the axial and radial directions, T and dt, are shown in Fig. 3-25 (b). The

axial and angular projections of the lattice vectors al and a2 are shown in Fig. 3-25 (c)

labeled by Tai, Ta2, (Pal, and (pa2, correspondingly. These projections are determined

by the SWNT chiral angle 0 that specifies the orientation of the al and a2 vectors with

respect to the Ch and T vectors in the unrolled graphene sheet shown in Fig. 2-4. The

changes in the unit cell parameters are determined by the macroscopic deformations:

AT = ET, ATAB = ETAB, ATal = ETal, ATa2 = Ta2,

-(PAB = TTAB, Ac al = 7Tal, A(Pa2 = rTa2, (3.32)

Adt = edt , AdAB = OdAB -

Hence, the independent degrees of freedom are identified as:

TAB TTAB dAB
E, 7 : Q, TAB= B, (PAB PAB , dAB (3.33)1+E 1E + E +

where we decouple the internal changes of the unit cell structure (TAB, PAB, dAB)

from the macroscopic deformations of the SWNT (e, 7, o). The remaining unit cell

parameters (T, dr, Ta,, Ta2, (Pal, (a2) are determined from Eq. (3.32).

The symmetry of the SWNT reduces the number of independent degrees of free-

dorn given by Eq. (3.33). The C' and C'" rotational axes perpendicular to the SWNT

axis [12] exchange the A and B atoms. Hence, the minimum of the total energy is

reached at dAB = 0, implying that all the A and B atoms lie on the same cylindri-

cal surface. For achiral SWNTs, the or, and a" mirror planes parallel to the SWNT

axis [12] change 7 to -T, suggesting that 7 = 0 at the equilibrium. We thus conclude

that there are four independent degrees of freedom for achiral SWNTs (e, o, TAB, TAB)

and five for chiral SWNTs (e, 7, P, TAB, TAB). In chiral SWNTs, however, e and 7 are

coupled to each other [83].

There is no residual torsion, 7 = 0, in chiral SWNTs rolled up from the opti-

mized graphene sheet, since the latter exhibits no shear deformation. Yet, the value
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Figure 3-25: The (4, 2) ZR/AL SWNT replicated from Fig. 2-3. (a) The relative
positions of the A and B atoms within the SWNT unit cell along the axial, angular,
and radial directions, TAB, 7AB, and dAB, respectively. (b) The dimensions of the
translational unit cell in the axial and radial directions, T and dr. (c) The lattice
vectors al and a2 and their axial and angular projections Tal, Ta2, Pal, and Pa2,

correspondingly. The projections are determined by the SWNT chiral angle 0.

of 7 at the equilibrium geometry may not go to zero in chiral SWNTs. The residual

torsion, -7 0, is, in general, incommensurate with the translational unit cells of

chiral SWNTs. Such incommensurability breaks the translation symmetry of chiral

SWNTs, thus invalidating the use of the helical-linear representation. The geomet-

rical structure of chiral SWNTs should therefore be optimized in the angular-helical

representation, allowing 7 to vary. Study of this optimization will be the subject of

future work.

In the present study, we fixed the value of 7 = 0 to maintain the translational

symmetry of chiral SWNTs. We performed the geometrical structure optimization by

minimizing the total energy with respect to the four degrees of freedom (e, 9, TAB, 79AB)

at T = 0 K for all (n, m) SWNTs within the diameter range 0.3 nm < dt < 3.0 nm.

The total energy of the SWNT is obtained from Eq. (3.27) where the summation over

the 2D momentum k is instead carried out over the 1D angular and linear momenta,

p and k, according to Eq. (2.14). The total energy is calculated on a 1D Monkhorst-



Pack grid of (1 jlm/T) k-points (884 k-points for (4, 2) SWNT) along the cutting

lines in the helical-linear representation. The minimization of the total energy is

performed by the steepest decent algorithm with a relative convergence tolerance of

10-10. The Hellmann-Feynman forces are calculated numerically by a central finite

difference approximation for the partial derivatives of the total energy with the step

AR = 10- rim.

Among the four optimized degrees of freedom (e, 9, TAB, CAB), p shows the largest

deviation from the initial value corresponding to the rolled up optimized graphene

sheet. While p increases with decreasing dt, the dependence of p on the chiral angle

0 is rather weak. We thus fit p as a function of dt to the form p = 1 + 0.0063 nrn2/dt.

For the (4, 2) SWNT rolled up from the optimized graphene sheet, we obtain dt =

0.41 nrr. This yields p = 1.04 suggesting that the optimized diameter increases by

4 %, d1 + Adt = 0.43 nm. The optimized values of E and p as functions of dt for all

(n, m) SWNTs are shown in Fig. 2 of Ref. [1193.

The ETB Kataura plot calculated for the optimized geometrical structures of the

SWNTs is shown in Fig. 3-26. The family spread in the ETB Kataura plot of Fig. 3-

26 is strongly enhanced compared with the family spread in the STB Kataura plot of

Fig. 3-13. The ETB family spread turns out to be very sensitive to the geometrical

structures of the SWNTs. Changing the geometrical structure by 1% causes the Eii

energies to shift by 10 %. Thus, the small variations in the geometrical structures of

the optimized SWNTs give rise to the large family spread in the ETB Kataura plot of

Fig. 3-26. The geometrical structure optimization of chiral SWNTs over the torsion

degree of freedom is likely to distort the family patterns in the ETB Kataura plot of

Fig. 3-26. However, both ends of the family curves correspond to achiral armchair

and zigzag SWNTs and therefore are fixed under the torsion optimization. The

finite temperature also shifts the family patterns by distorting the relaxed geometrical

structure, as discussed earlier in this Section.

The ETB family spread shows a good agreement with the results of first-principles

calculations for several small diameter zigzag semiconducting SWNTs [155]. The ETB

family spread also matches nearly perfectly the family spread found in the PL and



(a) (b)
3.0

2.5

a> 2.0

O0

F 1.0

0.5

0.0

2

a,
, 2

C

O

- 0

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

Diameter (nm) Inverse Diameter (nm"1 )

Figure 3-26: The ETB Kataura plot as a function of (a) the SWNT diameter dt and
(b) the inverse diameter 1/dt similar to the STB Kataura plot in Fig. 3-13. The
ETB Kataura plot is calculated directly from the ETB electronic dispersion relations
of the optimized SWNTs. This approach takes into account the long-range atomic
interactions, the curvature of the SWNT sidewall, and the optimized geometrical
structures of the SWNTs. The red, green, and blue clots correspond to MO, S1, and
S2 SWNTs, respectively. The families of constant 2n + m are connected by gray lines
and labeled by 2n + m values.

RRS experimental Kataura plots of Figs. 3-16 (b) and 3-17 (b). The experimental

family spread is thus attributed to the relaxation of the geometrical structures of

the SWNTs [139, 143]. In spite of a good agreement in the family spread, the PL

and RRS experimental Kataura plots exhibit an overall blueshift by about 200-

300 meV from the ETB Kataura plot. Also, the ES2 to Es, ratio in the PL and RRS

experimental Kataura plots goes to 1.8 in the large dt limit, while the ES2 to ES1

ratio in the ETB Kataura plot reaches the value of 2 at dt = 2 nm where the family

spread is small. Both the blueshift problem and the ratio problem originate from the

many-body interactions in SWNTs, as discussed in Section 3.7.

A A A
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3.7 Many-body effects

Because of the spatial confinement of electrons in one dimension, the Coulomb inter-

action between photoexcited electrons and electrons in the ground state in SWNTs is

strongly enhanced compared to bulk semiconductors. The electron-electron interac-

tion increases the single-particle transition energies by the quasiparticle self-energies.

At the same time, photoexcited electrons and photogenerated holes form excitons

whose binding energies are comparable but slightly smaller than the quasiparticle

self-energies. Thus, the single-particle transition energies are moderately blueshifted

by the Coulomb electron-electron repulsion and the exciton electron-hole attraction,

together referred to as the many-body interactions.

The effect of the many-body interactions on the Eii transition energies in SWNTs

was first predicted theoretically using the effective-mass approximation [4]. Later

on, numerous theoretical studies based on different models [70, 112, 113, 177], first-

principles calculations [24, 155], ETB approximations [21, 58], and group theory [11,

12] were carried out exploring the physics of quasiparticles and excitons in SWNTs.

SWNTs have a rich excitonic structure because quasiparticles near the K and K'

points of the Brillouin zone have the same group velocity, and thus can form exci-

tons [35]. Most of the oscillator strength, however, is collected by the lowest energy

bright (optically active) exciton [155], which manifests itself in the PL and RRS

spectra of SWNTs.

To summarize the key findings of the aforementioned works, we write the optical

transition energies in SWNTs in the form:

Eii E + 2Dee 1DEee - 2DEeh - 1DEeh , (3.34)

where Efi is the single-particle transition energy, E" is the quasiparticle self-energy,

and E',) is the binding energy of the lowest bright exciton. Both E" and Eih can be

split into two terms, 2DEii which arises from short-range interactions on scales smaller

than 7rdt, and 1DEii which arises from long-range interactions on scales larger than

7rdt [70]. Let us consider each term of Eq. (3.34) independently.



The Eji transition energies are summarized in the ETB Kataura plot of Fig. 3-26.

The 2"Eyi self-energy is given by the logarithmic correction term:

2DEee - (S - t) Ak a In (3.35)
i 2 4 Ak '(

where (E =-5.372 eV, s = 0.151, t = -3.370 eV) are the ETB parameters introduced

in Section 3.6, g is the Coulomb interaction parameter, and A is an ultraviolet interac-

tion cutoff, all of which depend on the dielectric constant n of the SWNT environment,

and Aki is the critical wavevector measured from the K point in the 2D Brillouin

zone [70]. The latter is given by Ak s = 2/(3dt), Ak s = 4/(3dt), and Ak M = 6/(3dt)

for the E S, ES2, and EM transition energies, respectively, as discussed in Sections 3.4

and 3.5. The 2DE0h binding energy in Eq. (3.34) vanishes due to the absence of exci-

tons in the graphene sheet. The 1DEii and 1DEdi terms in Eq. (3.34) scale with the

SWNT diameter dt, the reduced mass of the exciton pij, and the dielectric constant

r, of the SWNT environment [21, 113]. The reduced mass pii is determined by the

effective masses of the electron and the hole, mn and mv, at the critical wavevectors

k' and k~, respectively. The effective masses m' and my show a strong dependence

on the SWNT diameter dt and chiral angle 0, revealed by the ETB calculations [63].

Thus, the lDFfje and 1DEih energies develop family patterns [21, 58, 113].

In small diameter SWNTs, the 1DEýC and 1DEj.h terms significantly exceed the
2 DEj self-energy of Eq. (3.35) due to a strong spatial confinement of the Coulomb

interaction. Nevertheless, 1DEej and 1DEfjh nearly perfectly cancel each other [58, 70].

This implies that Ege moderately exceeds Eih, and the experimental Eii values are

slightly blueshifted from the ETB Eji values [4]. Such behavior is contrary to that

observed in bulk semiconductors where the self-energy is small and excitonic res-

onances are redshifted from the band edge. If we assume that the 1DEie and IDEih

energies completely cancel out (which is a good approximation), then Eq. (3.34) reads

as Eii = E4j -+ 2DgE.e. Considering that 2DEie only depends on dt and is independent

of 0, the experimental family patterns in Eii are entirely determined by the ETB

family patterns in Eji, with which they show a good agreement. In Fig. 3-27 (a), we



(a) (b)
0.5

cn 0.4

*t-
o0.3
L
0

0"Om

0.0
1 2

V)
Wa,
Cw
0

CUCuF-

0.5 1.0 1.5 2.0
Wavevector (nm1 ) Inverse Diameter (nm')

Figure 3-27: (a) The difference between the PL and RRS experimental Eii and the
ETB Efi transition energies from Fig. 3-26 as a function of the wavevector Aki from
Eq. (3.35). The light and dark diamonds show the PL ES and ES2 values from Fig. 3-
16. The light and dark squares show the RRS ES2 and E'M values from Fig. 3-17.
The solid curve shows the best fit using Eq. (3.35) with parameters g = 1.7 and
A = 3 nmn- 1. (b) The ETB+MB Kataura plot obtained by applying the logarithmic
correction given by the solid curve in (a) to the ETB Kataura plot of Fig. 3-26. The
red, green, and blue dots correspond to MO, S1, and S2 SWNTs, respectively. The
families of constant 2n + m are connected by gray lines and labeled by their 2n + m
values.

show the difference between the experimental Eii and the ETB Ef, transition ener-

gies as a function of the wavevector Aki from Eq. (3.35). Fitting this difference to

the functional form of Eq. (3.35) yields the parameters g = 1.7 and A = 3 nm - 1,

in good agreement with the previously reported values [63, 70, 139]. By applying

the logarithmic correction of Eq. (3.35) to the ETB Kataura plot of Fig. 3-26, we

obtain the ETB+MB Kataura plot as shown by dots in Fig. 3-27 (b). We only show

the ES1 , ES2, and EM transition energies for which the PL and RRS experiments

are performed. For comparison, the PL and RRS experimental Egi values are shown

in Fig. 3-27 (b) by diamonds and squares, respectively. One can here see a good

agreement between the ETB+MB Kataura plot and the experimental data points in
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Fig. 3-27 (b). Note, however, that the experimental data points are extracted from

PL and RRS spectra of SDS-encapsulated HiPCO SWNTs in D20. For the same

HiPCO SWNTs wrapped with various surfactants, polymers, and single-stranded

DNA molecules and suspended in aqueous media [7, 98], for HiPCO SWNTs sus-

pended in air [105, 148, 173], and for HiPCO SWNTs aggregated into bundles [42],

the experimental data points are redshifted from those shown in Fig. 3-27(b) by

10-20 meV, 70-90 meV, and 100 meV, respectively. The logarithmic correction of

Eq. (3.35) should then be fitted separately for each SWNT environment, revealing

the dependence of the parameters g and A on the dielectric constant r, of the SWNT

environment. The ETB+MB Kataura plot in Fig. 3-27 (b) scales accordingly with ri.

3.8 Summary and future work

In this Chapter, we reviewed the basic electronic properties of SWNTs on the ba-

sis of the simple tight-binding (STB) model. In the light of recent progress in the

photoluminescence (PL) and resonance Raman spectroscopy (RR.S) of small diameter

SWNTs, we develop the extended tight-binding (ETB) model that shows an excellent

agreement with the experimental data. The ETB model is based on the DFT-LDA

calculation of the tight-binding parameters for carbon [122]. It is worth mentioning

that an alternative tight-binding parameterization for carbon [110] does not fit well

the PL and RRS experimental data. We demonstrate that the geometrical structure

optimization of small diameter SWNTs has a significant impact on their electronic

properties and, accordingly, on their PL and RRS spectra.

While performing the geometrical structure optimization of SWNTs, we fixed the

torsion degree of freedom to ensure the translational symmetry of SWNTs. The

geometrical structure of chiral SWNTs, however, should be optimized over the tor-

sion degree of freedom. This will be the subject of future work. The dependence

of the ETB transition energies Eie on temperature [23, 30, 81], doping [151, 164],

axial strain [29, 75, 153, 171], torsional strain [75, 171], hydrostatic pressure from the

SWNT environment [22], and the dependence of the many-body corrections E~e and
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EIih on the dielectric constant of the SWNT environment [7, 42, 98, 173] should be

studied further. The higher-energy optical transitions (E3s, ES4, and EM ) in larger

diameter SWNTs need to be considered separately [5]. The effects of incommensu-

rability, metallicity, and diameter difference between inner and outer tubes on the

optical transitions in double-wall carbon nanotubes (DWNTs) require special consid-

eration [115].

As the ETB model has been proven to accurately predict the electronic properties

of SWNTs, we use it to explore the vibrational properties of SWNTs in Chapter 4,

and the electron-photon and electron-phonon interactions in SWNTs in Chapter 5.

Within the ETB framework, we solve for the quasiparticle self-energy, the quasiparti-

cle wavefunction, the exciton binding energy, and the exciton wavefunction [58]. We

then investigate the exciton-photon and exciton-phonon interactions in SWNTs [59].

We further plan to calculate the PL and RRS intensities in SWNTs within the exci-

tonic picture.
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Chapter 4

Vibrational properties

We start this Chapter by reviewing the force-constant models widely used to obtain

the phonon dispersion relations of the graphene sheet. We compare the predictions

of these models against first-principles calculations and the results of various exper-

iments. We then derive the phonon dispersion relations of SWNTs both from the

force-constant models and by direct calculations of the dynamical matrix within the

ETB framework. We consider in particular the electron-phonon interactions which

soften the frequencies of certain phonons in the graphene sheet and in SWNTs, and

we review the experimental evidence for such softening.
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4.1 Force-constant framework

In Chapter 3, we discussed the optimized geometrical structure of the graphene sheet.

When carbon atoms are displaced from their equilibrium positions, the restoring force

drives them back. The dynamics of carbon atoms around their equilibrium positions

is described by the equation of motion in the harmonic approximation:

d2 v U 2 3

M dt US E•7• E E u,',usa (rv. - r•,y,) , (4.1)

where M is the mass of a carbon atom, rV is the displacement vector of the atomic

site us from its equilibrium position Ru, u = 1,..., U spans all the unit cells in the

graphene sheet, s = A, B labels the atomic sites within the unit cell, a = x, y, z are

the Cartesian coordinates, v is the phonon mode index, t is time, and u,'s,,u' is the

interatomic force constant. The atomic displacement vector r", is expressed by the

Fourier transform:

US• W exp (iqtR,8 - iwV(q•)t)pu(q) (q ), (4.2)
w

where e"'(qw) is the normal mode displacement, p"(q,) is the amplitude of the atomic

displacements, w'(q,,) is the phonon frequency, q, is the phonon wavevector, W = U

is the number of the sampling qw points in the first Brillouin zone, and the factor of

V2 comes from the orthonormality condition for the two atoms per unit cell:

2 3

where 6,,, is the Kronecker delta function. The normal mode displacements e'(q,,,)

are additionally constrained by the condition:

e, (q,) = e'(-q,), (4.4)

to ensure that the displacement vector r, s given by Eq. (4.2) is real at the initial

moment of time t = 0.
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Substituting Eq. (4.2) into Eq. (4.1) yields:

U 2 3 W

SuSau as exp (iqRii - iw " (q,)
U 8 a W

U 2 3 W

- S S S S ¢~,~,~,~z exp (iqwRu, - iwU(qw)t)e'(q.) (4.5)
"I s a W

W

M= Mw"2(q.) exp (iqR,,Ru, - iw"(q,)t)e", ,(q ).
w

Upon multiplying Eq. (4.5) by exp (-iqWIRUSI + iw"(qW,)t), taking a summation over

u' = 1,..., U, and using the orthogonality condition:

U

exp (i (q., - q,) Ru,) = US,,, (4.6)
U'

we obtain the equation of motion in the matrix form:

2 3

S2S Dsa,,(qw,)e'a(q1,') = Mw" 2(q,)e, 1 (qw,'), (4.7)
S a

where Das,,(qw,) is the dynamical matrix defined by:

D.s,,,sa(qw,) = s's • •u•'s"ausa - exp (iqw, (Ri - R,•,)) ~,sias) , (4.8)

with the index u' labeling the unit cell under consideration [129].

The lattice dynamics of the graphene sheet is described by Eq. (4.7) with the

6 x 6 dynamical matrix of Eq. (4.8). Diagonalizing this matrix gives the phonon

dispersion curves w"(qw) and the normal mode displacements e"(q,,) labeled by the

index v = 1, ... , 6. Solving for w"(qw) requires a knowledge of the interatomic force

constants ,u.usa,,, which will be discussed later on in Sections 4.2 and 4.3. On the

other hand, the form of e"(q,,) is determined by the symmetry of the graphene sheet,

independent on the force constant parameters. Below, we derive the normal mode

displacements in the graphene sheet at the F and K points of the first Brillouin zone,

e'(F) and e"(K), following a common group theory procedure [34].

The group of the wavevector at the F point (Gr) is isomorphic to the point group

105



(a) (b)

ad

v

C,"2

ad av

C22

C" C'2 2

v

C'2

C' O'd av

Figure 4-1: A single graphene sheet. The open and solid dots indicate the A and
B sublattices, respectively. (a) The two-atom unit cell at the r point from Fig. 2-1
and (b) the six-atom supercell at the K point from Fig. 3-6 are shaded in gray. The
symmetry of the unit cell in (a) and the supercell in (b) are described by the point
groups D6h and D3h, correspondingly. The symmetry operations of the point groups
D6h and D3h are shown in (a) and (b). The high-symmetry rotation axes C 6 and
C3 are indicated by a small hexagon in (a) and a small triangle in (b), accordingly.
The rotation axes C' and C'" and the mirror planes a, and crd are shown by black
lines. The mirror plane ah coincides with the image plane. The character tables of
the point groups D6h and D3h are given in Tables 4.1 and 4.2.

D6h. The symmetry operations and the character table for the point group D6h are

shown in Fig. 4-1 (a) and Table 4.1, respectively. By applying the symmetry opera-

tions to the atomic sites (a.s.) in Fig. 4-1 (a), we find the characters for the equivalence

transformation, Xa.,., which represents the number of atoms that are invariant under

the symmetry operations of the point group D6h. Using Table 4.1, we decompose

Xa.s. into the characters of irreducible representations, yielding the representation for

the equivalence transformation, Fa.,s. = Al + Bl,. The representation for a vector is

given by -vec. = A2u + E1,, according to Table 4.1. We then find the characters for

the molecular vibrations, Xm.v., by taking the direct product of Xa.s. with the charac-

ters Xvec. for a vector. Again, we decompose Xm.v. into the characters of irreducible

representations. Finally, we express the representation for the molecular vibrations

in terms of irreducible representations, Fm.v. = A2u + B29 + Eju + E2g.

We now construct the normal mode displacements for each irreducible representa-
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(a) F iLA Eu D6 h

(d) riLO E2g D6h
(e) F iTO E2g D6h (f) oTO B2g D6h

Figure 4-2: A single graphene sheet. The open and solid dots indicate the A and B
sublattices, respectively. The arrows show directions of the normal mode displace-
ments for the six phonon modes of the graphene sheet at the r point, ev(F), obtained
from the character table for the point group D6h given in Table 4.1. The labels of the
phonon modes are explained in the text. The dotted and crossed points in (c) and
(f) represent the vectors pointing in and out of the image plane.

tion in Pm.v.. By applying the projector algebra [34] to the motion of the atomic sites

in Fig. 4-1 (a) along the directions of the Cartesian coordinates, we find the characters

and, accordingly, the irreducible representations, of which the motion of the atomic

sites consists.. The atomic motion of the normal modes is shown in Figs. 4-2 (a) to (f).

Each of the modes in Fig. 4-2 is labeled by an irreducible representation of Pm.v.. We

also label these modes as the in-plane and out-of-plane, the longitudinal and trans-

verse, and the acoustic and optical (iLA, iTA, oTA, iLO, iTO, oTO) modes, according

to the directions of the atomic displacements within the unit cell.

The lattice distortions caused by the K point phonon modes are incommensurate

with the two-atom unit cell of the graphene sheet. The six-atom supercell is thus
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(C) K oTA E" D3h

(d) KiLO E' D3h (e) K iTO A' D3h (f) K oTO E" D3h

Figure 4-3: A single graphene sheet. The open and solid dots indicate the A and
B sublattices, respectively. The arrows show directions of the atomic displacements
for the six stationary phonon modes of the graphene sheet at the K point, e'(K),
obtained by rotating the arrows shown in Fig. 4-2 by angles ±+2/3. The labels of the
phonon modes are explained in the text. The dotted and crossed points in (c) and
(f) represent the vectors pointing in and out of the image plane. The large and small
points in (c) and (f) indicate the magnitudes of the vectors equal to V2_ and 1/v/,
respectively, of the magnitudes of the vectors in (a), (b), (d), and (e).

introduced in Fig. 4-2, as discussed in Section 3.3 of Chapter 3. The normal mode

displacements e'(K) differ from those in Fig. 4-2 by the phase factor exp (iqR,,),

where q = (0, -4r/ (3a)) at the K point and Rus · = ±a/2 within the six-atom

supercell. The normal mode displacements e'(K) are thus obtained by rotating e'(F)

in Fig. 4-2 by angles +27/3, as shown in Fig. 4-3. In contrast to the F point, the lon-

gitudinal and transverse components, as well as the acoustic and optical co nponents,

are completely mixed at the K point. Nevertheless, we label the modes in ig. 4-4 as

the (iLA, iTA, oTA, iLO, iTO, oTO) to identify the branch of the phonon ispersion

relations at the F point from which they arise.
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Table 4.2: The character table for the point group D3h which describes the symmetry
of the six-atoml supercell of the graphene sheet at the K point shown in Fig. 4-1 (b).
The top row consists of the symmetry operations shown in Fig. 4-1 (b). The first two
columns give the symmetries of the first and second order combinations of Cartesian
coordinates. Infinitesimal rotations are listed as Rx, R,, and Rz.

