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ABSTRACT

Marine pipeline are facing new issues involved by the increase of the depth of

exploited oil and gas reservoirs. This thesis discusses the changes in the dynamic

behavior of marine pipelines and proposes a simple simulation based on a taut

string. The dynamic response of the taut string is modeled using two techniques,

the Green's function and the modal superposition. This study demonstrates that

the modal superposition technique, commonly used to assess the dynamic

behavior of marine pipelines, is still valid under certain conditions.
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1 INTRODUCTION

1.1 MARINE RISERS

The extensive consummation of oil and gas has brought the development of subsea

reservoir in the second half of the 2 0 th century. The exploitation of subsea reservoirs requires

heavy structures located offshore. These structures are either resting on the seabed or floating.

They are facing hazards caused by exposure of submerged components to underwater

currents. Critical among these structures are the marine risers. Marine risers, as shown on

Figure 1, consist of a series of steel pipes connecting the surface platform to the sea bed.

Risers are used to carry the oil or gas from the subsea reservoir to the platform. The structural

integrity of the marine riser is crucial for the oil and gas production. The slenderness of risers

makes them flexible and subjected to vibrations. When these risers are exposed to flow,

vortices are shed alternatively from the sides of the cylinder. Vibration caused due to drag and

lift forces resulting from the vortex shedding is called Vortex Induced Vibration (VIV).

Figure 1: Riser pipeline

For many years the oil and gas production has remained in the field of shallow water, in

the range of 100ft to 1000ft. However, the increasing need for oil and gas has pushed the

exploration up to 7000ft or more. Dynamic loadings become all the more an issue that exploited

reservoirs are getting deeper and deeper increasing riser's length. In addition, dynamic issues

are also enhanced by the fact that floating platforms move one end of the riser. At a design

stage, the dynamic response of riser pipelines, modeled as strings subjected to harmonic

loading is evaluated using the modal superposition technique. This technique models exactly

the physics of the string for standing waves. Standing waves are the superposition of two waves
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having the same amplitude, wave length and frequency traveling in opposite direction. Software

programs such as Shear 7 use this technique. However, when the string becomes too long, the

waves decay becomes important and the wave may die before it is reflected at the end of the

riser. The response is no longer a stationary wave behavior but is dominated by a traveling

wave behavior. This thesis proposes to determine whether the modal superposition technique is

still valid in the case of traveling wave response, i.e. in the case of long risers.

1.2 VORTEX INDUCED VIBRATIONS

When a fluid flows around a cylinder, there is a flow separation. The flow separation

results in shed vortices. The vortex shedding creates the pressure distribution around the

cylindrical pipeline to vary. The alternate shedding results in a lift force on the riser. This force is

dependent on many factors such as the pipeline diameter or the current velocity. The force

generated fluctuates in time and along the pipeline length.

Figure 2: Visualization of vortex Induced vibration

Turbulences are generated alternatively on the top and the bottom of the cylinder as

shown in Figure 2. The current flows from the left to the right of the figure. These turbulences

create a force in the direction perpendicular to the current flow. The intensity of the force can be

approximated to vary harmonically in time.

-8-
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2 PROBLEM STATEMENT

Vortex Induced Vibration creates drag and lift forces on risers. These forces generated

alternatively on either sides of the cylinder excite the riser. The riser response can damage the

structure by either generating significant displacements or fatigue damage. In order to assess

the dynamic response of risers, the modal superposition technique was used. This method

perfectly describes the dynamic response of a string when it is subjected to standing waves.

However for various reasons described hereafter in this section, the dynamic response of longer

risers is not anymore made of standing waves but rather made of traveling waves. At the first

glance, the use of the modal superposition technique does not seem to be adequate to predict

the dynamic response of a string in case of traveling waves. However, by introducing non-

resonant modes, it is possible to model traveling wave behavior. An exact representation of

traveling wave would require an infinite number of non-resonant modes to be included in the

solution. In practice however a good approximation may be achieved by including only a finite

number of modes. This thesis presents a comparison study between the modal superposition

technique and the Green's function technique. The response given by the Green's function is

assumed to be the exact solution. Comparing results obtained by the modal superposition

technique to the Green's function result on a wide range of conditions will tell us whether the

modal superposition technique is accurate and what its limitations are.

This study is performed on a simplified model of a riser, a taut string fixed at its extremities

as shown in Figure 3. The excitation has been considered as harmonic for the study.

As mentioned in [3], the spatial attenuation n. plays an important role in the type of

response. The study gives the result of the comparison for values of n. ranging from 0.01 to 7.

-9-



2.1 THE SPATIAL ATTENUATION

2.1.1 Standing wave and traveling wave behavior

The spatial attenuation parameter, n. governs the dynamic response behavior of the

string, n being the mode number and ( the damping ratio. For low values of n. , the decay is low

and the dynamic response has a standing wave behavior. For higher values of n. , the decay

becomes important. The decay can become high enough so that waves die before reaching the

end of the string. In that case, there is no reflected wave and the dynamic response is made of

traveling wave. The string has the behavior of an infinite string.

This may be explained by considering that the wave's amplitude decays over one length

of the cable can be expressed as expK 2  . Noting that the wave length is: - 2 L
nI

n being the mode number, it comes that, the decay is finally, exp(- r . n). Hence, the decay

increases with increasing n. .

When the decay is low enough, generated waves travel from the excitation location to the

end of the string where they are reflected and travel back in the opposite direction.

Let's consider a wavelet generated around the middle of the string. The string

displacement generated by this wavelet can be expressed as: y, = A, -sin(m. t + k -x) . This is

the general solution of the wave equation, Equation 5. The string displacement generated by the

reflected wave would be written as: Y2 = A2 - sin(-co t - k -x). On one extreme, when the

damping is small and negligible, the decay exponent approaches 1.0 and the amplitude of the

reflected wave is the same as the one which gave it birth and A2 = A1. Then, the superposition

of these two waves is:

YT = Y1 + Y2 = A1 -[sin(co t + k - x) + sin(co t - k - x)]

YT = A1 - [sin(co t) - cos(k - x) - cos(co - t) - sin(k - x) + sin(co t) - cos(k - x) + cos(Co - t) - sin(k - x)]

y 2 -Al - sin(co -t) -cos(k-x) Equation 1

This is the expression of a pure standing wave.

