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Abstract

The phenomena associated with the deceleration of an incompressible axisym-

metric vortex was numerically studied using a steady-state finite difference inviscid

code. By imposing a velocity retardation on the outer boundary of a Rankine-type

free vortex (i.e., in the absence of solid boundaries) the characteristics of the flow

subjected to an adverse pressure gradient could be studied. The main goal was to

assess the relation between the flow parameters and the onset of stagnation at the

axis, a possible indicator of vortex bursting. However, convergence of the numerical

solution failed before stagnation of the flow on the vortex axis was achieved. Re-

sults are presented which show the influence of the amount of velocity retardation

(or conversely, pressure gradient), the type of initial axial velocity profile, and the

ratio of circumferential to axial velocity at the edge of the core of the vortex.
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Nomenclature

a vortex core radius

A, D1, D2  coefficients of governing equation

C(W) rescaled circulation

fij grouping of exact derivatives in governing equation

H(%I) total head

K swirl parameter

Kcrit maximum swirl parameter before computational divergence

L length of computational domain

LL length of imposed axial velocity defect

p static pressure

Paczi static pressure on the axis

R height of computational domain

u axial velocity

Uouter (z) specified axial velocity at outer boundary

Uoo uniform upstream axial velocity

v radial velocity

w circumferential velocity

z axial coordinate

zo axial location around which deceleration is centered

a inlet axial velocity profile parameter

r circulation

s6i, horizontal spacing ratio

magnitude of axial velocity defect

a relaxation parameter

n angular velocity in solid-body-rotation region

Sstreamfunction

p density



o radial coordinate

Smodified radial coodinate

Oi,j vertical spacing ratio



Chapter 1

Introduction

Vortex generating devices have found widespread aeronautical application be-

cause they provide high maneuverability aircraft with unusual, efficient means of

obtaining lift and flow separation control [1]. For example, leading edge vortices are

used to develop large lift forces at high angles of attack on delta wings, and they

are also present in other important aerodynamic flows such as canard and/or strake

generated flows.

However, vortex breakdown or vortex bursting has been observed in these flows

under certain conditions which have not been clearly determined. The phenomenon

usually results in a partial loss of aerodynamic lift and in unsteady rolling moments

caused by the inherent pressure fluctuations. Therefore, prediction of the onset of

vortex breakdown is of crucial importance to advanced aerodynamic configurations

using vortical flows.

Vortex bursting has been extensively studied since it was first observed more

than three decades ago [2]. Experimental evidence indicates that when a translating

vortex suffers a strong deceleration, the flow develops a stagnation point on the axis

and consequently bursts, usually forming a bubble filled with recirculating fluid,

although sometimes an expanded vortex core with a spiral structure may also be

found. For most applications, the deceleration of the flow is caused by an adverse

pressure gradient, such as the pressure recovery near the trailing edge of a wing or

in the exit of an expanding nozzle. Experimental observations on the structure of

vortex bursting can be found in Sarpkaya[3,4], Lambourne and Bryer[5], and Payne,



Ng and Nelson[6].

Some of the intricate flow features associated with this phenomenon are poorly

understood, and in particular the fundamental question of whether the mechanism

involved is viscous or inviscid. As of yet, no conclusive evidence has been drawn

from theoretical, experimental, or numerical studies concerning this point.

Within the context of steady flow theory, viscous mechanisms most likely are

needed to account for flow reversal inside a closed bubble structure at the axis with a

viscous shear layer connecting the outer and inner regions of this bubble. Otherwise

there would be no way to establish values for the total head and circulation of the

inner flow that depended on the upstream conditions. Furthermore, for an inviscid

model, discontinuous solutions would be possible inside the bubble[7], not modeling

the true state of affairs. This can be understood better if the flow is assumed to

be axisymmetric, for then only a two dimensional plane can be used to describe it

in terms of a streamfunction ' (see Chapter 2 below). Assuming that the vortex

axis is described by the streamline where 'P = 0, the rest of the computational

domain can be described by streamlines with positive streamfunction values up to

the outer boundary, where T = 'maz. For a steady, inviscid flow, the total head

and the circulation are constant on a given streamline, so both variables are defined

wherever 0 < < 'az.

Consider now the case where stagnation at the axis and flow reversal occur: the

' = 0 streamline would lift off from the axis to separate the region inside the bubble

from the outer flow. One possible way to establish the dependence of H and C on

' inside this bubble would be to use the concept of analytic continuation of the

functions H(P) and C('@). This would imply that both H and C retain the same

functional dependence they had in the region where ' > 0. Since the outer flow

has positive ' values and both fluids are separated by the streamline where =- 0,

the streamfunction values inside the recirculating region would be negative. For a



vortex core with inlet solid body rotation and uniform axial flow, we would have

(see Chapter 2)

rT- ~ for a<a

where a is the radial coordinate and a is the radius of the vortex core. Beyond

stagnation then, the circumferential profile would apparently show also rotation

of the opposite sign since the value of the circulation inside the bubble would be

negative. However, Leibovich [8] argues that in steady flow this reversal in the sign

of the circumferential velocity is impossible, even if viscosity is allowed, since it

would require an unavailable torque to maintain it. This argument is supported by

experimental observations that indicate a constancy in the sign of rotation inside the

bubble [9]. Hafez and Salas [7] performed inviscid computations beyond stagnation

allowing the circulation to reverse sign in the bubble, so the validity of their results

is questionable. In this respect it seems that the inviscid equations would not be

useful to study the mechanism of vortex breakdown.

However, if only computations with no regions of reversed flow are considered,

the total pressure and the circulation values are readily obtained from the upstream

conditions and since they are constant on streamlines for inviscid flow, they are

defined for the entire domain. To avoid flow reversal the computation would have

to be stopped when a stagnation point is found in the axis. Thus, if vortex bursting

is assumed to occur when the flow at the axis stagnates, inviscid equations can

possibly be used to study the characteristics of the flow leading to the onset of

bursting.

It might be argued also that the assumptions of steadiness and axisymmetry

do not hold for vortex bursting modelling. Although the phenomenon is not truly

steady and the spiral form is encountered more often than the bubble form for delta

wings, experimental observations by Sarpkaya[4] and Payne, Ng, and Nelson[6],

in both water and air, indicate that for sufficiently high flow speeds and swirl, the

structure becomes a symmetric bubble and the wandering of the latter about a mean



axial position ceases. The experiments showed that this occurred for Re- 425000 in

air (based on a root chord of 40.6cm for a delta wing). Sarpkaya[4] also observed that

the fluid in the bubble was constantly being replenished and discharged through an

opening in the aft portion, which is an indication of strong unsteadiness; however,

he concludes that this is caused by instabilities in the wake of the bubble leading to

pressure fluctuations. Since our computations would proceed only up to the point

of stagnation, no wake effects are present and thus the major source of unsteadiness

discarded. Finally, Leibovich[8] noticed that the motion in the inner recirculation

zone was unsteady, but with low frequency fluctuations.

The above observations indicate that the bubble is not a closed structure, so the

possibility exists that viscous effects are not essential for the bubble's formation,

since both the outer and inner flows would originate at regions upstream where

the streamfunction %P is positive. The two flows would then be connected through

the aft section opening of the bubble. However, it is doubtful that this fact could

be used in an inviscid numerical simulation to compute the inner flow, because

unless stagnation occurs at a point on the axis other than the outflow station of

the computational domain, the connection cannot be established between the two

flows. Even if stagnation takes place upstream of the outflow boundary, it is not

clear how to impose that the rear opening of the bubble lie within the computational

boundaries (otherwise the flows are still unconnected). Therefore, it seems again

that the computation should not proceed beyond stagnation.

It is the purpose of this research to study the parameters that govern the decel-

eration of an axisymmetric vortex, ideally leading to the onset of vortex breakdown,

using an inviscid code in order to learn about the controlling factors that cause the

flow to stagnate at the axis. In this way, results can be developed for comparison

with other Euler and Navier-Stokes computational results. Furthermore, the use-

fulness of an inviscid solution to predict bursting can be evaluated by observing

its convergence behavior near stagnation conditions. As with boundary layer codes



that fail to give an answer when flow separation takes place, it is possible that an

inviscid code would fail to give a converged solution when stagnation is reached.

In a steady-state, incompressible, inviscid model, there is no mechanism to in-

duce vortex breakdown unless the flow is subjected to a pressure gradient, as can

be deduced from the associated Euler equations in the absence of gravity or elec-

tromagnetic fields. It follows that we will use the equivalent mechanism of velocity

retardation of the outer inviscid flow to induce a wake-like profile near the axis. The

characteristics of this deceleration will be gradually modified to assess the relative

importance of each one of the parameters involved.

The deceleration parameters used in this study are: (1) the magnitude of the

velocity retardation at the outer boundary, and (2) the length over which the decel-

eration takes place. The axial location at which the deceleration region is centered

is also considered to assess the effect of the inflow and outflow boundary conditions

on the results. The main controlling factor for a given inlet velocity profile is the

ratio of maximum circumferential to axial velocity, called the swirl parameter K.

Thus, if the length and magnitude of the deceleration are constant, the swirl

can be increased until it reaches a (maximum) critical value for which a converged

numerical solution ceases to exist.

A family of velocity profiles was used that resemble experimentally observed

swirling flows in different fields of applications [10]. As an interesting case, a

self-similar conical solution to the viscous Navier-Stokes equations obtained by

Powell[11] was also used as an input to the inviscid model.



Chapter 2

Governing Equation and Boundary

Conditions

The governing equation used in this study is a modified incompressible, inviscid

vorticity transport equation in cylindrical coordinates (a, 0, z) with velocity com-

ponents (v,w,u), adapted for axisymmetric flows (i.e., no e-dependence). The ax-

isymmetric character of the flow allows us to consider just a two dimensional plane

defined by 0 =constant and obtain the governing equation in terms of a streamfunc-

tion *, where
1 a -1 aqS= V- -= (2.1)

The total head H and modified circulation C of the flow are defined as functions of

H(T) = 1(u2 + V2 + w2) + (
2 (2.2)

c(4) = 'w =
where r is the circulation. Then, the governing equation is simply obtained from

the definition of the vorticity components we, w, and w, as

a2 % a28x 1 a* z dH dC
az2  a a2 d-E a (2.3)

Equation (2.3) is derived in detail in reference [12].

At the upstream boundary the assumption of radial equilibrium, i.e. the pressure

is balanced by the centrifugal acceleration, is used to give

H(I,) = 1(u + v 2 + w2) + f -C d + ). (2.4)
2 es8



Since the streamfunction values are derived from the axial velocity profile at this

boundary, it is possible to determine the values of C and H as functions of T there.

Furthermore, C and H will be constant for a given streamline due to the inviscid

assumption, so if the value of the streamfunction is given anywhere in the flow, the

values for the total head and circulation can be readily obtained at that point using

interpolation.

2.1 Boundary Conditions

Since the flow is axisymmetric, the computational domain is taken as the rect-

angle formed by the vortex axis at the lower boundary (a = 0), the upper radial

boundary (a = R), the inflow plane (z = 0), and the outflow plane (z = L). The

upstream or inflow boundary conditions are determined by the following velocity

profiles, used in reference [10]:

u7 a + (1 - a) 2(6 - 8 + 3 2) if<a
1 if a > a

(2.5)

a ife < a
O if a > a

i.e. a = a is the core of the vortex, defined as the radial location up to which the

circumferential profile consists of a solid-body rotation with angular speed fl. The

outer portion is a potential vortex. The parameter a in the axial velocity is used to

establish a uniform profile of magnitude U,. (a = 1), a wake-like profile of minimum

velocity a U0, at the axis (a < 1), or a jet-like of maximum velocity a Uo at the

axis (a > 1). In typical aeronautical applications, the axial profile presents a, jet

at the core region (corresponding to a > 1), and a circumferential velocity profile



which can be approximated by a Rankine-type vortex (which is modeled by the

profile used in this study). Integration of the axial velocity profile using (2.1) gives

the upstream boundary condition in terms of streamfunction T

SUs'r 2{( + (1 - a)[ - , + l2 jar2 } ifo < a2 2=2 5 2 (2.6)
U•. { + 0.1(c - 1)} if a > a.