The normal mode displacements e'(K) can be derived in a more formal way,

following the same approach described above for the case of ev(F). The group of

the wavevector at the K point (GK) is isomorphic to the point group D3h. The

symmetry operations and the character table for the point group D3h are shown in

Fig. 4-1 (b) and Table 4.2, respectively. We then obtain Fa.s. = E', vec. = Al + E',

and F,1 .v. = -A' + A' + E' + E" for the point group D3h. By applying the projector

algebra [34] to the atomic displacements shown in Fig. 4-3, we find the characters and,

accordingly, the irreducible representations, of which the motion of the atomic sites

consists. The atomic motion of the normal modes is shown in Figs. 4-4 (a) to (f). Each

of the modes in Fig. 4-4 is labeled by an irreducible representation of F,,m... While

Figs. 4-4 (c) to (f) coincide with Figs. 4-3 (c) to (f), the normal mode displacements

in Figs. 4-4 (a) and (b) differ from the atomic displacements in Figs. 4-3 (a) and (b)

by phase factors exp (+i7r/2) that rotate the atomic displacements by angles ±7r/2.

The phonon modes in Figs. 4-4 (a) and (b) thus have higher symmetry than those in

Figs. 4-3 (a) and (b).

The A', and A' phonon modes shown in Figs. 4-4 (b) and (e) obey C6 symmetry,

while the E' and E" phonon modes in Figs. 4-4 (a), (c), (d), and (f) have the C2

rotation axes. At the same time, the point group D3h contains the C3 rotation axis,

but neither C6 nor C2 axes. This contradiction is understood by taking into account

110

D3h (-6m2) E 2C3 3C' 2S 3  ah 3v,

x2 +y2, 22 A' 1 1 1 1 1 1
Rz A'' 1 1 -1 1 1 -1

Sz A 1 1 -1 -1 -1 1

X2 2, x y  z,y E' 2 -1 0 -1 2 0
xz, yz R&, RY E" 2 -1 0 1 -2 0



K iLA E' D3 h (b)

K iLO E' D3h (e)

K iTA A' D3h

K iTO A' D3h

(C)K oTA E" D3h

(f) K oTO E" D3h

Figure 4-4: A single graphene sheet. The open and solid dots indicate the A and B
sublattices, respectively. The arrows show directions of the normal mode displace-
ments for the six stationary phonon modes of the graphene sheet at the K point,
e"(K), obtained from the character table for the point group D3h given in Table 4.2.
Note that the arrows in (a) and (b) are obtained by rotating the arrows in Figs. 4-
3 (a) and (b) by angles ±rF/2. The labels of the phonon modes are explained in the
text. The dotted and crossed points in (c) and (f) represent the vectors pointing in
and out of the image plane. The large and small points in (c) and (f) indicate the
magnitudes of the vectors equal to V2 and 1/vv, respectively, of the magnitudes of
the vectors in (a), (b), (d), and (e).

that the complex traveling phonon modes at the K and K' points only have the C3

rotation axes. Time-reversal symmetry mixes the complex traveling phonon modes at

the K and K' points into the real stationary phonon modes that obey D6h symmetry.

The stationary phonon modes shown in Figs. 4-4 thus preserve the C6 and C2 rotation

axes [86].
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4.2 Basic force-constant model

The lattice dynamics of the graphene sheet is described by the equation of motion,

Eq. (4.7), with the dynamical matrix of Eq. (4.8) expressed through the interatomic

force constants, ',,s,,us. For each pair u's'us of carbon atoms, the interatomic force

constants 0,,yso'8, are written in the form of the 3 x 3 force constant matrix (Iss over

the coordinates a', a defined by (IuSs)a/, = -,,,,,usa. The force constant matrices

are usually constructed using the normal coordinates a', a = ir, it, ot, corresponding

to the in-plane radial, in-plane tangential, and out-of-plane tangential displacements

of carbon atoms, as shown in Fig. 4-5 (a), rather than Cartesian coordinates a', a =

x, y, z. The force constant matrices are then transformed from nOm"" in the normal

coordinates to ',~, in Cartesian coordinates by means of rotation matrices.

Within the basic force-constant (BFC) model, we consider the force constants

up to the fourth shell of the nearest neighbors [129]. The inclusion of the four

shells of the nearest neighbors is essential in order to describe the twisted motion

of carbon atoms in the graphene sheet [129]. Within the BFC framework, we fur-

ther neglect off-diagonal elements of the force constant matrices in the normal co-

ordinates [129]. While the in-plane and out-of-plane motions are decoupled in the

flat graphene sheet implying •u,,•,s,, = 0 for (a',a) = (ir,ot) , (it,ot) , (ot,ir) , (ot,it),

the in-plane off-diagonal matrix elements of the force constant matrices, O,,,,1•sa for

(c',a) = (ir,i!o) , (it,ir), are in fact small but not zero, as will be shown in Section 4.3.

Upon neglecting these matrix elements, we label the force constants as 0,s,,, = 0

for brevity, reflecting the fact that a' = a.

The four shells of the nearest neighbors of atom A are shown by the circles in

Fig. 4-5 (b). Note that the first, third, and fourth shells consist of atoms B of the

opposite type than the central A atom, while the same A atoms appear in the second

shell. Each atom within the four shells is labeled by a pair of indices, z] instead of

us, where z =:: 1..., 4 indicates the shell number and j numerates the atoms in each

shell counterclockwise looking down the z-axis. The first atom I = 1 within each shell

i appears in the positive direction of the x-axis. The indices zj = 11, 12, 13 for the
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(a) (b)

Figure 4-5: A single graphene sheet. The open and solid dots indicate the A and B
sublattices, respectively. (a) The normal coordinates (ir, it, ot) for a pair of us and
u's' atoms connected by the red line. The dotted points represent the vectors ot and
z pointing out of the image plane. (b) The four shells of the nearest neighbors of the
central A atom are shown by circles. The shells that consist of the A and B atoms
are shown in green and blue, respectively. The central A atom and the three B atoms
from the first shell are labeled by indices z3 = 00 and z3 = 11, 12, 13, respectively. The
nearest neighbor shells of the central B atom can be obtained by rotating the image
by 1800.

first shell i == 1 are shown in Fig. 4-5 (b). The central A atom is referred by zj = 00

instead of u'8'. The indices z3 = 00 for the central atom are shown in Fig. 4-5 (b). In

this notation, the force constant matrices J,s,•s and the force constants ,'•ssa are

written as Ioo0,3 and 0OOz•J, respectively. In the normal coordinates a = ir, it, ot, the

force constants ¢ooyr3 within each shell z are equivalent. Thus, 000j3( is independent

of index j, and so does n Dm' Hence, we label o00Ozj as W), assuming a = ir, it, ot.

For the pairs of atoms 003, the normal coordinate system is rotated by the angles

o00o2 from the Cartesian coordinate system around the common axis ot = z, as one

can see in Fig. 4-5 (a). The force constant matrices in the normal coordinates:

( ~ 0 0

0 03 0

are then transformed to Cartesian coordinates by means of the rotation matrix
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R z (ooz,) given by Eq. (3.31) and its transpose R z T ( 0o oZ0) "

cart ( 0 0Rz T ( ) noRz (oozj) . (4.10)002o ( Rz0o ) mo00,S O Z• (00S).

Upon substituting Eq. (3.31) into Eq. (4.10), we obtain the force constant matrices

in Cartesian coordinates:

(O ) cos 2 ooz + sin2 00 () - ) cos 0oo0 sin 0oo0, 0
4D cart 40 - OW A2(+) "r A Sz)

•(oi \=,T - wit ) cos Ooo, sin Ooo,2, .)q sin 2 0oo, + w$t cos2 00oo3 0

0 0 )
(4.11)

For the first shell of the nearest neighbors zj = 11, 12, 13, the rotation angles are

given by 0011 = IT, 0012 = -7r/3, and oo013 = 7r/3, according to Fig. 4-5 (b). Upon

substituting these angles into Eq. (4.11), we obtain the force constant matrices in

Cartesian coordinates:

ir 0 0
rt 0 0 , (4.12)

0011 i 0 (4.1

(Dcart -v3 =( i ) + Yir - (4.13)it0012 - - ) (1) 3(1) , t4.1

0 0 )(1)
00 + 0 (0Q) ) 0

0 0
In a similar fashion, the force constant matrices for the shells z = 2, 3, 4 and those for

the central B atom are transformed to Cartesian coordinates using Eq. (4.11). The

resulting force constant matrices multiplied by the appropriate phase factors build

up the dynamical matrix, according to Eq. (4.8). Thus, the dynamical matrix within

the BFC model is determined by 12 force constant parameters 0() with z = 1,..., 4

and a = ir, it, ot.
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4.2.1 Electron and neutron scattering

The early determination of the phonon dispersion relations of the graphene sheet

involved fitting the force constant parameters to experimental data. A widely used

set of the force constants [61] was obtained by fitting the BFC model to the phonon

dispersion curves along the FM direction measured by coherent inelastic neutron

scattering from highly oriented pyrolytic graphite (HOPG) [101] and by reflection

electron-energy-loss spectroscopy from bulk graphite [106]. The resulting force con-

stant parameters are summarized in Table 4.3. The phonon dispersion relations of

the graphene sheet calculated with the help of these force constants are shown in

Fig. 4-6 along with the aforementioned experimental data. One can see a good agree-

ment with experiment along the FM direction. However, there were no experimental

data available around the K point at that time. Later on, the phonon dispersion

curves along the FK direction were measured by high-resolution electron-energy-loss

spectroscopy from a graphite flake [146], yet the experimental data were quite noisy

near the K point. We show these data in Fig. 4-6, even though these data were not

involved in the determination of the force constant parameters [61].

4.2.2 Resonance Raman scattering

In the light of recent advances in resonance Raman spectroscopy of SWNTs [36],

the force constants listed in Table 4.3 were revisited. The double resonance Raman

scattering in the graphene sheet involves phonons near the F and K points [161].

The detailed theory of the double resonance mechanism will be presented in more

detail in Chapter 5. At the moment, it is only essential to mention that the double

resonance process allows probing the phonon frequencies at a certain distance from

the F and K points, which is determined by the excitation laser energy [134]. The

strongest double resonance features in the Raman spectra of graphitic materials, the

disorder-induced D-band and its overtone, the G'-band, were attributed to the iLO

phonon mode near the K point [88]. However, the slope of the iLO phonon curve

near the K point shown in Fig. 4-6 (b) does not match the dispersion of the D-
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Table 4.3: The force constants for a graphene sheet within the BFC model (in units
of 104 dyn/cm; 1 dyn/cm = 6.2415 meV/nm2) fitted [61] to the results of coherent in-
elastic neutron scattering (INS) from highly oriented pyrolytic graphite (HOPG) [101]
and reflection electron-energy-loss spectroscopy (EELS) from bulk graphite [106]. The
corresponding phonon dispersion relations are shown in Fig. 4-6.

(a) (b) (c)

(

1600

0 1200

8 800

L 400

K' M'
M

F M K
Wavevector

F 0 0.02

DOS

(state/cm - /atom)

Figure 4-6: Phonon dispersion relations of a graphene sheet according to the BFC
model with the force constants [61] given in Table 4.3 (a) throughout the entire first
Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the first
Brillouin zone. The phonon modes are labeled by iLA, iTA, oTA, iLO, iTO, and oTO,
as discussed in Section 4.1 and shown in Figs. 4-2 and 4-4. The solid dots, open dots,
and open squares show the results of coherent inelastic neutron scattering from highly
oriented pyrolytic graphite (HOPG) [1011, reflection electron-energy-loss spectroscopy
from bulk graphite [106], and high-resolution electron-energy-loss spectroscopy from
a graphite flake [146], respectively. (c) The density of phonon states (DOS).
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Table 4.4: The force constants for a graphene sheet within the BFC model (in units
of 10 dyn/cm; 1 dyn/cm = 6.2415meV/nm 2) fitted [47] to the results of resonance
Raman scattering (RRS) from highly oriented pyrolytic graphite (HOPG) [73, 74],
HOPG and SWNT bundles [160], graphite whisker (GW) [159], and SWNT bun-
dles [79]. The corresponding phonon dispersion relations are shown in Fig. 4-7.
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Figure 4-7: Phonon dispersion relations of a graphene sheet according to the BFC
model with the force constants [47] given in Table 4.4 (a) throughout the entire first
Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the
first Brillouin zone. The phonon modes are labeled by iLA, iTA, oTA, iLO, iTO,
and oTO, as discussed in Section 4.1 and shown in Figs. 4-2 and 4-4. The diamonds,
crosses, triangles, and squares show the results of resonance Raman scattering from
highly oriented pyrolytic graphite (HOPG) [73, 74], HOPG and SWNT bundles [160],
graphite whisker (GW) [159], and SWNT bundles [79], respectively. The solid and
open dots are experimental data taken from Fig. 4-6 for a better fit. (c) The density
of phonon states (DOS).
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band and the G'-band with respect to the excitation laser energy (w/OElaser) [88].

The force constant parameters shown in Table 4.3 must therefore be refitted to the

experimental data near the K point. The corrected set of the force constants [47] was

obtained by fitting the BFC model to the results of resonance Raman scattering from

highly oriented pyrolytic graphite (HOPG) [73, 74], HOPG and SWNT bundles [160],

graphite whisker (GW) [159], and SWNT bundles [79], taken at several different laser

excitation energies. The resulting force constant parameters are listed in Table 4.4,

and the corresponding phonon dispersion relations of the graphene sheet are shown

in Fig. 4-7 along with Raman spectroscopic data. One can see that the slope of the

iLO phonon branch around the K point reflects the proper dispersion of the D-band

shown by squares in Fig. 4-7 (b). Also, the iLO and iTO phonon modes calculated

using a new set of the force constants do not cross each other near the K point and,

correspondingly, switch between each other around the F point.

4.2.3 Phonon trigonal warping effect

The double resonance process averages out different directions around the r and

K points in graphite and SWNT bundles. Nevertheless the experimental points in

Fig. 4-7 (b) are placed along the high-symmetry directions FM, 1K, KM, and KIF,

for simplicity and ease of fitting. The anisotropy of the phonon dispersion relations

around the F and K points in the first Brillouin zone of a graphene sheet is thus

smeared out during the fitting of the Raman spectroscopic data shown in Fig. 4-

7(b). On the other hand, the double resonance process for individual SWNTs is

selective not only of the magnitude, but also of the direction of the phonon wavevec-

tors measured from the F and K points in the first Brillouin zone of the graphene

sheet [142]. To capture the phonon anisotropy within the BFC model [142], we fit

the force constants to the frequencies of the G'-band peaks in the resonance R.aman

spectra of individual CVD SWNTs on a Si/SiO2 substrate [65]. The resulting set of

the force constants along with the phonon dispersion relations are given in Table 4.5

and Fig. 4-8, respectively. The experimental points are shown by dots around the K

and K' points on the iLO phonon dispersion surface in Fig. 4-8 (a). The same points
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Table 4.5: The force constants for a graphene sheet within the BFC model (in units
of 104 dyn/cm; 1 dyn/cm = 6.2415 meV/nm 2) fitted [142] to the results of resonance
Raman scattering (RRS) from individual CVD SWNTs on a Si/SiO2 substrate re-
vealing the phonon trigonal warping effect (TWE) [65]. The corresponding phonon
dispersion relations are shown in Fig. 4-8.
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Figure 4-8: Phonon dispersion relations of a graphene sheet according to the BFC
model with the force constants [142] given in Table 4.5 (a) throughout the entire first
Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the
first Brillouin zone. The phonon modes are labeled by iLA, iTA, oTA, iLO, iTO, and
oTO, as discussed in Section 4.1 and shown in Figs. 4-2 and 4-4. The dots in (a) and
squares in (b) show the results of resonance Raman scattering from individual CVD
SWNTs on a Si/SiO 2 substrate [65]. The diamonds, crosses, triangles, solid dots, and
open dots are experimental data taken from Fig. 4-8 for a better fit. (c) The density
of phonon states (DOS).
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(a) AoiLO=5cm (b) ALO=5cm (c) Aoi LO=5cm

Figure 4-9: The squares show the area of linear dimensions KF/3 = 47/(9a) from
Fig. 3-14 centered at the K point in the first Brillouin zone of a graphene sheet.
The contours of constant frequency of the iLO phonon mode calculated within the
BFC model with the force constants given in (a) Table 4.3, (b) Table 4.4, and (c)
Table 4.5. The corresponding phonon dispersion relations are shown in Figs. 4-6, 4-7,
and 4-8, respectively. The phonon frequency difference between the adjacent contours
AwiL°o - 5 cm is shown above the figures.

projected on the KM and KF directions appear as squares in Fig. 4-8 (b).

To illustrate the anisotropy of the phonon dispersion relations, we plot in Fig. 4-9

the equi-frequency contours for the iLO phonon mode in the square of linear dimen-

sions KF/3 =-- 47/(9a) centered at the K point, by analogy with the trigonal warping

effect for electrons shown in Fig. 3-14. The equi-frequency contours in Fig. 4-9 (a) for

the phonon dispersion relations in Fig. 4-6 are isotropic around the K point, since the

force constants were fitted to the experimental data along the FM direction. The inner

contours in Fig. 4-9 (b) for the phonon dispersion relations in Fig. 4-7 exhibit a strong

anisotropy, while the outer contours show almost isotropic behavior. This is under-

stood considering that the Raman spectroscopic data in Fig. 4-7 (b) was measured us-

ing laser excitation energies in the range of 1.58 eV to 2.54 eV, and the outer contours

in Fig. 4-9 (b) correspond to the laser excitation energies of 1.65 eV to 2.33 eV [141].

Since the double resonance process averages out different directions around the K

point, the outer contours in Fig. 4-9 (b) do not exhibit significant anisotropy. Fi-

nally, the equi-frequency contours in Fig. 4-9 (c) for the phonon dispersion relations

in Fig. 4-8 demonstrate the actual anisotropy in the phonon dispersion relations of the

120



graphene sheet. To give a quantitative measure of the phonon anisotropy, we evaluate

the frequency difference wiLO(KM/2) - WiLO(KF/4) corresponding to the outermost

equi-energy contours in Fig. 4-9 and to the laser excitation energies of 2.41 eV and

2.54 eV. The frequency differences for Figs. 4-9 (a), (b), and (c) are given by -8 cm- 1,

0 cm-1 , and 25 cm- , respectively [141].

4.2.4 X-ray scattering

Recently, the optical phonon dispersion curves along the high-symmetry FMKF di-

rections were measured by inelastic x-ray scattering from a graphite flake [92]. By

fitting the BFC model to the results of this experiment, we obtain the force constant

parameters listed in Table 4.6. The corresponding phonon dispersion relations along

with the x-ray scattering data are shown in Fig. 4-10. The qualitative changes in

Fig. 4-10 (b) compared to Figs. 4-6 (b), 4-7 (b), and 4-8 (b) are the crossing points

between the iLO and iTO phonon modes along the FM and FK directions, and a

considerable softening of the frequency of the iTO phonon mode around the K point.

Accordingly, the frequency of the iTA phonon mode at the K point increases, to sat-

isfy the force constant sum rules within the BFC model [47]. These discrepancies

with the previous fits indicate wrong assignment of the D- and G'-bands to the iLO

phonon mode near the K point [88, 47, 142], while in fact these Raman bands arise

from the iTO phonon mode around the K point that strongly couples to electrons,

as we will show in Section 4.6 and in Chapter 5. Also, the experimental data points

for the iLO phonon mode exhibit an overbending near the F point in Fig. 4-10 (b),

and the electron-energy-loss spectroscopy data in Fig. 4-6 (b) show a similar behavior.

The iLO overbending is an evidence of the strong coupling of the iLO phonon mode

at the F point to electrons (see Section 4.6). Note that the iLO overbending is not

reproduced within the BFC model which yields the flat dispersion of the iLO phonon

mode around the F point (see Fig. 4-10 (b)). The iLO overbending is an indication

of the long-range interatomic interactions in the dynamical matrix, which is beyond

the framework of the BFC model.
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Table 4.6: The force constants for a graphene sheet within the BFC model (in units
of 104 dyn/cm; 1 dyn/cm = 6.2415 meV/nm2) fitted to the results of inelastic x-ray
scattering (IXS) from a graphite flake [92]. The corresponding phonon dispersion
relations are shown in Fig. 4-10.

(a) (b) (c)

1600

E0 1200

c 800

- 400

r M K
Wavevector

S0 0.02
DOS

(state/cml /atom)

Figure 4-10: Phonon dispersion relations of a graphene sheet according to the BFC
model with the force constants given in Table 4.6 (a) throughout the entire first
Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the
first Brillouin zone. The phonon modes are labeled by iLA, iTA, oTA, iLO, iTO, and
oTO, as discussed in Section 4.1 and shown in Figs. 4-2 and 4-4. The red, green, and
blue dots show the results of inelastic x-ray scattering from a graphite flake [92]. The
solid and open dots are experimental data taken from Fig. 4-6 for a better fit. (c)
The density of phonon states (DOS).
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4.3 Advanced force-constant model

As shown in Section 4.2, the BFC model fails to accurately reproduce the phonon

dispersion curves of the graphene sheet observed experimentally. The advanced force-

constant (AFC) model is thus introduced. The AFC model involves twenty shells of

nearest neighbors and off-diagonal matrix elements of the force constant matrices.

The twenty shells and off-diagonal elements are essential in order to reproduce the

phonon dispersion relations of the graphene sheet obtained from first-principles cal-

culations on the basis of density-functional theory (DFT) employing the local-density

approximation (LDA) for the exchange-correlation potential with a plane-wave ex-

pansion of the wavefunctions and using pseudo-potentials for the core electrons [37].

The twenty shells of the nearest neighbors of atom A are shown by circles in

Fig. 4-11, where the first four shells coincide with those in Fig. 4-5 (b). The shells

1, 3, 4, 7, 8, 9, 11, 13, 14, 16, 18, 20 consist of atoms B of the opposite type than the

central A atom, while the shells 2, 5, 6, 10, 12, 15, 17, 19 contain atoms A of the same

type. Note that there are two different types of atoms in shell 20, which we refer to

as 20 and 20', shown by black and red dots in Fig. 4-11, respectively. By analogy

with the BFC model discussed in Section 4.2, each atom within the twenty shells is

labeled by a pair of indices zj, where z = 1,..., 20 indicates the shell number and j

numerates the atoms in each shell counterclockwise looking down the z-axis. The first

atom .) = 1 within each shell z appears in the positive direction of the x-axis. These

atoms are highlighted by a yellow background in Fig. 4-11. The central A atom is

referred by uj = 00.

Let. us construct the force constant matrices in the normal coordinates (nOOm

The diagonal matrix elements ofo are given by ( ) and , similar to

Eq. (4.9) for the BFC model. The out-of-plane off-diagonal matrix elements of Wnorm
o00r

are zero. The in-plane off-diagonal matrix elements of n n, on the other hand, are

determined by the symmetry of the pairs of atoms shown in Fig. 4-11. For the shells

1 = 1, 3, 5, 8, 11, 15, 20, the in-plane off-diagonal matrix elements of normn vanish. For

the shells z = 2, 4, 6, 7, 9, 12, 13, 14, 16, 18, 19, 20', there is one independent in-plane off-
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Figure 4-11: A single graphene sheet. The open and solid dots indicate the A and
B sublattices, respectively. The twenty shells of the nearest neighbors of the central
A atom are shown by the circles. The shells that consist of the A and B atoms are
shown in green and blue, respectively. The B atoms that form the shell 20' are shown
by red dots. The atoms in each shell are numbered counterclockwise looking down
the z-axis. The first atom within each shell is highlighted by a yellow background.
The nearest neighbor shells of the central B atom can be obtained by rotating the
image by 18(0".

diagonal matrix element of •n Do, which we refer to as 0). For the shells 2 = 10, 17,

there are two independent in-plane off-diagonal matrix elements of ( 'On, which we

refer to as 0(.)4 and 0('). The in-plane diagonal blocks of the force constant matrices

0orm are then written in the following form:
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= 1, 2, 3, 4, 5, 6,

= 2, 6, 12, 19,
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3 = 3 , 7 , 1 1 ,
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3 = 2, 6, 10,

14,16,18, 20',

(4.15)
14, 16, 18, 20',

while the out-of-plane diagonal blocks are given by (nm) ), and the off-
bdiagonal blocks (W m -r norm

diagonal blocks •mio and (41001)i vanish. The force constant matrices •00m,

given by Eq. (4.15) are then transformed from the normal coordinates to Cartesian

coordinates using Eq. (4.11). The force constant matrices for the central B atom are
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obtained in a similar fashion. The resulting force constant matrices multiplied by

the appropriate phase factors build up the dynamical matrix, according to Eq. (4.8).

Thus, the dynamical matrix within the AFC model is determined by 79 force constant

parameters OW), where a = ir, it, ot for z = 1,3,5,8, 11, 15, 20, a = ir, it, ot, il for

z = 2, 4, 6, 7,9, 12, 13, 14, 16, 18, 19, 20', and a = ir, it, ot, il, i2 for z = 10, 17.

In Section 4.2, the 12 force constant parameters of the BFC model were fitted

to the experimental data. However, the 79 force constant parameters of the AFC

model provide too many degrees of freedom for the fitting algorithm. The latter

may lead to non-unique solutions, or may have problems to converge. The 79 force

constant parameters of the AFC model are thus determined either by first-principles

calculations or within the ETB model introduced in Section 3.6.

4.3.1 DFT-LDA calculations

The early first-principles calculations [78, 111] in the framework of DFT-LDA es-

tablished the key features of the phonon dispersion relations of the graphene sheet,

including the crossing points between the iLO and iTO phonon modes along the FM

and FK directions, the softening of the frequency of the iTO phonon mode around the

K point, and the overbending of the iLO phonon mode near the F point, as discussed

in Section 4.2 regarding Fig. 4-10 (b). Further first-principles calculations [37, 99, 170]

only provided quantitative improvements to the phonon dispersion relations of the

graphene sheet.

