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ABSTRACT

The problem of variations in control effectiveness
caused by control surface damage was examined in this
thesis. Three different filters were implemented to
estimate remaining surface effectiveness after surface
impairment. The first filter, an Extended Kalman Filter
(EKF), was used as a parameter estimator for the surface
effectiveness of a single surface. The second estimator, a
Multiple Model Estimator (MME), was designed and compared to
the Kalman Estimator. The MME was derived from
simplifications made to an Adaptive Kalman Filter algorithm.
The simplifications were done to facilitate real-time
operation of the estimator. The third estimator, also an
Extended Kalman Filter, was used to address the multiple
damaged surface problem. A natural extension of the single
surface EKF increases the capability, so that it can track
damage to all of the aircraft surfaces simultaneously.
Because the expanded filter monitors all of the surfaces, it
can be used as an impairment detector. This is an
improvement over the other two estimators which only
monitor one surface and require an external impairment
detection mechanism. The cost of this extension was found
in the time required for the multiple surface EKF to
converge. The addition of constraints to the multiple
surface EKF was shown to reduce estimation time.
Convergence properties and computational costs are presented
for each of three estimators. These calculations show that
the EKF is a computationally more efficient solution to both
the single and multiple damaged surface problem.
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Chapter 1

Introduction

Perspective on Effector Estimation

1.1 Introduction

This chapter presents the rationale and motivation for

research into the subject of real-time surface effectiveness

estimation. Current flight control systems, while robust,

do not offer the ability to deal with aircraft damage.

Damage to control surfaces can result in a needless mission

abortion or aircraft loss. Estimation of remaining surface

effectiveness can be used by a suitable control system to

maintain flyability and survivability of damaged aircraft.

For this study, an advanced fighter plane was used for

the simulation tests. Such an aircraft would have a digital

fly-by-wire flight control system (Command Augmentation

System) with redundant control surfaces. The redundant

surfaces can be used to compensate for battle damage and

other impairments. Battle damage is taken to mean any

change in the structure of the control surface; such as that

which would result from gun fire.

Three different estimators will be presented in this

thesis. The first estimator is an extended Kalman filter.

The Extended Kalman Filter (EKF) will be used to estimate

the impairment factor of a single damaged surface. For

this estimator, it is assumed that the surface which is

damaged is known a priori.



The Kalman filter optimally combines measurement data

with modeling information to produce an estimate. In this

case, the estimate produced is the surface effectiveness.

The effectiveness is represented by a factor on the

surface's control derivative. The factor will be in the

range of zero to one; a value of one would represent a fully

effective surface and zero would be a useless surface. The

effectiveness factor is a parameter in the Kalman filter's

system model. The estimator adjusts the model's effective-

ness parameter to minimize the difference between the

measured accelerations and those predicted by the filter's

model. Once an estimate is obtained, it can be used by the

flight control to compensate for the damage.

The second type of estimator is a Multiple Model

Estimator (MME). The MME uses a number of different

aircraft models to test for the effect of the damaged

surface on the aircraft. As with the first method, the

multi-model estimator assumes a priori knowledge of which

surface is impaired.

Both the EKF and MME estimators are based on a single

impairment assumption. Only one surface will be damaged at

a time; however, sequential impairments to the same surface

are possible.

The third estimator which will be investigated is an

expanded form of the EKF. It is expanded so that each

surface is estimated at the same time. With this expansion,

the estimator can determine the surface effectiveness

11



factors for each aircraft surface when there is simultaneous

damage to aircraft surfaces. The expansion of the EKF

estimator may be desirable for two reasons. First, it is

possible that when one surface is damaged, another will be

damaged as well. Second, there is no need for explicit a

priori information about which surface is damaged, as all

surfaces are considered at the same time.

An overview of a reconfigurable flight control system

will be presented to demonstrate how surface effectiveness

estimation can be combined with a reconfigurable controller

to improve the damaged aircraft performance. Requirements

for the speed and accuracy of the estimator, and the

impairment model which was used for the experiment, are also

described in this chapter.



1.2 Motivation for Treating the Problem

1.2.1 Increased Reliability

Reconfigurable flight control systems offer additional

fault tolerance and performance advantages over conventional

flight control systems. Simply stated, reconfigurable

flight control systems redistribute the control commands in

the event of a surface impairment. The redistributed

commands compensate for surface impairments through the

control effector redundancy inherent to the aircraft. Three

basic types of impairments are considered for a functional

reconfigurable flight control system: stuck surface,

floating surface, and partial surface loss. Impairments

can result from incidents such as battle damage, object

strikes and actuator failure. A surface is considered stuck

when the actuator cannot move the surface. A floating

surface condition exists when the surface can no longer be

controlled by the actuator and moves freely with the

airflow. Stuck and floating surface fault detection is

beyond the scope of this thesis. A partially damaged

control surface is one which is missing some fraction of the

surface.

A partial surface loss changes the control character-

istics of the aircraft. The details of the impairment model

for control surface damage will be explained in Section 1.5.

There is a wide range of possible damage a surface can

sustain. The surface loss can be minor, requiring little

more than some additional deflection, or it can be a major

13



impairment which requires deflection changes in all surfaces

to maintain flight path. In both cases, a standard flight

control will have difficulty maintaining aircraft stability

and control.

Surface effectiveness estimation used for control

redistribution provides compensation which will maintain

aircraft stability and control. Redundancies inherent among

the aircraft surfaces are exploited to increase the

reliability of the aircraft in the event of a control

surface impairment. Estimation is key in determining the

proper surface deflections to command to both the damaged

and undamaged surfaces. By fully utilizing all surfaces,

including those with partial surface losses, aircraft

control can be maintained. This can mean the difference

between losing or landing the aircraft. This in itself is a

major benefit of control estimation and redistribution.

1.2.2 Greater Mission Survivability

Closely related to reliability is the mission

completion and success. This class of reconfigurable flight

control system is applicable to both military and commercial

aircraft. Redundancy of flight critical systems is a

decisive factor in surviving surface damage or completing a

mission in a hostile environment. Maintaining aircraft

control and an operational flight envelope is a distinct

advantage. Large degrees of damage can be withstood before

14



the aircraft would have to be abandoned or the mission

aborted.

Given the design of many of today's advanced fighters,

there is exceptional surface redundancy inherent to the

airframe. Independent stabilators and canards, collective

and differential ailerons, and maneuvering flaps all have

capabilities which can be exploited to compensate for

damage. Independent use of canards, for example,

compensates for loss of a primary pitch or roll control

surface. The number of redundant surfaces available on

military aircraft, combined with advanced digital flight

control systems which can exploit inherent redundancy, will

allow improvements in mission reliability and safety of

flight [15,16].

15



1.3 Overview of a Reconfigurable Flight Control System

This section will describe a typical reconfigurable

flight control system which would make use of surface

effectiveness estimation. Discussion will cover each of the

three main aspects of control reconfiguration: detection,

estimation, and control restoration.

1.3.1 Failure Detection and Classification

The detection function analyzes linear and angular

accelerations and rates, to determine if a failure has

occurred. Once a failure is identified, this function then

determines which aircraft surface is at fault as well as the

nature of the impairment. If the failure is a stuck or a

floating surface, control surface deflection will be

reallocated to completely avoid the impaired surface. No

estimation is thus required. For partial surface loss,

however, it is important to determine the extent of the

impairment. For the single surface impairment scenario, it

will be assumed that the damaged surface is identified

before the effectiveness estimation takes place. In the

case of the expanded estimator, where all surfaces are

estimated simultaneously, no such assumption will be made.

1.3.2 Estimation

There are a number of different ways to build a

parameter estimator for surface effectiveness estimation.

Each will have its own advantages and disadvantages.

Surface effectiveness estimation is inherently a constrained

16



estimation problem. The constraint is due to the assumption

that the effect of the impairment is to reduce the

effectiveness of the surface. The reduction factor is

constrained to a range of zero to one. It will be shown

empirically that proper use of this constraint will improve

convergence time.

Issues of concern for the estimator are speed, accuracy

and behavior of the estimator. The faster and the more

accurate the estimates are, the better the control system

will be. The accuracy of the estimate, for example, is a

function of the signal to noise ratio of the aircraft's

sensors, and a function of how well the aircraft dynamics

are modeled. The non-linear dynamic model of the aircraft

embedded in the estimator performs a crucial role in the

fidelity of the estimator's convergence. If the aircraft

model is not accurately modeled, the measurements taken from

the aircraft sensors will cause a false alarm. The

simulation work done in this thesis makes use of a non-

linear aerodynamic database for an advanced fighter

aircraft. The non-linear nature of the surface

effectiveness requires the use of a non-linear estimator.

The details involved in each of the three estimators tested

for this thesis will be explained in Chapter 2; however, a

brief survey is in order here.

The standard Kalman filter works well for linear

systems. The class of filters known as Extended Kalman

Filters (EKF) are approximations to non-linear systems. The

17



EKF updates the filter model with the current state

estimate. The filter model is then linearized about the

current state. References [3, 10] provide the details of

both Kalman and extended Kalman filters. Reference [9]

discusses the behavior of the Extended Kalman Filter as a

parameter estimator.

Another form of non-linear Kalman estimator is the

linearized Kalman filter, reference [3, 10]. The filter

model for this estimator is linearized about a nominal

trajectory. This method was not investigated because there

is no way to know a priori what the nominal trajectory would

be.

Another approach to this problem of on-line parameter

estimation is multiple model Bayesian estimation. An

approximation to the true solution of the Bayesian mean-

square-error estimate is found from the probability density

functions for the state estimates. The conditional

probability density function for the measurement, and an a

priori probability density function for the estimate are

approximated in each computational cycle by employing

statistical models and a priori assumptions. Then a new

estimate is formed based on the mode (average) of the a

posteriori probability of the state estimate conditioned on

the measurement.

Since a system model is required for each possible

element in the parameter space, this method is known as

Multiple Model Estimation (MME). The Multi-model concept

18



has been successfully developed for several applications.

One notable application of the multi-model structure is the

adaptive control system for NASA's F-8C, [1]. The origins

of adaptive parameter estimation appear to come from Magill,

[11].

