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Abstract

In this thesis research, a coherent scattering model for microwave remote sensing of
vegetation canopy is developed on the basis of Monte Carlo simulations. An accurate
model of vegetation structure is essential for the calculation of scattering from veg-
etations, especially those with closely spaced elements in clusters. The Monte Carlo
approach has an advantage over the conventional wave theory in dealing with com-
plex vegetation structures because it is not necessary to find the probability density
functions and the pair-distribution functions required in the analytic formulation and
usually difficult to obtain for natural vegetation.

To achieve a realistic description of the vegetation structure under consideration,
two methods may be employed. One method requires the specification of the number
of each type of component and the relative orientations of the components. In a
structural model which incorporates this method, the detailed features can be pre-
served to the desired level of accuracy. This structural model is applied to two types
of vegetation- -- rice crops and sunflowers. The developed structural model for rice
crops takes into account the coherent wave interactions made prominent by the clus-
tered and closely spaced structure of rice crops, and is validated with the ERS-1 and
RADARSAT data. It is utilized to interpret the experimental observations from the
JERS-1 data, such as the effects of the structure of rice fields, and to predict the tempo-
ral response of rice growth. The structural model developed for sunflowers is validated
using the airborne Remote Sensing Campaign Mac-Europe 91 multi-frequency and
multi-polarization data acquired for sunflower fields at the Montespertoli test site in
Italy.



Another method to characterize vegetation structure uses growth rules. This
is especially useful in modeling trees, which are structurally more complex. The
Lindenmayer systems (L-systems) are utilized to fully capture the architecture of trees
and describe their growth. Monte Carlo simulation results of the scattering returns
from trees with different structures and at different growth stages are calculated
and analyzed. The concept of the "structure factor" which extracts the structural
information of a tree and and provides a measure of the spatial distribution of branches
is defined, and computed for trees with different architectures.

After study of the forward scattering problem in which the scattering coefficients
are determined on the basis of known physical characteristics of the scattering objects
or medium, the inverse scattering problem is considered in which the characteristics
of the scattering objects or medium are to be calculated from the scattering data.
In this thesis research, neural networks are applied to the inversion of geophysical
parameters including soil moisture and surface parameters, sunflower biomass, as
well as forest age (or equivalently, forest biomass). They are found to be especially
useful for multi-dimensional inputs such as multi-frequency polarimetric scattering
data. For the inversion of soil moisture and surface parameters, neural networks
are trained with theoretical surface scattering models. To retrieve the sunflower
biomass, neural networks are trained with the scattering returns obtained from the
developed vegetation scattering model based on the Monte Carlo approach. To assess
the performance of the use of experimental data to train the neural networks, the
polarimetric radar data acquired by the Spaceborne Imaging Radar-C (SIR-C) over
the Landes Forest in France are utilized as the training data to retrieve the forest
age. Different combinations of backscattering data are used as input to the neural
net in order to determine the combination which yields the best inversion result.

Thesis Supervisor: Jin Au Kong
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Background

There have been growing interests in the microwave remote sensing of vegetations es-

pecially with recent advances of radar and satellite technology. The use of microwave

frequencies for remote sensing can provide day and night coverage and is able to pen-

etrate clouds and rain to some extent. Remote sensing data were obtained from many

satellite missions such as European satellites ERS-1, ERS-2 [16], and Japanese Earth

Satellite-1 (JERS-1) [49], and spaceborne imaging radar missions such as SIR-A and

SIR-B [11, 15]. In 1994, Spaceborne Imaging Radar-C and X-band Synthetic Aper-

ture Radar (SIR-C/XSAR) provided fully polarimetric data at L- and C- bands and

single polarization data at X-band [71]. In addition, the RADARSAT data contains

information on multiple looking angles [57]. The additional information provided by

the multi-frequency polarimetric and multi-angle data is useful for the classification



of vegetation type and the estimation of geophysical parameters. Since a large effort

is generally needed to conduct experiments, it is important to have a more accurate

physical based model for the complex earth terrain to facilitate prediction of scatter-

ing returns and interpretation of multi-frequency polarimetric radar backscattering

data.

In the past, the electromagnetic scattering from the vegetation canopy has been

calculated using the radiative transfer theory and the analytic wave theory [69, 74].

The radiative transfer theory is based on the energy transport equation and describes

the propagation of specific intensity in the medium [73]. The analytic wave theory

starts from Maxwell's equations and incorporates the scattering and absorption char-

acteristics of the medium. Since the equations are in general complicated, solutions

are obtained by making approximations. With the use of dyadic Green's functions

together with approximations such as the Born approximation or distorted Born ap-

proximation [37, 38, 58], the scattered field from the medium is calculated. To char-

acterize the random media, both the continuous random medium model [9, 17, 18, 72]

and the discrete scatterer model [37, 38] have been used in the above two approaches.

The continuous random medium model uses a correlation function to describe the per-

mittivity fluctuation of the medium of interest. The key inputs to the model include

variances and correlation lengths. The attenuation and phase delay of wave propaga-

tion inside the medium are taken into consideration when the effective permittivity is

calculated. In the discrete scatterer model, the inhomogeneities are considered as dis-

crete scatterers embedded in a background medium. The inputs to the model include



the fractional volume, sizes, shapes, orientation distributions, and permittivities of

the scatterers. More recently, the integral equation formulation with the method of

moments computational model has been employed to investigate vegetation scattering

[79].

In the past, wave scattering from vegetation has been studied extensively using

the radiative transfer approach which assumes that particles scatter independently.

It is important to take into account the coherent wave interactions among vegetative

elements which are usually in clusters and closely spaced. Yueh, et al.[90] developed

a branching model with the wave approach. However, the probability density func-

tions and the pair-distribution functions required in their analytic formulation are

usually difficult to obtain for natural vegetation. Therefore, in this thesis research,

a coherent scattering model with analytic wave theory is developed based on Monte

Carlo simulation for the microwave remote sensing of vegetation canopy. Unlike the

branching model [90], this scattering model does not require the knowledge of the

probability density functions and the pair distribution function for the vegetation

under interest. Monte Carlo simulation in general is computationally intensive. How-

ever, with the rapid advances of computer technology, using Monte Carlo simulation

to solve Maxwell's equations for different applications becomes more practical. It has

been applied to calculate the scattering returns from the rough surface [30, 50, 77],

and from densely packed spheres [76, 93]. For remote sensing of vegetation, the

model takes into account of the distinctive structures of vegetations, and especially

the coherent wave interactions among plant elements which are usually in clusters



and closely spaced. The backscatters from the vegetation are calculated using the

Monte Carlo simulation approach in which locations and characteristics of particles

are supplied by computer experiments according to the ground truth characteriza-

tions. These simulated scenarios are utilized in solving Maxwell's equations. The

developed model will be applied to vegetation such as rice crops and sunflowers, and

then to trees which are more complicated in form. The developed model are validated

by comparisons with airborne and/or spaceborne experimental measurements. These

vegetation electromagnetic scattering models are employed to interpret the existing

multi-temporal, -frequency, -looking angle, and -polarization remote sensing data.

Another important application of microwave remote sensing is to retrieve the geo-

physical information from the electromagnetic measurements. There has been an

increasing interest in the applications of neural networks [46] to the classification of

terrains and inversion of geophysical parameters in the remote sensing research com-

munity. In contrast to the conventional method which requires the inversion algorithm

to be known exactly, the neural network determines the relationship between the in-

put to the network and output from the network directly from the training data. It

is especially useful for the cases of parameter retrieval and classification from remote

sensing data since there are many non-linear and poorly understood factors involved

which make the development of the inversion algorithm difficult. The potential and

capability of neural networks for dealing with complex remote sensing data have been

demonstrated. For example, the classification of terrain mappings from satellite data

using neural networks showed a better classification rate than the conventional sta-



tistical approach [8, 21], and a neural network trained with a theoretical scattering

model has been applied to the inversion of snow parameters [75] . Neural networks are

flexible for the inversion of geophysical parameters especially for multi-dimensional

inputs such as multi-frequency polarimetric scattering data. Another advantage is

that one does not need to make any assumption about the analytic form of the statis-

tics of the input data. In this study, neural networks are constructed and applied to

the inversion of soil moisture, sunflower biomass, and forest age.

1.2 Description of Thesis

This thesis is divided into six chapters. The motivation of doing this thesis research

is given in Chapter 1. In Chapter 2, a coherent scattering model with analytic wave

theory developed on the basis of the Monte Carlo simulation for microwave remote

sensing of vegetation canopy is described. To calculate scattering from vegetation, it

is important to be able to model the vegetation structure as accurately as possible

especially for those vegetations with closely spaced elements in clusters. The Monte

Carlo approach has the capability of taking the complex vegetation structures into

account. It has the advantage over the conventional wave theory approach because

it is not necessary to find the probability density functions and the pair-distribution

functions which are required in the analytic formulation and are usually difficult to

obtain for natural vegetation. The Monte Carlo approach is increasing in popularity

with the fast computational speed and memory capacity of modern digital computers



because the simulation of random variables is a laborious process. In the Monte Carlo

simulation, the coherent wave interactions among vegetative elements are taken into

account. The attenuation on the coherent wave caused by the inhomogeneities is

considered as well.

To take advantage of the Monte Carlo approach, a realistic description of the

vegetation structure under consideration is needed. One method to characterize the

structure of vegetation is by specifying the number of each type of component and

how the components are oriented with respect to one another. In Chapter 3, a struc-

tural model which incorporates this method is developed. In this structural model,

the vegetation structure is characterized by levels of details. The detailed features of

distinct vegetation structures can be preserved to the desired level of accuracy. In

the Monte Carlo simulation, the configurations are generated from the characteriza-

tion of vegetation structure. Based on the ground truth measurements, the distinct

structures for different vegetations can be specified by the types of components, the

number and size of each type of component, the orientation and branching angles of

the individual components. The applications of the structural model to two types of

vegetation are discussed. The first case is rice crops for which it is important to have

a good structural model to take into account the coherent wave interactions since

rice plants usually occur in clusters and are closely spaced. The developed structural

model is validated with RADARSAT and ERS-1 data [41]. It is also utilized to in-

terpret the experimental observations from JERS-1 data [61] such as the effects of

the structure of rice fields, and to predict the temporal response of rice growth. In



addition to the rice canopy, the application of the structural model to sunflowers is

described. The structure of a sunflower is quite different from that of a rice plant. For

example, a sunflower doesn't have a cluster structure and has a flower at the devel-

oped stage. The simulated results from the structural model are validated by airborne

Remote Sensing Campaign Mac-Europe 91, multi-frequency and multi-polarization

data acquired for sunflower fields at the test site Montespertoli in Italy [5].

Another method to characterize the structure of vegetation is by applying growth

rules. In Chapter 4, a growth rule based model is developed. It is especially useful

to apply a growth rule based model to generate trees, which are structurally more

complex. To fully capture the architecture of trees and describe their growth, the

Lindenmayer systems (L-systems) are utilized. The L-systems approach was proposed

by Lindenmayer for simulating the development and growth of living systems [44].

For simulation of trees, it places emphasis on the tree topology which specifies the

neighboring relations between tree components. Trees generated by L-systems are

quite realistic in appearance as compared to natural trees. With L-systems, trees

at different growth stages can be simulated. Monte Carlo simulation results of the

scattering returns from trees at different growth stages are shown and analyzed in

this chapter. We will also examine the scattering returns from trees with different

structures generated using L-systems. The concept of the "structure factor" which

extracts the structural information of a tree and gives the spatial distribution of

branches is defined. The structure factors are calculated and analyzed for trees with

different architectures.



In Chapter 2, we consider a class of problems in which we know the physical char-

acteristics of the scattering objects or medium, and wish to determine the scattering

coefficients. In Chapter 5, a different class of problems is considered in which the

scattering coefficients are known, and we wish to determine the characteristics of the

scattering objects or medium from which the measurements are obtained. This prob-

lem is referred to as parameter inversion. In this chapter, the inversion of geophysical

parameters is performed using neural networks. Neural networks have been studied

for many years in the hope of simulating human intelligence. Because of its ability

to learn, neural network can be trained to perform pattern recognition. It is flexible

for the inversion of geophysical parameters especially for multi-dimensional inputs

such as multi-frequency, multi-polarization scattering data. The applications of neu-

ral network to the inversion of soil moisture and surface parameters, the inversion of

sunflower biomass, and the inversion of forest age (or equivalently, forest biomass)

are described. For the inversion of soil moisture and surface parameters, neural net-

works are trained with theoretical surface scattering models. To retrieve the sunflower

biomass, neural networks are trained with the developed vegetation scattering model

described in Chapter 3 where the simulated results from the structural model are val-

idated by airborne Remote Sensing Campaign Mac-Europe 91 multi-frequency and

multi-polarization data. To examine the performance of the use of experimental data

to train the neural networks, the polarimetric radar data acquired by the Spaceborne

Imaging Radar-C (SIR-C) over the Landes Forest in France and the information on

the forest age from the biomass map of that area are utilized as the training data



to retrieve the forest age. The retrieval of forest age from remote sensing data is

important in the studies of global change and has been a subject of great interest

in recent years [6, 13, 40]. Different combinations of backscattering data are used as

input to the neural net in order to determine the combination which gives the best

inversion result.

In Chapter 6, the conclusions of this thesis research are presented.



Chapter 2

Monte Carlo Approach for

Vegetation

2.1 Remote Sensing Models for Vegetation

In the past, the electromagnetic scattering from the vegetation canopy has been cal-

culated using the radiative transfer theory and the analytic wave theory [69, 74]. The

analytic wave theory starts from Maxwell's equations. To obtain solutions, approxi-

mations are made since the equations are in general complicated. The scattered field

from the medium is calculated with the use of dyadic Green's functions together with

approximations such as the Born approximation [29, 74, 91] or distorted Born approx-

imation [37, 38, 58]. The Born approximation, which was named in honor of Max

Born who developed the technique for quantum particle scattering, is the simplest

and widely used method. In the Born technique, the basic assumption is that the



internal field is not altered by the presence of the particle. In the integral form of the

scattered field which is derived from the wave equation with the use of dyadic Green's

functions, the internal field is identical to the incident wave inside the integral with

this approximation. Although this technique is simple and can be applied without a

priori knowledge of the field, it's only valid for weak permittivity fluctuations. The

distorted Born approximation is an improvement over the Born approximation since

it takes into account the attenuation of the incident and the scattered waves in the

equivalent medium. In this technique, the scatterers are assumed to be embedded in

the equivalent medium, and then a single scattering theory is employed to calculate

the scattered field. This approximation is valid when the scattering albedo of each

scatterer is small.

Unlike the analytic wave theory which starts with Maxwell's equations, the ra-

diative transfer theory is based on the energy transport equation and describes the

propagation of specific intensity in the scattering medium [73, 74]. The specific in-

tensity is a four-element Stokes vector with the polarization of the electromagnetic

radiation described by the four Stokes parameters. One of the assumptions in the

radiative transfer theory is that particles scatter independently. Constituents of the

radiative transfer equations are the phase matrix, extinction matrix, and emission

vector. The phase matrix characterizes the coupling of electromagnetic intensities

from other directions into the direction under consideration as the result of scatter-

ing. The extinction matrix describes the attenuation due to absorption and scattering

loss. It can be evaluated by summing the absorption and scattering coefficients, or



can be expressed in terms of the forward scattering functions using the optical theo-

rem [74]. The emission vector provides the source of thermal emission. It is mainly

used in the passive remote sensing cases. Different algorithms, such as the iterative

approach and the discrete ordinate-eigenanalysis method, have been used to solve the

radiative transfer equations. In the iterative approach, scattering is considered as a

small perturbation. The solutions can be written as a perturbation series. Using the

scattering parameter as the iterative parameter, each order in the series can be cal-

culated by iteration of the previous order. The iterative approach is more applicable

when the albedo is small such that the convergence of the solution can be reached

quickly. For cases of general albedo, the discrete ordinate-eigenanalysis method can

be used. With this method, the radiative transfer equations are solved numerically by

discretizing the propagation directions into a finite number of directions in order to

convert the differential-integral equation into a system of ordinary differential equa-

tions with constant coefficients. The solution can then be obtained by eigenanalysis.