The force constant parameters within the framework of the AFC model calcu-

lated with the help of DFT-LDA [37] are summarized in Table 4.7. The DFT-LDA

calculations slightly overestimate the phonon frequencies according to the variational

principle. In order to fit the calculated phonon dispersion curves to the well-known

experimental data wE 29(F) = 1582 cm- 1 and wB2g(F) = 868cm-1 [170], the frequen-

cies of the in-plane and out-of-plane phonon modes are multiplied by 0.9915 and

0.9754, respectively. The in-plane and out-of-plane force constants in Table 4.7 are

scaled by factors 0.99152 and 0.97542, respectively. The phonon dispersion relations

of the graphene sheet calculated with the force constants from Table 4.7 are shown

126



Table 4.7: The force constants for a graphene sheet within the AFC model (in
units of 10W dyn/cin; 1 dyn/cm = 6.2415 meV/nm 2) calculated with the help of DFT-
LDA [37]. The in-plane and out-of-plane force constants are scaled by factors 0.99152
and 0.97542., respectively, in order to fit the F point optical phonon frequencies to the
well-known experimental data wE2g(F) = 1582 cm -1 and wB29(F) = 868cm - 1 [170].
The corresponding phonon dispersion relations are shown in Fig. 4-12.

in Fig. 4-12. The off-diagonal force constants Qil and gi2 turn out to significantly in-
fluence the phorion dispersion relations of the graphene sheet. If we omit the last two

columns in Table 4.7, the iTA and iTO phonon modes at the M point in Fig. 4-12 (b)
appear to have very close frequencies, similar to Fig. 5 of Ref. [99].

To verify tlhe results of DFT-LDA calculations, the experimental data points from
Fig. 4-10 (b) are replicated in Fig. 4-12 (b). One can see a good agreement between
the calculated and experimental phonon dispersion curves in Fig. 4-12 (b). In partic-
uilar, the DFT-LDA calculations closely reproduce the iLO-iTO crossing near the M
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Figure 4-12: Phonon dispersion relations of a graphene sheet according to the AFC
model with the force constants [37] given in Table 4.7 (a) throughout the entire first
Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the
first Brillouin zone. The in-plane and out-of-plane force constants are calculated with
the help of DFT-LDA [37] and scaled by factors 0.99152 and 0.97542, respectively,
to fit experimental data wE2g () = 1582cm -1 and wB2g9() = 868cm -1 [170]. The
phonon modes are labeled by iLA, iTA, oTA, iLO, iTO, and oTO, as discussed in
Section 4.1 and shown in Figs. 4-2 and 4-4. The red, green, blue, solid, and open dots
are experimental data taken from Fig. 4-10. (c) The density of phonon states (DOS).

and K points; and the iLO overbending around the F point. On the other hand, the

DFT-LDA calculations overestimate the iTO frequency at the K point and underes-

timate the iTA frequency at the M point. The overestimation of the iTO frequency

at the K point is due to anharmonic effects, as we will show in Section 4.6. The

large finite difference step size used for the DFT-LDA calculations of the force con-

stants [37] smears out the softening of the iTO phonon mode around the K point.

The underestimation of the iTA frequency at the M point is related to the long-range

character of the dynamical matrix [172]. The long-range interaction cut-off at the

twentieth nearest neighbor induces errors in the low-frequency iTA phonon mode at

the M point [172].

The 1D phonon dispersion relations of SWNTs in the zone-folding approximation
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Figure 4-13: (a) The phonon dispersion relations of a graphene sheet within the
STB model replicated from Fig. 4-12. The solid lines are the cutting lines for a
semiconducting (4,2) SWNT in the helical-helical representation. (b) The phonon
dispersion relations of the (4, 2) SWNT when different cutting lines are folded together
into the 1D Brillouin zone. The length of the ID Brillouin zone is given by 2Ir/T.
(c) The density of phonon states (DOS) of the (4, 2) SWNT. The sharp spikes in the
DOS typical for 1D systems are known as Van Hove singularities.

are obtained by superimposing the cutting lines over the 2D phonon dispersion sur-

faces shown in Fig. 4-12 (a). The cutting lines for phonons are defined by the following

relation:

q = r K1 + q (4.16)

similar to Eq. (2.14) for electrons, where q is the 2D wavevector of the graphene sheet,

while Tr and q are the 1D angular and linear momenta in SWNTs. In Fig. 4-13 (a), we

superimpose the cutting lines given by Eq. (4.16) in the helical-helical representation

for the (4, 2) SWNT over the 2D phonon dispersion surfaces of a graphene sheet

replicated from Fig. 4-12 (a). We then construct the 1D phonon dispersion curves

and the phonon DOS of the (4, 2) SWNT in Figs. 4-13 (b) and (c), respectively. The

applicability of the zone-folding technique to phonons will be discussed in Section 4.4.
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4.3.2 ETB calculations

To clarify the origin of the aforementioned discrepancies between the theoretical and

experimental results, we calculate the force constants for a graphene sheet within the

framework of the ETB model. The force constant matrix between the two atoms in a

graphene sheet is given by the Hessian (the matrix of second partial derivatives [94])

of the total energy with respect to the coordinates of these atoms. The Hessian is

obtained either by analytical derivation, or by a central finite difference approximation

for the first derivative of the Hellmann-Feynman forces, or by a central finite difference

approximation for the second derivative of the total energy. The large supercell is

used for the total energy calculations in order to minimize interactions between the

pairs of atoms in the adjacent supercells.

We have chosen the supercell bounded by the 15al and 15a 2 translational vectors

that encloses the 225 two-atom unit cells or 450 carbon atoms. The total energy was

calculated from Eq. (3.27) on a 4 x 4 Monkhorst-Pack grid in reciprocal space. A

small number (namely, sixteen) of the sampling k-points does not spoil the accuracy

of the calculation due to the large size of the supercell. The Hessian was calculated by

a central finite difference approximation for the second derivative of the total energy

with the step AR = 10- nm. For each pair of carbon atoms, the normal directions

ir, it, ot are determined as shown in Fig. 4-5 (a), the two atoms are displaced from their

equilibrium positions by ±fAR along the normal directions, and the total energy is

calculated for the distorted geometries.

However, the total energy approach is time consuming and numerically inaccurate,

as it involves numerous calculations of the total energy for different distorted geome-

tries. Hence, we obtain the Hessian by a central finite difference approximation for the

first derivative of the Hellmann-Feynman forces. The Hellmann-Feynman forces are

calculated analytically from Eq. (3.28). In this case, we only need to shift the central

atom of the supercell from its equilibrium position by ±½AR along three orthogo-

nal directions. The Hellmann-Feynman forces acting on all atoms in the supercell

are calculated for the distorted geometries. Compared to the Hellmann-Feynman
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Table 4.8: The force constants for a graphene sheet within the AFC model (in units
of 104 dyn/cm; 1 dyn/cm = 6.2415 meV/nm2) calculated within the ETB model. The
in-plane and out-of-plane force constants are scaled by factors 0.88412 and 1.02922,
respectively, in order to fit the F point optical phonon frequencies to the well-known
experimental data wE29 (F) = 1582 cm -1 and wB2g (F) = 868 cm -1 [170]. The corre-
sponding phonon dispersion relations are shown in Fig. 4-14.

approach, the analytical derivation of the Hessian does not provide significant im-

provement in the computation time or numerical accuracy. We therefore stick with

the Hellmann-Feynman approach as involving simpler analytical expressions.

The force constants calculated within the Hellmann-Feynman approach using the

aforementioned parameters (450 atom supercell, 16 sampling k-points, and AR =

10- 4 nm central difference step) are summarized in Table 4.8. The ETB calculation

overestimates the in-plane phonon frequencies by about 10 % due to the limited basis

set used in the tight-binding calculations [121]. Hence, the in-plane and out-of-plane

Sit ilotil i2
+(1) +43.2925 +16.2138 +9.8923 -

0(2) +7.5365 -4.4769 -0.5488 +1.5358
0(3) -2.0163 +4.1265 +0.7946
0(4) -0.6857 +0.0062 -0.9717 +1.0180
0(5) +1.0928 +0.1444 +0.0974
0(6) +0.1315 -0.4157 +0.0098 -0.0433
0(7) -0.3464 +0.2683 -0.0117 +0.2698
0(8) -0.8798 +0.1550 +0.1119 -
0(9) -0.0309 +0.1130 +0.0351 -0.1376
p(10 ) +0.1809 -0.1439 -0.0072 +0.2792 -0.1300

0(11) -0.2019 +0.2839 +0.0047 -
0(12) +0.1478 +0.0475 -0.0011 -0.0157 -
0(13) -0.0038 -0.0596 -0.0049 +0.0192 -
O(14) -0.0890 -0.0279 -0.0114 +0.0776 -

0(15) +0.1765 +0.0393 +0.0012 - -
0(16) -0.1154 +0.0664 +0.0040 +0.0332

O(17) +0.0030 -0.0646 +0.0003 -0.0220 +0.0288
¢(18) -0.0466 +0.0277 -0.0001 +0.0653
¢(19) +0.0425 -0.0416 +0.0000 +0.0544
0(20) -0.1576 +0.0459 +0.0025
0(20') -0.0458 +0.0532 +0.0006 -0.0366 -
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Figure 4-14: Phonon dispersion relations of a graphene sheet according to the AFC

model with the force constants given in Table 4.8 (a) throughout the entire first

Brillouin zone shown in Fig. 2-1 and (b) along the high-symmetry directions in the

first Brillouin zone. The in-plane and out-of-plane force constants are calculated

within the ETB model and scaled by factors 0.88412 and 1.02922, respectively, to fit

experimental data wE2g(F) = 1582 cm- 1 and wB 2g(r) = 868 cm- 1 [170]. The phonon

modes are labeled by iLA, iTA, oTA, iLO, iTO, and oTO, as discussed in Section 4.1

and shown in Figs. 4-2 and 4-4. The red, green, blue, solid, and open dots are

experimental data taken from Fig. 4-10. (c) The density of phonon states (DOS).

force constants in Table 4.8 are scaled by factors 0.88412 and 1.02922, respectively, to

fit the experimental frequencies wcE29 (F) = 1582 cm- 1 and =wB2() = 868cm-1 [170].

The phonon dispersion relations of the graphene sheet calculated with the force con-

stants from Table 4.8 are shown in Fig. 4-14, where we also replicate the experimental

data points from Fig. 4-10 (b).

By comparing Figs. 4-14 (b) and 4-12 (b), one finds that the ETB calculations

nicely fit the experimentally observed behavior of the iTO phonon mode near the

K point, in contrast to the DFT-LDA calculations. We will discuss the softening of

the iTO phonon mode around the K point in more detail in Section 4.6. Also, the

ETB calculations closely reproduce the iLO-iTO crossing near the M and K points

and the iLO overbending around the F point, similar to the DFT-LDA calculations.
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(a) TO=5cm (b) AiT =5cm (C) ATO=5cmr-

Figure 4-15: The squares show the area of linear dimensions KF/3 = 47r/(9a) from
Fig. 3-14 centered at the K point in the first Brillouin zone of a graphene sheet. The
contours of constant frequency of the iTO phonon mode calculated (a) within the
BFC model with the force constants from Table 4.6 and within the AFC model with
the force constants from (b) Table 4.7 and (c) Table 4.8, similar to the iLO contours
in Fig. 4-9. The corresponding phonon dispersion relations are shown in Figs. 4-10,
4-12, and 4-14, respectively. The phonon frequency difference between the adjacent
contours AiTw O = 5 cm - 1 is shown above the figures.

At the same time, the ETB calculations underestimate the iTA frequency at the M

point, which is understood from the long-range interaction cut-off in the dynamical

matrix [172], similar to the DFT-LDA calculations.

To illustrate the anisotropy of the phonon dispersion relations within the AFC

model, we plot in Fig. 4-15 the equi-frequency contours for the iTO phonon mode

around the K point, by analogy with Fig. 4-9 for the BFC model. Note that Fig. 4-

9 shows the equi-frequency contours for the iLO phonon mode, due to the wrong

assignment of the D and G' Raman bands to the iLO phonon mode within the BFC

model, as discussed in Section 4.2.4. While the iLO and iTO phonon modes in Figs. 4-

10 (b) and 4-14 (b) cross each other along the high-symmetry direction KF near the

K point, they anti-cross along a general direction in reciprocal space, resulting in

discontinuities along the equi-frequency contours in Figs. 4-15 (a) and (c), respectively.

The equi-frequency contours in Fig. 4-15 (b) do not exhibit discontinuities because the

DFT-LDA calculations overestimate the frequency of the iTO phonon mode around

the K point, as one can see from Fig. 4-12 (b). To give a quantitative measure of the
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Figure 4-16: (a) The phonon dispersion relations of a graphene sheet within the
STB model replicated from Fig. 4-14. The solid lines are the cutting lines for a
semiconducting (4,2) SWNT in the helical-helical representation. (b) The phonon
dispersion relations of the (4, 2) SWNT when different cutting lines are folded together
into the ID Brillouin zone. The length of the 1D Brillouin zone is given by 27r/T.
(c) The density of phonon states (DOS) of the (4, 2) SWNT. The sharp spikes in the
DOS typical for 1D systems are known as Van Hove singularities.

phonon anisotropy, we evaluate the frequency difference wiTo(KM/2) - wiTo(KF/4)

corresponding to the outermost equi-energy contours in Fig. 4-15 and to the laser

excitation energies of 2.41 eV and 2.54 eV. The frequency differences for Figs. 4-15 (a),

(b), and (c) are given by 12 cm-1 , 7 cm-, and 10 cm - , respectively. Comparison

of these values with the experimental frequency difference of 25 cm-' reported in

Section 4.2.3 suggests that further theoretical and experimental studies are needed to

obtain a quantitative measure of the phonon trigonal warping effect.

The 1D phonon dispersion relations of SWNTs are obtained by applying the zone-

folding technique to the 2D phonon dispersion relations of a graphene sheet, as de-

scribed in Section 4.3.1. In Fig. 4-16 (a), we superimpose the cutting lines defined

by Eq. (4.16) in the helical-helical representation for the (4, 2) SWNT over the 2D

phonon dispersion surfaces of a graphene sheet replicated from Fig. 4-14 (a), by anal-
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ogy with Fig. 4-13 (a). We then construct the 1D phonon dispersion curves and the

phonon DOS of the (4, 2) SWNT in Figs. 4-16 (b) and (c), respectively, similar to

Figs. 4-13 (b) and (c). The applicability of the zone-folding technique to phonons is

discussed below in Section 4.4.

4.4 Curvature-adapted force-constant model

Fig. 4-16 (b) shows the 1D phonon dispersion curves for the (4, 2) SWNT. Given

the six phonon modes v = iLA, iTA, oTA, iLO, iTO, oTO and the N = 28 distinct

values of the angular momentum r = 1 - N/2,..., N/2 (associated with the N

non-equivalent cutting lines in Eq. (4.16)), we conclude that there are a total of

6N = 168 phonon dispersion curves in Fig. 4-16 (b). Nevertheless, group theory

predicts that there are only 14 (6) Raman-active and 6 (3) infrared-active phonon

modes with angular and linear momenta p = 0, ±1, ±2 and k = 0 in chiral (achiral)

SWNTs [3, 12]. Among them, only 3 (2) Raman-active phonon modes with angular

momentum jL = 0 are strongly coupled to electrons. These phonon modes belong

to the irreducible representation A1 (Al,) of point group DN (D2nh) [3, 12]. They

are known as the radial breathing mode (RBM), the GT mode, and the GL mode,

after the RBM and the G Raman bands to which they give rise [125]. The RBM,

GT, and GL phonon modes in SWNTs correspond to the oTA, iTO, and iLO phonon

modes in the graphene sheet whose atomic displacements are shown in Figs. 4-2 (c),

(e), and (d), respectively.

4.4.1 Zone-folding technique

The 1D phonon dispersion curves for the (4, 2) SWNT shown in Fig. 4-16 (b) are

obtained within the zone-folding approximation by superimposing the cutting lines

given by Eq. (4.16) on the 2D phonon dispersion surfaces of the graphene sheet

shown in Fig. 4-16 (a) calculated from the ETB model. Figure 4-16 (b) is replicated

in Figure 4-17 (a) where the dispersion curves associated with the RBM, GT , and

GL phonon modes are highlighted. The RBM, GT , and GL phonon modes appear
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Figure 4-17: The phonon dispersion relations of the (4, 2) SWNT: (a) identical to
Fig. 4-16 obtained by the zone-folding technique using the force constants from Ta-
ble 4.8, (b) calculated using the curvature-adapted model with the force constants
from Table 4.8, and (c) obtained from the force constants calculated explicitly for the
(4, 2) SWNT within the ETB framework and scaled by factors 0.88412, 1.02922, and
0.8841 x 1.0292, as in Table 4.8. Shown in black are the dispersion curves associated
with the RBM, GT , and GL phonon modes corresponding to the oTA, iTO, and iLO
phonon modes in the graphene sheet shown in Figs. 4-2 (c), (e), and (f), respectively.
The frequencies of the RBM, GT , and GL phonon modes are given by (a) 0 cm- 1,
1582cm- 1, and 1582cm- 1, (b) 535cm -1 , 1564cm-', and 1573cm - 1 , (c) 522cm - ' ,

1430 cm - 1, and 1531 cm- 1, respectively.

at the 1D F point in these dispersion curves indicated by the vertical line in Fig. 4-

17 (a). The frequencies of the phonon modes where the dispersion curves cross the

vertical line in Fig. 4-17 (a) are given by wRBM(F) = 0cm-1 , wG T () = 1582cm - 1,

and wGL(F) = 1582 cm- 1. The normal mode displacements for the RBM, GT , and

GL phonon modes obtained by rolling up Figs. 4-2 (c), (e), and (d) are shown in

Figs. 4-18 (a), (b), and (c), respectively. While the normal mode displacements for

the RBM mode are aligned with the radial direction of the SWNT, the normal mode

displacements for the GT and GL phonon modes are perpendicular and parallel to one

of the sp 2 bonds in the SWNT sidewall, and are not aligned with the circumferential

and axial directions of the SWNT, because the (4, 2) SWNT is chiral.
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(a) (b) (c)
RBM GT GL

Figure 4-18: The (4, 2) ZR/AL SWNT replicated from Fig. 2-3. The arrows indicate
the normal mode displacements for the (a) RBM, (b) GT , and (c) GL phonon modes
shown in Fig. 4-17 (a). The normal mode displacements are obtained by applying the
zone-folding technique to the oTA, iTO, and iLO phonon modes in the graphene sheet
shown in Figs. 4-2 (c), (e), and (f), respectively. The normal mode displacements for
the RBM, GVT, and GL phonon modes are aligned with the radial direction of the
SWNT and parallel and normal to one of the sp 2 bonds in the SWNT sidewall.

4.4.2 Curvature-adapted model

According to Section 4.4.1, the zone-folding technique predicts a vanishing frequency

of the RBM mode, since the RBM originates from the oTA, which is the acoustic

phonon mode in the graphene sheet. In fact, however, the curvature of the SWNT

sidewall mixes the in-plane and out-of-plane motions of carbon atoms, yielding a

finite frequency for the RBM mode [80, 82, 129]. The curvature effect is understood

by considering the atomic displacements in the circumferential direction of the SWNT

associated with the oTA phonon mode in the graphene sheet, as shown by the red and

green curves in Fig. 2-6. The oTA p = 0 phonon mode has a zero frequency in the

graphene sheet, but it involves bond-stretching atomic displacements yielding a finite

frequency of the RBM in SWNTs [80, 82, 129]. The oTA p = ±1 phonon modes have

a finite frequency in the graphene sheet, while in SWNTs they become the acoustic

modes with vanishing frequencies and atomic displacements perpendicular to the

SWNT axis 182, 129]. The oTA p = ±2 phonon modes have even higher frequencies
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in the graphene sheet, yet they correspond to the low frequency squashing modes in

SWNTs [82, 129]. Hence, the curvature of the SWNT sidewall has the strongest effect

on the low frequency acoustic phonon modes [61, 129].

The curvature of the SWNT sidewall is incorporated into the force-constant model

either by constructing the 6N x 6N dynamical matrix for the translational unit cell

of 2N carbon atoms [129], or by transforming the 6 x 6 dynamical matrix for the two-

atom unit cell given by Eq. (4.8) to cylindrical coordinates [82], similar to the case of

electrons in Section 3.6.2. The 6 x 6 dynamical matrix in cylindrical coordinates is

obtained upon substituting the normal mode displacements e'(q) with Rz (0s) e(7T, q)

in the equation of motion, Eq. (4.7):

U 2 3 3

DsI&sQ('r), q) = Z Z RZ R, (Ouy',) ¢us, RZp8 (Us,')

3 3

- Z exp (%i 7 (u, - Ouy) + iq (zu - u)R , OI) sus au) .
(4.17)

where qr and q are the 1D angular and linear momenta substituted for the 2D momen-

tum q according to Eq. (4.16), Ous and zus are the cylindrical projections of the atomic

coordinate R,,, from Eq. (3.30), Rz (u,,) is the rotation matrix given by Eq. (3.31),

and the index u' labels the unit cell under consideration [82].

The force constant matrices ýDooj for SWNTs are constructed in the normal coordi-

nates (ir, it, ot) according to Eq. (4.15) from the force constant parameters W) for the

flat graphene sheet calculated within the ETB framework and listed in Table 4.8. The

force constant matrices oo003 are then transformed to Cartesian coordinates (x, y, z)

using Euler angles (¢, 0, 0) [6]. In order to determine the Euler angles for SWNTs, we

depict the (4, 2) ZR/AL SWNT in Fig. 4-19 (a), where the two red spheres represent a

pair of us and u's' atoms in the flat graphene sheet connected by the red line in Fig. 4-

5 (a). The normal coordinates (ir, it, ot) for the two red atoms are shown by arrows

in Fig. 4-19 (a), where ir is a chord connecting the two red atoms, ot is orthogonal to

both ir and the SWNT axis, and it is orthogonal to both ir and ot. The two red atoms

from Fig. 4-19 (a) are replotted in Fig. 4-19 (b) along with the normal (ir, it, ot) and
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Figure 4-19: (a) The (4,2)
spheres represent a pair of

ZR/AL SWNT replicated from Fig. 2-3. The two red
us and u's' atoms in the flat graphene sheet connected

by the red line in Fig. 4-5. The normal coordinates (ir, it, ot) are shown by arrows,
where ir is a chord connecting the two red atoms, ot is orthogonal to both ir and the
SWNT axis, and it is orthogonal to both ir and ot. (b) The orientation of the normal
coordinates (ir, it, ot) for the pair of the red spheres with respect to Cartesian coordi-
nates (x, y, z) determined by angles ( and (. The disc represents the circumferential
cross-section of the SWNT.

Cartesian (x, y, z) coordinates. The relative orientation of the two coordinate systems

is described by angles ( and ( that define the direction of ot in the xy plane and the

direction of ir in the normal to the ot plane, as shown in Fig. 4-19 (b). For each pair

of us and u's' atoms, the angles ( and ( are found from the atomic coordinates Ru,

and Ruy, the Euler angles are expressed as (0, 0, b) = ( 7 + i/2, w/2, -i), and the

force constant transformation reads as follows:

) cart zxzT T0Z3
T 7, , )( norImR zzzN(
+ 2' 2' 001iJ 2+2 22' 2'

where Rzxz(( + r/2, -F/2, -i) is the Euler rotation matrix given by [6]:

-sin(cos{ cos cos( -sine

-sin sin cos sin cos ,

cos ( sin ( 0
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(a) (b) (c)
RBM G GL

Figure 4-20: The (4, 2) ZR/AL SWNT replicated from Fig. 2-3. The arrows indicate
the normal mode displacements for the (a) RBM, (b) GT , and (c) GL phonon modes
shown in Fig. 4-17(b). The normal mode displacements are calculated using the
curvature-adapted force constant matrices given by Eq. (4.18) with the force constant
parameters for the flat graphene sheet taken from Table 4.8. The normal mode
displacements for the RBM, GT , and GL phonon modes are approximately aligned
within a few degrees with the radial direction of the SWNT and with two different
sp2 bonds in the SWNT sidewall [128].

and RzXz' ( ( + r/2, w/2, -() is the transpose of RzzZ(( + w/2, w/2, -). For the

flat graphene sheet shown in Fig. 4-5 (a), the Euler angles are given by (0, 08, ) =

(o00o,, 0, 0), the rotation matrix Rz"Z(0oo0, 0, 0) of Eq. (4.19) is equivalent to Rz (q00)z)

from Eq. (3.31), and Eq. (4.18) coincides with Eq. (4.10).

Diagonalizing the dynamical matrix Ds,i,(rq, q) of Eq. (4.17) yields the phonon

dispersion relations w"(7, q) and the normal mode displacements e"', (rl, q) of SWNTs.