These two different approaches will be tested and

evaluated in this thesis. Both the multi-model and the

extended Kalman filter estimators will be applied to the

single surface impairment problem of assessing the remaining

control authority of a partially damaged surface. The

effectiveness estimate will then be used for the purpose of

control reconfiguration. An expanded form of the first

method, EKF, will then be developed to demonstrate how a

system which monitors each surface could deal with

simultaneous impairments to different surfaces.

1.3.3 Restoring Control

The final step in the reconfiguration process is to

redistribute the surface commands to counter the impairment.

This is accomplished by nulling the acceleration errors

caused by the damage to the control surface. To properly

understand how this is to be accomplished, one must first

look at the system under control. Equations (1-1) and (1-2)

describe the linearized system dynamics. An impairment to a

control surface will cause a change in the control matrix,

B. It is assumed that the stability matrix, A, remains

unchanged by the impairment.



k = Ax + Bu (1-1)
y = Cx + Du (1-2)

After the impairment, Equation (1-1) can be restated

with a new control matrix, B'. An error vector for the

accelerations can be calculated by subtracting Equation (1-

3) from Equation (1-1) as shown in Equation (1-4).

impaired = Ax + B'u' (1-3)

error = Bu - B'u' (1-4)

A new control vector, u', is sought for the damaged

system which will minimize the error vector shown in

Equation (1-4). In general, this is done by finding the

minimum normal solution to:

B'u' = Bu (1-5)

Where B and Be are, respectively, the unimpaired and

impaired control effectiveness matrices. Physically, Bu

represents the unimpaired commanded accelerations caused by

the commanded surface deflection vector u, and B'u'

represents the resulting impaired commanded accelerations.

The control redistribution function executes a Penrose

pseudo inverse algorithm, [14], to compute the impaired

surface deflection, u'. The solution found by taking the

Penrose inverse of B' has the form:

u' = B'#Bu # denotes Penrose inverse (1-6)

20



The Penrose inverse is required because B' is typically

not a square matrix and the solution is assumed to be under

determined. This assumption is based on the premise that

there are more surfaces than degrees of freedom being

controlled. Control effector estimation is used to provide

a flight control system with information about surface

effectiveness. From this discussion, we can see the need for

estimating the impaired control effectiveness matrix, B',

which directs the reconfiguration.



1.4 Estimation Requirements

As discussed in Section 1.3.2, the speed and accuracy

of the estimator are important parameters to be

investigated. A slow rate of convergence could waste

valuable real-time required to save the aircraft. In some

cases, there are only a few seconds before the plane departs

to a point where it is no longer recoverable [16].

Inaccuracy in the estimates can lead to large recon-

figuration transients within the aircraft control.

1.4.1 Speed of Convergence

The filter for this application requires quick

identification of the impairment factor. Speed is crucial

because the estimate of the surface effectiveness factor is

needed to compensate for the damage done to the aircraft's

surface. Quickness, however, needs to be defined more

precisely. The driving factors determining the speed of

convergence are the complexity of aircraft model, extent of

surface damage, which surface is impaired, and the type of

flight control system.

The type of aircraft is important because different

airframes respond more quickly to the impairment than

others. For example, when a primary longitudinal effector

is impaired on an aircraft with relaxed longitudinal static

stability, the aircraft would depart faster than an aircraft

with the same impairment but with more static stablility.



Obviously, this is not as critical if a lateral-directional

control effector is similarly damaged.

The amount of surface damage sustained can change the

amount of time available before the aircraft is lost. A

small loss of 5% of the surface may not be significant, and

the Command or Stability Augmentation System (CAS or SAS)

may cover the impairment adequately. However, for the more

severe cases, the CAS will not have enough information to

compensate for the damage. Further, the CAS does not have

the ability to maximize the aircraft's performance

capabilities, while a reconfigurable control system does. A

conservative upper bound on the allowable estimation time

would be the time it takes to lose control of the aircraft

for a 100% loss to a primary longitudinal control surface.

Reference [16] discusses a number of different

accidents which were deemed recoverable if the pilot had

responded in time. The time available ranged from as little

as five seconds to as much as twenty-five seconds. Being

conservative, a maximum estimation time of one second would

allow four seconds for the controls to be redistributed to

the remaining surfaces. The aircraft used for this study

was a stable aircraft. Five seconds may be too slow for

some unstable aircraft where there may be only a few tenths

of a second for the plane to be recovered. A maximum

estimation time which was used as a goal in this thesis was

two tenths of a second.

23



In the case where there is plenty of time to save the

aircraft, the effect of a longer estimation time will be

seen as a larger reconfiguration transient. Once the

reconfigured state is reached, however, there should be no

further transients. The transient occurs because the

nominal flight control (CAS) attempts to compensate for the

damage. When CAS compensation for an impairment is

inadequate, but the reconfiguration system has not assessed

the extent of the damage, the CAS will attempt to maintain

aircraft flight path. The CAS states will command larger

deflections to compensate for the impairment. When the

reconfiguration system finally does take over, the CAS

commands are too large and they imperfectly compensate for

the fault. The commands are redistributed, and the CAS

returns to performing the role it had before the impairment.

The transient results from allowing the CAS too much time to

improperly attempt to compensate for the damage.

1.4.2 Accuracy of Effector Estimates

The accuracy required for proper control redistribution

must be understood in terms of the CAS and reconfiguration

system interaction. When a Command or Stability Augmentation

System is designed, there is always the problem of imperfect

knowledge of control and stability derivatives. Thus these

systems are designed to be very robust and tolerant of

errors in the derivatives. The reconfiguration system acts

to return the aircraft's damaged response within the



tolerance of the C/SAS. The C/SAS acts as a fine tuning

mechanism while the reconfiguration system is the coarse

tuning. The acceptable tolerance for the estimate is plus

or minus five percent (±5%) of the total range of the

estimate.



1.5 Impairment Model and Surface Effectiveness Factors

In order to make the estimation problem more tractable,

a number of simplifying assumptions have been made for the

effects of a partial surface loss. At this point there is

one predominant assumption which needs to be stated:

impairment of a surface affects all axes by the same amount.

This is done as a convenience to reduce the number of

elements to be estimated. A more detailed impairment model

would have independent estimates for each axis, but the

added detail would greatly increase the complexity of the

estimator.

This assumption leads to the idea of a single surface

effectiveness parameter for each surface. The surface

effectiveness factor is a non-dimensional term which models

the effect of damage on a surface's ability to produce

aerodynamic forces and moments. The parameter is a number

between 0.0 and 1.0 (inclusive) which represents the

surface's effectiveness. A value of 1 means the surface is

unimpaired, while, at the other end of the spectrum, a zero

states the surface is useless. This parameter is used in

the B matrix on the nominal control derivatives. Thus the

equation for the impairment model adopts the following form:

B' = BE

Where B and BI are as previously described, and E is a non-

dimensional diagonal matrix of effectiveness factors. There

is one factor for each surface. Unimpaired surfaces will

have unity values.

26



The surface effectiveness factor is a useful modeling

device for simplifying the effects of damage on the surface

control derivatives. The unpredictable effect of surface

damage is a very complex problem and beyond the scope of

this thesis. However, a more complex and accurate model, if

developed, could be used in place of the simple effective-

ness factor model in each of the three estimators that will

be presented.
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Chapter 2

Methods of Estimation

2.1 Introduction

This chapter will present the theory and mathematical

descriptions of each of the three estimators studied in this

thesis. Emphasis will first be placed on the generalized

equations of the estimator. Then the focus will be narrowed

to the problem of surface effectiveness estimation. This

chapter will begin with an explanation of the basic linear

Kalman filter.



2.2 Kalman Filter Estimator

2.2.1 Brief Historical Note on the Linear Kalman Filter

In 1960, R. E. Kalman changed the way linear filtering

problems were used. Kalman reformulated the least-squares

filtering problem using state space methods. This new

formulation used vector modeling of the random processes and

recursive data processing of the noisy measurements.

Unlike most filtering problems, the Kalman filter was

designed originally as a discrete time filter. The

equations are independent and are not approximations to a

continuous filter. In fact, it was not until about a year

later when Kalman co-authored a paper with R. S. Bucy to

present the continuous filter solution. The derivation of

the continuous Kalman filter from the original discrete

filter is found in Reference (3].

2.2.2 Theory of Operation for the Linear Kalman Filter

We will begin by assuming the form of a random linear

vector process [3,6] can be described as follows:

Xk+1 = MkXk + W k  (2.2-1)

The discrete time state vector x is transformed at each

time step by the state transition matrix I. The Gaussian

white noise vector, w, is an uncorrelated sequence with a

known covariance structure. The noise is then added

directly to the state.
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The measurements are related to the state by a linear

observation matrix, Hk. The observation matrix represents

the ideal connection between the state vector and the

measuring device. Noise is again directly added to the

measurement. The resulting equation is shown below:

Zk = 2kXk + Vk. (2.2-2)

Where z is the set of measurements, x is the state process

vector and v is the measurement noise vector.

It will be assumed that the two noise vectors w and v

have known statistics; i.e., covariance structure. Further,

it is also assumed that they are uncorrelated with each

other. This last assumption is needed to make the

calculation of the estimate covariance more tractable. The

covariances for each of the noise terms can be summarized as

follows:

E{wkv) = Qk k=j (2.2-3)
0 k#j

E{(Vkvj = Rk k=j (2.2-3)
0 kfj

E{wkvj) = 0. all j,k (2.2-3)

Where the notation E{} represents the expected value or

average function operation. Note that it is proper to claim

that Q and R are covariance matrices because the noise

processes are assumed to be zero mean. Given these



assumptions, we are now ready to look at the derivation of

the filter.

At this point it is convenient to introduce a notation

that will assist us in looking at the filter equations.

Assume for the moment that we have a value for the estimate

tk-. The "hat" implies that this is the estimated quantity.

The superscript minus sign refers to the value before

incorporating the measurement information at time tk.

