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Abstract

We propose a general methodology based on robust op-
timization to address the problem of optimally con-
trolling a supply chain subject to stochastic demand
in discrete time. The attractive features of the pro-
posed approach are: (a) It incorporates a wide variety
of phenomena, including demands that are not identi-
cally distributed over time and capacity on the echelons
and links; (b) it uses very little information on the de-
mand distributions; (c) it leads to qualititatively similar
optimal policies (basestock policies) as in dynamic pro-
gramming; (d) it is numerically tractable for large scale
supply chain problems even in networks, where dynamic
programming methods face serious dimensionality prob-
lems; (e) in preliminary computation experiments, it
often outperforms dynamic programing based solutions

for a wide range of parameters.

1 Introduction

Optimal supply chain management has been extensively
studied in the past using dynamic programming, which
leads to insightful policies for simpler systems (bases-

tock policies for series systems; Clark and Scarf [6]).
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Unfortunately, dynamic programming assumes complete
knowledge of the probability distributions and suffers
from the curse of dimensionality. As a result, prefer-
ence for implementation purposes is given to more intu-
itive policies that are much easier to compute, but also
suboptimal (see Zipkin [11]).

Hence, the need arises to develop a new optimization
approach that incorporates the stochastic character of
the demand in the supply chain without making any
assumptions on its distribution, is applicable to a wide
range of network topologies, is easy to understand in-
tuitively, and combines computational tractability with
the structural properties of the optimal policy. The goal
of this paper 1s to present such an approach, based on ro-
bust linear and mixed integer optimization that has wit-
nessed increased research activity (Soyster [10], Ben-Tal
and Nemirovski ([1, 2, 3]) and El-Ghaoui et. al. ([7, 8],
Bertsimas and Sim [4, 5]). We utilize the approach in
[4, 5], which leads to linear robust counterparts while
controlling the level of conservativeness of the solution.
The contributions of this paper are as follows: (a) We
develop an approach that incorporates demand uncer-
tainty in a deterministic manner, remains numerically
tractable as the dimension of the problem increases and
leads to high-quality solutions without assuming a spe-
cific demand distribution. (b) The robust problem is of
the same class as the nominal problem, that is, a linear
programming problem if there are no fixed costs or a
mixed integer programming problem if fixed costs are
present, independently of the topology of the network.
(c) The optimal robust policy is qualitatively similar to
the optimal policy obtained by dynamic programming

when known. In particular, it remains basestock when



the optimal stochastic policy is basestock, as well as in
some other cases where the optimal stochastic policy is
not known. (d) We derive closed-form expressions of key
parameters defining the optimal policy. These expres-
sions provide a deeper insight into the way uncertainty

affects the optimal policy in supply chain problems.

2 The Robust Optimization Ap-

proach

We rely extensively on the robust optimization tools
developed by Bertsimas and Sim in [4] for linear pro-
gramming problems. We consider the following problem

subject to data uncertainty:
mine’x: Ax <b, 1 <x <u,

where we assume WLOG that only the matrix A 1s sub-
ject to data uncertainty. Let A = {A € RT*™ |ai; €
[@ij — aij, @ +a;;] Vi, j, Z %%M

G.jes Y
a parameter that controls the degree of conservatism.
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The robust problem is then formulated as:

min ¢’x
st. Ax<b, VAecAd (1)
I<x<u

Theorem 2.1 (Bertsimas and Sim [4]) The uncer-
tain linear programming problem has the following ro-

bust, linear counterpart:

min c'x
s.t. Zflijl‘j + ¢; ' + Z ri; < b;, Vi
J Ji(i,j)ed

N .. 2
qi +rij > aiy;, (i, j) €J 2)
—y<x<y, 1<x<u

q>0,r>0,y>0.

The robust counterpart is therefore of the same class
as the nominal problem, that is, a linear programming
problem. This is a highly attractive feature of this ap-
proach, since linear programming problems are readily
solved by standard optimization packages. Moreover, if
in the original problem (1), some of the variables were

constrained to be integers, then the robust counterpart

(2) would retain the same properties, i.e., the robust
counterpart of a mixed integer programming problem is

itself another mixed integer programming problem.

