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Abstract

In this thesis, we consider several parabolic equations for which the minimum principle
fails. We first consider a two-point boundary value problem for a one dimensional
diffusion equation. We show the uniqueness and existence of the solution for initial
data, which may not be continuous at two boundary points. We also examine the
circumstances when these solutions admit a probabilistic interpretation. Some partial
results are given for analogous problems in more than one dimension.
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Chapter 1

Introduction to Our Parabolic

Equations

1.1 Introduction

The main purpose of this chapter is to introduce the family of parabolic equations we

are interested in, where the minimal principle fails. We will review the main results

from [12], [13] and summarize the main results we will discuss in later Chapters. In

[12] and [13], Stroock and Williams studied a 1-dim diffusion equation on half line

with a one point boundary condition, for which the minimal principle fails. They

also tried to elucidate the general case with a Markov chain analog. Later, in [17],
Williams and Andrews studied a special case of 1-dim diffusion equation with two-

point boundary case by using the indefinite innner product method. In section 1.2,
we will recall the equation and the main result in [12] and [13]. In section 1.3, we

introduce the equations we will consider and the main results we get.

Note: All the content and notation in Chapter 2 and Chapter 3 are self-contained

and we will specify all the notation in each chapter to avoid possible confusion.



1.2 Results from [12] ,[13]

Let F be the space of bounded functions on [0, oo) that are continuous on (0, oo) but

not necessarily continuous at 0. Convergence of f, to f in F means that {Ilfnllu}'
is bounded, f,(0) -* f(0), and f, -- f uniformly on compact subsets of (0, 00oo). (We

write fn -+ f u.c.c. (0, oo) as a shorthand for the last requirement.) Note that we

use probabilist conventions, writing u(t, x), instead of u(x, t). As usual,

au u ,, 82U

t ' =Ox' =x 2

Now let U be the space of functions u on (0, oo) x [0, oo) such that u is bounded on

(0, 1] x [0, oo) and whenever 0 < T1 < T 2 < O we have

S([T, T2] x [0, 00)) e Cbl2([T1,T 2] x [0, 00)).

This last statement means that u, it, u', and u" are all bounded continuous functions

on [Ti, T2] x [0, oo). Observe that we insist that u is C1,2 right up to the boundary

where (t, x) E (0, 00) x {0}.

THEOREM 2.1[12] (i) Let p, a GeR and let f E Cb(O, oo). Suppose that u E U

and that u satisfies the PDE

(2.1a) it = iu" + pu' on (0, 00)2

(2.1b) it(t, 0) = au'(t, O0) for t E (0, oo00),

(2.1c) limu(t,x) = f(x) u.c. (0,00).
t\o

Then f(0) := u(0+, 0) := limt\o u(t, 0) exists, and we note that the extended func-

tion f is in F.

(ii) There exists a unique one-parameter semigroup {Qt} of continuous operators

on F such that for f E F, u(t, x):= (Qt f)(x) is the unique element of U solving (2.1)

with u(0+, 0) = f(0).



It is helpful to think of Qt as exp(t7-t) where

f = f " + puf', '(7) = {f E C2 : f"(0) + Pfl'(O) = af'(O)}.

If a > 0, then u(-, -) > 0 if and only if f > 0, so that {Qt} is a semigroup of nonneg-

ative operators on F. If a < 0, then the minimal principle is lost, and indeed {Qt} is

a semigroup of nonnegative operators only on a certain invariant subspace of F. The

precise statements are given in the following

THEOREM 2.2[12] Assume that a < O0. Then

u(-, -) > 0 if and only if both

f > 0 and f(0) (min, f) := / in(x)f(x)dx,
(o,oo)

where

(2.2) jmin = 2ae -2 x if > o,

S21ae - 21ju p if pI < r.

The function jmin may be characterized analytically as the minimal solution of

the Riccati equation

(2.3a) !J"(x) - lJ'(x) + { J'(0) - IlJ(O)}J(x) = 0,

(2.3b) J(0) = -2a,

(2.3c) J(-) > 0, J(0, 00) := J(x)dx < oo.

The significance of Riccati equation is that for J Cb2([0, o00)) satisfying (2.3c),
{Qt : t > 0} acts as a nonnegative semigroup on F := {f e F : f(0) = (J, f)} if and
only if J satisfies (2.3a) and (2.3b).

Clearly the o < 0 case, where the minimal principle fails, is the most interesting
case. In [13], the long-term behavior of solutions was discussed.



THEOREM 2.3[13] Assume that o- < 0. Given f E F, set Df = f(0) - (Jmin, f).

Then, as t / 0o,

p < a - u (t, Z) Y D f,
I -- a

[L = O = t-fl(t, x) --, 2 2Df,

S> a == -2j(p-o)aju (t~ ) - 2ae-2("--)x)Df,
~ > o* ==~ e -2IO(~crtUf(t, x)i -- ff

the limits being uniform over x in compact subsets of [0, oc).

1.3 The Generalized Problem

A natural question is what is the picture if one generalize the problems discussed

in [12] and [13]. Two generalizations will be discussed in this thesis: one is to add

more boundary, the other one is to consider high dimension problem. In the following

Chapter 2, we will consider the following two point boundary value problem .

Let F be the space of bounded functions on [0, 1] which are continuous on (0, 1)

but not necessarily continuous at the boundary {0, 1}. Convergence of {f,}j C F

to f in F means that { lf flu} { is bounded, f,(x) -* f(x) for each x E [0, 1] and

uniformly for x in compact subsets of (0, 1).

Now let U be the space of functions u C1,2 ((0, o00) x [0, 1]; R) with the properties

that u is bounded on (0, 1] x [0, 1] and, for each 0 < T1 < T 2 < c00, i, u' and u" are

bounded on [Ti, T2] x [0, 1]. Note that we are insisting that u be C1,2 right up to, and

including, the spacial boundary (0, o00) x {0, 1}. We consider the following boundary

value problem:

(U3 = u + 1 u', on (0, 00) x (0, 1),

is(t, 0) = -au'(t, 0) and it(t, 1) = au'(t, 1) for t E (0, oc).

In Chapter 2 we will show that there exists one unqiue solution to (1.3) with any



initial value f E F. The minimal principle also fails when a > 0. To clarify how far

this problem is from satisfying the minimum principle, we need to understand the

following Riccati system:

1J"(x) - pJ'(x) + B(J)J(x) = 0 on [0,1]

(R) 2o 0
J(0) =() and J(1) = 0

where J: [0, 1] ) R 2, o > 0 and p e R, and

( -22 + 2 1-1

B(J) = 2 2J( 2  2ap - 2 (J'(O), J'(1)) 0 1
2 o 2 0 1

We will prove that there exists exactly one solution J"', = J1o which satisfies

(3.2) max Jk(x) dx ifa ->coth

kE1{0,1} o < 1 if a < p coth p.

and that this solution is non-negative(which means each component is a nonnegative

function).

Now we introduce the vector

Do"p f f(0 (f JO) for f E F.
(f (1) - (f , Ji)

There is an intimate connection between the representation of Df in terms of the

eigenvectors of B '"A and the properties of uf. Namely, we have the following theorem:

Theorem 3.1 Assume that a > 0, and, for f C F, define

D~,= f (0) - (f , Jo'")
f (1) - (f , Ja'") '

where (cp, 4) fo p(x)4'(x) dx. Then uf > 0 if and only if f > 0 and D•'" f = aVo"'

for some a > 0. Moreover, if F"'p denotes the subspace of f E F with D'• f = 0,
then F""' is invariant under {Qt : t > 0} and the restriction {Qt [ F"•' : t 2 0} is a



Markov semigroup which is conservative (i.e., Qtl = 1) if and only if a > p coth p.

Finally, if f E F and Doy" f = aoVo' " + a Vj"'", then, uniformly for x E [0, 1]

al 0 == lim etA'"uf(t, x) = algl'"(x)
t-+oo

and

al = 0 ao ==

{ limt_, etX '"'u (t, x) = aog""'(x)

limt_,o t-luf(t, x) = aogg'"(x)

limt,,)o uf (t, x) = aogo'"(x)

if a > pcoth p

if a = p coth p

if a < / coth p,

where g'"l takes both strictly positive and strictly negative

ways strictly positive and is constant when a < p coth p.

given for g''", k E {0, 1}, in Chapter 2).

values whereas g"'" is al-

(Explicit expressions are

Theorem 3.1 is in agreement with the guess made in [12] on the basis of the Markov

chain situation. Moreover, it gives us some hints for the higher dimension case, where

we will give some partial results.

Now we re-define the notation for higher dimension case. Let F be the space

of bounded functions on E := [0, +oo) x (-oo, +oo) that are continuous on E + :=

(0, +oo) x (-oo, +oo) but not necessarily continuous at the boundary E- = {0} x

(-oo, +oo). Convergence of f, to f in F means that {f lfljj} is bounded, f,(x, y) -

f(x, y) for each (x, y) E E, and uniformly for (x, y) in compact subsets of E + . Now,

for T > 0, let UT be the space of functions u on (0, T) x E such that u is bounded

on (0, T/2] x E and whenever 0 < T1 < T2 < T we have

u ([T,,T2] x E)E C '2([T1, T2] x E).

We letU= nf UT.
TER+

As usual,

Ou , u ,, 02u / O u ,u AuU
• - U - p eut+a t' I OxI ax2' ay YY ay2 ' " yy2

We consider the following parabolic equation:

(. = i Au + [touI' + ilu' on (0, O) x E',
2• = •u+ oU•+ tly o

(3.3)



it(t, 0, y) = au'(t, 0, y) for t E (O, e), y E (-oo, +oo),

lim u(t, x, y) = f (x, y) u.c. E + .and lim u(t, 0, y) = f (O, y)
t\o t\o

To state our results, we need to introduce nonnegative finite measures {J(x, -)} by

J(0,.) = -2auo(.) and J(x, dy) = J a'11, 2(x,y)dy for x > 0, where Jo••,o,' (x, y) =
-2ax e(•0o+1)z--2l fO exp {- [(-iO)2 (X22)•2 d

In fact, x E [0, oo) -+ J(x, ) is a convolution semigroup of finite measures over R.

Let Df = f(O, y) - fo Jp(,.) f(x, .)dx. Suppose uy(t,x,y) is the solution of

our PDE with initial data f, then we can get the following important equation:

(3.5) Df = - e2teo Jp(-at, .) * Duf(t, .).

By subordination, it is equivalent to:

Df () = eto(-±"+/O+K)(Du1 (t, .)).

where K = -8 + 2Iio + (a + [o)2 in a sense we will explained in Chapter 3.

From this equation, we can observe and show that the existence of the solution of

our PDE depends on the behavior of Df. The solution may only exist in finite time,
which is quite different from the one dimension case. We give the following necessary

and sufficient condition for the existence and uniqueness in finite time.

THEOREM 3.2 If a < 0, for e e R+ , f c F, the following statements are

equivalent:

(i) There is a unique uf E Ue which satisfies (1.1) with u(0+, 0, y) = f(0, y) for

y E (-oo, +oo).

(ii) There exists h E Cb(R) such that Df = J(O, .) * h(-), where

Df (y) = f (0, y) - J f(x, ) J(x, .)dx,

{- J(x, .) :x [0, oo)} is a convolution semigroup given by: J(O, ) = -2auo(-) and



J(x, dy) = J,0S142 (x, y)dy for x > 0,

JoaAoI1 (XI Y) = 2ax e (o+a)x- 2
lly j0

J•'•°27r (x y - -
exp{ [(o-Ao) 2+2p] (x2+y2 }d,~2

and J(x, .) = e2xlpoJ-( , *).