To characterize the random media, both the continuous random medium model

[9, 17, 18, 72] and the discrete scatterer model [37, 38] have been used in the above

two approaches. The continuous random medium model uses a correlation function

to describe the permittivity fluctuation of the medium of interest. The key inputs to

the model include variances and correlation lengths, which correspond to the fluctua-

tion strength and geometries of the scatterers, respectively. The effective permittivity

is calculated by taking into consideration the attenuation and phase delay of wave

propagation inside the medium. This method has been applied to calculate the po-



larimetric returns for vegetation with selected correlation function parameters [9]. In

the discrete scatterer model, the inhomogeneities are considered as discrete scatterers

embedded in a background medium. In addition to the background permittivity, the

inputs to the model include the fractional volume, sizes, shapes, orientation distribu-

tions, and permittivities of the scatterers.

To simulate the electromagnetic scattering from the vegetation using either the

analytic wave theory or the radiative transfer theory, the vegetation canopy has been

modeled as a layer of randomly oriented leaves with disk shapes [38, 31, 66], or a layer

of randomly oriented stems or leaves with cylindrical shapes [33, 39]. The forest has

been modeled as a layer of nearly vertical cylinders representing tree trunks and a layer

of randomly oriented cylinders representing branches [14]. However, in those models,

the form or structure of vegetation has not been addressed. The effect of vegetation

architecture on the scattering returns has been studied [90, 27] and was demonstrated

to be significant. The results show that it is necessary for theoretical models to take

into consideration the different vegetation architectures and growth patterns of trees.

The structure of vegetation plays an important role in determining the observed

coherent effects. Imhoff [27] did a systematic study on the effect of forest structure

on the radar backscattering returns by simulating a series of forest stands having

equivalent above ground biomass while allowing the structure to vary. The results

indicate that the structure can have a substantial effect on the backscattering returns

for forests with equal biomass. To take into account the architecture of vegetation,

Yueh, et al. [90] developed a branching model for the remote sensing of vegetation with



the wave approach. A two-scale branching model was presented for soybean plants

with the internal structure and the resulting cluster effects considered. The branching

model takes into account the phase interference between each component. However,

the probability density functions and the pair-distribution functions required in their

analytic formulation are usually difficult to obtain for natural vegetation.

Using Monte Carlo technique to solve Maxwell's equations for different applica-

tions becomes more practical in recent years with the rapid advances of computer

technology. The Monte Carlo method is a numerical technique which solves mathe-

matical problems by the simulation of random variables [20]. Because simulation of

random variables is a laborious process, the use of the Monte Carlo method is becom-

ing increasingly popular with the fast computational speed and memory capacity of

the modern digital computer, especially the multiprocessor computing systems which

can simulate many independent statistical experiments in parallel. In addition, be-

cause of the increasing complexity in mathematical modeling of the phenomena in

question, classical computational methods are in many cases unsatisfactory. The

Monte Carlo method has been used to solve a variety of problems which are beyond

the available resources of theoretical mathematics. It has been applied in areas such

as physics, chemistry, biology, medicine, economics, etc. [7, 48, 65, 70]. In the past,

the results from the Monte Carlo approach were used to compare with experimental

data from real systems in order to check how well the model approximates a real

system. The Monte Carlo approach was also utilized to compare its results with

analytic theories which start with the same model in order to determine the validity



of some approximations made in the analytic calculation. In addition, Monte Carlo

simulation can provide more insight into some complex problems which may not be

obtained with other means. It has been applied to calculate the scattering returns

from the rough surface [30, 50, 77], and from densely packed spheres [76, 93].

In this thesis research, a coherent scattering model with analytic wave theory

is proposed based on Monte Carlo simulation for the microwave remote sensing of

vegetation canopy. The statistical scattering properties of the canopy are obtained

from the Monte Carlo simulation. Unlike the models using the radiative transfer

approach which assumes particles scatter independently, this scattering model takes

into account of the distinctive structures of vegetations, and especially the coherent

wave interactions among vegetative elements which are usually in clusters and closely

spaced. Compared to the branching model, this scattering model utilizing the Monte

Carlo approach also has the advantage of eliminating the need for assuming the

correlation information between the vegetative elements. With the information on the

location and orientation of a vegetative element considered as the first order statistics,

the correlation between the vegetative elements is considered as the higher order

statistics and is very difficult to measure. Since the Monte Carlo approach implicitly

generates the higher order statistics, it is not necessary to make the assumption on

the probability density functions and the pair-distribution functions as required in the

branching model. Besides its capability of taking the complex vegetation structures

into account, this scattering model can also easily incorporate the growth rules of

vegetation in the simulation.



2.2 Characterization of the Vegetation Structure

Since the vegetation structure can have a significant effect on the scattering returns,

it is important to have a realistic description of the vegetation structure under con-

sideration. In general, vegetation consists of structures of many length scales. Each

type of vegetation has its own particular structure and form. Crops have simpler

structures and fewer scales while trees have more scales and more complicated in

forms. In our proposed coherent scattering model based on Monte Carlo approach,

two methods to characterize the structure of vegetation are incorporated. The first

method requires the specification of the number of each type of component and the

relative orientations of the components. Another method uses growth rules. The

structural model and growth rule based model which incorporate these two methods

respectively are described below.

2.2.1 Structural Model

One method of characterizing the structure of vegetation is by specifying the number

of components and how the components are oriented with respect to one another. In

the past, vegetation has been modeled with simple structure such as same-size cylin-

ders [39]. Other examples include a soybean plant modeled as a vertical branching

plant having a stem and terminal branches with attached leaves [90], a grass canopy

represented by elongated elliptical discs [64], and a pine tree modeled with multiple

scale cylinders where very thin cylinders are used to represent the needles [3, 25]. In



the structural model, vegetation structure is characterized by levels of details where

the fine features of distinct vegetation structures can be preserved to the desired level

of accuracy. The first level consists of stems and trunks. The next level includes

the branches, with the specification of the number of branches grown from a single

stem or trunk, their orientation angles and branching angles. The third level includes

leaves in the vegetation structure. At this level, the number of leaves grown from

each terminal branch or stem, the orientations of the leaves and their connections to

the terminal branches or stems provide a more detailed description of the vegetation

structure. At later growth stages, some vegetations have flowers. Therefore, the next

level incorporates flowers grown from stems or terminal branches.

2.2.2 Growth Rule Based Model

Another method of defining the structure of vegetation utilizes growth rules. In the

past, fractals have been used to simulate trees [4, 47, 51]. In his book, Benoit Man-

delbrot used the "pipe model" to simulate trees, in which the trees are described as

bundles of non-branching vessels of fixed diameters, connecting roots to leaves [47].

The basic idea behind fractal geometry is self-similarity, which can be observed in

certain aspects of plant structures. Some of the trees generated are quite realistic

because some of the plant developmental processes result in self-similarity. To fully

capture and describe plant development in time, the formalism of Lindenmayer sys-

tems, or L-systems, has been utilized [52, 53, 54, 55, 68]. The L-systems technique

was proposed by Lindenmayer for simulating the development and growth of living



systems [44]. The central concept of L-systems is that of rewriting, which is a tech-

nique for defining complex objects by successively replacing parts of a simple initial

object using a set of rewriting or production rules. It is especially useful in gener-

ating structurally complex trees. Trees generated by Lindenmayer systems are quite

realistic in appearance compared to natural trees.

2.3 Monte Carlo Approach

In this section, the developed coherent scattering model based on Monte Carlo sim-

ulation is described. This model takes into account the coherent wave interactions

among vegetative elements which are usually closely spaced and in clusters. In the

Monte Carlo simulation approach, the first step is to create simulated scenarios for

the vegetation canopy of interest. The configurations are created by computer ex-

periments on the basis of the ground truth characterizations such as the fractional

volumes, sizes, and shapes of stems and leaves, or some growth rules which are applied

to the Lindenmayer systems. Therefore, the location, orientation, and distribution

of every vegetation component can be obtained from computer simulations. Given a

created realization, the scattering can be calculated by solving Maxwell's equations.

Consider a configuration of a vegetation field where the top of the vegetation

canopy is indicated by z = 0 and the boundary between the vegetation canopy and the

ground is z = -h. Given the configuration of the vegetation field and an incident wave

E' in the direction (Oi, Oi), the first-order solution of the backscattered electric field



can be expressed as the sum of four terms which describes the four major scattering

mechanisms in a vegetation canopy (Figure 2-1).

ikr

E :(e) = (S + S2 + S+S 4) E (2.1)

where q and p are the polarization components (q, p = h or v) of the scattered and

incident waves, respectively.

S1 describes the the direct scattering from a particle (Figure 2-la) and can be

expressed as

Nt

S, = ( Efp,(ir - Oi, 7 + • i; Oi, qi)e k ( , ' ) - k (w- e r+" I)]'  (2.2)
t=stem,branch, j=1
leaf, or flower

where t is the index for the scatterer type-stem, branch, leaf, or flower, and Nt is

the number of scatterers. ft is the scattering matrix element. p, is the propagation

vector of the incident wave, kq is the propagation vector of the backscattered field.

Oi is the incident angle from the vertical direction and Oi is the azimuthal angle.

FT = Jxr + •yg - ýzý is the location of the element j of scatterer type t.

The second term S2 is a single scattering from the scatterer followed by a reflection

off the boundary (Figure 2-1b).

Nt

S2 = ERq (Oi) fp(Oi, 7 + i; , i )e'(Si,)-( i)] (2.3)
t=stem,branch, j=1
leaf, or flower

The third term is the reverse of the second term; i.e., it represents surface scattering

followed by single scattering (Figure 2-1c).

Ss3= E -fft( - Oi7, r + i;T - O~ 0) )R9(0)e [( -e,) - )-Ts(r-°o,,+Oi)] (2.4)
t=stem,branch, j=1
leaf, or flower



R (Oi) and Rq(Oi) are the Fresnel reflection coefficients. Since the permeability for

the ground and the region above the ground is assumed to be equal to the free

space permeability, the Fresnel reflection coefficients for the horizontally and vertically

polarized waves are

ko cos 0i - kl cos 0O
Rh = Rh = o cos 0i + k, cos Oi

l= ko cos Oi - ki cos 0i
R, = ck 0cos+kcos (2.5)Elko cos04i + k, cos04i

where ko is the free space wavenumber, and kl is the wavenumber of the ground with

dielectric constant e1.

The fourth term S4 describes a reflection by the boundary followed by a single

scattering from the particle and further followed by a reflection off the boundary

(Figure 2-1d).

Nt

S4 = Eq (Ri) fqp (O iIN+ki; i, i i i)e ( (2.6)
t=stem,branch, j=1
leaf, or flower

For stems and branches, the scattering is calculated using the finite cylinder ap-

proximation [32] in which the induced current in the dielectric cylinder is assumed

to be the same as that of the infinitely long cylinder of the same radius. It is a

fairly good approximation for a circular dielectric cylinder with length longer than

the wavelength of incident wave and radius much smaller than the wavelength of inci-

dent wave. The scattered field is approximated by evaluating the field radiated from

this induced current source.

The scattering matrix elements of a finite cylinder with dielectric constant E,,

permeability equal to that of free space, radius a and length 1 are given by
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k° 2(E, - 1)u
0 2 - Bo?1ho h+ 2 (i An cosOenh - Bnrhnh) cos[n(o, - 0i)]

n=1

= 2 eo (Bo cos i csOs 0, + Zo sin 0,)

+2 [(Bn cos Oienv + iAnrhnv) cos 0, + envZn sin 0,] cos[n( 8, - 0i)]

= k(- 1)u 2i 3 (iAn cos Oien,, - Bnnrhn,) sin[n(o, - ij)]
2 n=l

= k - 1)u 2i [(B
n=l

cos Oienh + iAnhnh) cos 0, + enhZ, sin 08] sin[n(¢ 8 - ¢i)]

(2.7)

where

Ci ( k z i - k z s ) l - 1

i(kzi - kzs)
(2.8)

kzi and kz8 are the i-components of the incident and scattered wave vectors, respec-

tively. Zn, An and B, in Equation 2.7 are as follows.

Zn k2 i _ k 2 [kipiJn(kpsa)Jn+i(kipia)
'P s

- kpsJn(kipia)Jn+l (kpsa)]

An = ko (Znl - Zn+l)2kipi

B, = ko (Z,_1 + Zn+1)
2kpi

The coefficients enh, env, hnh and hnv are given by the following equations

-i (ko(kgko)R,
JJn

1 1 1

(klipia) (kpia)2 (kipia)2

1
RnJn(kipia)

CskJ'n(kipia)
klpi aJn(klpia)

kzi
ko

H(1) ' (kpia)

kpiaHne1 ) (kpia)

f t

f tfhv

f h

enh

(2.9)



k= 1Z J(kipia) _ H)' (kpi a)
env iko RJn(kipia) klpiaJn(klpia) kpaH (kpa)

Th,, = enh (2.10)

where

- (kpia)2H) (kpia) (ki 2 2 2
2 \ko (kpia)2 (kip-a)2

Es JX(kipia) Hn )' (kpia) J'(kipia) Hn1)' (kpia)

kIlpiaJn(klpia) kpiaH )(kpi a) kilpiaJn(klpa) k•aHl)(k-pia)

and

kpi = Vko - kz (2.11)

k0o is the free space wavenumber. Jn and H1) are the Bessel function and the Hankel

function of the first kind, respectively.

For scattering from leaves or flowers, the returns are calculated using the physical

optics approximation for elliptic discs [43], which assumes the internal field inside

the disc to be the same as that of the infinitely extended dielectric layer of the

same thickness. For a thin circular disk with dielectric constant e~ and free space

permeability, the scattering matrix elements are as follows.

t k 2  d os 8  d d
f = (Ef- - 1)COS(s - )V Alhsinc((kzi - kz)) + Blhsinc((klzi + kzs) )

_ k ko df, = 4 (e - 1) •k 2 V

(klzi cos 0cos(o, - 0i) + ko i s O sin O)Asinc((klzi- k)



+(-- kli cos 0, cos(s, - 0i) + ko sin Oi sin 08)B1,sinc((kli + kzs)- )

[Avsinc((kizi - kz) )- +- Bisinc((kizi + kzs) )1k22
f =~ (e - 1) cos lz sin(Q, - )47r

Alsinc((kizi - kz)d) ) + Blhsinc((kli + kz,) )
2d

(2.12)

where

klzi = k•e- kji- ky  (2.13)

kxi, ky, and kzi are the x-, y- and i-components of the incident wave vector, re-

spectively. Alh and Blh are the amplitudes of upgoing and downgoing horizontally

polarized incident waves in the disk and have the following expressions.

2ei(- kzi+k lzi)2 (pol - 1)
Alh = (2.14)

(1 + poh) 2e-iklzid - (1 - p0o) 2eiklzid

2e-i(kzi+klzi)'(Po1 - 1)(1 + p0lh) 2e-iklzid (1 - p0)2eikizid (2.15)

where Po0h :== klzi/kzi. Alv and B1, are the amplitudes of upgoing and downgoing

vertically polarized incident waves in the disk and can be obtained by substituting

polv = kizi1/Qekzi for Polh in Equations 2.14 and 2.15. For a circular disk,

V 2Jl( j=i - k 8Ia) (2.16)
k- kwherea

where

k=i =~ :ki + ykyi

kP = kxsc + ýky,1
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kXs, ky8 and kz, are the i-, y- and i-components of the scattered wave vector, respec-

tively.

The effects of attenuation on the coherent wave caused by the inhomogeneities are

also taken into account using Foldy's approximation [74, 90]. The attenuation is ob-

tained by averaging the forward scattering returns of each scattering component. The

canopy components are assumed to be excited by this coherent wave. The coherent

wave along the propagation direction (0, q) is governed by

dEhdE = (iko + Mhh)Eh + MhE, (2.18)
ds
dEv

= MvhEh + (iko + Mv,)E, (2.19)
ds

where Eh and Ev are the horizontally and vertically polarized components of the

electric field, and s is the distance along the propagation direction. In equations 2.18

and 2.19,

i27rM = Ah Nt < f (0, ¢; 0, ¢) > (2.20)
koAht=stcm,branch,

Icaf, or flower

where q and p are again the polarization components (q, p = h or v). The angular

brackets denote the configurational average, h is the height of the vegetation canopy,

A is the area of the vegetation field, and k0o is the wavenumber of free space. The

horizontally and vertically polarized waves propagate along the direction (0, ¢) inside

the vegetation canopy with the propagation constants

kh = ko - iMhh (2.21)

kv = ko - iMvv (2.22)
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Figure 2-1: Four major scattering mechanisms: (a) direct scattering from scatter-

ers, (b) single scattering from a scatterer followed by reflection off the boundary, (c)

surface scattering followed by single scattering, (d) reflection by the boundary fol-

lowed by single scattering from a scatterer and further followed by reflection off the

boundary.

