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Influence of Protein and Lipid Domains on the Structure,
Fluidity and Phase Behavior of Lipid Bilayer Membranes

by

Margaret R. Horton

Abstract

The lipid bilayer forms the basic structure of the cell membrane, which is a
heterogeneous matrix of proteins and lipids that provides a barrier between the interior of
a cell and its outside environment. Protein and lipid domains in cell membranes can
facilitate receptor localization, stabilize membranes, and influence membrane fluidity. In
this thesis, we study how ordered protein and lipid domains influence the physical
properties of lipid bilayers to better understand the roles of membrane domains in
biological mechanisms. Model cellular membranes that mimic the behavior of biological
membranes offer a controllable environment for systematically studying the isolated
effects of protein and lipid ordering on membrane organization. Using fluid and solid-
supported lipid bilayers, we study ordered peripheral membrane proteins and lateral lipid
phase separation with fluorescence microscopy and X-ray reflectivity. To model cellular
protein coatings and peripheral proteins, we prepare biotin-functionalized membranes
that bind the proteins streptavidin and avidin. Fluorescence microscopy studies
demonstrate that proteins crystallized in a single layer on lipid bilayer surfaces can
change the lipid curvature and stabilize lipid vesicles against osmotic collapse. At solid
interfaces, we characterize the electron density profiles of protein-coated bilayers to
determine how a water layer separates an immobile protein layer from the fluid lipid
bilayer. Liquid-ordered lipid phases enriched in cholesterol and sphingomyelin can
localize molecules in cell membranes and this lipid phase separation behavior may be
influenced by proteins and molecules in the membrane. Caveolae are specialized liquid-
ordered domains in the plasma membrane that are enriched in the protein caveolin-1. We
demonstrate that caveolin-1 peptides influence the onset of lipid phase separation and
bind phase-separated lipid bilayers in solution. On solid surfaces, the formation of liquid-
ordered lipid phases is influenced by surface roughness; with reflectivity, we determine
that lipid bilayers containing cholesterol and sphingomyelin thicken with increasing
cholesterol content. The membrane receptor GM1 also thickens the lipid bilayer when it
is incorporated into the bilayer upper leaflet. The diverse experimental platforms that we
present are applicable to studying additional and more complex biological systems to
elucidate the influence of lipid and protein domains on cell membrane structure,
organization and fluidity.
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Title: Adjunct Professor of Chemical Engineering
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation

1.1.1 Function and Structure of Biological Membranes

The cell membrane provides a barrier between the interior of a cell and its outside

environment and mediates the transport of molecules into and out of the cell. A

continuous lipid bilayer is the base structure for all cell membranes and is described as a

two-dimensional fluid comprising amphiphilic phospholipid molecules [1], shown

schematically in Figure 1-1. Many of the protective and selective biological transport

functions of the cell membrane are attributed to the unique structure of the lipid bilayer

interface. Lipid molecules have a hydrophilic headgroup attached to fatty acid chains

(Figure 1-1, center) and self-assemble into bilayers. The resulting interface has a

hydrophobic core and the headgroups are exposed to the aqueous environments interior to

and exterior to the cell. The hydrophobic core limits passage of ionic molecules through

the membrane and the packed lipids resist passage of large molecules.
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Lipid Bilayer Lipid Molecule DOPC

Figure 1-1. Schematic of lipid bilayer membrane (left), a single lipid
molecule (center) and the unsaturated phospholipid
dioleoylphosphatidylcholine or DOPC (right).

The lipid bilayer serves as a fluid matrix in which membrane proteins and protein

complexes reside. Proteins are a significant part of the composition of cell membranes

and are attached peripherally or imbedded within lipid bilayer membranes [1]; the nature

of this physical arrangement can influence the overall membrane structure and fluidity

and affect the organization of surrounding lipids.
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1.1.2 Heterogeneity in Biological Membranes

In the heterogeneous cell membrane, both lipids and proteins can assemble into

ordered domains that confer spatial organization to the membrane. Lipids can laterally

phase separate into domains, membrane-associated proteins can form complexes in the

cell membrane, and lipids can assemble around proteins [2]. This ordering of proteins and

lipids into heterogeneous structures gives the overall membrane heterogeneous fluidity.

The mechanical properties of the membrane, including curvature, permeability and

stability, can be influenced by protein and lipid ordering.

1.1.2.1 Lipid Ordering in Cell Membranes

The concept of liquid-ordered lipid domains in the cell membrane has revised our

understanding of membrane organization, as lipids can self-organize into lateral phases

into which proteins can preferentially partition [3]. Lipid rafts, or detergent-insoluble

domains of the plasma membrane enriched in cholesterol and sphingolipids, are thought

to play a role in sequestering molecules to facilitate cell signaling. Interestingly, model

lipid membrane experiments demonstrate lipid phase separation very similar to cellular

membrane extracts; thus, simple lipid mixtures have provided an important basis for

understanding lipid raft formation in cells [4]. The formation of lipid rafts is thought to be

driven by packing among saturated lipids, sphingolipids and cholesterol to create a



liquid-ordered phase where different membrane molecules, including gangliosides [5],

GPI-anchored proteins [6] and crosslinked lipid-associated proteins [7], reside.

The preferential partitioning of proteins and glycolipids into liquid-ordered phases

of the cell membrane is a possible biological function of lipid rafts, where molecules

collected in a particular phase are brought into closer proximity to enable binding and

interaction. An important related mechanism is the induction of lipid phase separation by

proteins, where proteins rearrange their local lipid environment into lipid phases. Model

systems of proteins and lipids show that proteins bound to lipids can sort lipids into

liquid-ordered domains [8, 9]. Lipid shell theory suggests that nanoscopic domains of

proteins and contiguous lipids are targeted to other protein/lipid complexes to build large

liquid-ordered lipid phases enriched in selective proteins [10]. The nature of protein

interactions with phase-separated lipid membranes and the selective partitioning into lipid

domains is not completely understood. Biological examples of proteins that associate

with liquid-ordered lipid phases are caveolin-1 and cholera toxin, which binds to the

ganglioside GM1. Caveolae are domains in the membrane with invaginated morphology

that are important for lipid metabolism [11-15] that are identified by the presence of

caveolin-1. The lipid composition of caveolae is similar to rafts, though it is unclear how

caveolin-1 is targeted to these cholesterol and sphingolipids-enriched domains. Among

the membrane molecules that can be localized to caveolae fractions of the membrane is

the GMI receptor, and the cholera toxin-GM1 complex may enter the cell by uptake

through caveolae [16]. Model membrane experiments suggest that GM1 localization to



liquid-ordered lipid phases may be assisted by an induction of lipid phase separation, as

GM1 can change the temperature-mediated onset of lipid phase separation [17, 18].

1.1.2.2 Protein Ordering in Cell Membranes

Since proteins are significant part of molecular composition of cell membranes

and can interact with lipid domains, it is important to study the effect of protein ordering

on lipid bilayer membranes. Proteins that order and self-assemble in cell membranes have

many functions, including structural membrane deformation [19, 20] and transduction of

external signals [21]. The lipid bilayer membrane is a highly flexible material capable of

deforming into diverse shapes and proteins are often required to guide and direct

membrane deformation. An example of protein-assisted membrane deformation is

endocytosis, where the budding of the membrane into vesicles [19, 22] is assisted by the

protein clathrin. The assembly of clathrin molecules into a well-defined lattice on the

cellular membrane surface forms invaginations termed clathrin-coated pits that bud into

the cell [23-25]. Similarly, transport vesicles that bud from the endoplasmic reticulum to

traffic proteins in the cell are formed by insertion of the GTPase Sarlp into in the bilayer,

which disrupts lipid packing and expands the area of the outer membrane leaflet [26, 27].

Caveolae are also part of an endocytotic pathway, though the filamentous protein coat

found in caveolae and how it deforms the membrane is less understood [28, 29].

Monomolecular surface layers on archae and bacteria, termed S-layers, may play a role in

the sieving of molecules crossing the membrane and physical protection of the cell [30].

Modification of the lipid bilayer is also an important biological function attributed to
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membrane-associated proteins. Phospholipase A2 binds lipid bilayers and catalyzes the

hydrolysis of phospholipids into fatty acids and single-chained lipids, thus changing the

lipid composition and increasing membrane heterogeneity [31]. As part of its mechanism

to gain entry to cells, the B subunit of bacterial cholera toxin binds the membrane

receptor GMI, forming pentagonal complex that eventually forms a pore through which

cholera toxin crosses the membrane [16].

In this thesis, we examine both lipid and protein ordering in model lipid bilayer

membranes. Our model membrane experiments, which allow us to isolate the effects of

lipid ordering and protein-lipid interactions, may help us to understand how domains in

cell membranes are important to the overall biological function of the membrane. We

present studies of lipid ordering in fluid membranes in Chapter 3, where we study

peptides derived from caveolin-1 interacting with model lipid rafts to understand how

proteins can influence lipid phase separation. In Chapter 4, we study protein ordering and

its influence on the shape and stability of lipid bilayer vesicles. In Chapters 5 and 6, we

present our experiments combining X-ray reflectivity and fluorescence microscopy to

study planar supported lipid bilayers. We combine these microscopic and nanoscopic

techniques to study ordered proteins tethered to bilayers in Chapter 5. And in Chapter 6,

we examine how a model membrane receptor influences the structure of the lipid

membrane and we study the structure of bilayers with model lipid rafts.



1.2 Model Biological Membrane Systems

Due to its complexity and the diversity of protein and lipid molecules present, the

cell membrane is impossible to re-create artificially. Model biological membranes that

attempt to mimic the structure and function of cell membranes are thus commonly used in

experimental investigations; these model membranes can be monolayers, bilayers or

multilamellar membranes. Lipid monolayers spread at the air-water interface comprise a

single bilayer leaflet and can be studied with microscopy, neutron and X-ray reflectivity

and surface-sensitive optical techniques [32]. Multilamellar stacks of bilayers are often

used in calorimetry [33] and X-ray and neutron reflectivity studies [34, 35]. In this thesis,

we exclusively use model systems based on a single lipid bilayer, either supported on

surfaces or in the fluid phase. The single lipid bilayer most closely mimics the native

structure of biological membranes and, unlike multilamellar membranes, is appropriate

for studying surface-bound protein complexes.

1.2.1 Biomimetic Lipid Bilayer Membranes

We synthesize model lipid bilayer membranes to mimic the structure of cell

membranes and to investigate how lipid and protein ordering impacts lipid bilayer

membrane fluidity and structure at microscopic and nanoscopic scales. Chapter 2

describes our methods of preparing and characterizing model lipid bilayers.



Planar Supported Lipid Bilayers

The supported lipid bilayer (SLB) is a single lipid bilayer deposited onto a solid

surface with a thin water layer separating the bilayer and substrate, shown schematically

in Figure 1-2. The advantage of using an SLB as a model biological membrane is that the

planar surface is convenient for microscopy as well as surface-sensitive techniques

including surface plasmon resonance spectroscopy and ellipsometry [36]. If a sufficiently

flat and reflective substrate is used, then neutron or X-ray reflectivity is possible [37, 38].

A possible disadvantage of the SLB is that the mobility of the inner leaflet may be

affected by its proximity to the surface. In addition, transmembrane proteins and lipids

may interact with the substrate [39]. These mechanical coupling effects, however, may

also appropriately model cell membranes that are tethered to a cytoskeletal matrix [40].

L

Supported Lipid Bilayer (SLB) Lipid Bilayer Vesicle

Figure 1-2. Schematic of planar supported lipid bilayer (left) and
spherical lipid bilayer vesicle (right).

1.2.1.1



Lipid Bilayer Vesicles

Unilamellar lipid bilayer vesicles are spherical fluid membranes of a single lipid

bilayer, illustrated in Figure 1-2. The length scale L is used to classify the sizes of

vesicles: for small unilamellar vesicles (SUVs), L is -1-50 nm, large unilamellar vesicles

(LUVs) have L -100-500 nm and for giant unilamellar vesicles (GUVs), L is -1-100 gtm.

The larger dimension of GUVs is similar to cells; thus GUVs are often used to model

cells [41].

1.2.2 Model Systems of Lipid and Protein Ordering

We study two general model systems for lipid and protein ordering: cholesterol-

enriched membranes that phase separate into liquid-ordered and liquid-disordered phases

and two-dimensional crystalline protein bound to lipid bilayers.

1.2.2.1 Model Lipid Rafts

One of the interesting initial outcomes in studies of lipid phase separation in

model membranes is that the simple ternary mixture of DOPC, sphingomyelin and

cholesterol demonstrates phase separation behavior very similar to that found in complex

mixtures of cell extracts [4]. The chemical structure of these lipids and an illustration of

their phase separation are depicted in Figure 1-3. DOPC is a symmetric unsaturated lipid

and is enriched in the less-dense liquid-disordered (Ld) phase. The denser and thicker

1.2.1.2



liquid-ordered (Lo) phase is enriched in sphingomyelin and cholesterol. The packing of

the Lo phase may be driven by hydrogen bonding between the cholesterol and saturated

phospholipids or sphingomyelin [42] or complexation between sphingomyelin and

cholesterol [43].

%J

0

DOPC

II

sphingomyelin cholesterol

liquid-disordered liquid-ordered
(Ld) (Lo)

A

Figure 1-3. Lipid structure and schematic of model lipid rafts in a
phase-separated lipid bilayer.



The Lo and Ld phases appear below the lipid mixture's melting temperature Tm;

phase diagrams demonstrating how Tm depends on the lipid composition for

cholesterol/BSM/DOPC and similar ternary systems further illustrate the ability of lipids

to self-organize within a bilayer and to demonstrate complex phase behavior [44, 45]. It

has also been suggested that lipid molecules can organize around proteins to modulate the

segregation of the membrane into Lo and Ld phases [10, 46]. The established phase

diagram behavior of cholesterol/BSM/DOPC provides a well-characterized system for

studying how proteins and peptides interact with phase-separating lipid mixtures [47]. In

Chapter 3, we investigate the partitioning and phase behavior of cholesterol/DOPC/BSM

lipid bilayer membranes containing peptides derived from the scaffolding domain of

caveolin-1. We study the scaffolding domain because of its function in attaching

caveolin-1 to membranes and interacting with lipid phases in cell membranes [48]. We

also develop an assay for measuring how peptides bind and impact the phase diagram of

phase-separating lipid mixtures.

While lipid mixtures of cholesterol/BSM/DOPC membranes in fluid vesicles

readily phase-separate into microscopic domains, lipid phase separation on solid-

supported membranes is more complicated. Stable microscopic lipid domains exist on

SLBs [4, 49-51] and the lipids are mobile; however, the domains themselves tend to be

immobile [49, 50]. In cell membranes, microscopic domains are not typically observed

[52] and lipid rafts are believed to be nanoscopic [53]. In Chapter 6 we study lipid

mixtures of cholesterol/BSM/DOPC with X-ray reflectivity and fluorescence microscopy



to measure how lipid compositions change lipid packing, density and fluidity. We also

measure membrane thickening and reduced fluidity when the model membrane receptor

GM1 (Figure 1-4) is inserted in SLBs. GMI binds cholera toxin B (CTB) with

pentagonal symmetry. The diffusion of GM1 in the membrane and the formation of this

complex precedes the entry of CTB into cells to induce disease [16]. GM1 can be

localized in cellular caveolae, enabling CTB binding and cholera toxin uptake into the

cell through caveolae.

cholera toxin B

!0

" I & ' I
GM1 N

Figure 1-4. Structure of GM1 ganglioside and schematic of GM1 as
receptor binding cholera toxin B.



Model Ordered Protein Domains

Investigations of protein ordering using model biological membranes gives

insight into two-dimensional ordering on a fluid substrate and proteins' influence on the

physical properties of lipid membranes. Bacterial surface proteins reconstituted on lipid

bilayer vesicles form rigid two-dimensional crystals that deform the membrane into

conical and cylindrical shapes [54]. S-layers re-crystallized on vesicles stabilize the

membrane against rupture [55]. Similarly, streptavidin crystallized on lipid bilayers

deforms and stiffens the membrane [56]. The molecular detail of reflectivity studies can

refine mechanisms of how proteins influence the physical properties of the lipid bilayer.

Reflectivity experiments with ordered proteins interacting with lipid monolayers show

how ordered proteins rearrange and intercalate the lipid molecules [57-60]. At the

microscopic scale, fluorescence microscopy studies of streptavidin tethered to lipid

membranes illustrates how membrane fluidity [61], ionic strength [62], pH [63] and

surface diffusion [64] can impact protein ordering in two-dimensional systems.

We use the streptavidin-avidin model system to investigate two-dimensional

protein ordering and its impact on lipid membrane fluidity in GUVs and SLBs.

Streptavidin forms two-dimensional crystalline domains when bound to biotin-

functionalized lipids incorporated in a stearoyloleoylphosphatidylcholine (SOPC) bilayer.

Streptavidin is a tetrameric globular protein that binds biotin in at two sites per side.

Avidin is a protein with biotin-binding structure and activity similar to that of

streptavidin [65] but does not readily crystallize. Fluorescently-labeled avidin provides a

bright background for visualizing streptavidin crystal formation. Figure 1-5 shows the

20
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biotin-functionalized lipid structure and illustrates streptavidin ordering on biotinlyated

lipid bilayers.

UI

SOPC
biotin-X-OPPE

streptavidin
U avidin

Figure 1-5. Lipid structure and schematic of streptavidin-biotin model
system for studying protein ordering. Streptavidin and fluorescently-
labeled avidin bind the biotinylated lipids, the streptavidin forms two-
dimensional crystals.

O



Previous studies of streptavidin ordering on GUVs demonstrate that streptavidin-

coatings on GUVs stiffen the bilayer and deform vesicles into prolate shapes [56, 62]. In

Chapter 4, we explore how protein domains align and deform lipid bilayer vesicles with a

size-dependent mechanism. We also demonstrate that crystalline protein confers vesicle

stability against osmotic pressure.