The phonon dispersion relations for the (4, 2) SWNT are shown in Fig. 4-17 (b). The

frequencies of the RBM, GT , and GL phonon modes are given by wRBM(F) = 535 cm - 1,

GT (F) = 1564 cm- 1, and wGL(F) = 1573 cm-'. Upon comparing with Section 4.4.1,

one finds that the curvature of the SWNT sidewall significantly upshifts the frequency

of the RBM phonon mode and slightly downshifts and splits the frequencies of the GT

and GL phonon modes, in agreement with the above discussion in the first paragraph

of Section 4.4.2. The normal mode displacements for the RBM, GT , and GL phonon
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modes of the (4, 2) SWNT are shown in Fig. 4-20. The normal mode displacements

for the RBM mode are approximately aligned with the radial direction of the SWNT

(within a few degrees), and the normal mode displacements for the GT and GL phonon

modes are approximately aligned within a few degrees with two different sp2 bonds

in the SWNT sidewall [128], according to Fig. 4-20, in contrast to the normal mode

displacements for the GT and GL phonon modes obtained using the zone-folding

technique and shown in Figs. 4-18 (b) and (c).

4.4.3 Force constant corrections

The curvature of the SWNT sidewall not only changes the directions of the normal

coordinates (ir, it, ot), as shown in Section 4.4.2, but also affects the values of the

force constants [129]. Instead of using the force constant parameters for the flat

graphene sheet listed in Table 4.8, different sets of force constants must be calculated

explicitly within the ETB framework for specific (n, m) SWNTs along the directions

of the normal coordinates (ir, it, ot) shown in Fig. 4-19 (b). The calculation method

is identical to the one described in Section 4.3 for the flat graphene sheet. For the

(4, 2) SWNT, we have chosen the supercell that contains 3 translational unit cells

or 84 two-atom unit cells or 168 carbon atoms. The force constants are obtained

by a central finite difference approximation for the first derivative of the Hellmann-

Feynmian forces with the step AR = 10- 4 nm. The Hellmann-Feynman forces are

calculated from Eq. (3.28) on a iD Monkhorst-Pack grid of 58 k-points along the

cutting lines in the helical-linear representation. The calculated in-plane and out-of-

plane force constants are scaled by factors 0.88412 and 1.02922, respectively, similar

to the force constants for the graphene sheet listed in Table 4.8. The calculated off-

diagonal force constants that mix the in-plane and out-of-plane components, Os,','o

with (a',a) =: (ir,ot), (it,ot) , (ot,ir) , (ot,it), are scaled by a factor of 0.8841x 1.0292.

According to the ETB calculations, the circumferential and axial force constants for

the (4, 2) SWNT are lowered by about 20 % and 4 %, respectively, compared to the

force constants for the flat graphene sheet listed in Table 4.8.

The phonon dispersion relations and the normal mode displacements obtained
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(a) (b) (c)
RBM GT GL

Figure 4-21: The (4,2) ZR/AL SWNT replicated from Fig. 2-3. The arrows indi-
cate the normal mode displacements for the (a) RBM, (b) GT, and (c) GL phonon
modes shown in Fig. 4-17 (c). The normal mode displacements are calculated using
the curvature-adapted force constant matrices given by Eq. (4.18) with the force con-
stant parameters calculated explicitly for the (4, 2) SWNT within the ETB framework
and scaled by factors 0.88412, and 1.02922, and 0.8841 x 1.0292, as in Table 4.8. The
normal mode displacements for the RBM, GT, and GL phonon modes are approx-
imately aligned with the radial, circumferential, and axial directions of the SWNT
within a few degrees [82].

from Eqs. (4.17), (4.18), and (4.19) with the aforementioned force constant parameters

calculated within the ETB framework for the (4, 2) SWNT are shown in Figs. 4-17 (c)

and 4-21, respectively. The normal mode displacements for the RBM, GT , and GL

phonon modes are approximately aligned with the radial, circumferential, and axial

directions of the SWNT within a few degrees [121], according to Fig. 4-21, in contrast

to the normal mode displacements for the GT and GL phonon modes obtained with

the force constant parameters for the flat graphene sheet and shown in Figs. 4-20 (b)

and (c). In a.chiral armchair and zigzag SWNTs, the sp 2 bonds are aligned with the

circumferential and axial directions, so that the GT and GL phonon modes decouple

into pure circumferential and axial components, as follows from group theory. For

chiral SWNTs such as (4, 2), the sp2 bonds are misaligned with the circumferential

and axial directions, thus coupling circumferential and axial atomic displacements,

according to the symmetry considerations. Early first-principles calculations revealed
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a considerable mixing between circumferential and axial atomic motions associated

with the GT and GL phonon modes in chiral SWNTs [128], whose atomic displace-

ments are approximately aligned with two different sp2 bonds in the SWNT sidewall,

as shown in Figs. 4-20 (b) and (c). Recent calculations within the ETB framework

discussed in Section 4.5, on the other hand, indicate a small departure from the

pure circumferential and axial character of the GT and GL phonon modes in chiral

SWNTs [121], as shown in Figs. 4-21 (b) and (c). The directions of the normal mode

displacements are thus very sensitive to the values of the interatomic force constants.

Further investigations are expected to clarify this issue.

The frequencies of the RBM, GT , and GL phonon modes shown in Fig. 4-17 (c) are

given by wRB"M(F) = 522 cm - 1, wGT () = 1430 cm- 1, and wGL(F) = 1531 cm-'. Upon

comparing Fig. 4-17 (c) with Fig. 4-17 (b), we find that the curvature of the SWNT

sidewall splits the frequencies of the GT and GL phonon modes. This splitting can

be understood taking into account that the GT and GL phonon modes involve atomic

displacements in the circumferential and axial directions, respectively, as shown in

Figs. 4-21 (b) and (c). The circumferential and axial force constants scale by the

factors of 0.80 and 0.96, respectively, according to the ETB calculations. The fre-

quencies of the GT and GL phonon modes are then expected to scale as .8 = 0.89

and .96 == 0.98, respectively. In fact, however, the frequency scaling factors are

given by 1430/1582 = 0.90 and 1531/1582 = 0.97, as follows from comparing Figs. 4-

17 (a) and (c). The small difference between the force constant scaling factors and

the frequency scaling factors indicates the small contributions of the circumferential

(axial) force constants to the axial GL (circumferential GT) phonon mode.

4.5 Direct calculation of the dynamical matrix

A different set of force constants must be calculated for each (n, m) SWNT within the

ETB framework, as shown in Section 4.4.3. Such calculations are time consuming,

as they involve large supercells in order to minimize interactions between the pairs

of atoms in the adjacent supercells. Furthermore, the Fourier transform of the force
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constants in Eq. (4.8) eliminates singularities in the dynamical matrix and, accord-

ingly, in the phonon dispersion relations, because of the long-range interaction cut-off

at the twentieth nearest neighbor. Such singularities in fact appear in the phonon

dispersion relations of the graphene sheet and metallic SWNTs, as discussed below

in Section 4.6. Also, the force constant approach developed in Section 4.1 excludes

anharmonic corrections to the dynamical matrix, which become essential for certain

phonon modes, as will be shown in Section 4.6. In this section, we directly calculate

the dynamical matrix within the ETB framework without using the force constant

approximation.

4.5.1 Supercell method

The frequencies of the optical phonon modes at the F point of the graphene sheet are

expressed from the equation of motion, Eq. (4.7), in the following form:

w(q) = - E E e (q)D,,s(q)e , (4.20)
/ a'

t 
Sa

where the dynamical matrix D8 ,ics(q) is obtained from the second variation 62E of

the total energy E per carbon atom with respect to the normal mode displacements:

62E = (q) e, (q) Da,,\s(q) ev (q), (4.21)

the factor of 1 stands for two atoms per unit cell, and q = 0 at the F point. Upon

substituting Eq. (4.21) into Eq. (4.20), the frequencies of the phonon modes are

written as follows:
2 62 E

w(q) - 2  (4.22)
SMp 2(q)

where 62E is calculated within the framework of the ETB model.

The normal mode displacements e',(q) in Eq. (4.21) for the optical phonon modes

I' = iLO, iTO(, oTO at the F point of the graphene sheet are determined by group

theory, as shown in Figs. 4-2 (d) to (f). The second variation of the total energy 62E
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in Eq. (4.22) is evaluated by a central finite difference approximation for the second

derivative of the total energy along the aforementioned normal mode displacements

with the step AR = 10- nm. The total energy E for the two-atom unit cell is

calculated from Eq. (3.27) on a 60 x 60 Monkhorst-Pack grid in reciprocal space. The

frequencies wiLO(r) = wiTO(rF) = 1797cm - 1 and woTO(r) = 825 cm- 1 obtained from

Eq. (4.22) deviate from the experimental data wiLO(F) = wiTO(r) = 1582 cm -1 and

woTO(F) = 868 cm - 1 [170] by factors of 0.8841 and 1.0292, respectively, in accordance

with the force constants listed in Table 4.8.

In a similar fashion, the frequencies of the RBM, GT , and GL phonon modes in

SWNTs are expressed by Eqs. (4.21) and (4.22) upon substituting the 1D angular

'r and linear q momenta from Eq. (4.16) for the 2D momentum q and switching to

cylindrical coordinates represented by the rotation matrices RZ (,,) in the dynamical

matrix De, ,o(1q, q) of Eq. (4.17). However, the normal mode displacements e', (rl, q)

in Eq. (4.21) for the RBM, GT , and GL phonon modes in SWNTs are not known

from group theory, as opposed to the graphene sheet, because of the lower symmetry

of SWNTs than that of the graphene sheet. For achiral armchair and zigzag SWNTs,

even though the circumferential and axial components of the atomic displacements

are decoupled by symmetry considerations, they are still allowed to mix with the

radial component [80]. For chiral SWNTs, the circumferential and axial components

are allowed to mix not only with the radial component but also with each other [128].

The normal mode displacements for the RBM, GT , and GL phonon modes thus deviate

from the pure radial, circumferential, and axial directions by a few degrees [121], as

shown in Fig. 4-21. The small deviations of the normal mode displacements lead to

significant changes in the frequencies of the phonon modes. Hence, the normal mode

displacements need to be determined along with the frequencies of the phonon modes

at the F point by diagonalizing the 6 x 6 dynamical matrix for SWNTs.

The 6 x 6 dynamical matrix for SWNTs is given by the Hessian of the total energy

E in cylindrical coordinates, as follows from Eq. (4.21) upon substituting 7r and q from

Eq. (4.16) for q:
1 82E

Ds2,'s ,(R, q) = R(4.23)
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Figure 4-22: The dots show the frequencies of the (a) RBM, (b) GT, and GL phonon
modes for all possible (n, m) SWNTs obtained by diagonalizing the dynamical matrix
of Eq. (4.23) calculated within the ETB framework and scaled by a factor of 0.88412,
as in Table 4.8. For the (4,2) SWNT, the frequencies of the RBM, GT , and GL

phonon modes are given by 524cm - 1, 1433cm - 1 , and 1536cm-', respectively. The
red, green, and blue dots correspond to MO, S1, and S2 SWNTs, respectively. The
curves show the least-square fits to the experimentally observed frequencies of the
R,BM, G-, and G+ Raman modes according to Eq. (4.24).

where c', a == r, 4, z correspond to the radial, circumferential, and axial directions,

according to Eq. (3.30), the factor of 1 is associated with the second partial derivative

of the total energy E, while 1 from Eq. (4.21) is compensated by the orthonormality

condition of Eq. (4.3), rq = 0 and q = 0 at the F point, and the index u' labels

the unit cell under consideration. The second partial derivatives of the total energy

E in Eq. (4.23) are evaluated by a central finite difference approximation with the

step AR = 10- 4 nm. The total energy E is calculated from Eq. (3.27) on a 1D

Monkhorst-Pack grid of (1 ,m/T) k-points along the cutting lines in the helical-

linear representation and scaled by a factor of 0.88412, as in Table 4.8. For the (4, 2)

SWNT, the iD Monkhorst-Pack grid consists of 884 k-points.
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Diagonalizing the dynamical matrix of Eq. (4.23) yields the frequencies and the

normal mode displacements for the RBM, GT, and GL phonon modes in SWNTs.

The frequencies of the RBM, GT, and GL phonon modes as functions of the inverse

SWNT diameter are shown in Fig. 4-22. Note that for MO SWNTs, the frequencies

of the GL phonon modes are softened below the frequencies of the GT phonon modes.

The softening mechanism will be discussed in Section 4.6. For the (4, 2) SWNT, the

frequencies of the RBM, GT , and GL phonon modes are given by wRBM(r) = 524 cm-',

wc'r(F) = 1433cm-1, and wGL(F) = 1536cm-1, in good agreement with the results

of the curvature-adapted force-constant model shown in Figs. 4-17 (c). The normal

mode displacements for the RBM, GT , and GL phonon modes are approximately

aligned with the radial, circumferential, and axial directions of the SWNT within a

few degrees [121], as shown in Fig. 4-21 for the (4, 2) SWNT.

The frequencies of the RBM, GT , and GL phonon modes shown in Fig. 4-22 can

be directly compared with the experimental results. The resonance Raman spec-

tra of SWNTs show three main peaks, the RBM and the G-band whose lower and

higher frequency components are referred to as G- and G+ , as will be discussed in

Section 5.3. The least-square fits to the experimentally observed frequencies of the

RBM, G-, and G+ Raman modes from SDS-wrapped HiPCO SWNTs in D20 [63]

and individual CVD SWNTs on a Si/SiO2 substrate [64, 67] as functions of the SWNT

diameter yield the following dependencies:

RBM( )  227cm-'nm

dt

G- 79.5 cm--nm2
w (F) = 1592 cm - - 79 2 nm for MO,

d1 14 (4.24)
G'- 141.4cm-lnm'4

w- (F) = 1592cm-1 -  .4 for Si and S2,

WG+ () = 1592 cm - 1 ,

shown by the curves in Fig. 4-22. Upon comparing theoretical dots with experimental

curves in Fig. 4-22, we find a good agreement for the RBM frequencies. For SI and

S2 SWNTs, the G- and G + Raman bands are attributed to the GT and GL phonon
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modes, respectively. For MO SWNTs, the softened GL phonon mode fits nicely the

G- Raman band. However, there is a significant frequency mismatch between the

theoretical GT phonon mode and the experimental G+ Raman band in MO SWNTs.

The origin of the G+ Raman band in MO SWNTs requires further theoretical and

experimental studies.

For a general phonon wavevector away from the I point in the graphene sheet

and SWNTs, the proper supercell commensurate with the lattice distortion should

be brought into consideration, as shown in Section 3.3 for the K point. The dynam-

ical matrix of proper dimension is then constructed, similar to the 6 x 6 dynamical

matrix of Eq. (4.22) for the F point. The supercell approach is thus very efficient

for the phonon modes at high symmetry points in the first Brillouin zones of the

graphene sheet and SWNTs, when the dynamical matrix has a small dimension.

However, the size of the supercell and, accordingly, the dimension of the dynamical

matrix drastically increases away from the high symmetry points, making the super-

cell method impractical. To overcome this complexity, in Section 4.5.2 we employ

the linear response approach originally developed within the framework of density-

functional perturbation theory (DFPT) [10] and recently implemented for the ETB

framework [121]. Within the linear response theory, the dynamical matrix for a gen-

eral phonon wavevector is calculated on a single two-atom unit cell of the graphene

sheet and SWNTs [10, 121].
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4.5.2 Linear response method

Within the linear response method, the dynamical matrix DSt,,,(q) for the graphene

sheet is associated with the second variation 62E of the total energy E per carbon

atom with respect to the normal mode displacements e~a(q), according to Eq. (4.21).

The variation 62 E is obtained by second-order perturbation theory with respect to a

static lattice deformation:

ri = I= p(q) (exp (+iqRus)e'(q) + exp (-iqRus)e:* (q))us728S (4.25)

emphasizing a specific phonon wavevector q from Eq. (4.2) [10]. The second variation

of the total energy 62 E consists of four terms [121]:

62E = 62 E (1) + 62 E (2) +6 2E (3) + 62 E (4) , (4.26)

taking into account the nonorthogonality of the ETB basis set [93]. The term 62E(1)

in Eq. (4.26) is similar to the expression for the Hellmann-Feynman force, substitut-

ing the first partial derivatives of the Hamiltonian Hoyo(k,) and overlap Ss,ooo(k,)

matrices in Eq. (3.28) with the second partial derivatives:

62 1 2 2 3 2 3 1 W 8
E p (q E E EE E E nC( w

2 o o a (Rue s,-2U 02 [(exp (Rik (Rus - R)s))t, (Ioo,(R - R , 1)])]
x Z1 0 (S a (Rusa1 - Ru'S'Q') a (RUSa -Ruya

-Eb(k) [exp (±ikw (Rus,, - Ru,,))s0 , (IRs, - RI• ) Cs (kw)

a (Rusa, - Rusto) a (R-us - RuyS'')

x (e, (q) - exp (+iq (R2u - Ru•))e ,',(9)

x (e•"(q) - exp (-iq (Ru.s - ,,,))e",q)

(4.27)

The terms 62E (2) and 62E (3) in Eq. (4.26) involve the first partial derivatives of

the Bloch amplitudes Cso(kw) decomposed into the Bloch amplitudes Cso(k,, + q)

and Cqo(k, -- q), respectively, describing the scattering between the electrons with
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wavevectors k., and k, + q by the phonons with wavevector q:

62E ( ") = - S 2 3 2 1 W 8 8 nb(k ) (2 n b' (k w + q) )
pb (q) W Eb(k,) - Eb'(k + q)S/ aw bl b

Cb,*, (kw) [ exp (+ik, (R , _ - R 's,))too,(IRu, - Rs, D)]
a (Russ - Ru'sia')

SEb(k [exp (+ik, (Rus, - Ru"s))soo,(IR,s - R~1•1)]2

x (exp (-iq (R - ))(q) - e,(q)

Sq) [ exp (+ik, (Rs - Ru,s,))too, (IRu, - RIUsi )]
S(Rusa - Ruis'a)

b [exp (+ikw, (Rs, - R-us,))Soo, ( Ru - R) Co (kw)
-Eb(k,,) Jsokw)

x (e"(q) - exp (-iq (Rus - Rus,))el"(q)

and

nbE(k,)(2 - n b(k, - q))

Eb(k) - Eb'(kw - q)

Co,(kw) a( [exp (+ik, (Rs, - R•,,))too, (Ru, - R,, 1)]0 (Rusa, - Rya,)

& [exp (+ik, (Ru, - R•,•))soo, (I R, - R•I)]) -Cso(kw - q)
& (Rusa, - Ruisa')

x (exp (+iq (Rus - R•,,))ev', (q)

Cb'o*, (k, -4

(4.29)

q) 0([exp (+ik( (R s, - Rus,))too,(IRus - Ru, )]
0 (Rusa - Rusa)

-Eb(kw) a [exp (+ikw, (Rus, - Ru,,))soo,(IR_,, - R,,I1)] Cso(kb
e (Rusa - Ruisia)

x (e"(q) -- exp (+iq (Rus - Rus,))e*,a(q) .

The term 62E(4) in Eq. (4.26) arises from the second derivatives of the short-range
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repulsive potential v(I Ru - R~,1,) between pairs of carbon atoms in the total energy

given by Eq. (3.27):

42 3 2 3 1 U d2v(IR 8 - RuyI)
2 S, a/ a 2 u d (Rusa, - Rusa/r) d (Rusa - Rus'o)

x (e*,(q) -- exp (+iq (Ru -Ru,,)),P`, (q))

x (e'(q) - exp (-iq (Rus - Rus,))e,•(q)

(4.30)

By comparing Eq. (4.21) with Eqs. (4.26) to (4.30), the dynamical matrix Dsict,,(q) for

the graphene sheet is obtained. Diagonalizing Ds,,,,(q) yields the phonon dispersion

relations identical to those shown in Fig. 4-14 [121]. The linear response method thus

gives the same results for the graphene sheet as the AFC model.

The dynamical matrix Ds,,,s,(7, q) for SWNTs is obtained upon multiplying e' by

Rz(O,,) and substituting qRu, with (r770, + qzus) and k,,R, with (p•,~, + kzu,)

in Eqs. (4.26) to (4.30), by analogy with Eq. (4.17). Diagonalizing D,,',,s(0, 0) yields

the frequencies of the RBM, G-, and G+ phonon modes identical to those shown

in Fig. 4-22 [121]. The linear response method predicts the frequency softening for

the G+ phonon modes in metallic SWNTs [121], similar to the supercell method in

Section 4.5.1. Furthermore, the linear response method also predicts the frequency

softening for certain phonon modes away from the F point in metallic SWNTs [121],

where the supercell method becomes impractical, as discussed in Section 4.5.1. The

mechanism of the frequency softening in metallic SWNTs will be discussed below in

Section 4.6. For the RBM, G-, and G+ phonon modes, the linear response method

yields the normal mode displacements aligned with the radial, circumferential, and

axial directions of the SWNT within a few degrees [121], as shown in Fig. 4-20 for

the (4, 2) SWNT. This contradicts the results of the early first-principles calcu-

lations [128], but on the other hand, these early calculations did not predict the

frequency softening in metallic SWNTs. Future studies are expected to clarify the

present debate about the directions of the normal mode displacements in SWNTs.
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4.6 Phonon frequency softening

The frequency softening of the G+ phonon mode in metallic SWNTs predicted by

the ETB calculations in Sections 4.4 and 4.5 has in fact been observed by resonance

Rarnan scattering from SWNT bundles [116]. Similarly, the overbending of the iLO

phonon mode around the F point and the softening of the iTO phonon mode around

the K point in the graphene sheet obtained within the ETB framework in Section 4.3

have recently been measured by inelastic x-ray scattering from a graphite flake [92].

The frequency softening is attributed to Peierls instabilities in metallic SWNTs [38]

and to Kohn anomalies in the graphene sheet [117]. The Peierls instability, analogous

to the Jahn-Teller effect in molecular systems, occurs when a phonon mode opens a

dynamical (oscillating with the phonon frequency) band gap at the Fermi level EF in

a graphene sheet [162] and in metallic SWNTs [38]. The Kohn anomaly occurs when

electrons at the Fermi surface screen the phonon mode in a graphene sheet [117]

and in metallic SWNTs [9, 13, 27, 121]. The two aforementioned phenomena are

manifestations of the same underlying electron-phonon coupling mechanism. When

a. phonon mode opens a dynamical band gap, all the valence electrons lie in states

whose energy is lowered, thus reducing the total energy and softening the phonon

frequency. On the other hand, the soft phonon mode induces electron scattering at

the Fermi surface, which in turn generates charge density waves, opening a dynamical

band gap [137].

4.6.1 Peierls instability

The Fermi surface for the graphene sheet is reduced to the K and K' points in the

first Brillouin zone, as shown in Chapter 3. The electrons at the Fermi surface are

thus scattered either within the same K or K' point by the phonon modes around the

I point, or between different K and K' points by the phonon modes near the K or

IK' point, as will be discussed in Section 5.3. The normal mode displacements for the

phonon modes of the graphene sheet at the F and K points are shown in Figs. 4-2

and 4-4, respectively. Among these phonon modes, only the iLO and iTO at the F
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point and the iLA, iLO, and iTO at the K point are strongly coupled to w-electrons,

while the other 7 phonon modes do not change the interatomic distances in the first

order approximation, and therefore they are are only weakly coupled to 7r-electrons

(though 4 of them are strongly coupled to a-electrons by changing the bond angles).

The STB Hamiltonian of Eq. (3.9) for the graphene sheet distorted by the iLO

and iTO phonon modes at the F point takes the form:

H ( + Ahv(k) tfv(k) + agv(k)
tfv* (k) + ag"v* (k) E + Ah"(k)

with terms f"(k), g"(k), and h"(k) being defined as follows:

3

f"(k) = exp (ik (RB - ROA + rj -r)),

3 (RB - ROA) (r - rOA)
9V(k) = exp (ik (RIB - ROA+r 3 - rA)) , (4.32)

SOacc

3 (RsB - ROA) (rB - rA)
hv(k) Z acc

3 acC

instead of Eq. (3.8). The overlap matrix in Eq. (3.9) is omitted for simplicity, the

transfer integral t is renormalized to (t - es) and s is set to zero, according to

Eq. (3.14). Employing the ETB parameters from Section 3.6, we find E = -5.372 eV,

s = 0, and t = -3.370 + 5.372 x 0.151 eV = -2.56 eV. The on-site A and off-site a

electron-phonon coupling (EPC) coefficients are given by the derivatives of E and t

with respect to the interatomic distance yielding a = 76.6 - 5.372 x 3.43 eV/nm =

58.2 eV/nrn. Within the ETB framework, the atomic orbital energy e is a constant

parameter and A is approximated by 1 of the derivative of the short-range repulsive

potential v, so that A = -ý x 106.3eV/nm = -39.9eV/nm.

The coordinates Rs and displacements r' of the atomic sites within the two-atom

unit cell and their first nearest neighbors are numbered by index 3 from 0 to 3, as

shown by the red numbers in Fig. 2-1 (a). The atomic displacements are written in

the following form:
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r = p exp (-iwt)e'(O) + exp (+iwt)e* (0)) , (4.33)

emphasizing the F point phonon modes from Eq. (4.2), where the subscript v and

the argument q = 0 of the amplitude of the normal mode displacements p and the

frequency of the phonon modes w are omitted for brevity. Substituting the normal

mode displacements e'(F) shown in Figs. 4-2 (d) and (e) into Eqs. (4.33), (4.32)

and (4.31) and setting the determinant of H to zero, we find that the Fermi points

kF and k' oscillate at the phonon frequency with displacement amplitudes AkF and

Ak' around the K and K' points [38]:

2/apSAk = -2vap cos wt ýc and Ak' = - AkF for the iLO E 2g mode,

Ak = + coswtSr and Ak' = -AkF for the iTO E2g mode,

(4.34)

determined by the off-site EPC coefficient a, since the terms in Eq. (4.31) with the

on-site EPC A coefficient that are linear in p/a cancel out for the normal mode

displacements shown in Figs. 4-2 (d) and (e).