(iii) There exists v(t,y) e C([aO, oo) x R))N C ((ua, 00) x R)) satisfies:

(1.2) 82v(t, y) + 2(po - -a)tv(t, y) + q4,v(t, y) - 2,ai•yv(t, y) = 0,

with v(0, .)= Df(.), sup I|v(t, -)II < 00,
t>aO

lim IIv(t, ")IIs = 0 if po > a.
t-oo

In particular, if Df E HP(aO, -aO), for some p E [1, 2], then for any 0 < T <

8, there is a unique uf E UT which satisfies (1.1) with u(0+, 0,y) = f(0,y) for

y (-oo, +oo).

Thus we have the following corollary for infinite time:

COROLLARY 3.2 If a < 0, for f e F, the following statements are equivalent:

(i) There is a unique uf E U0 which satisfies (1.1) with u(O+, 0,y) = f(0, y) for

y (-oo, +oo)

(ii) For any 0 E (0, oo00), there exists he E Cb(R) such that Df = J(6,-) * he().

(iii) There exists v(t, y) E C"(R 2) satisfies:

o2v(t, y) + 2(po - U)atv(t, y) + &av(t, y) - 2polyv(t, y) = 0,

with v(O, .)= Df(.), sup Iv(t, -)l 1 < oo00 for any T E R,
t>T

lim IVI(t, .)II = 0
t-0oo

if 40 > a.

In particular, if Df E HP(R), for some p c [1, 2], there is a unique uf E Uý which

satisfies (1.1) with u(0+, 0, y) = f(0, y) for y E (-oo, +co).



The following criterion for non-negativity is obtained:

THEOREM 3.3 Assume that a < 0, and u E U, satisfies our parabolic equation

with u(O+, x, y) = f (x, y) for (x, y) E E+ . Then

u(,, .. ) 2 0

if and only if

f(,-) > 0 and Df(y) = C for some constant C E [0, oo),

where

Df(y) = f(0, y) - f (x,.), J(x, .)dx.

The proof of this theorem will rely on the equation (3.5) and a representation formula

for positive solutions to Au - u = 0 in R2, proved in [4].





Chapter 2

A Two Point Boundary Problem

2.1 Introduction

In this chapter1 , we continue the study, started in [12] and [13], of a diffusion equation

in one dimension with a boundary condition for which the minimum principle fails.

The main distinction between the situation here and the one studied earlier is that

we are now dealing with a problem in which there are two boundary points, not just

one, and the addition of the second boundary point introduces some new phenomena

which we find interesting.

Although the relationship is not immediate apparent, related considerations ap-

pear in [7] and [8].

2.1.1 The problem and a basic result

Let F be the space of bounded functions on [0, 1] which are continuous on (0, 1) but

not necessarily continuous at the boundary {0, 1}. Convergence of { f,,} c F to f in

F means that {1flfnllu}l is bounded, f,(x) - f(x) for each x E [0, 1] and uniformly

for x in compact subsets of (0, 1).

In the next definition, and hereafter, we use the probabilistic convention of writing

u(t, x) where analysts would use u(x, t). As usual,

Ou Onu 02U
it = u -a and u" a_-

Ot ' 8x ' 8 2 "

Now let U be the space of functions u E C 1,2 ((0, 00) x [0, 1]; R) with the properties

that u is bounded on (0, 1] x [0, 1] and, for each 0 < T, < T2 < oo, it, u' and u" are

1Chapter 2 has the same content as the paper [14], which is a joint work with Daniel Stroock.



bounded on [Ti, T2] x [0, 1] Note that we are insisting that u be C1,2 right up to, and

including, the spacial boundary (0, oc) x {0, 1}.

Because its proof is more easily understood after seeing the proofs of the other

results in this article, we have put the derivation of the following basic existence and

uniqueness statement into an appendix at the end of this article.

Theorem 1.1 Let (p, a) E R2 be given.

(i) Suppose that u E U satisfies

u) = p + UIu' on (0, 00) x (0, 1),
(1.2)

it(t, 0) = -Uu'(t, 0) and it(t, 1) = ou'(t, 1) for t e (0, 00).

If, as t \ 0, u(t, -) converges uniformly on compact subsets of (0, 1), then both u(t, 0)

and u(t, 1) converge as t \ 0, and so u(t, -) converges in F.

(ii) Given f E F, there is a unique uf E U which satisfies (1.2) and the initial

condition that, as t \ 0, u(t, -) converges to f in F.

In particular, if Qtf = uf(t, .), then {Qt : t > 0} is a semigroup of bounded, contin-

uous operators on F. (See (3.2) below for more information.)

For semigroup enthusiasts, it may be helpful to think of the operator Qt as exp(t-)

where R7-f = if" + p f' with domain

dom(H) = {f f C2 ([0, 1]; R) : f"(k) + p1 f'(k) = (-)l-kUTf'(k) for k E {0, 1}}.

For probabilists, it may be helpful to remark that, unless a < 0, {Qt t > 0} is not

a Markov semigroup.

2.1.2 Non-negativity and growth of solutions

If a < 0, then uf(.,.) > 0 if and only if f > 0, and therefore {Qt : t > 0} is a

Markov (i.e., non-negativity preserving) semigroup. This may be proved by either

an elementary minimum principle argument or the well-known probabilistic model.2

However, when a > 0, the minimum principle is lost, and, as a consequence {Qt : t >

0} is no longer Markov. Nonetheless, we will show that there is a certain { Qt : t > 0}-

invariant subspace of F on which the Qt's do preserve non-negativity. In order to

describe this subspace, we need the following.

2The corresponding diffusion is Brownian motion in (0, 1) with drift p, which, depending on
whether a = 0 or a < 0, is either absorbed when it hits {0, 1} or has a "sticky" reflection there.



Theorem 1.3 Given a continuously differentiable function J : [0, 1] --- 2, set

(-2a + J 1 -1
B(J) = Jo() 2 L 2 • ))- = 2p - 2 (J'(0), J'(1)) 0 1

2 2

Then, for each a > 0 and p E R, there exist a unique solution Ja'A to

J"(x) - pJ'(x) + B(J)J(x) = 0 on [0,1]

(R) J() = ' and J(1) =

0 2a
which satisfies

(1.4) max IJk(x)I dx -> coth

k{0,1} o < 1 if a < p coth p.

Moreover, J'"' > 0 in the sense that both of its components are non-negative. Finally,
set B"', = B(J•"'). Then B'U' has real eigenvalues A'"" < Ao'" O0, A'"" < 0 if

and only if a > Ip coth p, and the corresponding eigenvector Vo0'' can be chosen to be

strictly positive with (Vo'')o+ (Vo'") 1 = 1, whereas the eigenvector V1Ta' corresponding

to A,'I can be chosen so that (V"'")o > 0 > (V7"'") 1 and (V,'")o - (V.•"")1 = 1. (See

Lemmas 2.9 and 2.10 below for more information.)

Referring to the quantities in Theorem 1.3, we have the following. When p =

0, some of the same conclusions were obtained in [17] using an entirely different

approach, one which is based on the use of an inner product which is not definite.

Also, the criterion given below for non-negativity is analogous to, but somewhat more

involved, than the one given in [12], where the same sort of problem is considered on

half line [0, oo),

Theorem 1.5 Assume that a > 0, and, for f E F, define

f (1) - (f,I J10"1), '

where (ý, 4) - op (x)V(x) dx. Then uf > 0 if and only if f > 0 and D', f = aVo"'
for some a > 0. Moreover, if F~4, denotes the subspace of f E F with Do' / f = 0,
then F '"I is invariant under {Qt : t > 0} and the restriction {Qt [ F"'1 : t > 0} is a

Markov semigroup which is conservative (i.e., Qtl = 1) if and only if a > pcothp.



Finally, if f E F and D"'" f = aoVo"' + al V"'", then, uniformly for x E [0, 1]

(1.6) al , 0 ==- lim et'"uf(t, x) = alg' (x)
t-+oo

and

limt,oo et'"uf(t, x) =aogo"'(x) if o > p coth p

(1.7) a = 0 ao = limto t-luf(t, x) = aog,0'(x) if a = p cothp

limt-oo Uf(t, x) = aogog"(x) if a < p coth p,

where g'"' takes both strictly positive and strictly negative values whereas go'" is always

strictly positive and is constant when a < p coth p. (Explicit expressions are given

for g"'4, k E {0, 1}, in section 3 below).

Remark: It should be mentioned that the Harnack principle discussed in §5 of [13]

transfers immediately to the setting here. Namely, if u is a non-negative solution to

it = lu" + pu' in a region of the form [T1 , T2] x [0, R] and it(t, 0) = -au'(t, 0) for

t E [T1,T 2], then, for each T1 < tl1 < t 2 < T2 and 0 < r < R, there is a constant

C < oo such that u(s,x) < Cu(t,y) for all (s,x), (t,y) E [tl,t 2] x [0, r], and an

analogous result holds when the region is of the form [TI, T2] x [R, 1]. The surprising

aspect of this Harnack principle is that, because of the boundary condition, one can

control u(s, x) in terms of u(t, y) even when s > t, whereas usual Harnack principles

for non-negative solutions to parabolic equations give control only when s < t.

2.1.3 The Basic Probabilistic Model

The necessary stochastic calculus may be found, for example, in Revuz and Yor [6] or

Rogers and Williams [9]. In particular, the second of these also contains the relevant

"Markovian" results.

The probabilistic model associated with our boundary value problem can be de-

scribed as follows. First, let X be Brownian motion with drift p and reflection at the

boundary {0, 1}. That is, if B a standard Brownian motion, then one description of

X is as the solution to the Skorohod stochastic integral equation

0 < Xt = Xo + Bt + pt + (Lo)t - (Li)t < 1,

where Lo and L 1 are the "local times" of X at 0 and 1, respectively. In particular,
for k c {0, 1}, t - (Lk)t is non-decreasing and increases only on {t : Xt = k}. Next,



set

(1 8 - a-1(t - - o- 1 (L 1)t, (t inf{ r > 0 : 4, > t}
(1.8)

and Yt - X(t).

When u = 0, the interpretation of Ct is that it is equal t A inf{T 0 : X, E {0, 1} },
and so Y is absorbed at the first time it leaves (0, 1). When a < 0, Y is Brownian

motion in (0, 1) with drift p and a "sticky" (i.e., it spends positive time) reflection at

{0, 1}. When a > 0, (t may be infinite, in which case we send Yt to a "graveyard" 0

(i.e., an absorbing state outside of [0, 1]).

The connection between (1.2) and these processes is that, for each f E F and T >

0, an application of standard It6 calculus shows that (note that X 0 E {0, 1} & a >

0 -== Co > 0 a.s.)

(1.9) uf (T - It, Xt) E 1R is a continuous local martingale in t.

In particular,

(1.10) ulbounded and P (T = 00 -• lim (T - ,Xt) =0 X = x) =1

- Uf(T, x)= E[f(YT), (T < oo IXo = ].

Similarly,

(1.11) uf >0 = Uf(T, x) E E[f(YT), (T < oo I Xo = ].