\z '11- -
z = 0



for horizontally and vertically polarized components, respectively. Since the calcu-

lated kh and k, are quite close to ko, the effects of reflection and refraction at the

top boundary of the vegetation canopy layer are neglected here. On the basis of

equations 2.21 and 2.22, equation 2.1 can be expressed as

ikr Nt z zt i

Es(f) = E fp - Oil ? + Oi; Oi i)e cos e M e 2i(k z k z )
r t=stcm,branch, j=1

Icaf, or flowcr

2h+zt z
t.

+ R(i)pi i M 2i(kxx +k'y 4+k h)

2 2h+z

+ f (x - 0, 7x + i; 7 - i, ,iO)Rp(0i)e - M  e Mppo 2i , X +k 4+k

+ Rq(O )ftp(Oi, 7 + Oi; 7 - Oi, i)R,(Oi)

2h+zt 2h+zt
Mq cs ek • e2i(k +y +k+ (2h+z)) E (2.23)

where kA = ko sin 9i cos oi, k~ = ko sin Oi sin qi, and k' = ko cos 0i. The attenuation

is from the real part of Mp and Mqq. The coherent addition method is adopted in

which the total scattered field from the canopy is obtained by adding the scattered

field from each component coherently.

The scattered electric field Eq from each realization is calculated according to

equation 2.23. The backscattering coefficient is then computed from

4 r2 < |Eq1 2 >qp A E (2.24)

where A is the illuminated area. The results are obtained by averaging over an

ensemble of realizations. The convergence of the Monte Carlo simulation is checked

numerically with respect to the number of scatterers and realizations.



2.4 Summary

In this chapter, a coherent scattering model is developed based on Monte Carlo sim-

ulation for the microwave remote sensing of vegetation canopy. The Monte Carlo

approach is capable of taking the complex vegetation structures into account. It has

the advantage over the conventional wave theory because it is not necessary to find the

probability density functions and the pair-distribution functions, which are required

in the analytic formulation and are usually difficult to obtain for natural vegetation.

This model takes into consideration the coherent wave interactions among vegeta-

tive elements which are usually closely spaced and in clusters. Four major scattering

mechanisms in a vegetation canopy are considered, including the direct scattering

from a vegetation component, and three types of volume-surface interactions. The ef-

fects of attenuation caused by inhomogeneities on the coherent wave are incorporated

in the model using Foldy's approximation, in which the attenuation is obtained by av-

eraging the forward scattering returns of each scattering component. The scattering

from stems and branches is calculated using the finite cylinder approximation, while

scattering from leaves or flowers is calculated using the physical optics approximation

for elliptical discs.

To take advantage of the Monte Carlo approach, a realistic description of the

vegetation structure under consideration is needed. Two methods to characterize

the structure of vegetation are introduced in this chapter. One method requires the

specification of the number of each type of component and the relative orientations of



the components. A structural model which incorporates this method is described in

more detail in Chapter 3. Another method to characterize the structure of vegetation

uses growth rules. A more detailed description of a growth rule based model is

presented in Chapter 4.



Chapter 3

Structural Model

3.1 Structure of Vegetation

To calculate scattering from vegetation, it is important to be able to model the

vegetation structure as accurately as possible especially for vegetations with their

clustered and closely spaced elements. One method to characterize the structure of

vegetation is by specifying the number of each type of component and the relative

orientations of the components.

In the structural model, vegetation structure is characterized by levels of detail.

The detailed features of distinct vegetation structures can be preserved to the desired

level of accuracy. The first level consists of the primary components of the vegetation

structure, such as stems or trunks. They are in general the major scatterers. The

second level considers the branches. The orientation angles, branching angles, and the

number of branches contribute toward forming the distinct structure of vegetation.



For vegetation with leaves, the next level includes the leaves in the model. A more

detailed description of the structure is achieved by specifying the number of leaves and

how the leaves are oriented and connected to the branches and stems. Although in

general the leaves may not have a large contribution to the scattering, the attenuation

caused by leaves at high frequencies cannot be ignored. Since some vegetations have

flowers at later growth stages, the next level consists of flowers grown from stems or

terminal branches.

In the Monte Carlo simulation, the configurations are generated from the char-

acterization of vegetation structure. Based on the ground truth measurements, the

distinct structures for different vegetations can be specified by the types of com-

ponents, the number and size of each type of component, and the orientation and

branching angles of the components. In this chapter, the applications of the struc-

tural model to two types of vegetation are described. One is the rice crop, which

is an essential food source in many regions of the world such as Asia and forms the

basis of the economy in many countries. Since rice plants usually occur in clusters

and are closely spaced, a good structural model which takes into account the coherent

wave interaction is essential. In addition to the rice canopy, the application of the

structural model to sunflowers will also be discussed in this chapter.



3.2 Application to Rice Fields

3.2.1 Introduction

Rice is an essential food source in many regions of the world such as Asia. It forms

the basis of the economy in many countries. As a consequence, rice monitoring is

economically useful in predicting the yield of rice crops. In addition, rice monitoring

is important environmentally. The knowledge of rice growing areas can be used to

estimate the flux of methane from the irrigated rice fields to the atmosphere [28].

Methane is second in importance only to carbon dioxide as a greenhouse gas. Flooding

a rice field cuts off the oxygen supply from the atmosphere to the soil; methane is the

major product in the process.

In recent years, satellite remote sensing has played an important role in most crop

monitoring programs. Investigations have been carried out using X-band airborne

synthetic aperture radar (SAR) [39]. There have also been some pilot studies that

use European Satellite ERS-1 Synthetic Aperture Radar (SAR) data to estimate rice

crop acreage and growth at several places in the world such as Japan [35, 36], Thailand

[2], and Indonesia [41]. Temporal variations of the radar backscattering coefficients

observed by ERS-1 at several test-sites were analyzed to derive a general trend for the

response of electromagnetic sensors in a whole growth cycle of rice [41]. It shows a

large increase in radar backscatter when the rice plants grow from 0 to 100 days. This

large increase can be explained by the increase in biomass and the fact that rice fields

have flooded ground surfaces during a large portion of the growing period. Therefore,



the increase is enhanced by this highly reflective underlying flooded surface through

the volume-surface interaction. Investigations on the use of satellite data for rice

monitoring have also been carried out using the Japanese Earth Satellite-1 (JERS-1)

data with the operating frequency at L-band. Rosenqvist, et al. [61] pointed out that

there is a significant difference in the backscattering results from the rice fields in

Niigata, Japan, depending on the planting directions of the rice plants. However,

this phenomenon was not observed in the backscattering returns from the rice fields

in Malaysia as the result of different planting practices between the two countries.

Therefore, the structure of the rice fields, that is, how the rice plants are planted

in the field, can have an important effect on the scattering returns. There were also

studies that use the multiple temporal RADARSAT images to monitor the rice growth

status [67]. From the RADARSAT data, we recently obtained the rice field scattering

returns at two looking angles. To interpret those experimental observations such as

the effects of the structure of rice fields, and to predict the temporal response of

rice growth, we utilize the structural model which takes into account the distinctive

structure of rice plants and the coherent wave interactions among plant elements

which are in clusters.

In Section 3.2.2, the structure of rice plants and how the rice plants are planted

in the rice field are described. Given the configuration of the rice field, the backscat-

tered electric field is then calculated using the developed scattering model based on

Monte Carlo approach described in Chapter 2. In Section 3.2.3, simulation results

are compared with ERS-1 data [41] which has VV polarization and RADARSAT data



[57] which has HH polarization. The model is then applied to investigate the effects

of the structure of rice field on scattering returns in Section 3.2.4. Backscattering re-

sults are shown for both L- and C-band frequencies. The ratio of HH over VV versus

the age of rice canopy for different cases of rice field structures is also given to show

the possibility of using HH/VV to eliminate ambiguities for the inversion problem at

L-band.

3.2.2 Structure of Rice Plants

In a previous modeling study [39], rice plants were modeled as thin dielectric cylinders

over a rough underlying surface, and the backscattering coefficients were obtained

using the first-order solution of the radiative transfer theory. However, it is important

to take into account the coherent wave interactions among vegetative elements of the

rice canopy which usually occur in clusters and are closely spaced.

In the model, rice plants are planted with spacing a in the x-direction and spacing

b in the y-direction over a square area A (Figure 3-1). Small random variations

in the spacing between rice plants are also considered. Each rice plant contains a

bunch of N, vertical dielectric cylindrical stems with height H, radius c, and complex

dielectric constant E,. Each rice stem has Ne leaves of elliptical disc shape with length

f, width w, thickness d, and complex dielectric constant ce. The orientation of leaves

is characterized by three Euler angles a, 3, and 7. Within a rice bunch, the stems are

randomly placed inside a circle of radius cb with uniform distribution [78]. There are

N•r bunches such that the total number of stems in the rice canopy is N, x N,, and



Figure 3-1: Configuration of a rice field for the scattering model. Rice plants are

planted with spacing a in the x-direction and spacing b in the y-direction over a

square area A. Within a rice bunch, the stems are randomly placed inside a circle

with uniform distribution.



the total number of leaves is N, x N8 x Ne. The height of the stems are also generated

randomly with Gaussian distribution given the mean and the standard deviation of

the height. The lower half space is water, with complex dielectric constant el.

Consider a configuration of a rice field where the top of the rice field is indicated

by z = 0 and the boundary between the rice canopy and the ground (water in our

case) is z = -h. Given the configuration of the rice field and an incident wave Ei in

the direction (0i, 0i), the first-order solution of the backscattered electric field which

is described in equation 2.23 consists of the summation of two types of scatterers:

stems and leaves. In the equation, Nt = Nc x N8 for stems, and N, x N, x Ne for

leaves. For the rice field, equation 2.20 becomes

qp i27 NN Ah (< fstem() +N leaf ) (3.1)

Since the bottom of rice plants is immersed in water, the contribution to the scattering

from the second, third and fourth scattering mechanisms described in Chapter 2 is

very large compared to other types of vegetation. The backscatter from the rice

canopy is calculated with Monte Carlo simulations. In each realization of the rice

field, the center positions of N, rice clusters are first created and then the positions

of the Ni stems within every bunch are generated using a random number generator

with a uniform distribution. The positions of rice stems are checked so that there is

no overlap between stems. The positions and orientations of the attached leaves on

each stem are also generated randomly.



3.2.3 Comparison with Experimental Data

To validate the model, the simulated backscattering results at different growth stages

are compared with the ERS-1 data [41]. The operating frequency is at C-band (5.3

GHz), and the angle is 23 degrees. There is only one polarization, VV. The data were

obtained from Semarang and Akita test sites in Indonesia. The parameters used in

the simulation are determined either directly from the measurements obtained during

the experiment or from the existing literature (mainly from IRRI [28]).

The parameters used in the simulation of backscattering coefficients of rice fields

are summarized in Table 3.1. The values for the height, gravimetric water content,

leaf width, and leaf length of a rice plant are the mean values of experimental data.

The stem radius, number of stems per bunch, number of bunches per unit area, and

number of leaves per stem are derived from measurements, or completed with data

from the literature [12]. The leaf thickness and the tilt angles for stems and leaves are

estimated from another study [26]. The dielectric constants of rice plants at various

growth stages are calculated from the gravimetric water content with an empirical

formula by Ulaby, etal [82]. The formula for the dielectric constant of vegetation (v,)

is a function of gravimetric water content Mg and frequency f.

75.0 22.86 55.0
ev = Er + vfw[4.9 + . - ] + vb[2.9 + . (3.2)1 + if /18 f 1 + (if /0.18)o.5

where

Er = 1.7 - 0.74 Mg + 6.16Mg (3.3)

vfw = Mg(O.55Mg - 0.076) (3.4)
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vb = 4.64M2/(1 + 7.36Mg)

vf, and vb are the volume fraction of free water and the bulk vegetation-bound

water mixture respectively. Equation 3.2 consists of three terms which include a

nondispersive residual component E, a free water component, and a bulk vegetation-

bound component. Since the bottom portion of the rice plants is in the water, the

dielectric constant of the surface is that of water at the frequency of 5.3 GHz at 20',

which is c1 == 74 + i21 [81]. In the simulation, the average spacing between two rice

bunches is about 22 cm. We also assume that the height of a stem has a normal

distribution with the standard deviation of 1 cm. The backscattering coefficients are

obtained from the averaged scattered field of the rice field using equation 2.24. The

scattered field is averaged over 50 realizations until it is converged.

In Figure 3-2, the model backscattering results of VV polarization at different

growth stages are compared with the ERS-1 data [41]. The comparison shows good

agreements between the simulation results and experimental data. The increasing

trend of the temporal radar response is well described by the modeling results. The

backscattering returns are mainly from the volume-surface interactions. Since the

bottom portion of rice plants is immersed in water, the contribution of the second,

third and fourth scattering mechanisms described in Chapter 2 to the total scattering

from the rice canopy is very large compared to the case of other vegetation fields.

The simulated backscattering results at different growth stages are also compared

with the RADARSAT data [57]. The operating frequency is at C-band (5.3 GHz),

and there is only one polarization, HH. Data were obtained at two incident angles,

(3.5)
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Figure 3-2: Comparison between the simulated VV backscattering coefficients and

ERS-1 data [41] as a function of rice age. The operating frequency is at C-band.



age (days) 20 40 60 80 100

height H (cm) 20.0 35.0 50.0 68.4 76.7

stem radius c (cm) 0.1 0.12 0.14 0.16 0.18

# stems per bunch N8  10 10 10 10 10

# bunches AN,/A (m- 2) 20 20 20 20 20

gravimetric water content 0.7 0.72 0.74 0.71 0.71

dielectric constant e,, E~ 25.1+i7.9 26.3+i8.2 27.6+i8.6 25.7+i8.0 25.7+i8.0

leaf width w (cm) 0.41 0.74 0.98 1.15 1.24

leaf length. (cm) 14.08 24.72 31.92 35.68 36

leaf thickness d (cm) 0.02 0.02 0.02 0.02 0.02

# leaves per stem Ne 5 7 7 7 7

fractional volume (%) 0.06 0.09 0.123 0.161 0.204

stem max tilt angle ms, (deg) 0 0 0 5 10

leaf max tilt angle 0 m, (deg) 5 10 20 30 40

Table 3.1: Input parameters for the simulation of backscattering coefficients of a rice

field for comparison with ERS-1 data [41]. The parameters used in the simulation are

determined either directly from the measurements obtained during the experiment or

from the existing literature (mainly from IRRI [28]).



23 and 43 degrees. The parameters used in the simulation are determined either

directly from the measurements obtained during the experiment or from the exist-

ing literature (mainly from IRRI [28]). The parameters used in the simulation of

backscattering coefficients of rice fields are summarized in Table 3.2. Using equation

3.2, the dielectric constants of rice plants at various growth stages are obtained from

the gravimetric water content [82]. With the bottom part of the rice plants in water,

the dielectric constant of the surface is e1 = 74 + i21, the dielectric constant of wa-

ter at the frequency of 5.3 GHz at 200 [81]. In the simulation, the average spacing

between two rice bunches is about 25 cm. We also assume that the height of a stem

has a normal distribution with the standard deviation of 1 cm. The backscattering

coefficients are calculated using equation 2.24. The scattered field is averaged over

50 realizations until it is converged.

In Figure 3-3, the simulated HH backscattering returns at 230 incident angle are

compared with the RADARSAT data [57] for different growth stages. The comparison

shows good agreements between the simulation results and experimental data. The

increasing trend of the temporal radar response is well described by the modeling

results. The backscattering returns are mainly from the volume-surface interactions.