First an error term is defined for the estimate, Xk--

The estimation error vector, ek-, is defined as the

difference between the true state, Xk, and the estimate X:k--

It is the goal of the filter to minimize the error:

ek k - Xk (2.2-6)

The covariance matrix of the a priori error vector can also

be defined as follows:

Pk- = E{ek'ek-T} = E{(Xk - k-) (Xk - 'k-)T} (2.2-7)

The desired minimum mean-squared error estimate will be the

one for which the a posteriori error covariance matrix is

minimized. The a posteriori error covariance matrix

represents the estimate's covariance after the current

measurement information is incorporated. The a posteriori

covariance matrix is defined similar to Equation (2.2-7);

Pk = E{ekekT) = E{ (Xk - k) (Xk - k)T)} (2.2-8)
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To minimize the a posteriori error covariance, we start

with the prior estimate of state, 'Xk-, and combine it with

the current measurement, Zk, to produce an improved

estimate. A linear combination of Xk- and zk is selected to

improve the estimate. Equation (2.2-9) describes the linear

relation.

Xk = xk- + Kk(zk Hkxk-) (2.2-9)

The only remaining task for the filter is to find the

optimal value for K. The optimal K will minimize the mean-

squared error of the estimate. That is the same as

minimizing the trace of the covariance matrix in Equation

(2.2-8).

Starting with the Equation (2.2-8) for the a posteriori

error covariance, one can substitute Equation (2.2-9) for

Xk and Equation (2.2-2) for zk to obtain the following

result:

Pk = E( [(k - Xk) - Kk(HkXk + Vk - Hkk-)] (2.2-10)

[(Xk - Xk) - Kk(HkXk + Vk - HkXk- ) ]T}

Performing the required expectation on this rather unwieldy

equation leaves the somewhat simpler form shown in Equation

(2.2-11).

Pk = (I - KkHk)Pk-(I - KkHk ) T + RkKkRkT (2.2-11)



This is a general equation for the error covariance matrix.

It can be used for any Kk, optimal or otherwise. The gain

matrix can now be found. The objective is to find K by

minimizing the trace of Pk. The solution to the optimal

gain is that K which minimizes the trace of Pk. This can be

done by the method of completing the squares, [3], or by

matrix differentiation.

Differentiating the trace of Pk, in Equation (2.2-11),

with respect to the matrix K and setting the result to zero,

leads to the familiar Kalman gain Equation (2.2-12). This

particular value for K will minimize Pk*

Kk = Pk-Hk(HkPk-HkT + Rk)-1 (2.2-12)

It is common to simplify the expression for the

covariance matrix associated with the optimal estimate by

substituting the expression for the optimal gain into the

general form for the covariance matrix. This yields the

following equation for the optimal Pk:

Pk = (I - KkHk)Pk' (2.2-13)

It is important to remember that expression (2.2-13) is only

valid for the estimate found when using the optimal gain K.

Each of the three key Equations, (2.2-9), (2.2-12), and

(2.2-13) require a priori values for "k- and PkC- To get

these quantities we must project ahead in time the current

values *k and Pk. The state transition matrix can be used



to do this for %k+,1 and ek+1-.

before from the error ek+1-.

First project Xk to xk+1:

Then Pk+l- can be found as

Sk+lk~k (2.2-14a)

Next project the error vector:

k+l = Xk+l - k+l-

= (IkXk + k) - k
= Ekk + W k

(2.2-14b)

Using the fact that wk and ek are uncorrelated, Pk+1- can

be found by taking the expected value of the vector outer

product of ek+I  with itself. This yields equation (2.2-

15).

E{ekl'ek+1T) = Pk+1- = kPk--kT + Qk (2.2-15)

The five equations which form the complete linear

Kalman filter are summarized by Equation (2.2-16). These

equations form an iterative process for updating the state

measurements. Initial conditions for the estimate and the

error covariance matrix are, of course, needed to start the

process. Figure (2.2-1) displays the initialization and the

looping of the filter process.

Kk = Pk-Hk(HkPk-HkT + Rk)-1

Xk = :k- + Kk(k - H'k-)

Pk = (I - Kkk) P k-

fi,+l = lkrk
Pk+l = -kPk-IkT + Qk

(a)
(b)

(c)
(d)
(e)

(2.2-16)



The filter process will incorporate the measurements

and form the optimal weighted least-squares estimate.

However, for the problem of surface effectiveness

estimation, the observation matrix, H, is a function of the

surface effectiveness estimate. Thus this estimator requires

a slightly different filter approach. This approach is

covered in detail in Section 2.3.
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Figure 2.2-1 Kalman Filter Process



2.3 Extended Kalman Filter Estimator

The extended Kalman filter is needed when the system

dynamics are a function of the state estimate.

2.3.1 Theory of Operation

The system equations (2.3-1) and (2.3-2) describe how

the plant dynamics evolve in time. The process must be

linearized and put into the same form as the set of

Equations (2.2-16, a-e). This is done by linearizing about

the current state estimate.

i = f(x,u,t) + W(t) (2.3-1)

s = h(x,u,t) + v(t) (2.3-2)

Linearization is accomplished by taking the partial

derivatives of both f and h with respect to the state x and

evaluating at a given flight condition. Then the first

order Taylor series approximation is formed about the

current estimate, k. These approximations are used to

propagate the current state estimate and its associated

covariance matrix. The propagation equations are given

without derivation by Equations (2.3-3) and (2.3-4). The

derivation is found in reference [6]. It is important to

note that these equations are approximations to the true

conditional mean equations.

x = f(x(t),u), tk-1 < t < tk (2.3-3)

P(t) = F(i(t),u,t)P(t) + P(t)F(x(t),u,t)T + Q(t) (2.3-4)



Equation (2.3-5) defines the matrix F(x(t),t). It is the

Jacobian of f with respect to x evaluated at the current

state estimate, x = ik-

P(x(t),u,t) = df(x(t),ut) (2.3-5)
dx I x(t) = §k-

The estimation equations retain the same form as the

linear Kalman filter (Equations 2.2-16, a-c), with the

exception of the observation matrix, H. H is a nonlinear

function of the estimate as shown by Equation (2.3-6). The

linearazation of h is done in the same fashion as f. Thus

the observation matrix used is a linear approximation to the

nonlinear function.

H(x(t),u(t),t) = dh(x(t),u(t),t) (2.3-6)
dx I x(t) = qk-

Since H is a function of the current estimate and the

measurements, the Kalman gain and the covariance matrix

sequences can no longer be pre-computed as they could be for

the linear case. The complex expression for H shown in

Equation (2.3-6) is used in the Kalman filter equations

derived in Section 2.2. It should be stated that the Kalman

gain and the error covariance become random variables

themselves. They depend on the time history of x which is a

random variable. The most important effect of this

dependency is that the accuracy of the estimate becomes

trajectory dependent. We will see in Section 2.3.3 that for
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some trajectories there is not enough information in the

measurement to properly improve the estimate.

The inverse required by the Kalman Filter equations is

guaranteed to exist because both R and P are symmetric

positive definite matrices. The term (HPHT + R) is

therefore a symmetric positive definite matrix which is

invertible.

2.3.2 Specifics of Surface Effectiveness Estimation

Returning to the problem of surface effectiveness

estimation, we find that there are a number of

simplifications that can be made to the equations presented

in Section 2.3.1. This is of great use since the goal of

this project is to build a real time estimator which can be

used on current flight control computer systems. The origin

of each of the variables in the system and physically what

each represents will be discussed next.

The filter state vector, x, reduces to a scalar

because only a single surface impairment is estimated. As

we will see in Section 2.5, when there are more surfaces,

the full vector equations will be used. As stated before,

the value of x is in the range of zero to one. This is a

dimensionless parameter.

The observation matrix H(2) relates the scalar surface

effectiveness parameter, R, to the acceleration vector. The

acceleration vector represents the accelerations caused by

the impaired surface. That is, only the fraction of the



total acceleration which is caused by the impaired surface

being estimated. The remaining portion of the aircraft

accelerations are subtracted from the measurement vector.

The measurement vector, z, is then the collection of

acceleration measurements taken from the aircraft sensors

with modeled accelerations removed. Equations (2.3-7)

through (2.3-12) should clarify the matter.

A
x = [ x, surface parameter vector

X2
X3

xn 3

(2.3-7)

(2.3-8)

H

C77 dxt
A i~d A

dAy dA
dAz dAz
T X1 _C7 -x 2

Zsurface = 'I Estimated acceleration due to surfaces (2.3-9)

= [aircraft acceleration measurements]

(2.3-10)
ay
az

cp

dr

d Ay

dAz
9-xn

Emeasured
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(2.3-11)
Zmodee d  = [aircraft accelerations without surfaces]

= modeed
qmodeLed
akmoeted
aymodeLed
azmodeLed

Z = Zmeasurd - Zodeled (2.3-12)

es = z - i (2.3-13)

Equation (2.3-12) corresponds to the measurement vector

which is used in the Kalman filter equations derived in

Section 2.2. The organization of this estimator differs

from the norm. Normally, one can think of a Kalman filter

as a combination of two parts: the measurement system and

the model system. The filter optimally combines the

measurements with the modeled values to produce the

estimate. In this application, the measurement portion

contains a very extensive model of the aircraft dynamics and

aerodynamics.

Through an algebraic manipulation of Equation (2.3-13),

as shown below, the filter's error vector, es, reduces to

measured total accelerations minus the modeled total

aircraft accelerations. This is important because it

permits a self-contained aircraft model to be used in place

of using the equations for the aircraft model as it was

conceptually presented by Equations (2.3-7) through (2.3-

13). Equation (2.3-14) demonstrates this manipulation.
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eZ = Z - Ex (2.3-14)
= Zmasured - Zmodeled - H

= measured - (modeled + IH)
= measured - f (r,U)

= (measured accelerations) - (modeled accelerations)

In our application, the measured accelerations are

provided by the aircraft instrumentation package. The

modeled accelerations are obtained from General Electric -

ACSD's SYSDYN aircraft model. The SYSDYN module contains

the non-linear aircraft dynamics as a function of

measureable aircraft state. SYSDYN is short for system

dynamic model. The diagram below shows SYSDYN's input and

output variables.