To complement our studies of crystalline proteins on GUVs, we also present

structural studies of streptavidin bound SLBs with fluorescence microscopy and X-ray

reflectivity. While previous reflectivity studies demonstrate how proteins arrange and

interact with lipid monolayers [66], the recent ability to characterize single lipid bilayers

at the solid support using X-ray reflectivity [38, 67, 68] provides an opportunity to study

single protein layers on a single SLB. Studying model peripheral proteins at bilayers

offers a more biologically-relevant lipid interface than monolayers. In Chapter 5 we study

streptavidin and avidin bound to a single biotinylated SLB with X-ray reflectivity.

Fluorescence microscopy characterization of the samples provides direct evidence of

crystal formation and allows us to quantify the lipid bilayer fluidity.

In addition to their role in fundamental studies for elucidating biological

processes, the lipid bilayer systems we present also have potential applications in

biosensing and drug delivery. Ordered proteins on membranes have potential application

in biosensing, where a template of functionalized proteins can be immobilized on vesicles

[55] or on planar bilayers. Stable SLBs at the solid interface have potential lab-on-a-chip

applications, where a single membrane directly coupled to a surface can be used for

detection and measurement of molecular binding events [69].



1.3 Thesis Overview

We describe our preparation and characterization of these different model

biological membrane systems, both vesicles at supported bilayers, in Chapter 2. The

subsequent chapters describe our investigations of protein and lipid ordering in different

model system. The first model biological membrane system that we present is caveolin-1

peptides interacting with ordered lipid phases in fluid vesicles. We determine the phase

partitioning behavior and lipid phase diagram of caveolin- 1 peptides in bilayer vesicles in

Chapter 3. We continue studies of lipid bilayer vesicles in Chapter 4, where we examine

how streptavidin influences vesicle shape and stability by ordering and self-arrangement.

Streptavidin ordering on lipid bilayers is presented in more structural detail in Chapter 5,

where we use X-ray reflectivity to study the structure of supported lipid bilayers coated

with a protein layer comprising streptavidin and avidin. We then use reflectivity to

examine the influence the membrane receptor GM1 and its influence on lipid and

membrane structure in Chapter 6, and we present our reflectivity investigation of the

structure of cholesterol-enriched lipid membranes.



CHAPTER 2. EXPERIMENTAL

METHODS

2.1 Preparation of Biomimetic Membranes

All lipid solutions for experiments are prepared in high performance liquid

chromatography-grade (HPLC) chloroform. Solutions are transferred only with glass

pipettes and stored in teflon-sealed sterile glass containers.

2.1.1 Electroformation of GUVs

Giant unilamellar vesicles (GUVs) are spherical lipid bilayers that are 1-100 tm

in diameter. GUVs can be visualized by optical microscopy and they are used to model

cellular membranes, because they are a size comparable to that of cells [70]. The

electroformation method for synthesizing giant unilamellar vesicles (GUVs) produces a

high yield of GUVs [71, 72]. As depicted schematically in Figure 2-1, a dry lipid film on

a conductive substrate is hydrated in aqueous solution; upon application of a gentle AC

field, large bilayers swell from the film to form GUVs.



dry lipid film

sugar swelling solution

Figure 2-1. Schematic of GUV electroformation (left) and difference
interference contrast micrographs of GUVs (right). 10 pm scale bar.

We use electroformation for the preparation of GUVs. Indium tin oxide- (ITO)

coated substrates purchased from Prdizisions Glas and Optik GmbH (Iserlohn, Germany)

are rinsed with detergent and sonicated 30 min in deionized (DI) water. Approximately

40 ptL of lipids in chloroform at a concentration of 5 mg/mL are spread on the ITO plates;

the lipid film is dried 2 h in a vacuum chamber. The dried plates are placed parallel 5 mm

apart in a Teflon holder filled with swelling solution and connected to a function

generator with 1 V AC, 10 Hz signal (Figure 2-1). The AC signal is applied 1.5-2.5 h to

form GUVs. To provide density and optical contrast and allow for osmotic stressing, we

form the GUVs is a sugar solution. For upright microscopy, GUVs are filled with glucose

then re-suspended in sucrose; the GUVs then float to the top of the viewing cell.

Similarly, sucrose-filled GUVs are used for inverted microscopy experiments. We place

the vesicles in chambers created from CoverWell silicone gaskets purchased from Grace

25



Bio-Labs (Bend, OR) sealed to coverslips. All surfaces are soaked for 30 min in 1 mg/mL

bovine serum albumin solution to prevent GUVs from adhering to surfaces.

2.1.2 Extrusion ofLUVs

Large unilamellar vesicles (LUVs) are 1-100 nm in diameter and created by the

extrusion method [73], where lipids are forced through uniform pores of a polycarbonate

filter, resulting in LUVs with monodisperse size distributions. LUVs can be spread on

substrates to form supported lipid bilayers (SLBs) by the vesicle fusion method [74, 75].

Lipids in chloroform are placed in a clean glass vial and initially dried with N2

then completely dried for 8 h in a vacuum chamber. The dried lipid film is hydrated in an

aqueous solution for a final lipid concentration of 1 mg/mL then agitated on a vortex

mixer to completely hydrate the film; this suspension is heated to 40 OC for 1 h. The lipid

suspension is then passed through a 100-nm polycarbonate filter 10 times using the

Avanti Mini-Extruder from Avanti Polar Lipids (Alabaster, AL). Extruded LUVs are

discarded after 5 days.

2.1.3 SLB Preparation

Supported lipid bilayers (SLBs) are prepared by vesicle fusion, where LUVs

adsorb and rupture on substrates, or by spin-coating of lipids from organic solution

directly onto substrates followed by hydration.



All supported lipid bilayers (SLBs) are prepared on silicon substrates 20 x 15

mm 2 in size and 675 pLm thick cut from polished 6" silicon wafers with a 100-nm thick

thermal oxide layer. The substrates are cleaned by sonication for 10 min in isopropanol

followed by rinsing with DI water then a three-stage chemical cleaning treatment. First,

the substrates are boiled in acetone for 10 min at 100 0C, then in a mixture of 1:1:5

H20 2/HCI/H 20 by volume for 15 min at 150 0C, then in 1:1:5 H20 2/NH 40H/H20 for 15

min at 1500 C. After each step, the substrates are rinsed with DI water. The substrates are

stored in DI water until the SLB formation procedure.

Microfluidic chambers, shown schematically in Figure 2-2, are used for solution

exchange and the formation of protein layers on SLBs and also serve as our platform for

microscopy and X-ray measurements [37, 67]. Plastic chambers with two reservoirs

connected by a channel of dimensions 5 x 0.4 x 50 mm are purchased from ibidi GmbH

(Minchen, Germany). The chambers are cleaned before use with isopropanol. An area of

20 x 15 mm 2 is milled into the center of the channel for embedding the SiO2 substrates.

The microchannel minimizes the amount of reagents required and the fluid reservoirs

ensure constant hydration of the SLBs, as hydrated SLBs are destroyed if air bubbles

enter the chamber and contact the surfaces.
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Figure 2-2. Schematic of microfluidic chamber used to prepare and
study SLBs. The SLB on the SiO 2 substrate is measured with
reflectivity and visualized with fluorescence microscopy.

2.1.3.1 Vesicle Fusion

The vesicle fusion method is used to spread LUVs onto substrates to form

homogeneous lipid bilayers [74-76]. Clean substrates are first secured in microfluidic

chambers using two-component UHU epoxy glue that hardens in 5 min (Biihl, Germany).

After the allowing the epoxy glue to pre-dry for 30 min, the chambers with glued-in

substrates are placed under vacuum for 6 h for final hardening.

We use osmotic concentration gradients to assist in the rupture of the LUVs to

form SLBs, as illustrated in Figure 2-3. LUVs are extruded in solutions with modified

HEPES buffer (10mM HEPES, 100mM NaCl, 2mM MgCl2, 2 mM CaCl2, pH 7.4). The
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microfluidic chamber is then filled with this buffer and -200 PtL of LUV solution are

pipetted into the channel and left undisturbed 30 min to allow LUVs to adsorb to

substrate. The substrate is then rinsed with DI water, causing the LUVs to rupture under

osmotic stress to form the lipid bilayer. The layer is heated to 35-40 "C for at least 2 h to

anneal the membrane.

adsorption rupture spreading

Figure 2-3. Schematic of vesicle fusion illustrating adsorption of LUVs
on surface (left), rupture from osmotic stress (middle), and spreading
to form SLB (right).

2.1.3.2 Spin-coating

We are not able to reproducibly produce homogeneous and fluid lipid bilayers

with the vesicle fusion method for lipid mixtures containing the ganglioside GMI or

biotin-functionalized lipids. For these molecules, we use the alternative preparation



procedure of spin-coating of lipids from organic solution [77, 78] to prepare single SLBs

on our substrates. We prepare 3 mg total lipid in chloroform in clean glass vials; the

chloroform is then evaporated from each vial in a nitrogen stream followed by evacuation

in a vacuum chamber for at least 12 h. Dried lipids are then re-dissolved in isopropanol to

a final concentration of 1.5 mg/mL. This concentration ensures the formation of a

complete single bilayer [77]. Unlike chloroform, isopropanol completely wets the

hydrophilic silicon substrates.

To coat the substrates, 200 gpL of lipid solution is dropped onto a clean silicon

substrate in a Delta 10 spin-coater from BLE Lab Equipment (Radolfzell, Germany).

The substrate is immediately accelerated with the following profile: a ramp from 0 to

2000 rpm is driven for 2 s, followed by another ramp from 2000 to 3000 rpm for 2 s.

Then the sample is spun at constant velocity of 3000 rpm for another 118 s. The

substrates are then placed in a vacuum chamber for at least 4 h to ensure complete

evaporation of the isopropanol. Dried spin-coated substrates are then glued into

microfluidic chambers with two-component UHU epoxy glue and dried in air for 30 min,

then in vacuum for 6 h. The SLBs are hydrated by flushing the microfluidic chambers

several times with DI water to ensure that excess lipids are flushed away.



2.2 Microscopy

2.2.1 Differential Interference Contrast Microscopy

In order to study the shapes of GUV samples that do not have fluorescent

contrast, we use differential interference contrast (DIC) microscopy. We obtain DIC

images of GUVs using a Cooke SensiCam digital camera (Cooke Corporation, Romulus,

MI) and a Zeiss Axioplan fluorescence microscope with 40x and 100x objectives

(Oberkochen, Germany). We form GUVs in glucose solutions and dilute them in sucrose

to provide optical and density contrast. DIC micrographs are analyzed using ImageJ

software (NIH, Bethesda, MD).

2.2.2 Fluorescence Microscopy

Fluorescently-labeled lipids, proteins and peptides in our lipid bilayers are

visualized with fluorescence microscopy. The lipid Texas Red 1,2-dihexadecanoyl-sn-

glycero-3-phosphoethanolamine, triethylammonium salt (TR-DPPE) from Invitrogen

(Carlsbad, CA) provides constrast for fluorescence microscopy. TR-DPPE is relatively

photostable and identifies phase-separation by selectively partitioning into less-dense or

liquid-disordered phases [79]. For visualizing peptide and proteins structures in lipid

bilayers, we require dyes of a different color. Alexa Fluor 488 conjugate (Alexa488-



avidin) from Invitrogen provides fluorescent contrast to visualize protein ordering. We

use FITC-labeled peptides to study peptide partitioning into lipid phases.

2.2.2.1 Lipid Phase Diagrams

To determine the lipid phase diagram of GUVs made from phase-separating lipid

mixtures, we observe miscibility transitions with fluorescence microscopy and a heating

stage [44, 45, 79]. Phase separation and domain morphology on the surface of the GUVs

are visualized using a Nikon Diaphot inverted microscope with 100x objective equipped

with a microscope heating stage unit (Instec, Boulder, CO) and an objective collar heater

(Bioptechs, Butler, PA). We measure the sample chamber temperature with a

thermocouple (Omega, Stamford, CT). The miscibility transition temperatures are

measured by both heating and cooling. We calculate the fractional area of the GUV

surface occupied by fluorescently-labeled phases using ImageJ software. Images are

thresholded to distinguish bright and non-fluorescently-labeled phases. As described

elsewhere [80], the geometry of the system prevents the use of automated algorithms for

calculating the relative fractional areas of each phase, as the threshold level must be

adjusted individually for each GUV. We therefore analyze at least 20 different GUV

surfaces are analyzed to determine the average fractional area of phases at each

composition.



Continuous Bleaching

We use the continuous bleaching method to measure the fluidity of SLBs with a

standard fluorescence microscope setup [67, 81]. We visualize and characterize SLBs in

microfluidic chambers with a portable Zeiss Axiotech vario fluorescence microscope

(Oberkochen, Germany) equipped with 10x (NA 0.3) and long distance 63x (NA 0.75)

Plan-Neofluar objectives. Images are captured with an ORCA C4742-95 CCD camera

and WASABI imaging software from Hamamatsu Photonics (Tutzing, Germany). ImageJ

software is used to determine the fractional area coverage of crystalline protein and to

estimate protein domain size. We align a HBO 103 Hg lamp from Zeiss to ensure even

illumination of the sample. Continuous bleaching data are analyzed with MATLAB

software from Mathworks (Cambridge, MA). The theory of continuous bleaching and

data analysis are explained in detail in Chapter 5.

2.2.3 Fluorescence Confocal Microscopy

In order visualize lipid phase separation and protein ordering on GUVs in three-

dimensions, we use confocal fluorescence microscopy. All fluorescence confocal

microscopy experiments are performed at the W.M. Keck Microscopy Facility at the

Whitehead Institute with a Zeiss laser scanning module (LSM) microscope with a Zeiss

C-Apochromat 40x water immersion objective with numerical aperture (NA) of 1.2. For

two-channel experiments, the excitation light from lasers at 488 nm and 543 nm is

2.2.2.2



reflected by a dichroic mirror (HFT 488/543) and the emission is split by another dichroic

mirror (NFT 490) into two channels and passed through a 505-719 emission filter in the

first channel and a 558-719 emission filter in the second channel to detect the green-

labeled species and TR-DPPE, respectively. For the one-channel experiments of FITC-

labeled peptides, we use a 488-nm laser and a LP 505 filter. For three-dimensional image

projections of vesicles, z-scans are taken in 0.45-jtm increments and projected using

Zeiss LSM software.

2.3 Fluorescence Correlation Spectroscopy

Fluorescence correlation spectroscopy (FCS) is the time-correlated measurement

of the fluctuation of fluorescence intensity in an illuminated volume. FCS is employed to

measure the diffusion constants of lipids and proteins in biological membranes [82, 83].

We use FCS to measure the binding of a fluorescently-labeled peptide to LUVs in

solution [84]. As depicted in Figure 2-4, left, the peptide freely diffuses in an illuminated

volume with a characteristic diffusion time, 'D,peptide and, when bound to a large LUV, the

peptide diffuses with the characteristic diffusion time of the LUV, rD,LUv. Analysis of the

autocorrelated fluorescence intensity indicates the relative amounts of peptide diffusing

free in solution and bound to LUVs (Figure 2-4, right).
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Figure 2-4. Schematic adapted from [84] of the FCS measurement of
peptide binding to LUVs in solution (left) and a two-component
autocorrelation function (right).

We measure the characteristic diffusion times of the free peptide and the LUVs in

separate experiments using a Zeiss ConfoCor2 instrument with 40x Apochromat water-

immersion objective. In order to prevent adhesion of the LUVs to surfaces, we treat Lab-

Tek chamber slides by filling them with 1 mg/mL bovine serum albumin dissolved in

water for at least 30 min then air-drying the chambers before filling them with our FCS

samples. The incident laser power is 160 ptW for all experiments; we verify that

photobleaching does not affect the measurements by measuring control samples at 480

[tW laser power. A sugar buffer solution of 100 mM glucose with 5 mM KCl is used for

all FCS measurements and calibrations. The focus volume is calibrated with Rhodamine

6G for experiments at 488 nm and with Cy5 at 633 nm. To adjust the pinhole, the time-

correlated fluorescence intensity spectra for 100 nM fluorescent dye in solution is
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measured. After pinhole adjustment, the volume of the focus is determined by measuring

10 consecutive correlation spectra, each 30 s long, with 30 nM solution of calibration

dye. The known dye concentration, fraction of molecules in the triplet state T and triplet

time rTr of the calibration dye and the diffusion constant of water D are used to determine

the dimensions of the focus volume from the time-correlated fluorescence intensity

measurement from the equation [84]:

2
1 1 T e /CT'G(1)= lx g()=--x l+ Ce 1 (2-1).

N N 1-T 1+ t /TD, 1+ r/S2 rD

The number of particles in the focus volume is N, the correlation time of the dye is D=

o2/4D, where co is the radius of the focus volume and S is ratio of the radial and axial

distances from the center of the laser focus beam. We fix the structural parameter in

Equation 2-1 with the value measured from our calibration; since our experiments

involve LUVs, which we expect to have a longer diffusion time than free dyes in

solution, we measure all samples with LUVs for at least 60 s. Diffusion times for LUVs

at each lipid composition are determined by measuring LUVs containing 0.01 mol % of

the lipophilic fluorescent dye 1,1 '-dioctadecyl-3,3,3',3'-

tetramethylindodicarbocyanine,4-chlorobenzensulfonate salt (DiD, Invitrogen) at 633 nm

excitation. To use FCS to quantify the binding of fluorescent peptides to LUVs, the

peptide concentration should be proportional to the number of particles detected in the

focus volume, N. Measurement of N over a range of peptide concentrations, as shown in



Figure 2-5, indicates peptide solubility as monomolecular units and characterizes the

signal/noise ratio to determine the appropriate linear measurement regime. In our

experiments of soluble peptide binding to LUVs presented in Chapter 3, characterization

of this linear detection range (Figure 2-5, red line) motivated our choice of peptide

concentration of 50 nM to study binding to LUVs.
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Figure 2-5. The number of particles in the FCS volume plotted as a
function of concentration of peptide to indicate measurement range
appropriate for quantitative determination of peptide binding.



2.4 X-ray Reflectivity

X-ray reflectivity measurements are performed at the undulator beamline ID 1I at

the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Sample

chambers are mounted in a horizontal scattering geometry with a vertical plane of

incidence; the X-ray beam geometry is shown in Figure 2-6; a top view of the

microfluidic chamber is shown in Figure 2-2. We identify the interface and the center of

rotation of the substrate for each sample before measurement. For reflectivity studies of

SLBs on SiO 2, we choose an X-ray energy of 19.9 keV (X = 0.623 A) for the grazing-

incidence beam.

attenuator

storag
nng

thickness

200 pm

-200 pm

~5 nm
_SiO2 100 nm

Figure 2-6. X-ray reflectivity geometry used to study a SLB interface
in a microfluidic channel.