3 The single station case

3.1 The uncapacitated model

In this section we apply the robust optimization frame-
work to the problem of ordering, at a single installation,
a single type of item subject to stochastic demand over
a finite discrete horizon of T' periods, so as to minimize
a given cost function. We define, for k =0,...,7T"

zg : the stock available at the beginning of the kth pe-
riod,

ug : the stock ordered at the beginning of the kth pe-
riod,

wy : the demand during the kth period.

The stock ordered at the beginning of the kth period
is delivered before the beginning of the (k+ 1)st period,
that is, all orders have a constant leadtime equal to 0.
Excess demand is backlogged. Therefore, the evolution
of the stock over time is described by the following linear
equation:

k=0,...T—1, (3)

Tpy1 = T + Up — Wy,

leading to the closed-form expression:

k
rhpr =0+ Y (wi—wy), k=0, T-1 (4)
i=0

Neither the stock available nor the quantity ordered
at each period are subject to upper bounds. Section 3.2
deals with the capacitated case.

The demands w; are random variables. In order to
apply the approach outlined in Section 2, we model wy
for each k as an uncertain parameter that takes values
in [Wy — Wg, W + Wg]. We define the scaled deviation
of wy, from its nominal value to be z; = (wi — W)/ Wk,
which takes values in [—1,1]. We impose budgets of
uncertainty at each time period k for the scaled devia-
tions up to time k. Hence, we now have the constraint
Zf:o |zi| < Ty for all time periods & = 0,...,7 — 1.



These budgets of uncertainty rule out large deviations
in the cumulative demand, and as a result the robust
methodology can be understood as a “reasonable worst-
case” approach. The main assumption we make on the
[y 1s that they are increasing in k, i.e., we feel that
uncertainty increases with the number of time periods
considered. We also constrain the I'y to be increasing
by at most 1 at each time period, 1.e., the increase of the
budgets of uncertainty should not exceed the number of
new parameters added at each time period.

Finally, we specify the cost function. The cost in-
curred at period k consists of two parts: a purchasing
cost C'(uy) and a holding/shortage cost resulting from
this order R(#j41). Here, we consider a purchasing cost

of the form:
K+c-u,

CWF={6

with ¢ > 0 the unit variable cost and K > 0 the fixed

if u> 0,

5
if u=0, (5)

cost. If K > 0, a fixed positive cost i1s incurred when-
ever an order is made. The holding/shortage cost rep-
resents the cost associated with having either excess in-
ventory (positive stock) or unfilled demand (negative
stock).
ing/shortage cost:

We consider a convex, piecewise linear hold-

(6)

R(x) = max(hz, —pz),

where h and p are nonnegative. The holding/shortage
cost for period k, yx, is computed at the end of the
period, after the shipment ug has been received and the
demand wg has been realized. We assume p > ¢, so
that ordering stock remains a possibility up to the last
period.

Using the piecewise linearity and convexity of the
holding/shortage cost function, and modelling the fixed
ordering cost with binary variables; the inventory prob-
lem we consider can be written as a mixed integer pro-

gramming problem:

T-1
min Z (cup + Kvg + yi)
k=0
s.t. k>h(x0—|—z —wZ) k=0,....,T—1
k
ykz—P&m+§:Wr%M) k=0,...,7—1
i=0
0 <wup < Moy, vkE{O,l} k=0,....,T—-1,

(7)
where w; = W; + W; - z; such that z € P = {|z| < 1Vi >
0, Yoisg =] < Tk VE > 0}.

Applying Theorem 2.1, we obtain

Theorem 3.1 The robust formulation for the single-

station inventory problem (7) is:

-1
min Z (cup + Kvg + yg)
k=0
k k
st ye>h (xo + Z(uz —Wi) + qpli + ka)
i=0 1=0

ykZp(—l‘o—Z ) +(]krk+z7°zk)
=0 1=0

Gk + i > W
qr >0, 7y >0
0<ur < Mug, vy € {0,1},
(8)

where M is a large positive number.