Figure 2.3-1 SYSDYN Aircraft Model

Altitude

L ttectivene
Factors

- -

ax
ay
az

q



SYSDYN is a mathematical aircraft model which contains

both the dynamic and aerodynamic information. SYSDYN uses

state information such as airspeed, altitude, surface

deflections and other aircraft state information to

calculate the expected aircraft accelerations.

2.3.3 Singularities in Observation Matrix

As well as calculating the modeled accelerations,

SYSDYN calculates the observation matrix, H. The observa-

tion matrix relates the surface effectiveness parameter to

the accelerations produced by the surface. At certain

angles of attack and surface deflection, the surface

produces little or no lift. When no lift is being produced,

it is impossible to determine how effective the surface is.

There is no information in the measurement signal during

these times. Equation 2.2-12 shows that when H is

identically zero, the gain will also be zero, causing spikes

in the surface effectiveness estimate.

It was found that enforcing a lower limit on the

elements of H was not the most desireable way to remove the

transition spikes. The measurement covariance matrix, R,

turned out to have values which were uncharacteristically

small for the residual signals being measured. The small

covariance made the filter highly sensitive to model and

sensor errors in the system. Time histories of the

residuals were studied and a new set of the values for the R

matrix were determined. The new values were approximately



two orders of magnitude larger than the old. With this

change to the measurement covariance matrix, the problem

with spikes in the estimate was gone.
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2.4 Multiple Model Estimator

This section will present an alternative method of

estimation which will be studied in this thesis. The theory

and fundamental equations for the Multiple Model Estimator

will be explained and then simplified for the single surface

estimation problem, [3,10].

2.4.1 Theory of Operation

The multiple model estimator uses a collection of

different models to form a minimum squared error estimate,

[10]. Each model uses a different value of the parameter to

be estimated. Values for the model's parameter are selected

to span the estimation space. The output of each model is

used to form a residual vector. The residuals are then used

to propagate the conditional probability density functions

for each model. The estimate is then calculated from the

weighted average of the modeled parameters. The weighting

factors are the conditional probabilities.

To begin the derivation of the multiple model estimator

we will start with the estimate being a weighted sum of the

probabilities. This is shown in Equation (2.4-1) for the

continous spectrum of a. The integral shown in Equation

(2.4-1) is very difficult, if not impossible, to calculate

in a real-time estimator; therefore the integral is

converted to a finite number of values for a which can be

summed.

S= Iap(alz*)da (2.4-1)

45



-= Z a ip(a Iz*) L = number of models (2.4-2)

Equation (2.4-2) states that the estimate, x, is found by

taking each possible value for a and weighting it by the

probability of the value ai conditioned on the set of

measurements z*. The vector z* is the set of measurements

for all time, while the vector z represents only one

measurement. The difference is important, because we want

to weight the potential estimates based on all of the

measurements. A pictoral demonstration of this estimator

can be seen in Figure 2.4-1.

Figure 2.4-1 Multiple Model Estimator



Typically, a bank of Kalman filters is used to generate

the set of estimates from which the ai terms in equation

(2.4-2) are obtained. However, there is no need for that

complexity in this problem. When a bank of Kalman filters

is used, the resulting system is referred to as an adaptive

Kalman filter. The system adapts by using the measurement

residuals to select which filter is the most accurate.

An estimate of the surface effectiveness is the only

parameter which is sought in this problem, thus the complex

bank of filters can be replaced with different constant

values for the vector parameter ai. The vector aS can be

reduced to a set of scalar constants, ai. This reduction is

possible because an estimate for a single surface is sought.

These constants are then weighted by the probabilites to

form the estimate of the surface effectiveness.

There still remains a fair degree of complexity because

the probabilities still need to be calculated. In the more

completed case of the adaptive Kalman filter, the

conditional probabilities are calculated from the a

posteriori error covariance matrix which is taken from each

of the filters. Without the collection of Kalman filters,

the probabilities cannot be calculated from continually

updated error covariance matrices in the Kalman filters. In

a much simpler manner the measurement and process noise

statistics are used to calculate the error covariance

matrix. The details of this calculation are covered in

Section 2.4.3.



The system starts off with an a priori probability

density function. This probability function contains no

information about which of the values in discrete estimation

space is correct. The uniform density function will weight

all estimate candidates equally. Measurement data and the

statistical information are used to calculate the

conditional probabilities which are propagated forward each

frame. Each frame of new information draws the estimator

closer to the correct estimate. The probability functions

shift from containing no information about the surface

damage to a state in which the best estimate has the highest

probability. It is this shift in the weighting factors or

probabilites that is at the heart of the multiple model

estimator. The next section will examine how the

measurement information is incorporated in the probability

density functions.

2.4.2 Probability Density Function Calculation

To calculate the probability density functions, we turn

to Bayes Theorem for conditional probability. We are

looking for the probability of ai given the measurements z,

p(ailz). Bayes Theorem is used to relate quantities which

can be calculated directly to the desired conditional

probability for the surface effectiveness, ai.

p(a 1 I z*) = p(zjai)p(ai) (2.4-3)
p(z)
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Three terms are required for Equation (2.4-3): they are the

a priori probability function for the effectiveness factor,

p(ai), the probability of the measurements, p(s), and the

conditional probability of the measurements given a surface

effectiveness.

The a priori probability function for the effectiveness

factor starts with a uniform distribution. Initially, it

contains no information about the surface effectiveness.

po(ai) = 1 (2.4-4)
L (where L is the number of models)

After the first frame, the a priori probability density

function is taken to be the result of the previous

iteration's p(aiIz). Taking the conditional probability of

p(ailsz) and using it as the next iteration's p(ai) is, in

effect, a recursive calculation of p(aiIz*). It is in this

manner that information about all the previous measurements

is carried forward to the next cycle's calculations.

The second term in Equation (2.4-3) is found by the

following manipulation:
L-

p(M) = p(z,aj) (2.4-6)

= Tp(zlaj)p(aj)

The conditional probability function for the measurements,

given the surface effectiveness, is found by assuming a

Gaussian process. We can write p(zlaj) as a multivariate

normal density function as shown in Equation (2.4-6) below.
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1 exp({ .5[ezjTC(j)-lezj] )
p(zlaj) = (2 )M/21C(j) 1/2 (2.4-6)

(where m is the number of elements in ez)

The vector ezj is residual between the measurement vector,

z, and the model as a function of the surface effectiveness

factor, aj. This definition is shown in Equation (2.4-7).

The same measurement vector is compared to all the different

modeled vectors and thus the residual vectors, ezj, are

formed. Each model then has its own conditional probability

based on the same measurements. The model with the highest

probability is the model which best matches the true surface

impairment found in the measurements.

The matrix C(j) is the covariance matrix for the error

vector esj. In the more complex formulation where a bank of

Kalman filters is used, C would be calculated from the error

covariances of the model's Kalman filters. In this case,

where there is no such set of filters, the matrix is

determined in a different manner. The next section covers

this calculation.

2.4.3 Covariance Calculation for Normal Probability

The covariance of the residual is required to properly

calculate the probability density function for the residual

vector. The residiual or error vector, ez, is defined as

measured accelerations minus the modeled accelerations:

esj = Zmeasured , Z(ajodeled (2.4-7)



Where z is the acceleration measurement which is treated in

accordance with the model shown below:

Smeasured = HmS + v (2.4-8)

The vector, s, is the aircraft state accelerations.

Further, the process model is defined in much the same way

as the measurment model.

z(aj)modLedM = Hpaj + w (2.4-9)

For the problem at hand, the measurement observation

matrix, Hm, reduces to simply the identity matrix. This is

because it is assumed that there is direct access to each of

the aircraft acceleration. The modeled estimate of the

accelerations, z(aj)xtLe, is calculated with General

Electric's Aircraft Model, SYSDYN. The matrix Hp relates

the impairment factor vector, a1, to the aircraft

accelerations. Hp is a non-linear function of aircraft

states such as altitude, airspeed, angle of attack, and

surface deflections.

The derivation of the covariance matrix with the

observation matrices is presented next. For the actual

application of the estimator, the measurement matrix Hm was

set to the identity matrix.

It is assumed that the measurement and process noise

statistics of v and v are known a priori. It is assumed

that they are stationary with zero mean. Additionally, v,
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w, aj, and s are uncorrelated.

are as follows:

The statistics for v and v

E( VT) = R (2.4-10)

E(wwT } = Q

E{vwT) = E{wVT) = 0.0

The covariance of ez is defined as E{ez-eszT ) - E{ez} 2 .

symbol E{ } denotes the expected value operation.

First E(ezj):

E{ezj} = E({ Hs + V - Hpaj - w)

= E( EHm - Hpaj }

The

(2.4-11)

= HmS - Hpaj

Second E { ezesjT ) :

E(ezjeszj T ) = E{ (Hms + v - Hpaj - w)-
(HmS + v - Hpaj - w) T

E{ezjoeszjT ) = E( HmssTHmT + w T

(2.4-12)

- HpajsTHmT - HmsajTHpT

+ HpajajTHpT + wwT }

E({ezsjeT)} = ( HmssTHmT - HpajsTHmT

- HmsajTHpT + HpajajTHpT

+R+Q)

(2.4-13)

Subtracting the outer product of Equation (2.4-11) from

Equation (2.4-13) leaves the desired covariance matrix of

the residual.
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C(j) = Covar(ezj) = E{eszjesjT) - E(esz} 2  (2.4-14)

= Q + R

The covariance matrix R is obtained directly from the

statistics for the sensors that are used. Biases in sensors

are calibrated leaving only zero mean noise. The value for

Q, on the other hand, is not as obvious. Ideally, it

represents the process noise in the aircraft model, but

practically, it is used to tune the estimator. Tuning

requires simulation of the aircraft and the estimator model.

Different values of Q are tested until an acceptable one is

found. Small values in the Q matrix indicate a high degree

of confidence in the model's representation of the true

aircraft. For example, a null matrix for Q will cause the

estimate to be more sensitive to errors between the model

and the measurements.
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2.5 Kalman Filter for Simultaneous Failures

The two previous estimators work only for impairments

to a single surface, and only when that surface is known to

be damaged. By expanding the Kalman filter to process all

the surfaces, the estimator can detect and measure

simultaneous damage to multiple surfaces. This section will

examine the salient differences between the single surface

problem and the multiple surface case. Similarities between

the multiple surface estimator and impairment detection and

classification problem will also be discussed.