If the system is damped, the amplitude of the reflected wave A2 becomes less than A1; the

string does not have anymore a perfect standing wave behavior. Its behavior is between the
standing wave behavior and the traveling wave behavior.
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On the other extreme, when the parameter n.( is large, the dynamic behavior of the string

gets closer to an infinite string behavior.

2.1.2 The Strouhal number

The Strouhal number is a dimensionless parameter defined as follow:

St = Df Equation 2
U

Where:

D: Cylinder diameter

f's: Vortex shedding frequency of a stationary body

U: Current flow velocity

It has been shown in [1] that for a Reynolds number Re varying from 100 to 100,000, the

Strouhal number is roughly constant and equals 0.2.

Assuming that the vortex shedding frequency for the vibrating cylinder is the same as the

stationary cylinder and that the cylinder response has the same frequency as the vortex

U * St
shedding frequency, we can write the response frequency as: fR = DD

The excited mode number n is defined as: n = -R-,f1 being the fundamental frequency of

C I
the pipeline, f C = , C is the wave traveling velocity, C = - T being the tension of the

2* Lp

string and p its linear mass.

It comes: n = St U
D*f,

2*L D*C
The wave length A is: A = = .

n St*U

Hence, 2*St*U L 2*St*U cst
C )DI C

The responsive mode is dominated by the ratio L/D.
Program such as Shear7 were developed to account responsive modes up to 10.

- 11 -



Let's substitute some typical values to get a sense of the ratio UD required to get the 10th

mode.

Strouhal number: St=0.2

Current velocity: U=1 m.s1

_3225

Wave velocity: C = = 50.6m.s-
1.258

Hence,

L C-= *n=1265.
D 2*St*U

Equation 3

Considering a riser with outside diameter of 25 cm, the associated length to get this ratio

would be 316m.

The damping ratio can be evaluated by the following formula: =11
n112

n1/2 is the number of wave length a wave travels before its amplitude decays by one-half.

A typical damping ratio for a cylinder in water is 7 to 8%.

Considering the pipeline characteristics described above, n1 2 = 2. The wave amplitude

would have decayed by half after traveling the equivalent distance of 2 wave length.

The wave length of the 10th mode is: 63 m. In the worst case a wave traveling from the

middle of the string has to travel 316m to meet the out going wave, that is to say, 5 wave

lengths. This case shows a component of stationary wave behavior and the modal superposition

technique is expected to give a good assessment of the physics of the string.

Considering higher values of riser's length, i.e.: 6000 ft, as it exits today, the wave would

die before being reflected on the string's end. The string dynamic has now an infinite string

behavior.

In addition, as the length of the string increases with respect to its diameter, the

responsive mode number increases, making the n.( parameter larger which increases the decay

and tend to make the string dynamic response closer to the infinite string behavior.

- 12-



3 METHOD STATEMENT

A simple taut, described in section 3.1, is studied in the following sections. As seen in the

previous section, the dynamic behavior of the string is dependent on the spatial attenuation

parameter n.e. It seems clear that for small values of n.t, the modal superposition technique will

give an accurate result. However, this statement seems to be less accurate for higher values of

n.t. In the following section, the result given by the modal superposition is compared to the

result given by the Green's function technique for values of n.t ranging from 0.01 to 7. Then, the

difference between the two techniques is measured to draw conclusion on the validity of the use

of the modal superposition technique.

-13-



3.1 DEFINITION OF THE STUDIED MODEL

A simple taut string system is considered for the analyses described in the following

sections. These analyses focus on the transverse vibrations. However, the same conclusions

would apply to other one dimensional systems. The string considered has no bending rigidity

and has a constant tension along its length.

The system under study is shown in Figure 3:

f(x,t)

T
O01'

L=150m

Figure 3 : String subject to distributed loading

The string considered has the following characteristics:

* Length: L = 150 m

* Linear mass: p = 1.2585 kg/m

* Tension: T = 3225 N

* Diameter: 0 = 0.03622 m

Note: the string diameter is only given to express the transverse displacement of the string

in terms of number of diameters.

- 14 -
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3.2 LOADING

The loading applied on the string simulates the forces that vortices would generate on a

riser. A distributed loading acting over a finite length of the string is approximated by point loads

applied every 0.5m on the string. The total force applied is not centered on the string.

It has arbitrarily been chosen that the excitation frequency would be around the frequency

of the 3 0 th mode of the string. Two frequencies were considered, the first one being exactly the

frequency of the 3 0 th mode, f = 5.062Hz and the second one being between the 3 0th and the 3 1st

mode, f = 5.147Hz. It has also been decided to apply the loading on a three wave length

distance. The envelope of the point loads magnitude has the shape f(x) = sin(k30 -x) of the 3 0th

mode, where k30 is the wave number of the excitation.

* Natural frequencies of the string are given by the following formula:

) = -- Equation 4
L yp

1 The wave length is given by:

An = 2- Equation 5
n

* The mode number is given by:

k,= -- Equation 6

-15-



The table below summarizes the various value of the spatial attenuation n. for various

values of (.

n.1

0.00033 0.01

0.0033 0.1

0.033 1.0

0.1 3.0

0.2333 7.0

Table 2: n.( for the 30' mode

The graph below shows the forces magnitude for an excitation frequency corresponding to

3 0 th mode, f = 5.062Hz.

Forces Magnitude

-1.00

-1.50 
j

Locaon along h exring (m)

Figure 4 :Forces magnitudes, excitation frequency f =5.062Hz

The loading corresponding to f = 5.147Hz, between the mode 30 and 31 has a different

envelop profile since its wave length is slightly shorter.
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Forces magnitude

Locaion along the Ming (in)

Figure 5 : Forces magnitudes, excitation frequency f = 5.147Hz
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3.3 THEORY

3.3.1 Equation of motion

Figure 6 : Vibrating string

f(x,t) is the excitation force applied per unit length.