Since the lattice distortions caused by the phonon modes at the K point are incom-

mensurate with the two-atom unit cell, the six-atom supercell must be introduced as

described in Section 3.3. The first Brillouin zone of the supercell is triple-folded, with

both the K and K' points (kF and k') mapped to the r point. The electronic states at

the F point are therefore four-fold degenerate, which, however, is lifted by the lattice

distortions caused by the K point phonon modes. To study the degeneracy-lifting

mechanism we employ group theory.

The group of the wavevector Gk (Gp or GK) is isomorphic to the group D2h when

the graphene sheet is distorted by the E2g F or E' K point phonon modes shown in

Figs. 4-2 (d), 4-2 (e), 4-4 (a), and 4-4 (d). The four-fold degenerate electronic state at

the F point thus consists of the four one-dimensional (ID) irreducible representations

of group D2h: two B1, (valence bands) and two B2g (conduction bands). This state

therefore splits into two two-fold degenerate states Bl,+B 2g below and above the
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Fermi level EF. Such a splitting shifts the band-crossing points kF and k' away

from the F point to states k and -k, respectively, maintaining the time-reversal

symmetry requirement k'F = -kF. This shift is allowed by group theory because

the star of a general wavevector k z 0 (the set of wavevectors generated from k

by point group operations) consists of two states, k and -k. The magnitude of

this shift is determined by the off-site EPC coefficient a for the E2g F point phonon

modes, according to Eq. (4.34), and by the on-site EPC coefficient A for the E' K

point phonon modes, for which AkF and AkM. are similar to Eq. (4.34), but with 1 A

substituted for a.

The group of the wavevector GK is isomorphic to the group D6h when the graphene

sheet is distorted by the A' K point phonon mode shown in Fig. 4-4 (b). The four-

fold degenerate electronic state at the I point consists of the two 2D irreducible

representations of group D6h: E2,, (valence bands) and Elg (conduction bands). This

state is therefore not required to split by group theory. If it splits, however, a band

gap will be opened at the F point. Indeed, there are only two inequivalent Fermi

points, kF and kj', while the star of a general wavevector k : 0 consists of six states.

Thus, kF and k' cannot move away from the F point.

To check whether the A' K point phonon mode opens a dynamical band gap at the

F point, we construct the 6x6 STB Hamiltonian at k = 0 for the six-atom supercell.

Labeling atoms in the supercell as shown by the red numbers 1 to 6 in Fig. 3-6 (a),

so that atoms 1 to 3 (4 to 6) belong to the A (B) sublattice, the Hamiltonian for an

ideal graphene sheet takes the following block diagonal form:

/ .

OeOttt

OOct tt

ttte00

tt 0e0

-f 4 n n

(4.35)

Setting the determinant of the Hamiltonian to zero yields the following electronic
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states at the F point:

E,= (E + 3t, E, E, E, , E- 3t). (4.36)

The four states ELb = e (band index b = 2, 3, 4, 5) are found to be degenerate, in

agreement with the aforementioned predictions by group theory.

For the graphene sheet distorted by the A' symmetry K point phonon mode,

we construct the STB Hamiltonian considering the atomic displacements shown in

Fig. 4-4 (e). Keeping only terms linear in p/a, the A-terms in the diagonal terms of

the Hamiltonian cancel out, while the a-terms in the off-diagonal blocks survive:

/

H = Ho + ap cos wt

U U U Z -1 -1

0 0 0 -1 2 -1

0 0 0 -1 -1 2

2 -1 -1 0 0 0

-1 2 -1 0 0 0

-1 1 9 0 0 0

(4.37)

Setting the determinant of Eq. (4.37) to zero yields the following electronic states:

Eb = Eb + p cos t (0, -3, -3, 3, 3, 0). (4.38)

The At K point phonon mode thus splits the four-fold degenerate electronic state

described by Eq. (4.36), E0b = E (b = 2, 3,4,5), into the two two-fold degenerate

states, Eb = F - 3ap cos wt (b = 2, 3) and Eb = E + 3ap cos wt (b = 4, 5), according to

Eq. (4.38). This splitting opens up a dynamical band gap of width [162]:

AE, = 6apcoswt for the iTO A' mode, (4.39)

determined by the off-site EPC coefficient a, since the terms in Eq. (4.37) with the

on-site EPC A coefficient that are linear in p/a cancel out for the normal mode

displacements shown in Fig. 4-4 (e). The Peierls instability induced by the dynamical

band gap of Eq. (4.39) is analogous to the dimerization of benzene.
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For a general phonon wavevector q away from the F, K, and K' points, the size of

the supercell increases significantly, thereby making the supercell method impractical,

as discussed in Section 4.5.1. We thus implement the linear-response method reviewed

in Section 4.5.2 which operates within the two-atom unit cell of the graphene sheet [10,

121]. In the first order approximation, the amplitudes AkF, Ak', and AE, scale with

the phonon wavevector q as follows:

AkF (qr) = 1 - 3qr2 AkF (0) and AkMp (qr) = -AkF (qr) ,
(4.40)

AEg (qK) (1 3qK) AE, (0) and AE 9 (qK') = AE 9 (-qK)
2xa

where qr = q-F, qK = q-K, and qK' = q-K' are the phonon wavevectors measured

from the F, K, and K' points, respectively, and the values with the argument 0 are

given by Eqs. (4.34) and (4.39). The amplitudes AkF, AkM, and AEg thus reach

their maximum values at the F, K, and K' points, vanishing halfway between the F,

K, and K' points.

Let us estimate the numerical values of AkF and AEg given by Eqs. (4.34)

and (4.39), respectively. Within the second quantization formalism, the amplitude of

the normal mode displacements is given by:

_ V'ha2m
pw 2n  (4.41)

4Mw '

where n is the phonon occupation number, M is the mass of a carbon atom, and

w = 1582 cm - 1 and w r 1300 cm - 1 are the frequencies of the E2g F and A', K point

phonon modes [37, 99, 121, 170]. The Bose-Einstein distribution:

n"(q) = (4.42)S hw(q,)exp kBT 1kBT

at room temperature T = 300 K takes values n = 5 x 10- 4 for the E2g F and n =

2 x 10- 3 for the A'1 K point phonon modes. The density of phonon states in the

graphene sheet is given by 1/A per phonon mode, where A = v/-3a 2/2 = 0.052 nm 2
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is an area of the unit cell. On averaging the scaling factors in Eq. (4.40) over the

first Brillouin zone, the effective density of phonon states contributing to AkF and

AE 9 is reduced by a factor of 7r/(V3 x 18) = 0.1 for each of the iLO E2g F, iTO E2g

F, iTO A' K, and iTO A' K' point phonon modes. Putting all the factors together

yields 71 = 10-4 nm - 2 for the E2g F and n = 8 x 10-4 nm - 2 for the A' K point

phonon modes. We then obtain from Eq. (4.41) p = 0.7 x 10- 5 nm for the E2g F and

p = 2.1 x 10- 5 nm for the A' K point phonon modes. Substituting these values into

Eqs. (4.34) and (4.39) yields IAkFl = 1.3 x 10- 4 JIK along the f: and S directions for

the iLO and iTO components of the E 29 F point phonon mode, and AEg = 10 meV

for the A' symmetry K and K' point phonon modes, where jKI = 47r/(3a).

4.6.2 Kohn anomaly

The electronic dispersion relations of an ideal graphene sheet and the graphene sheet

distorted by the A' K point phonon mode at T=300 K calculated within the ETB

framework are shown in Fig. 4-23 (a) by dashed and solid curves, respectively. Con-

sidering that; the amplitude of the dynamical band gap AEg is less than the thermal

energy k13T = 26 meV at room temperature T = 300 K, the former does not affect

the transport properties of the graphene sheet, though it softens the frequency w of

the A' phonon mode at the K point by reducing the electronic contribution to the

second variation of the total energy 62E, according to Eq. (4.22). In the harmonic

approximation, 62E = o p2 cos2wt, where 00 is the effective force constant for the

A'1 phonon mode at the K point. By integrating the valence band structure of the

graphene sheet with the dynamical band gap of amplitude AEg over the 2D Brillouin

zone, we find that the decrease in 0o at T = 0 K is proportional to AE . Substituting

AEg from Eq. (4.40) yields the Kohn anomaly linear in qK around the K point [117]:

( (4.43)

1 = 00 - 01 1 2 3qK (4.43)

M- 27r 0 27r '
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Figure 4-23: (a) The electronic dispersion relations of an ideal graphene sheet (dashed
curves) and the graphene sheet distorted by the A' K point phonon mode at T=300 K
(solid curves) calculated within the ETB framework. (b) The phonon dispersion
relations of the graphene sheet calculated within the ETB framework at T=0 K (gray
curves) and from Eq. (4.43) (solid black curves). The dashed black line shows the
leading term in Eq. (4.43). The wavevector units are IKJ = 47r/(3a).

where ~ýi is the force constant softening associated with AEg (0) from Eq. (4.39).

Upon fitting: the phonon dispersion relations in Fig. 4-14 (b) calculated within the

ETB framework to the functional form of Eq. (4.43), we obtain 0o = 163 x 104 dyn/cm

and d1 = 37 x 104 dyn/cm. The phonon dispersion relations defined by Eq. (4.43)

around the K point and those from Fig. 4-14 (b) are shown in Fig. 4-23 (b) by black

and gray curves, respectively. In a similar fashion, the E2g phonon mode at the F

point exhibits a Kohn anomaly for which 01 in Eq. (4.43) arises from AkF (0) instead

of AE, (0) and qr is substituted for qK. This results in the phonon dispersion relations

linear in qr that reproduce the overbending of the iLO phonon mode around the F

point shown in Fig. 4-14 (b) [117].

The Kohn anomaly is governed by the electronic contribution to the total energy

E, which in turn depends on the doping level and the thermal distribution of electrons.

As the Fermi level EF is moved into the valence or conduction band, the dynamical

band gap AE•Ž, induced by the A'1 K point phonon mode in the graphene sheet has
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Figure 4-24: The frequencies of the E2g P and A' K point phonon modes in the
graphene sheet in a central finite difference approximation for the second derivative of
the total energy calculated within the ETB framework as functions of (a) doping level
and (b) central finite difference step size. The frequency dependence on (a) doping
and (b) step arises from (a) the dynamical band gap and (b) cubic anharmonicity in
the total energy, which is in turn attributed to the dynamical band gap.

less contribution to E, or in other words, 01 decreases, so that the Kohn anomaly is

smeared out in Eq. (4.43). This is seen in Fig. 4-24 (a) where we show the frequency

of the A', phonon mode at the K point as a function of the doping level calculated in

a central finite difference approximation with the step AR = 10-4 nm for the second

derivative of the total energy within the ETB framework on a 34 x 34 Monkhorst-Pack

grid in reciprocal space and scaled by a factor of 0.8841 as in Table 4.8. In contrast,

the Kohn anomaly associated with the E2g F point phonon mode does not induce

the dynamical band gap and consequently is not smeared out by the doping. The

frequency of the E2g phonon mode at the F point calculated on a 60 x 60 Monkhorst-

Pack grid only changes by a few wavenumbers with the doping level, as shown in

Fig. 4-24 (a). In a similar fashion, temperature T smears out the Kohn anomaly in

the A'1 phonon mode at the K point [117].

Furthermore, the dynamical band gap AEg induced by the A' K point phonon

mode in the graphene sheet gives rise to a large anharmonic term proportional to p3
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in the second variation of the total energy 62E of Eq. (4.43). Indeed, the frequency of

the A' phonon mode at the K point shows a strong dependence on the central finite

difference step size AR, according to Fig. 4-24 (b), and AR is equivalent to p for the

frequency calculations. In contrast, the frequency of the E 2g phonon mode at the F

point also shown in Fig. 4-24 (b) only changes by a few wavenumbers with AR, even

though the E29 F point phonon mode undergoes a Kohn anomaly. The anharmonicity

suggests the importance of the A' K point phonon mode for thermal conductivity

in the graphene sheet and SWNTs. It also implies that the overestimation of the

frequency of the A' phonon mode around the K point in Fig. 4-12 arises from the

large step size AR = 3 x 10- 3 nm used for calculations of the force constants in

Table 4.7. The step size of AR = 3 x 10-3 nm corresponds to T = 31000 K for the

A'1 K and T = 43000 K for the E2g F point phonon modes, according to Eqs. (4.41)

and (4.42). A formal treatment of vibrational anharmonicity in the graphene sheet

and SWNTs involves calculations of the phonon-phonon scattering matrix elements

within the ETB framework, following the conceptual approach of Chapter 5, that will

be the subject of future work.

For metallic SWNTs, the iTO K point phonon mode induces oscillations of the

optical transition energies Eii around equilibrium values with amplitude AE, given by

Eqs. (4.39) and (4.40). The iLO F point phonon mode in metallic SWNTs (involving

atomic vibrations along the SWNT axis, as shown in Fig. 4-21 (c)) also causes Eii to

oscillate since AkF and Ak' are perpendicular to the cutting lines [38]. Integration

of the valence subbands along the cutting lines at T = 0K yields two terms per

subband in V2E, the first is proportional to -EZ analogous to the term containing 01

in Eq. (4.43). and the second given by EE In Eii arises from the 1D nature of AE 9 in

SWNTs. For truly metallic armchair SWNTs, E 00 = 0 at equilibrium and AE, gives

rise to the Kohn anomaly logarithmic in qK and qr around the K and F points:

E 1 +2 3qza 2 cos2wt (2E 

= 

4 .0 4n 

27 

4

1 + ,3qza V (I +1 3qza (4.44)
S+ 21 In 27r 1 +0 In2

M~ 2ix M 4 2x
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where Z = K or F. For mini band gap semiconducting chiral and zigzag SWNTs,

Eoo 5 0 yet Eoo < Ell, and we can express 62E in a series expansion with respect to

AEg assuming AEg < Eoo. Summing contributions from all the valence subbands,

terms linear in E, cancel out, and 62E is determined by AE2 similar to Eq. (4.43).

The Kohn anomalies at the K and F points in both truly metallic armchair and

mini band gap semiconducting chiral and zigzag SWNTs are smeared out when the

Fermi level crosses the 1D dynamical band gap AEg. The frequencies of the G- and

G'-bands measured by resonance Raman spectroscopy from SWNT bundles [123, 124]

show a dependence on the doping level similar to the one shown in Fig. 4-24 (a) for the

graphene sheet. The logarithmic divergence of the iTO K and iLO F point phonon

modes in Eq. (4.44) induces the static Peierls distortions in truly metallic armchair

SWNTs at low T [9, 13, 27, 121], while the mini band gap semiconducting chiral

and zigzag SWNTs do not exhibit the static Peierls distortions. With increasing T,

the logarithmic divergence is removed by the electron screening [27], which is only

partially included in the ETB framework. The frequencies of the iTO K and iLO

F point phonon modes show a pronounced anharmonic behavior in truly metallic

armchair SWNTs, similar to the frequency of the iTO A' K point phonon mode

in the graphene sheet shown in Fig. 4-24 (b). A more detailed study of vibrational

anharmonicity in SWNTs will be the subject of future work.

4.7 Summary

We started this chapter by reviewing the basic force-constant (BFC) models for the

flat graphene sheet commonly used to study the vibrational properties of SWNTs.

We showed that these models do not show satisfactory agreement with the experi-

mental data acquired over the years by various experimental techniques. The phonon

dispersion relations calculated within the BFC models also diverge from the results of

first-principles calculations. In particular, Kohn anomalies in the phonon dispersion

relations of the graphene sheet and metallic SWNTs are smeared out by the Fourier

transform of the force constants due to the long-range interaction cut-off within the
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BFC framework.

To overcome the aforementioned limitations, we develop an advanced force-constant

(AFC) model by including the long-range atomic interactions and incorporating the

curvature of the SWNT sidewall. The force constant parameters for the AFC model

are calculated within the extended tight-binding (ETB) framework developed in

Chapter 3. Even though the AFC model shows good agreement with experiments

and first-principles calculations, the force-constant approach still partially smears out

Kohn anomalies and does not include anharmonic corrections. A direct calculation of

the reciprocal-space dynamical matrix without utilizing the real-space force constants

is thus preferable. Such a calculation is performed within the ETB framework using

either the supercell method for the high symmetry points in reciprocal space or the

linear response method adopted for the ETB framework.

The supercell method and especially the linear response method provide a pow-

erful tool to study the vibrational properties of SWNTs under controlled conditions.

Electrochemical doping [28, 123, 124] and uniaxial or torsional strain [29] cause the

RBM, D, G'-, G + , and G' Raman bands to shift in their frequencies and relative

intensities. These frequency shifts can be calculated within the supercell or linear

response method, though more systematic experimental studies are needed to check

the computational results. A detailed comparison of the theoretical and experimental

frequency shifts is the subject of future work.
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Chapter 5

Interaction with light

This Chapter presents a quantum-mechanical framework for calculating the intensities

of light scattering, absorption, and emission by the graphene sheet and SWNTs.

We start this section by deriving the electron-photon and electron-phonon transition

matrix elements within the ETB framework. We then calculate the second-order

resonance Raman spectra of the graphene sheet using time-dependent perturbation

theory. The calculated spectra show good agreement with the experimental spectra

and allow us to identify the origin of the previously unassigned Raman modes. We

also review the current progress and suggest future directions in the calculations of

resonance Raman and photoluminescence spectra of SWNTs.
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5.1 Electron-photon interaction

The optical dipole transitions in the visible range occur between the ir bonding and

7r* antibonding molecular orbitals in the graphene sheet and SWNTs. The dipole

selection rules prohibit an optical transition between the 2p orbitals of a carbon

atom. However, the optical transition between the 2p orbitals on adjacent carbon

atoms within the graphene sheet and on the walls of SWNTs is allowed by the dipole

selection rules. Within first-order time-dependent perturbation theory, the optical

dipole transition matrix element between the initial i and final f electronic states in

the graphene sheet is given by [48, 133, 138]:

M"b'b(kf, ~, ki) = (b'(k, r, t) i hAA(, r, t) V Ib(k rt)) , (5.1)
m

where b is the band index, A is the polarization index, k is the electron wavevector, Kr

is the photon wavevector, e is an elementary charge (e > 0), h is Planck's constant,

mr is the electron mass, AA(K, r, t) is the vector potential of the electromagnetic field,

V is the gradient operator, Vb(k, r, t) is the one-electron wavefunction of Eq. (3.2), r

is the spatial coordinate, and t is time.

Within the second quantization formalism, the vector potential of the electromag-

netic field takes the following form:

A (K, r, t) = 2 o(,) exp (+irr - iw()t)P (5.2)
+ /nA(,) + I exp (-inr + iw(,)t)P ) ,

where K is the dielectric constant, ,0 is the dielectric permittivity of free space, V is

the quantization volume for the electromagnetic field, nX (r) is the photon occupation

number, w(K) is the photon frequency, and PA is the photon polarization vector.

The optical transition rate is determined by Fermi's Golden Rule:

Wb' b (kf, n, ki) = I t dt Mb'Ab(k,, r, ki) 2 (5.3)
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where tj is the electron-photon interaction time. Integration over time t in Eq. (5.3)

gives the delta function 6(Eb' (kf) : hw(n) - Eb(ki)) that expresses the energy con-

servation. We thus conclude that the two terms in Eq. (5.2) describe the light ab-

sorption and emission processes, respectively. For the light absorption process, the

electron is scattered from the 7r valence to the w* conduction band, b = v and b' = c,

and vice versa for the light emission process. The induced and spontaneous emission

processes are represented by the terms nA(r.) and 1 under the square root in Eq. (5.2),

respectively.

Equipped with the energy conservation, we can now examine the spatial integral

in Eq. (5.1). usually expressed in the form of the dipole vector:

Db'b(kf, 7±, ki)= (ib'(kj,r,O) exp(iiKr)V IVb(ki, r,O)) . (5.4)

The dipole vector of Eq. (5.4) can be simplified by taking into account that the

slope of the electronic dispersion relations V/3 (Es - t) a given by Eq. (3.14) is much

smaller than the slope of the photon dispersion relations hc/V-, where c is the speed

of light in vacuum. Implementing the energy conservation, the above relation leads

to the inequalities r < Iki - KI and r < 1kf - KI. Accordingly, the phase factor

exp (±iir) in Eq. (5.4) is approximated with exp (±iiR,,s,). Substituting the spatial

phase factors from Eq. (3.2) into Eq. (5.4) and summing over the unit cell index u' then

yields the momentum conservation, (-kf ± r. + ki) = 0, for the light absorption and

emission processes, respectively. In the dipole approximation, r, is neglected, K = 0,

and the optical dipole transitions are vertical, ki = kf = k.

In the dipole approximation, the optical dipole transition matrix elements for the

light absorption and spontaneous emission processes, M,"'(k, 0, k) and MXAc(k, 0, k),

respectively, are obtained upon substituting Eqs. (3.2) and (5.2) into Eq. (5.1):

M1 A"(k, 0, k) =i eh P Dcv(k, 0, k) ,
mV 2 -Koc (5.5)

M (k, 0, k) = P D (k, 0, k)
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where I is the radiant flux density for the incoming light beam:

W 2

1= hw(,n,) Zn(a, ) , (5.6)
wv A

where the sum is taken over the W phonon wavevectors and the two polarizations.

By substituting the one-electron wavefunctions Ib(k, r, 0) from Eq. (3.2) into

Eq. (5.4), we express the dipole vector Db'b(k, 0, k) in the following form:

Db'b(k, 0, k) = Cs,*o (k)Do,so(k, 0, k)C o(k) , (5.7)
S'O1 

SO

where Dsoso(k, 0, k) is the dipole matrix:

1 U
Dsoso(k, 0, k) = - exp (ik (Rus - Rus,))doto(Rus - Ruy), (5.8)

and do,o(R) is the atomic dipole transition vector:

doo(R) = o,(r)Vqo(r - R)dr. (5.9)

Here, o0 (r) is the atomic orbital, R = R,, - Rus, connects the two interacting atoms,

and u' labels the unit cell under consideration.

While the o = 2s atomic orbitals are spherically symmetric, the o = 2p atomic or-

bitals should be projected into the a and 7r molecular orbitals along and perpendicular

to R, as shown in Fig. 3-2. The atomic dipole transition vectors of Eq. (5.9) are then

decomposed into the nine components for the different configurations of molecular

orbitals. These configurations are shown in Fig. 5-1 along with the gradient operator

that enters Eq. (5.9). The directions of do,,(R) can be either parallel or perpendicu-

lar to R, as shown by arrows in Fig. 5-1, according to the symmetry of the spherical

harmonic Y2 1 (0, ¢). Along these directions, the magnitudes do,o = do,ol only depend

on the interatomic distances R = JRI. The configurations of the molecular orbitals

that have the same do,o(R) are connected by dashed lines in Fig. 5-1. For the five

inequivalent configurations ob = ss,sa,a,irwr,sir in Fig. 5-1, the atomic dipole tran-
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Figure 5-1: The molecular orbital configurations o'o = ss,sa,as,cax,x7Tr,sr,w;rs,acirw
for the atomic dipole transition matrix elements do,o(R) similar to those shown in
Fig. 3-3. The red V indicates the gradient operator applied to the orbital o. The
directions of do,o(R) are shown by arrows (a) parallel and (b) perpendicular to the
interatomic vector R = Rus - R,s,. The dashed lines connect the configurations
with the same do,o(R). The Chebyshev polynomial expansions of do,o(R) are given in
Table 5.1. The calculated do,o(R) dependencies are shown in Fig. 5-2.

sition matrix: elements do,o(R) are calculated using the pseudoatomic wavefunctions

constructed within the ETB framework [122]. The calculated dolo(R) functions are

expanded in modified Chebyshev polynomials given by Eqs. (3.25) and (3.26). The

expansion coefficients are listed in Table 5.1. The resulting do,o(R) dependencies are

shown in Fig. 5-2.

In the flat graphene sheet, the atomic dipole transition matrix elements involving

a and ir molecular orbitals are decoupled and optical transitions in the visible range
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Table 5.1: Coefficients C, of the Chebyshev polynomial expansion according to
Eqs. (3.25) and (3.26) for the atomic dipole transition matrix elements do,o(R) = S(R)
(in units of 10-2/ao; a0 = 0.052917721 nm is the Bohr radius) parallel and perpendic-
ular to the interatomic vector R = R,, - Ry,. Boundaries of R are at R1 = 1.0 and
R2 = 7.0 (in units of ao). The molecular orbital configurations ob = ss,sa,aU,7r,sw
are shown in Fig. 5-1. The calculated do,o(R) dependencies are shown in Fig. 5-2.

ds, ds, du, d,,
Co +1.3797923 -0.0769120 +1.6576666 +1.5877754
CI -0.8956832 -0.3301910 -1.8694800 -1.2203346
C2 +0.0918082 +0.8076040 +1.7363412 +0.5019868
C3 +0.2328328 -0.6441390 -0.8721264 -0.0136130
C4 -0.1330832 +0.1950013 +0.0659965 -0.1143494
C5 -0.0048863 +0.0533430 +0.1959986 +0.0732224
CO +0.0396586 -0.0759693 -0.1321612 -0.0230110
C7 -0.0220959 +0.0330036 +0.0390193 +0.0025198
Cs +0.0051811 -0.0062375 -0.0018662 +0.0011261
C9 +0.0006500 -0.0008425 -0.0030800 -0.0006576

Co
C1
C2
C3
C4
C5
C6
C7
Cs
C9

dse

+1.1943359
-0.9434491
+0.4370124
-0.0649433
-0.0596295
+0.0495847
-0.0184022
+0.0028778
+0.0007665
-0.0006909

are governed by d,,(R) shown in the bottom trace of Fig. 5-2 (a). One can see in

Fig. 5-2 (a) that dr,(R) almost vanishes at the second neighbor R = a, suggesting that

the optical transitions in the graphene sheet occur primarily between the 2p orbitals

on adjacent carbon atoms. To satisfy the energy conservation, the optical transitions

take place for the electronic states along the contours of constant EC - E" around

the K and K' points in the first Brillouin zone of the graphene sheet. We replicate

these contours calculated within the ETB framework from Fig. 3-23 (b) in Fig. 5-

3 (a), where the transition energies are represented by spectral colors. The contour of
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Figure 5-2: The atomic dipole transition matrix elements do,o(R) which are (a) paral-
lel and (b) perpendicular to the interatomic vector R = R, - R,,s, calculated by the
Chebyshev polynomial expansions given in Table 5.1. The molecular orbital configu-
rations o'o = ss,sO,ao,rr,sir are shown in Fig. 5-1. The dashed and dotted vertical
lines indicate the first- and second-neighbor interatomic distances, acc = 0.142 nm
and a = v/3acc = 0.246 nm, respectively.