Note that this imposes no value on the radial velocity v.

The condition at the upper boundary is simply the imposed retardation function

Uout,r(z) which defines the velocity along that boundary. The functional form of

the retardation itself is given by

UJ x < (o -- )
Uouter(Z) = U( {1+ # [cos ( -zo+LL2 - 1]} (o - ) < Xz (zo + LL

Uoo (1 - 9) x > (s0 + 2)
(2.7)

where 0 is the magnitude of the velocity decrease as a fraction of the velocity at

upstream infinity; o0 is the location around which the deceleration is centered; and

LL is the length over which the deceleration takes place. A typical outer boundary

velocity function is shown below in Fig. 2.1 for the case zo =L/2 and LL=3.0, with

a deceleration 0 = 0.5. The specification of the velocity at the outer boundary in

turn determines the value of ) o on which may be discretized and used

in the computation. See Chapter 4 for details of the implementation.

The lower boundary condition imposed on the vortex axis is given by

S= 0 (2.8)
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Figure 2.1: Typical outer boundary imposed velocity function

ensuring that the axis is always a streamline of the flow and therefore that the radial

velocity on it is zero. The outflow boundary condition requires that the flow does

not change with the axial direction in exiting the domain, i.e.

(2.9)

The imposition of parallel flow boundary conditions at the exit plane of the

domain is a reasonable choice. A specified velocity or pressure field could have also

been used but it is uncertain that these would produce meaningful results without

knowing the outflow conditions a-priori. Imposition of (9) assures that the behavior

of the flow is completely determined within the domain boundaries, and that no

developments further downstream need be considered. However, the question arises

as to whether this condition actually hinders or encourages bursting behavior in the

flow.

I

LL

LL

q •Ar CA

a8
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Chapter 3

Normalization

The following parameters were used to render the governing equation dimen-

sionless:

(3.1)

H = uCo-.

Normalizing with the above parameters leaves the governing equation (2.3) un-

changed. Both the upstream and the upper boundary conditions for I(a) drop the

factor U,, while the expressions for the total head H and the modified circulation

C at the inflow boundary become

H= 1/2{a+(1-a)Y2(6-8~+3Y2))2+(Ky)2 if<l 1

1/2 + K2  if F 1

(3.2)

SK 2 ifa < 1

K if W > 1

where the dimensionless parameter K is the swirl parameter defined as

Ga
K =

U00

or the ratio of circumferential to axial velocity at the vortex core edge in the inflow

plane. Notice that the core edge is now at a unit distance from the axis at the inflow

station, and that the domain dimensions are all in units of vortex core radii. The



flow now has unit velocity at upstream infinity and the deceleration will simply be

of magnitude q.

The pressure term E is also normalized using Uo 2 , and is equal to
p1

=U-2 +V2+W2). (3.3)

Notice then that the normalized pressure at the axis is equal to the difference of

total head and axial velocity term there since radial and circumferential velocities

vanish on the axis. Recall from Chapter 2 that the radial equilibrium assumption

used at the upstream boundary results in the following expression for the pressure

-- 2

"= dZ+ %-a.j (3.4)

In this study Pai, is taken to be zero for the sake of simplicity.



Chapter 4

Discretization and Method of Solution

Designating points in the z and o directions with i and j subscripts respectively,

the discretization of equation (2.3) gives

6Siji+1, - (1 + j) 'ij + i-1.i
I [s, (X+1 - ,) + (X, - X, 1)2]

+ WiJ+1 - (1 + 04 ) TiP +'&id-1
+ { 1 [0,[ (2,+1 _ ,)2 + (}, _ Vi_1)2

1 Oi2 2ip+ + 1 - 0ij2) %i -p % 1

i (,i -Oi-1) + Of (ai+1 -oi)

-j(dHij) (C ) i (4.1)

where the following variables have been used for simplification

0 = _]i-

i+ - 1i ii = - Xi] (.4.2)
At the boundaries it is assumed that the mesh spacings are equal on both sides,

so that Oij... = 1 and 6i...j = 1. The discretization errors incurred through this

scheme are of the order

max {(oj+l1 - oj)2 (Oj - oj_ 1)
2, (Zi+1 - zi)2 , (i - Zi-1)2



for the whole domain.

The Line-SOR method is an implicit scheme where an attempt is made to obtain

the value of % at three consecutive points of the mesh simultaneously. In this study

the points are taken from horizontal rows, so solving for Ti-.1i, Ti, and i+lj we

get

A'i+1 j + id-{ + A'i- 1,= A {fi,j - Dlqi,-1 - D2 i,j+1})

where the following coefficients have been introduced, assuming that the

ing in the axial direction is constant (i.e. 6ii = 1, and Az = zi+l - zi)

fi,i

(4.3)

mesh spac-

S 2 ( dH dC\ 1(A) 22f dH. _I -'C- ?i (AX)
V3kd'PQ) J, d'PI,

A -1/ (Az) 2

A 2  2(1+90,) 1-2

(,Xj' o~o+ 9 2 a1

D1 = (Az) 2

(2

D2 = (Az) 2 {
20o (~+a - ,) 2 + (o _ _)2

[o 0 - o -1 + Ol (o + - ay)

o-j [-i oj-O- -- +0,2 (o",+1 - -j)]

If we now take these three T values at the (n + I)th iteration and subtract the old

values of the nth iteration using

A'.i.n+l = 'Pin+ l - pij n



we obtain the delta form of the discretized governing equation

AA/i+lj n +1 + A-/i,in+l + A/ k.i-l,j1 n+l -

A fi, n - D•Tid-l n + 1 - D 2•ii+l.} - Ai+, 1 ij n --i,j" - A'i-l.i n .  (4.4)

Notice that fij represents the right hand side of (4.1), and it contains head and

circulation terms (including derivatives). To find these terms, the most recent value

of T at the point {i, j} is used to determine H(T) and C(T) from linear interpolation

using the values at the upstream boundary . At each step of the computation these

terms are frozen, and their derivatives computed using i,j1"_ln+ l , •i,, , and ,1Ei+n.•

The Line-SLOR method updates the value of ' in all the discretized points of

the rectangular domain except those lying on the axis (lower boundary) and those

on the inflow boundary, where Dirichlet boundary conditions are prescribed. At

the other two boundaries Neumann conditions are implemented, as explained in

Section 2.1. Therefore, if we designate the right hand side of the discretized delta-

form equation (4.4) as Fii and write the equation for each point of a horizontal

row excluding those on the lower and inflow boundaries, we can write the resulting

system of discretized equations in matrix form as

1 A

A 1 A

A 1 A

0 ... 2A 1

A4 2i

ATImasi

WFPjmagi,j

F2j

F3i

Flmaz--,i

FImaz,j



Notice that the outflow boundary condition I- = 0 has been implemented in the

last row of the matrix through the discretization of (2.9) in 2.1. The outer boundary

condition (2.7) is implemented by first writing the discretized version of the defini-

tion of streamfunction, equation (2.1), as

Ui =(9+1 - ,ij-1) (4.5)
O j(O'j-l - Orj-1)

If we now apply this discretization at the outer boundary, the term in the left hand

side is the imposed axial velocity given by equation (2.7), and the subscripts change

from j to j,,,a since aij,,, = R is the location of the boundary. That is,

Uouter(R,iz) = F(..=+1 -(iO--), (4.6)

Notice that since the left hand side is a known function, the equation can be solved

for 94,4,,+ and this relation used to obtain an expression for the discretized first

and second order partial derivatives, ( and 2B•i. , to be used in the

governing equation. It is also assumed that at the upper boundary ai,,, -#j•..1 =

0rj3,mf+l - O'jm.z.

Since there is one matrix for each horizontal row of discrete points, the number of

matrix inversions will equal the number of rows in the domain. Solving this matrix

equation will give the values Aii"n+l to be used in the relaxation equation

Iiin+l = nXipn + wAIi" n + l  (4.7)

where the last term is the residual of the computation (i.e. the difference between

new and old values). The method is used iteratively, updating the values of %Iiy

in the entire domain at each iteration. Convergence of the solution is assumed

when the value of the residual falls below 10- 5 . In the study, both overrelaxation

(w > 1) and underrelaxation (w < 1) were used, the latter being necessary when the



solution approached stagnation (w N 0.6). The high non-linearity of the problem

made impractical the implementation of numerical schemes to optimize the value of

the relaxation parameter w at each iteration.

Near stagnation conditions, application of (4.7) would often result in negative

values of T near the axis during the iterative process, requiring the computation

to utilize values for the total head H and circulation C that were undefined. To

avoid this problem, T was set to zero at these points before proceeding to the next

iteration.



Chapter 5

Computation

Equation (2.3) was discretized and solved using the implicit Successive Line

Over-Relaxation Method (SLOR) in delta-form, described in Chapter 4. 'This

scheme has the advantage that boundary conditions are easily implemented through

the delta-form.

An algebraically generated grid was used in this computation, with clustering of

discrete points in the vertical direction near the vortex axis according to the follow-

ing rule:

- log[0 + 1] n
= R og[R + 1(5.1)

where n is the clustering controlling parameter (n > 2), taken to be 2.2 in this

study. Larger values of n will result in higher point densities near the axis, but the

value used was found to be adequate for our purposes and the results did not differ

appreciably from those obtained using higher n values. The grid is shown in Fig.

5.1 for a 61z31 point mesh.

5.1 Effect of Computational Parameters

Several trial runs were performed to assess the dependence of results on the

domain dimensions. Both the length L and the height R were increased with all
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Figure 5.1: Plot of typical 61x31 point mesh used in the computations

other parameters fixed until the solution remained essentially constant. The fixed

values used were K= 0.7, 4 = 0.2, a = 1.0, and LL= 2.0. It was found that for a

typical 61x31 mesh, L=15 was a suitable value since further increase in this length

resulted in variations in converged solutions of less than ±0.7%.

It was also found that convergence of the computation was much slower as R in-

creased than with equal increments in L. This was due to the fact that the Line-SOR

method used horizontal or row sweeping, so that the number of matrix inversions

increased with the number of points in the vertical direction.

Using fixed values of axial length L, deceleration length LL, and swirl K, the

radius R and the deceleration magnitude 0 can be varied in such a way that the axial

velocity at the edge of the vortex-core at the outflow boundary remains constant.

In this way, cases with different values of R can be rescaled by changing K and 4.
Therefore the choice of domain height is governed solely by the need to minimize

vertical space (upper R bound) while allowing the core to expand fully inside the

domain boundaries as it is decelerated (lower bound). A value R=3 was selected.

Although this value did not allow the core to expand fully for cases with 0 > 0.8, it



was considered appropriate since increasing the value of R further led to very lengthy

calculations and it presented no problems for all but two of the cases considered:

= 0.8,0.9.

It was also found that cell aspect ratios around 2 near the axis were appropriate

to ensure good resolution with a minimum of points in the horizontal direction.

Cell aspect ratios of 1 and 4 were also considered, showing that the finer resolution

in the a direction gives results closer to those obtained using overall (i.e. in both

directions) finer grids.

The length of deceleration and the location around which it was centered were

also varied. The results indicate that the location is of minor importance as long as

it is not too close to the outflow boundary. This is because the outflow boundary

condition (2.9) requires the flow variables to be independent of the axial coordinate,

remaining unchanged after reaching the exit plane. Similarly, the length over which

the retardation takes place has no effect on the final results if the above criterion is

applied. This implies in turn that the final configuration of the flow is insensitive to

the way in which the deceleration has been brought about. Thus, the computations

were all performed using a length of retardation LL=3 centered around L/2.

A deceleration followed by an acceleration of the flow was also considered, es-

pecially to achieve near zero axis velocities in cases where previously this was not

possible (large K computations). Ideally, the flow at the stagnation region would

be less affected by the outflow boundary condition due to the buffer effect pro-

vided by the acceleration region. The longer the middle region between deceleration

and acceleration, the better the original flow would be modeled. However, this ar-

rangement proved impractical because this middle region had to be quite long to

faithfully model original conditions, and eventually the computations were equally

slow, diverging as stagnation was approached.