2.5.1 Filter Expansion for Multiple Surfaces

The Kalman filter demonstrated in Section 2.3 was for

an impairment to a single surface. It had one element in

its state vector, and required a detection mechanism to

determine which surface to evaluate. When the order of the

state vector is increased to include an estimate for each

surface, simultaneous failures can be tracked and

compensated for. The aircraft which was used for this

project has five surfaces: two stabilators, two ailerons

and a rudder. The order of the estimator is thus increased

to five.

The measurement and modeling data remain the same as in

the single surface case. As stated above, the Kalman

estimator state vector is increased from a scalar to a five

element vector, and the associated observation matrix is

increased from a five by one (5 x 1) matrix to a five by

five (5 x 5) matrix. Other than the size increase of the



matrices, the equations described in Section 2.3 remain

unchanged. The larger sizes of the estimator state and

observation matrix are not without cost. This formulation

of the estimator takes more computational effort than its

single surface counterpart.

2.5.2 Similarity to Impairment Detection Process

The multiple surface Kalman estimator is in some ways

similar to the surface impairment detection mechanism which

is required for the two single surface estimators. The

residuals used for the multiple surface estimator are the

same as those used by the impairment detection process. In

the detection process, the residuals are projected onto an

impairment signature vector. Each surface has its own

failure signature and the signature which best matches the

residual vector is declared impaired. The Kalman estimator,

on the other hand, projects the residual vector directly

onto an effectiveness estimate for each surface. When a

surface is impaired the estimate for that surface is reduced

based on the residual, while the detection process

determines a match with one of the surface impairment

signatures.

2.5.3 Constraints on the Surface Estimates

It was found that the multiple surface Kalman estimator

would sometimes transiently confuse an impairment of one

surface with anonther surface. Physically impossible

estimates, those greater than one or less than zero,
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occurred when the same residual could be generated with a

surface that is more effective than normal. The multiple

surface estimator would eventually find the correct answer,

but that required more measurements and hence more time. An

example is in order to explain why the Kalman estimator

would search in an impossible area of the solution space.

One of the test flight conditions had the aircraft

trimmed at five degrees of sideslip (Beta). In this filght

condition, both ailerons are deflected by a few degrees to

counter the roll due to the rudder deflection. An

impairment to one of the ailerons would generate a large

residual in the roll axis. The same roll residual could

also be generated by making the other aileron more effective

than normal. While this is clearly impossible, the

estimator has no way to know this and its estimate moves off

towards an impossible value. The estimator will return and

end up with the correct value, eventually. This is because

the information from the other axes does not possess the

high degree of symmetry the roll axis does for this flight

condition.

In an effort to improve the speed of the estimate, it

was found that a simple constraint on the estimates

prevented unreasonable estimates and improved the time

response. The estimate for each surface was checked against

the valid range of zero to one. If a surface's estimate was

found to be outside the range, it was limited. Estimation

otherwise proceeded as normal. The constraint provides the
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estimator with additional knowledge about the parameters

being estimated. This additional information speeds up the

estimation process. Section 4.4.3 will provide time

histories proving the effectiveness of the constraint on the

estimate.



Chapter 3

Computational Issues

3.1 Introduction

The computational aspects of the estimators cannot be

neglected. Since each of the estimators is designed to

operate in a real-time environment, it is important to know

what the computational costs are so the flight control

computer is not over tasked. The basic unit of measure will

be the floating point operation or FLOP. A FLOP is defined

as one multiplication or one addition. The operation of a

division is counted as two multiplications for the purpose

of measuring execution costs. References [7] and [13] are

used as justification for the double cost of division and

for the equal cost of multiplication and addition. Using

this rating, an accurate assessment of the processing

requirements is obtained.

The algorithm for the single surface Kalman estimator

is the same as for the multiple surface case. Thus only

one section on the computation costs for the Kalman

estimators will be presented.
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3.2 Extended Kalman Filter Estimator Algorithm Costs

The equations presented in Chapter 2 are examined here

in terms of their fundamental computational costs. Only the

code in which computations (multiplication, division,

addition and subtraction) are performed was counted. The

additional code which makes up the estimator is, for the

most part, overhead, dependent on the environment of the

application. The assumption made is that the computer

spends significantly more time performing the floating-point

calculations than overhead logic and control code.

There are two parameters that determine the size of the

matrices for the Kalman estimator. The first parameter is

the number of estimator states. The single surface

estimator contained one state, while the multiple surface

estimator has a five-state estimate vector. The second

parameter is the number of measurements made each cycle. In

both cases, there were five measurements to be used by the

estimator.

Let N be the number of estimator states (surfaces) and

M be the number of measurements made each cycle. The total

computation cost of the estimator will be expressed by a

polynomial in N. Equation (3.1) shows the calculations done

in the Kalman loop. The equations were broken into two

parts to demonstrate the high cost of the matrix inverse as

compared to the rest of the loop.
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N = Number of States (3.1)
M = Number of Measurements

Filter Equations: (3M)N2 + (2M2 + M)N Multiplies

(2M + 1)N2 + (3M2 - M)N - M2 Additions

Matrix Inverse : 2M2  Divides
2M3 - 2M2 Multiplies
2M3 - 2M2  Additions

These results can now be summed to get a total cost. To

express the expense in terms of FLOPs, the additions will be

included with the number of multiplications. Equation (3.2)

shows the resulting approximate cost:

Cost = (5M + 1)N2 + (5M2)N + (4M3 - M2) FLOPs (3.2)

Notice that the size of the inverse is related to the number

of measurements only. Further, its cost is of the order M

cubed. Clearly, this could get computationally expensive if

M were large.

There is one other computational cost which is of some

importance: that of the aircraft model used by the

estimators. One pass through the aircraft model must be

made in each cycle and its costs must be included. For the

model used in this research, the cost was approximately 600

FLOPs.



3.3 Multiple Model Estimator Algorithm

The Multiple Model Estimator (MME) will be examined in

the same manner as the Kalman filter. The main parameter in

the cost function for the MME is not the number of surfaces

being estimated, but rather the number of models used by the

estimator. So for this discussion, N will be the number of

models. Eleven different models were used to generate the

data presented in Chapter 4.

Examination of the code in Appendix II reveals that the

multiple model has following the operational cost per model:

Operation FLOPs
6 Multiplies 6
2 Divides 4
8 Additions 8
1 Exponential 15
A/C Model 470

Total 503

Converting to an approximate number of FLOPs yields a cost

of 33 FLOPs. The exponential was counted at 15 FLOPs, [7].

Just as in the Kalman estimator, the model costs must be

included. This gives a total cost of approximately 503

FLOPs per model used. A total of 130 FLOPs out of the total

600 FLOPs are required for the Kalman H matrix and are not

needed for the MME. A disproportionate part of the costs

come from the model. This suggests that the model should be

examined to save any of the calculation when executing the

different passes through the model. If that were the case,

the model's cost could be broken into a fixed cost plus a

recurring cost. Only the recurring cost would need to be



multiplied by the number of models used. This would greatly

reduce the total cost of the MME as shown by Equation (3.3).

MME Cost = Mfixed + N(33 + Mrecurring) (3.3)

Where N is the number of models used and M is the cost of

the model in FLOPs.

Fortunately, only the portion of the model that

calculates the change in aircraft acceleration due to the

impairment needs to be computed for each model in every

iteration. The nominal accelerations can be calculated and

saved for use with each different model. The change due to

the impairment can be added as a correction to the nominal

values for each model. Broken down this way, the aircraft

model (SYSDYN) has a fixed cost of 435 FLOPs and a recurring

cost of 35 FLOPs, as shown by Equation (3.4).

MME Cost = 435 + N(33 + 35) (3.4)

= 1183 FLOPs for N = 11



3.4 Comparison of Single Surfaoe Estimation Costs

Both single surface estimators perform well, but the

computational costs favor the Kalman estimator by a factor

of almost two. Using Equation (3.2) one can see that the

single surface Kalman estimator has a computational cost of

626 FLOPs for each estimator cycle. A cost ratio of MME

estimator over the EKF estimator can be used as a direct

comparison. In this case, the ratio of MME to EKF is 1.90.

The cost ratio between the two estimators grows even larger

when the Multiple Model Estimator is used for multiple

surface damage. When multiple surfaces are involved, N in

Equation (3.4) grows exponentially with the number of

surfaces while Equation (3.2) remains quadratic. This makes

the direct application MME techniques computationally

prohibitive for more than one or two surfaces.

The MME technique is possibly best for cases where

vastly different models are under consideration, such as

different sensor failure modes. The Kalman filter structure

avoids the problem of having to descritize the parameter

space, thus there is no need for the large number of models.
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Chapter 4

Results for Each Estimation Method

4.1 Introduction

This chapter presents the results for each of the

estimators: single surface Kalman estimator, multiple model

estimator, and the multiple surface Kalman estimator.

Comparisons of the estimates made by the different

estimators show the advantages and disadvantages of each

method. Non-linear simulation data will be used to

demonstrate the workings of the estimators.

With any complicated system, it is possible to have

hundreds of test cases to check and verify that the system

is working correctly. In order to keep the volume of the

data down to a minimum, the same flight condition was used

for each of the cases. Additional test conditions were used

during the testing and development of the systems; however,

these tests do not offer much additional insight into the

capabilities of each system.

Because of the proprietary nature of the aircraft

database used in this study, the aircraft response data

cannot be published.

The flight condition used for each of the test cases is

shown in Table 4.1. This condition was selected because all

of the aircraft's surfaces are used to trim the aircraft.

The testing procedure was to trim the aircraft, then let the



simulation run for a few tenths of a second before turning

on the estimator. For the single surface estimators,

sequential impairments were made to the right stabilator.

The estimators then tracted the damage to the surface.