The variables g5 and r;; quantify the sensitivity of
the cost to infinitesimal changes in the key parameters
of the robust approach, specifically the level of conser-
vativeness and the bounds of the uncertain variables.
qx Tk + Zf:o ik represents the extra inventory (or lack
thereof) that we want to take into account in controlling
the system from a worst-case perspective.

The robust problem is a linear programming prob-
lem if there is no fixed cost (K = 0) and a mixed integer
programming problem if fixed costs are present (K > 0).
In both cases, this robust model can readily be solved
numerically through standard optimization tools, which
is of course very appealing. It is also desirable to have

some theoretical understanding of the optimal policy,



in particular with respect to the optimal nominal pol-
icy and, if known, the optimal stochastic policy. We

address these questions next.

Definition 3.1 ((S,S) and (s,S) policies) The opti-
mal policy of a discrete-horizon inventory problem is
said to be (s,S), or basestock, if there exists a thresh-
old sequence (sj, Sk) such that, at each time period k, it
1s optimal to order S, — xy, if v < s and 0 otherwise,
with sy < Sk. If there is no fired ordering cost (K = 0},

Sp = Sk

In order to analyze the optimal robust policy, we

need the following lemma:

Lemma 3.2 (a) The optimal policy in the stochastic
case, where the cost to minimize is the expected value
of the cost function over the random variables wy, 1is
(s,5). As a result, the optimal policy for the nominal
problem is also (s, S).

(b) For the nominal problem without fized cost, the opti-
mal policy for the nominal case is (S,S) with the thresh-
old at time k being S, = wy,.

(¢) For the nominal problem with fived cost, if we denote
byt; (j=1,...,J) the times where stock is ordered and

55, S; the corresponding thresholds at time t;, we have:

1;
Sj = Z wtj-l-i’ (9)
i=0

and
ti—1 L;_1-1

51 =&y — g w;, 55 = — g Wi, i, J > 2,
=0 i=I; 141

(10)

L;—ecly=

We next present the main result regarding the structure

of the optimal robust policy.

Theorem 3.3 (Optimal robust policy)

(a) The optimal policy in the robust formulation (8),
evaluated at time 0 for the rest of the horizon, s the
optimal policy for the nominal problem with the modified

demand:

—h
wzzmk‘Fp—(Ak_Ak—l)a

p+h (11)

where Ap = ¢; 'y + Zf:o rf, 1s the deviation of the cu-
mulative demand from its mean at time k, q* and r*
being the optimal q and v variables in (8). (By conven-
tion g_1 = r. -1 = 0.) In particular it is (S, S) if there
is no fived cost and (s, S) if there is a fived cost.

(b) If there is no fived cost, the optimal robust policy is
(S,5) with Sy, = wj, for all k.

(¢) If there is a fived cost, the corresponding thresholds
S;, 85, where j = 1,...,J indexes the ordering times,
are given by Equations (9) and (10) applied to the mod-
ified demand wy,.

(d) The optimal cost of the robust problem (8) is equal
to the optimal cost for the nominal problem with the
modified demand plus a term representing the extra cost

. . 2ph —T-1
wmncurred by the robust policy, ]ﬁ Yoo Ak

Proof: Let (u*,v*, q* r*) be the optimal solution of

(8).

optimal values q* and r* in (8) and resolving the lin-

Obviously, setting the q and r variables to their

ear programming problem will give u* and v* again.

This enables us to focus on the optimal ordering policy

*

only, taking the auxiliary variables q*, r* as given in

the robust formulation (8). We have then to solve:
T-1
1;1121{)1 I;J [cuk + Klju,>o01+

max (h(Tpt1 + A), p(=Tre1 + Ax)) ] (12)

where Tpy1 = 2o + Zf:o(ui —w;) and Ax = ¢;Tx +
Zf:o 5, for all k.