Figure 7 : Vibrating string, elementary length dx of string

The transverse displacement of the string y(x,t) are assumed to be small. The governing
equation for the string is given by:

p-- c- +c0 T -a =f(x,t)P8t 2 , gX 2
With:

c: structural and environmental damping

Equation 7

- 18-



3.3.2 The Green's function theory

The Green's function is an exact solution to the differential equation describing the motion

of the string when the excitation is a point load. The idea of the Green's function technique is to
use the principle of superposition to obtain the response due to a continuous load based on the
solution due to a concentrated load. Since the loading accounted for in the model previously

described is constituted of point loads, the total Green's function solution is the superposition of
the solutions found for each point load.

3.3.2.1 Displacement

The Green's function solution to the system described

y(x, mj)= Jg(x, s;j). f(s)ds
x,

For a point load,

y(x,w ) = g(x, x,;w ) -P(x,)

With xp location of the pth point load.

Where the Green's function g is given by:

sin[kj -(L - s)]. sin(k -x)
g(x,s; .1.) = ,

ki -T -sin(k -L)

sin [kj -(L - x)]- sin(k- s)
g( XS; ~ j ) = - k i -T -sin (k , -L )

in Figure 6 is:

Equation 8

Equation 9

x<s Equation 10

x>s Equation 11

Where kj is the complex wave number for the mode j:

p. - ,2 + i-c-mk . = T Equation 12
T

x represents the response location and s indicates the excitation location.

Finally, the total Green's function response is the superposition of the response obtained
for each point load.

-19-



Equation 13

The following magnitude of displacements is shown on graphs in section 4:

y(x;w 1 ) = y(x;a 1 ) Equation 14

3.3.2.2 Strain

The curvature is calculated as following:

y. (x) = -K 2 -y,, (x) Equation 15

And the strain shown on graphs in section 4 is given by:

Equation 16

- 20 -
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3.3.3 The modal superposition theory

3.3.3.1 Displacement

Displacement can be written as:

y(x, t) = 1 Y,, (x) -q,, (t)
n

Equation 17

With:

Yn(x): nth mode shape of the system, Y,,(x) = sin n X

qn(t): nth modal displacement

Substituting the formulation from Equation 17 in Equation 7 leads to modal equations of

motion:

M, q,,(t)+ R,,- q,,(t)+K,,. q,,(t) = F,(t) Equation 18

Mn: Modal mass given by

Cn: Modal damping given

M Y2 (x)pdx =
0 n X= 2

L

by C,, = XY,2(x)-c-dx
0

Ld2y (X) n Y x.;d ~ rK: Modal stiffness given by K,, =-JTf dX2  nx-A=T-
0 L

Fr: Modal force given by

F,,)= (x)- f(x,t)- dx= Y,,(x)-f(x,t)- dx = P -*sin n
0 x, m

with ym being the

location of the point load Pm.

Then, it comes that the magnitude of displacements is found as following:

-21-
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F,

y(x) =" -smn XEquation 19
(1- r 2) +2 -i- f-r (L

The absolute value for each point along the string is shown in section 4 graphs.

3.3.3.2 Strain

The strain is derived from Equation 17, the curvature is given by:

F,

n -r 2 K n. ( n -L -x
n L V(1- r2) +2-i- -rL

Equation 20

And the strain calculated as following is shown on the graphs in section 4.

1-106 D
RMSstrain = 2 Equation 21

- 22 -



4 RESULTS

In this section, results given by a string excited by the distributed load case described in

section 3.2 for a range of n.e- are presented and compared. The Green's function is assumed to

give the exact dynamic behavior of the string. Results given by the modal superposition are then

compared to results given by the Green's function. The error between the two techniques is

then quantified. The error found would tell us whether or not the modal superposition technique

is suitable for the simulation of the dynamic behavior of the string in case of spatial attenuation.

In the case the modal superposition gives us a good result, the minimum number of

modes to describe properly the dynamic response of the string will be given.

4.1 SIMULATION

4.1.1 Excitation on the 3 0 th mode f = 5.062 Hz

In this section, calculations are performed for an excitation frequency of f = 5.062Hz

corresponding to the 3 0th mode of the string. Various values of the spatial attenuation n.k listed

in Table 2 are tested. Then, for a given n.k, the accuracy of the response is quantified for

various numbers of superposed modes. Results obtained are presented in the following

sections. First the Green's function response is shown and is taken as a reference, then graphs

corresponding to variables values of n (number of modes) are shown.

The mode number that has the frequency closest to the excitation frequency corresponds

to the minimum number of modes to be accounted for.

- 23 -



Figure 8: Green's function - f =5.062Hz - n.
=0.01

Figure 10 :Modal Superposition - f=
5.062Hz - n. t = 0.01 - modes I to 30

Figure 9: Modal Superposition - f = 5.062Hz - n.
g= 0.01 - mode 30 only

Figure 11: Modal Superposition - f = 5.062Hz -
n. t = 0.01 - modes 1 to 40

The string has a standing wave behavior. Accounting for the 3 0 th mode only gives an

accurate result; the participation of the other modes is probably negligible.

-24 -
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i

Figure 12 : Green's function - f 5.062Hz - n.
g = 0.1

Mode Superposition :31 modes used

Location along string (m)

Figure 13 Modal Superposition - f = 5.062Hz -
n. k = 0.1 - mode 30 only

Figure 14: Modal Superposition - f= Figure 15: Modal Superposition - f = 5.062Hz -
5.062Hz0 - n. k = 0.1 - modes I to 30 n. t = 0.1 - modes 1 to 40
In this case, accounting for the mode 30 only gives a response close to the Green's

function. It can be seen that by increasing the number of modes, first by considering the modes

from 1 to 29 and then by increasing the number of superposed modes to 40, the response is

evolving closer to the Green's function response.