Since the bottom parts of rice plants are immersed in water, the contribution of the

second, third and fourth scattering mechanisms described in Chapter 2 to the total

scattering from the rice canopy is very large compared to the case of other vegetation

fields. Figure 3-4 shows the temporal response of HH backscattering coefficients when

the incident angle is 43 degrees. The result shows a trend similar to the case of 23



age (days) 20 40 60 80 100

height H (cm) 11.2 26.3 43.6 61.0 76.7

stem radius c (cm) 0.11 0.15 0.18 0.21 0.23

# stems per bunch N, 3 6 13 20 24

# bunches NC/A (m- 2 )  9 9 9 9 9

gravimetric water content 0.71 0.77 0.80 0.80 0.75

dielectric constant c, et 25.7+i8.1 29.6+i9.2 31.7+i9.8 31.7+i9.8 28.3+i8.8

leaf width w (cm) 0.43 0.78 1.06 1.3 1.34

leaf length £ (cm) 11.75 21.89 30.44 40 40.5

leaf thickness d (cm) 0.02 0.02 0.03 0.03 0.03

# leaves per stem Ne 3 3 4 5 5

stem mean tilt angle 0ms (deg) 0 2 7 11 11

leaf mean tilt angle 0me (deg) 0 7 14 20 25

Table 3.2: Input parameters for the simulation of backscattering coefficients of a

rice field for comparison with RADARSAT data [57]. The parameters used in the

simulation are determined either directly from the measurements obtained during the

experiment or from the existing literature (mainly from IRRI [28]).
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Figure 3-3: Comparison between the simulated HH backscattering coefficients and

RADARSAT data [57] as a function of rice age. The frequency is at C-band, and the

incident angle is 23'.



degrees except that there is only a very small increase in backscattering coefficients

at higher growth stages. This is as expected because the attenuation caused by

inhomogeneities in the medium is larger at the 43' incident angle than that at the

230 incident angle. This is a consequence of the fact that the distance traversed by

the waves in the medium is longer with a greater incidence angle. This effect is more

dominant at higher growth stages when the stems and leaves become larger.

3.2.4 Structure of Rice Fields

The scattering returns from the rice fields in Niigata, Japan acquired by JERS-1,

which operated at L-band (1.25 GHz) with the incident angle of 35 degrees and

one polarization HH, show that the structure of rice fields has a large effect on the

returns [61]. Rice cultivation practices in Japan are different from those in Malaysia.

Planting is performed by mechanical planting devices mounted on the back of small

tractors. The spacing between rice plants in one direction can be very different from

the spacing in the other direction. A question was raised in the paper by Rosenqvist

and Oguma [61] regarding the planting direction which results in a higher scattering

return. With the developed model and input parameters in Table 3.1, the dependence

of radar backscattering returns on the geometric properties of the fields is investigated.

Assuming that the looking direction of the radar is in the x-direction and that

the area is the same for all fields, the field structures considered include the following

cases.

1. fields with equal spacing between rice plants (a = b = 22 cm)
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Figure 3-4: Comparison between the simulated HH backscattering coefficients and

RADARSAT data [57] as a function of rice age. The frequency is at C-band, and the

incident angle is 43'.
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Figure 3-5: Simulated temporal variation of the L-band backscattering returns assum-

ing the looking direction of the radar to be the x-direction. Simulated cases include

fields with equal spacing between rice plants (a = b = 22 cm), fields with spacings

a = 14 cm and b = 37 cm, and fields with spacings a = 37 cm and b = 14 cm.
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Figure 3-6: Simulated temporal variation of the L-band backscattering returns assum-

ing the looking direction of the radar to be the x-direction. Simulated cases include

fields with equal spacing between rice plants (a = b = 22 cm), fields with spacings

a = 18 cm and b = 27 cm, and fields with spacings a = 27 cm and b = 18 cm.



2. fields with spacings a = 14 cm and b = 37 cm

3. fields with spacings a = 37 cm and b = 14 cm

4. fields with spacings a = 18 cm and b = 27 cm

5. fields with spacings a = 27 cm and b = 18 cm

a and b are the spacings in the x and y directions, respectively (Figure 3-1).

Figure 3-5 shows the simulated temporal variation of the L-band backscattering

returns for cases 1 to 3. The overall shapes of the temporal curves are similar for all

three cases. Compared to case 3, the backscattering return is about 8 dB lower for

case 2 where a, the spacing in the radar looking direction, is smaller than spacing b

in the direction perpendicular to the radar looking direction. The simulated L-band

backscattering returns versus rice age for cases 1, 4 and 5 are given in Figure 3-

6. Again, the overall shapes of the temporal curves are similar for all three cases.

However, compare to case 5, the backscattering return is about 4 dB higher for case

4 where spacing a is smaller than spacing b. Therefore, it is not necessarily true that

scattering returns are higher when the spacing in the radar looking direction is smaller

than the spacing in the perpendicular direction. The magnitude of scattering returns

depends on whether we have a constructive or destructive interference between rice

plants, which is related to the spacing between the plants. With a large difference

in the backscattering results because of the different structures of the rice fields,

inversion will be difficult without the measurements on the plant spacings. However,

we can expect less effect of the rice field structure on the returns since the wavelength
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at C-band is about 6 cm compared to 24 cm at L-band. Figure 3-7, which shows

simulated temporal variations of the C-band backscattering results for cases 2 to 5

described above, confirms this point. The variations in backscattering returns are

small for different directions and plant spacings.

If an L-band data set has both HH and VV polarizations, one possible way to

perform the inversion without the measurements on the plant spacings is by taking

the ratio of HH over VV. The plot of the L-band ratio versus the age of rice canopy for

different plant spacings is shown in Figure 3-8. For the first 95 days, HH backscatter-

ing returns are higher than the VV returns since the dominant scattering mechanism

is the volume-surface interactions. The reflection coefficient of the horizontal polar-

ization is higher than that of the vertical polarization. The ratios have a decreasing

trend after 40 days because the attenuation increases. With water as the underlying

surface, the plot for the ratio of HH over VV is different from that of other types

of vegetation. This ratio of HH over VV can therefore be utilized for the classifica-

tion of the rice canopy. The results are very close for different spacing between rice

plants. Taking the ratio has the effect of canceling out the phase interactions from

the structure of the rice field and provides a useful parameter for the inversion of rice

biomass.
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Figure 3-7: Simulated temporal variation of the C-band backscattering returns as-

suming the looking direction of the radar to be the x-direction. Simulated cases

include fields with spacings a = 14 cm and b = 37 cm, fields with spacings a = 37 cm

and b = 14 cm, fields with spacings a = 18 cm and b = 27 cm, and fields with spacings

a = 27 cm and b = 18 cm.
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Figure 3-8: Simulated temporal variation of the ratio of L-band co-polarized backscat-

tering coefficients, HH over VV, assuming the looking direction of the radar to be the

x-direction. Simulated cases include fields with spacings a = 14 cm and b = 37 cm,

fields with spacings a = 37 cm and b = 14 cm, fields with spacings a = 18 cm and

b = 27 cm, and fields with spacings a = 27 cm and b = 18 cm.



3.3 Application to Sunflower Fields

During the airborne Remote Sensing Campaign Mac-Europe 91, multi-frequency and

multi-polarization data were acquired for sunflower fields at the test site Montesper-

toli in Italy [5]. The structure of a sunflower is quite different from that of a rice

plant. It does not have a cluster structure, and its more circular shaped leaves are

connected to a stem through petioles. In addition, there is a flower at the developed

stage. Unlike rice fields, the bottom of a sunflower field is the rough soil surface in-

stead of water. In this section, the structural model is applied to interpret the radar

backscattering returns from sunflower fields, and the simulation results are validated

by the experimental data.

3.3.1 Structure of Sunflowers

To model the scattering from sunflower fields, we consider the field of sunflowers

planted with nearly constant spacing over a square area A (Figure 3-9). Small random

variations are introduced into the spacing between sunflowers. In the early growth

stage, each sunflower contains a main vertical dielectric cylindrical stem, and leaves

of elliptical disc shape connected to the main stem through cylindrical petioles. In

the later stages, sunflowers also include flowers of circular disc shape. The height

of the vertical stems are generated randomly with a Gaussian distribution given the

mean and the standard deviation of the height. The tilted stems, leaves, and petioles

have random orientations; the tilt angles vary randomly within a, specified range. In
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Figure 3-9: Configuration of a sunflower field for the scattering model. Sunflowers

are planted over a square arerea A.
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the early growth stage, the tilt angles for most leaves are less than 90 degrees from

the vertical direction. As the leaves become larger at the developed stage, the tilt

angles for most leaves become greater than 90 degrees from the vertical direction.

Given the configuration of the sunflower field and an incident wave Ei in the

direction (0i, Oi), the total backscattered electric field includes the direct scattering

from the ground which is modeled as a rough surface, and the field due to the four

scattering mechanisms described in equation 2.23. It consists of the summation of

three types of scatterers in the early growth stage: stems, leaves, and petioles. In the

developed stage, flowers are added. For a sunflower field, equation 2.20 becomes

Mqp = i2 A < sem(0 a; 0, ) > +Ne < tlePf(, ; , 0) > +Nj, < f•etiole

(3.6)

where NX is the number of stems, and Nj is the number of leaves or petioles for a

single sunflower. The Kirchhoff approximation [74] is employed to calculate the direct

scattering from the rough soil surface, and the reflection coefficients for the second,

third and fourth scattering mechanisms. In this approximation, the field at a given

point of a surface is assumed to be the same as the field that would be present on the

tangent plane at that point . The surface height and the surface correlation function

are assumed to have a Gaussian distribution. The rough surface is described by the

surface root-mean-square (rms) height and correlation length.

In each realization of the Monte Carlo simulation, the center positions of stems

are first specified. Then the positions and orientations of the petioles on each stem

and the leaf on each petiole are generated randomly. The scattered electric field is
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calculated in each realization. The backscattering coefficient of the sunflower field is

obtained from equation 2.24and by averaging over an ensemble of realizations.

3.3.2 Comparison with Experimental Data

In this section, the simulated backscattering results at different growth stages are com-

pared with the experimental data obtained from the Montespertoli test site during

the airborne Remote Sensing Campaign Mac-Europe 91 which has four polarizations:

HH, VV, HV and VH, and include two frequencies: L-band (1.25 GHz) and C-band

(5.3 GHz) [5]. The incident angle is 35 degrees. The data are from four different

sunflower fields collected during three flights on different dates over these fields. Fig-

ure 3-10 shows the L-band backscattering coefficient versus the sunflower biomass.

Since there are three flights and four areas for each flight, there are twelve data points

for each polarization. The increasing trend of co-polarized and cross-polarized scat-

tering returns is observed with the increase in sunflower biomass. The backscattering

returns for C-band are shown in Figure 3-11. The co-polarized and cross-polarized re-

turns remain constant when the sunflower biomass increases because scattering from

the rough surface becomes larger at C-band.

The parameters used in the simulation of backscattering coefficients of sunflower

fields are summarized in Table 3.3. There were four fields: field 12, field 16, field

17 and field 54. For the first flight, all four fields were in the early growth stage

and there were no flowers. For the second flight, there were still no flowers for fields

12 and 16, but sunflowers in fields 17 and 54 began to enter the developed stage
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with the growth of flowers. The sunflowers in all four fields were in the developed

stage during the third flight. The parameters used in the simulation are determined

from the measurements. Using equation 3.2, the dielectric constants of sunflowers

are calculated from the gravimetric water content [82]. Leaf area index in Table 3.3

is the area of all the leaves in a unit area of the field. Therefore, it is equal to

the product of the area of a leaf, the number of leaves per plant and the plant

density. The thickness of a sunflower leaf changes from 0.01 cm in the early growth

stage to 0.04 cm in the developed stage. The tilt angle for leaves varies from 40'

to 1200 from the vertical direction, with the larger tilt angle at the developed stage.

The rms height and correlation length which characterize the rough soil surface are

1.25 cm and 5.0 cm, respectively. The soil permittivity is calculated from the soil

moisture and the assumed soil texture shown in Table 3.3 from an empirical formula

[19]. In the simulation, the average spacing between two sunflowers is about 30 cm.

The backscattering coefficients are obtained using equation 2.24. The scattered field

is averaged over 50 realizations until it is converged. Figure 3-12 and Figure 3-13

depict the simulation results versus the experimental data for L-band and C-band,

respectively. The solid line in the figures represents the ideal case where there is an

exact match. Both figures show a good agreement between the simulation results and

the experimental data for co-polarized returns and cross-polarized returns.



flight field main stem plant gravimetric leaf leaf soil

# # height radius density water area diameter moisture

(cm) (cm) (#/m 2) content index (cm) (%)

1 12 40 0.61 10 0.9 0.6 8 12.2

1 16 40 0.61 9 0.9 0.4 8 14.8

1 17 95 1.225 8 0.9 3.6 16 17.4

1 54 95 1.225 8 0.9 3.6 16 17.4

2 12 65 0.575 10 0.88 0.9 9 11.6

2 16 65 0.575 10 0.87 0.5 9 11.6

2 17 110 1.335 10 0.91 4.1 26 4

2 54 110 1.335 10 0.91 4.1 26 4

3 12 110 1.07 10 0.86 2.6 15 6.3

3 16 110 1.07 10 0.86 1 15 5.8

3 17 160 1.065 9 0.85 2.8 20 6.7

3 54 160 1.065 9 0.85 2.8 20 6.7

Table 3.3: Input parameters for the simulation of backscattering coefficients of sun-

flower fields for comparison with Mac-Europe 91 data [5]. The parameters used in

the simulation are determined from measurements.
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Figure 3-12: Comparison between the simulated backscattering coefficients from a

sunflower field and Mac-Europe 91 data [5]. The frequency is at L-band.
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3.4 Summary

In this chapter, a structural model is developed. Based on the ground truth measure-

ments, the distinct structures for different vegetations can be specified by the types of

components, the number and size of each type of component, and the orientation and

branching angles of the components. By characterizing the vegetation structure with

levels of detail, the detailed features of distinct vegetation structures can be preserved

to the desired level of accuracy. In the Monte Carlo simulation, the configurations

are generated from the characterization of vegetation structure. The applications of

the structural model to rice crops and sunflowers are described in this chapter.

Since rice plants usually occur in clusters and are closely spaced, a good structural

model which takes into account the structure of rice plants and rice fields and the

coherence or phase interference among vegetative elements is essential. It is validated

with the ERS-1 data acquired at the C-band frequency of 5.3 GHz and the incident

angle of 23 degrees [41], and with the RADARSAT data at the C-band frequency

of 5.3 GHz and two incident angles of 23 and 43 degrees [57]. The polarizations of

the ERS-1 and RADARSAT data are VV and HH, respectively. The comparison

between the simulated backscattering results and both the ERS-1 and RADARSAT

data show good agreement. The increasing trend of the temporal radar response is

well described by the modeling results. This increase can be explained by the increase

in biomass and by the highly reflective underlying flooded surface of the rice fields

during the growth period.



To answer a question raised in the paper by Rosenqvist and Oguma [61] regarding

the planting direction which results in a higher scattering return, the structural model

is also applied to investigate the dependence of radar backscattering returns on the

geometric properties of the fields. Simulations were performed to interpret the returns

at different growth stages for various rice field structures. The result shows that at L-

band, the variation in the scattering returns from rice fields with different structures

can be large because of constructive and destructive interferences between rice plants

as the result of different plant spacings. Without knowing of the plant spacing,

inversion of rice biomass from the scattering results will be difficult at L-band. For

C-band, the rice field structure has less effect on the returns because the wavelength

at C-band is about 6 cm compared to 24 cm at L-band. However, if the L-band data

has both HH and VV polarizations, taking the ratio of HH over VV has the effect of

canceling out the phase interactions from the structures of rice fields and is useful for

the inversion of biomass without the knowledge of plant spacings.

In addition to the rice canopy, the application of the structural model to sunflowers

is also discussed in this chapter. In contrast to a rice plant, a sunflower does not have

a cluster structure, its more circular shaped leaves are connected to a stem through

petioles, and there is a flower at the developed stage. In addition, the bottom of

a sunflower field is the rough soil surface instead of water. The structural model

is applied to interpret the multi-frequency, multi-polarization radar backscattering

returns from four different sunflower fields acquired during three flights on different

dates for the airborne Remote Sensing Campaign Mac-Europe 91 at the Montespertoli



test site in Italy [5]. The result shows a good agreement between the model simulation

and the experimental data for co-polarized returns and cross-polarized returns.



Chapter 4

Lindenmayer Systems

A major problem in the modeling of vegetation lies in the modeling of their complex

structural and time-varying properties. The application of growth rule-based model

is especially useful to generate trees which are more complex in structure. To fully

capture and describe the architecture and growth of plants, the formalism of Linden-

mayer systems has been utilized [52, 53, 54, 55, 68]. Trees generated by L-systems

are quite realistic in appearance. In the first section of this chapter, an introduction

to L-systems is given. From L-systems, the position, size, and orientation of every

element in a generated tree can be obtained. Monte Carlo simulation results of the

scattering returns from trees generated by L-systems at different growth stages and

of different types are analyzed in Sections 2 and 3, respectively.