K3

We define a modified stock variable x},, which evolves

according to the linear equation:

/ / — p—h
= — — (A — Ax_ 1
e (wk—i—p—l—h( k k 1))a (13)

I
k

with #{ = x¢. Note that the modified demand wy, is not

=w

subject to uncertainty. We have:

max (h(Zp41 + Ag), p(—Tr41 + Ar)) =

2ph
max (hxfk_l_l, —prk_l_l) + LAk.

p+h (14)



The reformulation of the robust model, given the op-
timal q* and r* variables, as a nominal inventory prob-
lem in the modified stock variable z}, (plus the fixed cost
]%llh ZZ:_Ol Ay) follows from injecting Equation (14)
into Formulation (12). This proves (a) and (d). We
conclude that (b) and (c) hold by invoking Lemma 3.2.
O
Remark: For the case without fixed cost, and for the
case with fixed cost when the optimal ordering times
are given, the robust approach leads to the thresholds in
closed form. For instance, if the demand is i.i.d. (W =
w, wy, = w for all k), we have Ay = @w Ty and, if there is

no fixed cost, Sy = wj, = W+ ?%Z@ (T — Tj—yq) for
all k.

Hence, the robust approach protects against the un-
certainty of the demand while maintaining striking sim-
ilarities with the nominal problem, remains computa-

tionally tractable and is easy to understand intuitively.

3.2 The capacitated model

So far, we have assumed that there was no upper bound
either on the amount of stock that can be ordered or on
the amount of stock that can be held in the facility. In
this section, we consider the more realistic case where
such bounds exist. The other assumptions remain the

same as 1n Section 3.1.

3.2.1 The model with capacitated orders

The extension of the robust model to capacitated or-
ders of maximal size d is immediate, by adding the con-

straint:

up < d, Vk, (15)

to Formulation (8). We next study the structure of the
optimal policy.

Theorem 3.4 (Optimal robust policy) The optimal
robust policy is the optimal policy for the nominal prob-
lem with capacity d on the links and with the modified
demand defined in Fquation (11). As a result, the opti-
mal policy remains (S, S) (resp (s, S)) in the case with-
out (resp with) fired cost.

3.2.2 The model with capacitated inventory

We now consider the case where stock can only be stored
up to an amount C'. This adds the following constraint

to Formulation (8):

k
xo + Z(uZ —w;) < C, (16)
i=0

where w; = W;4+Ww;-z; such that z € {]z;| < 1 Vi, Zf:o |zi] <
[y Vk}. This constraint depends on the uncertain pa-
rameters w;. Applying the technique developed in Sec-
tion 2, and using the same auxiliary problem (?7) as
before, we rewrite this constraint in the robust frame-

work as: .

Tpt1 +gele + Zrik <, Vk,
i=0
where ¢;; and r;; are defined in (8). We next study the

(17)

optimal policy.
Theorem 3.5 (Optimal robust policy) The optimal
robust policy is the optimal policy for the nominal prob-
lem subject to the modified demand defined in Equation
(11), and with inventory capacity at time 0 equal to C,
and ventory capacity alt time k+ 1, k > 0, equal to
- ]%Ak.
As a result, the optimal policy remains (S,S) (resp
(s,5)) in the case without (resp with) fived purchasing

cost.

4 The network case

4.1 The uncapacitated model

We now extend the results of Section 3 to the network
case. We first study the case of tree networks, which are
well suited to describe supply chains because of their hi-
erarchical structure: the main storage hubs (the sources
of the network) receive their supplies from outside man-
ufacturing plants and send items throughout the net-
work, each time bringing them closer to their final des-
tination, until they reach the stores (the sinks of the
network). Let S be the number of sink nodes. When
there is only one sink node, the tree network is called a

series system.