Remark: It should be emphasized that, although the process Y is a familiar, con-

tinuous diffusion when a < 0, it is discontinuous when a > 0. Indeed, when a > 0,
although Y behaves just like X as long as it stays away from {0, 1}, upon approaching

{0, 1}, Y either jumps back inside or gets sent to 0. In particular, even though it is

right-continuous and has left-limits, Y is not a Hunt process because its jump times

are totally accessible.

In order to make the connection between Y and the functions Jk"' in Theorem

1.3, we will need the following lemma about the behavior of Jt as t -- oo.

Lemma 1.12 Assume that a > 0 and take p cothp = 1 when p = 0. Then, al-



most surely,

(1.13) lim t = if a > pcoth i

(1.13) 
lrn 4 t =

t• 00 -oo if a < pcoth p

and

(1.14) a = p coth p ==> lim ±4t = oo.
t-+oo

In particular, for all T > 0, a > p coth p = (T < oo00 a.s. and a < p coth • ==

limt-.oo t = -oo a.s. on {(T = c0}.

Proof Assume that p y- 0, and set

() = - + (1  x 2 ) coth p.
Whnp(1 + e-24) )

Then, " + p•' = -p coth p and V'(0) = 1 = -#'(1), and so, by ItM's formula,

M - I'(X,-) dB, = (Xt)+(p coth p)t-(Lo)t-(Lj)t = V(Xt)-(a-l coth P)t+aut.

Since limt,- t-'I Mtl = 0 a.s., this proves that

.At p coth /
lim - = 1 - cothp a.s.,

t--0oo t

which completes the proof of (13) when p # 0 and a -, coth p. In addition, when

ip - 0 and a = p coth p, the preceding says that O(Xt) + aot = Mr, and so the

desired result will follow once we check that limt,_ +±M = oo00 a.s, which, in turn,

comes down to showing that fo -'(X,)2 dT = Oc a.s. But, by standard ergodic

theoretic considerations,

lim - t'(X,)2 d- = I() 2 v(dy) > 0, where v(dy)= - 2 dyt-Coo t o f(o,) e2p -

is the stationary measure for X. Thus, the case when p = 0 is complete. The case

p = 0 can be handled in the same way by considering the function O(x) = x(1-x). DO

As a consequence of Lemma 1.12, we can now make the connection alluded to

above.



Theorem 1.15 Assume that a > 0. For all bounded, measurable ý : (0, 1) -- R,

(1.16) E[p(Xco), (o < 0o I Xo = k] = (ýo, Jk'"), k e {0, 1}.

In particular, P((So < 00 I Xo = k) = (1, Jk"•) and is the density for the

distribution of Yo = XCo given that Xo = k and Co < oo00.

Proof Clearly, it suffices to treat the case when ýo is continuous as well as

bounded. Given such a 'p, define f E F so that f [ (0, 1) = co and f(k) = (O, J'"")

for k e {0, 1}. Then, by Theorem 1.5, uf is bounded and, as t - 00oo, uf(t, x) -- 0

uniformly for x E [0, 1] when a < p coth M. Hence, by Lemma 1.12 and (1.10),

(p, Ja'U) = f(k) = E [(p(XCo), C0o < ooI Xo = k]. O

2.2 The Riccati Equation

In this section we will prove Theorem 1.3 and the connection between solutions to

(R) and solutions to (1.2). Throughout, we assume that a > 0.

2.2.1 Uniqueness of solutions to (R)

Theorem 2.1 Suppose that J E C2([0, 1]; R2 ) is a solution to (R), and define B(J)

accordingly, as in Theorem 1.2. Next, for f E F, set

Djf f- (0) - (f , Jo)

f (1) - (f , Ji)

Then, for any f E F, DJuf(t) = e-tB(J)DJf , and so DJf = 0 =# DJuf(t) = 0 for

all t > 0. In particular, if m(J) = f1 IJo(x) dx V fo IJl(x)I dx < 1, then DJf = 0
implies that lufI I, • II f I, and, if m(J) < 1, then DJf = 0 implies IJuf(t)lI, -- 0
as t -- 0oo. Finally, if J > 0, then for any non-negative f E F with the property that
DL)f is a non-negative eigenvector of B(J), uf > 0.



Proof If J is any solution to (R), then,

d
tf (uf(t), J) =K/u(t) + [LU,, J)

= (f(t), !J" - pJ) + (U(t, 1)J(1) - UU, (t, o) J(0))

-(uf(t, 1)J'(1 ) - uf(t, O) J'(O)) + p (Uf (t, 1)J(1) - Uf(t, O)J(O))

d (uj(t, O) B( f(t, O)
= -B(J) (uf (t), J) + uf(t, ) + B(J) f(t )dt su (t, 1) s (•(t, 1)

and so D uf(t) = -B(J)D'uf(t), which is equivalent to DJuf(t) = e-tB(J)DJf.

Now assume that m(J) < 1 and that DJf = 0. To see that luf ,u < f11lu, let

E > 0 be given and suppose that luf(t)ll, > f -1+c E for some t > 0. We can then

find a T > 0 such that Iuf(T) , = 11f If + > | uf(t) lu for 0 < t < T. Clearly,
there exists an x E [0, 1] for which uf(T, x)I = 1lff1 + E. If x E (0,1), then, by

the strong maximum principle for the parabolic operator Ot - - PSx, Juf must

be constantly equal to flu + E on (0, T) x (0, 1), which is obviously impossible.

Thus, it remains to check that x can always be chosen from (0, 1). To this end,

simply note that if uf(T, z) < IIf11 + e for all x E (0,1), then, for k E {0,1},
lUf(T, k) = I(uf(T), Jk)l < 11f || + E also.

Next assume that m(J) < 1 and that DJf = 0. To see that tLuf(t)jll -- 0 as

t -- 00oo, it suffices to show that ufS(1) 1 < 0 [1filu for some 0 E (0, 1) which is inde-

pendent of f. Indeed, by the semigroup property and the fact that DJuf(t) = 0 for

all t > 0, one would then know that uf(t) u < 0" f 11 for t > n. To produce such a

0, let p denote that first time that the process X leaves (0, 1). Then

uf(1, x) = E[f(Xl), p > 1 X0 = X] + E [uf(1 - p, Xp), p I I Xo = X] .

Because jufH1 < 1 fHu and luf(t,k)l = I(uf(t, ), Jk)I < nm(J) f jU, this leads to

uf(1) dH < 0 f 1, with 0 = 1-q(1-m(J)), where q = infxEo0,] P(p < 1 IXo = x) > 0.

Finally, assume that J > 0 and that DJf is a non-negative eigenvector for B(J).

If f > 0 and uf ever becomes negative, then there exists a T > 0 such that uf(t) > 0

for t E [0, T) and uf(T, x) = 0 for some x E [0, 1]. Again, from the strong max-

imum principle, we get a contradiction if x E (0, 1). At the same time, because

uf(T, k) > (tu(T), J,) for k: e {0, 1}, we see that the only way that uf(T) can vanish



somewhere on [0, 1] is if vanishes somewhere on (0, 1). Thus, when f > 0, uf > 0. To

handle the case when f > 0, define g E F so that g = 1 in (0, 1) and g(k) = (1, Jk)
for k e {0, 1}. Next, apply the preceding result to see that uf + cu, = Uf++Eg 0 for

all > 0, and conclude that u 2 0. O0

Corollary 2.2 Let J be a solution to (R) which satisfies (1.4). Then

(f, Jk) = IE[f(XCo), Co < oo I Xo = k] for f E F and k e {0, 1}

if either a > p coth p and (cf. the notation in Theorem 2. 1) m(J) • 1 or a < a coth p

and m(J) < 1. In particular, in each of these cases, there is at most one such J, that

J must be non-negative, and (1, Jk) = IP(Co < oo IX = k) for k e {1, 2}.

Proof Given the results in Theorem 2.1, there is no difference between the proof

of this result and the proof given earlier of Theorem 1.15. O

By combining Theorems 1.15 and 2.1 with (1.11), we have a proof of the first asser-

tion in Theorem 1.5. Namely, if uf > 0, then (1.11) says that f(k) Ž E[f(X(o), Co <

00 I Xo = k] and Theorem 1.15 says that E[f(Xco), Co < oo Xo = k] = (f, Jk"').

Hence, we now know that uf Ž 0 == D',"f Ž 0, and, by the semigroup prop-

erty, this self-improves to uf > 0 ==- D'"uf (t) > 0 for all t > 0. Now sup-

pose (cf. Theorems 1.3 and 1.5) that D•',f = aoVo + alV1. Then, by Theorem 2.1,
D'"'uf(t) = aoe-•'tVo + ale-Ao'"tV. Thus, if al # 0, then the ratio of the compo-

nents of DO',uf(t) is negative for sufficiently large t > 0, and so al = 0 if uf > 0.

Hence, uf > 0 ==> 0 < D'L"f = aoVo and therefore that ao > 0.

2.2.2 Existence of Solution to (R)

In order to find solutions to (R), we will first look for solutions to

(2.3) J" - p J' + BJ = 0 with J(0) = 0 and J(1) = 02 (0) (2a)



for any non-singular matrix B, and we will then see how to choose B so that B =

B(J). For this purpose, set Q = V 2 - 2B 3 and

J(x) = 2ae"x
sinh(1 - x)

sinh Q ( 10) sinh zx
+ e-sinh

sinh f

where we take sih x x when w = 0. It is clear that the J in (2.4) solves (2.3). In

addition,

B(J) = o [i - Q coth Q•+ sinh
1,/ sinh

Hence, we are looking for B's such that the corresponding Q satisfies

-10 -cth+

0 1

To solve (2.5), suppose that W = (wo, wi) is a left eigenvector of Q2 with eigenvalue

e-y0

coth w)wo + w,
sinh w

2 2 e2 "w[L w (W - w coth w)w l 
+  W o,2a sinh w

+ w coth w +

+ wcothw -

In particular, w must be a solution to

p2 2 2

(2.7(±)) 2 cothw = 2 +  2w2a sinh2 W

3Because of potential problems coming from nilpotence, this assignment of Q should be thought
of as an ansatz which is justified, ex post facto by the fact that it works.

(2.4)
01) 1

(2.5)
221 _ I 2

2a ( 0sinh 2
em
0)

w. Then
It2 _ w2

wo = -(u + w2a

and so
w1 2 _ 2 2

wo 2a
wo =2 _ 2
W1 2a

It)

e" sinh w
w

e- " sinh w
w



and

w /2 e" sinh w
wo sm 2+h2 p

2e-sinhL

(2.8(±))
wo sinh 2 w sinh w

Lemma 2.9 There is a unique w > 0 which solves (2.7(-)). Moreover, if wl de-

notes this unique solution, then wl > Ipl. On the other hand, JIp is always a solution

to (2.7(+)), and there is a second solution w E (IpI,wi) if a > p coth f.

Proof Without loss in generality, we will assume that p > 0.

Clearly, w > 0 solves (2.7(-)) if and only if gi(w) = 0, where

W2

gl(w) - 2 - 2aw coth w - 2a p2 + sinh2sinh2 W
Since g (0) < 0 and lim,,,_, g(w) = oc, it is clear that gl vanishes somewhere on

(0, oc). In order to prove that it vanishes only once and that it can do so only in

(p, oc), first note that

gl(w) > 0 > (w - a coth w) 2 > 2 coth 2 W + 2o p2 + 2+ n 2

sinh2 w

which is impossible unless w > or coth w, in which case w > (2a coth w) V F. Further-

more, if w > 2o coth w, then

1 c
~(w) = w - o cothw - o (1 - w coth -w)

2 2 sinh 2

cx a
> coth w - s - (coshw o- 1) > 0.

sinh ow sinh w

Knowing that gl (w) > 0 - g' (w) > 0 and that w > p, the first part of the lemma

is now proved.