4.1 Introduction

The L-systems approach was proposed by Lindenmayer for simulating the develop-

ment and growth of living systems [44]. For simulation of plants, it emphasizes the

plant topology which specifies the neighboring relations between plant modules. The

central concept of L-systems is rewriting which defines complex objects by succes-

sively replacing parts of a simple initial object using a set of rewriting or production

rules. The rewriting rules are applied in parallel and are carried out recursively in

the simulation of plant growth processes.

Prusinkiewicz used a LOGO-style turtle [1] to interpret L-systems graphically.

The state of the turtle is specified using a triplet (x,y,a), where (x,y) represents

the position of the turtle, and the angle a specifies the direction which the turtle is

facing. To denote the movement of the turtle, four symbols F, f, +, - are used.

"F" represents a movement of a given step size s with a line drawn from (x,y) to the

new point (x',y'), where x' = x + s cos a and y' = y + s sin a. "f" is the same as

"F" except that a line is not drawn between the two points. "+" and "-" control

angle movement. "+" makes the turtle rotate in the counterclockwise direction by

the angle increment 6. Thus, the next state of the turtle is (x,y,a + 6). "-" represents

rotation by angle 6 in the clockwise direction such that the next state of the turtle is

(x,y,a - 6).

For modeling in three dimensions, the orientation of the turtle is represented by

three unit vectors U, V, and W. The unit vector U points to the direction the turtle



is facing. These vectors are perpendicular to one another and satisfy the equation

U x V = W. Rotating the turtle is represented by applying rotation matrices to

these three vectors. The rotation by angle 6 about the vector W, that is, the rotation

on the plane formed by vectors U and V, can be represented by the rotation matrix

Rw(6).

Rw (6) =

Similarly, the rotation by angle 6 about

U and W) and about the vector U (on

represented by rotation matrices Rv(6)

Rv(6)

/

R(6) =

cos 6 sin 6 0

-sin6 cos6 0 (4.1)

0 0 1

the vector V (on the plane formed by vectors

the plane formed by vectors V and W) are

and Ru(6), respectively.

cos 6

0

sin 6

0

cos 6

- sin 6

- sin 6

0

cos 6

0

sin 6

cos 6

(4.2)

(4.3)

Therefore, the new state of the turtle is

(U7 V7 W) = (U V W) R (4.4)

The symbols used to control the turtle orientation are summarized in the following

table.



Symbol Rotation Matrix

+ Rw(6)

- Rw(-6)

& Rv(-6)

Ru(6)

/ Ru (-6)

Rw(1800)

Although the use of turtle interpretation described above provides L-systems with

the capability of generating a variety of objects, it has limited ability to capture

some phenomena associated with plant development. To overcome these limitations,

parametric L-systems were developed [45, 56]. With parametric L-systems, numerical

parameters can be associated with L-system symbols, allowing the specification of the

condition for application of the production rule, where the symbols : and + are

used to separate the three components of a production rule-the predecessor, the

condition, and the successor. For example, the production rule pl specified by

pl 1 A(x) : x>=1 -- A(x-1)

means that A(x) will be replaced by A(x- 1) if x > 1. To control the turtle movement

in the parametric L-system, the symbols used are similar to those described previously,

and are modified to include the parameters introduced. F(a) represents a forward

movement of a step size a > 0 with a line drawn between the previous location and



the new point. For a forward movement with step size a without drawing a line,

lower-case f(a) is used. The symbols +(a), &(a) and /(a) represent rotation by

angle a around the three orthonormal vectors W, V and U, respectively. As in the

non-parametric case, default values will be used if a symbol is not followed by any

parameter.

To model the branching structure of a plant, several other symbols are introduced.

To delimit a branch, the symbol " [ " represents the start of a branch, and " ] "

represents the completion of a branch. When the symbol " [ " is encountered, the

current state of the turtle is put on a stack which stores the information such as the

position and orientation of the turtle, and color and width of lines being drawn. The

information is retrieved from the stack with the symbol " ] ", and the state popped

from the stack becomes the current state of the turtle. Other useful operations include

!(w) which sets the line width to w, and $ which rolls the turtle around its own axis

such that the unit vector V pointing to the left of the turtle becomes horizontal. The

latter $ is especially useful for specifying the growth of certain types of trees where

the branch plane is closest to a horizontal plane.

Since in reality, there are variations among plants of the same type, it is useful to

introduce variations in the L-systems which preserve the general aspects of a plant

while allowing variation in its details. There are two approaches to achieve this

effect. The first one incorporates randomization of the turtle interpretation; that

is, the geometric aspects of a plant such as the branch angles and stem lengths

are randomized. However, limited effects are achieved since the underlying topology



remains unchanged. In the second approach to randomize the L-system, a production

rule specifies a probability distribution of state transitions. This affects both the

topology and the geometry of the plant. The trees generated using such stochastic

L-systems are quite realistic in appearance.

The inputs for generating different kinds of trees using L-systems include the

definition section, the initial string, and the production rules. The following is an

example of an input to the L-systems. It is based on the model proposed by H. Honda

who has studied extensively the forms of trees [22, 23]. In his model, tree segments

are assumed to be straight. For one branching process, two daughter segments are

produced by" a mother segment. The mother segment and its two daughter segments

lie on the same branch plane, which is fixed with respect to the direction of gravity

such that the branch plane is closest to a horizontal plane. In other words, the line

on the branch plane perpendicular to the mother segment is horizontal.

#define maxgen 10

#define rl 0.85+0.1*rand() /*

#define r2 0.6

#define aO 40+10*rand() /*

#define a2 40+10*rand()

/* branching

#define d 132.5+10*rand() /*

#define wr 0.707

contraction ratio for the straight branch */

contraction ratio for the lateral branch */

branching angle from the trunk */

angle for branches not attached to the trunk*/

divergence angle */

width decrease rate */
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START : A(1,10)

pl : A(l,w) : * -> !(w)F(1)[&(aO)B(1*r2,w*wr)]/(d)A(1*rl,w*wr)

p2 : B(1,w) : * -> !(w)F(1)[-(a2)$C(1*r2,w*wr)]C(1*rl,w*wr)

p3 : C(1,w) : -> !(w)F(1)[+(a2)$B(1*r2,w*wr)]B(l*rl,w*wr)

In the first section of the above example, we specify the maximum number of

growth stages maxgen, which is also the default value if the number of growth stages

is not given during the simulation. The relationship between a mother segment and

daughter segments during the growth process is specified by changes in length and

width, as well as the branching angles. These are specified in the definition section

by the contraction ratio for the straight daughter branch (rl), the contraction ratio

for the lateral daughter branch (r2), the width decrease rate (wr), the branching

angle for branches arising from the trunk (aO), and the branching angle for branches

not directly attached to the trunk (a2). The divergence angle d specifies the angle

between two successive branch planes for branches coming off the trunk. Since there

are variations among real trees of the same type, certain aspects of the geometry of

a tree are randomized with the use of a random number generator rand() in the

example above.

The initial string A (1, 10) specifies a starting trunk which has one unit of length

and 10 units of width. The production rules pl, p2 and p3 are then defined. Each
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application of the production rule pl results in an extension (F) of the trunk giving

off a straight branch (A, which is applied recursively) and a lateral branch (B). The

production rule pl decreases the length and width of the daughter segments with

respect to the mother segment by the factors r2 and wr, respectively. The subsequent

development; of the lateral branches are described by production rules p2 and p3. In

each growth step, a lateral branch of the next order is generated at angle a2 or -a2

with respect; to the mother axis using the production rule p2 or p3. Two production

rules are needed in order to create lateral branches alternately to the left and right

of the mother branch. Figure 4-1 shows the generated tree at growth stage 10.

From L-systems, we have the information on the position, size, and orientation

of every element in a generated tree. Scattering from the generated tree can then

be calculated using the Monte Carlo approach described in Chapter 2. In each real-

ization, the finite cylinder approximation is applied to compute the scattering from

each branch. The scattered fields from all branches are added coherently to calculate

the total scattered field. The results from many tree realizations are then averaged.

Using this growth rule-based model, we can study the scattered returns from trees of

different structures at different growth stages.

4.2 Application to Trees at Different Growth Stages

With L-systems, we can simulate trees at different growth stages. In this section, the

simulation of the growth of a ternary tree is described. The output of L-systems is



Figure 4-1: A tree generated using L-systems based on the model proposed by Honda.
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then utilized to calculate the scattering from ternary trees at different growth stages.

"Ternary" trees are so named because in each growth stage, three branches are

produced from every terminal branch of the previous stage. In contrast to the Honda

tree structure we described in the previous section where all tree segments are assigned

their final lengths when they are created, the lengths of previously created segments

in a ternary tree are increased by a constant factor when new segments are created in

each growth step. The following is an input to L-systems to generate a ternary tree.

#define maxgen 6

#define dl 100.00+rand(40) /* divergence angle */

#define a 15.0+rand(15) /* branching angle */

#define Ir 1.2 /* average length increase rate */

#define vr 1.2 /* average width increase rate */

#define le 12 /* average initial length */

START :

! (vr*(0.9+0.1*rand()))F()) 20(0.9+0.1*rand(2)))/(180+rand(180))A

pl : A ->

! (vr*(0.9+0.1*rand(2)) )[&(a)F(le*(0.9+0.1*rand(2))) A]

/(dl) [&(a)F(le*(0.9+0.1*rand(2)))A]
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/(dl) [&(a)F(le*(0.9+0.1*rand(2)))A]

p2 : F(1) -> F(1*lr*(0.9+0.1*rand(2)))

p3 : !(w) -> !(w*vr*(0.9+0.1*rand(2)))

Here, we again utilize stochastic L-systems to introduce variations among trees of

the same type. The function rand (2) is a random number generator which returns a

number between 0 and 2 with a uniform probability distribution. Thus, the expression

0.9+0. 1*rand(2) returns a uniformly distributed random number between 0.9 and

1.1 with a mean value of 1.

The production rule pl defines the overall structure. Apex A produces three

new branches terminated by their own apices in each growth step. The relationship

between the new branches and the mother branch is specified by changes in length,

width, and branching angles. The new branches have a mean length of 12 with the

length uniformly distributed between 12 x 0.9 and 12 x 1.1, mean width of 1.2 with

the width uniformly distributed between 1.2 x 0.9 and 1.2 x 1.1. The branching

angles have a mean value of 22.5' with a uniform distribution between 150 and 300.

The divergence angle, that is, the angle between two successive branch planes, has a

mean value of 120' with a uniform distribution between 1000 and 1400. Production

rules p2 and p3 describe the elongation and thickening of the branches over time;

both parameters have an average growth rate of 1.2, uniformly distributed between

1.2 x 0.9 and 1.2 x 1.1.

From the above input, ternary trees at different growth stages can be generated

(Figures 4-2 and 4-3). Figure 4-2 shows the two-dimensional pictures of stages 2, 3
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Table 4.1: Input parameters for the simulation of the growth of ternary trees.

and 4 of a ternary tree. The two-dimensional pictures of stages 5 and 6 of a ternary

tree are displayed in Figure 4-3. Table 4.1 summarizes some of the parameters of

a ternary tree generated from L-systems at the five growth stages described above.

For each growth stage, the number of branches and the volume they occupy, and the

height and radius of the trunk are shown.

The simulated HH, VV, HV backscattering radar cross sections of ternary trees at

different growth stages using the growth rule-based model are shown in Figures 4-4

and 4-5. The incident angle is 340. The dielectric constant of tree branches used

in the simulation is 11+i4. Since a stochastic L-system is utilized, ternary trees

used to calculate the scattering returns are not identical in each realization of the

Monte Carlo approach. Figure 4-4 depicts the results at L-band frequency (1.5 GHz).

The backscattering radar cross section is calculated at growth stages 2 to 6. The

Stage Volume Number of Height of Radius of

(cm3 ) Branches Trunk (cm) Trunk (cm)

2 7.9 15 53 0.18

3 33.4 51 70 0.31

4 131.8 159 88 0.54

5 501.4 483 109 0.94

6 1885.6 1455 132 1.62



(a) (b) (c)

Figure 4-2: Growth of a ternary tree generated with L-systems: (a) second stage, (b)

third stage, (c) fourth stage.
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(a) (b)

Figure 4-3: Growth of a ternary tree generated with L-systems: (a) fifth stage, (b)

sixth stage.



curves rise sharply in the lower growth stages and then reach a plateau. This is

expected since new branches are larger at the initial growth stages than those at later

stages. Initially, the return with VV polarization is higher than the return with HH

polarization. However, after growth stage 5, the HH return is larger than the VV

return. This is a consequence of the fact that the large branches contribute the most

to scattering at L-band, and the fact that the orientations of large branches become

more horizontal at higher growth stages.

The backscattering radar cross section at C-band frequency (5.3 GHz) versus the

total volume of branches is shown in Figure 4-5. Like the curves in the case of L-band,

there is a large increase in the C-band scattering returns at lower growth stages, and

the rate of increase becomes smaller when the trees grow older. However, for C-band,

the return with VV polarization is always higher than the return with HH polarization

because small branches contribute more toward scattering at C-band, and the small

branches tend to be more vertical than horizontal.

4.3 Application to Different Types of Trees

With L-systems, trees with different structure can be simulated. In this section, the

concept of "structure factor" which extracts the structural information of a tree and

gives the spatial distribution of branches will be defined. The structure factors are

then calculated for three different kinds of trees generated using L-systems.
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Figure 4-4: L-Band HH, VV, HV backscattering radar cross sections of ternary trees

at different growth stages. The incident angle is 34'.
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Figure 4-5: C-Band HH, VV, HV backscattering radar cross sections of ternary trees

at different growth stages. The incident angle is 340.
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4.3.1 Structural Factor

To examine the scattering returns from trees with different structures, it is useful to

define a quantity which extracts the structural information of a tree and gives the

spatial distribution of its branches. The structural factor is defined as

lincoh
S = (4.5)

lind

where lincoh and Iind are the powers of incoherent scattering and independent scat-

tering, respectively. The structural factor is related to the pair distribution function

which is used to describe the correlation of branch positions. To see how they are

related, let's define the scattered field to be

N
F = E feei(ki - ks>)r (4.6)

£=1

where N is the number of scatterers, f~ is the location of the eth scatterer, and ki

and ks are the propagation vectors of the incident field and scattered field, respec-

tively. The power of independent scattering which does not take the phase interaction

between branches into consideration is

lind = K fl2 (4.7)

which is an average over many realizations of the tree. The average power is the sum

of the independent scattering power plus the cross terms.

(FI = (F F*)

:- 1 = fc , i(i-)(-m)
t=--1 =



= f +1 fefmZm *, -_nei ( f )

fe2 ) x- / m ,* •i(•i-• ).(t-Fm) \
efm

The power of coherent field is

I(F) 2 = (F) (F)*

Si(ki-S-) -fe i(~iks).m)
f=1 m=l

(4.8)

(4.9)

We can then calculate the power of incoherent scattering from the average power and

power of coherent field.

lincoh -(IFj - I(F)= 2 (4.10)

Therefore, the structural factor can be derived from Equations 4.5, 4.7, 4.8, 4.9, and

4.10.

E (Sfefei(i,,'* 0-)(f-f))
N N

- S: E Kfeei(ki-ks)-ff Kf~e i(kjik8)fM)
£ m e=t1 m=1

N

£=1

L L L L

-nnf f g(S)e i( e-ks)~. dr - -nonufn_ fk e i(kj-k s) .r dc
a=-1 0=1 -a=-1 3=1

L

En5 f Ifo12
a=l

L L

E Enrnifff J[gao(f) - 1]ei(k - ks). " df
a=1 3=1 (4.11)

where a and / are indices of size categories, nc and np are the number densities of

a and / size categories, respectively, and gp(~ ) is the pair distribution function. A

size category consists of branches of size within a specific range. Equation 4.11 is the
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expression for the structure factor which is a function of the wavenumber k. It is the

Fourier transform of the pair distribution function.

4.3.2 Simulation Results

Three different kinds of trees are generated using L-systems. The first kind is based

on the growlh rule proposed by Honda (Figure 4-1). The Honda tree input to the

L-systems is discussed in Section 1. The second kind is a ternary tree discussed in

Section 2 and shown in Figure 4-6. The third kind is a binary tree which has a simple

structure with one big stem and a binary branching pattern. The following is the

input to L-systems to generate a binary tree.