Table 4.1: Aircraft Trim

altitude 20,000.0
airspeed 725.0
alpha (approximately) 2.0
beta 5.0
bank angle 0.0
gross weight 28,800.0

Condition

feet
feet/second
degrees
degrees
degrees
pounds
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4.2 Single Surface Extended Kalman Filter Results

4.2.1 Sequential Impairments to a Single Surface

The single surface Kalman estimator performed

admirably. It followed the impairment very closly as shown

in Figure 4.1. The estimator is started at six tenths of a

second. This is before the first impairment occurs so we

can see that the estimator will indicate the lack of an

impairment. The first impairment of 35% loss of the right

stabilator was started at 1.2 seconds into the test. The

estimator followed the true impairment almost exactly. Two

more changes in the surface impairment were made to

demonstrate the sequential failure capability of the

estimator. These failures were 60 and 80 percent losses to

the stabilator at times 2.6 and 3.2 seconds, respectively.

Again, the estimator tracks the surface impairment well.
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Figure 4.1: Single Surface Kalman Filter Estimate



The estimator must be tuned or calibrated to the

statistics of the sensors and the model of the estimator

state. The filter parameters that were used for this run

are shown in Table 4.2 below:

Table 4.2: Single Surface Kalman Filter Parameters

Po 0.005 (surface factor) 2

Q 0.005 (surface factor) 2

Rpdot  0.000034 (rad/sec2)2

Rqdo t  0.000034 (rad/sec2)2

Rrdot 0.000034 (rad/sec2)2

Ray 0.01 (feet/sec2 ) 2

Raz 0.01 (feet/sec2 )2

The five noise covariances for the diagonal matrix R were

selected based on the strength of the noise added to each of

the measured accelerations in the simulation. Noise was

also added to the other measured aircraft state variables

which were used to drive the SYSDYN aircraft model.

The initial covariance of the estimate, Po, was

arbitrarily set. The estimate is not sensitive to the

initial value. As long as Po is non-zero, the filter's

projected (next cycle's) error covariance will settle to a

value close to Q. Figure 4.2 shows the estimate's error

variance. One may wonder why Q is non-zero. In the case of

a single impairment assumption, Q would be zero. A

detection system would signal that a failure has occurred

and the estimator process would be started. The single
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impairment would be considered a random constant and a zero

Q is the correct choice. The initial value for Po

represents the uncertainty of the begining estimate. The

error variance will decrease as more measurements are taken.

It is important to note that a value of zero for Q is only

possible if an impairment detection system is used. Without

a seperate detection system, the filter would have to run

continously and P would drop to zero, thus preventing any

change in the estimate.
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Figure 4.2: Single Surface Kalman Filter Error Variance

A zero value for Q implies thate the filter's state

model would be that of a random constant. If this were the

case, each new measurement would be weighted the same as all

the previous measurements. As time passes, the estimator
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would become very sluggish and resist any change in the

estimate. The error covariance would approach zero, and any

changes in the surface damage would be detected slowly or

missed completely. To prevent the filter from being

sluggish, the surface factor being estimated is treated as a

random walk rather than a random constant. A non-zero Q

also has the benefit of speeding the estimation response.

The random walk model for the surface impairment has a

non-zero variance Q. This model expects the impairment to

change over time and the amount of change expected is set by

the magnitude of Q. A small value for Q is all that is

required to prevent the sluggish behavior of the filter.

The larger the value of Q, the faster the filter will be

able to respond to a change in the surface effectiveness

estimate. This improvement in response is not without

penalty, however. Too large of a variance for Q will pass

too much noise to the surface estimate. Tuning the

estimator consisted of selecting a value of Q which balanced

the response speed with the noise attenuation of the

estimate. The random walk model for the surface impairment

model proved to be more robust than the random constant

model.

4.2.2 Multiple Impairments for Single Surface Estimator

To see the potential advantage of the multiple surface

estimator we now turn to the case where the single surface

Kalman estimator is given a multi-surface impairment



profile. The impairment profile was the same multiple

surface profile as used for Figure 4.7. Each surface was

impaired by the amount shown in Table 4.4. The single

surface estimator was set to determine the effectiveness

factor for the right stabilator. That is the same surface

that was used for the other case already presented in

Section 4.2.1. Figure 4.3 shows the estimator response:
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Figure 4.3: Single Surface Kalman Estimator
Multiple Surface Impairment Profile

The resulting estimate is not close to the correct

value. The steady state value of 1.7 which is reached for

this example is not close to the correct value of 0.7 for

the right stabilator. The error residuals are all attributed

to the right stabilator which is being estimated. The

system has no other place to allocate the errors seen in the

i



residuals, so all the errors are put into a wrong estimate.

While it is true that the estimate minimizes the difference

between the impaired aircraft and the filter's model, the

estimate is not useful for aircraft reconfiguration. The

single surface system is overloaded.
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4.3 Multiple Model Estimator Results

4.3.1 Seauential Impairments to a Single Surface

The same impairment profile was used to demonstrate the

working of the multiple model estimator. This estimator

also tracked the impairments well. Eleven different models

were used for the estimator. Each of the models had a

different value for the surface effectiveness parameter. The

values ranged between zero and one by increments of 0.1 for

a total of eleven models. This spread covered the parameter

space with sufficient resolution to produce an accurate

estimate.
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Figure 4.4: Multiple Model Estimate

Figure 4.4 shows the response of the estimator to the

sequence of impairments. The true value of the impairment

is plotted as a reference. The estimate approaches the
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impairment exactly when the real impairment matches one of

the system's models. When the impairment does not match any

of the models, the estimator selects the closest match. A

blending of model values was expected when the actual

impairment fell between two models. Unfortunately this was

not seen. Between 1.4 and 2.6 seconds of the test shown in

Figure 4.4, the true value of the impairment factor was

0.65. The estimator reaches a value of 0.7 and holds right

there. The estimate never makes it to the correct value of

0.65 (an equal blend of 0.7 and 0.6). Each model has a

strong point of attraction for impairments near the modeled

parameter. The value of 0.7 was reached before the value of

0.6, so this was the value which was locked on to. The

estimate transitions shown in Figure 4.4 indicate that the

impairment factor moves by about 0.1 or more on the

effectiveness scale before the estimate breaks free from its

current modeled value. This effect is also seen in the

vicinity of 2.8 seconds. The estimate holds a value of 0.5

on its way to the correct value of 0.4. In this case

however, there is enough error to draw the estimate down to

the correct value. Figures 4.5 and 4.6 show the time

histories of the individual probabilites for the estimate

shown in Figure 4.4.
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Each of the attraction points draws the conditional

probability to the estimate which minimizes the error. If

these attraction points are very strong it will be difficult

to pull the estimate free: larger errors between the

measured and modeled data are required. Further, blending

is also difficult because of the strong attraction to the

nearest point. There are two ways to improve the system in

this respect. The first is to use more models. A greater

spread of models will provide more locations for the

estimate to fall into, thus a better estimate will be made

despite the strong attraction points in the probabilities.

The second way to flatten the steep attraction slopes is to

increase the process noise term, Q. An increase in the

diagonal elements of Q will cause the probabilities to have

a weaker attraction: a better blending will be realized.

The estimate reaches one of the models when the

probability for that model has become large. As the

probability for one of the models increases, the other

probabilities decrease. Given enough time, the decreasing

probabilities would reach zero due to the numerical

limitations imposed by a finite word length of the computer.

Once a probability drops to zero, that model's probability

can never be raised. This is a problem for sequential

failure detection because the elimination of models will

leave nowhere for the estimator to go.

To prevent the probabilities from going to zero, a

minimum value is selected. Any probability that drops below
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this level is set to the minimum level. This level will

cause errors in the estimate; however, the errors are small

and bounded. A worst case error is found by assuming the

actual impairment value is the smallest modeled value. In

this case, that would be the zero surface effectiveness

model. The estimate in the error would then be:

L
E = aiPmin (4.3-1)

;j=

where Pmin is the minimum allowable probability and ai is the

parameter value. With an additional limiting algorithm,

this error can be accounted for and removed from the

estimate. Because the error is small, however, the

additional limiting algorithm was not implemented. The

error in the estimate due to Pmin can be kept small by the

selection of a small value for Pmin. The value used for this

experiment was 0.00001, which kept the error to down to

0.000055. This value is well below the expected noise level

of the system. Table 4.3 shows the sensor and process noise

variances used to generate the data shown in Figures 4.4-6.
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Table 4.3:

Pmin
Qpdot

Qrdot

Qay
Qaz

RPot
Rqdot
Rrdot
Ray
Raz

Multiple Model Estimator Parameters

0.00001 dimensionless
0.002 (rad/sec2 )2

0.002 (rad/sec2 )2

0.002 (rad/sec2)2

0.02 (feet/sec2)2

0.04 (feet/sec 2 ) 2
0.000034 (rad/sec2 )2
0.000034 (rad/sec2 )2
0.000034 (rad/sec2 )2
0.01 (feet/sec2 )2

0.01 (feet/sec2 )2

4.3.2 Multiple Impairments for Multiple Model Estimator

The multiple model estimator was presented with the

multi-surface impairment profile shown in Table 4.4. This

resulted in a divide by zero error in the conditional

probability calculation. To protect the estimator from a

problem with numerical overflow, the exponent in the

probability was limited to 80. When the multiple surface

impairment profile was given to this estimator, all of the

exponents calculated were greater than 80. The resulting

large exponents imply that none of the models were very good

candidates for the impairment. Preferably, the estimator

would have selected one of the models. Ideally, the model

which best matches the right stabilator effectiveness would

have been selected. It is possible that double precision

arithmetic could be used to allow larger exponents. This

would prevent the divide by zero error and permit smaller

probabilities. This way an effectiveness factor could still



be calculated. If a surface factor is estimated, the

potential to develop an interacting multiple model estimator

exists. More will be said on this matter in Section 5.2.

4.3.3 Comparison of Single Surface Estimators

A comparison of the two single surface estimators is

shown in Figure 4.7. It represents both surface factor

estimates superimposed with the true value of surface

effectiveness. The Kalman estimate follows the impairment

better, but noise is seen in the estimate. The multiple

model's estimate is smooth, but does not track off model

impairments as well.
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Figure 4.7: Comparison of Single Surface Estimators
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4.4 Multiple Surface'Extended Kalman Estimator Results

4.4.1 Response to Simultaneous Surface Impairments

The multiple surface Kalman estimator performed well.