- 25 -
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Mode Superposilion:30 modes used

0.5

0

0 50 100 150
Location along string (m)

30

20 -- -- - - - -
o' 10

15
0 s0 100 150

Location along string (m)

Figure 16: Green's function f 5.062Hz - Figure 17: Modal Superposition - f = 5.062Hz n. (
n.k== - mode 30 only

Mode Superposition :30 modes used Mode Superposiion :40 modes used
0.2 0.2

0 .15 - - . - - -....-- - - - - .-- - -- .-- -- - - - 0 15 .-------- - - - - -- - - - -. --

01 . . -. . 01

0 .0 5 - - - -- - -- - . - - - -- . . -- . . - - - - - - - . - - - - - - - . -- 0 .0 5 - . .. .. ..-. -. --. . .. .. . ...--.. .. .- - -- - -. - - - -

0 05

0 50 10 150 0 50 100 ISO
Location along string (m) Location along stng (i)

40 40

3 0 . . .-3

10 010
0 0 5 1a 1 50 0ISO 100 150

Location along string (m) Location along stig (m)

Figure 18: Modal Superposition - f Figure 19 : Modal Superposition - f
5.062Hz - n. 0 = I - modes I to 30 5.062Hz - modes I to 40

It is to be noticed that for the same amount of modes considered, the accuracy is not as

good as for lower n. values. The result given by mode 30 only is far from the Green's function

result.
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0 n. t=3.0

Greens Function
0.2

0.15 . -

0 .05 --. - ----- - - ------ --.. . --------------. ---.-.

0
0 a0 n i 150

Location along string (m)

Figure 20: Green's function - Mode 30 - n. (
= 3

Made Superposition :40 modes used
0.2

0 .15 --- .. ... . .. . .-- - - - - -- - - - - ------------------- ..- - - ----------------------------.

0 1 ----- . - ----- ---...- - - - -- - - --... ..-.. . .. . .. . -. ---------... ...

0 .05 ------ ---- - ------

0 s0 100 10 S
Location along string (m)

00 so lo ISO
Location along string (m)

Figure 22: Modal Superposition - Mode 30 -
n. (=3-40 modes

so i0o ISO
Location along string (m)

Figure 21 : Modal Superposition - Mode 30 - n. =
3 - 30 modes

Mode Superposition 50 modes used
0.2

0 .16 ------- ------- --- -.. .. ..- . .. .. ... . .. .. .-- -- -- -- - -- -- -- - -------- .. --- --- --- --- --

01 .... .......... . . ... . ..... ... .............. ......
0 501S15
0

00 SO 10 15
Location along string (m)

30

0 so iso ISO
Location along sting (in)

Figure 23 : Modal Superposition - Mode 30 - n. =
3 - 50 modes

It is seen that the response of the string still has a standing wave behavior on the left side
of the string. On the contrary, the profile of the response on the right side of the string shows an
infinite string behavior. Mode 30 only gives a poor result, only the result given by the
superposition of 30 modes gives a result close to the Green's function result. It is also to be

noted that it seems that it takes a higher number of modes for the strain to converge.
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4.1.2 Excitation between mode 30 and 31 - f = 5.147 Hz

In this section, calculations are performed for an excitation frequency of f = 5.147Hz and

for the various values of spatial attenuation n. ( listed in the Table 2. The excitation frequency f

= 5.147Hz is 30.5 times the fundamental frequency of the string. Then, for a given n.e, the

accuracy of the response is quantified for various numbers of superposed modes. Results

obtained are presented in the following sections. First the Green's function response is shown

and is taken as a reference, then graphs corresponding to variables values of n (number of

modes) are shown.

* n.ksi=0.01
Mode Superposition :3) modes used

032

0 50 10 1S
Location along string (m)

-- Ju~c~l~i~ii,40

I' ~20
~10

00 so 100 130
Location along string (m)

Figure 24: Green's function - f 5.147HZ Figure 25: Modal Superposition - f 5.147Hz -
Mode 30 only

Mode Superposition :30 modes used Mode Superposition :40 modes used
0.4 0.4

0303 --- - - - -

0.2 ... ........ 02[. .........

0 1 --- . -.-. --.-.-. ---- -. -

0 1 10 50 13) 150
Location along string (m) Location aong string (m)

6- 3moem

I~ ~oiti0A............................ .......... .11l

u) 20 . . . .20- .

0 2 0 ... . .. ........ .

00 50 13 150 0 50 100 ISO
Locatin along sting (mn) Location slang string (mc)

Figure 26: Modal Superposition - f =5.147Hz Figure 27: Modal Superposition - f=5.147Hz-4
-30 modes modes

Mode 30 only does not give a proper result. Only the superposition of 40 modes gives a

result close to the Green's function solution. It can be stated that more modes are required to

obtain a good approximation of the Green's function solution when the excitation frequency
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does not correspond to a system natural frequency. More modes are needed to simulate a non-

resonant mode response.

n.ksi=0.1
Greens Function Mode Superposition :30 modes used

04 0.4

0.3 ....... ..... ..... . ... . .. .03........ ................. ............... ............ ........ ...................

S02 .. ..................... ....... ............... 0.2.....

..... ....... :. i;:05 100 150 so 100 15o
Location along string (m) Location along string (m)

s6o5 40
160 ---- -- ---------...... -.----.------.

4 0 -- -- - -- - -- - -------... .. .. . ------. - - - -

in i2 20 -- ------ -- ------ -- - - - -... . -- -U- -

0r 0 5 1000 so iou ISO 0 so iou ISO
Location along string (m) Location along stnng (m)

Figure 28: Green's function - f = 5.147Hz Figure 29: Modal Superposition - f=5.147Hz -

Mode 30 only
Mode Superposition :30 modes used Mode Superposition 40 modes used

0.4 04

02 ~0

0 s0 1mu 150 0s o s

00 0 100 150 Ia16

Location along string (m) Location along string (m)

60 0

Figur 30......... :.... Modal... Sueroito -. .4H

40M d Superposition........ :3..odesuse

Eo 20

150 0
Loca o alongctringn(n)l0ng st i ou m)

00 10 150

Location along string (m)

Figure 30 Modal Superposition - f 5.147Hz - 'Figure 31 : Modal Superposition - f =5.147Hz -
Mde40 modes

The same statement as for the previous case can be made here. In addition, it is seen

that for the same number of superposed modes, the accuracy of the modal superposition

decreases when the spatial attenuation increases.
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Mode Superposition :30 modes used

~30 - - - - - - - - - -

~20
2 10 - - -- - -- - -- - - --- .. . .. . . . . .. .. . .

0 0 100 150
Location along string (m)

Figure 32 : Green's function - f = 5.147Hz

50 10
Location along string (m)

I150O

:igure 33: Modal Superposition - f = 5.147Hz -
Mode 30 only

Figure 34: Modal Superposition - f= Figure 35 : Modal
5.147Hz - 40 modes

The same tendency noted above is confirmed in this case.