Turning to the second part, set

go(c) =- 2 - 2ow cothw + 2 p2 + sinh 2sinh2



Then w satisfies (2.7(+)) if and only if go(w) = 0, and clearly go(p) = 0. In ad-

dition, since gl(w) > 0 ==~ go(w) > 0 and gi 2 0 on [wl, oc), we know that go

can vanish only on (0,wl). Finally, to show that it vanishes somewhere on (t, wl)

if a > tpcoth p, note that, since go(wl) > 0 and go0() = 0, it suffices to check that

a > pcoth p == g'(p) < 0. But g'(p) = (p coth - a) tanh p, and so this is

clear. O

From now on, we take wl as in Lemma 2.9 and wo to be a solution to (2.7(+)) which

is equal to p~l if a < p coth p and is in (JpL, wi ) if a > p coth p. The corresponding

solution J to (R) is given by 2,ex times

( e- (sinhxwo sinhxwl + WooW1 1 sinh(1-x)wo 0110sinh(1-x)wl

sinh(1-x)wo sinh(1-x)wi -s 01 1 inhXwo + e-•Wo sinhxwl
-- W0wlW0 ( wo wl )- e-AW01Wl0 wo W / w l/

where Wk = (WkO, Wkl) is a left eigenvector of Q with eigenvalue wk.

Remark: For those readers who are wondering, the reason why, when a < p coth p,

we take wo to be the solution to (2.7(+)) which is greater than Iu1 is to get a solution

to (R) which satisfies (1.4).

Lemma 2.10 The preceding J is a non-negative solution to (R). In addition, (1, Jo) =

1 = (1, JI) if a > p coth 1 and (1, Jo) V (1, J) < 1 if a < [tcoth p. The eigenvalues

of B(J) are Ak = A2Wk, k E {0, 1}, and associated right eigenvectors Vk = kO

satisfy

Vkl = (-) sinh wk 2 e" sinh wLk

VkO Wk Wk

Hence, they can be chosen so that voo A vo1 > 0 with vo1 + vo1 = 1 and vlo > 0 > vill

with vio - vll = 1.

Proof To check that J is non-negative, we begin by remarking that u(y)
sinhywo _ sinhywl > 0 for y [0, 1]. Indeed, u(0) = 0 = u(1) and u" < w2u. Hence, if

WO W1 - 1

u achieves a strictly negative minimum, it would have to do so at some y E (0, 1), in

which case we would have the contradiction 0 < u"(y) < wofu(y) < 0. Because of this



remark, it suffices to show that all the numbers

W00Wll - U10 1 W 1 0  00Wll - W01W0 W00Wll - Wa01W10 W00Wll - W01l10

W01w 11 -1 00W10 W00W11 -W01W10

are positive. But, using (2.8(+)), this is an elementary, if somewhat tedious, task.

Next, from B(J) -= the identification of the eigenvalues of B(J) is clear.

In addition, if Wo and W1 are left eigenvectors of B(J), then the columns of Wo 1
W1-1

are associated right eigenvectors of B(J). Hence, the calculation of L1 is a conse-
VkO

quence of (2.8(±)).

Turning to the calculation of (1, Jk), observe that, by integrating (R), one sees that

B(J) = 0.
1 - (1, Jj)]

Hence, if wo > I 1t, and therefore B(J) is non-degenerate, 1- (1, Jk) = 0 for k E (0, 1}.

On the other hand, when wo = i, ( (1, ) must be a multiple of Vo. In
1 - (1, Ji)/

particular, this means that either (1, Jo) and (1, J1 ) are both equal 1, both strictly

greater than 1, or both strictly less than 1. To determine which of these holds, note

that, when wo = jpLwo_ 0 = e2" and therefore that

)) 20 [1 sinh(1 - x) d + e e sinh xp l 2ae" sinh p
lo sinh p sinh p •p

and so

2ae" sinh p 2e" sinh ( h
1 - (1, Jo) + e2 ( 1 (1, J)) = 1 + e2 - sinhp 2 einhp th p - ).

Thus, a = pcothp p (1, Jk) = 1 and a < p cothp p (1, Jk) < 1 for

k E {0, 1}. EO



2.3 Growth of Solutions

In this section we will give the proof of the final part of Theorem 1.5. To this end,
set

(-1)k 2 COsh2wk + 2 - - p coshwk

Wk +
for k E {0, 1},

and define h"'' and hu'" by

(exwo + coe(1-x)WO)e - x  if a > t coth p

_L + 1 týi,+ + (1 +tan x2  if a = ftcothp & -p 0

1 - x(1 - x) if a = 1 & p = 0

1 if a < p coth L,

hI'"(x) = (ex"W + cie(1-)w')ee-x.

If u' '" denotes uhA,, then

I tAa, o"" u 7
e o noh''"(x)

•""e- 0 hor' (X
u0 "(t, t+ h'(x)

1

if a > p coth p

if a = p coth p

if a < p coth p,

and

u"' (t, X) =e - h "

In addition, because u"'' > 0, the first part of Theorem 1.4 says that D',I'h '1 " is a

non-negative, scalar multiple of Vo. At the same time, because, u'"" is unbounded

when a > p coth M and when a < M coth p it does not tend to 0 as t -- o00, this scalar

cannot be 0. Hence, there exists a K ' '" > 0 so that Ko"D'D h''"h ' = Vo. We next

want to show that K"'" -/ 0 can be chosen so that KI"'D'ILhl' • = Vi. It is clear (cf.

Theorem 2.1) that

d-= I 't u ' (t) Mt=

Thus D"'"h"'C is a scalar multiple of V1, and, because u,'" is unbounded, this scalar

cannot be 0. That is, K"'" = 0 can be chosen to make K"'"D',"h '• = Vi. Finally,

h"'" must take both strictly positive and strictly negative values. If not, u' 1' would

Ck =

(3.1)

= -A'" D"'"h""''



have to take only one sign, which would lead to that contradiction that D "h"'' is a

multiple of VI.

To complete the program, set

SK '•'hl' if a > p coth p90g - 0
= K, if a IL coth p

and g'", = K,-'h'o'. Given f E F, determine ao and al by D'""f = aoVo + alV1 ,

and set f = f - aogS' - ag". Then uf = u + aoK"u" + a1KV•"u~'" Because

D""if = 0, as t -+ oo, uy(t, -) tends to 0 if a < I coth p and, in any case, stays

bounded. Clearly, the last part of Theorem 1.5 follows from these considerations.

As a consequence of the preceding, we see that -A'" is the exact exponential rate

constant governing the growth of the semigroup {Qt : t > 0}. That is, there is a

C < oo such that

(3.2) IQ tf |lu 5 Ce-tA'•, lflu,

and there are f's for which limtoo et IIQ0tf > 0.

2.4 Proof of Theorem 1.1

This appendix is devoted to the proof of Theorem 1.1, and we begin by introducing
12

a little notation. First, let g(t, x) = (27rt)-se-t be the centered Gauss kernel with

variance t, and set G(t, x) = EkeZ g(t, x + 2k). Clearly, G(t, -) is even and is periodic

with period 2. Next, set

(4.1) Qo(t, x, y) = e 2(Y-X)-2 [G(t, y - x) - G(t, y + x)], (t, x, y) (0, 00) x [0, 1]2.

As one can easily check, Qo is the fundamental solution to it = lu" + pu' in [0, 00) x

(0, 1) with boundary condition 0 at {0, 1}. Equivalently, if Tk denotes inf{t > 0

Xt = k}, then

P(Xt E dy & TO A T1 > t Xo = x) = Qo(t, x, y) dy.



Next, set

qk (t, x) (1)k (t, , y) k 0, 1
2 dy y=k

Then, by Green's Theorem, for hk E C([O, oo); R),

q (t - T)hl (T) dw(t, x) = qo(t - -)ho(T) dT +

is the solution to it = lu" + pu' in [0, oo) x (0, 1) satisfying limt\o u(t, .) = 0 and

lim-•k u(t, ) = hk(t). Equivalently,

PP(71 > To E dt Xo = x) = qo(t, x) dt and P(To > T1 E dt Xo = z) = ql(t, x) dt.

In particular, these lead to qk 2 0 and

QO(s + t, x, y) =

qk(s + t, x) =

QO(t, x, y) dy +

L,1)
/(0,1)

Q0 (s, x, z)Qo(t, z, y) dx

Q0 (s, , y)qk(t, y) dy

qo(T, x) d-r +

for k E {0, 11

(4.3) qo(t, x) = -e- '-~ tG'(t, x) and q(, ) = ((t 1
and ql(t,x) = -e"('-x)- 2 G'(t, 1 - x),

where the second of these comes from G'(t, 1 + x) = -G'(t, -1 - x) = -G'(t, 1 - x).

Clearly,

0 < Qo(t, x, y) < g(t,
1

x - y) <V2--7t *
In order to estimate qk(t, x), first note that, from (4.3), it is clear that G'(t, x) < 0.

Second,

x 2 xG'(t, z) = -xG(t, x) + 1 m(g(t, 2m - x) - g(t, 2m + x)) > - G(t, x).
m=t
rn=1

(4.2)

and

l (T7, x) d = 1,

(4.4)



IG'(t, x) <5 G(t, x) _ Cxg(t A 1, x),-t t

(4.6) 0 < qo(t, x) < C-g(t A 1, x)
t

1-z
and 0 < ql(t,x) < C g(t A 1, 1 - x).

t

for some C < oo.

In what follows, we will be using the notation

e2 A -- 1
wi(x) = e2 _ 1 ,

and fk = (f, wk)

Note that if u E U satisfies (1.2), then, after integrating by parts, one finds that

fo(t)= u(t, 0) + e2 (t 1)

il(t ) = _ u'(t, 1) - u(t, 1) + u(t, 0),e2p -1 e2 - 1

and therefore
d (u(t, 0)
dt (u(t, 1))

d
2a-dt

2aewhere A -2
e2j- 1

(t) u(t, 0)
(t) u(t, 1)

e2p _e2p

Solving this, we see that

e-tA (u(t, 0)

u(t, 1))
e -sA u(s, 0)

( u(s, 1)

- 2ae-sA (p 0(s)

( fLS) J
from which it is clear that if, as s \ 0, u(s, -) r (0, 1) converges pointwise to a

function f : (0, 1) - R, then lims\o u(s, k) exists for k E {0, 1}. Thus, the first part

of Theorem 1.1 is proved, and, in addition, we know that

(4.7) (u(t, 0)
(U(t, I))

- e f(O) - 2ofo
f(1) - 2afl)

Hence,

(4.5)

and so

e 2 1x _ e-2p
o() = - e2

1 - e2l '

for f E F.

= 2 ae-tA (0 (t)

iiL1t) J + 2r j e -AA fo((T)

1( fl()

+ 2a o(, o
S(f

+ 2ou t
e(t-0 )A A (' o( T)(

1(-)J

pe 2p u(t, O)
e 2p - I

\

J

Uo

fil



if u(t, -) --) f in F.