#define maxgen 5

160+rand (40)

40+rand(10)

0.04*(9+rand(2))

0. 01*(9+rand(2))

0.04*(9+rand(2))

0 .,004* (9+rand(2))

divergence angle */

branching angle */

stem length */

stem width */

branch length */

branch width */

START : !(wm)F(lm)/(180+rand(180))A
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Figure 4-6: A tree with a ternary branching structure generated using L-systems at

the fifth growth stage.
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pl : A ->

[&(aO) ! (wb)F(lb)]

/(dl) [&(aO) ! (wb)F(lb)]

/(dl) ! (wm)F(lm)A

Like the inputs for the Honda and ternary trees, stochastic L-systems are utilized

to provide variations among trees of the same type. The random number generator

rand (n) returns a number between 0 and n with uniform probability density distri-

bution. The overall structure of the tree is defined by the production rule pl. In

each growth step, apex A produces two new branches and the main stem. The new

branches have a mean length of 0.4 with the length uniformly distributed between

0.4 x 0.9 and 0.4 x 1.1, mean width of 0.04 with the width uniformly distributed

between 0.04 x 0.9 and 0.04 x 1.1. The branching angle is uniformly distributed be-

tween 40' and 500 with a mean of 450. The growth part of the trunk has a mean

length of 0.4 with the length uniformly distributed between 0.4 x 0.9 and 0.4 x 1.1,

and mean width of 0.01 with the width uniformly distributed between 0.01 x 0.9 and

0.01 x 1.1. The divergence angle is uniformly distributed between 160' and 200' with

a mean of 1800. A two-dimensional picture of the generated binary tree is depicted

in Figure 4-7.

Using L-systems and the Monte Carlo approach, the structural factors at approx-

imately the same tree trunk height are calculated as a function of frequency. In our

simulation, Honda trees are at the ninth growth stage, and ternary trees and binary
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Figure 4-7: A tree with a binary branching structure generated using L-systems at

the fifth growth stage.
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trees are at the fifth growth stage. The incident angle is 45'. The dielectric constant

of tree branches is 11+i4. Figures 4-8, 4-9 and 4-10 display graphs of the structure

factor as a, fulnction of frequency with the center frequency at L-band (1.5 GHz) for

HIH, VV, and HV polarizations, respectively. The frequency varies from 1.25 GHz to

1.75 GHz. As shown in the figures, the structure factors are very different for these

three kinds of trees for all polarizations. The shapes of the curves are formed as the

result of interference between branches. Since the binary tree has a simpler structure,

the curve of the structure factor is also simpler.

The structure factor can also be calculated as a function of frequency with the

center frequency at C-band (5.3 GHz). Since we expect less difference in the shapes

of structure factor curves between trees with different structures at C-band than at

L-band, we will concentrate on Honda and ternary trees for this case. Figures 4-11,

4-12 and 4-13 show the graphs of the structure factor versus frequency for HH, VV,

and HV polarizations, respectively. The frequency varies from 5.06 GHz to 5.56 GHz.

These plots confirm our prediction that there is less difference in the structure factor

curves at C--band because the small branches contribute the most to scattering at

C-band, and have similar orientations for most trees.

4.4 Summary

In this chapter, the fundamentals of L-systems are introduced. Using L-systems, we

are able to capture the architecture of trees and describe their growth. The stochastic
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L-systems are utilized to incorporate random variations among trees of the same type.

The output of L-systems contains information on the position, size, and orientation of

every branch in the generated tree. From the L-system output, we can calculate the

scattering of electromagnetic waves by these architecturally realistic trees using the

Monte Carlo approach, which also takes into consideration the coherent interactions

among branches. Using this growth rule-based model, the scattered returns from

trees of different structures at different growth stages are calculated and analyzed.

Ternary trees are used as an example in our study of scattering from trees at

different growth stages. Backscattering radar cross sections for HH, VV ,and HV po-

larizations are obtained and interpreted for L-band and C-band frequencies. To study

the scattering results from trees with different structures, we defined and calculated

the structure factor which extracts the structural information of a tree and gives the

spatial distribution of branches. Structure factors for HH, VV, and HV polarizations

of trees with different structures are obtained for L-band and C-band frequencies.

The results show larger variation in structure factors among different types of trees

at L-band as compared to C-band. This result is consistent with our prediction.
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Chapter 5

Retrieval of Geophysical

Parameters Using Neural Networks

In the previous chapter, we considered a class of problems in which we know the

physical characteristics of the scattering objects or medium, and wish to determine

the scattering coefficients. We now consider a different class of problems in which

the scattering coefficients are known, and we wish to determine the characteristics of

the scattering objects or medium from which the measurements are obtained. This

problem is referred to as parameter inversion. Inversion of the geophysical informa-

tion from electromagnetic measurements is an important application of microwave

remote sensing. There has been an increasing interest in the applications of neural

networks [46] to the classification of terrains and inversion of geophysical parameters

in the remote sensing research community. The potential and capability of neural

networks for dealing with complex remote sensing data have been demonstrated. For
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example, the classification of terrain mappings from satellite data using neural net-

works showed a better classification rate than the conventional statistical approach

[8, 21], and a neural network trained with a theoretical scattering model has been

applied to the inversion of snow parameters [75]. Neural networks are flexible for the

inversion of geophysical parameters especially for multi-dimensional inputs such as

multi-frequency polarimetric scattering data. Another advantage is that one does not

need to make any assumption about the analytic form of the statistics of the input

data.

In the first section of this chapter, an introduction to neural networks is given.

In Sections 2, the inversion of soil moisture and surface parameters using neural

networks trained with theoretical surface scattering models are described. In Section

3, the description of the inversion of sunflower biomass using neural networks trained

with the scattering returns obtained from the developed structural model (discussed

in Chapter 3) is given. To assess the performance of the use of experimental data to

train the neural networks, the polarimetric radar data acquired by the Spaceborne

Imaging Radar-C (SIR-C) over the Landes Forest in France [40] are utilized as the

training data to retrieve the forest age (or equivalently, forest biomass). SIR-C data

and forest age inversion results are discussed in Section 4.
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Figure 5-1: A basic building block of the neural network consists of one node and

some incoming weights.

5.1 Neural Networks

Neural networks have been studied for many years in the hope to simulate human

intelligence. Because of its ability to learn, it can be trained to perform pattern

recognition. It is flexible for inversion of geophysical parameters especially for multi-

dimensional inputs such as multi-frequency, multi-polarization scattering data.

Neural networks are composed of many nodes which are non-linear computational

elements operating in parallel. Each node is designed to simulate the behavior of a

single neuron in the biological nervous system. The nodes are connected by weights
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whose values are adjusted during the neural network training process to improve per-

formance. Neural networks are specified by their node characteristics, net topology,

and training rule. Figure 5-1 shows the basic building block of neural networks which

consists of one node and some incoming weights. The output of each node can be

described by the equation

f (Y) = f xiwi - 0 (5.1)
(i=1

where N is the number of inputs, xi the ith input, w, the ith weight, 0 an offset,

and f a non-linear function. The node sums N weighted inputs and passes the

result through a non-linear function. Therefore, a node is characterized by the offset

and the type of non-linearity. The three commonly used non-linear functions for

neural networks include the hard limiter function, the threshold logic element, and

the sigmoid function [46]. Figure 5-2 shows the hard limiter function which behaves

like a switch since the output changes sign as the input changes sign. The threshold

logic element and the sigmoid function are shown in Figures 5-3 and 5-4, respectively.

The sigmoid function is a differentiable approximation of the threshold logic element.

Since some of the neural network training algorithms require the non-linear function

to be continuous and differentiable, the sigmoid function is often used. It can be

described by the equation

1
f (Y) -  (5.2)

The functions of neural networks can vary significantly depending on how the

nodes are connected. The often used neural network architectures include Hopfield
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Figure 5-2: Hard limiter is one of the commonly used non-linear functions for neural

networks. The output changes sign as the input changes sign.

f(y)

Sy

Figure 5-3: The threshold logic element is one of the commonly used non-linear

functions for neural networks.
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Figure 5-4: The sigmoid function is a differentiable approximation of the threshold

logic element.

Figure 5-5: Hopfield net.
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net [24] and Hamming net [92] for binary inputs, and single-layer perceptron [60]

and multi-layer perceptron [46] for continuous valued inputs. The Hopfield net can

be used as an associative memory or to solve optimization problems. It contains N

nodes with a. hard limiter function. All inputs and outputs are binary variables and

can take on the values of +1 or -1. The output of each node is fed back to all other

nodes by connection weights wij. The first step in the Hopfield algorithm is to assign

weights fronm the exemplar patterns of M number of classes by

M-1

wj (1- ij) Z (k)) <i,<N- 1 (5.3)
k=O

where 5ij denotes the usual Kronecker function 6ij = 1 if i = j, or 0 if i -/ j, wij is

the connection weight from node i to node j, and xik) is element i of the exemplar for

class k. The second step is to present the unknown input pattern {zo, Z, ... , XN-

to the net. The output of node i at time 0 is initialzed to xi which is the element i

of the unknown input pattern and can be +1 or -1.

ui(O) = zxi , O i < N - 1 (5.4)

After the initialization in the second step, the net itereates in discrete time steps

using the following formula until convergence is reached.

N-1

uj (t + 1) fh [= wiui(t) 0< <N-1 (5.5)

where uj1(t) is the output of node i at time t and fh is the hard limiter function shown

in Figure 5-2.. When the node outputs remain unchanged with more iterations, the

net is considered to have converged. The node outputs represent the exemplar pattern

that best matches the unknown input pattern.
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Like Hopfield network, the Hamming network is normally used with binary inputs.

It is a minimum Hamming distance classifier which calculates the number of bits in

the input which do not match the corresponding exemplar bits (Hamming distance)

and selects the stored classes that are at a minimum Hamming distance value. The

Hamming network architecture contains two subnets. The lower subnet contains N

elements in the input and is of the feedforward type. The upper subnet selects the

node with the maximum output. It has M output nodes since there are M number

of classes. The first step in the operation of the Hamming net is assigning connection

weights and offsets from the exemplar patterns of M number of classes. In the lower

subnet,

(J)
wij = 2 (5.6)

-j = 2 (5.7)

O<i<N-1, 0<j<M-1

where wij is the connection weight from input i to node j, Oj is the threshold in that

node, and xi0) is the element i of exemplar j. In the upper subnet,

S1 if k = I
tkl i

-E if k - 1, and c < 1

0<k,l<M-1

where tkl is the connection weight from node k to node 1. All thresholds in this subnet

are zero. After weights and thresholds have been assigned, a binary unknown input

pattern with N elements is presented at the bottom of the Hamming net. The output
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of node j at time 0 is
N-1

uj(O) = ft E Wijxi - OJ

0<j•M-1

where xi is the element i of the unknown input pattern and ft is the threshold logic

element shown in Figure 5-3. After the initialization, the upper subnet then iterates

in time using

uj(t + 1) = ft (uj(t) - E -uk(t)

0 < j, k < M -1

The process is repeated until convergence is achieved, after which the output of only

one node remains positive. The selected class corresponds to the node with a positive

output.

Among the neural network architectures, the multi-layer perceptron is the most

widely used neural network architecture at present. It has the ability to learn a map-

ping of any complexity. Therefore, it can be used for a wide variety of applications

although it may require a lengthy training with many iterations. Multi-layer per-

ceptron is a feed-forward network, and has one or more layers of nodes between the

input and output layers. Figure 5-6 shows a three-layer perceptron which contains

two hidden layers between the input and output layers. The number of nodes in the

hidden layers does not have to be the same.

Although multi-layer perceptron has been known for more than a quarter of a

century, the lack of effective training algorithms has prevented its successful applica-
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Figure 5-6: A three-layer perceptron contains two hidden layers of nodes between the

input and output layers.
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tions to practical tasks. The development of the back-propagation training algorithm

[63] has led to the widespread and successful present use of multi-layer perceptron.

Back-propagation algorithm is a generalization of the least-mean-square algorithm.

It uses the gradient search technique to minimize the mean square difference between

the desired and actual net outputs. It is called "back-propagation" because during

training, the output errors can be propagated into hidden layers such that the error

information passes backward. This backward error transmission mechanism is used to

adapt the weights. It requires a continuous differentiable non-linear function such as

thie siginoid function. The training procedure using the back-propagation algorithm

is shown in Figure 5-7. The first step in the training procedure is to initialize weights

and offsets to be trained at small random values. The second step is to present an

input vector {x1 , x 2 , ..., XN} and the corresponding desired outpults {dl, d2, ..., dAM} to

the network. Given the presented inputs, the number of nodes in each layer, and the

weights and the offset associated with each node, the actual outputs {yl, y2, ... , IM1

are calculated using equations 5.1 and 5.2 in the third step of the training procedure.

The fourth step is to adapt weights to reduce the output error. The weights are

adjusted according to the following equation

wij (t + 1) = wij (t) + rq±jx i  (5.8)

where w7% (t) is the weight from an input or hidden node i to node j at time t, x i is

either the output of node i or is an input, tq is a learning gain term, and 65 is an error

term for node j. The error term 56 must be determined in the output layer first, and

then it is propagated toward the network input nodes. If the node j is an output
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Figure 5-7: Flow chart of the back-propagation training algorithm
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node,

6j = yj(1 - yj)(dj - yj) (5.9)

where dj is the desired output of node j, and yj is the actual output. If node j is an

internal hidden node,

b X = xj(1 - x') E 6kWjk (5.10)
k

The summation in equation 5.10 is performed over all nodes in the layers above node

j. The speed of convergence can be improved if a momentum term a is included in

equation 5.8. The modified weight equation becomes

wij(t + 1) = wi,(t) + rl6jx, + a(wij(t) - wij(t - 1)) (5.11)

where 0 < a: < 1. The momentum term helps prevent oscillation during the training

phase.

The above steps complete a single learning process based on an input vector and

its corresponding desired outputs from the training set. Subsequently, the next input

vector in the training set is presented and Steps 2 to 4 described above are repeated.

The training steps proceed until all input vectors in the training sets are exhausted.

This terminates the complete training cycle. The process is then repeated for the

entire training set until convergence in the output error is reached. Since the back-

propagation training algorithm uses the gradient search technique, it may converge

to a local minimum instead of the desired global minimum. These can be avoided

by starting the training from different initial weight values. After the training is

completed, the weights in the neural net which produces the best result are obtained.
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When we apply an input to the trained neural net, the outputs can be computed

immediately on the basis of the weights obtained.

5.2 Retrieval of Soil Moisture and Surface Param-

eters

Retrieval of soil moisture information from remote sensing data has been a subject

of great interest for the past two decades [59, 80]. To perform the inversion, the

soil surface roughness parameters are needed because the radar backscattering coef-

ficient has a strong dependence on the variations of the parameters characterizing

the surface roughness. Unfortunately, ground truth measurements usually have large

uncertainties due to the spatial variation of the surface roughness. Additional in-

formation (e.g. from multiple frequencies) will be helpful in reducing the influence

of surface roughness on the soil moisture inversion. In subsequent sections, we will

utilize neural networks for the inversion of soil parameters, and analyze the inversion

results obtained using different combinations of backscattering data as inputs to the

neural networks.