The beam cross section is limited by a pre-sample aperture of 200 x 1000 [tm 2

(vertical x horizontal). The relatively large beam size ensures a wide illumination of the

surface area even at higher grazing incidence angles. Evacuated beam guides with

Kapton windows (Figure 2-6) positioned in close proximity to the sample chamber

minimize air scattering. The reflected intensity is collected with a Nal point detector. The

loss of X-ray beam intensity by transmission through the chamber is less than an order of

magnitude and the small vertical post-sample aperture completely suppresses parasitic

contributions due to reflectivity from the top plastic foil of the sample chamber [37].

We take different measures to minimize X-ray beam damage; at full beam

intensity, beam damage is apparent and results in reduced surface coverage of the

membranes [37]. These data also provide a basis to compare to reflectivity scans to

identify possible beam damage qualitatively. To minimize damage, we position automatic

attenuators in front of the chambers to reduce the beam intensity (Figure 2-6). Each

reflectivity scan is also performed on a fresh spot and an automatic shutter prevents

exposure to X-rays during motor movements.

The reflectivity data are analyzed using Parratt's method [85] and presented with

Fresnel normalization: the reflectivity is divided by the Fresnel reflectivity (RF), where

RF = 1- 1-(qc/q)2 )/( 1+ 1-(qc/qz) ) 2  (2-2).

The momentum transfer at the critical angle of total external reflection is qc and qz is the

momentum transfer perpendicular to the interface. To fit our measured reflectivity we
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model the bilayers as a stack of slabs with varying thickness (z) and density (p),

positioned between water and the SiO 2 substrate. The thickness and number of slabs

appropriate for modeling varies with the different protein and lipid mixtures; the different

slab models used to fit the data from our SLBs are described in Chapters 5 and 6. For a

homogeneous single supported lipid bilayer, we use 7 slabs: each leaflet has 2 slabs

representing the headgroup and another slab for the acyl chain region; the interleaflet

space is an additional slab. Using the software Parratt32 (Hahn Meitner Institute), we fit

our reflectivity data to determine the electron density profile, p(z), for our specified

number of slabs. An example of the 7 slabs used to represent a SLB of SOPC is shown in

Figure 2-7. To model the electron density profile to N slabs, we use the following

equation:

p(Z)= 2 pi pi+ 1 erf ZZ (2-3).
i~l 2

The slab profiles are smoothed by an overall roughness, r. For our substrates, we use

- = 3 A. The electron density profile for our 7 slab model fit to SOPC is shown in Figure

2-7 (blue curve).
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Figure 2-7. Electron density profile of SOPC (blue curve) and the
corresponding 7 slabs between the water and SiO2 used to model the
lipid bilayer. Each slab has density p; and thickness zi and the electron
density profile p(z) is smoothed with surface roughness a = 3 A.
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CHAPTER 3. MODEL PEPTIDE

INTERACTIONS WITH ORDERED

LIPID PHASES IN LIPID BILAYER

VESICLES

3.1 Introduction

Lipid rafts, or detergent-insoluble domains of the plasma membrane enriched in

cholesterol and sphingolipids, are thought to play a role in sequestering various

molecules to facilitate cell signaling. Caveolae are a specialized type of lipid raft with

flask-like invaginated morphology enriched in the protein caveolin-1 that participate in

cell signaling and lipid metabolism [11-15]. Caveolin-1 has been shown to bind

cholesterol [86] and associate with sphingolipids [87] and may have a structural role in

the formation of caveolae [29, 88].

Model lipid rafts in synthetic lipid bilayers have provided a basis for

understanding cholesterol-enriched phases of the plasma membrane. Lipids extracted

from cell membranes and reconstituted in giant unilamellar vesicles (GUVs) exhibit

microscopic phase coexistence with lipid domains resembling ternary lipid mixtures of
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cholesterol, phosphatidylcholine and sphingomyelin [4]. In this widely-studied model

system, liquid-ordered (Lo) domains are formed from the packing among saturated lipid

acyl chains and cholesterol and are immiscible with liquid-disordered (Ld) domains

enriched in phosphatidylcholine [45]. These Lo lipid domains are considered models of

lipid rafts in the plasma membrane. Various physical properties of model lipid rafts,

including composition, morphology and molecular mobility have been studied [45, 83].

There has also been an increasing effort to understand how proteins partition into either

the Lo phase or Ld phase [47]. What remains to be well-studied, however, is how peptides

and proteins influence the lipid phase behavior of these model lipid rafts.

Proteins are significant part of the composition of cell membranes and it is

therefore important to consider proteins in model studies of lipid rafts and caveolae.

Studying the interplay between proteins and lipid phase separation may give insight into

the formation of lipid rafts, as proteins have been suggested promote domain formation

by associating with certain lipids [89]. It has also been suggested that lipid molecules can

organize around proteins and modulate phase separation [10, 46]. Using model lipid

membranes, researchers have studied how proteins and peptides can cause lateral

redistribution of lipids in bilayer membranes using differential scanning calorimetry

(DSC) [89] and fluorescence microscopy [17]. An advantage of fluorescence microscopy

is that it allows one to directly observe the lipid phase partitioning of labeled molecules

as well as microscopic phase separation.

In this study we investigate the partitioning and phase behavior of lipid bilayer

membranes containing caveolin-1. We selected caveolin-1 because caveolae are enriched



in the lipid raft components cholesterol and sphingomyelin and the membrane interaction

of caveolin-1 is not well understood. Mutagenesis experiments have identified the

caveolin scaffolding domain (CSD) as the region of caveolin-1 responsible for membrane

binding and targeting the full-length protein to caveolae [48]. The CSD comprises amino

acids 82-101 of the N terminal domain of caveolin-1 and has been shown to associate

with detergent-insoluble membrane fractions assayed in vivo [90]. We have selected

model peptides derived from the CSD of caveolin-1 to study phase separation and the

influence of cholesterol concentration on peptide-lipid interactions in lipid bilayers.

In previous model membrane experiments, the full-length CSD formed

cholesterol-enriched domains in model membranes composed of DOPC, the acidic lipids

phosphatidylserine and phosphatidylinositol-4,5-biphosphate (PIP 2), and cholesterol [91].

Subregions of the CSD and their membrane interactions have also been previously

investigated. In live-cell mutagenesis experiments, KYWFYR was shown to be the

membrane-attachment sequence [90] of caveolin-l and in recent model membrane

experiments, authors have demonstrated using DSC that KYWFYR does not promote

local high cholesterol concentrations nor does it bind cholesterol in phosphatidylcholine

membranes [33]. DSC analysis has been used to study the peptide N-acetyl-VTKYWFYR

amide, which was shown to promote local cholesterol crystal formation and depletion

from other domains, though this effect was more pronounced with the full-length CSD

[92]. The effect of acidic lipids [91, 93] and cholesterol [91, 92] on the spatial

organization and binding of CSD peptides has been investigated; thus, our primary goal is

to study caveolin-1 in model membranes with defined Lo and Ld domains and to



investigate how the CSD can impact the phase behavior of Lo and Ld phases.

Sphingomyelin is a component of caveolae in vivo [87] and thus we focus on a membrane

containing sphingomyelin in order to understand caveolin and lipid interactions.

3.2 Materials and Methods

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol and brain

sphingomyelin (BSM) are purchased from Avanti Polar Lipids, TR-DPPE and DiD from

Invitrogen. Rhodamine 6G and Cy5 dyes in sugar solutions (Merck, Darmstadt, Germany

are used for FCS system calibration. Lipids are dissolved in HPLC-grade chloroform and

methanol from either Fluka (Switzerland) or Mallinckrodt (Phillipsburg, NJ). All other

chemicals used are reagent grade. We purchase fluorescently-labeled synthetic peptides

containing sequences derived from the caveolin scaffolding domain (CSD) from SynPep

(Dublin, CA) and the MIT Biopolymers Laboratory. The CSD is peptide labeled at the N

terminus with fluorescein isothiocyanate is FITC-CGIWKASFTTFTVTKYWFYR-acetyl

(CAV-CSD). A shorter fluorescently-labeled peptide containing the membrane-

attachment segment amino acid sequence residues 89-101 is FITC-FTTFTVTKYWFYR-

acetyl (CAV-INSOL). The soluble peptide containing these residues is synthesized with

an FITC label at the N-terminus and the sequence SGS between the FITC and CSD

residues to improve peptide water solubility without adding net charge resulting in a final

peptide structure of FITC-SGSFTTFTVTKYWFYR-acetyl (CAV-SOL). All peptides are



purified using HPLC. The pI's of the three peptides were estimated to be in the range

9.5-10.5 [94]. The structures of the three peptides are shown schematically in Figure 3-1.

N terminus 1 -187 terminus Caveolin-1

FITC CGIWKASFT ; T VTVW!K acetyl CAV-CSD (Cav-1 83-101)

FITC-SGS TTVTKYWFYR acetyl CAV-SOL (Cav-1 89-101)

FITC FT IIVTKYWFYR acetyl CAV.INSOL (Cav-1 89-101)

Figure 3-1. Schematic of fluorescently-labeled synthetic peptides.

We prepare giant unilamellar vesicles (GUVs) with the electroformation

technique [95] described in Chapter 2. Approximately 40 pL of lipid solution is spread

onto conductive indium tin oxide plates and dried under vacuum. To this lipid mixture,

we add 1 mol % of the water-insoluble caveolin-1 peptides CAV-CSD or CAV-INSOL.

We visualize the lipid phases by adding 0.1 mol % of TR-DPPE to the lipid mixture. The

GUVs are grown in a 100 mM sucrose and 5 mM KCl solution for 1.5-2 h at a

temperature above the lipid miscibility transition temperature. We form large unilamellar

vesicles (LUVs) using the extrusion technique [73] and dried lipids are then rehydrated in

100 mM glucose and 5 mM KCI. This solution is passed 10 times through two 100-nm

polycarbonate filters using the Avanti Mini-Extruder.

To determine the lipid phase diagram, miscibility transitions are observed using

fluorescence microscopy [44], as described in Chapter 2. The stock GUV solution is



diluted approximately twofold with 100 mM glucose and 5 mM KCI, to provide density

contrast. Sample heating over a temperature range of 100 C-50"C is accomplished by our

microscope heating stage unit. The miscibility transition temperatures are measured both

by heating and cooling and the error bars represent the range over which phase

miscibility was observed. In order to observe the impact of the water soluble CAV-SOL

peptide on microscopic phase separation, the soluble peptide is dissolved in glucose

buffer and added to GUVs in solution. The fractional area of the GUV surface occupied

by the DOPC-enriched liquid phase is calculated using ImageJ software.

3.3 Fluorescence Correlation Spectroscopy

Recently, fluorescence correlation spectroscopy (FCS) has been used to measure

the binding between large unilamellar vesicles (LUVs) and water-soluble peptides in

nanomolar concentrations [84]. We employ this FCS peptide-membrane assay to measure

the binding of fluorescently-labeled water-soluble CAV-SOL peptide to LUVs with only

slight modifications. Attaching the water-soluble FITC peptide to the end of the caveolin

scaffolding domain peptide away from the membrane attachment sequence should

minimize the influence of the fluorophore on the peptide-membrane binding. As a control

experiment, we verifiy that the binding of free FITC to membranes is negligible for the

lipid compositions used. The calculation of molar partition coefficients from FCS data is

outlined [84]. The expression for the normalized time correlation function G(t) is in

reference [96]:
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The average number of fluorescent molecules counted in the laser focus is N and to is the

diffusion time of the molecules. The fraction of fluorophores in the triplet state is T, the

triplet lifetime is Tr, and the structural parameter, S, is the ratio of the radial to axial

distances of the center of the laser beam to the edge of the focus volume. The triplet

fraction of the FITC-labeled peptide is -0.7 and the triplet lifetime is -3.5 pts. From

Rhodamine 6G calibration measurements, we determine S=5.5.

In our experiments, both bound and free peptide diffuse within the laser focus

volume, so the autocorrelation function is described as a weighted sum of the

contributions from the CAV-SOL peptide in solution (P) and the CAV-SOL peptide

bound to LUVs (V):

G(r)= A,g, (r)+ Avg,(r) (3-2).

We fit each correlation function with independently-measured diffusion times for CAV-

SOL peptide (rD,P = 40 ps) and fluorescently-labeled LUVs (rD,v - 5000 jIs). The

amplitudes for the summed correlation functions are determined by fitting the

autocorrelated data with the diffusion times for the free peptide and the bare LUVs to

Equation 3-3.



The molar partition coefficient of the peptide K is a proportionality constant

between the fraction of peptide bound to the membrane [P]mem and the molar

concentrations of peptide [P] and lipids [L] in solution and is described by [P]mem =

K[P][L] [84]. K is computed from a material balance on the free [P] and membrane-

bound peptide [P]mem [84]:

[P]mem K[L]ac
mm= c_ = 1-APNO (3-3),

[P]tot 1 + K[L],c=

where [P]total is the sum of [P]mem and [P], [L]acc is 50 % of the total lipid concentration,

or the approximate concentration of lipids in the outer leaflet of the LUVs that is

accessible to the peptide, Ap is determined from fitting Equation 3-3 and No is the number

of peptides in the focus volume counted in the absence of LUVs.

3.4 Results

3.4.1 Caveolin-1 Peptide Phase Partitioning

All of the caveolin-1 peptides we study partition into the liquid-disordered (Ld) or

cholesterol-poor phase over a range of cholesterol concentrations. The evidence for this

partitioning is twofold, demonstrated by (1) the binding of peptides to the majority phase

and (2) the colocalization of peptides with the liquid-disordered phase marker, TR-DPPE.



Figure 3-2 demonstrates that the water soluble CAV-SOL peptide at concentration 50 nM

added to GUVs in solution binds the majority phase, or the Ld phase of GUVs containing

15 mol % cholesterol, 37.5 mol % DOPC and 37.5 mol % BSM (Figure 3-2, 1 and II) and

20 mol % (Figure 3-2 III a). We also verify that the lipid raft marker, TR-DPPE, does not

affect the partitioning of CAV-SOL into the Ld phase (Figure 3-2, I and II). The binding

of the water-soluble CAV-SOL protein to the Ld phase is further indicated by the

colocalization of CAV-SOL and TR-DPPE, which partitions into the less-dense phase of

GUVs containing 20 mol % cholesterol, 40 mol % DOPC, 40 mol % and 0.1 mol % TR-

DPPE (Figure 3-2 II1). The equatorial fluorescence confocal micrographs in Figure 3-2

III indicate that the CAV-SOL peptide is evenly distributed throughout Ld phase. Figure

3-3 illustrates how both CAV-INSOL (Figure 3-3, a and c) and CAV-CSD (Figure 3-3, b

and d) added to lipid mixtures at concentration of 1 mol % similarly partition into the Ld

phase marked by TR-DPPE. The control experiment in which TR-DPPE is omitted from

the lipid mixture is also performed with the CAV-INSOL and CAV-CSD peptides.
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Figure 3-2. Confocal micrographs of CAV-SOL binding to the liquid-
disordered phase. Equatorial (column 1) and three-dimensional
reconstruction (column II) micrographs of different GUVs containing
15 mol % cholesterol, 1:1 DOPC/BSM. (Column III) Equatorial
micrographs of GUVs composed of 20 mol % cholesterol and 0.1 mol
% TR-DPPE. (a, green) 488 nm wavelength laser excitation channel
showing CAV-SOL peptide, (b, red) 543 nm laser excitation showing
TR-DPPE and (c) merged images. Scale bars are 20 pm.
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Figure 3-3. Fluorescence micrographs of CAV-INSOL (a,c) and CAV-
CSD (b,d) binding liquid-disordered phase in GUVs containing 10
(a,b) and 20 (c,d) mol% cholesterol, 1:1 DOPC/BSM. Scale bars are 20
pm.

3.4.2 Caveolin-1 Binding

We further investigate the binding of CAV-SOL to lipid bilayers with the

fluorescence correlation spectroscopy-peptide binding assay. Lipid bilayers with varying

cholesterol concentration and a fixed 1:1 DOPC/BSM ratio are formed as extruded large

unilamellar vesicles (LUVs). There is an approximately two order of magnitude

difference between the measured diffusion time of CAV-SOL (40 us) and the average

diffusion time of the LUVs (5000 ýus), allowing us to fit the data as a sum of two

autocorrelation functions. Increasing the cholesterol concentration decreases the diameter

of LUVs extruded from mixtures of cholesterol, DOPC and BSM. The hydrodynamic

radii (Rh) measured for DiD-labeled LUVs composed of cholesterol and an equimolar
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DOPC/BSM ratio are shown in Table 3-1. An increase in cholesterol concentration

corresponds to a decrease in Rh.

Lipid Composition Rh of LUVs K [Ml]  Area% of Ld phase

20% chol + 1:1 DOPC/BSM 91 + 4 nm -6 x 104 43 + 16

30% chol + 1:1 DOPC/BSM 89 + 4 nm -3 x 104  22 + 13

40% chol + 1:1 DOPC/BSM 78 + 3 nm -1 x 103 no phase separation

50% chol + 1:1 DOPC/BSM 75 + 3 nm -7 x 102 no phase separation

Table 3-1. Molar partition coefficients calculated from FCS data.

To systematically investigate the effects of phase separation and cholesterol

concentration on CAV-SOL-membrane interaction, we use FCS to study the binding of

50 nM CAV-SOL to membranes in solution. The autocorrelation curves in Figure 3-4

demonstrate the binding of CAV-SOL to LUVs. CAV-SOL binds more strongly to

vesicles that have phase-separating lipid mixtures (Figure 3-4, c and d) and lower

cholesterol concentrations than those in a single phase region with higher cholesterol

concentrations (Figure 3-4, e andf). We calculate molar partition coefficients from FCS

data (Table 3-1) and show how lower cholesterol concentrations and phase separation

increase the membrane-peptide interaction.
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3.4.3 Caveolin-1 Peptide Phase Diagram

The pseudo-ternary lipid phase diagrams for the DOPC/BSM/cholesterol system

with and without the addition of the caveolin-1 peptides are presented in Figure 3-5. The

ratio of DOPC to BSM is fixed at 1:1. The miscibility transition temperature, Tm, is

measured over a range of cholesterol concentrations with and without added peptides.