5.2 Verification

The solution to the case of swirling flow with uniform inlet axial profile inside a

tube subjected to a gradual area expansion has been solved analytically by Batchelor

[12]. A comparison between his solution and the numerical computations was made

using the fact that if the expansion of the streamlines is known, then the flow

inside any streamsurface is essentially a tube flow. The results for 4 = 0.2 and

K= 0.5 are compared in Figs. 5.2 and 5.3 below for the flow delimited by the core

edge streamline, showing good agreement. Both axial velocity and circumferential

velocity profiles are compared.

It was found that the computational solution approached the analytical solution

as the number of discrete points increased, especially near the axis and the vortex

core edge. For example, the slight discrepancy observed in the minimum axial

velocity in Fig. 5.2 is due to the fact that the value of the axis velocity strongly

depends on the magnitude of core edge expansion, and in a discretized model an

error is introduced since the location of the core edge is approximated by the nearest

discrete point.

5.3 Computational Studies

A series of computational studies were done to determine the effect of various

parameters on the onset of vortex breakdown. The computation started with fixed

values of deceleration at the outer boundary (given by 4) and inlet axial profile (a).

It then proceeded with increasing values of swirl parameter K until a solution could

not be obtained. The results shown in this study correspond to computations using

Ca = (1, 1.2, 0.8) and 4 = {0.1 --* 0.9). Convergence was assumed when the residual

fell below 10- 5.



The computations were run on a MicroVax computer. Typical CPU times for

critical cases were around 45 minutes, and a typical number of iterations was 3400

for a 61x31 point grid.

As a test for comparison, Powell's self-similar conical solution of the Navier-

Stokes equations [11] was used as an input to our inviscid model, taking his axial and

circumferential velocities, and total pressure and circulation, as the new upstream

boundary conditions. To obtain a meaningful comparison, a conical solution with

an axial velocity profile similar to an a = 1.2 case was employed. However, this

implied that the circumferential velocity and total pressure profiles would be already

determined as part of the conical solution, without the possibility to make them

approximate our profiles.

Since the normalization of the equations required a characteristic length, and

since a vortex core radius a was not defined for Powell's solution, use was made

of the radial coordinate value at which the circumferential velocity was largest.

The characteristic velocity for normalization was taken to be the axial velocity at

the outer edge of the vortex. In this way the normalization of the new boundary

condition was consistent with the normalization of the governing equation and the

other boundary conditions.
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Figure 5.2: Axial Profile Comparison with Batchelor: 4 = 0.2, K= 0.5, a = 1
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Chapter 6

Results

6.1 Case I: a = 1

Consider a typical solution given by a deceleration # = 0.1 and the other pa-

rameters fixed as discussed in Chapter 5. The swirl K was increased in order to

decelerate the flow near the axis and drive it to stagnation. The results of this de-

celeration are shown below in Figs. 6.1, 6.2, 6.3, and 6.4, where plots of streamlines,

axial velocity, circumferential velocity, and static pressure are presented.
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Figure 6.1: Streamfunction Contours, Critical case:0 = 0.1, a = 1.0, K = 0.936
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Each of the last three figures shows seven curves corresponding to data at seven

axial locations along the domain length L: inlet (x= 0), x=L/4, x=3L/8, x=L/2,

x=5L/8, x=3L/4, and exit station (x=L). In the axial velocity plot, the rightmost

curve corresponds to x=0, and the leftmost curve to x=L. In the circumferential

velocity plot, the solid body rotation core profile corresponds to the inlet station.

Finally, in the static pressure plot, the leftmost curve represents values at the inflow,

and the rightmost curve values at the outflow. Notice that since the chosen length

of retardation is LL=3 centered around L/2, only one station will be inside the

deceleration region.

Fig. 6.1 shows an expansion of the vortex core as the flow is retarded, with some

of the streamlines leaving the domain through the outer (upper) boundary to satisfy

conservation of mass. In Fig. 6.3 it is clearly seen that the circumferential velocity

profile is also altered by the deceleration, and its maximum value decreases to satisfy

conservation of angular momentum. The static pressure increases throughout the

domain, as can be expected from the fact that the flow is expanding. Notice from

Fig. 6.2 that the minimum axial velocity obtained is not zero. The computation

failed to give a converged solution for higher values of swirl K, in what would be a

typical behavior of the computation for many cases. A typical convergence history

of a converged solution is shown in Fig. 6.11 below.

Thus, although the goal of the computation was to determine the onset of vortex

bursting by studying the flow near stagnation conditions, in some cases it was not

possible to obtain a converged solution for which the axis velocity approached zero.

This was especially true for cases of small retardation values (large critical swirl

parameter Kcrit). Table 6.1 below shows the minimum velocity values obtained in

this study for different values of 4, together with values of the corresponding K0 rit.

It can be observed that only for cases of strong deceleration the minimum velocity

approached zero.



Table 6.1: Minimum computed axial velocity vs. 4 for a = 1

To obtain an explanation for this phenomenon, the minimum axis velocity was

plotted against the swirl parameter K for different values of retardation 4 as the

flow was being driven to stagnation. It can be seen from Fig. 6.5 below that for low

values of deceleration 0 (or conversely for large values of Kerit) the curves become

steeper as K increases when the axis velocity is not yet close to zero, and apparently

small increments in swirl will drive the flow beyond stagnation and into regimes

where a solution no longer exists. For larger values of 4, or lower values of Kict, the

curves eventually become steep but only when the minimum axis velocity is very

near zero. Thus, stagnation conditions where best modeled for cases with strong

decelerations.

If other values of the retardation parameter 4 are considered, the main features

of this flow are can be summarized by the following observations:

(1) A strong deceleration near the axis of the vortex is caused by large axial

pressure gradients induced by the velocity retardation imposed in the outer bound-

ary. This deceleration is depicted in Figs. 6.2, 6.8 and 6.12 for the three different

Uminimum Kcrit

0.1 0.308 0.936

0.2 0.188 0.779

0.3 0.132 0.652

0.4 0.120 0.538

0.5 0.035 0.434

0.6 0.019 0.339

0.7 0.0077 0.249

0.8 0.0030 0.163

0.9 0.0008 0.110
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Figure 6.5: Minimum axis velocity vs. swirl K

cases v = 0.1, 1 = 0.3, and = 0.7, respectively.

(2) The point of minimum velocity always lies on the vortex axis and at the

outflow boundary, as can be seen from Figs. 6.2, 6.8 and 6.12. Both of these results

are reasonable, since the axial pressure gradients are strongest at the axis and the

total pressure is a minimum, and the deceleration must be felt by the flow up to the

exit station. This is because of the elliptic nature of the problem and also because,

in the absence of viscosity, no mechanism exists to decelerate the flow other than

the imposed outer retardation.

(3) The flow streamlines show that the expansion of the streamtubes is largest

at the vortex core region. The core expansion increases with increasing retardation

value 0. Figs. 6.1, 6.6 and 6.7 show contours of constant streamfunction values,

and the above result can be clearly observed for three different cases. The radius of

the expanded core is denoted by b, and for stagnation cases bit.

(4) The deceleration of the flow is more pronounced in the core region for the

whole domain, but the patterns are different for the flows before and after the

retardation region. Before the retardation is applied at the outer boundary, the

maximum axial velocity at a given axial station occurs at the outer boundary itself;



after the retardation has been imposed, this maximum occurs at the vortex core

edge. As the flow approaches the exit station, the axial velocity in the outer potential

region becomes essentially uniform and equal to 1 - 4, with no clearly defined

maximum there.

(5) As stagnation is approached the slope of the circumferential velocity profile

near the vortex axis becomes very steep, indicating that at stagnation = 0 at

the axis. This can be observed in Figs. 6.3, 6.9 and 6.13 below. Notice that cases

with low retardation 4 do not show as steep a profile as cases with large velocity

retardation. This is due to the fact that only those computations with larger values

of 4 converged at near-stagnation conditions, as explained above.

Notice that the circumferential velocity profile remains unchanged for the outer

potential region of the flow, possibly to maintain the value of the circulation con-

stant, as can be expected from Helmholtz's theorem. The maximum circumferential

velocity has now decreased to satisfy conservation of angular momentum.

(6) The variation of static pressure with radial distance o can be seen in Figs.

6.4, 6.10 and 6.14 for different retardation cases. The leftmost curve corresponds to

x=0, whereas the rightmost curve corresponds to the exit station x=L. The pressure

defect at the inflow boundary increases with swirl K, as can be expected from the

radial equilibrium relationship

ay UK (6.1)

It can be seen that the flow starts with a lower static pressure near the axis, but the

pressure starts to rise in the core ahead of the location where the external pressure

gradient is imposed. That is, the core pressure rise leads the external pressure

rise. Going through the deceleration, the pressure maximum occurs outside the

core edge for cases where 4 _ 0.3. Downstream of the region where the deceleration

is imposed, the pressure rise in the core of the vortex lags the pressure rise imposed

at the outer boundary. Also, an axial pressure gradient develops as a consequence



of the curvature of the streamlines, as the flow expands and even exits the domain

through the upper boundary. This pressure gradient is set up independently of the

radial gradient that exists due to the rotation of the flow around the vortex axis. The

pressure tends to become smoothly uniform with respect to o as the exit nears for

cases with strong decelerations (ý Ž 0.6), as can be seen in Fig. 6.14. At the outflow

the streamlines become parallel near the exit, so that the above pressure gradient

disappears. For cases with less severe decelerations (0 < 0.5) the curvature of the

streamlines is not large enough to induce a sufficiently strong pressure gradient that

could retard the outer portion of the flow. Thus, the pressure does not become as

uniform as for the strong retardation cases (see Figs. 6.4 and 6.10). The results

seem to indicate that the stronger the deceleration, the stronger the deviation of the

outflow pressure field with respect to the inlet pressure field, favoring uniformity in

the vertical direction.

Also notice that for the low retardation cases (0 < 0.5) the pressure values just

below the vortex core edge tend to remain fairly constant, the curves coalescing

around that region.

(7) It was found that the K0 rit values found in the numerical study were different

from those obtained using the analytical solution of Batchelor [12] (critical condi-

tions meaning stagnation on the axis for Batchelor's solution, lack of convergence for

our computation). A comparison of the two sets of values is shown below in Table

6.2 for different values of 0. It can be seen that the computational values are higher

than the analytical values by as much as 19% for 0 = 0.1, descending to around 11%

for higher values of retardation. Although the difference in value for 4 = 0.9 jumps

to close to 53%, no explanation could be found for this behavior. Numerically, it

was found that in the absence of external deceleration (4 = 0.0) the flow could not

be driven to stagnation for any value of swirl K, as indicated by the oo symbol in

Table 6.2. However, Batchelor's analytic solution is also satisfied by finite values of

swirl K for the case of zero retardation (0 = 0.0), as well as by K= oo. This is due



to the fact that the solution is double-valued in this limit. Careful consideration of

both values reveals that K= oo is the proper solution, agreeing with the numerical

results.

The computed and analytical values for the core expansion b,,it at the outflow

station are also given in Table 6.2. Notice again the disagreement between the two

sets of values, indicating that although the numerical solution allows a higher K,,it,

the analytical solution predicts a larger expansion of the vortex core. This difference

in the value of b is about 13% for 4 = 0.1 and decreases down to about 1.1%

for 4 = 0.7, so core expansion values tend to agree as the deceleration increases.

Observe in Table 6.2 that no b values are given for 4 = 0.8,0.9 since the core

expanded beyond the computational domain boundaries.