We define echelon &, for £ = 1,..., N with N the
total number of nodes in the network, to be the union
of all the installations, including & itself, that can re-
ceive stock from installation k, and the links between
them. In the special case of series systems, we number
the installations such that for & = 1,..., N, the items
transit from installation k 4+ 1 to k, with installation N
receiving its supply from the plant and installation 1
being the only sink node, as in [6]. In that case, the
demand at installation k& 4 1 at time ¢ is the amount of
stock ordered at installation k at the same time ¢. We
also define, for k =1,..., N:

I (t) : the stock available at the beginning of period ¢
at installation k,

X (1) : the stock available at the beginning of period ¢
at echelon k,

D;, 1 (t) : the stock ordered at the beginning of period ¢
at echelon k to its supplier i,

Ws(t) : the demand at sink node s during period ¢,
s=1,...,5. Let N(k) be the set of installations sup-

plied by installation & and O(k) the set of sink nodes
in echelon k. We assume constant leadtimes equal to 0,
backlog of excess demand, and linear dynamics for the
stock at installation k& at timet =0,..., 7T —1:

I(t+1) = I(t) + Dik(t) = > Dij(t),  (18)

JEN(kK)
By convention, if k is a sink node s, ZjeN(k) Dy;(t) =
Wi (t).
stock at echelon k at time¢ =10,...,7—1:
Xp(t+1) = Xi(t) + Din(t) — > Wilt).
s€O0(k)
Furthermore, the stock ordered by echelon k at time

This leads to the following dynamics for the
(19)

t is subject to the coupling constraint:

> Di(t) < max(I(t),0), Vk, Vi,
iEN (k)

(20)

that is, the total order made to a supplier cannot ex-
ceed what the supplier has currently in stock, or, equiv-
alently, the supplier can only send through the network
items that it really has. Since the network was empty

when it started operating at time {g = —oo, it follows

by induction on ¢ that I (t) > 0 for all £. Therefore the
coupling constraint between echelons is linear and can
be rewritten as:

> Dui(t) <Xi(t)— > Xi(t), Vk, ¥t (21)

iEN (k) iEN (k)
Finally, we specify the cost function. We assume that
each echelon & has the same cost structure as the sin-
gle installation modelled in Section 3.1 with specific pa-
rameters (cg, K, hi, pr). We also keep here the same
notations and assumptions as in Section 3.1 regarding
the uncertainty structure at each sink node. In partic-
ular, each sink node s has its own threshold sequence
T's(t) evolving over time that represents the total bud-
get of uncertainty allowed up to time ¢ for sink s. We
have W (t) = W (t) + /Ws (t) - Z5(t) such that the Z,(¢)
belong to the set Py = {|Z,(t)| < 1 V¢, S2b_, Zs(7) <
Ts(t), Vt}. We assume 0 < T5(¢) — T5(¢ — 1) < 1 for all
s and ¢, that is, the budgets of uncertainty are increas-
ing in ¢ at each sink node, but cannot increase by more
than 1 at each time period.

Applying the robust approach developed in Section 2
to the holding/shortage constraints in the same manner
as in Section 3, we obtain the mixed integer program-

ming problem:
T-1 N

min Z Z Z {ewi Dri(t) + KiiVii (t) + Yi(t)}

t=0 k=14 N(k)

Yi(t) > hi{Xi(t + 1) + G(i, 1)}

Yi(t) > pi{-Xi(t + 1) + +G(i, 1)}

G(i,t) = ZseO(i) <(Js O () + Ztrzo s (T’t))
D;ﬂ(t) S Yk (t) — Z yz(t)

s.t.

1eN(k) 1eN(k)

4s(8) + ro(r, 1) > We(7)

qs(t) > 0, 75(7, 1) > 0

0 < Dgi(t) < MVi,(t), Vig(t) € {0,1},

(22)
with X (141) = X5(0)+ 52 2o { Dui (1) = Leony Wo(1) }
for all ¢ and ¢, where k supplies 1.

As in the single-station case, an attractive feature of
this approach is that the robust model of a supply chain

remains of the same class as the nominal model, that



is, a linear programming problem if there are no fixed
costs and a mixed integer programming problem if fixed
costs are present. Therefore, the proposed methodology
is numerically tractable for very general topologies. The

malin result is as follows.