Ec - E" = 2.41 eV corresponding to the wavelength of 514.5 nm from the Ar ion laser

is shown by the black curve, and the position of the electron wavevector k along the

contour is parameterized by the polar angle 0. The optical dipole transition matrix

element for the light absorption process MnAV"(k, 0, k) is calculated from Eqs. (5.5)

and (5.7) to (5.9) with the radiant flux density I = 1 mW/pm2 and for linear light

polarization aligned with the armchair and zigzag directions in the graphene sheet,
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Figure 5-3: (a) The contours of constant transition energy E c - Ev around the K point
in the first Brillouin zone of a graphene sheet within the ETB model as in Fig. 3-23
shown by colors in the visible range. The black lines show the KM directions. The
polar angle 0 parameterizes the position k along the contour of EC - E' = 2.41 eV
shown by the black curve. (b) The absolute value of the optical dipole transition
matrix element for the light absorption process MAv"(k, 0, k) in the ETB model
including nearest-neighbor and long-range interactions as a function of 0 shown by
the dashed and solid curves, respectively. The radiant flux density I = 1 mW/ptm 2

The linear light polarization vector in the armchair direction PA = ýc is shown by the
arrow in (a) and by the vertical lines at angles 0 = 00 and 180' in (b).
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Figure 5-4: (a) The contours of constant transition energy and (b) the optical dipole
transition matrix element identical to those shown in Fig. 5-3, except for the linear
light polarization vector aligned with the zigzag direction PA = y, as shown by the
arrow in (a) and by the vertical lines at angles q = 900 and 270' in (b).
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P = - c and PA = y. Its absolute value as a function of 0 is shown in Figs. 5-3 (b)

and 5-4 (b) by the solid curves for the two linear light polarizations. For comparison,

the same absolute value calculated in the nearest-neighbor approximation, d,,(R) = 0

for R > acc, is shown by the dashed curves. The solid and dashed curves in Figs. 5-

3 (b) and 5-4 (b) lie very close to each other, consistent with the small value of d,,(a)

in Fig. 5-2 (a). Both the solid and dashed curves in Figs. 5-3 (b) and 5-4 (b) indicate

that the optical transition rate is not homogeneous along the contours of constant

Ec - E'. Namely, the nodes appear in the optical transition rate in the direction of

the linear light polarization in the reciprocal space of the graphene sheet [48, 133].

5.1.1 Dipole selection rules

Within the zone-folding technique, the optical dipole transition matrix elements in

SWNTs are obtained by substituting the 1D angular p and linear k momenta for

the 2D momentum k in Eqs. (5.5) and (5.7) to (5.9), according to Eq. (2.14). The

curvature of the SWNT sidewall is taken into account by aligning the atomic orbitals

0o(r - R,,) along the tangential and normal directions, by analogy with Eq. (4.17).

The atomic dipole transition vector takes the form:

doo(Rus - Reu,,) = Jo,(Rz(O,•,) (r - Rs,))Vo (Rz(us) (r - Rus))dr (5.10)

instead of Eq. (5.9), where the rotation matrix Rz(¢u,,) is given by Eq. (3.31). Then

do,o(R, - R.,u,) is decomposed according to Fig. 5-1 and calculated using Table 5.1,

as in the flat graphene sheet. Contrary to the flat graphene sheet, the atomic dipole

transition matrix elements involving a molecular orbitals are admixed to the optical

transitions between the 7r energy bands. These matrix elements have a long-range

nature according to Fig. 5-2, as opposed to d,,(R) vanishing at R = a.

While the energy conservation in SWNTs coincides with the one in the graphene

sheet and is expressed by the delta function 6(Eb'(pf, kf) F hw - Eb(Lti, ki)) for the

light absorption and emission processes, the dipole selection rules for SWNTs may

differ from the momentum conservation in the graphene sheet depending on the light
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propagation direction n and polarization vector PA with respect to the SWNT axis,

thereafter aligned with the z-axis. Three distinct cases can be identified as schemat-

ically shown in the upper traces of Fig. 5-5:

(a) For light propagating perpendicular and linearly polarized parallel to the

SWNT axis ( |I| i or , 11l S and PA = i), the dipole selection rules read as fol-

lows, pI = pi and kf = ki, obtained upon substituting Eq. (2.14) into the momentum

conservation for the graphene sheet, kf = ki [2, 48, 133, 140], or alternatively, derived

from symmetry arguments [12, 14]. Considering that the direction from the K point

to the critical wavevector ki in the reciprocal space of the graphene sheet is roughly

perpendicular to the SWNT axis and taking into account the angular dependence of

Mb'Ab(k0,0, k) shown in Figs. 5-3 (b) and 5-4 (b), the value of IMb'Ab(k, 0, k)l nearly

reaches its maximum at the Eii Van Hove singularity (VHS) in the joint density of

states (JDOS).

(b) For light propagating perpendicular and linearly polarized perpendicular to

the SWNT axis (K, II i and PX = S or K II S and PA = l), the angular momentum

is not conserved, ipf = pi + 1, as obtained by direct calculations using Eqs. (5.5),

(5.7), (5.8), and (5.10) [2, 48, 133, 140], and independently identified by group theory

analysis [12, 14], while the linear momentum is still conserved, kf = ki. Accordingly,

the E1,,+1 VHS in the JDOS for perpendicularly polarized light is roughly halfway

between the E,,, and E,+l,+1 VHSs in the JDOS for parallel polarized light because

of a small asymmetry between the valence and conduction bands1 [46, 133]. The

value of Mb'"b(k, 0, k) goes close to zero at the E,,, 1I VHS in the JDOS.

(c) For linearly polarized light propagating parallel to the SWNT axis (K II i and

PA = JR or P = Sr), the dipole selection rules and the magnitude of IMb'Ab(k, 0, k)l are

identical to those in case (b). For left and right circularly polarized light propagating

parallel to the SWNT axis (K 11 i and PA = -I ( ± iSr), respectively), the dipole

selection rules for the angular momentum are constrained as follows: uI = Pi + 1

for absorption of left (right) circularly polarized light by ZR/AL- (ZL/AR-) handed

'The E,,, •± VHS is labeled by p rather than by i since p ± 1 does not necessarily correspond
to i ± 1 for a pair of corresponding p and i.
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(a) (b) (c)

K

K

Figure 5-5: 'The light propagation direction K and polarization vector PA with respect
to the SWNT (upper traces) and the unrolled flat graphene sheet (bottom traces).
Cases (a), (b), and (c) are described in Section 5.1.1. In cases (b) and (c), the light
gains momentum , = K 1 = 2/dt due to the curvature of the SWNT sidewall.

SWNT, pf == i- 1 for absorption of left (right) circularly polarized light by ZL/AR-

(ZR/AL-) handed SWNT, and vice versa for light emission [133, 138]. Still, kf = ki

and IMb'Ab(k, 0, k) is close to zero as in case (b).

The angular momentum nonconservation in cases (b) and (c) is understood by

considering the interaction of light with the unrolled SWNT, as shown in Fig. 5-5.

When the SWNT is unrolled into the flat graphene sheet, the light polarized paral-

lel to the SWNT axis is transformed to the light polarized parallel to the graphene

sheet, according to Fig. 5-5 (a). The dipole selection rules are then obtained from

the momentum conservation in the flat graphene sheet using Eq. (2.14). Perpen-

dicular polarization, on the other hand, becomes transformed into the in-plane and

out-of-plane polarization components in the unrolled graphene sheet, modulated in

the circumferential direction with the period Ch = 7rdt, as shown in Figs. 5-5 (b)

and (c). The out-of-plane polarization component can be neglected because of the

much stronger in-plane interaction in the graphene sheet. The in-plane polarization

component thus gains a phase factor cos (K 1 -r), where K 1 = 2TChI/Ch is the sepa-

ration between the adjacent cutting lines, similar to trace pZ = +1 in Fig. 2-6 (a). By

expanding cos (K 1 - r) into a sum of exp (iK1 - r) and exp (-iK1 - r), we obtain two
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plane waves with wavevectors K 1 and -K 1 polarized parallel to the graphene sheet.

This results in the non-vertical optical transitions between the adjacent cutting lines

in the reciprocal space of the graphene sheet, changing the angular momentum by

one according to Eq. (2.14). In this way, the angular momentum nonconservation is

associated with the wavevector of magnitude K 1 = 2/dt being much larger than the

optical wavevector r = 27r/A, since the SWNT diameter dt I nm is much smaller

than the optical wavelength A 1 m. Hence, an optical photon in the unrolled

graphene sheet can be considered as an x-ray photon with respect to its spatial distri-

bution, yet its frequency stays in the visible range. Such a "pseudo x-ray" photon is a

source of breaking the angular momentum conservation in the case of perpendicular

polarization [133, 140].

The small value of IMb'Ab(k, 0, k) in cases (b) and (c) indicates that an inter-

action of the SWNT with the light polarized perpendicular to the SWNT axis is

considerably suppressed by the depolarization effect, implying that the SWNT acts

as a dipole antenna [2, 39, 66]. The depolarization effect complicates the observa-

tion of the non-vertical optical transitions, since the parallel polarization component

dominates the optical response of the SWNT sample, unless the SWNTs are well

aligned [46, 133]. The various types of alignment can be achieved by growing SWNTs

under an electric field applied in situ [33, 102], by growing SWNTs along atomic steps

on a sapphire substrate [53], by growing vertically aligned SWNT films [100, 175],

by placing SWNTs inside a strong magnetic field [174], by mechanically stretching

SWNT-polyrner composites [60], and by some other techniques. The degree of align-

ment can be monitored using the perpendicular polarization geometry.

Equipped with the dipole selection rules and the depolarization effect, we can

now calculate the optical dipole transition matrix elements for the parallel polar-

ization geometry in SWNTs using Eqs. (5.5), (5.7), (5.9), and (5.10). The matrix

elements for the Eii transitions form the family patterns with a strong dependence

on the SWNT chiral angle [59], similar to those observed in the ETB Kataura plot

in Section 3.6. However, for a quantitative evaluation of the intensities of the optical

transitions in SWNTs, many-body interactions must be taken into account, accord-
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ing to Section 3.7. The optical dipole transition matrix elements between the exci-

tonic wavefunctions calculated within the ETB framework are almost independent on

the SWNT chiral angle [59], in a good agreement with the results of first-principles

calculations [156]. For the perpendicular polarization geometry, the E,,, 1± VHSs

in the JDOS are considerably blueshifted from their single-particle values and sup-

pressed in intensity by the many-body interactions, as predicted theoretically using

the effective-mass approximation [163]. The blueshift of the E,,,,± 1 excitonic transi-

tions is detected experimentally in the photoluminescence excitation-emission spectra

of SDS-encapsulated alcohol CVD SWNTs in D20 [96].

5.2 Electron-phonon interaction

The interaction between electrons and the high-symmetry P and K (K') point phonon

modes in the graphene sheet and SWNTs was assessed in Section 4.6 by the supercell

method within the framework of the STB model. Away from the high-symmetry

F and K (K') points, the linear response method was applied in Section 4.6. At a

general wavevector q, the phonon mode v involves vibrations of' atoms about their

equilibrium positions R,,. The atomic displacement vectors rs(q, t) are given by:

2U (q) ( (q) exp (+iqRu, - iwV(q)t)e(q)
(5.11)

+ rni'(q) + l exp (-iqRu + iw(q)t)e* (q)) ,

similar to Eq. (4.2) but with the amplitude p"(q) expressed in the second quantization

formalism. Here, h is Planck's constant, U is the number of two-atom unit cells in

the graphene sheet, M is the mass of a carbon atom, w"(q) is the phonon frequency,

n"(q) is the phonon occupation number, and e"(q) is the normal mode displacement.

The atomic vibrations described by Eq. (5.11) perturb the effective periodic poten-

tial V(r) given by Eq. (3.6). In the rigid ion approximation, the effective spherically-

symmetric potential U(r - Ruis8,,) in Eq. (3.6) is moving along with the atom Rus,

unperturbed in the field of the other atoms. The variation of the effective periodic
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potential V(r) in Eq. (3.6) is then expressed by the deformation potential:

6V"(q, r, t) = -- VU(r - R,,5,1,) r,,8,, (q, t) . (5.12)
,uIIsII

Within first-order time-dependent perturbation theory, the electron-phonon scat-

tering matrix element between the initial i and final f electronic states in the graphene

sheet is given by [45, 57]:

Mlb'ub(kf, q, ki) = (b'(kf, r, t) 6V"(q, r, t) Ib(ki, r, t)) , (5.13)

where V (k, r, t) is the one-electron wavefunction of Eq. (3.2). Note that Eq. (5.13)

does not take into account the rigid movement of the atomic orbitals along with the

atoms. The movement of the atomic orbitals gives rise to the second term in the

Hellmann-Feynman force of Eq. (3.28), and a similar term is expected to appear in

Eq. (5.13). Incorporation of this term will be the subject of future work.

The electron-phonon scattering rate is determined by Fermi's Golden Rule:

Wb'vb(kf, q, k) = t dt Mb'b (kf, q, ki) (5.14)

where t, is the electron-phonon interaction time. Integration over time t in Eq. (5.14)

yields the delta function 6(Eb' (kf) :F hw"(q) - Eb(ki)) that expresses the energy con-

servation. We thus conclude that the two terms in Eq. (5.1) describe the anti-Stokes

(phonon absorption) and Stokes (phonon emission) processes, respectively. For both

anti-Stokes and Stokes processes, the photoexcited electrons and holes away from the

Fermi level are scattered within the same 7r valence or 7r* conduction band, b' = b = v

or b' = b = c. The induced and spontaneous Stokes processes are represented by

the terms n"'(q) and 1 under the square root in Eq. (5.1), respectively. In ther-

mal equilibrium, the phonon occupation number nv(q) is given by the Bose-Einstein

distribution:
1

n(q) w= (5.15)

exp -1kBT
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where kB =: 0.086173 meV/K is the Boltzmann constant and T is the temperature.

For the in-plane optical phonon modes around the F and K points that dominate

the scattering of photoexcited electrons, nY(q) << 1 at room temperature T = 300 K,

and the induced Stokes process is neglected in comparison to the spontaneous Stokes

process.

The electron-phonon matrix elements, M"vb(kf, q, ki) and Mbb(kf, q, ki), for the

anti-Stokes and spontaneous Stokes processes, respectively, are obtained upon sub-

stituting Eqs. (3.2), (5.11), and (5.12) into Eq. (5.13):

Mab(kf, q, k) = - h 2UMw"(q) Dbb(kf, q, ki),
2UMuw"(q)

(5.16)
b(kf, q, ki) = -(q) Dbvb* (ks, q, kf),M •b b(kf~ ql , 2UMw"(q) q, ki)

where DbWb(kf, q, ki) is the deformation potential matrix element:

Dbvb(kf, q, k i ) = b(kf, r, 0) E exp (iqRu,,SIn)
U,"s" (5.17)

SVU(r - Rus,)" eV,, (q) [b(ki, r, 0)

Upon substituting the one-electron wavefunctions 1b(k, r, 0) from Eq. (3.2) into

Eq. (5.17), we express the deformation potential matrix element in the following form:

Dbvb(kf, q, k) = ZZ C,o, (kf)D ,o8•o(kf, q, ki)Co(ki) , (5.18)

s''O SOs'o/ so

where D",oso(kf, q, ki) is the deformation potential matrix:

1U2 U U
D' ,oso(kf, q, ki) = h 1 E E exp (-ikfRus, + iqR,,s,, + ikiRu)

u / S U / U (5.19)

x /,(r - Rs,) VU(r - RUS,,) -e ,,(q) qo(r - Rus) dr.

The summation over the unit cell index u' in Eq. (5.19) yields the momentum con-

servation, (-kf ± q + ki) = 0, for the anti-Stokes and spontaneous Stokes processes,
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respectively. Following the same approximation as for the Hamiltonian matrix of

Eq. (3.4), we neglect the three-center integrals in Eq. (5.19) [144]. Then Eq. (5.19)

splits into three terms for which u"s" = us, u"s" = u's', and u's' = us:

U

DS,oso(kf, q, ki) = (exp (ikf (Rs - Ru,,)) aoQo(R.s - R, ,') se(q)
U

+ exp (iki (Rus - Ra,•,)) o30,o(Rus - RuE,) . ev, (q) (5.20)

+ exp (iq (Rus - Ru~5 )) Ao.o(Rus - Ru,,) . e'(q)),

where index u' labels the unit cell under consideration, and the atomic deformation

potential vectors a•o,(R), foo(R), and Ao0 o(R) are defined as follows [57]:

(aOoo(R) = o,(r) VU(r - R) ¢o(r - R) dr,

3o0,o(R) = f ,(r) VU(r) Oo(r - R) dr, (5.21)

A,,o(R) = f ,(r) VU(r - R) Co(r) dr,

where Oo(r) is the atomic orbital, and R = Rs - R~,• connects the two interacting

atoms. Analogous to Section 4.6, we refer to ao,o(R) and 30o,(R) as the off-site atomic

deformation potential vectors, while Aoo(R) is called the on-site atomic deformation

potential vector, indicating the electron scattering between two different atomic sites

or within the same atomic site, respectively [135]. The normal mode displacements

e-(q) and e", (q) that enter Eq. (5.20) are calculated using the AFC model with the

ETB force constants listed in Table 4.8.

While the o = 2s atomic orbitals are spherically symmetric, the o = 2p atomic

orbitals can be projected into the a and ir molecular orbitals along and perpendic-

ular to R, as shown in Fig. 3-2. The atomic deformation potential vectors aoo(R),

P30o,(R), and Ao,o(R) of Eq. (5.21) are then decomposed into the nine components for

the different configurations of molecular orbitals. These configurations are shown in

Figs. 5-6, 5-7. and 5-8, respectively, along with the effective spherically-symmetric po-

tential U(r - R1 ......) whose gradient enters into Eq. (5.21). Symmetry arguments lead

to the following relations between the off-site atomic deformation potential vectors
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Figure 5-6: The molecular orbital configurations ob = ss,sa,as,a1u, i T,sr,rs,aTr,iau
for the off-site atomic deformation potential matrix elements co,o(R) similar to those
shown in Figs. 3-3 and 5-1. The red curve represents the atomic potential whose gra-
dient enters o•io,(R). The directions of a•o,(R) are shown by arrows (a) parallel and
(b) perpendicular to the interatomic vector R = R,, - R,s,. The Chebyshev polyno-
mial expansions of 0oo(R) are given in Table 5.2. The calculated cOo,o(R) dependencies
are shown in Fig. 5-9.

a•0 , and o,o:

+ars(R), 8,s(R)= +ars(R),
-a,(R), 0,(R) = -ao,(R),
-a 7,(R), P , (R) = -ar ,(R)

(5.22)

It is therefore sufficient to determine the aoo(R) and Ao,o(R) vectors [57].
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Figure 5-7: The molecular orbital configurations o'o = ss,sa,as,ar,7xr)T,sr,Trs,a7r,wuTr
for the off-site atomic deformation potential matrix elements o,,'(R) similar to those
shown in Figs. 3-3, 5-1, and 5-6. The red curve represents the atomic potential whose
gradient enters o,3o(R). The directions of /30 ,(R) are shown by arrows (a) parallel and
(b) perpendicular to the interatomic vector R = R,, - Rs,,. The values of 0o,o(R)
are determined by the values of aoo(R) according to Eq. (5.22).

The directions of aoo(R) and Aoo(R) can be either parallel or perpendicular to

R, as shown by arrows in Figs. 5-6 and 5-8, according to the symmetry of the spher-

ical harmonic Y21(0, 0). Along these directions, the magnitudes aoo = ao,,o and

Ao,o = I Ao,o only depend on the interatomic distances R = IRI. The configurations

of the molecular orbitals that have the same Ao,o(R) are connected by dashed lines in

Fig. 5-8. For the nine inequivalent configurations o'o = ss,sa,as,a•ur,sbr,wss,arx,w a

in Fig. 5-6 and the six inequivalent configurations o'o = ss,sa,aa,irT,sT,Ira in Fig. 5-
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(a)
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-J~=-t
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Figure 5-8: The molecular orbital configurations o'o = ss,scr,as,ua,7rrn,slr,wrs,awr,wa
for the on-site atomic deformation potential matrix elements Aoo(R) similar to those
shown in Figs. 3-3, 5-1, 5-6, and 5-7. The red curve represents the atomic poten-
tial whose gradient enters A,,,(R). The directions of Ao,o(R) are shown by arrows
(a) parallel and (b) perpendicular to the interatomic vector R = Rs - Rus. The
dashed lines connect the equivalent configurations with the same Ao,o(R). The Cheby-
shev polynomial expansions of Ao,o(R) are given in Table 5.3. The calculated Ao0 o(R)
dependencies are shown in Fig. 5-10.

8, the atomic deformation potential matrix elements c,vo(R) and Aoo(R) are cal-

culated using the pseudoatomic wavefunctions and the Kohn-Sham potential of a

neutral pseudoatom constructed within the ETB framework [122]. The calculated

Oo,o(R) and Aoo(R) functions are expanded in modified Chebyshev polynomials given

by Eqs. (3.25) and (3.26). The expansion coefficients are listed in Tables 5.2 and 5.3.

The resulting aot,o(R) and Ao0o(R) dependencies are shown in Figs. 5-9 and 5-10.
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Table 5.2: Coefficients C, of the Chebyshev polynomial expansion according to
Eqs. (3.25) and (3.26) for the off-site atomic deformation potential matrix elements
aoo(R) = S(R) (in units of 10-3Eh/ao; Eh = 27.21138eV is the Hartree energy;
ao = 0.052917721nm is the Bohr radius) parallel and perpendicular to the inter-
atomic vector R = R,, - R,.,. Boundaries of R are at Ri = 1.0 and R2 = 7.0 (in
units of ao). The molecular orbital configurations ob = ss,sa,asls,uu,irx,srs,ws,Ua,wu
are shown in Fig. 5-6. The calculated aoO(R) dependencies are shown in Fig. 5-9.

ass so, crs ora s a7rr

Co --0.3635210 +2.1097169 -0.2789600 +3.1539574 -0.4334657
C1 +0.2606741 -1.7553088 +0.1457182 -2.6009458 +0.3727524
C2 --0.0547213 +0.9753109 +0.1019037 +1.4066316 -0.2348758
C3 --0.0823304 -0.2875030 -0.2270835 -0.3953886 +0.1037152
C4 -r0.0986310 -0.0503021 +0.1882425 -0.0660246 -0.0265339
C5 --0.0540925 +0.1125453 -0.0929704 +0.1333231 -0.0017626
C6 +0.0138564 -0.0715774 +0.0269190 -0.0745124 +0.0058298

C7 +0.0040047 +0.0288868 -0.0011577 +0.0249039 -0.0035711
C8 --0.0058742 -0.0078778 -0.0030690 -0.0050061 +0.0014483
C9 +0.0040747 +0.0011106 +0.0022411 +0.0002651 -0.0005261

a7 as a, a7r

Co +2.0170524 +0.5117628 +2.9238227 -0.4332595
CI -1.7408714 -0.4439417 -2.4874925 +0.3725599

C2 +1.1027912 +0.2872697 +1.5009569 -0.2347203
C3 -0.4768517 -0.1329031 -0.5801167 +0.1036100
C4 +0.0984163 +0.0369983 +0.0730035 -0.0264748

C0 +0.0376300 +0.0013507 +0.0737419 -0.0017902
C6 -0.0481280 -0.0083581 -0.0620821 +0.0058407

C7 +0.0270518 +0.0057948 +0.0268863 -0.0035749
Cs -0.0103584 -0.0026121 -0.0075600 +0.0014496
C9 +0.0031477 +0.0010337 +0.0015057 -0.0005265

In the flat graphene sheet, the atomic deformation potential matrix elements in-

volving a and 7r molecular orbitals are decoupled and electron-phonon scattering in-

volving electronic states near the Fermi level is governed by !,, (R) and A,,(R) shown

in the bottom traces of Figs. 5-9 (a) and 5-10 (a). One can see in Figs. 5-9 (a) and 5-

10 (a) that a,,(R) and A,,(R) almost vanish at the second neighbor R = a, suggesting

that the phonon-assisted electron transitions in the graphene sheet occur primarily

between the 2p orbitals on adjacent carbon atoms. To satisfy the energy conservation,
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Table 5.3: Coefficients Cn of the Chebyshev polynomial expansion according to
Eqs. (3.25) and (3.26) for the on-site atomic deformation potential matrix elements
Ao,o(R) = S(R) (in units of 10- 3Eh/ao; Eh = 27.21138eV is the Hartree energy;
ao = 0.052917721nm is the Bohr radius) parallel and perpendicular to the inter-
atomic vector R = R,, - R,,,. Boundaries of R are at R 1 = 1.0 and R 2 = 7.0 (in
units of ao). The molecular orbital configurations o'o = ss,sa,aUa,7r7,sir,uar are shown
in Fig. 5-8. The calculated Ao,(R) dependencies are shown in Fig. 5-10.