K(analytical),,it K(numerical)ýrit b(analytical)r,it b(numerical)crit

0.0 oo oo 1.000 1.000

0.1 0.786 0.936 1.410 1.223

0.2 0.677 0.779 1.510 1.341

0.3 0.575 0.652 1.627 1.441

0.4 0.480 0.538 1.770 1.582

0.5 0.390 0.434 1.949 1.818

0.6 0.305 0.339 2.190 2.064

0.7 0.224 0.249 2.454 2.427

0.8 0.146 0.163 3.129

0.9 0.072 0.110 4.464

1.0 0.0 0.0

Table 6.2: Comparison of numerical vs analytical values of Kit and b,,it



It could be argued that the disagreement in the computed and analytical values is

caused by the fact that the solution given by Batchelor assumes that the outflow has

constant axial velocity at the potential region outside the vortex core, whereas the

computed solution exhibits a slightly nonuniform profile in that region. However,

this is likely to be only a minor source of disagreement, the nonuniformity being

at worst about 1.2% of the outer boundary value. It is more reasonable to argue

that the inaccuracy is caused by the inability to reach stagnation conditions, and

by numerical errors.



Y 3.

2.

1.

0.

STREAMFUNCTION CONTOURS

INC= 0.100

ý.oooo

1.000

1.0000

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

x
Figure 6.6: Streamfunction, Critical case:o = 0.3, a = 1.0,K = 0.652

Y 3.

2.

1.

0.

STREAMFUNCTION CONTOURS

INO= 0.100

0.0

q.0000

q.5000

1.0000

1.5000

)i nnn

Figure 6.7: Streamfunction, Critical case:o = 0.7, a = 1.0, K = 0.249

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0



AXIAL VEL VS RADIAL DISTANCE

Y

Figure 6.8:

Y

Figure 6.9:

U

Axial Profiles, Critical case:0 = 0.3, a = 1.0, K = 0.652

CIRCUMFERENTIAL VEL VS RADIAL DISTANCE

W
Circumf. profiles, Critical case:0 = 0.3, a = 1.0, K = 0.652

STATIC PRESSURE VS RADIAL DISTANCE

P(Y)

Figure 6.10: Static pressure, Critical case:q = 0.3, a = 1.0, K = 0.652



CONVERGENCE HISTORY

LOG ERROR

LOG ITERATION NO

Figure 6.11: Convergence History, Critical case:0 = 0.3, a = 1.0, K = 0.652

AXIAL VEL VS RADIAL DISTANCE

Figure 6.12: Axial Profiles, Critical case:0 = 0.7, a = 1.0, K = 0.249

CIRCUMFERENTIAL VEL VS RADIAL DISTANCE
3.0

2.5

2.0

Y 1.5

1.0

0.5

n0n
".o00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

W

Figure 6.13: Circumf. Profiles, Critical case:0 = 0.7, a = 1.0, K = 0.249

I



STATIC PRESSURE VS RADIAL DISTANCE
3.u

2.5

2.0

Y 1.5

1.0

0.5

n00
'0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P(Y)

Figure 6.14: Static pressure, Critical case:0 = 0.7, a = 1.0, K = 0.249

6.2 Case II: a > 1

An inflow profile parameter a = 1.2 was used, and the computation proceeded

as in Case I. Both types of flows presented similarities in their behavior, generally

with minor differences except for the important fact that a = 1.2 flows developed

their minimum velocity not at the axis, but at some vertical location within the

expanding core region. No analytical solutions are available for comparison with

numerical results in this case.

Consider the solution for 0 = 0.1, shown in Figs. 6.15, 6.16, 6.17, and 6.18. As

for a = 1.0, plots of streamfunction, axial and circumferential profiles, and static

pressure are given. We see from Fig. 6.15 that the retardation results in a core ex-

pansion similar to those observed in a = 1 cases. The circumferential velocity shows

a decrease in peak value as the core edge moves radially outward, and a change in

the slope of the profile within the core. Fig. 6.18 again shows that a large pressure

gradient develops at and near the axis. Fig. 6.16 indicates that the minimum axial

velocity occurs around a = 0.5, and not at the axis. It also shows that this minimum

velocity is not zero. Computations with a larger swirl failed to converge.

,,

I
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Therefore, the computations failed again to converge for some value of swirl K

as the flow approached stagnation conditions. As expected, having a jet-like inlet

axial profile delayed the onset of stagnation as compared with the uniform axial

profile cases (for the same retardation value 0). Thus, the swirl parameter K had

to be highly increased beyond the values given by the a = 1 solution. This can be

observed in Table 6.3 below, where the minimum exit axial velocities are presented

for retardation values of -= 0.1,0.3,0.5, together with the critical swirl parameter

I

9 n

I



value and the location of the minimum Ymin. The axis velocity at the exit is also

presented for comparison.

Kcrit Uminimum[ Uagis Yminj

0.1 1.087 0.538 0.584 0.454
0.3 0.819 0.356 0.481 0.760
0.5 0.619 0.150 0.442 1.090

Table 6.3: Minimum axial, and axis velocity vs. 4 for a = 1.2

It was not possible to obtain meaningful results for retardation values q 2 0.7,

since the core expanded beyond the boundary limits of the domain, resulting in

specified velocities at the outer boundary that had no physical validity.

It can be observed from the streamfunction contour plots in Figs. 6.15 and 6.19

that the expansion of the vortex core now takes place within a smaller axial length

as compared with a = 1 cases. In this case the streamlines become horizontal more

quickly and at a larger distance from the exit of the domain. Thus, the outflow

boundary condition i = 0 is met more naturally in this type of flow. Careful

observations of the contour plots reveal that the streamtube expansion is not largest

in the region nearest the axis, but rather in a concentric region located about half

a core in the radial direction, indicating that the axial pressure gradient becomes

largest there. This is probably a consequence of the curvature of the streamlines

being largest in this region, an indication that the flow nearest the axis can now

negotiate the adverse pressure gradient better than the fluid surrounding it, possibly

due to a higher total head value.

In fact, the axial velocity plots in Figs. 6.16 and 6.20 show that the minimum

axial velocity does not occur at the axis anymore, but somewhere within the vortex



core at the exit station. Therefore, stagnation of the flow might not lead in this

case to a bubble sitting on the axis but rather to an annulus filled with recirculating

fluid surrounding a forward moving jet at the axis.

It is interesting to note that experimental observations of the internal structure

of the bubble by Faler and Leibovitch [9] reveal that the latter consists of two cells

or annuli of recirculating fluid, with the smaller cell embedded inside the larger

one. The experimental results show that the flow develops a stagnation point at the

axis where the bubble is first encountered, although other stagnation points can be

found inside the structure. Although the numerical solution could at most predict a

stagnant ring around the vortex axis (leaving unanswered the question of how this

ring could develop into the two-celled structure that is observed experimentally),

the possibility exists that once backflow sets in, this upstream moving mass of fluid

eventually turns to flow downstream. This pattern could immediately set up a

stagnation point at the axis from where the bubble would develop, the recirculating

annuli now part of its inner structure. Notice also that the approach flow used

in the experiments performed by several researchers who obtained vortex bursting,

including Faler and Leibovitch, exhibited a jet profile [3,4,5,9,13,14,15,16], and the

same jetlike axial motion was measured by Singh and Uberoi[17] in trailing vortices

near wing tips. Hence, it is possible that flows with jet profiles could model the

inner structure of a bursting bubble better than the uniform inlet profiles.

It can be observed from the circumferential velocity plots (Figs. 6.17 and 6.21)

that the effect of the axial retardation on the circumferential profile is to slow down

the rotation in the annular region between the vortex axis and the core edge. As

the retardation parameter 0 increases, this behavior becomes exagerated, affecting

mostly the outer core region (Fig. 6.21).

The static pressure plots shown in Figs. 6.18 and 6.22 reveal a behavior similar

to the one observed in a = 1 cases up to the point where the core starts to expand.



It can be seen that the pressure curve develops a kink at the exit, possibly due to

the rapidly varying circumferential velocity and the need to balance the centripetal

force there.
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6.3 Case III: a < 1

A profile parameter a = 0.8 was chosen for this case. This type of flow showed

less variations with respect to a = 1.0 cases than a = 1.2 cases. It was found that

the swirl required to drive a flow to stagnation was less than that for uniform

inlet profile cases. However, the flow behavior was essentially similar to the one

considered in Case I and no new major features were observed. Thus, the minimum

axial velocity occurred on the axis and at the outflow station. Again, no converged

solution was obtained for which the flow showed stagnation conditions, although for

q1 0.3 the minimum axial velocity was very close to zero.

Figs. 6.23, 6.24, 6.25, and 6.26 below show results for the case given by k = 0.3.

Typical streamline, axial velocity, circumferential velocity, and static pressure plots

are presented. Comparing the axial velocities with those for a = 1.0 cases, it can

be seen from Fig. 6.24 that the flow can now be driven to stagnation with lower

values of swirl parameter K for the same value of retardation 0. In fact, it was very

difficult to obtain any converged solution for 4 > 0.3 for which the axis velocity

approached zero.

Notice from Fig. 6.23 that the core expansion characteristics are similar to

those presented for a = 1.0 cases. However, Fig. 6.25 shows that the steepening

and curving of the circumferential profile is now confined to the region of the core

nearest the vortex axis, the outer core region still showing a rigid body rotation

profile. The static pressure plot presented in Fig. 6.26 is not very different from

pressure plots for a = 1.0 cases.

The critical values of swirl K are presented below in Table 6.4 for three different

values of retardation 4, together with the minimum axis velocity.



Table 6.4: Minimum axial velocity and K vs. 0 for a = 0.8

6.

5.

4.

Y 3.

2.

1.

0.

STREAMFUNCTION CONTOURS

INC= 0.100

q.0000

q.5000

1.0000

+
1.5000

)in.n.

0.0

Figure 6.23: Streamfunction, Critical case: 0 = 0.3, a = 0.8, K = 0.373

Uminimum Kerit

0.1 0.428 0.740
0.2 0.178 0.561

0.3 0.008 0.373

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

X



3.0

2.5

2.0

Y 1.5*

1.0

0.5

0n

AXIAL VEL VS RADIAL DISTANCE

~/~//
.0o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 6.24: Axial Profiles, Critical case: 0 = 0.3, a = 0.8, K = 0.373

CIRCUMFERENTIAL VEL VS RADIAL DISTANCE

Figure 6.25: Circumf. Profiles, Critical case: 0 = 0.3, a = 0.8, K = 0.373

STATIC PRESSURE VS RADIAL DISTANCE
3.0

2.5

2.0

Y 1.5

1.0

0.5

n0n
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P(Y)
Figure 6.26: Static Pressure, Critical case: 4 = 0.3, a = 0.8, K = 0.373

I

ill
- -- · -- · - · --- -·



6.4 Case IV: Powell's Input Profile

As mentioned above, Powell derived a self-similar, conical solution to the Navier-

Stokes equations that show good agreement with the experimental results of Earn-

shaw for leading edge vortices of a delta wing [21].

The object of trying the velocity profiles of Powell as upstream boundary condi-

tions in the present inviscid model was to compare the previous results for a = 1.2

with results obtained with a more realistic profile.

The input solution used in this study was obtained from Powell's model with a

Reynolds number of 100, a circulation value of 0.22, an outer edge radius of 1.55,

and an outer edge velocity equal to 1.0. These parameters gave a jet of maximum

velocity equal to 1.216 at the axis, a swirl parameter K=0.34, and a domain radius

R=3.06 (after normalizing lengths with the core radius defined in section 5.3). This

set of parameters was deemed appropriate, since further manipulation of the input

values failed to give profiles closer to the a = 1.2 case. To make a useful comparison,

a computation with the same values for K and R was performed using the standard

upstream profile with a = 1.216 (see Eqn. 2.5).

Unlike the previous cases, this computation involved increasing the retardation

value 0, with swirl K fixed, until stagnation or divergence was encountered. The

reason for not following the standard procedure is that the swirl parameter K given

by Powell's solution is a function of the specified circulation and the Reynolds num-

ber. Changing either one of these parameters results in substantial changes in the

velocity profile and the normalized domain radius. Therefore, it was easier to keep

the swirl constant, increasing the magnitude of the retardation.

The results for the computation using Powell's input profile are shown below in

Figs. 6.27, 6.28, 6.29, and 6.30. Those using an a = 1.216 profile are shown in

Figs. 6.31, 6.32, 6.33, and 6.34. Again, constant streamfunction contour plots, axial



velocity profile, circumferential velocity, and static pressure are given.