Because, for any u E U satisfying 7i = lu" + piu' and, as t \ 0, u(t, .) -- f

pointwise on (0, 1),

u(t, x) = IE[f (Xt), 'o A or1 > tI X(0) = x] + E[u(t - Oo, 0), o0 < tA or, IX(0) = x]

+ E[u(t - r, 0), al < t A ro X(0) = x]

Qo(t, x, y)f (y) dy +
- /(o,1)

o qo(r, x)u(t - T, O) d-r +
o0

t

q, (T, x)u(t - T, 1) dr,
0

(4.7) tells us that if u E U satisfies (1.2) and u(t, -) - f in F, then

(4.8) u(t, x) = rf(t, x) + k(t 7i, x) (uf (T))d-,

where

rf(t,) hf(t,x) + , q(t --,x)eA ( - 2 d
Jo \f (1) - 2afli

k(t, x) - 2aq(t, x) + 2a It
J0

q(t - T, x)e'AA dT

with hf(t, x) = f(0,1) Q0(t, x, y)f(y) dy and q(t, x) = (qo(t, x), ql(t, x)).

Our proof of the existence and uniqueness statements in Theorem 1.1 will be based

on an analysis of the integral equation (4.8). Clearly, given f E F, finding a solution

u to (4.8) comes down to finding a t e [0, oc) v(t) = vl(t) E R2 which satisfies
\vi(t))

v(t) = ýf(t) +

( _ (rf (t, .), wo)
f(t) (tWO)

it

Indeed, if v solves (4.9) and u is defined by

u(t, x) = rf(t, x) +

(4.9)

where

K(t - T)V(T) dT,

and k(t) = (k(t, )
[(k(t, ), W1)

I' k(t - 7, ) v(7) dr,



then u satisfies (4.8). Conversely, if u solves (4.8) and v(t) = (• (t) , then v solves

(4.9). Thus, existence and uniqueness for solutions to (4.8) is equivalent to existence

and uniqueness for solutions to (4.9).

To prove that, for each f E F, (4.9) has precisely one solution, we use the fol-

lowing simple lemma.

Lemma 4.10 Suppose that M : (0, T] --- R 0 R is a continuous, 2 x 2-matrix-

valued function with the property that L(T) = supte(o,T] t½ IM(t) lop < oo and that

vo : (0, T] -- + R2 is a continuous function for which jlv0 •,T - suPte(o,TI t'lvO(t)I <

oC, where a E [0, 1). If {vn : n > 1} is defined inductively by

vn(t) -= vo(t) + M(t - r)v- (7) dT, tE (0, T],

then
sup v( n-1 (L(T)#)nrF(1 - a)JIVoll,vT a-asup I v, () (2) I T2

r O,T] - ( + 1 -a)

In particular, {vn -v 0 : n > 1} converges uniformly on (0, T] to a contiguous function

which tends to 0 as t \ 0. Finally, if v" = vo + limn_-(vu - vO), then v" is the

unique v : (0, T] -- R R2 satisfying

v(t) = v 0(t) + M(t - T)v(T) dr with IlvlIa,r < 00.

In fact, there is a Ca < 00 such that IVOO••,rT < CQL(T) IIvo I,reCaL(T)T.

Using the estimates in (4.5) and applying Lemma 4.10 with a = 0, we now know

that, for each f E F, there is precisely one solution to (4.9), which, in view of the

preceding discussion, means that there is precisely one solution to (4.8). Moreover,
because every solution to (1.2) with initial data f is a solution to (4.8), this proves

that, for each f E F, the only solution to (1.2) is the corresponding unique solution

to (4.8); and, for this reason, in spite of our not having shown yet that every solution

to (4.8) is an admissible solution to (1.2), we will use uf to denote this solution. Note

that, from the last part of Lemma 4.10 and our construction,

(4.11) Iuf (t, -)IIu < CIIfll ect



for a suitable C < oo.

What remains is to show that solutions to (4.8) have sufficient regularity to be an ad-

missable solutions to (1.2) and that their dependence on f is sufficiently continuous.

To this end, return to (4.9), set vo = r^'(t), and

v"(t) = vo(t) + K(t - r)v'-'(T) dr.

Then
in(t) = t (t ) f(0) - 2a +  t - -1ib"(t) = hf(t) +± (t) ( I (t - T)vni(T) dr,

(f (1) - 2af, Jo

where

hf (t) = t (h f (t , W O)

with

S(t,) ) ( (Qo(t, ., y), wo)'
(Q0 (t, ", y), wO))

Using integration by parts, one sees that

0 e& G'(t, y)
Q(tye) = e(Y-)G,(t, 1 - y)

and therefore that the estimate in (4.5) together with Lemma 4.10 guarantee that

,(t) Uf (f)0o(t) is continuously differentiable on (0, o•) and that

(4.12) Iuf(t)) : Ct- Ilf Iuect

for some C < oo. Combining this with (4.8), it follows that uf

differentiable with respect to t E (0, oo) and that

hf(tx t q )(f(o) - 2a•o•f()- 2f t k(t
Uf(t, x) = hf(t, x) + k(t, x)f + q(t, X) (0)+ -k(t -Jf(1) - 2cf, o

is continuously

T) f(-) dr.

Since elementary estimates show that supt>o tQ0o(t, x, y) < o00, we have now shown

that

(4.13) i' S (t, -)ll,, < C t-llf lluec t

Q(t, y) f (y) dy



for a suitable C < oo00.

It is clear from (4.8) that uf is differentiable on (0, oo) x (0, 1) and that

ft
u' (t, x) = r' (t, x) + k'(t - -, x)i f(-r) dr for (t, x) (0, 00) x (0, 1).

The contribution of hf to r' poses no difficulty and can be extends without difficulty to

(0, oo) x [0, 1] as a smooth function. Instead, the problems come from the appearance

of integrals of the form fo q'(t - T) O(T) dr as x -- k. To handle such terms, we use

(4.3) to write

q' (t, z) = -pqk(t, X) + ( )keL (k-x)- 2
t G"(t, k - x)

= -pqk (t, )+ (-l)-k2e(k-x)- 1G(t, k - x).

The first terra causes no problems. As for the second, we can integrate by parts to

see that

SG(t- T, X)4'r) dT = G(t, x)0(0) + J G(t- T, x)(-) dr.

Hence, by (4.12), the preceding expression for un (0, oc) x (0, 1) admits a

continuous extension to (0, oo) x [0, 1]. In addition, one can easily check from our

earlier estimates, especially (4.12), that

(4.14) (t, )u CtllflueCt

for an appropriate C < oo. Finally, because u1 is smooth and satisfies itu = Lu" + pu'

on (0, oo) x (0, 1), we now see that u" extends as a continuous function on (0, 00) x [0, 1]

satisfying

(4.15) Ilu"(t, -)IIu < Ct-lllflluect

for some C < cc.

In view of the preceding, all that we have to do is check that itf(t, k) = (-1)1-kaau'(t, k).



To this end, observe that (4.8) is designed so that its solutions will satisfy

= 2a ,~o(t))
(ul (0)

and that, because it = u" + pu',

-u'(t, 0)
u'(t, 1)

-A u(t, 0)
\u(t, 1))

~i(t, O)
il(t, 1)J

+ A u(t, 1)

(u(t, 1))

(2a •to(t)



Chapter 3

A Generalization to Dimension

Higher than One

3.1 Introduction to Our PDE Case

3.1.1 Our Main PDE Result

Let F be the space of bounded functions on E := [0, +oo) x (-oo, +oo) that are

continuous on E + := (0, +oo) x (-oo, +oo) but not necessarily continuous at the

boundary E- = {0} x (-oo, +oo). Convergence of f, to f in F means that {1Ilfll}
is bounded, fn(x,y) - f(x,y) for each (x,y) E E, and uniformly for (x,y) in

compact subsets of E+. (We write f, -+ f u.c. E + as a shorthand for the last

requirement.

In the next definition and hereafter, note that we use probabilistic convention of

writing u(t, x, y), not u(x, y, t). As usual,

Ou , u 2,, 2  u 2U
"71 - - U. Uat' u~X ax) O2  ' X y- u := ay : , 2) = u, +y'

Now, for T > 0, let UT be the space of functions u on (0, T] x E such that u is

bounded on (0, T] x E and whenever 0 < T1 < T2 < T we have

n [ ([Ti, T2] x E) E C2([T1, T2] x E).

Recall that this last statement means that u, it, u, u/,, uYX, and u", are all bounded

continuous functions on [Ti, T2] x E. Note that we insist that u is C1,2 right up to



and including the spacial boundary (0, oo) x E-. We let Uc, = n UT.
TER+

Denote by HP(-a, a)(for 1 < p _ 2) the Hardy space over the band IImzj < a,
i.e., the space of functions g analytic for I1mzI < a such that (let z = a + ip)

sup ( g(a + i) Ilda))
131l<a .R I

We denote HP(R) =

< +00oo.

HP(-a, a).
aER+

THEOREM 1.1

Let po, pi, a E R, E E C+ U{oo}, and let f E Cb(E+). Suppose that u E Ue and

that u satisfies the PDE

i = Anu + pIou + pILu

i(t, 0, y) = au (t, 0, y) f or t

on (0, 9) x E+,

E (0, E), y c (-oo, +00),

(1.1c) lim u(t, x, y) = f(x, y) u.c. E+ .
t\o

Then f (0, y) := u(O+, 0, y) := limt\o u(t, 0, y) exist, and we note that the extended

function f is in F.

THEOREM 1.2 If u < 0, for e e R+ , f E F, the following statements are

equivalent:

(i) There is a unique uf C Ue which satisfies (1.1) with u(O+,0,y) = f(0,y) for

y E (-oo, +oo).

(ii) There exists h E Cb(RI) such that Df = J(e, .) * h(-), where

Df (y) = f (0, y) -

(1.1a)

(1.1b)

f (x, J(x, .)dx,



{ -J(z, ) x E [0, 00)} is a convolution semigroup given by: J(O, .) = -26 0o(-) and
J(x, dy) = J,ll14,2(x, y)dy for > 0,

JPoL1 (X, Y) -2)x= e(po+a)x-2ply jc

,]•,o,1(x2y -F 2
exp{ [( -( °)2+2 -21 •-- }d ,

and J(x, ) = -e 2xoJ ( ).

(iii) There exists v(t, y) E C([a, c00) x R)) coCo((a0, oo) x ]R)) satisfies:

(1.2) Dt2v(t, y) + 2 (po - or)atv(t, y) + 22v(t, y) - 2piyv(t, y) = 0,

with v(0,.)= Df(.), sup IIv(t, -) ), < 00,t>Ee

lim |nv(t, -)I, = 0 if po > o.
t-0oo

In particular, if Df E HP(ar0, -a0), for some p E [1, 2], then for any 0 < T <
), there is a unique uf E UT which satisfies (1.1) with u(0+,0, y) = f(0, y) for

y (-oc, +oo).

By theorem 1.2, we immediately have:

COROLLARY 1.2

lent:
If a < 0, for f E F, the following statements are equiva-

(i) There is a unique uf E U,, which satisfies (1.1) with u(0+, 0, y) = f(0, y) for
y (--00, +oo)

(ii) For any 0 E (0,00), there exists he E Ob(R) such that Df = J(O,.) * he().

(iii) There exists v(t, y) E C" (R 2 ) satisfies:

Ot2v(t, y) + 2(,o - u)atv(t, y) + a&v(t, y) - 2piOv(t, y) = 0,

with v(O, .)= D f(.), sup flv(t,.) -)I < 00
t>T

for any T E IR,

lim v(t, -) -=
t---oo

0 if Po > o.