Location along string (m)

Location along string (m)

Superposition - f = 5.147Hz -
50 modes
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Sn.A = 3

Greens Function
0.2

0.15 -----. .-------+-.---+-

0 .1 - --------- - - -- - -

0.05 - - - - --

0
0 50 100 150

Location along string (m)

Figure 36: Green's function - f = 5.147Hz

Mode Superposition :40 modes used
0.2

0.15 - - - - - - - - ----- - - - - - - --------------------...........--------

0.1 .................................

0.05 ---------- - - --------- ------ - -------.....................

0
0 50 100 150

Location along string (m)

Location along string (m)

Figure 38 : Modal Superposition - f = 5.147Hz -
40 Modes

Location along string (m)

Location along string (m)

Figure 37: Modal Superposition - f = 5.147Hz -
30 Modes

Mode Superposition :50 modes used
0.2

0 .15 ---------------------------- --------------------------. - .---------------------------

0.1 ..........-- - ..........

0 .0 5 -- - -- -- - --. - - - -- - - - - - - - - -

0
0 50 100 150

Location along string (m)

Figure 39: Modal Superposition - f = 5.147Hz -
50 Modes

Generally, it is seen that the modal superposition solution tends to overestimate the

response magnitude where the response is dominated by a traveling wave behavior and

underestimate the magnitude where the response is dominated by standing wave behavior.

Moreover, it appears that the strain result requires a higher number of superposed modes to

give a good approximation.

-31 -



4.2 ERROR QUANTIFICATION

In this section, the difference between the result given by the modal superposition and the

Green's function is measured and called error since the Green's function result is assumed to

be the true response. The error is quantified using the following formulae:

301

Sd 2,

e(%) = 30=' *100 Equation 22
Green

2

i=1

With:

d, = yGreen MS : Difference between the amplitude calculated by the Green's function

and the modal superposition techniques.

yGreen : Green's function amplitude at the ith point along the string

yius : Modal superposition amplitude at the ith point along the string

Note: The amplitude is calculated every 0.5m on along the string which corresponds to

301 points.

The closer to the Green's function the modal superposition is, the better the modal

superposition simulation is assumed to be. An error of less than 5% would be considered as

acceptable.

The range of the spatial attenuation n. has been increased up to 7 to compare results

given by two cases dominated by the traveling wave behavior.
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4.2.1 Excitation on mode 30 - f = 5.062Hz

Error on displacement

0.01 0.4 0.2 0.0 (1) (1) (1)
0.1 3.6 1.8 0.1 (1) (1) (1)
1 42.7 21.9 1.0 0.6 (1) (1)
3 73.4 33.8 2.1 1.3 1.2 1.2
7 83.8 41.5 5.45 4.7 4.7 4.7

Table 3: Error on displacement - f = 5.602Hz

Error on strain

0.01 0.4 0.2 0.0 (1) (1) (1)
0.1 3.6 2.0 0.2 (1) (1) (1)
1 42.7 25.3 4.2 3.9 (1) (1)
3 75.5 41.4 8.7 7.9 7.6 7.2
7 84.2 51.4 16.2 14.4 13.9 13.3

Table 4: Error on strain - f = 5.602Hz

4.2.2 Excitation between mode 30 & 31 - f = 5.147Hz

Error on displacement

0.01 68.8 64.0 0.7 0.2 (1) (1)
0.1 68.9 56.5 0.6 0.2 (1) (1)
1 54.5 40.2 1.1 0.7 (1) (1)
3 77.9 44.1 2.1 1.3 1.2 1.2
7 87.1 49.3 53.5 4.7 4.6 4.6

Table 5: Error on displacement - f=5.147Hz

Error on strain

0.01 68.9 64.5 5.5 5.5(1()
0.1 61.6 57.3 4.3 4.2(1()
1 55.6 44.0 4.3 -4.0(1()

3 78.5 52.3 8.6 7.8 7.6 7.2

7 87.8 59.5 16.1 14.3 13.8 13.2

Note: (1) Since the

results, the analysis was n

Table 6 : Error on strain - -. 147Hz

analysis performed with a lower number of modes

ot conducted.

gives satisfactory
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It appears that for low values of n.( the modal superposition technique gives very accurate

answers. When the system is exactly excited at mode 30, i.e. when the excitation frequency is f

= 5.062Hz, the mode 30 only is sufficient to obtain less than 0.4% error. As the value of n.
increases, the accuracy decreases for the same number of modes considered. The accuracy of

results is still good when n.( remains less than 1.0. Over 1.0, the number of modes to be

accounted for is higher. It is also confirmed that the strain takes a higher number of modes to

converge.

However, the accuracy of results reaches a value that can not be improved even by

increasing the considered number of modes. Moreover, it appears that as the n. value

increases the accuracy of the response decreases.
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4.3 MODAL AMPLITUDE

According to the previous section, the accuracy of the result obtained is highly dependent

on the spatial attenuation n.4 and on the excitation frequency, whether the latter corresponds

exactly to a natural frequency of the system or is in between two natural frequencies.

In this section, the relative influence of the various modes is investigated. For each of the

above cases, the modal amplitude is plotted.

The modal amplitude formulation is as following:

P,

a,, 2  " Equation 23
(1- r 2)+ 2- -- r

With:

P': Modal ForceM- P,, = sin n; - -', Pm being harmonic excitation point

loads and tLpm their location along the string

Kn: Modal Stiffness - K, = T - n-;)2 L

" L 2

r: Tuning ratio - r = -
n

Damping ratio

To compare the relative influences of the modal amplitudes, we focus on their absolute

values. The modal amplitude is divided by the string diameter to get a dimensionless parameter.
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4.3.1 Modal amplitudes - f = 5.062Hz ( 3 0 th mode)

Mod . .m0*d..

Figure 40 : Modal Amplitude - n.ksi = 0.01

Modal Ampftud

Figure 42: Modal Amplitude - n.ksi = 1

"oI""a

Fi o 1 MD 40 so nk 70

Figure 41 : Modal Amplitude - n.ksi = 0.1

Figure 43: Modal Amplitude - n.ksi = 3

W2.