Both liquid-liquid and liquid-solid phase coexistence are observed. Solid-liquid

coexistence is observed only in GUVs with cholesterol concentrations of 10 mol % or

less and solid domains are identified by their non-circular morphology, rigid body

rotation and inability to ripen into larger domains [44]. In contrast, liquid domains have

round, fluctuating edges and can coalesce and form larger domains.

The nearly identical miscibility transition temperatures measured over a range of

concentrations with and without CAV-SOL peptide indicate that the addition of CAV-

SOL does not affect the phase diagram (Figure 3-5 a). By contrast, inclusion of the

insoluble caveolin-1 peptides in the GUV membrane does depress Tm for the liquid-liquid

transition. As illustrated in Figure 3-5 b, the addition of 1 mol % CAV-INSOL and CAV-

CSD to GUVs containing 25 and 30 mol % cholesterol causes a significant decrease

(>5 0 C) in Tm. At a composition of 30 mol % cholesterol, not all of the GUVs in the

observation slide are phase separated after reaching the lower limit of the microscope

cooling stage. The addition of the CAV-INSOL and CAV-CSD to GUVs containing 10

mol % cholesterol does not cause significant change in Tm at the solid-liquid to liquid-

liquid phase transition.
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Figure 3-5. Influence of caveolin peptides on partial lipid phase
diagrams of GUVs of different cholesterol concentrations and fixed
1:1 DOPC/BSM ratio; Lo + Ld liquid-liquid phase coexistence region
shown. (a) CAV-SOL does not impact on phase diagram. Tm plotted
for for GUVs lacking peptide at transitions from liquid-solid phase
coexistence (diamonds) and liquid-liquid phase coexistence (circles,
solid curve) to single liquid phase. Tm measured for liquid-solid (*)
and liquid-liquid (squares, dotted curve) transitions after addition of
50 nM of CAV-SOL. (b) Insoluble peptides influence the liquid-liquid.
melting transition T. for solid-liquid transition at 10 mol %
cholesterol with no peptide (diamonds), 1 mol % CAV-INSOL (+), 1
mol % CAV-CSD (star) and 50 nM CAV-SOL (*) added to GUVs.
The liquid-liquid Tm was measured at 20, 25 and 30 mol % cholesterol
with 1 mol % CAV-INSOL (triangle point up, dashed curve), 1 mol %
CAV-CSD (triangle point down, dash-dotted curve) and 50 nM CAV-
SOL (squares) added to GUVs.



Figure 3-6 illustrates how the size and shape of the liquid-ordered domains are

qualitatively the same with or without peptides present. The bright cholesterol-poor Ld

phase is labeled with TR-DPPE, which is excluded from the cholesterol-rich phase [4,

44]. The circular shape of the cholesterol-rich domains indicates liquid-liquid phase

coexistence with high line tension [44] both with and without peptides.

Figure 3-6. Fluorescence micrographs of GUVs containing 20 mol %
cholesterol, viewed for TR-DPPE marking the Ld phase with no
peptide added (a), 50 nM CAV-SOL added to GUVs in solution (b), 1
mol % CAV-INSOL (c) and CAV-CSD (d) included in lipid mixture.
Scale bars are 20 pm.

3.5 Discussion

We study the phase partitioning behavior of peptides derived from caveolin-1, a

protein known to reside in membrane fractions resembling lipid rafts, but whose exact

lipid raft targeting mechanism is not well understood. We investigate the phase

partitioning of caveolin-1 peptides in a model membrane system with defined lipid



domains of differing compositions and densities. Cholesterol-rich liquid-ordered (Lo)

phases formed from ternary mixtures of BSM, DOPC and cholesterol provide a model

system for studying lipid rafts. The composition and morphology of model lipid domains

can be studied through lipid phase diagrams [45], which may give insight into the

physical properties of lipid rafts in cell membranes. Lipid domains in cells may serve as

platforms to locally concentrate molecules such as proteins to enable cell signaling. The

preference of a protein for either the Lo domain or the DOPC-enriched liquid-disordered

(Ld) domain is dictated both by the physical properties of the protein and the lipid

domain.

3.5.1 Exclusion of Peptides from Lo Lipid Domains

We find that both the soluble and insoluble caveolin-1 peptides partition into the

Ld phase at all studied lipid compositions. The fact that caveolin-1 peptides prefer the

fluid Ld domains to the dense Lo domains may be due to their exclusion from the tightly-

packed Lo domains. Lo domains are more densely packed than Ld domains due to the

alignment of the long and saturated fatty acid tails of the sphingolipid molecules and the

intercalating cholesterol. The packing of the liquid-ordered phase may be due to

hydrogen bonding between the cholesterol and saturated phospholipids or sphingomyelin

[42]. Recently, Radhakrishnan and McConnell proposed a model accounting for

cholesterol and lipid interactions using cholesterol-saturated lipid complexation and

predicted the tie lines of a three-phase lipid diagram [43]. The tight molecular packing

and acyl chain alignment within Lo domains may create a local ordered environment that
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does not readily accommodate additional molecules. This phenomenon of model peptide

exclusion from Lo domains has been previously studied experimentally. The linker for

activation of T cells protein is believed to associate with rafts in vivo, but it prefers the Ld

phases in model membranes studied both using fluorescence microscopy and detergent

resistance [97]. Detergent assays demonstrate that model peptides, including hydrophobic

transmembrane peptides [98, 99] and palmitoylated peptides [98], are excluded from

detergent-insoluble fractions due to tight lipid packing in the detergent-resistant phase.

The exclusion of our caveolin-1 peptides from the Lo phase may also be due to

our peptides' lack of lipid anchor moieties and their inability to form oligomers. There

are some general trends associated with proteins and peptides that have been shown to

partition into Lo lipid phases [47]. In model phase-separated membranes, the cholesterol-

binding protein NAP-22 is only targeted to Lo domains in its myristoylated form [100]. In

detergent resistance studies, lipidated peptides with multiple acyl chains partition into

detergent-insoluble Lo membrane phases [101, 102]. While the C-terminus of caveolin-1

contains three palmitoylated residues, the scaffolding domain we studied does not contain

such lipid anchors. An additional important feature of proteins and complexes that have

been shown to partition into Lo phases is their ability to oligomerize or form higher-order

assemblies. A well-studied example of this effect is the B subunit of the protein cholera

toxin (CTB), which binds the ganglioside GMI with pentameric symmetry and is

localized in Lo domains [7]. A recent study suggests that the CTB-GM1 complex

localizes to Lo domains only upon complex formation [9]. Using antibodies to cross-link

saturated phospholipid analogs causes the lipids to show increased affinity for Lo phases



in model lipid membranes [7]. Human placental alkaline phosphatase (PLAP) has a

glycosylphosphatidylinositol anchor and researchers have shown that cross-linking PLAP

favors its partitioning into Lo domains [82]. The scaffolding domain of caveolin-1 alone

is insufficient for oligomerization; in addition to the CSD, residues 61-101 of the N

terminus [103] and residues 168-178 in the C-terminal domain are necessary for

oligomerization of caveolin-1 constructs in vivo [104]. Recent work in live cells suggests

that the oligomerization of caveolin-1 is important for the protein to exit the Golgi

complex, to acquire detergent insolubility and to associate with the plasma membrane

[105]. The oligomerization of caveolin-1 and the formation of caveolin filaments that are

anchored into the membrane are responsible for the invaginated morphology of cellular

caveolae [19, 28, 106, 107]. We do not observe measurable changes in lipid curvature or

domain morphology when we included caveolin-1 peptides in our lipid membranes. Our

peptides' inability to form oligomers and their lack of lipid anchor moieties also

precludes the deformation of the membrane into highly-curved invaginations.

The result that our caveolin-1 peptides are excluded from the Lo phase is less

surprising for the shorter peptides CAV-SOL and CAV-INSOL, which lack the full-

length CSD that is necessary to target caveolin-1 constructs to caveolae in vivo [48]. We

also demonstrate, however, that CAV-CSD does not partition into Lo domains in our

model membrane system. In the in vivo investigation of CSD constructs targeting to

detergent-assayed raft domains, the CSD was targeted to rafts only 20% as efficiently as

full-length caveolin-1 [48]. While detergent extraction is the standard assay for

determining whether proteins prefer the Ld or Lo phase in cells [108], some question



whether detergent resistance can be used to determine whether a protein resided in a

domain prior to detergent extraction [109]. Another concern in comparing the live cell

membranes and their detergent extracts to model membrane systems is bilayer

asymmetry. The two leaflets of the cell plasma membrane have asymmetric lipid

compositions and densities, which are not preserved in the detergent extraction process

[110]. Model membranes approximating the lipid composition inner leaflet of the plasma

membrane, where caveolin-1 is thought to bind, do not phase separate into Ld and Lo

phases [111]. Previous model membrane experiments demonstrate that CSD peptides can

reside in membranes regions enriched in cholesterol, PIP2 and acidic lipids [91], yet our

model membrane system is substantially different. The defined immiscible Lo and Ld

lipid domains studied here differ in molecular density and contain sphingomyelin, a

known component of cellular caveolae [87]. The tight molecular packing in the Lo

domains excludes CAV-CSD from the Lo domains. Our results may also suggest

limitations associated with using model lipid rafts to approximate cholesterol-rich

domains in cellular membranes. Recent reviews highlight the gaps in our understanding

of lipid rafts in controlled model systems and rafts in cellular membranes [109, 110, 112].

The tendency of our caveolin-1 peptides to associate with less-dense membrane

domains is further demonstrated by FCS experiments with CAV-SOL. The water

solubility of CAV-SOL allowed us to quantify the binding of this peptide to membranes

with varying cholesterol concentrations using FCS. In our assay, the peptide is added to

LUVs in solution and binds more strongly to LUVs with phase-separating lipid

compositions (20 and 30 mol % cholesterol, 1:1 DOPC/BSM) than non-phase-separating



lipid compositions (40 and 50 mol % cholesterol, 1:1 DOPC/BSM) (Table 3-1). The

peptide's enhanced binding to membranes containing the Ld phase over homogeneous

membranes with high cholesterol content (40, 50 mol %) is consistent with the preference

of CAV-SOL for less-dense and more fluid membranes. Our measured molar partition

coefficients for CAV-SOL binding to LUVs are -104 M-1 for phase-separated lipid

mixtures and -103 M-' for non-phase-separating lipid mixtures. We measure the relative

area fraction of the Ld phase in GUVs (Table 3-1) and doubling the area fraction of the Ld

phase to which CAV-SOL binds approximately doubles the molar partition coefficient.

Our measured molar partition coefficients are similar to those measured with a shorter

caveolin-1 peptide containing residues 92-101 bound to vesicles with low (1-10 mol %)

acidic lipid compositions measured by sucrose gradients and radiolabeling of peptides

[93].

The observation of lipid phase separation in mixtures of cholesterol,

sphingomyelin and DOPC can give insight into the fluidity and ordering of membranes.

In these model studies domains are defined as microscopic immiscible phases with

simple morphologies [113]. The lipid miscibility transition temperatures of lipid phases

can be influenced by the length of lipid acyl chains [79] and clustering of protein

molecules [17]. We study the miscibility transition of membranes containing cholesterol,

BSM and DOPC and caveolin-1 peptides to study how the peptides influence Tm and the

morphology of the lipid phases. We show that the water-soluble peptide has negligible

impact on the phase diagram and the insoluble peptides depress Tm at cholesterol

concentrations above 20 mol %.



3.5.2 Changes to Lipid Phase Diagram Induced by Peptides

We demonstrate that the phase diagram and phase morphology of membranes

with 1:1 DOPC/BSM ratio and different cholesterol compositions are unaffected by the

addition of CAV-SOL peptide (Figs. 3-5 and 3-6). The identical miscibility transition

temperatures measured over a range of lipid compositions with and without CAV-SOL

(Figure 3-5 a) indicate that CAV-SOL does not moderate the relative amounts of

cholesterol nor does it redistribute the lipid concentrations in the two phases and that

CAV-SOL is unable to induce the formation of cholesterol-rich phase-separated domains

in non-phase-separated lipid bilayers. We attribute this lack of impact on the partial phase

diagram to the weak-to-moderate binding of the CAV-SOL peptide to membranes. We do

not expect CAV-SOL to penetrate deeply into lipid bilayer membranes. The interaction

of similar caveolin-1 peptides and lipid bilayer membranes has been previously studied

both with model membrane systems and in vivo. The membrane attachment sequence of

caveolin-l is KYWFYR and was identified through mutagenesis experiments and posited

to insert into inner membrane leaflet of cells [90]. The same sequence KYWFYR was

subsequently investigated with NMR was less inserted into model membranes composed

of cholesterol in SOPC membranes than a peptide comprising the well-characterized

cholesterol-binding sequence LWYIK [33]. These same authors also demonstrate that

longer caveolin-1 peptides with sequence VTKYWFYR and the full CSD do not

penetrate into SOPC and cholesterol membranes as deeply as LWYIK [92].



Unlike CAV-SOL, the insoluble peptides CAV-INSOL and CAV-CSD decrease

Tm at cholesterol concentrations greater than 20 mol % (Figure 3-5 b). CAV-INSOL and

CAV-CSD incorporated into cholesterol/BSM/DOPC membranes prevents the formation

of Lo phases at miscibility transition temperatures observed without the peptides. We

expect that the mechanism of the insoluble peptides interacting with membranes in our

experiments to be different than how the water-soluble peptide binds membranes. Unlike

CAV-SOL experiments where peptides were added to pre-existing lipid membranes in

solution, CAV-INSOL and CAV-CSD are included in the lipid mixture prior to forming

membranes and were therefore able to access the full depth of the membranes and

interact with all molecules in the lipid mixture. Phase separation is thought to be driven

by the tendency of sphingolipids to interact with cholesterol and form ordered domains

[3, 43, 114] and our results suggest that CAV-SOL and CAV-INSOL disrupt this phase

separation process. The decrease in Tm that we observed at the liquid-liquid to single

liquid phase transition suggests that the addition of the insoluble peptides to the

membranes also increases the fluidity of the membrane by promoting a single

homogeneous phase.



3.6 Conclusions

The widely-used model lipid raft system of cholesterol, DOPC and a saturated

lipid or sphingolipid may give insight into lipid rafts in cells and the formation of liquid-

ordered phases enriched in cholesterol. Studying the temperature- and composition-

dependence of lipid phase separation may improve our understanding of how proteins

affect lipid packing and mobility. The insoluble caveolin-1 peptides CAV-INSOL and

CAV-CSD depressed the melting temperature of liquid lipid phases, suggesting that the

insoluble caveolin-1 peptides prevent the lateral organization of lipids at certain

temperatures and therefore promote membrane fluidity. This effect contrasts the result

that CAV-SOL added to membranes in solution did not impact the partial phase diagram.

Model liquid-ordered domains have a dense molecular environment that is unfavorable to

caveolin-1 peptide insertion. The insoluble scaffolding domain is excluded from the

liquid-ordered phase, despite its earlier demonstrated preference for cholesterol in model

membranes [91] and its localization to detergent-insoluble fractions of cell membranes

[48]. We attribute the partitioning of our caveolin-1 peptides into liquid-disordered

domains to their exclusion from the tightly-packed liquid-ordered domains and their

preference for more fluid membranes. Overcoming the exclusion of molecules from the

tightly-packed liquid-ordered domains may be achieved by lipid anchor moieties or

oligomerization. While the full-length protein both oligomerizes and has palmitoylation

sites, our peptides lack these features.



CHAPTER 4. PROTEIN ORDERING

ON LIPID BILAYER VESICLES

4.1 Introduction

Proteins are often required to guide and direct the deformation of cell membranes

and induce structural transformations important for biological processes including

endocytosis [19, 22]. One such protein is clathrin, which assembles on the cellular

membrane surface into a well-defined lattice to form invaginations termed clathrin-coated

pits that eventually produce internal buds that are part of the endocytotic pathway [23-

25]. This physical process is driven by the fact that the curvature of the clathrin protein

lattice exceeds that of the membrane and is believed to influence the size of the clathrin-

coated vesicles that are formed [24, 25]. In addition to their role in biological processes,

protein arrays on lipid bilayers also have potential application in biosensing and drug

delivery, where a well-defined template of proteins can be immobilized on vesicles [55].

Model systems of proteins on lipid bilayer membranes allow for systematic study

of how protein arrays self assemble and influence lipid membrane shape and curvature.

The tetrameric protein streptavidin also forms two-dimensional crystalline domains when

bound to the surface of biotin-functionalized giant unilamellar vesicles (GUVs) [56, 115].
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Previous studies of streptavidin ordering on GUVs demonstrate that streptavidin-coated

GUVs can deform into football-like prolate shapes when the streptavidin protein domains

are aligned and form a continuous envelope (Figure 4-1) [115]. Micropipet aspiration of

streptavidin-coated GUVs shows that the protein-coated bilayer plastically deforms and

GUVs crumple as they deflate [56]. However, the physical mechanisms for how the

streptavidin domains align and determine membrane shape have not been systematically

explored.

Figure 4-1. DIC micrographs of GUVs coated with streptavidin with
spherical (left) and spheroidal (right) morphology. 10 pm scale bars.

We investigate the relationship between the configuration of crystalline

streptavidin domains and vesicle morphology. The streptavidin-coated membrane system

contrasts clathrin-coated membranes, because rather than inducing curvature, we find that

streptavidin domains flatten membranes and resist membrane bending. We develop a

simple model based on domain growth and jamming to account for the shape



transformations of the GUVs. We osmotically stress streptavidin-coated GUVs to study

how protein-coated bilayers respond to deflation and to qualitatively examine how rigid

protein domains influence GUV morphology and stability.