5.2.1 Approach for the Inversion

There are two major steps in the approach to retrieve soil moisture and surface pa-

rameters using neural networks (Figure 5-8). First, the neural network needs to be

trained before inversion can be performed. The training data include the polari-
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Figure 5-8: Two major steps in the retrieval of soil moisture and surface parameters

using neural networks: (a) training and (b) inversion.
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metric backscattering coefficients obtained from theoretical surface scattering models

together with an assumed range of soil parameters, which are comprised of the soil

moisture and surface roughness parameters. The geometry of backscattering from

a rough soil surface is shown in Figure 5-9, where an incident wave from the radar

system impinges upon a boundary described by the function z = f(x, y) between

two media and is scattered. The backscattering returns from the rough surface are

obtained by the radar system. In our approach, f (x, y) is a Gaussian random variable

with a mean of zero. The roughness parameters root-mean-square (rms) height a

and correlation length L are described by a Gaussian random process. The surface

scattering models include the small perturbation method (SPM) [34], and the Kirch-

hoff approximation (or physical optics approximation) [74]. In the small perturbation

model, field solutions are expanded in a perturbation series assuming that kzif(x', y'),

kizif(x', y'), f') and W are small parameters, where kzi and klzi are the z-

components of the incident and transmitted wave vectors, respectively. Therefore,

SPM is valid if the surface variations are much smaller than the wavelength and

the slope of the rough surface is relatively small. The HH and VV backscattering

coefficients obtained from the first-order SPM are

0rUh = 4k 4U2 e2 COs 4 0i R1h 2 -k2e2 sin 2 i

vv = 4k8 a2f 2 cos4  (ki - k2 ) (k sin2 i + ki zi) 2 k22 sin2 Oi (5.12)
(k kzi + k2kizi) 2

where k is the wavenumber in the region above the rough soil surface and, in our case,

is equal to ko, the free space wavenumber; kl is the wavenumber in the soil region;
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Figure 5-9: The geometry of backscattering from a rough soil surface.
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Oi is the incident angle from the vertical direction; a and £ are the rms height and

correlation length of the rough soil surface, respectively. Rh is the Fresnel reflection

coefficient for the horizontally polarized wave and can be expressed as

Rh z - kuiz (5.13)
kiz + kliz

where kiz = kcos 0i and kli = kl cos0i. The small perturbation model is used to

obtain the P-band (0.4 GHz) and L-band (1.25 GHz) backscattering coefficients for

training. The Kirchhoff approximation approximates the field at any point on the

surface by the field which would exist on the tangent plane at that point. Therefore,

at every point on the surface, the radius of curvature should be large compared to

the incident wavelength. In the high frequency limit, the Kirchhoff approximation

reduces to the geometric optics solution [74], which can be obtained using the method

of stationary phase. The scattered intensity is proportional to the probability of

having the slopes such that the incident and scattered wave directions form a specular

reflection. The HH and VV backscattering coefficients are

R 122 e2(k2 +k2dy 
)

ahh = = = 2  4 dz (5.14)4 COS4 0 i 2

where

kd = 2k sin Oi cos Oi

kd = 2k sin Oi sin i

kdz = 2k cos 0i (5.15)
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R is the reflection coefficient at normal incidence and can be expressed in terms of

El, the dielectric constant of the soil region, as follows

R = - (5.16)
1+v•

This approximation is used to obtain the C-band (5.3 GHz) backscattering coefficients

for training. Soil permittivity is calculated from the soil moisture and the assumed

soil texture on the basis of an empirical formulae for C- and L-bands [19], and for

P-band [83].

During the training process, we have tested several combinations of the backscat-

tering coefficients as the inputs to the neural net. For each case, the outputs from the

net are compared with desired soil parameters in order to adjust the interconnect-

ing weights. The process is repeated for each input-output data entry and then for

the entire training data set until convergence is reached. After training, the values of

weights which render the best result are obtained. The inversion can be performed by

supplying backscattering data to the trained neural net to retrieve the soil parameters.

5.2.2 Inversion Results

To verify the effectiveness of this technique, the retrieved soil parameters are com-

pared with the desired soil parameters. For the cases considered, the incident angle

is 40 degrees, and the neural network used is a three-layer perceptron with six nodes

in each of the two hidden layers. The results can be divided into two cases. The first

one is the inversion of three soil parameters--soil moisture, rms height, and correla-
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tion length. The input vector in a training data set contains multi-frequency, multi-

polarization backscattering coefficients which are generated from surface scattering

models with the assumed range of soil moisture from 2% to 40% in 20 increments,

rms height from 1 to 2 cm in 6 increments, and correlation length from 9 to 13 cm

in 5 increments. There are a total of 600 input vectors in a training data set. Soil

moisture, rms height, and correlation length are specified for each input vector. We

want to determine whether these three parameters can be retrieved correctly when

we apply the backscattering data to the trained neural net.

In reality, surface roughness parameters are difficult to measure and to character-

ize. If there is a set of data containing information on soil moisture only, not rms

height or correlation length, we want to know whether we can utilize this set of data

to train the neural net and retrieve soil moisture for another set of data. This is

the second case to be shown. For this case, the backscattering coefficients again are

generated from the surface scattering models with the assumed range of soil moisture

from 2% to 40% in 20 increments, rms height from 1 to 2 cm in 6 increments, and

correlation length from 9 to 13 cm in 5 increments. However, only soil moisture is

specified for each input vector in the training data set. We want to determine whether

soil moisture can be inverted correctly when we apply the backscattering data to the

trained neural net.

Table 5.1 summarizes the results for the two cases described above. The rms error
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e is defined as

(5.17)

where Yk and dk are the actual output and desired output for the kth input vector in

the backscattering data, respectively. There are M input vectors in the backscattering

data to be inverted. The first two rows in Table 5.1 correspond to the first case in

which three soil parameters are inverted. For the inversion result shown on the

first row, there are four inputs to the neural net-the HH and VV backscattering

coefficients in the P-band and L-band. The rms error of the retrieved soil moisture

is 1.97. The rms errors of the inverted rms height and correlation length are 0.13

cm and 0.1 cm, respectively. For the inversion result shown on the second row,

there are six inputs to the neural net the HH and VV backscattering coefficients in

the P-band, L-band, and C-band. The rms errors of the retrieved soil moisture, rms

height, and correlation length are 0.99, 0.06 cm, and 0.06 cm, respectively. Therefore,

using either 4 inputs or 6 inputs to the neural network gives good inversion results

for all three soil parameters. However, the inversion is better with 6 input nodes

than with 4 input nodes because the amount of ambiguity can be reduced with more

inputs. The third row in Table 5.1 corresponds to the second case in which only soil

moisture is retrieved without knowing the surface roughness parameters. There are

four inputs, namely, the HH and VV backscattering coefficients in the P-band and

L-band. The rms error of the retrieved soil moisture is 0.39. The result for this case

is better than t;he result for the first case where three soil parameters are retrieved.
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Number of Number of RMS Error in RMS Error in RMS Error in

Inputs Outputs Moisture (%) RMS Height (cm) Correlation Length (cm)

4 3 1.97 0.13 0.10

6 3 0.99 0.06 0.06

4 1 0.39 N/A N/A

Table 5.1: RMS error of the retrieved soil parameters using neural networks with

different number of inputs and outputs.

Instead of trying to improve the results for all three parameters, the neural net in this

case only needs to improve the result for soil moisture, but at the expense of surface

roughness parameters. Although the rms errors in the inversion of soil moisture are

small as shown in Table 5.1, in reality, the rms errors in the inversion are larger with

experimental data since there is noise present. The inversion in this section is used as

an initial test to see the effectiveness of neural networks for retrieval of geophysical

parameters.

5.3 Inversion of Sunflower Biomass

In Chapter 3.3, the developed structural model is applied to interpret the multi-

frequency, multi-polarization radar backscattering returns from sunflower fields ac-

quired during three flights for the airborne Remote Sensing Campaign Mac-Europe 91

at the Montespertoli test site in Italy [5]. The result shows a good agreement between
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the model simulation and the experimental data. Since the model has been validated

with experimental data which contain both co-polarized returns and cross-polarized

returns, the scattering returns obtained from the model are utilized to train the neural

network for the inversion of sunflower biomass. The inversion results obtained using

different combinations of backscattering coefficients as inputs to the neural networks

will be analyzed.

5.3.1 Approach for the Inversion

The training data for the inversion of sunflower biomass include the polarimetric

backscattering coefficients from the developed structural model for sunflower fields

based on the ground truth measured at the Montespertoli test site in Italy during the

campaign, and the information of the sunflower biomass. The topology of the neural

network used is a three-layer perceptron with twelve nodes in each of the two hidden

layers shown in Figure 5-10. To determine the number of nodes to use in each hidden

layer, a systematic study is performed starting with zero node and then increasing the

number until the performance of the network does not change significantly. Unlike

the inversion of soil moisture described in the previous section, the use of HH and

VV backscat tering returns alone may not be enough for the training of the neural

net because there is not enough dynamic range between different sunflower biomass.

Therefore, during the training process, different combinations of the backscattering

coefficients are used as the input to the neural net including HV backscattering coef-

ficients. For each case, the output from the neural net is compared with the desired
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sunflower biomass to adjust the interconnecting weights. The process is repeated

for each input-output pair and then for the whole training set until convergence is

reached. After training, the backscattering coefficients are applied to the trained

neural network to retrieve the sunflower biomass.

5.3.2 Inversion Results

In the final step of the inversion process, different cases are analyzed by changing the

components of the neural network input. Starting with one element in the input vec-

tor, six cases are examined since three backscattering coefficients for both L-band and

C-band are available. The smallest RMS error in sunflower biomass is obtained with

L-band HV backscattering coefficient. The result is consistent with the observation

made from the HV backscattering data shown in Chapter 3.3 since there is more dy-

namic range across different sunflower biomass. Increasing the number of components

in the neural network input progressively decreases the RMS error. Neural network

is capable of combining the information from each input node constructively. Ta-

ble 5.2 summarizes some of the retrieval results with different neural network inputs.

The first column shows the input to the neural net. The root-mean-square errors in

forest biomass are displayed in the second column. From the table, the best result

is obtained by using a six component input which includes L-band and C-band HH,

VV, and HV backscattering coefficients. Figure 5-11 shows the inversion result with

L-band and C-band HH, VV, and HV backscattering coefficients as the neural net

input. The horizontal axis is the actual sunflower biomass. The vertical axis is the
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Figure 5-10: A three-layer perceptron for the inversion of sunflower biomass. Each

circle represents a node with bias associated with it.
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Input RMS Error in Sunflower Biomass (kg/m 2)

L-band HH 2.21

L-band VV 2.30

L-band HV 0.49

L-band HH, VV 2.00

L-band HH, HV 0.47

L-band VV, HV 0.47

L-band HH, VV, HV 0.38

L- & C-band HH, VV, HV 0.31

Table 5.2: Root-mean-square errors in retrieved sunflower biomass for different neural

network inputs

retrieved biomass. If the sunflower biomass obtained from the neural net is the same

as the actual sunflower biomass, the plot should be a straight line. Good retrieval

results are obtained since the root-mean-square error in sunflower biomass is very

low (0.31 kg/m 2) compared to the standard deviation of the biomass in the training

set (2.69 kg/m 2). The retrieval result shows that this inversion model is capable of

performing the estimation with good level of precision.
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Figure 5-11: Inversion of sunflower biomass with L-band and C-band HH, VV, HV

backscattering coefficients as the input to the neural network. The root-mean-square

error in sunflower biomass is 0.31 kg/m 2
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5.4 Inversion of Forest Age or Forest Biomass

The retrieval of forest age (or equivalently, forest biomass) from remote sensing data

is important in the studies of global change and has been a subject of great interest

in recent years [40, 6, 13]. Neural networks will be applied to assess the capability of

spaceborne polarimetric data for the inversion of forest age. The polarimetric radar

data are acquired by the Spaceborne Imaging Radar-C (SIR-C) over the Landes Forest

in France.

5.4.1 SIR-C Data at Landes Forest

The training data for inversion of forest age include the polarimetric radar data

acquired by SIR-C in April 1994 over the Landes Forest in France, and the information

of the forest age from the biomass map of that area [40]. The Landes Forest is a man-

made forest in the southwestern part of France. The forest is formed of maritime pine

and is managed in such a way that the canopy is homogeneous. The forest age and

forest biomass for the pine trees in the Landes Forest can be described by a linear

relationship.

forest biomass (ton/ha) 4 3.17 x forest age (year) + 1.53 (5.18)

SIR-C is the first spaceborne radar capable of obtaining multi-frequency and multi-

polarization radar data simultaneously. There are two operating frequencies. One is

at L-Band (1.28 GHz), and the other is at C-Band (5.17 GHz). The incident angle

over the Landes Forest is 26.40. From the SIR-C data, we have information on the four
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polarization combinations HH, VV, HV, VH, and the phase difference between them.

In addition to those backscattering coefficients as inputs to the neural networks, we

also consider the correlation coefficients p between HH and VV.

(JL = (f,1) (5.19)
K I 2), K, JI 2)

where J)f and f,l, are the HH and VV scattering matrix elements, respectively.

From the biomass map for the Nezer site in the Landes Forest (Figure 5-12) which

provides information on the location and age of maritime pine trees. 20 forest stands

ranging fron.m 2 to 20 years old (with biomass from 8 to 65 tons/ha), and 6 areas of

h)are soil sI'•,Iace are selected. From (ea(ch of these areas, an average is calculated for

the 1H-I. VV. and HV backscattering coeffihients an(l for the correlation coefficient

betwelen HI[ and VV. The results are shown in Figures 5-1:3 to 5-18. Figure 5-13

shows the L-Band backscattering coefficient versus the forest age. There are 26 (tata

polinl s in I lhI,' plot. which are from theI 2(0 forest stani(s and 6 (clear-(cuit areas p)reviously

chosen. The two major contributions for co-polarized scattering from the pine forest

are the scattering from trees and that fror the rough soil surface. When trees grow

older. the sciattering from trees is expected to increase until it reaches a point where

the sc(atterilng doesnrt change much because of attenuation. However. scattering from

the soil surface is stronger for young forest than the older forest. As a consequence,

the co-polarized backscattering returns are almosntconstant as a function of forest

age.

7The (cross-p)olarized returns have an increasing trend because as the tree gro)ws
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Figure 5-12: Biomass map for the Nezer site in the Landes Forest provides information

about the location and age of maritime pli•e trees.



older, the total volume of branches increase. However, for forest stands with age

greater than 15 years (or with biomass greater than 50 tons/ha), the backscattering

response becomes flat. The cross-polarized returns show more sensitivity to age than

the co-polarized returns.

The plot; of C-Band backscattering coefficients versus the forest age is shown

in Figure 5-14. The HH and VV backscattering coefficients decrease as the forest

grows older until they approach a constant at around 12 years (with biomass of 40

tons/ha). This occurs because the scattering at C-band from the rough soil surface is

very strong for young forest. This decreasing trend is not observed at L-band because

at lower frequencies, the backscattering from the soil is not significantly higher than

the backscattering from trees.

Figures 5-15 and 5-16 show the depolarization ratio HV/VV versus the forest age

for the L-band and the C-band, respectively. One of the advantages of using this

ratio is that the effect of miscalibration of data on the normalized term is reduced.

Both plots show that the depolarization ratio appears to be a good discriminator

among different forest ages. The plots of the magnitude of the correlation coefficient

between the HH and VV polarizations (Ipl) as a function of forest age for L-band

and C-band are shown in Figures 5-17 and 5-18, respectively. From the plots, we can

see that the soil surfaces are characterized by a correlation coefficient which is close

to one in magnitude. This is consistent with the theoretical simulation using the

Kirchhoff approximation. We expect lower IpI for trees since they are more randomly

distributed. When the forest stands are considered, Ipl drops to a value of 0.35 for
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older stands.

Like the inversion of sunflower biomass described in the previous section, the use

of HH and VV backscattering returns alone may not be enough for the training of the

neural net because there is not enough dynamic range between different forest ages.

Since with the SIR-C data, we have additional information on the phase difference

between HH and VV polarizations, during the training, the correlation coefficients

are also used as input to the neural network. The output from the neural network

is compared with the desired geophysical parameters to adjust the interconnecting

weights. This process is repeated for each input-output data entry and then for the

entire training data until convergence is achieved. After training, the backscattering

coefficients are applied to the trained neural network to retrieve the geophysical pa-

rameters, which are then compared with the desired geophysical parameters to verify

the effectiveness of this technique.

5.4.2 Inversion Results

Neural networks trained with SIR-C backscattering data and/or correlation coef-

ficients are applied to the inversion of the forest age. Different combinations of

backscattering data are used as input to the neural net in order to determine the

combination which gives the best inversion result. Figure 5-19 shows the inversion

result with the magnitude of the correlation coefficient, Ipl, as the neural net input.

The horizontal axis is the actual forest age, that is, the desired forest age presented

to the neural net during the training. The vertical axis is the retrieved forest age
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Figure 5-13: L-Band backscattering coefficients as a function of forest age are obtained

from SIR-C over the Landes Forest in France [40].
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Figure 5-14: C-Band backscattering coefficients as a function of forest age are ob-

tained from SIR-C over the Landes Forest in France [40].