Theorem 4.1 (Optimal robust policy)

(a) The optimal policy in the robust formulation (22) for
echelon k is the optimal policy obtained for the supply
chain subject to the modified, deterministic demand at

sink node s (for s € O(k)):

/ _ Ti7 Pk — hy
swlt) = We(t) + T (As () = At = 1)), (23)
where Ay (t) = ¢ ()T (t) + 30—y 5 (7, 1), @ and v% be-

g the optimal q and r variables associated with sink
node s in (22).

(b) The optimal cost in the robust case for the tree net-
work is equal to the optimal cost of the nominal problem
for the modified demands, plus a term representing the

extra cost incurred by the robust policy,

>SS )
Pk-l- ’“toeo

The case of more general supply chains is complex
because they cannot be reduced to a tree network: the
need might arise to order from a more expensive supplier
when the cheapest one does not have enough inventory.
We can still define echelons for those networks in a sim-
ilar manner as before, and the evolution of the stock at
echelon k&, which is supplied by the set of installations
I(k) and has the set O(k) as its sink nodes, is described

by the following linear equation:

DR PIIL

7=0 zEI

Xi(t+1) =

— Y Win)
Jj€0(k) (22)

With the standard cost assumptions used before, the
echelons cannot be studied independently and the op-
timal policy 1s not necessarily basestock, even in the
simple case of demand without uncertainty. This is il-
lustrated by the following example.

The network in Figure 1 has two installations, and

therefore two echelons. Echelon 1 can be supplied by

Figure 1: A network for which the optimal policy is not

basestock.

installation 2 at a unit cost ¢; = 1, without any fixed
ordering cost, and has the option to order directly from
the plant for the same unit cost ¢c; = 1, but with an
additional fixed cost K5 = 4 incurred whenever an order
is made. This option is attractive only if installation 2
does not have enough stock in inventory. The holding
and shortage unit costs at echelon 1 are hy = p; = 2.
The horizon is 1 time period, and the demand at time
0 is deterministic, equal to 10 units. Echelon 1 has only
5 units in inventory at time 0.

Comparing the two options, it is easy to see that
it is optimal for echelon 1 to order 5 units from 2 if
2 has 5 units in inventory at time 0, 2 units from 2
and none from the plant if 2 has 2 units, and 5 units
from the plant if 2 has no item in inventory. Therefore,
the optimal amount of stock on hand and on order at
echelon 1 at time 0 1s 10, resp. 7, 10, units if installation
2 has b, resp 2, 0 units in inventory at time 0. Thus,
the optimal policy is not basestock.

Also, while we can reformulate the robust problem
as a new problem with modified demand in the same
fashion as before, it loses some of its meaning since dis-

((See”

tinct echelons can now the same sink node but
different demands at this node (because of the cost pa-
rameters specific to each echelon, which appear in the
expression of the modified demand). Hence, it is not
clear how they can work together to meet this demand
optimally.

However, the proposed robust methodology remains
numerically tractable in a wide range of settings, in par-
ticular with a holding/shortage cost at the installation
This illustrates the ap-

plicability of the proposed approach to different cost

level instead of the echelon.



structures.

4.2 The capacitated model

We now refine our description of the inventory prob-
lem in a supply chain by introducing upper bounds on
the amount of stock that can be ordered and/or held
at any time and at any echelon. As explained in Sec-
tion 3.2, an upper bound on the maximal order can be
directly introduced in the proposed approach, by adding
the constraint

Dyi(t) < dgi Vk, Vi € N(k), Vt, (25)
to Formulation (22). Inventory capacity, however, re-
quires further manipulation, since the level of inventory
held at an echelon at any time depends on the demand,
which is subject to uncertainty. Similar manipulations
as in Section 3.2 lead to the constraitnt Yk, Vi

Xet+1)+ Y (qs(t)Fs(t) + er(ﬂt)) < Cy
SEO(K) =0
. (26)

to be added to the formulation, ¢(¢) and »(7,¢) being
defined as in (23).