4.2 Materials and Methods

GUVs are prepared by the electroformation method [116] described in Chapter 2

from a mixture of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, Avanti Polar

Lipids) and N-((6-(biotinoyl)amino)hexanoyl)- 1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine, triethylammonium salt (biotin-X-DPPE, Invitrogen). Lipid

mixtures are 10:1 lipid weight ratio (SOPC/biotin-X-DPPE) by mass dissolved in

chloroform (HPLC grade, Mallinckrodt) [56, 115]. We add 0.1 mol % of TR-DPPE to the

lipid mixture to label lipid bilayers for confocal fluorescence microscopy experiments.

GUVs are formed in 608 mOsm glucose solution and suspended in sucrose in order to

provide optical and density contrast [117]. To osmotically stress the GUVs, we suspend

glucose-filled GUVs in hyperosmotic sucrose solutions. In order to achieve higher

osmotic stress gradients, we also form vesicles in 300 mOsm glucose.

Electroformed GUVs are incubated in 20 ýpg/mL protein solution for at least 3 h

to allow crystals to grow and equilibrate on the bilayer surface. Protein solutions are

prepared containing streptavidin (Invitrogen), egg white avidin (Sigma-Aldrich) and

Alexa488-avidin (Invitrogen) dissolved in glucose solutions of the same osmolarity as

those we use to form GUVs. The pH of the GUV and protein solution is adjusted from



pH 5.3 to pH 6 using a 500 mM Tris base solution. GUVs are imaged within 12 h of

synthesis, but remain stable up to 48 h.

Differential interference contrast (DIC) and fluorescence microscopy images are

obtained with 40x and 100x objectives. Glucose-filled vesicles are diluted 5-fold with

660 mOsm sucrose for microscopy. To measure size distributions of the GUVs, we

analyze DIC micrographs using ImageJ software. GUVs are classified as either spherical

or spheroidal; spheroidal GUVs have an aspect ratio greater than 1.1. We determine the

minimum curvature of the spheroidal GUVs by fitting a circle to the major vesicle

curvature.

To study the retention of solutes within the membrane, GUVs are formed in a

glucose solution containing fluorescently-labeled dyes. Either 10 Pg/mL of 10,000MW

Texas Red-Dextran or 100pg/mL of flourescein sodium salt (both Invitrogen) are added

to the sugar swelling solution. GUVs are diluted in sucrose 10-20 fold for fluorescence

microscopy visualization of the concentrated dye inside the vesicles to indicate whether

GUVs leak or rupture.



4.3 Results and Discussion

4.3.1 Shape Transformation

When streptavidin binds to a GUV containing biotinylated lipid, it interacts with

neighboring streptavidin proteins to form two-dimensional crystalline protein arrays on

the surface of the GUV [115]. When the streptavidin crystals are aligned, GUVs exhibit

spheroidal morphology (Figure 4-2). We visualize the streptavidin crystal morphologies

on the surface of fluorescently-labeled GUVs by incubating them in a 10:1 wt ratio of

streptavidin and Alexa488-Avidin. Avidin binds biotin with an affinity near that of

streptavidin but does not crystallize. The fluorescent avidin provides a bright background

to visualize streptavidin domains on the GUV surface approximately 5 gm in length.

When streptavidin domains are randomly oriented (Figure 4-2, left), GUVs have a

spherical morphology. When streptavidin domains align approximately parallel and span

the length of the GUV (Figure 4-2, right), GUVs have football-like shapes which we

approximate as prolate spheroid.



Figure 4-2. Confocal fluorescence micrographs of protein-coated
GUVs incubated in 90 wt % streptavidin and 10 wt % Alexa488-
avidin solution. Fluorescently-labeled avidin (green) is used to
visualize crystalline streptavidin domains on (red) fluorescently-
labeled bilayer. (Left): spherical GUV and (right): spheroidal-shaped
GUVs with aligned streptavidin crystalline domains. Scale bars are 10
glm.

Viewing the protein-coated membrane as a composite material, we can

qualitatively understand how protein domain alignment influences GUV curvature. If the

crystalline domains are a rigid, continuous material, then bending along the major axis of

the spheroidal GUVs is similar to bending parallel beams. This physical model is

supported by the observation that curvatures along the major axes of the spheroidal

GUVs in Figure 4-2, where streptavidin protein domains are aligned, are lower than the

curvatures of spherical GUVs. Along the minor axis of the spheroidal GUVs, however,

there is not continuous rigid crystalline material, but rather defects between crystalline

domains where we expect the membrane to bend more easily. The preference of

streptavidin crystals to grow in a planar fashion is consistent with the previous



observation of large streptavidin crystals that readily grow up to 100 ptm in size on flat

bilayer and monolayer surfaces [62].

4.3.2 Size Trend

An additional observation from Figure 4-2 is that the spherical GUV (left) is

larger in size than the spheroidal GUVs (right). We verify and quantify this trend through

analysis of the size and geometry of a population of 250 GUVs coated only with

streptavidin and imaged with DIC microscopy. Spheroidal GUVs are defined by having

an aspect ratio greater than 1.1. We plot the percent of spheroidal and spherical GUVs at

each diameter in Figure 4-3 to show that smaller GUVs tend to have spheroidal

morphology while larger GUVs tend to have spherical morphology. We define the

diameter of the spheroidal GUVs as the length of the major axis. Although spheroidal

GUVs are observed with a range of sizes, their proportions remain approximately

constant with aspect ratio defined as the length of the major axis over the length of the

minor axis of 1.18 ± 0.08. This suggests that the curvature of the surface on which the

streptavidin crystals grow influences the preferred curvature of the crystals that are

formed. Smaller GUVs have higher curvature than larger GUVs; thus, streptavidin

crystals growing on smaller GUVs must conform to a higher membrane curvature than

crystals grown on larger GUVs or planar bilayers.
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Figure 4-3. Normalized size distributions of spherical and spheroidal
GUVs. Spheroidal GUVs tend to be smaller in size than the spherical
GUVs. The GUV diameter of the spheroidal GUVs is defined as
length of the major axis. Error estimated from binomial distribution
statistics from N=250 GUV micrographs analyzed.

We propose a crystal growth and jamming model to account for the observation

that spheroidal GUVs tend to be smaller. We assume that the number of nucleation sites

per unit area is constant for all lipid bilayer surfaces, as illustrated by the schematic in

Figure 4-4 (left) showing the early nucleation of protein domains on both a large and

small GUV at time tl. At a later time t2 the protein domains have grown and begin to

contact adjacent domains. We define jamming as the state at which protein domains are

in contact with one another and are no longer able to grow. For simplicity, we assume

that for a given GUV, the growth rate of the domains is the same on all surfaces of that

1



GUV. If the protein domains have random orientations as they begin to grow, then the

probability of having aligned domains is increased on the smaller GUVs because there

are fewer protein domains. In other words, the fractional probability of N objects with

random orientations on a grid of size N having the same orientation scales exponentially

as -N; therefore, smaller grids, or smaller GUVs with fewer protein domains, have a

higher probability of alignment. The basis for these assumptions is confirmed by

fluorescence and DIC micrographs in Figure 4-4, which demonstrate that larger GUVs

have more domains than smaller GUVs and that the length of the streptavidin domains

does not depend on the size of the GUV on which they grow.

2

Figure 4-4. Model for crystalline domain growth and size trend.
(Left): Illustration of domains at early (tl) and late (t2) time scales.
(Middle and right): Fluorescence and DIC micrographs of GUVs
incubated in 90 wt % streptavidin and 10 wt % Alexa488-avidin
protein solution. Spherical GUVs (middle) are larger and have more
randomly-oriented domains than spheroidal GUVs (right), which have
aligned domains. All scale bars are 10 plm.



To verify the consistency of this physical picture, we estimate the time scales for

the protein domains to grow and diffuse. Streptavidin crystals have a preferred growth

direction on biotinylated GUVs, with C222 crystal lattice structure [62]. The rate of

streptavidin domain growth along the preferred growth direction measured on

monolayers is 1-50 jim/min [64]. We take the lower value of 1 jim/min because our low

ionic strength solution conditions should slow protein crystalline growth [62]. Based on

this growth rate, crystals reach their 5 gm length within 5 min. We compare this time

scale to the approximate time scale for the protein domains to rotate in the membrane.

The rotational diffusion, DR, of a molecule of length E rotating in a membrane with

viscosity p can be calculated from the equation

kT
DR = B• (4-1),

where kB is Boltzmann's constant and T is temperature. We calculate the membrane

viscosity, P =9x 10-2 Pa-s, using the Stokes-Einstein equation and the estimated diffusivity

of monomolecular streptavidin [64], Dr=5x 10-9 cm 2/s. We can use this to calculate the

rotational diffusion coefficient DR and the characteristic time scale for domain rotation

[118], tR~I/DR, over a range of streptavidin domain sizes. We find that tR -0.5 s when

domains are 0.1 jm in size and we estimate tR-70 min when domains are 2 jim in size.

Comparison of the rotational diffusion time scales with our estimated time scale for

crystal growth indicates that the domains grow much faster than they rotate. As the



domains grow quickly on the GUV surface, they are not free to rotate and they approach

a jammed configuration.

4.3.3 Effect of Streptavidin/Avidin Ratio on Vesicle Shape

Transformation

An important consideration in understanding how the arrangement of jammed

streptavidin domains on the GUV surface influences vesicle shape is the surface coverage

of crystalline streptavidin. By adjusting the relative amounts of avidin and streptavidin in

the protein incubation solution, we can control the surface coverage of crystalline

streptavidin relative to non-crystalline avidin. The fraction of GUVs transformed into a

spheroidal shape increases as the concentration of streptavidin in the protein solution

increases, as shown in Figure 4-5. The minimum amount of streptavidin in the protein

solution required to observe spheroidal GUVs is 74-78 mol % streptavidin. Micrographs

(Figure 4-5, b-d) illustrate that the surface coverage of streptavidin crystals increases as

the concentration of streptavidin in the GUV incubation solution increases. The

approximate amount of streptavidin required to observe microscopic crystals with optical

microscopy is 25 mol % streptavidin (Figure 4-5, b). This minimum concentration

threshold is comparable to streptavidin crystallization threshold observed on monolayers

[64] of 15 mol %.
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Figure 4-5. Graph of measured relationship between the fraction of
GUVs observed with spheroidal morphology and amount of
streptavidin used to coat GUVs. Error estimated from binomial
distribution statistics of N=411 micrographs analyzed. Fluorescence
micrographs of protein-coated GUVs with varied concentrations of
streptavidin: (a) 20 mol %, (b) 25 mol %, (c) 29 mol % and (d) 90 mol
%. The remaining protein incubation solution contains 10 mol %
Alexa488-avidin and the balance egg white avidin. (a): No microscopic
protein domains are observed on GUVs. All scale bars are 10 lam.



Consideration of the geometry and coverage of protein crystals near the sphere-to-

spheroid shape transformation threshold allows us to qualitatively describe the

mechanism for spheroidal GUV formation. We observe that spheroidal GUVs require an

aligned continuous network of crystalline streptavidin domains along their major axes,

which requires a minimum coverage of streptavidin. Therefore, we qualitatively describe

the onset of the sphere-to-spheroid GUV shape transformation as an aligned percolation

process, where microscopic streptavidin domains are the percolating material. Once

protein domain coverage enables the formation a continuous network spanning the GUV

length, a percolation threshold is reached and the percolated protein network can deform

GUVs into a spheroidal geometry. In our system, we observe spheroidal GUVs beginning

at streptavidin concentrations of -75 mol %; fluorescent micrographs suggest that below

this streptavidin concentration, the coverage of protein crystals is insufficient to form a

continuous material spanning the membrane dimension (Figure 4-5, b and c). At

streptavidin concentrations above the shape transition threshold, we observe an

approximately linear dependence of the amount of shape-transformed GUVs on the

concentration of streptavidin in the protein incubation solution (Figure 4-5).

Our observations are qualitatively similar to other studies of two-dimensional

percolation of objects with elongated geometry. Studies of randomly-oriented sticks and

their two-dimensional percolation in an aligned direction as a function of stick

concentration and stick alignment show a similar trend, where the probability of

percolation increases approximately linearly as the concentration of sticks increases

[119]. We estimate the surface coverage of streptavidin crystals at percolation using



results for 2-D randomly-oriented overlapping ellipses. If we approximate the

streptavidin crystalline domains as ellipses with aspect ratio of 2-3, then the approximate

coverage of the ellipsoidal domains in a 2D system at percolation, p, can be calculated as

1-pC, where p, is the area fraction of the surface not covered with overlapping ellipses.

The formula to estimate p, as a function of the ellipses' aspect ratio b/a is [120]

pc=(1+4y)/(19+4y) and y=b/a+a/b. We estimate the net area covered by overlapping

ellipses, or the streptavidin crystalline domains, at the percolation threshold to be 0.56-

0.62. In our system, the approximate fraction of the GUV surface covered by streptavidin

domains when GUVs are coated with 90 mol % streptavidin is -0.5. This measurement is

only an approximation, as we are limited by using 2D images to approximate a 3D

surface; however, it suggests that the coverage of streptavidin domains when GUVs

incubate in a solution containing 90 mol % streptavidin is sufficient to span the surface of

the GUVs and thus enable observation of spheroidal GUVs.

4.3.4 Osmotic Stress Response of GUVs

Osmotically stressing our protein-coated vesicles allows us to more thoroughly

investigate how the streptavidin domains resist bending and determine the GUV shape

and stability. Osmotic deflation of lipid bilayer vesicles can be used to characterize

membrane topology [121] and vesicle shape transformations [122]. We osmotically

deflate the glucose-filled GUVs by placing them in a concentrated sucrose medium; the

resulting hyperosmotic environment causes the vesicles to lose part of their internal water

volume to equilibrate the osmolarity of the external and internal solutions [123].
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Streptavidin-coated GUVs viewed in a hyperosmotic sugar environment have two distinct

morphologies: roughened spherical or spheroidal, with a ridge along the vesicle major

axis [115]. Interestingly, under increasing osmotic stress spheroidal GUVs maintain their

major axes and proportions. Figure 4-6 shows the measured curvatures of different

populations of spheroidal GUVs subjected to osmotic stress gradients AOsm=50-400

mOsm (Figure 4-6). Though we vary the osmotic gradient used to stress the GUVs, the

ratio of major curvature to GUV diameter remains approximately constant. DIC

micrographs illustrate how the spheroidal GUVs maintain their morphology even under

high osmotic stress (Figure 4-6, a-d).
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Figure 4-6. Spheroidal GUVs maintain their shape under osmotic
stress. (Above): Minimum curvature of spheroidal GUVs at different
osmotic stress gradients for N=68 GUVs. The ratio of the minimum
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We compare the osmotic stress responses of bare GUVs and GUVs coated with

crystalline vs. non-crystalline protein to examine how ordered protein domains affect the

bending properties of the lipid bilayer. Bare, streptavidin/avidin and avidin-coated GUVs

remain spherical when they are not osmotically stressed (Figure 4-7, left column).

Streptavidin domains, however, slightly deform the membrane even in the absence of

osmotic stress (Figure 4-7, b, left column). Upon application of an osmotic stress, bare,

uncoated vesicles can produce internal daughter vesicles (Figure 4-7, i) and become

flaccid (Figure 4-7, ii). These shape and topological transformations resulting from the

decrease in vesicle volume have been observed [121-125] and characterized in terms of

the bending energy and mechanics of lipid bilayers [126]. Crystalline protein domains

prevent the shape and topological transformations typically observed for lipid bilayers.

GUVs coated with streptavidin have a wrinkled morphology upon osmotic stressing and

shrink anisotropically (Figure 4-7, b, right column). Osmotically-deflated spherical

GUVs have a wrinkled appearance with many facets (Figure 4-7, iii). In contrast,

spheroidal GUVs maintain their major axes under osmotic stress (Figure 4-7, iv).

Comparing crystalline and non-crystalline protein coatings further reveals the impact of

the crystalline domains on the osmotic deflation response of the GUVs. When coated

with a mixture of avidin and streptavidin, osmotically-stressed GUVs have a wrinkled

morphology similar to GUVs incubated in only streptavidin (Figure 4-7, c, right column).

This contrasts the behavior the avidin-coated vesicles (Figure 4-7, d), which maintain a

smooth, spherical morphology when stressed but resist budding of the formation of

daughter vesicles. Avidin-coated vesicles often rupture even in the absence of osmotic



stress gradients and few GUVs are present at osmotic gradients above AOsm=250 mOsm.

This effect may be due to the affinity of the avidin-coated GUVs for the glass surfaces

that has been previously observed [56].

no stress osmotic stress

Figure 4-7. DIC micrographs of GUVs with and without applied
osmotic stress. (a): Bare GUVs unstressed (left column) and with
AOsm=250 mOsm osmotic stress (right column). Bare osmotically-
stressed GUVs produce daughter vesicles (i) or become flaccid (ii). (b):
GUVs coated with streptavidin unstressed (left) and osmotically
stressed (right) with roughened spherical geometry at AOsm=250
mOsm (iii) and spheroidal geometry at AOsm=200 mOsm (iv). (c):
GUV incubated in 50 wt % streptavidin/50 wt % avidin protein
solution unstressed (left) and with AOsm=250 mOsm (right). (d): GUV
incubated in avidin protein solution unstressed (left) and with
AOsm=250 mOsm (right). Scale bars are 10 jtm.
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We visualize the wrinkles and facets of osmotically-stressed streptavidin-coated

vesicles in more detail with confocal fluorescence microscopy and fluorescently-labeled

lipid in Figure 4-8. Equatorial micrographs of spherical GUVs (Figure 4-8, a-c) illustrate

the wrinkled or folded regions of the fluorescently-labeled lipid bilayer that form when

the protein-coated membrane is deflated by osmotic stress. Folded features become

deeper and have higher local curvature as the concentration gradient is increased.

Spheroidal GUVs exhibit concentrated lipid folding along their major axes (Figure 4-8,

d). The lipid fold in Figure 4-8, d penetrates the GUV to a depth of approximately 33% of

the total depth of the spheroidal GUV. This confirms our expectation that the membrane

should yield along the defects between streptavidin crystalline domains, which are at a

higher density in this minor axis direction.