Notice that the magnitude of retardation needed to drive the flow to stagnation

was slightly different for the two profiles. Whereas for Powell's profile 4 = 0.71, for

the standard profile with a = 1.216 it was 4 = 0.79.

Figs. 6.27 and 6.31 show the streamfunction contour plots. Notice that the

expansion of the streamtubes is largest near the axis for Powell's case, whereas for

a = 1.216 it occurs near the edge of the vortex core. Hence, the plots seem to

indicate that Powell's profile leads to stagnation on the axis, whereas the a = 1.216

profile would lead to the development of a stagnation ring around the axis (see Case

II results).

Comparison of Figs. 6.28 and 6.32 show differences in axial velocity profiles.

Clearly, Powell's upstream profile suffers the strongest deceleration near the axis,

whereas the standard profile tends to stagnate around a = 2.0. Further deceleration

of this profile was impractical, since the vortex core would have expanded beyond

the domain boundaries.

Figs. 6.29 and 6.33 show circumferential velocity profiles. It can be observed

that Powell's outer profile does not approach a potential vortex profile, although

the boundary condition at the upper radial boundary in his model was specified

such that the circumferential velocity would decay as ). As a result, and in order to

conserve angular momentum, the whole circumferential profile suffers a deceleration,

in contrast with the = 1.216 case, for which the outer profile remains unaltered and

only a decrease of maximum circumferential velocity is observed. The steepening

of the curves as the outflow boundary is approached can be observed in both plots,

although Powell's profile feels this effect near the axis while the standard profile

arches near the core edge.

The static pressure curves shown in Figs. 6.30 and 6.34 reveal a similar pattern



appearance, but they differ considerably in real value. Notice that Powell's curves

start with negative values at the inflow boundary (local pressure is lower than at

upstream infinity) whereas the standard profile assumes zero difference in pressure

at the inflow with respect to upstream infinity (at the axis).

These results seem to indicate that the phenomenon strongly depends on the

choice of upstream boundary conditions. Since the axial velocity profiles were similar

in form and in magnitude, it can be argued that the difference in circumferential

velocity profiles and in static pressure values upstream are mainly responsible for

the disagreement between the two cases considered.
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Chapter 7

Conclusion

The phenomena associated with the deceleration of a free axisymmetric vortex

by a pressure gradient at the outer boundary has been numerically studied using an

inviscid scheme. By considering relevant physical parameters it was possible to vary

the flow conditions and assess the relative importance of each one of the factors,

and their combination.

A set of numerical data has been obtained to serve as a test of comparison with

other computational results that may appear in the future, viscous and inviscid.

These results were compared with analytical solutions by Batchelor [12], showing

good agreement for general non-critical cases. The agreement was not as good

though, for prediction of critical values of swirl and core expansion.

No conclusive evidence was found that vortex bursting is caused by an inviscid

mechanism, but the results hint at the possibility that the onset of bursting is

an inviscid phenomenon. Values of axis velocity close to zero for uniform inlet

profile flows indicate that stagnation is possible without resorting to viscosity, and

only numerical discretization errors are believed to be responsible for preventing a

solution with zero total velocity. The behavior exhibited by the flow was similar

to the one observed in vortex bursting experiments, especially regarding velocity

profiles and pressure fields.

Of great interest are the results for jet-like inlet profile flows, showing that

perhaps they model the mechanism of bursting more faithfully than uniform inlet

flows. Following this line of thought, the self-similar solution to the conical Navier-



Stokes equations of Powell [11] were used as upstream boundary conditions to study

the characteristics of the deceleration on realistic profiles.

It was found that these characteristics depend strongly on the choice of upstream

boundary conditions. Some profiles develop stagnation at the axis, while others

develop stagnation rings around the axis. It would be interesting to perform physical

experiments to assess the correctness of the numerical results, and whether or not

the two types of stagnation lead to the same phenomena.
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C INCLUDE FILE 'NEWVRTXCOM.INC' FOR BATCHVRTX1.FOR PROGRAM
C

IMPLICIT REAL (A-H,O-Z)
PARAMETER (NX=200,NY=200)
COMMON /C0100/ PSI(NX,NY),PSIOLD(NX, NY)
COMMON /C0200/ PSII(NY),H(NY),DH(NY),CIR(NY)
COMMON /C0300/ DC(NY),X(NX),Y(NY),Z(NY)
COMMON /C0400/ XX(NX,NY),YY(NX,NY),YGEN(6*NY)
COMMON /C0500/ AA(NX),BB(NX),CC(NX),DD(NX)
COMMON /CO000/ CX(NX).DCC(NX),DHH(NX)
COMMON /C0700/ U(NX,NY),V(NX,NY),W(NX,NY)
COMMON /C0750/ PINFLX(NX,NY),VORT(NX.NY)
COMMON /C0770/ PINFLX1(2.*NY),YNFLX(2.*NY)
COMMON /C0775/ EPS(4001),STM(4001),NIP(i)
COMMON /C0776/ IERROR(NX),JERROR(NY)
COMMON /00780/ CIRCLN(NX,NY) TOTHEAD(NX,NY),TOTVEL(NX.NY)
COMMON /C0790/ AXI(NY) ,TOTPRESS(NY)
COMMON /C00800/ ALPHA,BETA,PHI,PI, OMEGA,EPSILON ,XRET
COMMON /C0900/ XK,DELTAX,DELTAY,SL,XL,RD,NXP, NYP,XKY,XKB,XB
COMMON /CI000/ R.RR,RRR,BX,NNN.MP,IGOR,JN.IL.IU,VL.XKSTAG
COMMON /C1010/ AX,D1,D,D2,D3,JCORE,DJ,TH1,TH2,RS1,RS2,MMP
COMMON /C1015/ UMINO,XBSTAG
COMMON /C1020/ IOPT(1),NPOINTS (),NNPP(I),NLINE(2)
COMMON /C1025/ JOPT(2),NNPP2(2),LOPT(1)
COMMON /C1030/ UBOUND(NX) .UINIT(NY) ,BETAX(NY)
COMMON /C1040/ UMID2(NY),UMID4(NY),UMID34(NY),UEND(NY)
COMMON /C1046/ UMID38(NY) ,UMID58(NY)
COMMON /C1050/ UO(NX),U02(NX),VTOP(NX) UTOP(NX),UBESS(NY)
COMMON /C1053/ VTOP2(NX),VAXIS(NX),U2(NY),U3(NY),WBESS(NY)
COMMON /C10565/ WINIT(NY),WMID4(NY),WMID2(NY),WEND(NY)
COMMON /C1056/ WMID38(NY) ,WMID58(NY),WMID34 (NY)
COMMON /C1057/ PRESSR(NX,NY),PRS(7*NY),UGEN(7*NY)
COMMON /CO158/ NR(7),KOPT(7) WGEN(7*NY)
COMMON /C1060/ INDGR,MPT,NPT,THETA1,THETA2 ,ETA1 ETA2
COMMON /C1070/ UCONTI.,UCONT2 ,VCONT.UMASS, JCOREB.WEJ1
COMMON /C1080/ UCONT3 UCONT4,VCONT2,VCONT4,UMASS2 ,UMASS3
COMMON /C1090/ UCONT5,VCONT5,UMASS5,BEJO,BEJ1,II
COMMON /C1095/ UCONT6,UCONT7,VCONT6,VCONT7,UMASS6
COMMON /C1100/ XY,XXX,YX.YYY,JVORT(6). IVORT(6) ,XVORT(6)
COMMON /C1150/ YVORT(6)
DIMENSION CONT(50)
CHARACTER*60 TITLE.PLTITL1, PLTITL2.PLTITL3 PLTITL4,PLTITL5
CHARACTER*60 PLTITL6,PPTLL20. PPTLL21,PPTLLSO. PPTLL18, PPT
CHARACTER*60 PPTLL,PPTLL2, PPTLL3,PPTLL4,PPTLL5,PPTLLIO
CHARACTER*60 PLTITL7,PLTITL8 .PLTITL9,PPTLL11 ,PPTLL40
CHARACTER*60 PPTLL12, PPTLL13,PPTLL14,PPTLL16, PLTITLGRD
CHARACTER*60 PPTLL48,PPTLL49,PPTLL5 0,PPTLL47
CHARACTER*60 SUBTITLE,SUBPLTITL,PPTLLO, PPTLL61
TITLE='SIMULATION OF VORTEX BURSTING: NO WALLS'
SUBTITLE='KB VALUES OF STAGNATION'
SUBPLTITL= ' FUNCTIONPHI=O. 1'
PLTITL1='X'Y'STREAMFUNCTION CONTOURS'



PPT='X-Y'GRID'
PLTITL2=' X'YVELOCITY VECTOR'
PLTITL3='X'Y'AXIAL VELOCITY CONTOURS'
PLTITL4='X-Y-TOTAL VELOCITY CONTOURS'
PLTITL5=' X-Y-PRESSURE CONTOURS'
PLTITL6='X'Y'CIRCULATION CONTOURS'
PLTITL7='X-Y-TOTAL PRESSURE CONTOURS'
PPTLL='X-UO'AXIAL VELOCITY ON AXIS'
PPTLL2='X-UOUT-AXIAL VELOCITY AT UPPER EDGE'
PPTLL3='X-U'AXIAL VELOCITY AT L/4'
PPTLL4='X-U-AXIAL VELOCITY AT L/2'
PPTLL5='X-U-AXIAL VELOCITY AT 3L/4'
PPTLLIO='X'VTOP'RADIAL VELOCITY AT UPPER EDGE'
PPTLL11='X-UTOP'EXACT AXIAL VEL AT UPPER EDGE'
PPTLL12='W-Y'INLET CIRCUMFERENTIAL VELOCITY'
PPTLL13='W-Y-CIRCUMFERENTIAL VELOCITY AT L/4'
PPTLL14='W-Y-CIRCUMFERENTIAL VELOCITY AT L/2'
PPTLLIB='W'Y'EXIT CIRCUMFERENTIAL VELOCITY'
PPTLL18-'UEXIT'Y'CORE OUTFLOW AXIAL PROFILE'
PPTLL2O='HEAD-PSI-INLET HEAD PROFILE'
PPTLL21- 'CIRCULATION-PSI-INLET CIRCULATION PROFILE'
PPTLL30O 'PSII'Y"INLET STREAMFUNCTION PROFILE'
PPTLL40='Y-VORTICITY-VORTICITY VS. INFLEXION POINT'
PLTITL8='U'Y'INLET AXIAL VELOCITY'
PLTITL9='U'Y-EXIT AXIAL VELOCITY'
PLTITLGRD='X'Y'GRID PLOT'
PPTLL47='LOG ITERATION NO-LOG ERROR-CONVERGENCE HISTORY'
PPTLL48='U'Y-AXIAL VEL VS RADIAL DISTANCE'
PPTLL49="'P(Y)-Y'STATIC PRESSURE VS RADIAL DISTANCE'
PPTLLSO'W'Y'CIRCUMFERENTIAL VEL VS RADIAL DISTANCE'
PPTLL60=' I'IERROR'AXIAL LOCATION VS ERROR FREQUENCY'
PPTLL61='JERROR'J-VERTICAL LOCATION VS ERROR FREQUENCY'



PROGRAM BATCHVRTX1
C

C**** PROGRAM TO SIMULATE THE INVISCID BEHAVIOR OF A ***************
C**** VORTEX NEAR BREAKDOWN ***************
C************************************************************************

C
C REGION NEAR AXIS IS RESOLVED USING LOG FUNCTION. USES BESSEL
C FUNCTION FOR ALPHA-= PROFILES TO COMPARE RESULTS.
C

INCLUDE 'NEWVRTXCOM.INC'
C

CALL INPUT
C

CALL DOMAIN
C

NNN=1
C
10 CALL UPSTREAM
C

IGOR=1
C

CALL SIDES
C

CALL INITIALIZE
C

CALL HEAD
C

CALL CIRCULATION
C

CALL SPLINE(H,DH,PSII,JCORE)
C

CALL SPLINE(CIR,DC,PSII,JCORE)
C

MP=0
18 EPSILON=0.0
C

DO 25 JN=2,NYP
CALL COMPUTATION

25 CONTINUE
C

IF(EPSILON.NE.0.0)THEN
EPS (MP) =ALOG I(EPSILON)

ENDIF
MP=MP+ 1
IF(MP.GT.3000.AND.EPSILON.GT.1.OE-02)THEN

MP=MP-
GO TO 300

ELSEIF(MP.GE.MMP)THEN
GO TO 300



ENDIF
C

IF(EPSILON.GT.1.OE-05) GO TO 18

300 CALL VELOCITY
C
C

CALL PLOT
STOP

C ENDIF

END

SUBROUTINE INPUT

C MUST USE INPUT FILE VRTXDATA1.DAT
C

INCLUDE 'NEWVRTXCOM.INC'

OPEN(UNIT=10,FILE='VRTXDATA1.DAT',STATUS='OLD')

C.......THE SWIRL PARAMETER K IS K=CORE RADIUS*OMEGA/U(INFINITY)
C.......AND REPRESENTS THE
C.......NONDIMENSIONALIZED CIRCULATION AT THE CORE OF THE VORTEX.
C.......IT IS REPRESENTED BY XK.