In particular, if Df E HP(R), for some p E [1, 2], there is a unique uf E U, which

satisfies (1.1) with u(O+, 0, y) = f(0, y) for y E (-oo, +oo).

3.1.2 Non-negative Solutions

If a > 0, then u(., -, -) > 0 if and only if f > 0, so that {Qt : t > 0} is a semigroup of

nonnegative operators on F. This may be proved either by the use of the minimum

principle or via supermartingales. We emphasize that by nonnegative operator we

mean an operator which is non-negativity preserving in that it maps nonnegative

functions to nonnegative functions(not a nonnegative definite operator).
Now assume that a < 0. Then we lose the minimum principle, and, as a conse-

quence {Qt : t > 0}} is no longer a semigroup of nonnegative operators on F. We

are interested in certain {Qt : t > 0}-invariant subspaces of F on which each Qt is

non-negativity preserving.

We will show that:

THEOREM 1.3 For each a < 0 and po, p1 E R, there exists a unique non-negative

finite measure J(., -) on E, which satisfies the Riccati equation(in the sense of tem-

pered distribution)

½AJ(x, y) + ½(axJ(0, ) * J(x, -))(y) + 2 0upoJ(x, y) - [ooJ'(x, y) - pL1J (x, y) = 0,

(R) for (x, y)E E, and

J(0,-) = -2a6o(-)

which satisfies
f+oof+OO J(dx, dy) 1 if a<po

o 0< 1 if a > P0,

In fact, J(dx, dy) = J",o,"' (x, y)dxdy for x > 0, where

-2ax (O+a)x-2lyexp [(a-o) 2 +2p]_ (x2+y2)e d5
(1.3) o, (, y) -



and f_+I Jia'po'li(x, y)dy = (-2ou)e2(I °Â )x for x E (0, oo). Therefore, we have a con-

volution semigroup of finite measures x e [0, oo) -- f 1 J(x, -) over R.

We use the following Fourier transform definition:

.F(f) () =

and F- 1 is the corresponding fourier inverse transform. If f E S'(R)\L', TF(f) is

defined in the distribution sense. That is for any g E S(R),

(FY(f), g) = (f, (g)) .

For any W E CO(R), we define linear operators J(x) as following:

J(x) (cp)(y) = ((-H) * J(x, -))(y) for any x c [0, oo).

Let K = V-( + 2py + (a - po) 2 in the sense that: for any p E S(R) (Schwartz

class),

TF(K(p))(() = 2 - 2i/~ + (a - o)2 ( )

where we choose the right branch of square root such that Re(V~/2 - 2Tipj + (a - tpo) 2 )

By subbordination, .F(Ja°'oU (x, .)) = (-2a)e(°o+'-x('-a°)2+2-2iI")x . Since { -J(x, ) :
x E [0, o)o)} is convolution semigroup of finite measures and by Levy-Khinchine for-

mula(see Theorem 2.1.9 in [11]), we can extend the domain of operator K in the

following sense: for any o E C~b2(R),

(-2a([po + a) + 2aK)(p = lim J(x)o - (-2a)o
x\O x

We immediately have the following corollary:

COROLLARY 1.3 J(x) = -2oex(0 + °o) - xK, and for any o E C2(R),

(1.4)
1 1
28X (J(X) (p))- _ ,i=(J(x)(P)) = 2 -(x) 2 ) ± 1 J(X)(&P)2 2

Sf (y)e-iEYdy,f-"O



-aJ(x)(K(p)) + (a2 - p0a) (x)(W).

Now, we have the following result:

THEOREM 1.4 Assume that a < 0, and u E U, satisfies (1.1) with u(O+,x, y) =

f(x, y) for (x, y) e E + . Then

u(.,.,.) o0

if and only if

f(., .) > 0 and Df(y) - C for some constant C C [0, oo),

where

Df(y) = f(0, y) - + f(x,.) J(x, .)dx.f (x, -)*J(x, .)dx.

3.1.3 The Basic Probabilistic Model

The probabilistic model associated with our PDE is the following: Suppose that X

is Brownian Motion on [0, 00) with drift uo and reflection at 0. That is, with B a

standard Brownian Motion,

Xt = Xo + Bt + pot + Lt > 0,

Here L are "local time" of X at 0 given by Lt = max{(Xo + B, + pos)- : s < t}. In

particular, it is a non-decreasing process which satisfies

Lo = 0, j {o1 (Xs)dLS = Lt,

and so L grows only when X is at 0. Let Y be Brownian motion on (-oo, +oo) with

drift p~ and independent of X.



Let

(1.5) At := o + t + a-lLt, + := inf {r : ob > t}, X :=X(t+), Yt+ := Y(T+).

If T+ = oo(equivalently, if sup (r < t), we set (X + , Yt+ ) = 0 as usual, where 0 is

an absorbing point not in [0, 00] x [-oo, +oo]. In the case when a = 0, we define

T+ := Ho for t > Ho, where Ho := inf{t :Xt = 0}.

The connection between (1.1)(with E = c0) and these processes is that, for each

f E F and T > 0, an application of standard It6 calculus shows that(note that

Xo = 0 & a < 0 = To+ > 0 a.s.)

(1.6) t E [0, TT+ ) - uf(T - Pt, Xt, Yt) E R is a continuous local martingale.

In particular,

(1.7) If P(lim uf(T - At, Xt, Y) = OXo = x, Yo = y, TT+ = o00) = 1

and uf is bounded, then uf(T, x, y) = E[f(X+, YT+), TT+ < oolXo = x, Yo = y].

Similarly,

(1.8) If uf > 0, then uf(T, x, y) > E[f (X+, ,Y+), <ooXo = x, Yo = y].

Remark: It should be emphasized that, although the process(X + , Yt+) is a familiar,

continuous diffusion when a > 0, it is highly discontinuous when a < 0. Indeed,
when u < 0, although (X + , Yt+) behaves just like (Xt, Yt) as long as it stays away

from {0} x (-oo, +oo), upon approaching {0} x (-oo, +oc), (X + , Yt+) either jumps

back inside or gets sent to 0. In particular, even though it is right-continuous and

has left limits, (X,+, Yt+) is not a Hunt process because its jump times are totally

accessible.

In order to make the connections between (X + , Yt+ ) and the function J in Theorem

1.3, we will need the following result from [12] about the behavior of ot as t - o0o.



Lemma 1.5 Assume that a < 0, then almost surely,

lim 4t =
t---oO

= +00 if a < go

= -00 if a > go,

a = o0 ==ý lim +rt = 00.
t---oo

As a consequence of Lemma 1.5, we can now make the connection alluded to above.

Theorem 1.6 Assume a < O0. For all bounded, measurable p : E+ - IR,

(1.11) E[((Xo+, Yo+),T + < ooXo = 0, Yo = 0] = I (p(x, .) * J(x, -))(yo)dx,

for V y E(-o, c)).

In particular, P(To+ < oolXo = 0, Yo = yo) = - and °J- J~",o1(.,yo - -) is the

density function for the distribution of (Xo+, Yo+ ) given that Xo = 0, Yo = yo and

ro+ < 00.

3.2 Proof of Theorems and The Riccati Equation

1 x2

Let g(t, x) = (27rt)-2e 2t be the centered Gauss kernel with variance t, and set

(2.1) Qo(t, x, y, x', y') = eo(x'-x)+i(Y'-Y)-T t-. t [g(t, x' - x) - g(t, x'+ x)]g(t, y' - y)

for(t, x,y, x', y') (0, oo) x E2 .

As one can easily check, Qo is the fundamental solution to it = Au + poou' + pIlu

in [0, oo) x E + with boundary condition 0 at E-. Equivalently, if p denotes inf{t >

(1.9)

and

(1.10)



0: Xt = 0}, then

P [(Xt, Yt) E (dx', dy') & p > t (Xo, Yo) = (x, y)] = QO(t, , y, x', y')dx'dy'.

Next, set

ldx
(2.2) q(t, x, y, y') - d Qo(t, X, y, X', y') lt=o2 dxl
Then by Green's Theorem, for h C Cb([O, oo) x (-oo, oo); IR),

w(t,x, y) qt q(t - 7 , Y, y, y')h(r, y')drdy'0 _00:
is the solution to it = An + pou' + pluy in [0, oc) x E + satisfying limt\ou(t, ., ) = 0

and lir•mxou(t, x, y) = h(t, y). Equivalently,

P [Yp E dy' & p E dt I (Xo, Yo) = (x, y)] = q(t, x, y, y')dtdy'.

In particular, this leads to q > 0 and

(2.4a) Qo(s + t, x, y, x', y') =
E Q 0o(s, x, y, x", y")Qo(t, x", y", x', y')dx"dy"

SJE+

Q°(s,x, y,x", y")q(t,x", y", y')dz"dy",
JJ+

(2.4b) q(s + t, x, y, y') =

Qo(t, x, y, x', y')dx'dy' + jo tf-/C0q(r, x, y, y')drdy' = 1

q(t, z, y, y ') X (ex+-t)
2

-- e 2t

~2~it3

1

J2t

X)g(t, y - y

(Y,-y+Alt• t2

e 2t

+ pit)

5 f-q(t, x, y, y')dxdy < Ct-110 G

(2.4c)

Moreover,

(2.5a)

2

= -e PX2g(

JE+I

(2.5b)



Proof of Theorem 1.1 In what follows, we will be using the notation f(-) =

fo( f(x, .)e-xdx for f E F and set / = 2 + Po. Note that if au Ue (8 E R+ U {oo})

satisfies (1.1), then after integrating by parts, one finds that

(t, y) 3= 7~(t, y) - u' (t, 0, y) - pu(t, 0, y) + l"i(t, y) + pi1'(t, y)

and therefore

dd (u(t, 0, y)) = 2O3U(t, y) - 2aou(t, 0, y) + au"•(t, y) + 2acplu (t, y) - 2au(t, y)
dt

Solving this, we see that

e2oatu(t, 0, y) - e2o-06u(6, 0, y) = -2a(e 2 ti7p(t, Y) _ e2 r6hU(6 1I))

+2a(2o + 1)0 t . 2o/O-U T, Y)dr + t 2 
Uy(, Y) + 2r -1dTb'i·· · · ·~Y

But since u(6, y) - f(y) as 6 \ 0, it now follows that u(0+, 0, y) := limt\o u(t, 0, y)

exists. Thus Theorem 1.1 is proved.

Because, for any u E Uo (O E R+ Uf{oo}) satisfying it = !Au + Io¼ + pul and, as

t \ 0, u(t, , .) -- * f pointwise on E + ,

u(t, x, y) = E [f (Xt), p > t (Xo, Yo) = (x, y)]+E [u(t - p, 0, Y,), p < t (Xo, Yo) = (x, y)]

(2.6)
Qo(t, x, y, x', y')f(x', y')dx'dy' + +q( q, , y, y')u(t - T, 0, y')dTrdy'.

-o O

Theorem 2.1 For f e F, suppose there exists uf E Uc, which satisfies (1.1).

define Df = f(0, y) - J'o+  f(, ) * J(x, .)dx. Then we have

(2.7) Df () = etcr(-+po+K)(Duf(t, .)),

We



whereK = V-/12- 2• 1d + (a - 0o)2 . So Df = 0 ==- Duf(t) = 0 for all t > 0.