Co -0.9906740 -0.7849724 -1.6517170 -0.8190939
C1 +0.7766919 +0.5992836 +1.3174189 +0.6645416
C2 -0.3713484 -0.2456202 -0.6639543 -0.3781723
C3 +0.0671177 -0.0336741 +0.1424873 +0.1683272
C4 +0.0744466 +0.1590298 +0.1104668 -0.0576039
C5 -0.1002167 -0.1593283 -0.1561639 +0.0093309
C6 +0.0725572 +0.1047476 +0.1086829 +0.0049105
c7 -0.0367535 -0.0507720 -0.0515711 -0.0052864
C8 +0.0131416 +0.0179875 +0.0168903 +0.0026743
C9 -0.0021051 -0.0037290 -0.0025965 -0.0010938

the phonon-assisted transitions take place between the electronic states along the two

contours of constant Ec - EV separated by twice the phonon energy. These contours

can be wrapped either around the same K (K') point or around different K and K'

(K' and K) points, which we refer to as the intra-valley and inter-valley scattering,

respectively [132]. For the inter-valley scattering, the incident and scattered contours

calculated within the ETB framework are shown in Fig. 5-11 (a), where the square

boxes are identical to that shown in Fig. 3-23 (a) and the transition energies are rep-
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Co +0.7343579 +0.7428290
C1 -0.6526167 -0.6662996
C2 +0.4669766 +0.4870691
C3 -0.2760352 -0.2929132
C4 +0.1344400 +0.1429532
C5 -0.0506701 -0.0531581
C6 +0.0118058 +0.0120052
c7 +0.0017003 +0.0017170
Cs -0.0034039 -0.0032757
C9 +0.0025751 +0.0023110
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Figure 5-9: The off-site atomic deformation potential matrix elements aoo(R) which
are (a) parallel and (b) perpendicular to the interatomic vector R = R", - Rs,
calculated by the Chebyshev polynomial expansions given in Table 5.2. The molecular
orbital configurations o'o = ss,sa,as,auu,irr,8sr,irs,aur,ira are shown in Fig. 5-6. The
dashed and dotted vertical lines indicate the first- and second-neighbor interatomic
distances, ac, = 0.142 nm and a = v/-acc = 0.246 nm, respectively.

resented by spectral colors similar to Fig. 5-3 (a). The contours of Ec - EV = 2.41 eV

corresponding to the Ar ion laser wavelength of 514.5 nm and Ec - EV = 2.09 eV
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Figure 5-10: The on-site atomic deformation potential matrix elements Ao,o(R) which
are (a) parallel and (b) perpendicular to the interatomic vector R = Ru, - Ru,
calculated by the Chebyshev polynomial expansions given in Table 5.3. The molecular
orbital configurations o'o = ss,sua,aa,7rr,sir,air are shown in Fig. 5-8. The dashed and
dotted vertical lines indicate the first- and second-neighbor interatomic distances,
acc = 0.142 nm and a = vr3acc = 0.246 nm, respectively.

downshifted by twice the frequency of the A' K point phonon mode, w - 1300 cm 1 ,

are shown in Fig. 5-11 (a) by the black curves. The positions of the initial ki and final

kf electron wavevectors are shown by the solid dot along the KI direction and pa-

rameterized by the polar angle 0, respectively. The electron-phonon scattering matrix

element for the phonon emission process Me~b(kf, q, ki) using the momentum conser-

vation q = ki - kf is calculated from Eqs. (5.16), (5.18), (5.20), and (5.21) with the
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(a) (b)
K K' Z.U

o 1.5
4-,

a 1.0
E

x 0.5

2.41eV 2.09eV 2 0.0
0 90 180 270 360

Angle ¢ (Degree)

Figure 5-11: (a) The contours of constant transition energy E c - E' around the K
and K' points in the first Brillouin zone of a graphene sheet within the ETB model
as in Fig. 3-23 shown by colors in the visible range. The black curves correspond
to the contours of E c - E' = 2.41 eV and EC - E" = 2.09 eV and the black lines
show the KM directions. The wavevector ki is shown by the solid dot along the KE
direction and the wavevector kf is parameterized by the polar angle 0, respectively.
(b) The absolute value of the electron-phonon scattering matrix element for the Stokes
process IM"vc(kf, q, ki) - MV"Vv(kf, q, ki) assuming q = ki - kf in the ETB model
as a function of 0 shown by the green, black, blue, and red curves for the phonon
modes v = iTA, iLA, iLO, iTO, respectively. The number of unit cells U = 1.

(a) (b)
K K'

a)

0
O

a)
E

Xa)a).r
J

2.41eV 
2.09eV 

2

0 90 180 270 360
Angle 4 (Degree)

Figure 5-12: (a) The contours of constant transition energy around the K and K'
points in the first Brillouin zone and (b) the electron-phonon scattering matrix el-
ement identical to those shown in Fig. 5-11, except for the position of the initial
electron wavevector ki shown by the solid dot along the KM direction in (a).
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number of unit cells U = 1. The absolute value IMeCLC(kf, q, ki) + MjVZv(ki, -q, kf)

reflecting interference between electron-phonon and hole-phonon scattering is shown

in Fig. 5-11 (b) as a function of 0, where four curves of different colors correspond

to the in-plane phonon modes, v = iTA, iLA, iLO, iTO. For comparison, the same

absolute value calculated for the position of the initial electron wavevector ki along

the KM direction is shown in Fig. 5-12 (b). Both Figs. 5-11 (b) and 5-12 (b) indicate

that the electron-phonon scattering rate is not homogeneous along the contours of

constant E c - EV. Namely, nodes appear in the electron-phonon scattering rate in

different directions in the reciprocal space of the graphene sheet [45, 57].

5.2.1 Vibrational selection rules

Within the zone-folding technique, the electron-phonon scattering matrix elements

in SWNTs are obtained by substituting (p, k) and (r7, q) for k and q in Eqs. (5.16),

(5.18), (5.20), and (5.21), according to Eqs. (2.14) and (4.16). The curvature of the

SWNT sidewall is taken into account by aligning the atomic orbitals 0o(r - Ru,)

along the tangential and normal directions, by analogy with Eq. (5.10). The atomic

deformation potential vectors take the form:

ao,o(Rus-- R,,)

= ,0(Rz (r - Rs,)) V U(RZ(us) (r - R,,)) /o(RZ(¢us) (r - Rus)) dr,

1oo(RUS - R,,)

= J¢, (Rz(ou,,) (r - Rus,)) VU(R'z( ,,8 ) (r - R )) co(Rz(ous) (r - Ru)) dr,

Ao o(Rus -- R( )
= Jo,(Rz(ysi) (r - Ruy8 )) VU(RZ(0uS) (r - Rus)) Oo(Rz(Ou,,) (r - Ru/s,)) dr

(5.23)
instead of Eq. (5.21), where the rotation matrix Rz(¢,,) is given by Eq. (3.31). Then

Cao'o(R,,j - R.u,r,), Po,r(Ru, - Rur,,), and Ao,o(Rs - Ry,) are decomposed according

to Figs. 5-6 to 5-8 and are calculated using Tables 5.2 and 5.3 and Eq. (5.22), as is done

in the flat graphene sheet as discussed above. Contrary to the flat graphene sheet,
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the atomic deformation potential matrix elements involving a molecular orbitals are

admixed through electron-phonon scattering between the 7r energy bands. These

matrix elements almost vanish at the second neighbor R = a according to Figs. 5-9

and 5-10, similar to the matrix elements involving 7r molecular orbitals.

The energy conservation and vibrational selection rules for the electron-phonon

scattering in SWNTs are obtained by substituting the 1D angular 77 and linear q

momenta for the 2D momentum q in the energy and momentum conservation relations

for the electron-phonon scattering in the graphene sheet according to Eq. (4.16).

The energy conservation is given by 6(Eb' (l I , k f) T- hwv(q, q) - Eb(ti, ki)) for the

anti-Stokes (phonon absorption) and Stokes (phonon emission) processes in SWNTs,

respectively. The vibrational selection rules read as pf T 2) - pi = 0 and kf q - ki = 0

for the anti-Stokes and Stokes processes, respectively [45, 57, 140]. Alternatively, the

vibrational selection rules can be derived using group theory [12]. The vibrational

selection rules for SWNTs thus coincide with the momentum conservation for the

electron-phonon scattering in the graphene sheet, contrary to the dipole selection

rules for SWNTs, which may differ from the momentum conservation for the electron-

phonon scattering in the graphene sheet depending on the light propagation and

polarization directions with respect to the SWNT axis, as shown in Section 5.1.1.

The electron-phonon scattering matrix elements for electronic transitions within

the same critical angular p4 and linear kb momenta by the v = RBM, GT, GL phonon

modes at the F point (2, q) = (0,0) calculated using Eqs. (5.16), (5.18), (5.20),

and (5.23) form the strong family patterns with a SWNT chiral angle dependence [59],

similar to those observed in the ETB Kataura plot in Section 3.6. However, for

a quantitative analysis of the optical processes in SWNTs that are dominated by

excitonic transitions according to Section 3.7, the phonon-assisted scattering matrix

elements between the excitonic wavefunctions must be evaluated. The exciton-phonon

scattering matrix elements calculated within the ETB framework do not differ much

from the electron-phonon scattering matrix elements [59], in a good agreement with

the results of first-principles calculations [85].
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5.3 Resonance Raman scattering

The Raman effect is a phenomenon of inelastic light scattering by molecular vibrations

in individual molecules or by phonon modes in solids. The frequencies of the phonon

modes in solids are much smaller than the frequency of a photon in the visible range.

Hence, the direct interaction of the electromagnetic field with the phonon modes

gives rise to the non-resonant Raman scattering, which is contaminated by other

light absorption and emission processes. However, the light can couple to the phonon

modes indirectly through the electronic subsystem, resulting in the resonance Raman

scattering (RRS) process. In the RRS process, the excitation energy of the incident

laser beam coincides with a particular electronic transition in the graphene sheet. The

phonon modes coupled to the photoexcited electrons and holes exhibit an enhanced

Raman scattering intensity. The RRS process is further increased when the incident

laser beam is tuned to an exciton transition associated with one of the VHSs in

SWNTs.

The differential cross-section for the RRS process in the graphene sheet is given

by the following expression [87]:

do-A (Ee, Ea) _2V2EEa 2
doa(Ee Ea) _ t 2 V 2 EeEa K')(E, Ea) 12 (5.24)

dQe 47r2 4C4 I ' ea E I

where Ea and Ee are the energies of the incident and scattered photons of polarizations

A and A', respectively, Qe is the solid angle for collecting the scattered light, r, is the

dielectric constant, V is the quantization volume for the electromagnetic field, h is

Planck's constant, c is the speed of light in vacuum, and KA•(Ee, Ea) is an appropriate

high-order matrix element of interaction between the electromagnetic field and the

graphene sheet. The energy conservation is expressed in the form Ee = Ea - hw where

w is the Raman shift that consists of a difference or sum of one or more frequencies

of absorbed or emitted phonon modes in the graphene sheet for the anti-Stokes and

Stokes RRS process for which w < 0 and w > 0, respectively. The differential cross-

section of Eq. (5.24) is often referred to as the resonance Raman spectral profile I(w)

or the resonance Raman excitation profile I(Ea).
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5.3.1 First-order RRS process in graphene

For the first-order Stokes resonance Raman scattering in the graphene sheet, the

matrix element K',A (Ee, Ea) in Eq. (5.24) is derived in the third-order time-dependent

perturbation theory [87]:

6 2A w

W VWa2

leA'c(k,, 0, kw) (Mv(k, 0, kw) + M0vv(kw, 0, k,))Mav (kW, 1,k0 ) (5.25)

(Ea - Ec(kw) + Ev(kw) - hwv(O) - iy,) (Ea - Ec(k,) + Ev(k,) - iye)

where the transition matrix elements Macv(kw, 0, kw) and M_ 'v"(kw, 0, k,) from Sec-

tion 5.1 describe light absorption and emission processes, the transition matrix ele-

ments Mcvc(k,,, 0, kw) and Mv""(kW, 0, k,) from Section 5.2 correspond to the phonon

emission by an electron and a hole, Eb(kw) is the electron energy, wV(0) is the fre-

quency of the emitted phonon mode, W is the number of the sampling qw points in

the first Brillouin zone, A is the area of the graphene sheet exposed to light, and y, is

a broadening factor associated with the finite lifetime •e of the intermediate electronic

states according to the uncertainty principle, Te7, = h.

The momentum conservation implicit in Eq. (5.25) involves both photons and

phonons at the F point, r. = 0 and q = 0, within the dipole approximation introduced

in Section 5.1. However, not all of the F point phonon modes for the graphene

sheet are Raman-active. The Raman-active modes transform as the components of

the polarizability tensor. The representation of the second-rank symmetric tensor is

decomposed into the sum of irreducible representations Ften. = 2Ag + Eg + E 29 in the

point group D61h, according to Table 4.1. By comparing Ft"n. with the representation

for the molecular vibrations Fm.v. = A2P + B 29 + Ei, + E2g from Section 4.1, we

conclude that the only Raman-active modes in the graphene sheet are the iLO and

iTO components of the doubly degenerate E2g phonon at the F point, whose normal

mode displacements are shown in Figs. 4-2 (d) and (e) [34].

According to the energy conservation accompanying Eq. (5.25), the Raman shift

is given by the frequency of the E 2g phonon mode, w = wE2g (0) = 1582 cm-1.Hence,
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Figure 5-13: The first-order Stokes resonance Raman scattering in the graphene sheet.
(a) The contours of constant transition energy around the K point identical to those
shown in Fig. 5-11. (b) The schematic of the electronic band structure taken along
a vertical cut of (a). Black lines show the valence and conduction bands around the
K point. Solid and open dots represent the resonant and virtual electronic states,
respectively. Red arrows marked by "a", "e", and "v" indicate light absorption,
light emission, and phonon emission processes, respectively. The upper and lower
traces show the resonance with the incident and scattered light. The left and right
traces correspond to electron-phonon and hole-phonon scattering described by terms

Me"C(k,, 0, k,) and M,"v (kw, 0, kw) in the parentheses in the numerator of Eq. (5.25).

either of the two factors in the denominator of Eq. (5.25) exhibits a resonant en-

hancement for the electron wavevector k, on the contours of constant transition

energy resonant with the incident and scattered light, Ec(kw) - EV(kw) = Ea and

Ec(kw) - Ev(k,) = Ee, while the other factor is non-resonant and represents a vir-

tual electronic state. On the other hand, the electronic states kw away from these

contours give only a small contribution to the first-order Stokes RRS process in the

graphene sheet. For illustration purposes, the contours resonant with Ea = 2.41 eV

and Ee = Ea - hwE2g (0) = 2.21 eV calculated within the ETB framework are shown
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in the upper and lower traces of Fig. 5-13 (a). The scattering processes involving

electronic states on these contours are depicted in Fig. 5-13 (b), where left and right

traces correspond to electron-phonon and hole-phonon scattering represented by two

terms in the parentheses in the numerator of Eq. (5.25).

The resonance Raman spectral profile I(w) is described by a single Dirac delta

function A6(w - wE2g (0)) of the spectral area A, even though many different k,

states on the contours of constant transition energy contribute to the third-order

matrix element K,', (Ee, Ea) of Eq. (5.25). Within the Green's function formalism,

the anharmonic phonon-phonon scattering introduces the Lorentzian lineshape [72]:

1
A -_ _ _I(w) 2 2 (5.26)

(W _ WE2g (0))2+ 4

where -y is a broadening factor associated with the finite lifetime Tp of the phonon

modes according to the uncertainty principle, ,ypTp = 1h. The first-order Stokes reso-

nance Raman spectral profile of the graphene sheet thus consists of a single Lorentzian

peak known as the G-band centered at a frequency of wE29 (O) = 1582 cm- 1 [43, 44].

5.3.2 Second-order RRS process in graphene

For the second-order Stokes-Stokes resonance Raman scattering in the graphene sheet,

the matrix element KI'A (Ee, Ea) in Eq. (5.24) is derived in the fourth-order time-

dependent perturbation theory, similar to Eq. (5.25) [87, 161]:

66 2A 2 W W /Nvc Ncv

K (Ee, Ea Wa2) W \DVC DC V '

where subscripts vc and cv indicate a sequence of electron-phonon and hole-phonon

scattering events, and numerators N "V and NC" are given by:

N CN c J= MA c(kw,,O , k,,)Mv"v(kw, -q, kw,)M c(k,,, q, k,)1ac (k,, , k,)(,

Ncv = Mevc (k,,ý0, k,k,)Mvc(kw,, q, kw,)Mev(k,-qkw,)AMc '(k 0, k>),

(5.28)
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and denominators DVc and DC" are written as:

De = (Ea - Ec(k,,) + E'(k,,,)- hw(q)- hwL' (-q) - iye)

x (E, - Ec(k,)+ EV(k,) - hw)(q)- iye)

x (Ea - EC(k,) + Ev(k) - i7e) (5.29)

DCV = (Ea - Ec(k,) + Ev(kw,)- hwv(-q) - hw"'(q) - i7e)

x (Ea - Ec(k,) + Ev(k,,) - hwv(-q) - iye)

x (E, - Ec (kw) + Ev(kw)- ie) ,

and q = kw - kw, according to the electron-phonon momentum conservation.

The second-order RRS process involves two phonons with opposite momenta q

and -q as described by Eqs. (5.28) and (5.29). Hence, the total momentum con-

servation does not require q to be zero, in contrast to the first-order RRS process

discussed in Section 5.3.1. All phonon modes are thus in principle Raman active in

the second-order RRS process, because the direct product of an irreducible represen-

tation with itself always contains the totally symmetric irreducible representation A,

also present in the representation of the second-rank symmetric tensor Eten. given in

Section 5.3.1. However, only a small fraction of these phonon modes is coupled to

resonantly photoexcited electrons and holes.

The resonant incident and scattered electron wavevectors k, and k,, in Eqs. (5.28)

and (5.29) lie on the contours of constant transition energies Ec(k,) - EV(k,) = Ea

and Ec(kw,) - Ev(k,,) = Ee. The contours are separated in energy by the Raman

frequency shift w = w"(q) + w"' ( - q) or w = wv(-q) + w"'(q) for the two terms in

Eq. (5.27), according to the energy conservation. The contours are wrapped either

around the same K (K') point or around different K and K' (K' and K) points in the

first Brillouin zone of the graphene sheet. The two cases are referred to in Section 5.2

as the intra-valley and inter-valley scattering [132]. The intra-valley and inter-valley

scattering involve phonon wavevectors q and -q near the F point and near the K

and K' points, respectively, according to the momentum conservation.

Let us consider the inter-valley scattering of the 514.5 nm laser line by two iden-

tical phonon modes v' = v = iTO. Figure 5-14 (a) shows the resonant incident and
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Figure 5-14: The second-order Stokes resonance Raman scattering in the graphene
sheet. (a) The contours of constant transition energy around the K and K' points
identical to those shown in Fig. 5-11. The schematic of the electronic band structure
taken along a vertical cut of (a). Black lines show the valence and conduction bands
around the K and K' points. Red arrows marked by "a", "e", and "v" indicate light
absorption, light emission, and phonon emission processes, respectively. The four
traces correspond to different positions of the resonant electronic states shown by
solid black dots.
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scattered contours Ea = 2.41 eV and E, = 2.09 eV replicated from Fig. 5-11 (a). The

second-order scattering processes are illustrated in Fig. 5-14 (b), similar to Fig. 5-

13 (b) for the first-order scattering processes. The four traces of Fig. 5-13 correspond

to the resonant incident and scattered electron wavevectors k,.. and k,, on the con-

tours around the K and K' points along the high-symmetry directions KI, KM, K'M,

and K'I. In contrast to the first-order scattering processes that involve virtual elec-

tronic states represented by open dots in Fig. 5-13 (b), all intermediate electronic

states for the second-order scattering processes shown by solid dots in Fig. 5-14 (b)

are resonant, given two identical phonon modes v'= v and neglecting the asymmetry

between the valence and conduction bands. This implies that all three factors in the

denominators DVc and DC" given by Eq. (5.29) are resonant. Note that there are

other possible second-order scattering channels involving two electron-phonon and

two hole-phonon scattering events. These scattering channels would be expressed by

terms NCC/I)CC and N"V/D " contributing in Eq. (5.27). However, these terms in-

volve at least one virtual electronic state and therefore negligible compared to terms

Nvc/DI)c and N1c/Dcv illustrated in Fig. 5-14 (b).

The resonant incident and scattered electronic states with wavevectors k., and

k7,, shown in Fig. 5-14 (a) are coupled to each other by phonon modes with wavevec-

tors q = k, - k,, according to the momentum conservation. Upon subtracting the

contours around the K and K' points in the left and right panels of Fig. 5-14 (a),

we obtain the manifold of phonon wavevectors q around the K' point represented by

the black curves in Fig. 5-15 (a) (19]. For scaling purposes, the blue box in Fig. 5-

15 (a) outlines the area of linear dimensions KF/3 = 47r/(9a) around the K' point

in the first Brillouin zone of the graphene sheet similar to Fig. 3-14. The density of

phonon states in this manifold is shown in Fig. 5-15 (b) as a function of qK', where

qK' = q - K' is the phonon wavevector measured from the central K' point. The

phonon wavevectors q represented by the four vertical red lines in Fig. 5-15 (b), from

left to right, or the four red circles in Fig. 5-15 (a), from the inner to the outer, couple

together the electronic wavevectors k, and k,, along the high-symmetry directions

KF, KM, K'M, and K'F indicated by solid dots in the four traces of Fig. 5-14 (a),

197



(a) K' (b)

E
C,

o

C,

0
>
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Figure 5-15: (a) The phonon states q around the K' point that connect the electronic
states ki and kf on the contours around the K and K' points shown in Fig. 5-14
according to the momentum conservation q = ki - kf. The blue box outlines the
area of linear dimensions KF/3 = 47r/(9a) around the K' point in the first Brillouin
zone of the graphene sheet similar to Fig. 3-14. The four red circles, from the inner
to the outer, correspond to the electronic states in the four traces of Fig. 5-14, from
the top to the bottom. (b) The density of phonon states in (a) as a function of the
phonon wavevector qK' = q - K' measured from the K' point. The four vertical red
lines, from left to right, correspond to the four red circles in (a), from the inner to
the outer.

second and third traces of Fig. 5-14 (a) for which either k,, or both k, and ks, appear

at flat portions of the contours give rise to the smaller and larger peaks in the phonon

DOS in Fig. 5-15 (b). We refer to these peaks by the phonon wavevectors at which

they appear, qK' / 0 and qK' s kK + kK', where kK = k, - K and kK' = k,, - K'

are the phonon wavevectors measured from the K and K' points. In a similar fashion,

the smaller qr - 0 and larger qr f 2kr peaks appear in the phonon DOS around the

1 point for the intra-valley scattering. While the larger q e 2k peaks give rise to the

second-order features in the resonance Raman spectrum of the graphene sheet [19],

the smaller q - 0 peaks are suppressed by the negative interference at the F, K, and

K' points, as shown by analytical integration of Eq. (5.27) [91].

Different phonon modes v', v = iTA, iLA, iLO, iTO may have different contribu-

tions to the second-order resonance Raman spectrum of the graphene sheet because

198

0 1 2 3 4 5



of the inhomogeneity of the electron-phonon scattering along the contours of constant

transition energy illustrated in Figs. 5-11 (b) and 5-12 (b). For the intra-valley scat-

tering process, the light polarized along the armchair direction PA = -: excites the

electronic states with wavevectors near the K point along the Kr and KM directions

corresponding to angles q = 900 and q = 2700 in Fig. 5-3 (b). These electronic states

are scattered to the vicinity of the K' point in the K'F and K'M directions, respec-

tively, as shown in the two bottom traces of Fig. 5-14. The scattering processes are

mediated by the phonon modes with wavevectors qK' r 2kK whose densities of states

are marked by the two rightmost vertical red lines in Fig. 5-15 (b), respectively. The

coupling of these phonon modes to the aforementioned electronic states is governed by

the matrix elements from Figs. 5-11 (b) and 5-12 (b) at angles ¢ = 2700 and ¢ = 900,

respectively. These matrix elements reach their maximum values for the iTO and

iLO phonon modes with wavevectors qK' 0 2kK along the K'M direction and for the

iLA and iTO phonon modes with wavevectors qK' s 2kK along the K'F direction,

respectively, according to Figs. 5-11 (b) and 5-12 (b). Upon increasing the excita-

tion energy Ea, the phonon wavevector qK' $ 2kK deviates further away from the K'

point, according to the electronic dispersion relations of Eq. (3.14). This deviation

is illustrated in Fig. 5-16 (a) which shows the density of phonon states for Ea = 1.5,

2.0, and 2.5 eV similar to Fig. 5-15 (b) for E, = 2.41 eV. The peak frequencies of the

second-order Raman bands thus show dispersive behavior with changing excitation

energy Ea [88, 132, 134, 161].