READ(10,*)XK

C.......THE UPSTREAM AXIAL VELOCITY PROFILE IS GIVEN AS A FUNCTION OF THE
C.......RADIAL DISTANCE Y AND OF THE PARAMETER ALPHA. ALPHA LESS THAN 1
C.......GIVES A WAKE-LIKE PROFILE, ALPHA EQUAL TO i GIVES UNIFORM AXIAL
C.......FLOW, ALPHA GREATER THAN 1 GIVES A JET-LIKE PROFILE.

READ(10. )ALPHA

C.......THE PARAMETER PHI CONTROLS THE ACCELERATION OF THE FLOW AT THE
C.......UPPER BOUNDARY, THEREBY IMPOSING A PRESSURE GRADIENT ON THE FLOW.
C.......THIS PARAMETER AFFECTS THE AXIAL VELOCITY AT THE UPPER BOUNDARY
C.......IN THE FOLLOWING WAY
C U(X)= 1 + PHI*(COS((2X - L + LL)/(2LL/PI))-1)/2
C.......WHERE L IS THE LENGTH OF THE DOMAIN AND LL THE LENGTH OVER WHICH
C.......THE RETARDATION IS APPLIED. OBVIOUSLY LL<L , AND FOR RETARDATION,
C.......PHI SHOULD BE LESS THAN 1.0. LL IS REPRESENTED BY SL AND L IS
C.......REPRESENTED BY XL TO MAKE THEM REAL VARIABLES.

PI=4.0*ATAN(I.0)

READ(10, *)PHI
READ(10O*)SL
READ(10, *)XRET

C.......L IS THE HORIZONTAL DIMENSION OF THE COMPUTATIONAL DOMAIN, WHILE R



C.......IS THE VERTICAL DIMENSION (FROM THE VORTEX AXIS UP), BOTH GIVEN IN
C.......UNITS OF a (THE CORE RADIUS). R IS REPRESENTED BY RD TO AVOID
C.......REPETITION OF VARIABLES.

READ(10 ,*)XL
READ(10,*)RD
READ(10,*)DELTAX
READ(10,*) DELTAY

BETA-DELTAX/DELTAY

IF((XRET-SL/2.).LT.0.0.OR.(XRET+SL/2.).GT.XL)THEN
WRITE(6,*)'INVALID CHOICE: CHECK DOMAIN LENGTH VS RETARD LENGHT'
STOP
ENDIF

C ....... THE ACCELERATION PARAMETER OMEGA IS USED IN THE SUCCESIVE
C ....... OVERRELAXATION METHOD. VALUE BETWEEN 1 AND 2, EXCEPT IN CASES
C.......WHERE STABILITY BECOMES A PROBLEM (CHOOSE 0.4 - 0.6)

READ(10, *)OMEGA
READ(10, *)MMP
CLOSE(10)
END

C*************************************************************************
SUBROUTINE DOMAIN

C*************************************************************************

INCLUDE 'NEWVRTXCOM.INC'

C.......SUBROUTINE DOMAIN CALCULATES THE DISCRETIZATION OF THE DOMAIN,
C ....... OR THE VALUES OF X AND Y POINTS.

C WRITE(6,*)'DELTAX=',DELTAX,'DELTAY=',DELTAY
NXP=NINT(XL/DELTAX) +1
NYP-NINT(RD/DELTAY) +1

C WRITE(6,*)'NXP'.,NXP,'NYP-',NYP
X(1)-O.0
Y(1)=O.O
DO 900 I=2,NXP

X(I)=X(I-1) +DELTAX
900 CONTINUE

DO 950 J=2,NYP
Y(J)=Y(J-1) +DELTAY

950 CONTINUE

C.......RESOLVE REGION NEAR THE AXIS

DO 1000 J=2,NYP-1
Y(J)=Y(NYP)*((LOG(Y(J)+1.)/LOG(Y(NYP)+1.))**2.2)

1000 CONTINUE



DO 1006 J=2,NYP-1
BETAX(J)=(Y(J)-Y(J-1))/(Y(J+I)-Y(J))

1005 CONTINUE

BETAX(NYP)=1.0
DJ=DELTAX/(Y(NYP)-Y(NYP-1))

JCORE=0O
DO 1020 J=1,NYP

IF(Y(J).LE. 1.0)JCORE=JCORE+1
1020 CONTINUE

C CALCULATION OF COORDINATES OF DISCRETE POINTS

DO 1030 J=1.NYP
DO 1030 I=1,NXP

XX(IJ)=X(I)
YY(I,J)=Y(J)

1030 CONTINUE

END
C************************************************************************

SUBROUTINE UPSTREAM
C@*******************************t*****

INCLUDE 'NEWVRTXCOM.INC'

C.......SUBROUTINE UPSTREAM COMPUTES THE VALUES OF PSI (STREAMFUNCTION)
C.......AT X=O.O, i.e. AT THE INFLOW BOUNDARY.

PSI(I,1)=0.0
DO 1000 J=2,NYP

IF(Y(J).LE.1.0)THEN
PSI(1,J)=(Y(J)**2)*((ALPHA/2.0)+(1.0-ALPHA)*

& (Y(J)**2)*(3.0/2.0-(8.0/5.0*Y(J))
& +(1.0/2.0*(Y(J)**2))))

ELSEIF(Y(J).GT. 1.0)THEN
PSI(1,J)=0.5*(Y(J)**2)+((ALPHA-1.0)/10.0)

ENDIF
1000 CONTINUE

END

SUBROUTINE SIDES
C***************************************** ********************

INCLUDE ' NEWVRTXCOM.INC'

C.......SUBROUTINE SIDES IS USED TO FIX THE VALUES OF PSI AT THE
C.......LOWER BOUNDARY, AND THE UPPER BOUNDARY IF THIS IS TO REPRESENT
C.......A SOLID BOUNDARY.

DO 1010 I=2,NXP
PSI(I,1)=0.0
PSI(I.NYP)=PSI(1,NYP)



1010 CONTINUE
END

SUBROUTINE INITIALIZE

INCLUDE 'NEWVRTXCOM.INC'

C.......SUBROUTINE INITIALIZE WILL INITIALIZE ALL POINTS OF THE DOMAIN.

DO 1016 J=2,NYP-1
DO 1013 I=2,NXP

PSI(I,J)=PSI(1,J)
1013 CONTINUE
1015 CONTINUE

C.......NEED TO STORE THE VALUES OF PSI(I,J) AS A ONE DIMENSIONAL ARRAY
C.......CALLED PSII(J) TO USE IN SPLINE SUBROUTINES, AND ALSO SAVE
C.......OLD VALUES OF PSI.

DO 1050 J=1,NYP
PSII(J)=PSI(I,J)

1050 CONTINUE

END

SUBROUTINE HEAD

INCLUDE 'NEWVRTXCOM.INC'

C.......SUBROUTINE HEAD COMPUTES THE TOTAL HEAD AT DISCRETIZED POINTS AS
C.......A FUNCTION OF STREAMFUNCTION PSI.

DO 10 J=1I,NYP
IF(Y(J).LE.1.0)THEN

H(J)=0.5*((ALPHA+C1.0-ALP(1.-ALPHA)*(YJ)**2)*(6.0-
a 8.0*Y(J)+3.0*Y(J)**2))**2)+(XK**2)*(Y(J)**2)

ELSEIF(Y(J) .GT. 1.O)THEN
H(J)=O.5+(XK**2)

ENDIF
10 CONTINUE

END

SUBROUTINE CIRCULATION

INCLUDE 'NEWVRTXCOM.INC'

C........SUBROUTINE CIRCULATION COMPUTES THE CIRCULATION AT DISCRETIZED
C.......POINTS AS A FUNCTION OF STREAMFUNCTION PSI.

DO 10 J-1,NYP
IF(Y(J).LE. .O)THEN

CIR(J)=XK*Y(J)**2



ELSEIF(Y(J) .GT. 1.0)THEN
CIR(J)=XK

ENDIF
10 CONTINUE

END

SUBROUTINE COMPUTATION

INCLUDE 'NEWVRTXCOM.INC'

IL=2
IU-NXP

C
CALL CF

C
CALL SOLVE

C COMPUTATION OF MAXIMUM ERROR DIFFERENCE BETWEEN OLD
C VALUES (PREVIUS ITERATION) AND NEW VALUES.

DO 20 I=2.NXP
EPSILON-AMAXI (EPSILON ,ABS (CC(I)))

20 CONTINUE

C STORAGE OF NEWLY COMPUTED VALUES REPLACING OLD ONES AND
C CHECK FOR NEGATIVE VALUES OF STREAMFUNCTION PSI

DO 22 I-2.NXP
PSI(IJN)= PSI(I,JN) + OMEGA*CC(I)
IF(PSI(I,JN).LT.O.0) PSI(I,JN)=0.0

22 CONTINUE

END

SUBROUTINE CF

INCLUDE aNEWVRTXCOM.INC'

C SUBROUTINE CF COMPUTES COEFFICIENT VALUES FOR THE
C TRIDIAGONAL MATRIX TO BE USED IN THE SOLVE ALGORITHM

IF(JN.LT.NYP)THEN
AX=(-1.O/DELTAX**2)/( 2./DELTAX**2 + 2.*(I.+BETAX(JN))/

8 ( BETAX(JN)*(Y(JN+I)-Y(JN))**2 + (Y(JN)-Y(JN-1))**2 ) +
& (I.-BETAX(JN)**2)/(Y(JN)*(Y(JN)-Y(JN-1)+(BETAX(JN)**2)*
a (Y(JN+1)-Y(JN)))) )

Dil (DELTAX**2)*( 2.0/
& ( BETAX(JN)*(Y(JN+1)-Y(JN))**2 + (Y(JN)-Y(JN-I))**2 )+
& 1./(Y(JN)*(Y(JN)-Y(JN-1I)+(ETAX(JN)**2)*
& (Y(JN+I)-Y(JN)))) )

D2= (DELTAX**2)*( 2.0*BETAX(JN)/
& ( BETAX(JN)*(Y(JN+1)-Y(JN))**2 + (Y(JN)-Y(JN-1))**2 ) -

I



k (BETAX(JN)**2)/C(Y(JN)*(Y(JN)-Y(JN-1)+ (BETAX(JN)**2)*
& (Y(JN+I)-Y(JN)))) )

ELSEIF(JN. EQ. NYP)THEN
AX=-I.0/( 2.0*(I.0+(DELTAX/(Y(JN)-Y(JN-1)))**2) )
DSB(DELTAX**2)*( 2.*Y(JN)/(Y(JN)-Y(JN-1)) - 1.0)