In particular, if m(J) = fo+" f_+" J(x, dy)dx = 0 < 1, then Df = 0 implies that

fluf lu < ff u. If m(J) < 1, then Df = 0 implies uf(t,x,y)j -+0 as t -- o0 uni-

formly over x in compact subsets of [0, oc) and over y in (-oo, +oo). Finally, for any

non-negative function f E F with the property that Df - C E [0, oc), we have uf > 0.

Proof. First, we notice J(x, -) = (-2a)e(o°+0O-i-"O)XMx (-). Since Jo,"o, satisfies

(1.2), thus limx,, J(x, R) = 0 and limx-,,, J(x, R) = 0.

By Theorem 1.3, Corollary 1.3 and J()x(p)(y) = (p(-) * J(x, .))(y), we have

dt (u(t, x, ), J(x, y--))dx = ((Auf(x, -)+uo(uf) (, -)+pl(uf)(x, .)), J(x, y-.))dx

--((uf)'x(t, 0, .) J(O, y- -)) +((K - -o)uf(t, 0, -))(y) - Po(uf(t, 0, )* J(0, -))(y)

J (uf(t,x,.) (l* 8J'°( x , ") - Po0x1 Jao"I (x, .)))(y)dx + (a9yuf(t,x,.0 0
+PIlayUf(t, x, )) * J(x, .)))(y)dx

= Uf(t, 0, y) + o((Po - a)uf (t, 0, y) - a(Ao - a) (s)(u(t, , ))(y)

+caK(uf(t, 0, -))(y) - j(zx)K(uf(t, 0, .))(y)

and so dDuf(t, y) - ar(a - po) Duf(t, y) - aK(Duf (t, .))(y), which is equivalent to

Df(-) = et'(-0+o°+K)(Duf(t, .)).

Define v(t, y) = (J(t + T,.) * Duf(T, .))(y) if t > -T, where T > 0. The definition of

Lv(t, y) is consistent with any 7 > 0, so it's well-defined. Note that

v(0, y) = Df(y) and v(-t, y) = Duf(t, y), for t > 0.

Fix y, v(t, y) is analytic w.r.t. t. If Df = 0, then

v(t, y) = J(t, ) * Df(.) = 0 for t > 0.

So v(t, y) = 0 for any t E R. We have Df = 0 ==> Duf = 0.

Now assume that m(J) < 1 and that Df = 0. We have luf(t, 0, y)l = I jo+°°(uf(t, x, )

J(x, -))(y)dx < Iuf(t) lu,E+. To see that luf 1u <  fl u, let e > 0 be given and sup-

pose that uf(t)lu,1Q > f 11u+ > lfl u,n+E for some t > 0 and some bounded domain



Q e E+ such that the closure Q E E+. (lfll u,I means the uniform norm of f on do-

main Q.) We can then find a T > 0 such that Iluf(T)Iju,o = I1f Iu + c> Iluf(t)llu,Q

for 0 < t < T. Clearly there exists a point P E n for which Iuf(t, P)I = If IIu + E.
Since P ý E-, it is contradictive to the weak maximum principle for the parabolic

operator at - !A - fotl - py,.

Next assume that m(J) < 1 and that Df = 0. By (2.6), to see that luf(t, z, y)j -

0 as t -* oo uniformly over x in compact subsets of [0, oo) and over y in (-oo, +oo)

, it suffices to show that Iuf(t, 0, y)I -- 0 as t - oo uniformly over y in (-oo, +oo).

Indeed, by the semigroup property, (2.6), and the fact that Duf(t) = 0 for all

t > 0, one would then know that I|uf(t, O)Iiu :5 Bf(t) + M(J) fo Iluf(7, 0) llud- where
Bf(t) = supyER ff fE+ (Q(t, , ., x', y') * JU,'o'1(x, .))(y)f(x', y')dxdx'dy' - 0 as

t \ 0. By Gronwall's inequality, I[uf(t, 0) lu - 0 as t -+ oo.

Finally, assume that Df - C E [0, 00). If f > 0 and uf ever becomes nega-

tive, then there exists a T > 0 such that uf(t) > 0 for t E [0, T) and uf(T, x, y) = 0

for some (x, y) E E. Again, from the weak maximum principle, we get a contra-

diction if (x, y) E E+ . At the same time, because uf (T, 0, y) Ž f0o(uf(T, x,.) *

J'4LOLi (x, .) (y)dx, we see that the only way that uf(T) can vanish somewhere on E is

if vanishes somewhere on E+.Thus, when f > 0, uf > 0. To handle the case f > 0,
define g e F so that g = 1 on E+ and g(0, y) = fo0 (1* J(x, -))(y)dx for y E R. Next,
apply the preceding result to see that uf + eug = uf+Eg > 0 for all e > 0, and conclude

that uf > 0. EO

Theorem 2.2 Let J be the same as Theorem 2.1. Then

(2.8) (f(x, ) * J(x, .))(y)dx = E[f (Xo+, Y+), Y + < oolXo = 0, Yo = y]

for f E Cb(E + ) and all y E (-oo, 00).

In particular, fo'(1 * J(x, .))(y)dx = P(T+o < 00o(Xo, Yo) = (0, y)) for any y E JR.

Proof. Given such an f E Cb(E+), define fI F such that I [E+= f and f(0, y)=

f0 (f(x, ) * J(x, .))(y)dx for y E R. Then by Theorem 2.1, uf is bounded and,

as t - c00, uif(t, 0, y)l -I 0 uniformly over y in (-oo, +oo) when m(J) < 1. By



(1.6), Lemma 1.5 and note that Xt keeps reaching {0}, we have P(rof = 00 ==

lim uf(-Dt, Xt, Yt) = 01Xo = x, Yo = y) = 1. Hence by (1.7) and Lemma 1.5,

f+W
j (f (x, .)J(x, .))(y)dx = 1(0, y) = IE[f (Xo+ , Yro), Tr < oojXo = 0, Yo = y]. O

Let ¢(x, () = T(J(x, -))(x). In order to find solutions to (R), we look for solutions

to the Fourier transform(w.r.t. variable y) of (R):

1 1 1(2.9) 2q + 4 (0 ) - 24 + 2upoo - Io$'m + ip1o4 = 0
2x 2X' x 2

with 0(0,) - -2a

Notice there is no derivative term for (, so we can fix ( and consider (2.9) as an ODE

for variable x. It's easy, if somewhat tedious, to verify that

(2.10) = (-2a)e(Io+±- /(a-po)+2-2i4L1)x

satisfies (2.9).

By subordination,

(2.11) eF1 () = e(°o+a)x-211y exp{_ [(R- O)2+2L1] (__+y2)_d_ .

So let J(0,.) = -2a6o(.)) and J(dx, dy) = Ja0 4"~o (x, y)dxdy, for x > 0, where

JU,/Po,4 (x, y) = -2e(uo+)x-2~ 0 f0 exp{- [(a-o) 2+2] - 2) d is our desired
solution to (R), and obviously is nonnegative finite measure when a < 0.

+ =1 if a<Ao
Furthermore, f(+ f0+ • J (o°" (x, y)dxdy = (xz, 0)dx = oo < 1 if a > 0L,

Combining with Theorem 2.2, Theorem 1.3 is therefore proved. O[

Proof of Theorem 1.6: Clearly, it suffices to treat the case when p is continu-

ous as well as bounded. Since if a > Po, m(J) < 1, and if a < P/o, we have m(J) = 1.
there is no difference between the proof of this result and the proof given earlier of

Theorem 2.2. O



We need the following simple lemma to prove Theorem 1.2 later:

Lemma 2.3 Suppose M(t) : C(R) --- ) C(R), where 0 < t < T are linear operators,
which is continuous over t, with the property that

1
L(T) = suptE(O,T)t2IIM(t) Iop < 00

and that vo : (0, T] - C(R) is continuous and jlvojja,T = SUPtE(O,T]ta vO(t)I < 00,

where a E [0, 1). If {vn : n > 1} is defined inductively by

(2.12) vn(t) = vO(t) + M(t - F)(vn- (7))dT, t E (0,T],

then
,tV (L(T) n ]p (I- Ce)Jjvjlla,T _nY

(2.13) suptE[o,T]lvn(t) - 1 (L(T) +(1 - a) ,T

In particular, {vn - vo : n > 1} converges uniformly on (0, T] to a contiguous function

which tends to 0 as t \ 0. Finally, if v" = vo + limn,-(v" - vo), then v" is the

unique v: (0, T] -+ C(R) satisfying

v(t) = vo(t) + M(t
O

- 7)(v(T))d-, with jIV•ja,T < 00.

In fact, there is a C, < o0 such that IvOIIa,T < CQL(T) (IIvOI,TecL(T)T.

3.3 Proof of Theorem 1.4

By combining Theorems 1.3, 2.1, 2.2, (1.8) and (2.10), we have a proof of the "if"

part of Theorem 1.4. Now, we need to show the "only if" part.

Let J(t, .) = e2t"aoJ(_at, .). Then by Corollary 1.3 and (2.7), we have

D f = J(t, ) * Duf(t, .).

(2.14)

(3.1)



For any o E Cf((R), let j(t)(p) = (t, .) * p(-), then we have J(t) = etU( - o+po+K)

and

(3.2)

(3.3)

OJ(t, .) * p(-) = a(-a + Po + K)J(t, .) * 9(.),

t aJ(t, -) * cp() = 72( o - U)2 (t, ) ()

+2a 2(Po - a)KJ(t, ) * +(-) o+ 2K 2 J(t, ) *

Combining (3.2) and (3.3) and notice K 2 = -, + 2f1 + (/-o - -)2 , we have

(3.4) t2(J(t, .) * p(.)) - 2c(po - u)Ot(J(t, .) * 0(.-)) + 07 2 (J(t, .) * 2(.))

-2plUa20y(J(t, .) •* (-)) = 0.

Define i)(t, y) = (J(t + T,) * Duf(T,.))(y) if t > -T, where T > 0. By (3.1), we

know if we fix r, ý (t, y) is well-defined for any t > -T. Now let T --+ o0, we get a.

well-defined f(t, y) for (t, y) E R2. By (3.4), we have

Ot2 D(t, y) - 2a(oio - Ua)O3t(t, ) + U2020(t, y) - 2pia 2 &,(t, y) = 0.

with i/(0, y) = Df(y).

Let v(t, y) = i t(- , y), then

(3.5) dt2tv(t, y) + 2(po - a)t()v(t, y) - 2pv2v(t, y) - y) = 0.

with v(0, y) = Df(y).

Notice J(t, R) = e"t(U- Ao)- , by the definition of v(t, y), we have

(3.6) sup (v(t,-) u <
t>T

for any T E (-oo, +oo),

(3.7) lim Iv(t, .)I u = 0 if Po > o.
t--+oo

Let w(t, y) = e("o-o)t --PYv(t, y), then

(3.8) Aw = ((Po -_) 2 + 1L1)W,



with w(O, y) = e-'1YDf(y).

To prove the "only if" part of Theorem 1.4, we need

tion theorem from [4]:

Theorem 3.1141 If w is a positive solution of the equation

a unique measure p defined on the unit sphere of R n , such

W(X) =-

the following representa-

Aw - w = 0, there exists

that

eAx dp((A).

If Duf(t,.) >

measure v on the

0, then w(t, y) is positive. By Theorem 3.1, there exists a unique

sphere of R2 with radius /(Po - )2 + p21 , such that

w(t, y) = exlt+A2Ydv((A1, A2)).