146

I I I I I I I I I

* * HH
V V VVx x HV

Sx X

x



*c *l *e

*

*c *

* *

0 2 4 6 8 10 12 14 16 18 20
Age (year)

Figure 5-15: L-band depolarization HV/VV as a function of forest age are obtained

from SIR-C data of the Landes Forest in France [40].
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Figure 5-16: C-band depolarization HV/VV as a function of forest age are obtained

from SIR-C data of the Landes Forest in France [40].
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Figure 5-17: L-band Ip| as a function of forest age are obtained from SIR-C data of

the Landes Forest in France [40].
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Figure 5-18: C-band Ip| as a function of forest age are obtained from SIR-C data of

the Landes Forest in France [40].
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Figure 5-19: Inversion of forest age with SIR-C L-band magnitude of p as the input

to the neural network. The root-mean-square error in forest age is 1.2 years.
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which is obtained by applying the trained neural net to the backscattering data. If

the forest age obtained from the neural net is the same as the actual forest age, the

plot should be a straight line. Figure 5-19 is obtained by training the neural net with

the average values of IpI from the twenty-six areas selected. After training, the for-

est age is retrieved by presenting Ipl from the twenty-six areas to the trained neural

net. The root-mean-square error in forest age is 1.2 years. This is an initial test

to determine which parameters give better retrieval results. As can be predicted on

the basis of the results presented in Figures 5-13 to 5-18, the inversions using the

backscattering coefficients are not as accurate as the inversions using the correlation

coefficients and the ratio of backscattering coefficients. In order to obtain an accurate

inversion, there needs to be enough dynamic range across different forest ages. We

are more interested in determining whether the correlation coefficient or the ratio

yields better results. Table 5.3 summarizes some of the retrieval results with different

neural network inputs. The first column shows the input to the neural net. The

root-mean-square errors in forest age are displayed in the second column. It is clear

from the table that using Ipl alone yields better results than using HV/HH or HV/VV

by itself. In addition, the root-mean-square errors are smaller if the input includes

both L-band and C-band frequencies for either Ipl or the ratios because the amount

of ambiguities is reduced.

After the neural network is trained with the average values of backscattering data

from the twenty-six areas we selected, the trained neural net can be applied to retrieve

the forest age for the entire image. Figures 5-20, 5-21 and 5-22 show three resulting
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Figure 5-20: Image of retrieved forest age when the neural network is trained with L-

band p. The colors red, black, and blue represent non-forest area, and areas populated

by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively. The rest of the forest

is displayed in green.
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Figure 5-21: Image of retrieved forest age when the neural network is trained with

C-band 1pJ. The colors red, black, and blue represent non-forest area, and areas

populated by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively. The rest

of the forest is displayed in green.
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Figure 5-22: Image of retrieved forest age when the neural network is trained with

both L- and C-band Ipl. The colors red, black, and blue represent non-forest area,

and areas populated by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively.

The rest of the forest is displayed in green.
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Table 5.3: Root-mean-square errors

inputs

in retrieved forest age for different neural network

images when the neural network is trained with L-band Ip, C-band |pl, or both L-

and C-band Ip , respectively. Red color shows the non-forest area. Black and blue

colors represent 2-to-6-year-old trees and 6-to-10-year-old trees, respectively. The

rest of the forest is disp)layed in green. Com)Iparing the results between the case where

L-band pI is the neural net input to the case where C-band Ip is the neural net input,

it is clear that it is easier to distinguish the non-forest area from the young forest

area using C-band Ip). However, for the older forest areas. the retrieval result using

L-band IpI is better than that using C-band Ip|. As can be seen f)rom Figure 5-18,

C-band Ip| allows us to distinguish between the non-forest area and the young forest

area before it reaches a plateau. With the use of both L-band and C-band p as
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Input RMS Error in Forest Age (years)

L-band HV/HH 1.73

L-band HV/VV 1.64

C-band HV/VV 1.63

L-band Ip| 1.23

C-band Ip( 1.32

L- & C-band HV/VV 1.34

L- & C-band Ip 1.01



input to the nieural net, we obtain an overall better result because the inversion result

is similar to the C-band case for the younger forest, and to the L-band case for the

older forest. Figure 5-23, 5-24 and 5-25 display the images of the retrieved forest age

when the neural network is trained with HV/VV backscattering in the L-band alone,

in the C-band alone. and in both the L- and C-bands, respectively. We can see that

the u1se ()f IJIV/VV (loes niot distinguish between different forest ages well. Table 5.4

surnmarizes some of the retrieval results with different neural network inputs when

the trailced neural network is aJpplied to the whole image. The first column shows

the input to the neural net. The root-mean-square errors in forest age are displayed

in thie second c(:(, n.111 We scle (:certain areas ill which we know the forest age. and

compare the retrieved values for these areas with the known values. Table 5.4 displays

the rms errors for forest areas 2, 4 and 8 years of age. Again, the result of using the

L- and C-band pIp is better than using the L- and C-band HV/VV. For the inversion

of forest age or biomass, the use of Ipj as the neural net input yields the best result.

5.5 Summary

Neural networks offer a computational approach which riinuics biological nervous

systems. They are flexible for the, inversion of geophysical parameters, especially

when niulti-dimensional input such as multi-frequency, lmulti-polarization scattering

data are involved. In this chapter, an overview of neural networks and a description

o()f their use for the inversion o()f so(il paramieters and forest age are presnlted.
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Figure 5-23: Image of retrieved forest age when the neural network is trained with

L-band HV/VV. The colors red, black, and blue represent non-forest area, and areas

populated by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively. The rest

of the forest is displayed in green.
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Figure 5-24: Image of retrieved forest age when the neural network is trained with

C-band HV/VV. The colors red, black, and blue represent non-forest area, and areas

populated by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively. The rest

of the forest is displayed in green.
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Figure 5-25: Image of retrieved forest age when the neural network is trained with

both L- and C-band HV/VV. The colors red, black, and blue represent non-forest area,

and areas populated by 2-to-6-year-old trees and 6-to-10-year-old trees, respectively.

The rest of the forest is displayed in green.
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Table 5.4: Root-mean-square errors in retrieved forest age

inputs when the trained neural network is applied to the

for different neural network

whole image.

The neural network architecture used in this chapter is a multi-layer perceptron

trained with the back-propagation algorithm. During the training process, each input

vector and its corresponding desired output from the training set are presented to the

neural network so that the weights in the neural net can be adjusted to reduce the

output error. The process is repeated for the entire training set until convergence

in the output error is achieved. After the training is completed. the weights which

produce the best result are obtained. When an input is applied to the trained neural

net, the output can be computed immediately on the basis of these weights.

For the inversion of soil moisture and surface roughness parameters, the train-

ing data consist of multi-frequency polarimetric backscattering coefficients obtained
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Input RMS Error in Forest Age

2 years 4 years 8 years

L-band |pl 1.29 2.80 4.63

L-band HV/VV 3.08 4.10 5.02

C-band Ipl 1.19 1.91 4.50

C-band HV/VV 3.45 3.85 4.50

L- & C-band IpJ 1.09 1.78 3.67

L- & C-band HV/VV 3.06 3.47 4.28



from theoretical surface scattering models with an assumed range of soil parameters.

Inversion results are obtained using different combinations of backscattering data as

input to the neural networks. Two cases are considered. The first case involves the

inversion of three soil parameters-soil moisture, rms height, and correlation length.

An input vector in a training data set is a combination of P-band, L-band and C-band

HH and VV backscattering coefficients. The use of multi-frequency input to the neu-

ral network is shown to provide good inversion results for all three soil parameters.

However, the inversion is improved with more input nodes because the amount of

ambiguity is reduced. The second case deals with the inversion of soil moisture using

a neural network trained with a set of data for which only soil moisture information,

but not the rms height or the correlation length of the soil surface is available. This

is a practical application since surface roughness parameters in the real world are

difficult to measure and to characterize. Our results suggest that a large data set

containing information on soil moisture only without rms height or correlation length

can be used to train a neural net intended for the retrieval of soil moisture from

another set of data.

Neural networks are also applied to the inversion of sunflower biomass using neural

networks. The training data are the scattering returns obtained from the developed

vegetation scattering model based on the Monte Carlo approach. The simulated re-

sults from the structural model are validated by airborne Remote Sensing Campaign

Mac-Europe 91 multi-frequency and multi-polarization data [5] (Chapter 3.3). Unlike

the inversion of soil parameters, the use of HH and VV backscattering returns alone
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may not be sufficient for the training of the neural net because there is not enough

dynamic range in the sunflower biomass. Therefore, the HV backscattering coefficient

is also used as input to the neural network during training. Different combinations of

backscattering coefficients are used as inputs to the neural networks. With only one

input node, the smallest root-mean-square error in sunflower biomass is obtained with

L-band HV backscattering coefficient. Increasing the number of input nodes in the

neural network input progressively decreases the root-mean-square error. Although

the sunflower biomass is more sensitive to cross-polarized backscattering coefficients,

the neural network takes advantage of the information carried by all its inputs. The

best result is obtained with six input nodes which includes L-band and C-band HH,

VV, and HV backscattering coefficients. This suggests that the inversion result may

be improved further with the use of additional frequencies and/or angles of observa-

tion.

To examine the performance of the use of experimental data in training the neural

networks, the polarimetric radar data obtained by the Spaceborne Imaging Radar-

C (SIR-C) over the Landes Forest in France [40] are utilized to train the net in

order to retrieve the forest age (or equivalently, forest biomass). The training data

include the information on the forest age from the biomass map of the Landes forest,

and the polarimetric radar data acquired by SIR-C in April 1994 at two operating

frequencies--one at L-Band (1.28 GHz) and the other at C-Band (5.17 GHz). Like the

inversion of sunflower biomass, the use of HH and VV backscattering returns alone

may not be enough for the training of the neural net because there is not enough
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dynamic range between different forest ages. Since with the SIR-C data, additional

information on the phase difference between HH and VV polarizations is available,

the correlation coefficients are also used as the input to the neural network during

training. As we predicted, the inversions using the backscattering coefficients are not

as accurate as those using the correlation coefficients and the ratio of backscattering

coefficients. The neural network trained with the average values of backscattering

data from the twenty-six selected areas is applied to retrieve the forest age for the

entire radar image. The best inversion result is obtained with the use of both L-band

and C-band magnitude of correlation coefficients as input to the neural net.
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Chapter 6

Conclusion

A coherent scattering model for microwave remote sensing of vegetation canopy is

developed on the basis of Monte Carlo simulations. The effects of coherent wave in-

teractions are especially important in scattering from vegetations with closely spaced

or clustered elements. The conventional analytic wave theory approach requires a

knowledge of the probability density functions and the pair-distribution functions,

which are usually difficult to obtain for natural vegetation. The Monte Carlo ap-

proach obviates the need of prior knowledge of these functions, and makes possible the

use of more accurate and detailed structural models of complex vegetation structures.

Although it is computationally more intensive, the ever increasing speed and mem-

ory capacity of modern computer have made this approach practical. The scattering

model developed in this research takes into account the coherent wave interactions

among vegetative elements, the contribution of different scattering mechanisms from

a vegetation canopy, and the effects of attenuation on the coherent wave.

165



Two methods can be employed to achieve a realistic description of the vegetation

structure under consideration. In one method, the number of each type of component

and the relative orientations of the components are specified in the structural model

up to the desired level of detail. Such a structural model is applied to rice crops

and sunflowers. The developed structural model for rice crops takes into account

the coherent wave interactions made prominent by the clustered and closely spaced

structure of rice crops, and is validated with the ERS-1 data [41]and the multi-

angular RADARSAT data [57]. It correctly predicts the increasing trend of the

temporal response with rice growth. The structural model for rice crops is utilized

to interpret the experimental observations from the JERS-1 data [61] such as the

effects of the structure of rice fields. Monte Carlo simulations for different growth

stages and rice field structures demonstrate a large variation in the L-band scattering

returns from rice fields with different plant spacings, as the result of the constructive

and destructive interferences among rice plants. The C-band scattering returns are

affected to a lesser extent by the structure of the rice field because of the shorter

wavelength of C-band. Further analysis shows that the ratio of HH polarization over

VV polarization at the L-band is virtually independent of the rice field structure

because of cancellation of the phase interactions. Therefore, the C-band scattering

returns and the ratio of HH over VV polarizations at the L-band are useful for the

inversion of rice biomass without prior knowledge of plant spacings, while the L-band

scattering returns alone are of limited utility in biomass inversion without available

data on the rice field structure.
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A structural model is also developed for sunflowers, which, in contrast to rice

plants, do not have a cluster structure, has more circular shaped leaves connected to

a stem through petioles, and has a flower at the developed stage. In addition, the

bottom of a sunflower field is the rough soil surface instead of water. The model

is validated for both co-polarized and cross-polarized returns using the airborne Re-

mote Sensing Campaign Mac-Europe 91 multi-frequency and multi-polarization radar

backscattering data acquired for sunflower fields at the Montespertoli test site in Italy

[5].

Another method to characterize vegetation structures uses growth rules. This

is especially useful in modeling trees, which are structurally more complex. The

Lindenmayer systems are utilized to realistically capture the architecture of trees

and describe their growth. Monte Carlo simulation results of the scattering returns

from trees with different structures and at various growth stages are calculated and

analyzed. The structure factor which extracts the structural information of a tree and

provides a measure of the spatial distribution of branches is defined. It is computed

for trees with different architectures at L-band and C-band frequencies with HH, VV,

and HV polarizations. Its value shows a greater variation among different types of

trees at L-band as compared to C-band, a result consistent with our prior prediction.

To solve the inverse scattering problem, multi-layer perceptron neural networks

trained with the back-propagation algorithm are used. These neural nets are applied

to the inversion of geophysical parameters including soil moisture and surface param-

eters, as well as forest age (or equivalently, forest biomass). They are found to be
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especially useful for multi-dimensional inputs such as multi-frequency polarimetric

scattering data.

For the inversion of soil moisture and surface roughness parameters, neural net-

works are trained with multi-frequency polarimetric backscattering coefficients de-

rived from theoretical surface scattering models with an assumed range of soil pa-

rameters. Inversion results are obtained using different combinations of backscatter-

ing data as input to the neural networks. Two cases are considered. The first case

involves the inversion of three soil parameters-soil moisture, rms height, and correla-

tion length. An input vector in a training data set is a combination of P-band, L-band

and C-band HH and VV backscattering coefficients. The use of multi-frequency in-

put to the neural network is shown to provide good inversion results for all three

soil parameters. However, the inversion is improved with more input nodes because

the amount of ambiguity is reduced. The second case deals with the inversion of soil

moisture using a neural network trained with a set of data for which only soil mois-

ture information, but not the rms height or the correlation length of the soil surface is

available. This is a practical application since the measurement and characterization

of surface roughness parameters in the real world pose a difficult problem. Our results

suggest that a large data set containing information on soil moisture only without

rms height or correlation length can be used to train a neural net intended for the

retrieval of soil moisture from another set of data.

Neural networks are also applied to the inversion of sunflower biomass. The train-

ing data are the scattering returns obtained from the developed vegetation scattering
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model based on the Monte Carlo approach where the simulated results from the

structural model have been validated by Mac-Europe 91 multi-frequency and multi-

polarization data [5] described in Chapter 3.3. Unlike the inversion of soil parameters,

HV backscattering coefficients are also used as inputs to the neural network during

training. The use of HH and VV backscattering returns alone may not be sufficient

for the training of the neural net since there is not enough dynamic range in the forest

age. Different cases are analysed by changing the components of the input vector.

Increasing the number of input nodes in the neural network input progressively de-

creases the root-mean-square error. The best result is obtained with six input nodes

which includes L-band and C-band HH, VV, and HV backscattering coefficients. This

suggests that the inversion result may be improved further with the use of additional

frequencies and/or angles of observation.

The performance of the use of experimental data as the neural network training

data for the inversion is also demonstrated. To retrieve the forest age (or equivalently,

forest biomass), the training data include the the multi-frequency polarimetric radar

data acquired by SIR-C over the Landes Forest in France and the information on

the forest age from the biomass map of that area [40]. Since with the SIR-C data,

additional information on the phase difference between HH and VV polarizations

is available, the correlation coefficients p are also used as the input to the neural

network during training. Inversions using the backscattering coefficients are not as

accurate as those using the correlation coefficients and the ratio of backscattering

coefficients. The neural network trained with the average values of backscattering
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data from the twenty-six selected areas is applied to retrieve the forest age for the

entire radar image. We have demonstrated that the best inversion result is obtained

with the use of both L-band and C-band magnitude of correlation coefficients as input

to the neural network.
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