ENDIF
C

DD(2)=1 .0
A(2)=AX
DO 15 I=3,IU-1

BB(I)=AX
DD(I)=1.0
AA(I) =AX

16 CONTINUE
DD(IU)=1.0
BB(IU)=2.0*AX
DO 25 I=2,IU

RR=PSI(I, JN)
IF(RR.LT.PSII(JCORE))THEN

CX(I)=SEVAL(RR,CIR,DC,PSII,JCORE)
DCC(I)=DEVAL(RR,CIR,DC,PSII,JCORE)
DHH(I)-DEVAL(RR,H,DH,PSII,JCORE)

C USE NEXT ONLY IF PROFILE IS RADIALLY INVARIANT.
ELSEIF (RR. GE. PSII(JCORE))THEN

CX(I)=o .0
DCC(I)=O.O
DHH(I)=O.O

ENDIF
C OTHERWISE, USE THE FOLLOWING:
C CX(I)=SEVAL(RR,CIR,DC,PSII,NYP)
C DCC(I)=DEVAL(RR,CIR,DC,PSII,NYP)
C DHH(I)-DEVAL(RR,H,DH,PSII,NYP)

BX=((Y(JN)**2)*DHH(I) - CX(I)*DCC(I))*
& (DELTAX**2)

C
C

IF(I.LT.NXP.AND.JN.LT.NYP)THEN
CC(I)=AX*(BX-(D2*PSI(I,JN+1)+DI*PSI(I,JN-1)) )

& -AX*PSI(I+I,JN)-AX*PSI(I-1,JN)-PSI(I.JN)
ELSEIF(I.LT.NXP.AND.JN.EQ.NYP)THEN

IF(PHI.LT. 1.OE-05)THEN
CC(I)=AX*(BX - 2.0*(DJ**2)*PSI(I,JN-1)

& -1.0*D3)
& - AX*PSI(I-1,JN)-AX*PSI(I+1.JN) - PSI(I,JN)

ELSEIF(PHI.GE. 1.0E-05)THEN
IF(X(I).LE.(XRET-SL/2.))THEN
CC(I)-AX*(BX - 2.0*(DJ**2)*PSI(I,JN-1)-1.O*D3)

& - AX*PSI(I-1,JN)-AX*PSI(I+1,JN)-PSI(I.JN)
ELSEIF(X(I).GT.((XRET-SL/2.)).AND.X(I).LT.((XRET+SL/2.)))THEN

CC(I)=AX*(BX - 2.0*(DJ**2)*PSI(I,JN-1) -
& D3*(1.0+PHI*(COS((X(I)+SL/2.-XRET)/(SL/PI))-1.)/2.))
k -AX*PSI(I+1,JN) -AX*PSI(I-1,JN) - PSI(I,JN)

I



ELSEIF(X(I) .GE. (XRET+SL/2.))THEN
CC(I)=AX*(BX - 2.0*(DJ**2)*PSI(I,JN-1)-(I .-PHI)*D3)

k - AX*PSI(I-1,JN)-AX*PSI(I+1,JN) - PSI(I,JN)
ENDIF
ENDIF

ELSEIF(I. EQ.NXP.AND.JN.LT.NYP)THEN
CC(I)-AX*(BX-(D2*PSI(I,JN+I)+DI*PSI(I.JN-1)))

& -2.*AX*PSI(I-I,JN)-PSI(IJN)
ELSEIF(I.EQ.NXP.AND.JN.EQ.NYP)THEN

IF(PHI.LT.1.OE-05)THEN
CC(I)=AX*(BX - 2.O*(DJ**2)*PSI(I,JN-1)

& -1.0D3)
k - 2.*AX*PSI(I-1,JN)- PSI(I,JN)

ELSEIF(PHI.GE. I.OE-05)THEN
CC(I)=AX*(BX - 2.O*(DJ**2)*PSI(I,JN-1)

& -(1.O-PHI)*D3)
k - 2.*AX*PSI(I-1,JN)- PSI(I,JN)

ENDIF
ENDIF

25 CONTINUE
END

SUBROUTINE SOLVE

INCLUDE 'NEWVRTXCOM.INC'
C.......SUBROUTINE SOLVE SOLVES TRIDIAGONAL SYSTEM BY ELIMINATION
C ....... IL=SUBSCRIPT OF FIRST EQUATION
C.......IU-SUBSCRIPT OF LAST EQUATION
C.......BB-COEFFICIENT BEHIND DIAGONAL
C.......DD=COEFFICIENT ON DIAGONAL
C.......AA-COEFFICIENT AHEAD OF DIAGONAL
C.......CC-ELEMENT OF CONSTANT VECTOR
C
C.......ESTABLISH UPPER TRIANGULAR MATRIX
C

LP=IL+1
DO 10 I-LP,IU

R=BB(I)/DD(I-1)
DD(I)-DD(I)-R*AA(I-1)
CC(I)=CC(I)-R*CC(I-1)

10 CONTINUE
C.......BACKSUBSTITUTION

CC(IU)=CC(IU)/DD(IU)
DO 20 I=LP,IU

JJ=IU-I+IL
CC(JJ)=(CC(JJ) -AA(JJ) *CC(JJ+1) )/DD(JJ)

20 CONTINUE
C.......SOLUTION STORED IN CC

RETURN
END



SUBROUTINE VELOCITY

INCLUDE 'NEWVRTXCOM.INC'

C COMPUTE AXIAL, RADIAL, CIRCUMFERENTIAL VELOCITIES

DO 27 J=2,NYP-1
DO 27 I-2,NXP-1

C CALCULATION OF AXIAL AND RADIAL VELOCITIES FROM
C STREAMFUNCTION VALUES.

U(I.J)=(1./Y(J))*( PSI(I,J)-PSI(I,J-I)+(BETAX(J)**2)*
& (PSI(I,J+i)-PSI(IJ)) )/( Y(J)-Y(J-1) +
& (BETAX(J)**2)*(Y(J+1)-Y(J)) )

V(I,J)=(-1./Y(J))*(PSI(I+1,J)-PSI(I-1,J))/(2.*DELTAX)
27 CONTINUE

THETA1-(Y(2)-Y(1))/(Y(3)-Y(2))
THETA2-(Y(NYP) -Y(NYP-1))/(Y(NYP-I)-Y(NYP-2))
THETA1=THETA1/(. +THETAi)
THETA2-THETA2/(l.+THETA2)

DO 28 I=i,NXP
U(I,1)=2.0*PSI(I,2)/(Y(2)**2)
U(I,NYP)=(I./Y(NYP))*( PSI(I,NYP-1)+

& (THETA2**2-1.)*PSI(I,NYP)-(THETA2**2)*PSI(I,NYP-2))/
& ( (Y(NYP)-Y(NYP-1))*(THETA2-1.) )

V(I,I)=O.O
28 CONTINUE

DO 29 J=2,NYP

V(1,J)=(-1./Y(J))*(-3.*PSI(I,J)+4.*PSI(2,J)-PSI(3,J))/
& (2.0*DELTAX)

V(NXP,J)-(-I./Y(J))*(3.*PSI(NXP,J)-4.*PSI(NXP-1,J)+
& PSI(NXP-2,J))/(2.0*DELTAX)

29 CONTINUE

DO 30 J-2,NYP-1

U(1,J)-(l1./Y(J))*( PSI(1,J)-PSI(1,J-1)+(BETAX(J)**2)*
& (PSI(i,J+1)-PSI(i,J)) )/( Y(J)-Y(J-l) +
& (BETAX(J)**2)*(Y(J+I)-Y(J)) )

U(NXP,J)-(1./Y(J))*( PSI(NXP,J)-PSI(NXP,J-l)+(BETAX(J)**2)*
& (PSI(NXP,J+I)-PSI(NXP,J)) )/( Y(J)-Y(J-I) +
& (BETAX(J)**2)*(Y(J+I)-Y(J)) )

30 CONTINUE

DO 31 I-2.NXP-I
V(I,NYP)-(-1./YNYP))*(PSI(I+1,NYP)-PSI(I-1,NYP))/

& (2.*DELTAX)
31 CONTINUE



DO 34 I-I,NXP
DO 34 J=1,NYP

C CALCULATION OF CIRCUMFERENTIAL VELOCITY USING CIRCULATION
C VALUES AT DISCRETE POINTS.

RRR=PSI(I,J)
IF(J.EQ.1)THEN

W(I,J)=O.O
ELSEIF(J. GT.1)THEN

W(I,J)=SEVAL(RRR,CIR,DC,PSII,NYP)/Y(J)
ENDIF

C CALCULATION OF TOTAL HEAD AND CIRCULATION USING PSI(I,J)

CIRCLN(I,J)=SEVAL(RRR ,CIR,DC,PSII,NYP)
TOTHEAD(I,J)=SEVAL(RRR,H.DH,PSII,NYP)

C CALCULATION OF TOTAL VELOCITY FROM AXIAL,RADIAL AND
C CIRCUMFERENTIAL VELOCITIES COMPUTED ABOVE.

TOTVEL(I,J)=SQRT(U(I,J)**2+V(I.J)**2+W(IJ)**2)

C CALCULATION OF TOTAL PRESSURE FROM HEAD AND TOTAL VELOCITY

PRESSR(I,J)=SEVAL(RRR,H,DHPSII,NYP)-
+O.5*(TOTVEL(I,J)**2)

34 CONTINUE

DO 46 I=1,NXP
UO(I)=U(I,I1)
U02(I)=U(I,NYP)
VTOP(I)=V(I .NYP)
VTOP2(I)-V(I, NYP-1)
VAXIS(I)=V(I,2)

46 CONTINUE
C
C FIND CORE EDGE LOCATION AFTER EXPANSION : Y(JCOREB)
C

RR-0.5+((ALPHA-1.0)/10.0)
ETA1-100.
DO 47 J=1,NYP

RRR-ABS (RR-PSI(NXP, J))
ETA2=AMINI (ETA1,RRR)
IF(ETA2.EQ.RRR)THEN
JCOREB-J
ETAi=ETA2

ENDIF
47 CONTINUE

DO 48 J=1,JCOREB
Z(J)=Y(J)

I



Z(J+JCOREB)=Y(J)
48 CONTINUE

DO 49 J=1,NYP
UINIT(J)-U(1, J)
UMID4 (J) =U(NXP/4 J)
UMID38 (J)=U(3*NXP/8, J)
UMID2 (J) =U(NXP/2,J)
UMID58 (J)=U(6*NXP/8, J)
UMID34 (J)=U(3*NXP/4, J)
UEND(J)-U(NXP .J)
U2(J)=U(2, J)
U3(J)=U(NXP-1 ,J)
WINIT(J)=W(1 .J)
WMID4 (J)=W(NXP/4,J)
WMID38 (J)=W(3*NXP/8, J)
WMID2 (J)=W(NXP/2 J)
WMID68(J)-W(5*NXP/8 ,J)
WMID34 (J)=W(3*NXP/4, J)
WEND(J)=W(NXP .J)

49 CONTINUE
C
C USE BATCHELOR SOLUTION TO COMPARE WITH NUMERICAL SOLUTION
C

XKB=2. 0*XK*Y(JCOREB)
WRITE(6,.*)'THE CORE EXPANSION IS=',Y(JCOREB)
DO 50 J=1.JCOREB

UBESS (J)=UEND (J)
WBESS(J)=WEND(J)

60 CONTINUE
BEJI-BESSJ1(XKB)
DO 51 J=JCOREB+1.2*JCOREB

XKY=2. 0*XK*Y(J-JCOREB)
BEJO=BESSJO(XKY)
UBESS(J)=I.+(1./(Y(JCOREB)**2)-i.)*(XK*Y(JCOREB)*BEJO/BEJ1)
WEJ =BESSJ1 (XKY)
WBESS(J)=XK*(Y(J-JCOREB)+(./Y(JCOREB)**2 -1.)*

+ Y(JCOREB)*(WEJ1/BEJi))
51 CONTINUE

DO 60 J=I.NYP
UGEN (J)=UINIT (J)
UGEN (J+NYP)-UMID4 (J)
UGEN (J+2*NYP)=UMID38(J)
UGEN(J+3*NYP)=UMID2 (J)
UGEN(J+4*NYP)-UMID58(J)
UGEN (J+5*NYP)=UMID34 (J)
UGEN (J+6*NYP)=UEND(J)
WGEN (J)=WINIT(J)
WGEN (J+NYP)=WMID4 (J)
WGEN(J+2*NYP)=WMID38(J)
WGEN (J+3*NYP)=WMID2 (J)