The inter-valley second-order Stokes-Stokes resonance Raman spectral profile I(w)

is calculated by numerical integration of Eq. (5.27) on a polar grid with steps in the

radial and angular directions Ak, = 1/(300a) and AkO = 20 centered at the K and

K' points using the ETB electronic dispersion relations from Section 3.6, the AFC

phonon dispersion relations with the ETB force constants from Section 4.3.2, the

ETB optical dipole transition matrix element from Section 5.1 with PA = R, the ETB

electron-phonon scattering matrix element from Section 5.2, the broadening factors

-e = 10 meV and y, = 1 cm - 1 in Eqs. (5.29) and (5.26), and the excitation energies

Ea = 1.5, 2.0, and 2.5 eV. Note that the Bloch amplitudes C,,(k,) and the normal
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Figure 5-16: (a) The density of phonon states as a function of the phonon wavevector
qK' = q - K' measured from the K' point at the excitation energy Ea = 1.5, 2.0, and
2.5 eV, similar to the one from Fig. 5-15. (b) The inter-valley second-order Stokes-
Stokes resonance Raman spectral profile I(w) obtained by numerical integration of
Eq. (5.27). The Raman features at 2530 cm - 1 and 2780 cm- 1 are known as the G'-
and G' bands, respectively. The frequency dispersions of the Raman shifts w with Ea
are fitted to wG' = 2590 cm- 1 -33Ea cm-'/eV and wG' = 2590 cm - 1 +93Ea cm-1/eV.

mode displacements e"(q) that enter the transition matrix elements have arbitrary

phase factors as obtained by diagonalizing the Hamiltonian and dynamical matrices.

The interference of the intermediate electronic states contributing to Eq. (5.27) is

taken into account by adjusting the phase factors of CCo (k.) and e"(q) in accordance

with the symmetry requirements. The calculated spectral profiles I(w) for Ea =

1.5, 2.0, and 2.5 eV are shown in Fig. 5-16 (b) where the two spectral features near

2500 cm-' and 2700 cm-' are known as the G'- and G' bands. The G'- band comes

from the combination of the iLA and iTO phonon modes along the KE direction,

thus clarifying earlier tentative assignments [91, 145, 159], and the G' band comes

from the two iTO phonon modes along the KM direction, in accordance with the

above discussion. The G' band is associated with the larger peak in the phonon DOS

in Fig. 5-15 (b), and the G'- band with the right shoulder of this peak marked by

the rightmost red line in Fig. 5-15 (b), resulting in the relatively low intensity of the

G'- band compared to the G' band. The frequency dispersions of the G'- and G'

bands with Ea in Fig. 5-16 (b) are fitted to wG' - = 2590 cm-' - 33Ea cm-1/eV and
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Figure 5-17: The resonance Raman spectral profile measured from (a) highly-oriented
pyrolytic graphite (HOPG) and (b) polyparaphenylene (PPP) at different excitation
energies Ea. The Raman features around 2450 cm-1 and 2700 cm-1 are known as the
G'- and G' bands, respectively. The frequency dispersions of the Raman shifts w
with E,, for these bands are fitted to the form wG' - = 2510 cm - - 30E, cm-'/eV and
wGI = 2510 cm-1 + 90E, cm-1/eV [31].

wG' = 2590 cm - 1 + 9 3 Ea cm- 1/eV. The other combinations of the phonon modes also

contribute to I(w). The combination of the two iLA phonon modes appears at much

lower w, the two iLO and the iLO with iTO phonon modes contribute to the linewidth

of the G'-band according to the phonon dispersion relations in Fig. 4-14 (b), whereas

the contribution from the other phonon modes is negligible. The linewidth of the

larger peak in the phonon DOS in Fig. 5-15 (b) also contributes to the broadening

of the G'- and G' bands along with the natural linewidth y, of Eq. (5.26). The

second-order Raman features thus have non-Lorentzian profiles.

For comparison, we show in Fig. 5-17 the experimental resonance Raman spec-

tral profile I(w) measured from highly-oriented pyrolytic graphite (HOPG) and from

polyparaphenylene (PPP) at several different excitation energies Ea [31]. The exper-

imental frequency dispersions of the G'- and G' bands with E, are fitted to the form

wG' - = 2510 cm - 1 - 30E, cm-1/eV and wG ' = 2510 cm - 1 + 90E, cm-1/eV. While the

experimental dispersion slope shows good agreement with the results of numerical cal-
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culations shown in Fig. 5-16 (b), the absolute value of the experimental Raman shift is

redshifted by 80 cm -1 from the theoretical prediction. This redshift can be attributed

to the quasiparticle self-energy correction similar to Eq. (3.35) for SWNTs [70] which

is not included in the calculation of I(w) in Fig. 5-16 (b).

In a similar fashion, the intra-valley second-order Stokes-Stokes resonance Raman

scattering can be analyzed. It involves the iLO and iTO phonon modes around the

F point that; give rise to the Raman band around 3200 cm - 1 [158]. Furthermore, the

defect-induced second-order processes take place involving inelastic electron scattering

by a phonon and elastic electron scattering by a defect. The inter-valley defect-

induced second-order process gives rise to the D band Raman feature associated with

the iTO phonon mode at a half frequency of the G' band [88, 132, 134, 158, 161]. On

the other hand, the Raman features associated with the intra-valley defect-induced

second-order process appear at the same frequency as the first-order G band [89, 90]

and therefore can only be observed in highly defective graphitic materials [150, 158].

The matrix element of inelastic electron-defect scattering can be derived from the

electron-phonon scattering matrix element using the frozen phonon approach for a

given defect type [68]. Alternatively, the type and concentration of defects can be

deduced by analyzing the experimental defect-induced second-order resonance Raman

spectral profile [18, 20].

5.3.3 The RRS process in nanotubes

The differential cross-sections for the first- and second-order resonance Raman scat-

tering (RRS) processes in SWNTs are obtained from Eqs. (5.24), (5.25), and (5.27)

to (5.29) in the single-particle approximation upon substituting Eqs. (2.14) and (4.16)

for the 2D electronic k and phonon q momenta, replacing Eb(k) and w"(q) with the

electronic E"'(p, k) and phonon w"(r~, q) dispersion relations for SWNTs from Chap-

ters 3 and 4, and calculating the electron-photon and electron-phonon matrix elements

from Sections 5.1 and 5.2 for optimized SWNT geometries [55, 120]. The many-body

effects are taken into account by adding the quasiparticle self-energies and exciton

binding energies, and by including the exciton-photon and exciton-phonon matrix
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elements in the above calculation scheme. In what follows, we briefly review the cal-

culations of the resonance Raman spectral I(w) and excitation I(Ea) profiles in the

single-particle approximation [17, 55, 120], and we discuss significant effects of the

many-body interactions on I(w) and I(Ea).

For the first-order RRS process, the curvature of the SWNT sidewall gives rise to

the RBM mode and splits the double degenerate G-band of the graphene sheet into

the GT and GL modes or equivalently, into the G- and G + modes, as discussed in

Sections 4.4 and 4.5 [67]. The RBM, G-, and G+ modes have Lorentzian spectral

profiles of Eq. (5.26) except for the G- mode in metallic SWNTs that softens in

frequency and exhibits the Breit-Wigner-Fano (BWF) lineshape:

1
A 7p 2 w - wG-(0, 0)) 2

I(w) = 2 1 + (5.30)
S( w G- (0,0)) 2 + 2 q yp

where 1/q is the peak asymmetry parameter. The origin of the BWF lineshape,

originally attributed to plasmon-phonon coupling [16, 54, 116], was more recently

interpreted in terms of the Kohn anomaly arising from electron-phonon coupling in

metallic SWNTs, as explained in Section 4.6.

The first-order RRS process in chiral (achiral) SWNTs excites 14 (6) Raman-active

phonon modes, including the aforementioned RBM, G-, and G+ modes [3, 12]. The

RBM, G-, and G+ modes, associated with the mode index v = oTA, iTO, iLO and

the angular 7r = 0 and linear q = 0 momenta, belong to the irreducible representation

A l (Alg) of point group DN (D2nh) for chiral (achiral) SWNTs [3, 12]. The 14 (6)

Raman-active modes also include the modes with index v = iTO, iLO and the angular

77 = ±1, ±2 and linear q = 0 momenta that belong to the irreducible representations

El and E2 (El, and E2g) [3, 12]. The mechanism for the Raman activity of the El

and E2 (Eig and E 29 ) modes is understood from the dipole selection rules and the

vibrational selection rules discussed in Sections 5.1.1 and 5.2.1 [64, 140]. Let us con-

sider transitions between electronic states labeled by the band energies Eb(/p, k). For

light polarized parallel or perpendicular to the SWNT axis, the angular momentum I
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is conserved or changed by +1, according to Section 5.1.1. The A1 , El, and E 2 (Alg,

El,, and E2,) phonon modes, on the other hand, conserve p and change it by ±1 and

±2, according to Section 5.2.1. The first-order RRS processes are then classified into

five categories for electron-phonon scattering:

and five analogous categories for hole-phonon scattering, where p and I stand for light

the A1 E, k), and Ei, and E2g) phonon modes have a different dependence on

axis. Indeed, polarization Raman studies of individual semiconducting SWNTs reveal

six Lorentzian peaks in the G-band frequency range [64].

The second-order RRS process in SWNTs is similar to that in the graphene sheet

in the sense that all phonon modes become Raman-active but only the most intense

second-order features are observed experimentally including those overlapping with
the first-order -band [89, 90, 150], the second-order D- and G'-bands [152, 154],

and the intermediate frequency modes (IFMs) [40, 41]. What differs, however, is the

excitation profile I(Ea) for both first- and second-order RRS processes in SWNTs
compared to I(Ea) in the graphene sheet. The excitation profile I(Ea) is determined

by the joint density of electronic states (JDOS) and thus I(Ea) of the graphene

sheet has a monotlarizationic dependence of indiv while I(Ea) of SWNTs has a resonant

depenence on peaks in. The excitation profile I(Ea) exhibits resonances at each Van

Hove singularity (VHS) process in the JDOS for parallel or perpendicular polarization of

light with respect to the SWNT axis, E or Raman-activ for both incident and scattered

light, Ea and Ee = E, - hw. In particular, different processes in Eq. (5.31) appear

at distinct resonances in I(Ea). The resonant magnitude of I(Ea) is sufficiently
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high to allow observation of the RRS signal from individual SWNTs disposed on a

Si/SiO2 substrate, implying that the Raman bands of the SWNT and those of Si

have comparable intensities, even though the ratio of the number of C atoms to the

number of Si atoms contributing to the RRS process is on the order of 10-6 [65].

Comparing the magnitudes of the resonances in I(Ea) with the experimental RRS

excitation-emission density map as the one shown in Fig. 3-17 yields the relative

distribution of (n, m) SWNTs in the sample [55, 120]. In general, the resonances

in I(Ea) may have different widths or shapes depending on the relative values of

the electron finite lifetime broadening factor ye, the Raman shift hw, and the energy

difference Ei+1,i+1 - Eii between adjacent VHSs [17, 55]. For the G-band in armchair-

like metallic SWNTs E M H - EM L < hw and the higher energy resonance Ea = EM H

in I(Ea) is suppressed by the negative interference with the lower energy resonance

Ea = E•L [17, 55]. The higher energy resonance E, = EM H in I(Ea) is thus absent

in the experimental Kataura plot of Fig. 3-17 and has been observed only for a few

selected M SWNTs [149].

Previous calculations of the resonance Raman spectral I(w) and excitation I(Ea)

profiles in SWNTs have been performed in the single-particle approximation neglect-

ing many-body effects [17, 55, 120]. Meanwhile, many-body interactions significantly

affect the electronic transition energies and the optical dipole transition and electron-

phonon scattering matrix elements, as shown in Sections 3.7, 5.1, and 5.2, respectively.

For light polarized parallel to the SWNT axis, the lowest energy bright excitonic states

are blueshifted by about 200-300 meV from the single-particle transition energies Eii,

according to Section 3.7. For light polarized perpendicular to the SWNT axis, the

excitonic states are much further blueshifted and are significantly less suppressed by

the depolarization effect than the single-particle E,,,+1 values. The optical dipole

transition matrix elements between the excitonic wavefunctions show a quantitatively

different dependence on the SWNT chiral angle than the matrix elements between

the single-particle wavefunctions [59]. The exciton-phonon scattering matrix ele-

ments, on the other hand, have values close to the electron-phonon scattering matrix

elements [59]. The I(w) and I(Ea) profiles calculated in the excitonic picture are thus
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expected to show quantitative differences from the previously reported single-particle

profiles [17, 55, 120]. Such calculations will be the subject of future work.

5.4 Band gap photoluminescence

The resonance Raman process in graphene sheets and in SWNTs is a light scatter-

ing phenomenon involving virtual intermediate states, as described in Section 5.3.

The scattered photon is thus coherent with the incident photon. On the other hand,

the band gap photoluminescence in semiconducting SWNTs is related to a light ab-

sorption process. The photoexcited charge carriers relax through real intermediate

states to the band edge, scattered between themselves or with phonons. The carriers

then recombine radiatively at the band edge by interband spontaneous emission. The

emitted photon is therefore incoherent with the incident photon, contrary to the res-

onance Raman scattering. Accordingly, the two processes differ substantially in time

scale. The resonance Raman scattering involves a virtual state whose lifetime does

not exceed a few tens of femtoseconds, according to Heisenberg's Uncertainty Prin-

ciple. For the band gap photoluminescence, the relaxation to the band edge requires

time on the order of picoseconds, while the radiative interband recombination takes

about a nanosecond.

The band gap photoluminescence in semiconducting SWNTs is experimentally ob-

served in the frequency domain [8, 95] or in the time domain [76, 77, 166] from SWNT

samples dispersed in a surfactant solution and excited with the light of a lamp or a

pulsed laser. The frequency domain studies are commonly summarized in the form of

an excitation-emission density map such as the one shown in Fig. 3-16 of Section 3.6.

The bright spots in the excitation-emission density map correspond to the excitonic

transitions Eui and to the phonon-assisted sidebands [26, 52, 81, 118] in different

(n, m) SWNTs, though the exact mechanism of the sideband formation is still ques-

tionable [25, 96, 114]. Time-resolved studies reveal multiple fast and slow relaxation

processes on the time scale from hundreds of femtoseconds to tens of picoseconds as-

sociated with nonradiative exciton-exciton and exciton-phonon scattering pathways
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in semiconducting SWNTs whose precise assignment is not certain [25, 49, 51, 84].

Because of the fast nonradiative relaxation channels and the dark excitonic states,

the band gap photoluminescence has a quantum efficiency less than 10-' [62].

The band gap photoluminescence intensities and relaxation lifetimes in semicon-

ducting SWNTs have been calculated in the single-particle approximation [56, 108].

The relaxation lifetime is obtained as an inverse of the electron-phonon relaxation rate

given by the products of the electron-phonon scattering rates defined by Eq. (5.14)

for different electron relaxation channels [56]. The calculated lifetimes show qualita-

tive agreement with time-resolved measurements, though a more detailed theoretical

analysis of competitive electron relaxation pathways may improve the results of cal-

culations [56]. The photoluminescence intensity is given by the product of the optical

absorption rate of Eq. (5.3), the aforementioned electron-phonon relaxation rate, and

the optical emission rate of Eq. (5.3) [108]. The calculations indicate that the smaller

diameter armchair-like S1 SWNTs have higher photoluminescence intensities, imply-

ing that the experimental PL excitation-emission density map does not reflect the

relative distribution of (n, m) SWNTs in the sample [108]. The latter distribution

is given by the ratio of the measured to calculated photoluminescence intensities,

limited by the experimental resolution and more importantly by the accuracy of the

calculation of the electron-phonon relaxation rate [108].

Previous calculations of the band gap photoluminescence intensities and relaxation

lifetimes in semiconducting SWNTs are performed in the single-particle approxima-

tion ignoring many-body interactions [56, 108]. Meanwhile, many-body interactions

have a considerable effect on the optical dipole transition and electron-phonon scat-

tering matrix elements, as discussed in Section 5.3.3 with respect to resonance Raman

scattering calculations in SWNTs. Furthermore, the electron-phonon relaxation rate

depends crucially on the selection of competitive electron relaxation pathways that

complicates the numerical calculation. Given the exciton-photon and exciton-phonon

transition matrix elements [59], the band gap photoluminescence intensities and re-

laxation lifetimes in semiconducting SWNTs can now be calculated in the excitonic

picture. Such calculations will be the subject of future work.
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5.5 Concluding remarks and future directions

We report calculations of the electron-photon and electron-phonon transition matrix

elements in the graphene sheet and SWNTs within the ETB framework introduced

in Chapter 3. Using the transition matrix elements, we calculate the resonance Ra-

man spectra, of the graphene sheet in the framework of the free electron model. The

results of our calculations show good agreement with the resonance Raman spectral

profiles measured from different graphitic materials at various excitation energies,

clarifying the origin of the G'- feature, which was not clear from the previous theo-

retical and experimental studies. Such an assignment is imperative for the purpose

of sample characterization by resonance Raman spectroscopy, as well as for a bet-

ter understanding of the electronic relaxation processes in the graphene sheet and

SWNTs.

We review recent calculations of the resonance Raman scattering and band gap

photoluminescence in SWNTs performed in the single-particle approximation. The

optical and relaxation properties in SWNTs, however, are governed by excitonic ef-

fects, and the free electron model fails to quantitatively reproduce the relative intensi-

ties of the spectral features observed in experiments. The exciton-photon and exciton-

phonon transition matrix elements are calculated upon substituting the excitonic

wavefunctions obtained within the ETB framework into Eqs. (5.1) and (5.13) [59].

Future calculations of the resonance Raman scattering and band gap photolumines-

cence involving the exciton-photon and exciton-phonon transition matrix elements

are expected, to provide better agreement with the results of experimental observa-

tions. Also, the electron-defect and exciton-defect elastic scattering matrix elements

can be calculated for different types of structural defects using the frozen phonon

approach [68]. This will allow quantitative characterization of structural defects in

the graphene sheet and SWNTs using resonance Raman spectroscopy. Finally, the

phonon-phonon scattering matrix elements need to be calculated for evaluation of

the thermal conductivity in the graphene sheet and in SWNTs, as discussed in Sec-

tion 4.6.2.
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Chapter 6

Conclusions

This thesis reviews recent advances made in optical studies of single-wall carbon

nanotubes (SWNTs). Various optical techniques such as absorption spectroscopy,

infrared spectroscopy, resonance Raman spectroscopy, and band gap photolumines-

cence provide a quick, accurate, contactless, non-destructive probe for electronic and

vibrational properties of SWNTs under ambient conditions. Optical spectra of large

diameter SWNTs prepared by conventional synthesis techniques such as arc discharge

and laser ablation are well understood using the zone-folded electron and phonon dis-

persion relations of the graphene sheet, neglecting the curvature of the SWNT side-

wall. However, recent progress with novel synthesis techniques such as high pressure

CO decomposition (HiPCO) and chemical vapor deposition (CVD) revealed drastic

changes in the optical spectra of small diameter SWNTs. This thesis exploits the

connection of these changes with the curvature of the SWNT sidewall.

The excitation-emission density maps obtained by resonance Raman spectroscopy

and band gap photoluminescence show bright spots corresponding to the Eii energies

of different electronic transitions in individual (n, m) SWNTs. The Eii transition

energies corresponding to small diameter SWNTs of constant 2n + m form family

patterns in the excitation-emission density maps. The family patterns cannot be ex-

plained within the zone-folding approximation and are tentatively attributed to the

effects of curvature of the SWNT sidewall. In this thesis, we develop the extended

tight-binding (ETB) model that takes into account the long-range atomic interactions
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and the rehybridization of the a and 7r molecular orbitals, which are irrelevant in the

flat graphene sheet but play an increasingly important role as the SWNT diameter de-

creases. We optimize geometrical structures of different (n, m) SWNTs and calculate

the Eii transition energies within the framework of the ETB model. The calculated

Eii values accurately reproduce the family patterns in the excitation-emission den-

sity maps, except for the overall blueshift of the experimental families. The family

patterns are thus attributed primarily to the geometrical structure relaxation caused

by the curvature of the SWNT sidewall. The overall blueshift of the experimental

family patterns from the ETB values is associated with the many-body interactions

including the band gap renormalization and the excitonic binding of the photoexcited

charge carriers.

Since the ETB model has been proven to accurately describe the electronic transi-

tions in small diameter SWNTs, we employ it to study the vibrational properties and

the transition matrix elements relevant to optical spectroscopy of SWNTs. The force

constants for the graphene sheet and SWNTs are calculated within the ETB frame-

work, and the resulting phonon dispersion relations show good agreement with the

phonon frequencies measured by spectroscopic techniques. In particular, the ETB

calculations closely fit the linear Kohn anomalies in the graphene sheet observed

experimentally and obtained from first-principles calculations, though the ETB cal-

culations fail to describe the much sharper Kohn anomalies in metallic SWNTs due

to the intrinsic limitations of the force constant approach. We therefore implement

the supercell method and the linear response method for direct calculation of the dy-

namical matrix without involving the force constant approximation. Such calculated

phonon dispersion relations accurately reproduce the logarithmic Kohn anomalies

predicted by the first-principles calculations for truly metallic armchair SWNTs and

accurately reproduce the linear Kohn anomalies observed experimentally from the

mini band gap semiconducting chiral and zigzag SWNTs. This once again proves the

strong merit of the ETB model for SWNT studies in spite of its relative simplicity.

The resonant energies and the frequency shifts observed by spectroscopic tech-

niques from SWNT samples are well fitted by the results of the ETB calculations.
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However, studies of the spectroscopic intensities within perturbation theory requires

knowledge of the transition matrix elements. The optical dipole transition and

electron-phonon scattering matrix elements are calculated for the graphene sheet and

for SWNTs within the ETB framework. The resonance Raman scattering from the

graphene sheet is then calculated in the single-particle approximation with the help of

these matrix elements. The calculated resonance Raman spectra show quantitative

agreement with experimental measurements from different graphitic samples. Our

calculations thus clarify the origin of the previously unassigned G'- feature. On the

other hand, photoluminescence and resonance Raman intensities for SWNTs calcu-

lated within the ETB framework in the single-particle approximation only show qual-

itative agreement with experimental results. This implies the importance of many-

body effects in SWNTs which, because of their 1D nature, enhance the Coulomb

interaction.

There have been several major breakthroughs over the last few years in the field

of optical spectroscopy of SWNTs, including the ones described in this thesis. The

ETB model has proven to accurately describe the electronic, vibrational, and struc-

tural properties of smaller diameter SWNTs. The more we learn, however, the more

unanswered questions appear in the field. Below we suggest a few possible directions

for future research, such as revision of the geometrical structure optimization pro-

cedures for chiral SWNTs, investigation of many-body corrections and quasiparticle

and excitonic effects, calculation of photoluminescence and resonance Raman inten-

sities within the excitonic picture, quantitative analysis of specific structural defects

in SWNT samples, and anharmonic effects responsible for the thermal conductivity

in the graphene sheet and SWNTs.

The optimization of geometrical structures in this thesis has been performed main-

taining the translational symmetry of SWNTs. Meanwhile, chiral SWNTs do not

exhibit the C(2 rotation axes nor the ah mirror planes and therefore can break the

translational symmetry. The geometrical structures of chiral SWNTs thus should

be optimized over the torsional angle associated with the helical symmetry of chiral

SWNTs. Such an optimization will be the subject of future work, and it will provide
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more insight into the structural properties of chiral SWNTs and the single-particle

Eii transition energies. Many-body corrections to the single-particle Eii transition

energies also have to be studied more systematically, including their dependence on

temperature, doping, mechanical strain, hydrostatic pressure, and the dielectric prop-

erties of the SWNT environment, from both experimental and theoretical points of

view.

Upon constructing the excitonic wavefunctions within the framework of the ETB

model, the exciton-photon and exciton-phonon transition matrix elements are as-

sembled from the electron-photon and electron-phonon transition matrix elements.

Photoluminescence and resonance Raman intensities should then be calculated using

the excitonic transition matrix elements. Such calculations are expected to give a

quantitative agreement with experimental spectra. For quantitative studies of the

structural defects in SWNT samples, the electron-defect and exciton-defect elastic

scattering matrix elements must be calculated. Within the frozen phonon approxi-

mation, a structural defect is represented as a linear superposition of phonon modes

and the elastic scattering matrix elements are obtained upon summing the electron-

phonon and exciton-phonon matrix elements with appropriate weights. This ap-

proach has an important potential application of identifying the structural defects

in the graphene sheet and in SWNTs by their spectroscopic signatures. Finally,

the phonon-phonon scattering matrix elements must be calculated similarly to the

aforementioned electron-photon and electron-phonon transition matrix elements. The

anharmonic effects and thermal conductivity in the graphene sheet and in SWNTs

can then be studied in a more systematic way. Our preliminary analysis indicates

that the highest-frequency phonon mode at the K point associated with the Kohn

anomaly exhibits a strong anharmonic behavior and therefore plays an important role

in determining the thermal conductivity of the graphene sheet and in SWNTs.
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