To test its capabilities, each of the aircraft surfaces was

simultaneously impaired to a different value. Figure 4.8

shows the result of the impairments on the system. Notice

that the estimates are not as steady as those of the single

surface estimators. The reasons for this are discussed in

section 4.5.1.
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Figure 4.8: Multiple Surface Kalman Estimator

Table 4.4: Surface Effectiveness Values for
Multiple Surface Impairment Test

SURFACE EFFECTIVENESS
Right Stabilator 0.7
Left Stabilator 0.6
Right Aileron 0.5
Left Aileron 0.4
Rudder 0.3
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The impairment levels for this run are shown in Table

4.4. Each surface was impaired a different amount to show

the ability of the estimator to detect effectiveness levels

in each surface at the same time. All five impairments go

into effect at 0.6 seconds. The estimator is started at

time zero for this test. Figure 4.8 shows that the

estimates are at 1.0 for each surface before the impairments

occur. At the time of the impairments, all the surfaces

start to move towards the correct values.

As in the case of the single surface Kalman estimator,

the speed and noise suppression are a function of the

process noise matrix Q. In the multiple surface case, the

diagonal of Q represents the amount of change expected in

the process (surface factor) state. The random walk process

(non-zero Q) was found to be most robust when the impairment

is expected to change. Thus the random walk was used for

the multiple surface case as well. It is important to make

the multiple surface estimator robust to changes, because it

does not have the same detection mechanism as the single

surface system. The estimator is its own detection

mechanism and examines all surfaces continously. The system

runs continuously, and its estimates are at or near unity

until a surface loss has occurred. The estimator cannot be

allowed to get sluggish due to increased probability of

missed detection.

The process variance values for each surface do not

need to be the same. For example, the rudder's control
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authority is very different from that of the other surfaces.

It was found that the rudder could have a larger process

noise without much penalty on the smoothness of that

estimate. This, of course, decreases the time it takes to

settle on the rudder's estimate. The variances for the

remaining four surfaces could not be made as large as the

rudder's variance because of the noise content in the

measurement data. The primary sensors for the rudder

estimate are the side force and yaw acceleration residuals.

The modeled component of these signals is tolerant to noise

in the aircraft model. Normal acceleration, on the other

hand, is very sensitive to noise on the angle of attack

measurement (Alpha). The effect of noise on Alpha is seen

on all surfaces except the rudder, thus the rudder's

estimation time could be decreased without much penalty.

The process variances used for the figures presented are

shown in Table 4.5 below:

Table 4.5: Surface Process Variances (Q Matrix Diagonal)

SURFACE Random Walk Variance
Right Stabilator 0.00001
Left Stabilator 0.00005
Right Aileron 0.00001
Left Aileron 0.00005
Rudder 0.0005

It was also found during the tuning process for the Q

matrix that the estimator performed better when the left and

right surfaces had different process variances. This too is

reflected in Table 4.5. It did not make any difference



whether the left surfaces had the larger variance or the

right did, just as long as they were not the same. The

reason for this is unclear. More work is required to

investigate the cause.

4.4.2 Sianal Information Content

The multiple surface Kalman estimator does much more

than its single surface counterpart. It uses the same

residuals as the single surface system but it estimates are

for all five surfaces. Futher, it is designed to operate

all the time as a detection mechanism. It is unrealistic to

expect all this without some cost. To demonstrate this

cost, a test case was run with the same impairment profile

that was used to test the single surface estimator. The

estimates are shown in Figure 4.9 below:
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Notice here that the estimate takes much longer to

reach the final value of 0.2. It also does not converge to

any of the intermediate impairment values. The other four

surfaces also move from their unimpaired values. Clearly,

this is incorrect. The interaction between the surfaces

acts to slow the estimate and to cause the estimator to

calculate wrong effectiveness values. Two of the surface

estimates, the left stabilator and left aileron, converge to

values significantly above one. By definition, this is

wrong. The next section will discuss the change made to

correct this problem. From Figure 4.9 we see the basic cost

of the increased number of surfaces, which is the time. It

takes longer for the estimator to isolate which surface is

impaired. For the single surface system, this is not a

problem because all residual information is assumed to

belong to the surface being estimated; the knowledge of the

surface being impaired is externally supplied.

4.4.3 Effects of Constraining the Estimate

Figure 4.9 demonstrated the problem of an unconstrained

estimate. Impossible estimates were reached because they

matched the residual data. An impairment on one side of the

aircraft could be interpreted as an increase in

effectiveness on the opposite side. Inherently, the filter

has no mechanism, other than the aircraft model, to rule out

these unrealistic estimates. It does eventually reach the

correct value, but too slowly.
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The constrained nature of the estimates can be included

in the filter by simply checking each of the surface

estimates after the adjustment of the previous frame's

estimates. Each surface estimate is compared to the maximum

and minimum values. Any estimate found to be outside this

range is reset to the nearest acceptable value. That is,

one for values greater than one and zero for those less than

zero. This prevents the build-up of incorrect estimates and

reinforces the correct direction for the estimate. Figure

4.10 shows the proof of this result. In this figure the

single surface estimate and the true impairment can be

compared to the constrained multiple surface estimator. The

constrained estimator response is superior to the

unconstrained shown in Figure 4.9, but it is still not as

fast or accurate as the single surface estimator. The true

time penalty due to the multiple surfaces is seen in this

figure.
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Chapter 5

Summary and Recomendations for Additional Research

5.1 Summary and Contributions of Thesis

The main contribution of this thesis has been the

examination and comparison of three types of surface

effectiveness estimators: two for the single surface impair-

ment problem, and one for multiple surface impairment. The

motivation for surface effectiveness estimation was

explained in Chapter 1 with an emphasis on aircraft control

reconfiguration as a means to compensate for damage. Each

of the estimators was tested in a high accuracy, non-linear,

six degree of freedom research simulation to prove the

feasability of surface effectiveness estimation under

realistic conditions. Benefits and limitations for the

three systems were presented and discussed.

The single surface extended Kalman filter successfully

tracked the single surface impairment profile. The

resulting estimate was extremely close to the true

impairment value. The estimate contained a small amount of

high frequency noise, but this was not a problem since it

was less than five percent of the maximum surface

effectiveness. If it were a concern, a low pass filter

could be used at the estimator's output to remove the noise.

Response time of the single surface Kalman estimator was

exceptional.
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The multiple model estimator resulted from major

simplifications made to an adaptive Kalman filter algorithm.

The individual Kalman filters in the adaptive filter were

replaced with algebraic aircraft models. Satisfactory

results were demonstrated with the simplified adaptive

filter. The computational cost associated with the bank of

Kalman filters was found unnecessary; the simpler multiple

model estimator can be used.

It was shown that an expansion of the extended Kalman

filter, used for single surface estimation, could be used to

provide estimates for all surfaces on the aircraft. A

penalty in the amount of time for the estimation was the

main cost. This was due to the increase in the number of

surfaces. Further, the expanded estimator acted as an

impairment detection and classification mechanism: an

impairment in any surface would be reflected in the filter's

estimate for that surface.



5.2 Recommendations for Further Research

There are a number of interesting areas related to

surface effectiveness estimation that need further study and

investigation. The impairment model used for this study was

a very simple one. There is considerable work to be done in

the area of impairment modeling. Wind tunnel data on

surface damage would have been useful for developing a more

sophisticated impairment model. Theoretical research using

computational fluid dynamics may also lead to useful

impairment models.

Each of the estimators presented share a number of

desirable features. They also share the same Achille's

heel. Damage to any of the sensors used by the estimator

would result in incorrect estimate. Sensor failure and

redundancy need to be accounted for to prevent incorrect

aircraft reconfiguration. Additional Kalman filter states

or additional models could be used to incorporate this

information.

Methods for expanding the multiple model estimator so

it can track simultaneous impairments should be

investigated. The problem is that the number of models

required for each additional surface increases on the order

of the number of surfaces. For example, let the parameter

space be divided into ten different failure values. (The

single surface estimator designed for this thesis used

eleven different models.) For two surfaces there would be

100 possible combinations of parameters. For three



surfaces, there would be 1000 different combinations for the

impairments to take. This pattern, unfortunately, continues

so even a two surface model appears intractable.

However, the potential for an interactive multiple

model estimator exists. An interactive model estimator

would estimate the impairment for one surface at a time.

After one surface has converged, the estimator would move to

the next surface and estimate for that surface. The process

would cycle from one surface to the next until all surfaces

have converged. The estimate from one surface would be

carried forward to the bank of models for the next surface's

estimation cycle. This way the estimator moves closer to

the true impairment with each surface switch. After a

number of times through the cycle all the impaired surfaces

should be accounted for. The interaction of the surface

estimates is done by keeping the previous surface's estimate

in each of the models for the current surface's estimate.