We next study the structure of the optimal policy.
Theorem 4.2 The optimal policy at each echelon re-
mains basestock in presence of link and echelon capac-
wties. It is identical to the optimal policy of a nominal
problem at a single station subject to the modified de-
mand defined in FEquation (23), time-varying echelon ca-
pacities: Cl(t+1) = C’k—% ZsEO(k) As(t), where
Cy 1s the original capacity at echelon k, and link capac-
ities that incorporate Dy;(t) < dg; for all k, i € N(k)
and t, as well as the capacity induced by the coupling
constraint (21).

5 Numerical implementation

We now apply the proposed methodology to the ex-
ample of minimizing the cost at a single station. The
horizon is 7' = 10 time periods, the initial inventory is
zp = 150, with an ordering cost per unit ¢ = 1, a hold-
ing cost h = 2 and a shortage cost p = 3, in appropriate
measurement units. There is no fixed ordering cost.

The stochastic demand 1s 1.1.d. with mean w = 100.

In the robust framework, we consider that the demand
belongs to the interval [0,200], that is @ = 100. We
compare the expected costs of the robust policy and
of the stochastic policy obtained by dynamic program-
ming as a function of the standard deviation ¢ of the

distribution. We select (see the full paper) for all k:

Frl
rk:min(i,/%,wﬂ),
wyVl—a«

and the modified demand at time k is in this example:

(27)

[eXe)

w, =W+ —— (Vk + —\/E, 28
with o = g%h Expected costs are computed using

the mean of a sample of size 1,000.

In the first set of experiments, the stochastic policy
is computed using a binomial distribution. In the second
set of experiments, the stochastic policy is computed
using an approximation of the gaussian distribution on
seven points (W — 30,w — 20,...,W + 20,W+ 30). In
both cases, the actual distribution is Gamma, Lognor-
mal or Gaussian, with the same mean w and standard
deviation o. The impact of the mistake on the demand
distribution is measured by the ratio (DP—ROB)/DP,
with DP, resp. ROB, the expected cost obtained using
dynamic programming, resp. the robust approach.

In the first case, where the distributions are very dif-
ferent beyond their first moments, the impact of the ra-
tio increases as the standard deviation increases and the
robust policy outperforms dynamic programming by up
to 8%. In the second case, the two methods are equiv-
alent in terms of performance, since the robust policy
outperforms dynamic programming by at most 0.3%,
which is not statistically significant.

In further experiments (see full paper), we study the
impact of the cost parameters ¢, A and p in the set-
tings described above, where we vary one parameter at
a time. The impact of a change in the parameters is
qualitatively similar in both cases, with little depen-
dence on the actual distribution of the demand. The
robust approach outperforms the stochastic policy for a

wide range of parameters, although the stochastic policy



leads to better results for large values of the ratio p/h
(greater than about 3). The exact numbers depend on
the distribution used to compute the stochastic policy.
Overall the numerical evidence suggests that the robust
policy performs significantly better than dynamic pro-
gramming when assumed and actual distributions differ
widely despite having the same mean and standard devi-
ation, and performs similarly to dynamic programming
when assumed and actual distributions are close. The

results are thus quite promising.

6 Conclusions

We have proposed a deterministic, numerically tractable
methodology to address the problem of optimally con-
trolling supply chains subject to uncertain demand. Us-
ing robust optimization ideas, we have built an equiva-
lent model without uncertainty of the same class as the
nominal problem, with a modified demand sequence.
Specifically, the proposed model is a linear program-
ming problem if there are no fixed costs throughout the
supply chain and a mixed integer programming problem
if fixed costs are present.

The key attractive features of the proposed approach
are: (a) It incorporates a wide variety of phenomena,
including demands that are not identically distributed
over time and capacity on the echelons and links; (b)
it uses very little information on the demand distribu-
tions; (c) it leads to qualititatively similar optimal poli-
cies (basestock policies) as in dynamic programming;
(d) it is numerically tractable for large scale supply
chain problems even in networks, where dynamic pro-
gramming methods face serious dimensionality prob-
lems; (e) in preliminary computation experiments, it
often outperforms dynamic programing based solutions

for a wide range of parameters.
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