Figure 4-8. Confocal fluorescence micrographs of streptavidin-coated
GUVs labeled with 0.1 mol % TR-DPPE subjected to osmotic stress
gradients. (a-c): Equatorial sections of GUVs at (a) AOsm=100 mOsm,
(b) 200 mOsm and (c) 300 mOsm, illustrating the highly curved
wrinkles in the vesicle lipid bilayer. (d): Equatorial section (left) and
projection image (right) of a GUV with AOsm=200 mOsm. The
equatorial image is taken at a depth of 2.5 pm into the GUV with
approximate dimensions 14 pm x 12 pm, length x z-depth. The fold
extends 4 pm into GUV. Scale bars are 10 gm.

Osmotic deflation experiments also allow us to investigate how protein coatings

on lipid bilayers influence topological membrane transformations such as budding. Our

microscopy data suggest that the overall surface area of the protein-coated membrane is

conserved despite osmotic deflation and that membrane budding at high osmotic stress is

suppressed by the streptavidin crystals. In contrast, proteins with high intrinsic curvature



that coat lipid membranes can assist in membrane budding [19, 22]. Clathrin protein

assembles in pits that form detaching buds for cell endocytosis. The lattice formed by the

clathrin proteins is highly curved and this protein curvature determines the size of the

budded internal vesicles that are formed [24, 25]. Our osmotic deflation experiments

suggest that tethered protein domains on lipid membranes with intrinsic curvature lower

than the membrane curvature can prevent membrane budding and locally increase

membrane rigidity. A third category of disordered protein coatings is avidin, which we

show prevents budding under moderate osmotic stress of AOsm=250 mOsm (Figure 4-7,

d, right column). The mechanism of how non-crystalline avidin suppresses budding is

unclear. The general question of how disordered protein coatings affect lipid curvature is

important in cells, however, as diverse protein species reside in the membrane.

Osmotically-stressed streptavidin-coated vesicles present a crumpled shape, with

small regions of very high membrane curvature that may be expected to affect the

integrity of the lipid bilayer. To investigate this, we study the retention of a small

molecule chromophore encapsulated in the vesicles. The retention or leakage of an

encapsulated dye indicates whether the bilayer is porous, ruptured or torn. Figure

demonstrates how the protein-coated lipid bilayer resists rupture and leakage under

osmotic stress. The retention of fluorescein sodium salt (hydrodynamic radius R-~0.5

nm) within the vesicles coated with protein (Figure 4-9, a-c) indicate that no nanometer-

sized holes form in the bilayer even under significant osmotic stress of AOsm=500 mOsm

(Figure 4-9, c). Even after 12 h, the protein-coated GUVs retain the dye with no leakage

measured by fluorescence. Bare vesicles (Figure 4-9, d and e) retain the dye and resist



rupture upon osmotic stressing of AOsm= 250 mOsm (Figure 4-9, e). Interestingly, at

osmotic stress gradients greater than 300 mOsm, no bare GUVs remain in the sample due

to membrane collapse and rupture. We verify this effect in experiments with GUVs

containing fluorescently-labeled lipid subjected to osmotic stress gradients. The stability

of protein-coated GUVs compared to bare unstable GUVs at AOsm=500 mOsm indicates

that the crystalline protein layer protects the membrane. Crystalline proteins on bilayers

in nature may protect primitive organisms. S-layers on the surface of archea and bacteria

are crystalline protein coatings that are linked to the plasma membrane [30]. A possible

function attributed to S-layers is protection of the archea. Our findings are consistent with

previous studies suggesting that S-layers stabilize model membranes subjected to

mechanical stress [55].
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Figure 4-9. Fluorescence micrographs of GUVs encapsulating
fluorescein. Top row: GUVs incubated in streptavidin protein
solution. Bottom: GUVs lacking protein coating. No bare GUVs are

observed at AOsm=500 mOsm. Scale bars are 10 gm.

We also study the retention and leakage of 10,000 MW Texas Red-Dextran,

which has a hydrodynamic radius (Rh) of -2 nm and is therefore approximately four

times larger than fluorescein (Rh -0.5 nm). We observe, however, after diluting the

Dextran-filled GUVs and coating them with streptavidin, that excess Dextran adsorbs to

the streptavidin layer on the outside of the GUVs. The adsorbing effect is seen in

fluorescence micrographs after 12 h under osmotic stress in Figure 4-10. The adsorption

of Dextran to the streptavidin coating prevents us from determining if Dextran remains

inside of the GUVs or leaks from the GUVs. Because Dextran is larger than fluorescein

n s
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and would require larger tears or holes to leak from the GUVs, we do not expect leakage

of Dextran from osmotically-stressed GUVs. Interestingly, without the streptavidin

coating and this adsorption effect, we observe that Dextran has a stabilizing effect on

bare membranes. Uncoated GUVs filled with Dextran resist rupture up to osmotic stress

gradients of AOsm=500 mOsm (Figure 4-10, bottom, right), indicating that the Dextran-

filled GUVs are more stable than bare GUVs, which rupture at AOsm= 300 mOsm.

streptavidin-coated GUVs
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Figure 4-10. Fluorescence micrographs of GUVs encapsulating
10,000MW Texas Red-Dextran. Top row: GUVs incubated in
streptavidin solution; Dextran adsorbs to streptavidin coating,
Bottom: GUVs without protein coating; Dextran stablizes GUVs at
AOsm=500 mOsm (bottom, right). Scale bars are 10 gm.



4.4 Conclusions

Understanding the physical mechanism of the assembly and ordering of proteins

on the lipid bilayer and their effect on the membrane curvature gives insight into the

biophysical processes of membrane bending and cell shape changes. Our system of

streptavidin crystallized on GUVs containing biotinylated lipid illustrates how a coating

of ordered protein domains can change the physical properties of the membrane. We

demonstrate that the configuration of the proteins on the lipid membrane surface

determines the shape of the GUVs, as aligned domains resist bending preferentially in

one direction. This model biological membrane system provides an interesting

experimental platform for studying the physical phenomena of two-dimensional

percolation and jamming. We also demonstrate that crystalline protein domains on the

GUV surface prevent vesicle budding and protect the lipid bilayer from rupture or

leakage upon osmotic deflation. Our findings suggest that proteins on cellular membranes

play an important role in cell shape determination and membrane stabilization.



CHAPTER 5. PROTEIN ORDERING

ON SUPPORTED LIPID BILAYERS

5.1 Introduction

Self-assembled protein complexes in cell membranes have diverse functions,

including structural membrane deformation [19, 20] and transduction of external signals

[21]. These complexes can be peripherally attached to the membrane or imbedded in the

lipid bilayer; the nature of this physical arrangement can impact overall membrane

structure and fluidity. An important biological function attributed to membrane-

associated proteins and protein complexes is to directly influence the membrane structure

and fluidity through lipid bilayer modification or rearrangement. To better understand the

biological activity of proteins in cell membranes, it is therefore essential to study proteins

interacting with lipid membranes.

Microscopic and nanoscopic structural studies of protein complexes at membrane

surfaces of lipid membranes offer complementary insight into protein-lipid interactions.

Fluorescence microscopy can be used to measure the mobility of lipids and demonstrates

that proteins bound to lipid bilayers can moderate lipid fluidity [18]. Lipid mobility

likewise influences protein complex formation; microscopy investigation of the growth of
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two-dimensional crystals of the tetrameric protein streptavidin suggests that immobile

lipids hinder formation of protein crystals [61]. At the nanoscale, measurement

techniques employing X-ray and neutron sources provide detailed structural information

that can elucidate the role of proteins in the modification and rearrangement of biological

interfaces. For example, reflectivity measurements reveal that the membrane-targeting

domain of the peripheral protein cPLA-cC2 displaces water molecules around lipid

headgroups to facilitate membrane attachment and ligand binding [60]. Other studies

show that single layers of crystalline protein intercalate lipids, resulting in lipid

headgroup rearrangement [58, 59, 127]. In these X-ray and neutron reflectivity examples,

monolayers provide the model interface for studying surface proteins.

Experimental accessibility traditionally guides the choice of biomimetic lipid

interface used to study protein-lipid interactions at micro- and nanoscales. While

monolayers at the air/water interface are the most common biomimetic interface used for

X-ray and neutron reflectivity studies, they are not as representative of cell membranes as

a single lipid bilayer in the liquid phase. Stacks of multilamellar lipid membranes mimic

the fluidity of cellular membranes and provide signal amplification for X-ray analysis

[128]; however, the stacked geometry complicates study of membrane surface-associated

protein complexes. The base structure for all cell membranes is a single lipid bilayer,

often mechanically coupled to a cytoskeletal matrix, which can be approximated

experimentally by a supported lipid bilayer (SLB) [36]. Reflectivity characterization of a

single SLB requires a sufficiently flat substrate, optimized contrast and minimal beam

damage. Neutron reflectivity offers the advantage of high contrast and little beam



damage; however, X-ray reflectivity at lipid interfaces offers superior resolution [38]. We

extend recent developments to resolve single SLBs with X-ray reflectivity [37, 38, 68,

129] to study the more complex system of proteins interacting with single SLBs at both

microscopic and nanoscopic scales.

We study the proteins streptavidin and avidin bound to biotinylated lipids to

model peripheral membrane proteins at cell membranes. We prepare large (-cm2)

symmetric biotinylated SLBs and study them in a microfluidic device [37] that enables

simultaneous in-situ investigation with X-ray reflectivity and fluorescence microscopy.

Streptavidin forms 2D crystals visualized among fluorescent Alexa488-conjugated

avidin, which binds to the membrane but does not crystallize [61]. By using different

ratios of streptavidin to avidin, we tune the amount of crystalline vs. non-crystalline

protein to examine the influence of protein ordering on the mobility of the underlying

lipid membrane. Previous X-ray and neutron reflectivity characterization of the structure

of streptavidin bound to lipid monolayers [127] allows us to compare bilayer and

monolayer interfaces and, in particular, the structural effect of the protein on the

underlying lipid interface. In addition to structural study, stable SLBs at the solid

interface have potential biosensing and lab-on-a-chip applications, where a single

membrane directly coupled to a surface can be used for measurement and analysis.



5.2 Materials and Methods

We purchase SOPC from Avanti Polar Lipids. The lipids biotin-X-DPPE and TR-

DPPE and the proteins Alexa488-avidin, streptavidin and egg white avidin are obtained

from Invitrogen (Karlsruhe, Germany). We purchase from phosphate buffered saline

(0.01 M PBS; pH=7.4; 138 mM NaC1, 2.7 mM KC1, 10 mM Na 2HPO 4, 2 mM KH 2PO4)

from Sigma. We prepare the buffer in de-ionized (DI) water from Millipore Corp.

(Billerica, MA). HPLC-grade chloroform, acetone, isopropanol and ethanol are from Carl

Roth (Karlsruhe, Germany). We purchase reagent-grade NH40H, 37% HCI and H20 2

from Sigma.

Silicon substrates are cleaned as described in Chapter 2. We prepare the lipid

mixture 89.5 mol % SOPC, 10 mol % biotin-X-DPPE and 0.5 mol % TR-DPPE in

chloroform. We evaporate the chloroform and re-dissolve it in isopropanol for spin-

coating. We spin-coat the lipids onto the substrate, dry the film, secure the substrate into

a microfluidic device and hydrate the SLB according to our protocol outlined in Chapter

2. We rinse the SLBs in microfluidic chambers five times with PBS buffer, then pipette 1

mL of protein solution in PBS at concentration 40 jig/mL into channels to allow protein

layers to form on the SLBs. The SLBs are left undisturbed to incubate in protein

mixtures at least 12 h at 300 C. After forming the protein layer, the chambers are rinsed

out to remove excess proteins.



Both fluorescence microscopy and X-ray reflectivity measurements are performed

at the undulator beamline IDO1 at the European Synchrotron Radiation Facility (ESRF) in

Grenoble, France. The X-ray geometry and setup and the microscope apparatus are

described in Chapter 2.

5.3 Results

5.3.1 Fluorescence Microscopy

After incubating the SLBs in protein and flushing the chambers to remove

proteins in solution, fluorescence microscopy provides direct evidence of protein layer

formation. Dark crystalline streptavidin domains are visualized among fluorescently-

labeled avidin in Figure 5-1. Qualitative observation of the protein crystals in Figure 5-1

gives insight into the overall quality and fluidity of the SLBs. The surface coverage of the

streptavidin clearly increases as the amount of streptavidin in the incubation solution is

increased. Streptavidin crystals in Fig 5-1, II and III exhibit the characteristic X- and H-

shapes of crystals with C222 symmetry observed on monolayers formed in the presence

of bound avidin at similar solution conditions [63, 130, 131]. The nucleation of

microscopic protein crystals requires mobile lipids and a smooth substrate [61] and the

uniform size and random orientations of the streptavidin crystalline domains at each

protein composition suggest that SLBs have uniform fluidity. At low microscopic

resolution (Figure 5-1, left column), the density of the crystals on the SLB is spatially



uniform, suggesting that the nucleation density and crystal domain growth rates are

constant across the SLB.

Crystalline domains at lower streptavidin surface coverages (Figure 5-1, HI and

III) have an average length of- 15 gm and an average length to width aspect ratio of -2.

Characterizing the shapes of the streptavidin domains formed from 90 wt % streptavidin

solution is more difficult, as the domains grow to near confluence (Figure 5-1, I).

Previous experiments in monolayers [131, 132] and bilayers [61] also suggest that high

surface coverage of streptavidin enables dendritic growth of crystals, resulting in

morphologically-indistinguishable domains.



Figure 5-1. Dark crystalline streptavidin domains bound to SLBs
imaged with 10x (left column) and 63x (right column) objectives. SLBs
are incubated in protein mixtures of molar ratios
(streptavidin/avidin/Alexa488-avidin) of (1) 92/0/8, (II) 56/36/9, and
(I1I) 12/78/10. Scale bars are 100 pm in the left column, 10 gLm in the
right column.
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5.3.2 Continuous Bleaching

While the formation of microscopic crystalline domains indicates that our

membranes are fluid, we also quantitatively measure the diffusion constants of lipid

bilayers with and without protein. We use the continuous bleaching method [67, 81],

which is particularly convenient because it employs the same setup we use for

fluorescence microscopy. According to the theory of continuous bleaching, the spatial

intensity of fluorescently-labeled membrane subjected to constant and even illumination

is described by simultaneous photobleaching and replenishment of fluorescent molecules

via two-dimensional diffusion.

We illuminate a defined region of the SLB -180 ptm in diameter (d) at 63x

magnification (Fig 5-2, a, right). This area is continuously illuminated and, as the

fluorescent lipid molecule TR-DPPE is photobleached, the fluorescence intensity, Id/2, Of

the SLB in the center of the illuminated area (d/2), decays exponentially as a function of

exposure time (t) according to the equation:

Id/2 (t )= e- Bo I (5-1).

Iro is the initial fluorescence intensity at the center of the illuminated area, Bo is the

bleaching rate and r is dimensionless time, r = Bot. We calculate I~o from the average

intensity of an area of -10 jtm in diameter in the center of the sample, represented by

circles in the SLB micrographs of Figure 5-2, a. The total fluorescence intensity



measured in the center of the sample, Itotal,d/2, is the sum of Id/2 and the background

fluorescence measured in the non-illuminated part of the membrane, A,, and Itotal,d/2

Id/2 A1 . We calculate Bo, which depends on the fluorescent dye, solution conditions and

illumination energy, by fitting Equation 5-1 to the time-resolved intensity in the center of

the sample for each continuous bleaching measurement. The plot of Id/2 as a function of

time is presented in Figure 5-2, b and the dashed line calculated from Equation 5-1

illustrates that the first-order behavior described by Equation 5-1 persists up to -1000 s.

At longer times, the fluorescence intensity measured at the center of the membrane

approaches the background fluorescence AI, indicating that the center of the membrane is

fully bleached.

As the sample is bleached, a bright rim appears at the edge of the image (Figure

5-2, a, bottom right), as TR-DPPE molecules diffuse into the illuminated area. Once the

center of the sample approaches the background fluorescence and remains constant, at

approximately r > 20, we fit the fluorescence intensity line profile through the sample as

a function of distance, x, according to the equation [81]:

I(x)= I,, cosh( BD(x - d/2))+ A2  (5-2).

The fluorescence intensity at the edge of the rim is Ixo, D is the diffusion constant and A2

is a constant we use to fit Equation 5-2 [81]. Diffusion constants extracted by fitting

Equation 5-2 to the line profiles at 5 s intervals are plotted in Figure 5-2, c. The fit of

Equation 5-2 to a line profile is shown in Figure 5-2, a. According to the original



development of continuous bleaching theory, Equation 5-2 can only be used to accurately

calculate D at longer times, when the center of the sample is completely bleached [81].

This time regime is indicated in Figure 5-2, c and is represented qualitatively by the

plateau of extracted D values at z > 20. For data suitable for robust quantitative analysis,

extra care must be taken to ensure even sample illumination and a flat initial line profile

(Figure 5-2, a) and the center of the sample must be completely bleached to the

background level to calculate the diffusion constant D.
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Figure 5-2. Continuous bleaching of TR-DPPE to measure lipid
diffusion in a SLB coated with protein layer of 92/8 molar ratio
(streptavidin/Alexa488-avidin). (a): Line intensity profiles and
corresponding micrographs at the onset of bleaching (0 s) and end of
the experiment (1900 s). The fit to the line profile at 1900 s from
Equation 5-2 is shown in red. (b): The plot of background-corrected
fluorescence intensity in the center of sample as a function of time is
used to determine the bleaching rate Bo; the dashed line is calculated
from Equation 5-1. (c): Diffusion constant D extracted from fitting
line intensity profiles at 5 s time intervals to Equation 5-2. The longer
time regime (r> 20) is indicated when the center of the sample is fully
bleached and Equation 5-2 is valid for calculating D.
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We reproducibly measure the diffusion constants of our SLBs using the

continuous bleaching method and we investigate whether the protein layer influences the

fluidity of the bilayer. Table 5-1 lists the lipid diffusion constants of the SLBs. We

measure that protein binding to the SLB results in a slight decrease in lipid mobility, as

lipid diffusion constants are reduced -10-15% when a protein layer is present. Neither the

composition of the protein mixture nor the area coverage of crystalline protein has a

measurable effect on lipid mobility. Previous studies of multivalent polymers adsorbed to

lipid bilayers at complete surface coverage also show little effect on measured lipid

diffusion compared to bare bilayers [133]. After bleaching, the SLBs recover to their full

original fluorescence overnight and we are unable to detect an immobile fraction of

lipids.