0 M 0 5 0 5 0 7

Figure 44: Modal Amplitude - n.ksi=7
Statements made in sections 4.1 and 4.2 are confirmed by the above graphs. It can be

seen that only one mode would give a very good approximation when the response is

dominated by standing waves, when the excitation corresponds to a resonant mode, i.e. in the
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case n.( = 0.01 and f = 5.062Hz, Figure 40. As the spatial attenuation increases the influence of

the modes around the excitation mode increases too. It can be noted that for n. equals 3 and 7,
the relative influence of the various modes remains the same. This explains why in Tables 3 to

6, increasing the number of superposed modes does not improve the accuracy of the response.
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4.3.2 Modal amplitudes - f = 5.147Hz

Figure 45: Modal Amplitude - n.ksi = 0.01

0 1. 20 30 4,iu 0 n . 0

Figure 46 : Modal Amplitude - n.ksi = 0.1

Figure 47: Modal Amplitude - n.ksi = I

F igur0 408 - n i

Figure 48 :Modal Amplitude - n.ksi = 3
M.d.l Ampfud.

N W

IDI

Figure 49: Modal Amplitude - n.ksi = 7
The same remarks as the one made in section 4.3.1 apply here. It can be added that the

number of modes to be considered is higher for the same value of n.e. This correlates the fact

that the error is higher for when the excitation does not correspond to a resonant mode.
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The above graphs correlate what was stated in the previous sections. When the n. value

is low and the excitation exactly on a system natural frequency, the amplitude influence is

reduced to a single peak centered on the natural frequency excited. As the n.( value increases

the peak becomes wider which means that the number of modes having an influence on the

system response is higher. The same remark can be made about the excitation frequency; the

peak becomes wider when it does not correspond to a system natural frequency.

In both cases, excitation frequency corresponding to a natural frequency or not, the

following statements can be made:

" For n. < 1, the number of modes to be accounted is 20, 10 below the excitation

frequency, 10 above. This is confirmed by the fact that the result's accuracy for that

range of n. values does not change for number of modes accounted for higher than

40.

" For n.( > 3, all modes from 1 to 60 have to be accounted. It can be stated that the

required number of modes to get an accurate response is about 1.8 times the

excitation mode centered on the excitation mode.
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4.3.3 Modal amplitudes around the 4 0 th mode

In this section, the modal amplitude has been calculated for an excitation of higher

frequency.

Figure 50 shows the modal amplitudes for an excitation frequency corresponding to a

natural frequency. Figure 51 shows the modal amplitudes for an excitation between two natural

frequencies.
Modal Ampludes Moft" A"Nde

020020.0W

a 0.=

0.000s O.Ons

00 10 20 30 40 a 0 70 M a 10 20 30 40 s W 70 so

Figure 50: Modal Amplitude - f = 6.750Hz, Figure 51: Modal Amplitude - f = 6.834 Hz,
n.ks = 7 n.ksi = 7

In both cases, a symmetrical peak centered on the excitation mode is obtained.

Considering the superposition of modes up to 70 would give a good response. However, it was

expected that the first modes would have a negligible influence on the response and the peak

centered on the 3 0 th mode in the previous section would switch to the 4 0 th mode. It is seen that

the lower modes are not negligible and that they do not have a lower influence on the response

than considering an excitation around mode 30.
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5 LIMITATIONS OF THE MODEL
In the simulation process, the excitation corresponding to mode 10 was considered. The

frequency of the 1 0th mode is f = 1.687Hz. Since the wave length is three times as much as the
wave length of the 30th mode, forces are applied on one wave length distance. The spatial

attenuation n. = 3 is presented here. The forces magnitude profile is shown in Figure 52:

Forces Magnitude

1.50

0.50-

0.00--Sere

U.

-o.50

-1.50

Locaton along the aring (m)

Figure 52: Forces magnitude, excitation frequency f = 1.687Hz
The Green's function and modal superposition solutions are shown in Figures 53 and 54.

5 .............. ..... ...... ... ...............................10

0 0 100 150
Location along string (m)

Figure 53: Green's function - f = 1.687HzHz

It is seen that the modal superposition

However, the strain simulation gives a bad

Mode Superposition :30 modes used
0.4

0.3 ..................... ... .. ..................... ............

0.2 .------- ----- --- -..........----- --- - ............................

0.1 ...............................................

n .
50 100
Location along string (m)

150

Figure 54: Modal Superposition - f = 1.687Hz -
30 modes

gives a good approximation for the displacement.

result. More specifically, the strain magnitude is
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underestimated and two peaks, circled in red on Figure 54, appear which do not exist on the

Green's function result. These peaks remain even when increasing the number of superposed

modes. Peaks are located where the first and the last point loads are applied, respectively, at 45

and 75m along the string. This phenomenon becomes visible when the response is dominated

by traveling waves behavior, i.e. values of n. higher than 1.0.

It is recommended to avoid these issues that point loads have to be applied on more than

one wave length.
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6 CONCLUSION / RECOMMENDATIONS
From the analyses performed, it can be concluded that:

" The modal superposition solution gives an accurate approximation of the dynamic

response of the string for values of n.( limited to 3. The response is even exact

when the excitation corresponds to a system resonant mode.

* In the worst cases, when the excitation frequency does not correspond to a natural

period of the system, the number of modes to be accounted for is approximately

1.8 times the mode number whose frequency is closest to the excitation frequency.

However, the modal superposition technique has limitations:

* If it is stated that the maximum allowable error has to be limited to 5%. The modal

superposition simulation gives accurate results when the spatial attenuation n. is

less than approximately 7 for the displacement and less than approximately 3 for

the strain.