By (3.6), supyERe-(-'°o)t+Al1Yw(t, y) < oo, thus v must concentrate at two points:

(±(,uo - a), -pl). Assume v have nonnegative mass C1 at (-(Po - a), -pL) and

C02 at ((go - a), -l) then w(t, y) = Cle - (PO-a)t -1Y + C2e(Ao -O)t -̀1Y. In particular,

Df(y) = e-"'w(0, y) = C1 + C2 > 0.

For uf Ž 0,(1.8) says that f(0,y) > E [f(X+, Y+),T + < ool(Xo,Yo)= (0,y)]

and Theorem 2.2 says that E [f(X+, Y+), r < • (Xo, Yo) = (0, y) = fo (f(, .)*

J(x, .))(y)dx. Hence, we now know that uf > 0 ==O Df > 0, and by semigroup prop-

erty, this self-improves to uf > 0 ==- Duf(t) > 0 for all t > 0.

Assume Df is not nonnegative constant. Let

ffo(X, y) = 0
if x=0,
otherwise.

By the "if" part of Theorem 1.4 and Theorem 2.1, we have uf0 > 0 and Duf =

e- O( -( T+o+ 1+- 1- o )t > 0. By the linearity of our PDE, we have Duf+fo = Duf + Dufo >

0 and D(f + fo) = Df + Dfo = Df + 1 is not constant. This is contradictive to our

previous argument. So the "only if" part of Theorem 1.4 is true. EO



3.4 Proof of Theorem 1.2

(i) -+ (iii) is already shown at the proof of Theorem 1.4.

(iii) ==- (ii): Let Bt and B 2 be two independent standard Brownian motions. Then

Ut = Uo + B1 + (Po - a)t and Vt = Vo + B 2 - pit are two independent Brownian

motions with drift. Let Uo = to > uO, Vo = Yo E IR and q, = inf{t > O: Ut = T}. By

a simple application of ItM's formula, v(Ut, Vt) is a continuous martingale w.r.t. for

t E [0, e•e). Since limt-- oo Iv(t, -)11,, = 0 if p0 > a, thus we have

P(7,7e < 00) = 1 if 0o < a,

P( lim I1v(t, -)11, = 0 I 70e = 00) = 1 if po > a.t/71ne

So

(4.1) v(to, yo) = E [v(aO, V•e), me < oolUo = to, Vo = yo],

which means v(t, y) (for t > uOE) is uniquely determined by v(au, .). Therefore,

(4.2) v(t, y) = J(t - CO, -) * v(ua, .),

from which it is clear that, for each y E R, v(-, y) admits a holomorphic extension to

(uO, oo). Assume Df(y) = 0, then for t > -uO, J(t, ) * v(aO, .) = v(t + aO, .) =
J(t + aO, .) * v(0, .) = 0. So v(t, .) - 0. for t E [UO, 00).

By linearality, we now know that there is at most one v with v(0, .) = Df(.). By

(4.2), we have

Df(y) = v(0, y) = J(-aO, .) * v(aO, ),

where v(aO, -) E Cb(]R). Statement (ii) is true.

(ii) - (i):



By (2.6) and u(r, 0, y) = Du(r, y) + fo (uf(T, x, -) * J(x, -)(y)dx, we have

u(t, ,y) = rf(t, X, y)+ o q(t-o, x, y, (fo (T, X', J(x', ))(y')dx')ddy'.q(t-7,x, y, y')( (Uy(T, z', .)* J(x',.-))(y')dx')drdy'.

where

JE+ Q0(t , x, y, x', y') f (x', y')dx'dy'+ J+
E+ -oo

q(t-T, x, y, y')Du(-r, y')dTdy'

Let fl(t, y) = fo0 (uf(t, x',.) * J(x', -.)(y)dx', then

u(t, x, y) = rf(t, x, y) + ot
-OO:X

q(t - 7, x, y, y')i(Tr, y')drdy'.

Our proof of the existence and uniqueness statements (i) in Theorem 1.2 will be based

on an analysis of the integral equation (4.3). Clearly, given f E F, finding a solution

to (4.3) for t E [0, T] comes down to finding a t E [0, T] i- v(t, y) which satisfies

(4.4)

where

v(t, y) = Ft(t, y) + K(t - T)(V(-, .))(y)dr.

K(t, x)(g)(y) = J q(t, x, y,y')g(y')dy' for any g e C'(R).'0O
Indeed, if v solves (4.4) and u is defined by

u(t, x, y) = rf(t, x, y) + K(t- 7, x)(v(r))(y)dr,

then u satisfies (4.3). Conversely, if u satisfies (4.3) and v(t, y) = i·(t, y), then v solves

(4.4). Thus, existence and uniqueness for solutions to (4.3) is equivalent to existence

and uniqueness for solutions to (4.4).

By the expression of q, (3)c in [12], and (2.10), we can easily know that

tl/2 t ik(t)llop < Oc,

If there exists h E Cb(R) such that Df = J(6, -) * h(-), then we can define

Du(t, -) = J(O - t, -) * h(.),

rf(t, , y) =

(4.3)

(4.5)



which is consistent with (2.7). So by (2.4) and notice that

I f fE+ Q°(t, x, y, x', y')f(x', y')dx'dy'| •5 If I[u and J(t, R) = eat( - • ) - < 1, we have

ff (t, y) is bounded. By applying Lemma 2.3 with a = 0, we now know that, there

is precisely one solution to (4.4), which, in view of the preceding discussion, means

that there is precisely one solution to (4.3). Moreover, because every solution to (1.1)

with initial data f is a solution to (4.3); and, for this reason, in spite of our not

having shown yet that every solution to (4.3) is an admissible solution tp (1.1), we

will use uf to denote this solution. Note that, from the last part of Lemma 2.3 and

our construction,

(4.6) |IUf(t,., .-) u CIf Iuec t,

for a suitable C < oo.

Now we need to show that solutions to (4.3) have sufficient regularity to be an

admissible solutions to (1.1) and that their dependence on f is sufficiently continuous.

To this end, return to (4.4), set vo(t) = rf(t), and

v"(t) = v0(t) + k(t - T)(v'- ())dT. t E (0, - ], > 0

Then

i.(t, y) = i7(t) + K(t)(f)(y) + K(t - )(V•- 1())(y)dT

Q= o(t, y, x', y')f(x', y')dx'dy' + j (t, y, y')Df(y')dy'
J + +ooo

+ ((t - T, , y')Du(T, y')dTdy' + k(t)(f)(y) + f k(t - T)(vin-l())(y)dT.

By integration by parts, (R) and (2.2), we have

, ' - (x'-Aot)2  1 _ (v'-v+,ilt) 2  2Q0 (t, y, X , y') = 2a e 2t e 2t - 2upoQ(t, y, , y')

(2•O(t 7, x', y') * J'(O, ))(y)

By (2.1) and (1.3), one can easily check that the last two terms are bounded. We
also can easily check that

+ x 0 1 (v,_v+Ptt)2
__ 1 e 2t e 2  dx'dy' < Ct-, some C > 0.

J - 2t 3 2rt



Combining with (2.5) and (4.5), we have

Ii'o(t)l < Ct-f Ifilu.

Lemma 2.3 guarantee that u~f is continuously differentiable with respect to t E (0, e -
E) and that

(4.7) IUf(t)l < C(e)t- f Iflec(E)t

for some 0 < C(E) < oo. Combining this with (4.3), it follows that u1 is continuously

differentiable with respect to t E (0, E - E) and that

)o(t, x, x, y,', y')f(x', y')dx'dy' +

q(t- -7, x, y, y')Dju(T, y')drdy' + K(t, x)(f )(y) +

j q(t, x, y, y')D f (y')dy'
-OO

I t0

Some element estimates show that supt>o t 2 °0 (t,x,y, x',y')l < 00, we have shown

that

(4.8) Il)f (t, ,-)IJ 5 C(C)t-2 1fllIeC(E)t

for a suitable C(e) < 00.

It is clear from (4.3) that uf is differentiable on (0, E - e) x (0, oo) x (-oo, +oo)

and that

= srf(t, x, y) +Oy

I f q(t - 7, x, y, y')fi(r-, y')d7dy',

1 0 a q(t - , x, y, y')if(T, y')drdy'.

The contribution of f fE+ Q(t, x, y, x', y')f(x', y')dx'dy' to -t r and 2rf poses no

difficulty and can extends to (0, E - e) x [0, oo00) x (-oo, +oo). And Uq(t) also poses

no difficulty as x -* 0. Instead, the problems come from the appearance of integrals

of the form fo 5q(t - 7-)'/()dT as x -- 0.

uf(t, x, y) =

t
uf(tx, , y) = rf(t , Y,) +

and

uf(t, x, y)19Y

To handle such terms, we use (2.5) to

+ +oo.
+ i K(t- T, x)(i f(T))(y)dT.



write

2x q(t, x, y, y') = -Moq(t, x, y, y') - e-Iox- 2 tg"(t, )g(t, y' - y + pit)

S2d - d
-joq(tx, y, y')-2e-°ox- 2 tg(t, ) (g(t, y'-y+glt))+2e-dox- 2  (g(t, x)g(t, y'-y+ 1t))

dt dt

The first two terms ause no problem. As for the last term, we can integrate by parts

to see that

Sdt (g(t - T, )g(t - 7, ' - y + pl(t - T)))-(-)dT = g(t, x)g(t, y' - y + tit)I(0)

+ g(t - , x)g(t - 7., Y' -y + lPi(t -T))(7)dr.

Hence by (4.7), the preceding expression for -uf and g uf on (0, E - E) x (0, 00) x

(-oo, +00) admits a continuous extension to (0, E - E) x [0, 00) x (-oo, +oo). In

addition, one can easily check from our earlier estimates, especially (4.7), that

(4.9) ma ll9z { l u, 1 1 IQI 5ll C(e)t-'ll jf eC (')

for an appropriate C(c) < c00. It's also easy to check that 0-•uf is continuous on

(0, E - e) x (0, oo) x (-oo, +oo) and can extends continuously to (0, e - E) x [0, 00) x
(-oo, +oo). Finally, because uf is smooth and satisfies iu = Auf+ - f+ y af,

we now see that -uf extends as a continuous function on (0, E - e) x [0, oo) x

(-oo, +oo). Then by letting e - 0, we established the desired regularity.

In view of the preceding, all that we have to do is to check that it(t, 0, y) =
au'(t, 0, y) for t E (0, E), y E (-oo, +oo). To this end, observe that (4.3) is designed

so that its solutions will satisfy

it(t, 0, y) = Duf(t, y) + U (t, y)

and because iL = Anu + Po0u- + puI1u ,(R), and (4.5), we have

itL(t, y) = Uu'(t, 0, y) - bDu(t, y).

So (ii) z-- (i) is true.

For (-) E R+, if Df c HP(aO, -aO) for some p c [1, 2], then by Theorem 10.4.1 in



[10], we can say F(Df)(ý) = e=el h(J), where h e (LPR)(if p (1,2], l/p+llp' = 1;

if p = 1, p' = oo). Then by (2.14), in the sense of distribution, we have

YF(Duf(t, .))(7)= e[ -•aooa2-/ (a-'O)2 +e 2- 2 sip' t+TeKl h(j)

By Holder's inequality and Theorem 10.4.1 in [10], F(Du) (t, () exists and is bounded

if t < O. Now we have Df = J(T, .) * Du(T, -) for any 0 < T < O. Since (ii) ==>. (i),
Theorem 1.2 is proved. O
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