I



WGEN (J+4*NYP)=WMID58 (J)
WGEN (J+5* NYP)=WMID34 (J)
WGEN (J+6*NYP)=WEND(J)

60 CONTINUE

DO 65 J=1,NYP
PRS(J)-PRESSR(1 ,J)
PRS(J+NYP)=PRESSR(NXP/4,J)
PRS(J+2*NYP)-PRESSR(3*NXP/8,J)
PRS(J+3*NYP)=PRESSR(NXP/2,J)
PRS(J+4*NYP)=PRESSR(5*NXP/8,J)
PRS(J+5*NYP)=PRESSR(3*NXP/4,J)
PRS(J+6*NYP)=PRESSR(NXP, J)
YGEN (J)-Y(J)
YGEN (J+NYP)-Y(J)
YGEN (J+2*NYP)=Y(J)
YGEN (J+3*NYP)=Y(J)
YGEN (J+4*NYP)=Y(J)
YGEN (J+5*NYP)=Y(J)
YGEN(J+6*NYP)=Y(J)

65 CONTINUE

C COMPUTE EXACT AXIAL VELOCITY AT UPPER EDGE

DO 100 I=1,NXP
IF(X(I).LE.(XRET-SL/2.))THEN

UTOP(I)=1 .0
ELSEIF(X(I) .GT. ((XRET-SL/2.)) .AND.X(I). LT. ((XRET+SL/2.)))THEN

UTOP(I)=1.O+PHI*(COS((X(I)+SL/2.-XRET)/(SL/PI))-1.)/2.
ELSEIF(X(I).GE.(XRET+SL/2.))THEN

UTOP(I)=I .O-PHI
ENDIF

100 CONTINUE

RETURN
END

SUBROUTINE PLOT

INCLUDE 'NEWVRTXCOM.INC'

C THIS SUBROUTINE STORES DATA TO BE USED IN PLOTTING.

OPEN(UNIT-9,FILE- "C0RDINT.DAT'.STATUS-"UNKNOWN')
DO 34 I-1,NXP
WRITE(9, *)X(I)

34 CONTINUE
DO 35 J-1,NYP
WRITE(9, *)Y(J)



35 CONTINUE
CLOSE(9)

C
OPEN(UNIT-=I,FILE=' STRMFNCTN.DAT',STATUS='UNKNOWN')
DO 37 J=I,NYP

DO 36 I=1,NXP
WRITE( 1,*)PSI(I,J),YY(I,J),XX(I,J)

36 CONTINUE
37 CONTINUE

CLOSE(11)
C

OPEN(UNIT-12,FILE='VELOCITY.DAT',STATUS= 'UNKNOWN')
DO 47 J=1,NYP

DO 47 I-=,NXP
WRITE(12,*)U(I, J),V(I,J),W(I,J),YY(I, J),XX(I,J)

47 CONTINUE
CLOSE(12)

C
OPEN(UNIT=13S,FILE='CIRCLN.DAT',STATUS='UNKNOWN')
DO 55 J=I,NYP

DO 50 I=1,NXP
WRITE(13, *)CIRCLN(I,J) ,YY(I.J) ,XX(I,J)

50 CONTINUE
55 CONTINUE

CLOSE(13)
C

OPEN(UNIT=14,FILE-'PROFILE.DAT',STATUS-'UNKNOWN')
DO 60 J=1,7*NYP

WRITE(14,*)PRS(J),UGEN(J) ,WGEN(J),YGEN(J)
60 CONTINUE

CLOSE(14)
C

OPEN(UNIT=15,FILE='JUSTRUN.DAT',STATUS="UNKNOWN')
WRITE(156,*)ALPHA,MP,NNN, XK,PHI, SL,DELTAX,DELTAY, NXP,NYP,EPSILON
CLOSE(15)

OPEN(UNIT=16,FILE-'ERROR.DAT',STATUS-'UNKNOWN')
DO 70 I=O,MP
WRITE(16,*)EPS(I)

70 CONTINUE
CLOSE(1e)

C
RETURN
END

SUBROUTINE SPLINE(XV,XS,S,N)

C ....... SUBROUTINE SPLINE USED FOR BOTH HEAD AND CIRCULATION

INTEGER N



DIMENSION XV(N),XS(N),S(N)
DIMENSION A(500),B(500),C(500)
REAL DSMDSP

C-------------------------------------------------
C Calculates spline coefficients for XV(S).
C To evaluate the spline at some value of S,
C use SEVAL and/or DEVAL.
C
C S independent variable array (input)
C XV dependent variable array (input)
C XS dXV/dS array (calculated)
C N number of points (input)
C
C------------------------------------------------
C

C

IF(N.GT.500) STOP 'SPLINE: array overflow*
C

DO 1 1=2, N-1
DSM- S(I) - S(I-1)
DSP = S(I+1) - S(I)
B(I) - DSP
A(I) = 2.0*(DSM+DSP)
C(I) = DSM
XS(I) = 3.0*((XV(I+I)-XV(I))*DSM/DSP+(XV(I)-XV(I-1))*DSP/DSM)

I CONTINUE
C
C---- set specified first derivative end conditions
C XS1 = 0.
C XS2 = 0.
C A(1) = 1.0
C C() = o0.
C xS(1) = XS1
C A(N) = 1.0
C B(N) = o0.
C XS(N) = XS2
C
C---- set zero second derivative end conditions

A(1) = 2.0

C(1) - 1.0

XS(1) = 3.0*(XV(2)-XV(1)) / (s(2)-S(1))
B(N) = 1.0
A(N) - 2.0
XS(N) = 3.0*(XV(N)-XV(N-1)) / (S(N)-S(N-1))

C
CALL TRISOL(A.B,C,XSN)
RETURN
END ! SPLINE



SUBROUTINE TRISOL(A,B,C,D,KK)
INTEGER KK
DIMENSION A(KK).,B(KK),C(KK),D(KK)

C---------------------------------------
C Solves KK long, tri-diagonal system
C
C AC D
C BAC D
C BA . .

C . . C
C BA D
C
C The righthand side D is replaced by

C the solution. A, C are destroyed.
C---------------------------------------
C

DO 1 K=2, KK
KM = K-i
C(KM) = C(KM) / A(KM)
D(KM) = D(KM) / A(KM)
A(K) = A(K) - B(K)*C(KM)

D(K) = D(K) - B(K)*D(KM)
1 CONTINUE
C

D(KK) = D(KK)/A(KK)
C

DO 2 K=KK-1, 1, -1
D(K) - D(K) - C(K)*D(K+1)

2 CONTINUE
C

RETURN
END I TRISOL

FUNCTION SEVAL(SS,XV,XS,S,N)
INTEGER N
DIMENSION XV(N), XS(N), S(N)
REAL SS,DS.CX1,CX2,T

C----------------------------------------------
C Calculates XV(SS)
C XS array must have been calculated by SPLINE I
C ---------------------------------------

ILOW = 1
II = N

C
10 IF(II-ILOW .LE. 1) GO TO 11
C

IMID = (II+ILOW)/2
IF(SS .LT. S(IMID)) THEN

II = IMID
ELSE

ILOW = IMID



ENDIF
GO TO 10

C
11 DS = S(II) - S(II-1)

T = (SS - S(II-1)) / DS
cxi - DS*XS(II-1) - XV(II) + XV(II-1)
CX2 = DS*XS(II) -XV(II) + XV(II-1)
SEVAL - T*XV(II)+(1.0-T)*XV(II-1)+(T-T*T)*((1.0-T)*CX1 - T*CX2)
RETURN
END ! SEVAL

FUNCTION DEVAL(SS,XV,XS,S,N)
INTEGER N
DIMENSION XV(N), XS(N), S(N)

C----------------------------------------------
Calculates dXV/dS(SS)
XS array must have been calculated by SPLINE I

C ---------------------------------------
ILOW = 1
II = N

C
10 IF(II-ILOW .LE. 1) GO TO 11
C

IMID - (II+ILOW)/2
IF(SS .LT. S(IMID)) THEN

II = IMID

ELSE
ILOW = IMID

ENDIF
GO TO 10

C
11 DS - S(II) - S(II-1)

T = (SS - S(II-1)) / DS
CX1 = DS*XS(II-i) - XV(II) + XV(II-1)
CX2 - DS*XS(II) - XV(II) + XV(II-1)
DEVAL = XV(II)-XV(II-1)+(. -4.0*T+3. O*T*T)*CXI+T*(3 .O*T-2.)*CX2
DEVAL = DEVAL/DS
RETURN
END ! DEVAL

FUNCTION BESSJI(X)

C Function returns the Bessel function Ji(x) for any real x
REAL*8 Y.PI,P2.P3,P4.P5,l,Q2,Q3,Q4.Q5.R1 .R2,R3.R4,R5,R6

* S1,S2,S3,84,85,S6
DATA RI, R2R3,R4,R5, R6/72362614232.DO, -7895059235.DO,

* 242396853.1DO,-2972611.439D0,15704.48260DO.-30.16036606D0/,
* 81,82.S3,84,55,86/144725228442.DO,2300535178.DO,
* 18683304.74D0,99447.43394D0.376.9991397D0,1.DO/

DATA P1,P2,P3,P4,P5/1.DO,.183105D-2.-.3516396496D-4,
* .2457520174D-5,-.240337019D-6/,Ql,Q2,Q3,Q4,q5/



* .04687499995DO,-.2002690873D-3,.8449199096D-5,

* -.88228987D-6..105787412D-6/

C Direct Rational Approximation
IF(ABS(X).LT.8.)THEN

Y=X**2
BESSJi=X*(R1+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))/

* (SI+Y*(S2+Y*(S3+Y*(S4+Y*(SS+Y*S6)))))
ELSE

DX=ABS(X)
Z=8./DX
Y=Z**2
XX-DX-2.356194491
BESSJi=SQRT(0.636619772/DX)*(COS(XX)*(Pi+Y*(P2+Y*(P3+Y*

* (P4+y*pS))))-Z*SIN(XX)*(ql+Y*(Q2+Y*(Q3+Y*
* (Q4+Y*q5)))))*sIGN(1.,X)

ENDIF
RETURN
END

C**************************************** 2..22.2.***** 2.******.2.***

FUNCTION BESSJO(X)
C*******************************************************2.***.2.****

C Returns the Bessel function JO(X) for any real x
REAL*8 Y,Pi,P2,P3,P4,PS,Ql,q2,q3,q4,qs,Rl,R2,R3,R4,RS,R6

* S1,S2,83,S4,56,S6
DATA P1,P2,P3,P4,P5/1.DO,-.1098628627D-2,.2734510407D-4,

* -.2073370639D-6,.2093887211D-6/,Q1,Q2,Q3,Q4,QS/
* -.1562499995D-1,.1430488765D-3,-.6911147651D-5,
* .7621095161D-6,-.934945152D-7/

DATA R1,R2,R3,R4,R5,R6/57568490574.DO,-13362590354.DO,
* 651619640.7DO,-11214424.18DO,77392.33017DO,
* -184.9052456DO/,S1,S2,S3,S4,S5,S6/57568490411.DO,
* 1029632985.DO,9494680.718DO,59272.64853DO,
* 267.8532712DO,1.DO/

C Direct Rational Function Fit
IF(ABS(X).LT.8.)THEN

Y=X**2
BESSJO=(RI+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))/

* (SI+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6)))))
ELSE

DX=ABS(X)
Z=8./DX
Y=Z**2
XX=DX-.785398164
BESSJO=SQRT(.636619772/DX)*(COS(XX)*(PI+Y*(P2+Y*

* (P3+y*(P4+y*ps))))-Z*sIN(XX)**( Q2+Y *
* (q3+Y*(q4+Y*qS)))))

ENDIF
RETURN
END

C********* ******** *********** ********* ********* ********* ********* ***22