* Point loads have to be applied on more than one wave length to avoid the

singularities in the strain solution described in section 5.
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APPENDIX A: GREEN'S FUNCTION RESPONSE (MATLAB

FILE)
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L = 150; % length

dia = 0.03622; % diamet
x = [0:0.5:L]; %vector
computed
T = 3225; % Tensic

zeta = 0.00033; % Dampin

m = 1.2585; % mass p

f = 5.062; % freque
psi = [ 45 45.5 46 46.5 47 4

51 51.5 52 52.5 53 53.5 5

57.5 58 58.5 59 59.5 60 6

64 64.5 65 65.5 66 66.5 6

70.5 71 71.5 72 72.5 73 7

the load, should be between 0 and L
P = [ 0.00 -0.31 -0.59 -0.81

-0.31 0.00 0.31 0.59 0.81

0.31 0.00 -0.31 -0.59 -0.81

-0.31 0.00 0.31 0.59 0.81

0.31 0.00 -0.31 -0.59 -0.81

-0.31 0.00 0.31 0.59 0.81

0.31 0.00 ]; % magnitude of the

of string in meter;
er in meter
of points at which response is to be

n in Newton
g ratio
er unit length in kg/m
ncy of the load in Hz
7.5 48 48.5 49 49.5 50 50.5
4 54.5 55 55.5 56 56.5 57

0.5 61 61.5 62 62.5 63 63.5
7 67.5 68 68.5 69 69.5 70

3.5 74 74.5 75 1; %location of

-0.95
0.95
-0.95
0.95
-0.95
0.95

load in

-1.00
1.00
-1.00
1.00
-1.00
1.00

Newton

-0.95
0.95
-0.95
0.95
-0.95
0.95

-0.81
0.81
-0.81
0.81
-0.81
0.81

-0.59
0.59
-0.59
0.59
-0.59
0.59

-=End of Inputs

w = 2*pi*f; % Frequency in rad/s

c = 2*m*w*zeta; % Damping coefficient

K = sqrt((m*w^2 + i*c*w)/T); % complex wavenumber for the string;

response =[]; curv =[]; total=[];

for looppsi = 1:length(psi)

nl = K*L; n2 = K*psi(looppsi); n3 = K*(psi(looppsi)-L);

SN1 = sin(nl); SN2 = sin(n2); SN3 = sin(n3);

Ps = P(looppsi)/(T*K); % Unit point load P= 1;

Coeff = [ -Ps*SN3/SN1;
-Ps*SN2/SN1];

AlL = Coeff(1);
A1R = Coeff(2);

for loopX = 1:length(x); % Loop for section

switch (x(loopX) <= psi(looppsi))

case{1}
y = A1L*sin(K*x(loopX));
yxx = -A1L*(K^2)*sin(K*x(loopX)); % Curvature

case{0)
y = A1R*sin(K*(x(loopX)-L));
yxx = -A1R*(K^2)*sin(K*(x(loopX)-L)); % Curvature

end;% end of switch
response(loopX,looppsi) = y;
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- -

curv(loopX,looppsi) = yxx;
end;% end of loopX

end;% end of looppsi

B=sum(response,2); % sums up all the columns
C=sum(curv,2); % sums up all the columns

AbyD = abs(B)/dia % response amplitude /diameter
strain = abs((1e6)*C*dia/2); % strain in micro strain. le6 converts strain to
micro strain
RMSstrain = strain/sqrt(2) % Root mean square strain

figure;
subplot 211
plot (x,AbyD)
xlabel('Location along string (m)'); ylabel('A/D'); grid on;
title('Greens Function')

subplot 212
plot(x,RMSstrain)
xlabel('Location along string (m)'); ylabel('RMS strain (\mu\epsilon)');

grid on;
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APPENDIX B: MODAL SUPERPOSITION (MATLAB FILE)
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% INPUTS -

L = 150; % len
dia = 0.03622; % dia

x = [0:0.5:L]; % vec
computed
T = 3225; % Ten
zeta = 0.00033; % Dam
m = 1.2585; % mas

f = 5.062; % fre
psi = [ 45 45.5 46 46.5 47 4

51 51.5 52 52.5 53 53.5 5
57.5 58 58.5 59 59.5 60 6
64 64.5 65 65.5 66 66.5 6~
70.5 71 71.5 72 72.5 73 7
the load, should be between 0 and L
P = [ 0.00 -0.31 -0.59 -0.81

-0.31 0.00 0.31 0.59 0.81
0.31 0.00 -0.31 -0.59 -0.81
-0.31 0.00 0.31 0.59 0.81
0.31 0.00 -0.31 -0.59 -0.81
-0.31 0.00 0.31 0.59 0.81
0.31 0.00 ]% magnitude of the

no =30;

n =[1:1:no];

gth of string in meter;
neter in meter
tor of points at which response is to be

sion in Newton
ping ratio
s per unit length in kg/m
quency of the load in Hz
7.5 48 48.5 49 49.5 50 50.5
4 54.5 55 55.5 56 56.5 57
0.5 61 61.5 62 62.5 63 63.5
7 67.5 68 68.5 69 69.5 70
3.5 74 74.5 75 1; %location of

-0.95
0.95
-0.95
0.95
-0.95
0.95

load in

-1.00
1.00
-1.00
1.00
-1.00
1.00

Newton

-0.95
0.95
-0.95
0.95
-0.95
0.95

-0.81
0.81
-0.81
0.81
-0.81
0.81

-0.59
0.59
-0.59
0.59
-0.59
0.59

-End of Inputs

w = 2*pi*f; % Frequency in rad/s

responsey = []; responseyxx = [];
for loopX = 1:length(x); % Loop for section

responseq =[]; responseS =[]; responseSxx = [] ;

for loopN = 1:length(n);
M = m*L/2;
K = T*(loopN*pi/L)^2*L/2;
wn = (K/M)^0.5;

r = w/wn;
for loopP = 1:length(P);

modalForce = sum(P.*(sin(loopN*pi*psi/L)));
end;
q = modalForce*(1/K)/((1-rA2)+(2*zeta*r*i));
S = sin(loopN*pi*x(loopX)/L); % changed loopX to x(loopX)

Sxx = -((loopN*pi/L)^2)*sin(loopN*pi*x(loopX)/L); % changed loopX to
x(loopX); included ^2 with n*pi/L

responseq = [responseq;q];
responseS = [responseS;S];
responseSxx = [responseSxx;Sxx];

end;
y = responseq' * responseS; % moved out of loopN

yxx = responseq'*responseSxx; % moved out of loopN
responsey = [responsey;y];
responseyxx = [responseyxx;yxx];

end;
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Em

AbyD = abs(responsey)/dia % response amplitude /diameter
strain = (le6)*abs(responseyxx)*dia/2; % strain in micro strain. le6 converts
strain to micro strain
RMSstrain = strain/sqrt(2) % Root mean square strain

figure;
subplot 211
plot (x, AbyD)
xlabel('Location along string (m)'); ylabel('A/D'); grid
on;title(strcat('Mode Superposition : ',num2str(no),' modes used'));

subplot 212
plot (x,RMSstrain)
xlabel('Location along string (m)'); ylabel('RMS strain (\mu\epsilon)');

grid on;
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APPENDIX C: ERROR QUANTIFICATION (MATLAB FILE)