Composition of protein solution Diffusion constant, D (Apm2/s)

no protein (bare SLB) 2.3 ± 0.4

90 wt % streptavidin, 10 wt % avidin 2.0 + 0.1

50 wt % streptavidin, 50 wt % avidin 1.9 ± 0.1

10 wt % streptavidin, 90 wt % avidin 1.9 ± 0.1

100% avidin 2.0 + 0.1

Table 5-1. Diffusion constants calculated by fitting Eqs. 5-1 and 5-2 to
continuous bleaching data. SLBs are incubated in protein solutions
with compositions listed; total mol % avidin comprises -5 mol %
Alexa488-avidin and the balance egg white avidin. Three different
time-resolved line profiles are measured for every sample, each
corresponding to N > 20 calculations of D. Error is estimated as the
experimental standard deviation.
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We also investigate whether the protein molecules within the protein layers

attached to the SLBs are mobile by using fluorescently-labeled avidin as a tracer

molecule. When we continuously illuminate protein-coated SLBs at 488 nm,

corresponding to the Alexa488-avidin, we do not observe the bright rim at the sample

edge characteristic of a fluid membrane. Instead, the illuminated area, viewed at 10x after

1 h of bleaching and shown in Figure 5-3, has a sharp outline and a flat fluorescence

intensity profile, indicating no diffusion of the Alexa488-avidin. Note that due to the high

photostability of the Alexa dye, there is only minimal bleaching of the protein layer. This

immobility is observed at all protein layer compositions and time-resolved images show

that the streptavidin domains remain fixed, further indicating the immobility of the

protein layer.

We expect the diffusion constant of the bound protein to be lower than that of the

underlying lipids, by comparison of the relative molecular sizes of a lipid molecule (-7

A) and a single protein molecule (-50 A) [134]. The molecular size-scaling of the

diffusion constant in a SLB is not accurately described by the hydrodynamic model of

diffusion [ 118] that we use to describe protein complexes in fluid lipid bilayer vesicles

[135] due to frictional contact between the lipids and the solid substrate [136]. Due to the

bivalent attachment of the protein molecules to the lipids, each protein molecule must

diffuse with two lipid molecules separated by a fixed distance; as multivalent streptavidin

crystalline complexes form, an increased number of bound lipids must diffuse with fixed

spacing. The mobility of the non-crystalline protein molecules can also hindered by

collisions with adjacent proteins at our experimental condition of high protein surface
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coverage. Previous observations show that proteins attached to membranes at high

surface coverages can diffuse 20-100 times slower than lipids [131]. We can therefore

expect the streptavidin and avidin to be fixed and immobilized relative to the underlying

lipids not attached to the protein at our experimental conditions of high protein surface

coverage.

Figure 5-3. After continuous fluorescence illumination of SLB coated
with 92 mol % avidin, 8 mol % Alexa488-avidin at 488 nm for 1 h, no
diffusion of Alexa488-avidin is detected. The bleached region is clearly
outlined (left) and the line intensity profile indicates uniform
fluorescence across the bleached region. Scale bar is 100 pm.
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5.3.3 X-ray Reflectivity

X-Ray reflectivity enables us to determine the structure of the protein and

underlying bilayer in nanoscopic detail. In Figure 5-4, we compare the reflectivity of bare

and protein-coated membranes. The main signature of the protein layers in Figure 5-4, I-

III is the dip in the reflectivity curve at q, = 0.1 A', indicating an additional layer on the

lipid bilayer membrane, which is not present in scans of the bare membrane (Figure 5-4,

IV). From initial observation, the reflectivity scans from the different protein layer

compositions shown in Figure 5-4, 1-I11 are nearly indistinguishable. The similar

reflectivity from different ratios of avidin and streptavidin are not surprising, as avidin

and streptavidin have similar structures [137]; 33% of the residues are the same [65] and

their biotin-binding sites are nearly identical. This structural similarity, combined with

the fact that our reflectivity scans are measured with an incident beam on the membrane

of size - 1 mm2, make avidin and streptavidin indistinguishable by our measurements.

Thus, our X-ray reflectivity fits do not take into account the segregation of the proteins

once crystals are formed.
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Figure 5-4. Normalized reflectivity scans of protein-coated (I-III) and
bare (IV) SLBs. Protein-coated SLBs (I-IIl) have a signature dip at qz
= 0.1 A-'. SLBs coated with protein mixtures with molar ratios
(streptavidin/avidin/Alexa488-avidin) of (I, blue) 92/0/8, (II, green)
56/36/9, and (III, red) 12/78/10. The common depth profile is plotted
with the data sets in I-III to illustrate the similarity of the streptavidin
and avidin-protein layers. The reflectivity of a bare SLB lacking
protein (IV) is shown with its fit (orange curve). Plots are shifted
vertically for clarity; all data are background corrected and
normalized by the Fresnel reflectivity, RF.

To extract structural details of the protein layer and underlying SLB, we fit the X-

ray reflectivity data using a least-squares fitting routine. We use an 11 slab model for the

protein-coated SLBs; the thickness and electron density for each slab is varied to fit the

raw data [85]. We model the underlying SLB with 7 slabs: 2 slabs for each headgroup
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layer, one slab for each acyl chain layer and one slab for the space between leaflets. The

region between the bottom of the peripheral protein layer and the upper surface of the

SLB is one slab and we use 3 slabs to model the protein layer. This slab model profile is

smoothed by an overall roughness of 3 A, as described in Chapter 2. We test the

structural similarity of protein-coated SLBs formed from different compositions of

streptavidin and avidin by fitting the data to a single depth profile. The fit to this common

profile is plotted with the data at each protein composition in Figure 5-4, I-IIL.

In Figure 5-5 we present the electron density profiles of protein-coated and bare

SLBs, with a corresponding sketch of the peripherally-bound protein. The common depth

profile of the protein-coated SLB is shown; thus, this profile represents both streptavidin

and avidin in the protein layer (Figure 5-5, black curve). The protein layer attached to the

bilayers is indicated by the characteristic increase in electron density, at distance of 55-95

A from the substrate. In contrast, the electron density profile of the bare SOPC/biotin-X-

DPPE SLB is flat in this region (Figure 5-5, orange curve). We measure a -40 A-thick

protein layer on the SLB. This thickness is comparable to previous X-ray and neutron

reflectivity studies of streptavidin crystallized on monolayers, where thicknesses of 40-44

A [57, 127, 138] are reported, which is near the thickness of avidin measured by X-ray

crystallography of -40 A [137]. Our dynamical range extends up to qmax= 0.6 A-' and the

spatial resolution of the electron density profile, dmin, is estimated by the sampling

theorem as dmi- [129]. According to this relation, our resolution is dmin-5 A. We
q max

are therefore able to resolve the space between the protein and SLB, which is -8 A in
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thickness. This hydrated layer is structurally distinct from the headgroups and protein

because the electron density in this space approaches the bulk water density. To verify

the structural similarity of protein layers with different amounts of avidin and

streptavidin, we also independently fit the scans for each protein composition, allowing

the thickness and density of each slab to vary. As expected, the individual profiles

extracted from the reflectivity of different streptavidin and avidin protein layers are

identical within the precision of our measurements.
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Figure 5-5. Electron density profiles of SLBs with a protein layer
(black, common profile) and without protein (orange) extracted from
fitting the reflectivity. The protein layer is identified by a plateau of
increased electron density not seen on the bare SLB (orange). The
thickness of the protein layer is - 40 A; the water layer separating the
protein from the SLB is - 8 A thick. The electron density axis is
correctly aligned for the protein-coated SLB (black); the profile of the
bare SLB (orange) is shifted left for clarity.
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5.4 Discussion

We create large stable arrays of protein crystals on single supported lipid bilayers

suitable for simultaneous microscopy and reflectivity characterization. Our protein-

coated SLBs remain stable for characterization over 48 h. In developing a biomimetic

interface for studying protein complexes, we require bilayer stability for time-resolved

investigation of biological self-assembly at interfaces. Also, large surface coverage of the

bilayer becomes important, as both reflectivity and microscopy require homogeneous

samples of dimension -100 Am 2. Fluorescence microscopy micrographs (Figure 5-1)

provide direct evidence of protein layer formation and high surface coverage.

Using the complementary insight from our combined microscopic and nanoscopic

characterization of protein-coated membranes we can describe how the protein layer

interacts with the lipid in greater detail. The high resolution that we accomplish with X-

ray reflectivity allows us to examine the structure of a single layer of protein on a SLB.

Since streptavidin and avidin irreversibly bind the headgroups of biotin-X-DPPE lipids

and are immobile relative to the lipid molecules, we expect the lipids bound to the

tethered protein layer to be immobilized. We approximate the number of pinned lipids in

the bilayer by estimating the number of lipid molecules per protein molecule. If the

approximate area per lipid headgroup is 50 A2 and the protein molecules are z 50 x 50 A2

in area, then the footprint of the protein is -50 lipids. Bivalent binding of the protein then

suggests that 4 mol % of the lipids are pinned. The slight decrease in the lipid diffusion
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constants determined by continuous bleaching experiments, where binding of the protein

reduces the diffusion constant of the lipid probe by -10-15%, suggests that pinning of

biotinylated headgroups due to protein layer binding and the presence of a solid protein

layer above the membrane can influence membrane fluidity.

Despite the immobilization of the biotinylated lipids, the SLB is fluid and is

viscously decoupled from the protein layer. We attribute this to the space between the

SLB and protein layer that we measure with X-ray reflectivity. The molecular contents of

this layer are water and the portion of the biotin-X-DPPE separating the biotin from the

headgroup. The main protein-lipid interaction that we resolve in our structural study of

streptavidin and avidin binding to SLBs is therefore immobilization of biotinylated lipids

bound to protein. These observations contrast the effects observed upon streptavidin layer

formation on monolayers at the air/water interface. The lipids show major tilting, and

rearrangement, resulting in overall reduced monolayer thickness [127]. Stable lipid

bilayers resist leaflet collapse and, unlike lipid monolayers, cannot easily adjust surface

pressure and density in response to ligand binding. We suggest that lipid bilayers are

more representative of cell membranes and more appropriate for studying protein-lipid

interactions than monolayers, as we expect the lipid spacing in cells to also be somewhat

fixed.

Interestingly, the fluidity and structure of lipid bilayers with non-crystalline

avidin and microscopic crystalline streptavidin domains are similar. Both protein coatings

are qualitatively immobile or frozen and cause the same slight decrease in the fluidity of

the underlying lipids. While we would expect non-crystalline avidin to be more mobile
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than streptavidin molecules confined to crystalline domains, in our model of lipid

pinning, all bound protein molecules are immobilized relative to the viscously decoupled

underlying SLB.

5.5 Conclusions

We concomitantly characterize a single protein layer bound to a single SLB with

fluorescence microscopy and X-ray reflectivity. In this protein template, streptavidin and

avidin are specifically bound to a fluid interface with defined orientation, which may be

superior to simple solid-supported protein interfaces for biosensing applications. We

demonstrate a method of characterizing proteins interacting with single lipid bilayers at

the solid interface; this biomimetic membrane is more representative of cell membranes

than monolayers and can be extended to study more complex protein-lipid interaction

systems. By resolving the space separating the streptavidin and avidin layers from the

SLBs, we demonstrate that the lipid-protein interaction is peripheral, contrasting the

leaflet collapse effects observed from similar molecules in lipid monolayers. Our study

suggests that proteins in general can have different effects at monolayers and bilayers.
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CHAPTER 6. GM1 GANGLIOSIDE

AND MODEL LIPID RAFTS IN

SUPPORTED LIPID BILAYERS

6.1 Introduction

The monosialoganglioside receptor GM 1 is the entry point for the protein cholera

toxin at the cell membrane surface. The B subunit of cholera toxin (CTB) binds sugar

oligosaccharide groups of GM1 that extend out from the surface of the membrane [139].

Once CTB is bound, five GM1 molecules per CTB form a pentagonal complex [140] that

allows the toxin to cross the membrane into the cell to induce disease [16]. The lateral

diffusion of GM1 in the membrane and its co-localization with other GM1 molecules to

form the CTB-GM1 complex is therefore a vital step in the delivery of cholera toxin to

cells. A possible mechanism for concentrating GM molecules is the preferential

partitioning of GM 1 into different lipid environments of the cell. CTB entry into the cells

can be facilitated by binding GM 1 receptors concentrated in cell membrane domains that

are enriched in sphingolipids, cholesterol and the protein caveolin-1 [16]. In model

biological membranes, GM1 localizes to liquid-ordered lipid phases [4, 141], though

other studies suggest that GM1 localization to model lipid rafts requires CTB binding [9,

17]. A better understanding of the influence of GMI and the GM1-CTB complex on the
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local lipid packing of the cell membrane could clarify why GM I1 prefers certain lipid

phases.

Surface-sensitive techniques for characterizing lipid interfaces suggest that GM1

can moderate lipid packing. GM1 itself diffuses more slowly than the surrounding lipids

and the mobility of GM1 is further reduced when it binds to CTB [18, 49]; in cells, the

GMI-CTB complex is immobile [142]. Fluorescence microscopy experiments

demonstrate that GMI decreases the mobility of surrounding lipids [143, 144],

particularly if the surrounding lipids are near a gel phase transition [18]. One possible

cause of the reduced mobility of GM 1I imbedded in lipid membranes is GM 1 aggregation,

which is observed in lipid bilayers [145, 146], and is facilitated by CTB binding. GM I in

an aggregated form can then translocate to liquid-ordered lipid phases [9], thus relocating

to a denser lipid environment. Other examples of lipid-bound molecules similarly move

into denser lipid phases upon complexation [7, 8]. Additional possible mechanisms of

lipid fluidity moderation by GMI are disruption of lipid headgroup packing [147] and

lateral condensation of lipid molecules [145].

Improving our understanding of this well-observed effect that GMI is able to

influence lipid fluidity in membranes requires molecular-level structural information. X-

ray and neutron reflectivity studies offer the advantage of nanoscale-resolution insight

into the structure of the membrane. Previous measurements of lipid monolayers with

neutron reflectivity demonstrate how reflectivity can be used to gain structural

information about the GM1-CTB complex interacting with lipids; complex formation

may decrease the lipid density and perturbing lipid packing [147]. We aim to investigate
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whether these lipid packing perturbations observed in monolayer systems persist in more

biologically-relevant bilayers. We also want to compare lipid bilayers containing GM I to

those lacking the receptor to understand how GMl alone may influence lipid packing

before binding CTB. Using the experimental platform of X-ray reflectivity and

fluorescence microscopy of single lipid bilayer membranes [37], we incorporate GM1

asymmetrically into fluid supported lipid bilayers (SLBs). X-ray reflectivity allows us to

verify this asymmetry and to study in detail the lipid packing modification caused by

GM1 insertion. We first present our studies of GMI in homogeneous membranes,

followed by investigation of GM 1 in cholesterol-enriched lipid bilayers.

6.2 Materials and Methods

DOPC, cholesterol, BSM and the ovine brain ganglioside GM1 are purchased

from Avanti Polar Lipids. TR-DPPE and the Alexa Fluor 488-labeled cholera toxin B

subunit (CTB) are purchased from Invitrogen. All lipids are prepared in HPLC-grade

chloroform, except for TR-DPPE and GM1 when dissolved in organic solution, which we

prepare in 1:1 mixtures by volume of chloroform and methanol. We use the extrusion

method described in Chapter 2 to prepare LUVs for experiments. When preparing LUVs

with model lipid raft compositions of cholesterol/BSM/DOPC, we extrude lipids at a

temperature above the lipid phase transition temperature, Tm, using the GUV lipid phase

diagram for these lipid compositions as a reference to determine Tm [148]. The LUVs are

used to form SLBs on SiO2 substrates in microfluidic chambers via vesicle fusion
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assisted by osmotic rupture (Chapter 2). We also use spin-coating technique to form

symmetric SLBs containing GM1. The chloroform/methanol lipid solution is completely

dried, re-dissolved in isopropanol, then applied to substrates with spin-coating as

described in Chapter 2.

Because GM 1 is an amphiphilic molecule, it can spontaneously partition into lipid

vesicles in aqueous solutions [149]. We extend this technique to incorporate GM1 into

pre-formed solid-supported lipid bilayers incubating SLBs for 4 h in solutions of GM 1 in

DI water at a concentration of 1 mg/mL. GM1 in aqueous solutions can aggregate and

form micelles [150]. To investigate if there is a concentration-dependence of GM1 on

SLB structure, we also incubate SLBs with GMl-enriched LUVs for 4 h. We use LUVs

that have the same lipid concentration as the SLBs; to prepare GM -enriched LUVs, we

incubate LUVs with aqueous GM1. As we are unable to determine the partitioning of the

GM1 into the LUVs, we calculate the stoichiometry of the combined LUV and GM1

solution; we use 1, 5 or 20 mol % GM1. We prepared and measured our samples at the

ESRF IDI beamline, with the beam characteristics described in Chapter 5, at two

separate beamtimes to verify the reproducibility of our observations. For X-ray

reflectivity measurements, we use the microfluidic chamber and reflectivity setup

described in Chapter 2.

115



6.3 Results and Discussion

6.3.1 GMI in Homogeneous Membranes

We first characterize GMI insertion into a homogeneous fluid lipid bilayer. The

fluid SOPC lipid bilayer provides a well-defined interface for understanding the

structural influence of GM1 on lipid bilayer membranes. The transition temperature of

SOPC is -5 0 C, ensuring that it is at a stable, fluid liquid state at room temperature. We

first examine GM insertion into fluid lipid bilayers of 99.5 mol % SOPC and 0.5 mol %

TR-DPPE with X-ray reflectivity. The reflectivity scan of the SOPC membrane is shown

in Figure 6-1, a. The oscillations are characteristic of a single fluid lipid bilayer above a

solid support [37, 38]. After incubation for 4 h with excess GM1, the membrane changes

significantly. Figure 6-1, b presents the reflectivity scans of the SOPC membrane after

GM1 insertion. The most prominent effect of GMI incorporation into the membrane is a

shift in the positions of the minima. The first minimum shifts from q, - 0.2 to 0.18 A-',

the second from 0.34 to 0.3 A-'. These shifts of the minima to a lower momentum

transfer (qz) qualitatively indicate a thickening of the bilayer.
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Figure 6-1. Reflectivity scans with fits for single SOPC bilayer before
(a) and after (b) incubation with excess GM1. The vertical lines
illustrate the shifts of the minima at qz ~ 0.2 A8' (red) and qz ~ 0.35 Al-
(green) after GM1 insertion into the membrane.
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In order to further investigate this bilayer thickening upon GM 1 insertion and to

determine how the leaflet dimensions are changed, we fit the reflectivity scans in Figure

6-1 using a 7 or 9 slab model [85]. To model the SOPC layer without GM1, we follow

the procedure in Chapter 5, where each leaflet has 2 slabs representing the headgroups

and one slab for the acyl chains; the interleaflet space is an additional slab. To account

for the large oligosaccharide headgroup of the GM 1, we use a 9 slab model to fit the

SOPC layer after GM1 insertion, where the headgroup region of GM1 has two additional

slabs. The thicknesses and electron densities of each slab are the only parameters that are

varied in the fitting process, outlined in Chapter 2. The roughness of each slab for

smoothing the overall fit is 3 A. Figure 6-2 shows the electron density profiles extracted

from fitting the reflectivity scans in Figure 6-1 with this model.
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Figure 6-2. Electron density profiles extracted from the reflectivity of
a SLB of SOPC before (green curve) and after (red) GM1
incorporated into the upper leaflet of the membrane.

Near the solid substrate, the electron density profiles in Figure 6-2 are nearly

identical up to a distance of 20 A. This region describes the headgroups and acyl chains

of the lower leaflet of the SLB and the water layer separating the membrane from the

substrate. A thickening of the upper leaflet of the membrane is clearly demonstrated by

the shift of the peak corresponding to the electron-dense headgroup region of the upper
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leaflet, from - 42 to 48 A. Also, the overall electron density of the headgroups in the

upper leaflet increases upon SOPC insertion from 0.45 to 0.5 e/ A3.

The similarity of the profiles from Figure 6-2 of SOPC and SOPC/GMl in the

lower leaflet region of the SLB, contrasting the headgroup repositioning and density

change in the upper leaflet, shows that GM 1I does not affect the electron density of the

lower leaflet. This result suggests that GM inserts only into the upper leaflet of these

supported membranes and does not flip into the bottom leaflet. By repeating our

measurement of the reflectivity of the SOPC/GM1 membranes after 3 days, we verify

that GM1 remains in the upper leaflet, as the reflectivity does not change over this time

scale. By incorporating GM 1I in the upper leaflet of the bilayer, we mimic the orientation

of GMI in cell membranes and we can systematically observe the effect of GM1 on the

structure of a single leaflet coupled to a supported leaflet. This method of inducing

asymmetry in a symmetrical SLB may also be useful for creating layered structures on

SLBs.

We have also used the spin-coating method described in Chapter 2 to prepare

symmetric SLBs containing 1-2 mol % GM1 in both leaflets. Fluorescence microscopy

characterization shows, however, that these SLBs are inhomogeneous, and non-uniform.

This may be due to a repulsive interaction between the negatively-charged sialic acid of

the GM1 headgroup and the SiO 2 substrate. It has been suggested that GMI

asymmetrically distributed in the outer leaflet of lipid bilayers may confer stability to the

overall membrane [151].
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The electron density profiles before and after GM1 insertion are consistent with

protrusion of the GM 1 headgroups above the bilayer surface, which is reported both with

X-ray diffraction [152] and AFM [146]. The hydrophobic tail structure of GM1 is

different than the tail structure of SOPC; both of the chains of SOPC have 18 carbon

atoms, though one chain is unsaturated. The ceramide chains of GM1 are saturated; one

chain is 18 carbons in length and the other chain has 15 carbons. Previous measurements

indicate that GMI can protrude above lipid headgroups at a distance of -12 A [152].

We observe this stretching effect of GM1 on the upper membrane leaflet of SOPC

after incubating the SLBs in excess GMI in solution. We also investigate whether these

structural membrane changes depend on the amount of GM1 available in solution. To

control the amount of GM I we add to SLBs for incubation, we first prepare LUVs of

SOPC enriched in GMI by incubating the LUVs in aqueous GM 1. These GM -enriched

LUVs are then used for incubating the bilayers, thus diluting the concentration of GMI

available to the membrane. In Figure 6-3, b, the reflectivity of an SLB after incubation

with LUVs of composition 99 mol % lipid and 1 mol % GM 1 is presented. There is little

difference between the reflectivity of this scan and that of the SLB incubated in excess

GMI (Figure 6-3, a). The slab model fits to the data are nearly identical and show the

same increase in the headgroup density - 8 A. Since the effect of GM1 insertion is

essentially the same at low and excess GMl concentrations, we believe that GM1

incorporation reaches a saturated concentration at all of the incubation concentrations that

we use.
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When CTB binds five GM1 receptors, the resulting complex becomes the entry

point for the entire cholera toxin protein to cross the membrane [16]. A recent study of

CTB bound to GM 1 in monolayers suggests that the density of the lipid leaflet is slightly

decreased upon CTB binding [147]. To investigate whether this effect is observable in

lipid bilayers, we measure the binding of fluorescently-labeled CTB to SOPC/GM1

membranes. CTB binding to the membrane is evidenced by fluorescence microscopy, as

the membrane after incubation with CTB is bright and non-specific binding of CTB was

not observed in a control experiment. Figure 6-3, c presents the reflectivity of a SLB with

GM1 after incubation in CTB, which is nearly identical to the reflectivity from SLBs

lacking CTB (Figure 6-3, a and b). Unlike the distinct increase in reflectivity that we

observe in SLBs coated with streptavidin and avidin in Chapter. 5, we do not detect the

bound CTB in the reflectivity. Thus, CTB does not provide enough electron density

contrast to be resolved with our measurements. The low electron density contrast of CTB,

compared to our SLBs, may be due to its relatively hollow ring structure and height

above the membrane of -20 A [139]. We also do not detect a modification of membrane

structure upon CTB binding, in contrast to reports of CTB-GM1 interaction in

monolayers [147]. Studying ligand-receptor binding events in lipid bilayers is more

biologically relevant than monolayers; in stable cellular membranes, we do not expect the

lipid spacing to readily adjust to ligand binding. In future experiments, gold-conjugated

CTB or using both the A and B subunits of cholera toxin may enhance the electron

density contrast between CTB and the SLB for measurement with X-ray reflectivity.
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Figure 6-3. Reflectivity of SOPC membranes incubated in GM1 at
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6.3.2 Model Lipid Rafts at Solid Interfaces

We expect the effect of GMI on membrane structure in lipid membranes of

cholesterol, brain sphingomyelin (BSM) and DOPC to be more complex than GM1 in

homogeneous SLBs of SOPC because mixtures of cholesterol/BSM/DOPC phase

separate into liquid-disordered and liquid-ordered phases, modeling lipid rafts in cell

membranes [4]. This phase separation is readily observed with fluorescence microscopy

in fluid lipid bilayer vesicles [4, 45]. On solid-supported interfaces, however, lipid

domains lack the reversible phase behavior characteristic of fluid membranes and the

domains can be pinned to the substrate [50].

When we prepare SLBs from cholesterol/BSM/DOPC lipid mixtures on the SiO2

substrates that we use for reflectivity, we do not observe microscopic lipid rafts.

Interestingly, when we use a slightly rougher substrate with a 600-nm thick thermal SiO 2

layer and surface roughness -4-5 A, we observe microscopic domains. Figure 6-4

compares SLBs with the same lipid composition of 20 mol % cholesterol, 40 mol % BSM

and 40 mol % DOPC on a smooth SiO2 substrate of roughness -3 A (Figure 6-4, a) and a

rough SiO2 substrate with roughness -4-5 A (Figure 6-4, b). Only on the rougher SiO 2

substrate are microscopic phases observed: a dark background phase excluding the TR-

DPPE dye, and a bright minority phase with relatively round edges. We confirm the

fluidity of the SLB in Figure 6-4, b by fluorescence bleaching and recovery.
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Figure 6-4. SLBs of 20 mol % cholesterol, 40 mol % BSM and 40 mol
% DOPC deposited SiO 2 substrates with surface roughness of (a) a =
3 A and (b) a = 4-5 A. The thicknesses of the oxide layer are 100 nm in
(a) and 600 nm in (b). Microscopic lipid rafts are only observed on the
rougher substrate (b). Scale bars are 10 pim.

The rougher SiO 2 substrates that support microscopic lipid phases (Figure 6-4, b)

do not produce a high-quality X-ray reflectivity signal. Our X-ray reflectivity

measurement setup requires molecularly flat SiO2 substrates with maximum surface

roughness '3-3.5 A; consequently, all of the model lipid raft lipid mixtures that we

measure with X-ray reflectivity do not have microscopic lipid phases. Our large

incidental X-ray footprint of -1 mm 2 also precludes measurement of discrete and

segregated microscopic phases; thus, our X-ray fitting methods indirectly assume lateral

homogeneity in the membrane. It is possible that our model lipid rafts with homogeneous

fluorescence (Figure 6-4, a) have nanoscopic phases. Lipid phases measured in cells [52,

109] and seen in similar mixtures on flat supported substrates [145, 153] are -10 nm in

size.
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We examine the structure of membranes of cholesterol, BSM and DOPC with

reflectivity prior to GMI incubation. The reflectivity scans of the SLBs from our model

lipid raft mixtures are shown in Figure 6-5. Interestingly, the second minimum of the

reflectivity of the SLB with 30 mol % cholesterol (Figure 6-5, a, II) is not as clearly

defined as the second minima of the membranes with 20 and 40 mol% cholesterol (Figure

6-5, a, I and III). The reflectivity from all of the model lipid raft SLBs have less-defined

second minima compared to the reflectivity of homogeneous SOPC (Figure 6-1, a). Since

the overall quality and resolution of the model raft and SOPC scans are the same, this

smearing effect at the second minima may be due to destructive interference, or

heterogeneous structures in the membrane of different dimension. This may also be an

effect of lipid phase separation, which introduces heterogeneity into the membrane. The

electron density profiles extracted from the fits to the reflectivity are shown in Figure 6-5,

b. The profiles of the cholesterol/BSM/DOPC membranes reveal in more detail the

structure of cholesterol-enriched membranes. The most prominent membrane structural

changes with increasing cholesterol content are (1) a decrease in the electron density of

the lipid headgroups away from the substrate and (2) a concomitant thickening of the

lipid bilayer. These trends are summarized in Table 6-1.
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Figure 6-5. Reflectivity (a) and electron density profiles (b) of SLBs
containing cholesterol, BSM and DOPC with fixed 1:1 BSM/DOPC
molar ratio and cholesterol concentrations of (I, red) 20, (II, green) 30,
and (III, blue) 40 mol %.
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Lipid composition Thickness of the bilayer Electron density of the headgroup

20 mol % cholesterol 46 A -0.52 e /A
40 mol % BSM
40 mol % DOPC
30 mol % cholesterol 51 A -0.48 e/A 3

35 mol % BSM
35 mol % DOPC
40 mol % cholesterol 56 A -0.43 e/A3

20 mol % BSM
20 mol % DOPC

Table 6-1. Summary parameters from the electron density profiles
extracted from reflectivity fits of SLBs with model lipid rafts
compositions. The overall bilayer thickness and the electron density of
the headgroup of the outer leaflet for each composition are listed.

Our result that cholesterol thickens the bilayer is consistent with previous NMR

studies [154]. Lipid rafts enriched in cholesterol are reportedly thicker than typical

homogeneous membranes by -5 A [153]. An additional feature of these model lipid raft

membranes not observed in SOPC membranes can be seen in the hydrophobic chain

region of the electron density profiles in Figure 6-5, b. The hydrophobic chains appear to

have discrete layers of different electron density, indicated by the step-like feature in the

profiles at a distance of 30-40 A. The feature is also noticeable in the lipid chain region

near the interface. This may be due to cholesterol arranging in a layer near the lipid

headgroups or two different modes of hydrophobic packing in the acyl chain region.
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6.3.3 GM1 in Model Lipid Rafts

Using the same method of excess GM1 incubation that we use to prepare GM1-

enriched SOPC membranes, we also incorporate GM1 into SLBs of

cholesterol/BSM/DOPC. We prepare these SLBs with model lipid rafts by varying the

cholesterol concentration and using an equimolar ratio of BSM and DOPC. After

incubating the SLBs in GMI for 4 h, we observe dark spots that exclude TR-DPPE that

are not present before GMI incubation. Figure 6-6 compares a homogenous SLB before

incubation (a) with SLBs of different cholesterol concentrations after GMI incubation,

after the dark spots form (b-d).

Figure 6-6. Dark defects in membranes (b-d) appear after 4 h
incubation with excess GM1. (a): Before GM1 addition, the SLB of 30
mol % cholesterol, 1:1 DOPC/BSM shows no microsopic features. (b-
d): SLBs after GM1 incubation with 1:1 DOPC/BSM molar ratio and
(b) 20, (c) 30, and (d) 40 mol % cholesterol. Scale bars are 10 pm.
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The dark spots remain upon heating to above 70 0 C, though fluid membranes of

these lipid mixtures do not exhibit lipid phase coexistence separation above -50'C [148].

The stability of the dark spots, combined with their strong exclusion of the dye, suggests

that they are membrane defects. Previous experiments show that defects in lipid bilayers

at the solid interface can be induced by increasing the tension in the membrane, or

reducing the lateral pressure [155]. A defect-inducing mechanism of GM1 could be

condensation, whereby the GM1 has an attractive interaction with adjacent lipids; and to

accommodate the local packing of lipids due to this interaction, pinholes in the membrane

are formed. An attractive electrostatic interaction observed previously in

cholesterol/DOPC/BSM mixtures containing GM 1 occurs between the sialic acid of GM I

and the positively-charged choline headgroups of DOPC and BSM [145].

We explore this possibility of membrane condensation due to GM1 in model lipid

raft membrane mixtures with fluorescence microscopy and we measure the diffusion

constants of cholesterol-enriched SLBs using the continuous bleaching method [81].

Figure 6-7 compares the fluorescence intensity line profiles of an SLB with 20 mol %

cholesterol, 1:1 (DOPC/BSM) (Figure 6-7, a, blue line) with the same SLB after

incubation with excess GM1 (Figure 6-7, b, red line). The narrower bright rim outlining

the illuminated region of the SLB after GMI incubation (Figure 6-7, b) compared to the

rim before GM1 incubation (Figure 6-7, a) shows the reduction of diffusion of TR-DPPE

after GM1 incubation.
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Figure 6-7. Incubation with excess GM1 reduces membrane fluidity.
Line profiles after 25 min of continuous bleaching of SLBs from 30
mol % cholesterol, 1:1 DOPC/BSM before (a, blue) and after
incubation with excess GM1 (b, red).

We use the continuous bleaching method outlined in Chapter 5 to measure the

diffusion of TR-DPPE in SLBs with model lipid rafts before and after GM 1I incubation at

three different lipid compositions. Figure 6-8 presents our diffusion measurements for

SLBs with an equimolar ratio of DOPC and BSM and 20, 30 and 40 mol% cholesterol.

The diffusion constants we measure for cholesterol/DOPC/BSM membranes show the

general trend that diffusion is reduced as the concentration of cholesterol is increased.

Upon addition of GM1, the lipid diffusion constants are reduced by -50 %, suggesting

that the SLBs enriched in GM 1 are more tightly packed than those lacking GM1.
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Figure 6-8. Diffusion constants of SLBs with varying cholesterol
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continuous bleaching without (black, circles) and with (red, triangles)
GM1.

The reduction in the mobility of homogeneous membranes after addition of GM1

is well-established [18, 143, 144]; however, in heterogeneous membranes, where GM1

may influence lipid phase separation [17, 18], lipid diffusion is more complicated. If

nanoscopic lipid domains are present, we expect the diffusion to be different between

these two domains [4]. And if GM1 changes the lipid phase transitions, then the quantity

of the lipid domains and the lipid packing within the domains would also be affected.

Gel-phase domains in lipid membranes reduce the fluidity of the surrounding liquid

domains as a function of area coverage by creating obstacles for lipid movement [49].
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The interplay of these different effects can contribute to the reduction of mobility caused

by GM1 in the cholesterol-enriched SLBs.

X-Ray reflectivity allows us to investigate the effect of GM 1 on lipid membranes

containing model lipid rafts at the molecular level. When we incorporate GM1 into the

membrane, we see behavior that is qualitatively similar to the SOPC/GM 1 system, as the

first minima is shifted towards a lower qz, indicating a thickening of the layer. Figure 6-9

shows the reflectivity and electron density profiles of the same cholesterol/BSM/DOPC

membranes in Figure 6-5 after they have been incubated with excess GM1. The

asymmetry of the effect of GMI is apparent, as only the upper leaflet away from the

substrate shows major modifications. At each composition, the outer headgroups are

shifted away from the membrane. The outer headgroup density profile of the 20 mol %

cholesterol SLB is only partially shifted (Figure 6-9, b, II), as part of the headgroup

profile is centered near its pre-GM 1 position of -45 A from the substrate. The reflectivity

indicates a smearing effect of the second minima (Figure 6-9, a), which may be due to

destructive interference from heterogeneous structures within the membrane.
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6.4 Conclusions

The incorporation of GMI into supported lipid membranes stretches the outer

membrane leaflet and increases the lipid headgroup density, consistent with a structural

effect of the GM1 headgroup protruding out from the membrane surface. By observing

this stretching effect in a homogeneous fluid membrane, we clearly demonstrate the

asymmetric insertion of GM1. Heterogeneous lipid bilayers that are able to phase

separate into ordered and disordered liquid phases are, however, more representative of

cell membranes than homogeneous bilayers. Therefore, we examine SLBs of cholesterol,

BSM and DOPC at a solid support. We show that the onset of microscopic phase

separation can be influenced by the substrate roughness and that cholesterol has a

thickening effect on the membrane. The inclusion of GMI reduces the lipid diffusion of

cholesterol-enriched membranes and introduces defects, suggesting membrane

condensation due to GM1 interactions with other lipids. Reflectivity offers an opportunity

to systematically study how receptor molecules influence lipid packing and arrangement

within membranes.
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