- 51 -



% == = == = == = == = == = == = INPUTS

L = 150;
dia = 0.03622;
x = [0:0.5:L];
computed
T = 3225;
zeta = 0.00033;
m = 1.2585;

f = 5.062;

% length of string in meter;
% diameter in meter
% vector of points at which response is to be

% Tension in Newton
% Damping ratio
% mass per unit length in kg/m
% frequency of the load in Hz

psi = [ 45 45.5 46 46.5 47 4
51 51.5 52 52.5 53 53.5 5
57.5 58 58.5 59 59.5 60 6
64 64.5 65 65.5 66 66.5 6
70.5 71 71.5 72 72.5 73 7
the load, should be between 0 and L
P = [ 0.00 -0.31 -0.59 -0.81

-0.31 0.00 0.31 0.59 0.81
0.31 0.00 -0.31 -0.59 -0.81
-0.31 0.00 0.31 0.59 0.81
0.31 0.00 -0.31 -0.59 -0.81
-0.31 0.00 0.31 0.59 0.81
0.31 0.00 ]; % magnitude of the

7.5 48 48.5
4 54.5
0.5
7 67.5
3.5

-0.9
0.95
-0.9
0.95
-0.9
0.95

load i

55 55.5
61 61.5

68 68.5
74 74.5

'5 -1.00
1.00

5 -1.00
1.00

'5 -1.00
1.00

n Newton

49 49.5 50 50.5
56 56.5 57

62 62.5 63 63.5
69 69.5 70

75 ]; %location of

-0.95
0.95
-0.95
0.95
-0.95
0.95

-0.81
0.81
-0.81
0.81
-0.81
0.81

-===, End of Inputs

w = 2*pi*f;
c = 2*m*w*zeta;
K = sqrt((m*w^2 + i*c*w)/T);

% Frequency in rad/s
% Damping coefficient
% complex wavenumber for the string;

response =[]; curv =[]; total=[];
for looppsi = 1:length(psi)

n1 = K*L; n2 = K*psi(looppsi); n3 = K*(psi(looppsi)-L);
SN1 = sin(nl); SN2 = sin(n2); SN3 = sin(n3);
Ps = P(looppsi)/(T*K); % Unit point load P= 1;

Coeff = [ -Ps*SN3/SN1;
-Ps*SN2/SN1];

AlL = Coeff(1);
A1R = Coeff(2);

for loopX = 1:length(x); % Loop for section
switch (x(loopX) <= psi(looppsi))

case(1)
y = A1L*sin(K*x(loopX));
yxx = -A1L*(K^2)*sin(K*x(loopX)); % Curvature

case{0)
y = A1R*sin(K*(x(loopX)-L));
yxx = -A1R*(K^2)*sin(K*(x(loopX)-L)); % Curvature
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end;% end of switch
response(loopX,looppsi) = y;
curv(loopX,looppsi) = yxx;

end;% end of loopX

end;% end of looppsi

B=sum(response,2); % sums up all the columns
C=sum(curv,2); % sums up all the columns

AbyD1 = abs(B)/dia; % response amplitude /diameter

strain1 = abs((1e6)*C*dia/2); % strain in micro strain. le6 converts strain

to micro strain
RMSstrainl = strainl/sqrt(2); % Root mean square strain

% ======== Modal superposition

no = 30;
n = [1:1:no];

%============= End of Inputs- ================================

responsez = []; responsezxx = [];
for loopX = 1:length(x); % Loop for section

responseq =[]; responseS =[]; responseSxx = []

for loopN = 1:length(n);
Mn = m*L/2;
Kn = T*(loopN*pi/L)^2*L/2;
wn = (Kn/Mn)^0.5;
r = w/wn;

for loopP = 1:length(P);
modalForce = sum(P.*(sin(loopN*pi*psi/L)));

end;

q = modalForce*(1/Kn)/((1-rA2)+(2*zeta*r*i));
S = sin(loopN*pi*x(loopX)/L);% changed loopX to x(loopX)
Sxx = -((loopN*pi/L)A2)*sin(loopN*pi*x(loopX)/L);% changed loopX to

x(loopX); included ^2 with n*pi/L
responseq = [responseq;q];
responseS = [responseS;S];
responseSxx = [responseSxx;Sxx];

end;
z = responseq' * responseS; % moved out of loopN

zxx = responseq'*responseSxx; % moved out of loopN
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responsez = [responsez;z];
responsezxx = [responsezxx;zxx];

end;
AbyD2 = abs(responsez)/dia; % response amplitude /diameter
strain2 = (le6)*abs(responsezxx)*dia/2;% strain in micro strain. le6 converts
strain to micro strain
RMSstrain2 = strain2/sqrt(2); % Root mean square strain

figure;
subplot 221
plot (x,AbyDl)
xlabel('Location along string (m)'); ylabel('A/D'); grid on;
title('Greens Function')

subplot 222
plot(x,RMSstrainl)
xlabel('Location along string (m)'); ylabel('RMS strain (\mu\epsilon)');

grid on;

subplot 223
plot (x,AbyD2)
xlabel('Location along string (m)'); ylabel('A/D'); grid
on;title(strcat('Mode Superposition ',num2str(no),' modes used'));

subplot 224
plot(x,RMSstrain2)
xlabel('Location along string (m)'); ylabel('RMS strain (\mu\epsilon)');

grid on;

% === = = = = = =Error-================

EA = AbyD1 - AbyD2;
ES = RMSstrainl - RMSstrain2;

eA = sqrt(( EA' * EA )/( AbyD1' * AbyD1))*100
eS = sqrt(( ES' * ES )/(RMSstrainl' * RMSstrainl))*100
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