This method may be a way to use the multiple model estimator

without the problem of trying to calculate thousands of

different models.
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Appendix I

Fortran Code for the Single Surface
Extended Kalman Filter

The following FORTRAN source listing is the single

surface Kalman filter code developed for this thesis.
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SUBROUTINE SINGEKF(NSURF)
C
C SUBROUTINE SINGEKF IS CALLED BY THE EXECUTIVE PROGRAM
C EVERY SAMPLE
C THIS SUBROUTINE PERFORMS DATA PROCESSING,CALLS THE
C RESIDUAL COMPUTATION SUBROUTINE EVERY SAMPLE,AND CALLS
C THE EFFECTIVENESS ESTIMATION SUBROUTINE WHEN TRIGGERED
C BY THE EXECUTIVE PROGRAM
C
C
C R(5) - MEASUREMENT NOISE COVARIANCE. Diagonal Matrix 5x5
C Q - PROCESS NOISE COVARIANCE.
C P - COVARIANCE OF ESTIMATE
C PO - INITIAL VARIANCE OF ESTIMATE
C
C EZS(5) - ARRAY CONTAINING THE RESIDUALS COMPUTED BY RESID
C
C

IMPLICIT NONE

INTEGER*2 NSURF

include 'EKF OUT.inc'

COMMON/WINDEG/ RSPD, RSQD, RSRD, RSNY, RSNZ
COMMON /HPAST/ HDATA(5,5)
REAL*4 RSPD,RSQD,RSRD,RSNY, RSNZ, HDATA

COMMON /EGE_DATASET/Q_CHOICE(5),PO_CHOICE(5)

REAL*4 Q_CHOICE, P0_CHOICE

CHARACTER*75 LABEL

COMMON /CONVER/ OFFTOLER, NOFF, MIXTOLER, NMIX,
EST_WIND(10) ,NCNT,IOFF,IMIX

REAL*4 MIX_TOLER,EST WIND

COMMON /COVARI/ Q,R(5),PO
REAL*4 Q,R,PO

COMMON /S_KALOUT/ XS EST,EZS(5), HIN(5), P, KG(5)
REAL*4 XSEST, EZS, HIN,P,KG
DATA XS_EST /1.0/

REAL*4 THRESH
INTEGER*4 I,J

INTEGER*2 PSLID LATCH
data PSLID_LATCH /0/



logical INIT FLAG
DATA INIT_FLAG /.TRUE./

C
C LOAD THE DATA FOR THE RUN
C

IF (INIT_FLAG) THEN
OPEN(UNIT=35,FILE='COVAR.QN' ,STATUS='OLD ' )

125 FORMAT(A75)
READ(35,125) LABEL
READ(35,*) (PO0CHOICE(I), I = 1,5)
READ(35,125) LABEL
READ(35,*) (Q_CHOICE(I), I = 1,5)
READ(35,125) LABEL
READ(35,*) (R(I), I = 1,5)
CLOSE (UNIT=35, STATUS=' KEEP ' )

INIT FLAG = .FALSE.
DO I= 1,5
EST SAV(I) = 1.0

END DO
ENDIF ! POWER UP

IF (NSURF .NE. PSLID LATCH) THEN
P = P0 CHOICE(NSURF)
Q = Q_CHOICE(NSURF)

XS EST = 1.0

DO I=1,5
EST_SAV(I) = 1.0

ENDDO

IOFF = 0
IMIX = 0
NCNT = 1
PSLID LATCH = NSURF

ENDIF

IF (NSURF.EQ.0) RETURN

C
C If there is a failure, call the Kalman filter estimator
C
C Form the error vector ez
C

EZS(1) = RSPD
EZS(2) = RSQD
EZS(3) = RSRD
EZS(4) = RSNY
EZS(5) = RSNZ

C
C XS EST = A (effectiveness estimate)



C
C T
C SETUP THE H AND H MATRICES
C

DO J = 1,5
HIN(J) = HDATA(NSURF,J)

END DO

CALL KALEST

RETURN
END

SUBROUTINE KALEST
C
C XS EST - STATE ESTIMATE VECTOR
C EZS - MEASUREMENT ERROR VECTOR (from RESID)
C H - OBSERVATION MATRIX
C
C P - STATE ESTIMATE VARIANCE
C Q - PROCESS NOISE COVAIRANCE
C R - MEASUREMENT NOISE COVARIANCE MATRIX
C SIG3 - 3 standard deviations for noise covariance

IMPLICIT NONE

COMMON /S_KALOUT/ XS_EST,EZS(5), H(5), P, KG(5)
REAL*4 XS_EST, EZS, H,P, KG

INCLUDE 'EKF OUT.INC'

COMMON /COVARI/ Q,R(5)
REAL*4 Q,R

COMMON /CONVER/ OFFTOLER, NOFF, MIX TOLER, NMIX,
EST WIND(10),NCNT,IOFF,IMIX

REAL*4 MIX TOLER,ESTWIND,OFF TOLER
INTEGER*4 NOFF,NMIX,NCNT,IOFF,IMIX

REAL*4 SUM
C
C Space for local temporary variables
C

DIMENSION HP(5),HPHR(5,5),PZINV(5,5)
REAL*4 HP,HPH_R,PZINV,DX

INTEGER*4 I,J,RANK

C
C Calculate Kalman Gain
C
C -1
C K = PH'(HPH'+R)

I



do i= 1,5
HP(i) = H(i)*P

end do

do i = 1,5
do j = 1,5
HPHR(i,j) = HP(i)*H(j) ! HPH'(vector outer

product)
end do
HPH R(i,i) = HPH R(i,i) + R(i) ! HPH' + R

! (symetric pos.
definite matrix)

end do

CALL GMINV(5, 5, 5, HPH R, PZINV, RANK)

do i = 1,5
KG(i) = 0.0
do j = 1,5

KG(i) = KG(i) + HP(j) * PZINV(j,i)
! note: HP = PH

end do
end do

C A

C Update the estimate X
C ^ ^ A

C X = X + KG(z - Hx) = X + KGez
C

DX = 0.0
do i = 1,5

DX = DX + KG(i) * EZS(i)
end do
XS EST = XS EST + DX

C
C Compute the error covariance P for this estimate
C Uses optimal gain K assumption
C
C P = (I - KH)P = P - KHP
C

SUM = 0.0
do i = 1,5

SUM = SUM + KG(i) * HP(i)
end do
P = P - SUM

C
C Project ahead the error covariance P for
C the next measurement cycle
C
C P= P+ Q
C



P= P+Q

RETURN
END



Appendix II

Fortran Code for the Multiple Model Estimator

The following FORTRAN source listing is the single

surface Multiple Model Estimator code developed for this

thesis.



SUBROUTINE multi(SURF)

C
C Multi-model Estimation
C

C
C SURF number corresponding to failed surface
C

integer*4 SURF

integer*4 i,j
logical*2 init

include 'sensor.inc' ! Generic A/C sensor package

data init /.false./
C
C interface common block to A/C model
C

common /MM_OUT/ theta_hat,p(20)
real*4 thetahat,p

common /MMest/ NQUAN,theta(20),pd_m(20), qd_m(20),
rd_m(20),ay_m(20),az_m(20),S(5)

COMMON /MMCOVARI/ Q(5),R(5)

integer*4 NQUAN
real*4 theta,pd_m,qd_m,rd_m, ay_m,az_m,S

dimension v(5), temp(5), S_1(5)
real*4 v,temp,S 1

real*4 1(20),m(20),detS,B, MINPROB

integer*4 pmax,adjcnt

125 FORMAT(A75)
c
c Initialize the estimation space
c

NQUAN = 11
if (.not.init) then

c Read to Covariances Q and R
pi2 = (2.*3.14159265)

OPEN(UNIT=35,FILE= 'mmCOVAR.qn',STATUS='OLD')
READ(35,125) LABEL
READ(35,*) (Q(i), i = 1, 5)
READ(35,125) LABEL
READ(35,*) (R(i), i = 1, 5)
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READ(35,125) LABEL
READ(35,*) MINPROB
CLOSE (UNIT=35, STATUS=' KEEP ' )

Calculate the covariance matrix, Q,R are constant
matrices

do j = 1, 5
S(j) = Q(j) + R(j)
S_ 1(j) = 1./S(j)

end do

! pd,qd,rd,ay,az
! S = HQH + R, but H = I
!for multi mdl

-. 5
B = [(2*pi)A * IS ^ J] ^

detS = S(1)
do j = 2,5

detS = detS * S(j)
end do

! S is the diagonal
! noise covairance matrix

B = 1.0/sqrt(detS*(pi2**5))

initialize the probabilites

do i=1, NQUAN
theta(i) = real(i-1)/(NQUAN-1)
p(i) = l./(NQUAN)

end do

init = .true.
endif

end initialization

if (SURF.EQ. 0) return

call Mmodel(SURF) ! calculate the modeled
! accelerations
! for the surface in question for
! each theta(i)

Start here, looping through each of the possible
estimate values. theta(i) I i = 1,2 ... NQUAN

do i = 1, NQUAN ! loop through the
! parameter space

form the residual vector
v = measured - modeled accelerations

v(1) = PDOTS - pd_m(i)
v(2) = QDOTS - qdm(i)
v(3) = RDOTS - rd m(i)
v(4) = AYS - ay_m(i)
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v(5) = AZS

c
c calculate and limit the exponents
c -1
c m = v' S ^ v/2
C

m(i) = 0.0
do j = 1,5

m(i) = m(i) + v(j)* Sl(j)*v(j)
end do
m(i) = m(i)/2.

c
c limit the exponent
c

if (m(i) .gt. 80.) then
l(i) = 0.0

else
l(i) = B*exp(-m(i))

endif
end do ! parameter space loop (i=l, NQUAN)

c
c calculate the a posteriori probabilites
c

sum = 0.0
do j = 1i, NQUAN ! sum over the whole space

sum = sum + l(j)*p(j)
end do

adj_cnt = 0
pmax = 1
do j = 1i, NQUAN

p(j) = l(j)*p(j)/sum I weight and normalize
if (p(j) .it. MINPROB) then

p(j) = MINPROB
adj_cnt = adj_cnt + 1

endif
if (p(pmax) .it. p(j)) then
pmax = j

endif
end do

c
c calculate the estimate
c

theta hat = 0.0
do i = 1i, NQUAN

theta hat = thetahat + p(i)*theta(i)
end do
return
end

SUBROUTINE Mmodel(SURF)
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C Multi-model - generates the acceleration vector for
C each of the aircraft models.
C
C Uses General Electric's SYSDYN Model
C

C SURF number corresponding to failed surface
C

integer*4 SURF

include 'SYSDYN.INC' ! interface to GE's SYSDYN
include 'SENSOR.INC' ! interface to A/C sensors

COMMON /sktable/ ISKIPTBL ! so AERO model table
! lookups can be

INTEGER*4 ISKIPTBL ! skipped

C
C interface common block for multiple A/C models
C

common /MMest/ NQUAN,theta(20),pd_m(20), qd_m(20),
rd_m(20),ay_m(20),az_m(20),S(5,20)

integer*4 NQUAN
real*4 theta,pd_m,qd_m,rd_m,ay_m,azm,S

C
C setup SYSDYN input parameters with SENSOR data
C

ALPH = ALS
BETA = BETAS
THE=PITS
PHI=ROLS
PB=PS
QB=QS
RB=RS
VT = VT SENSOR

C
C SET THE SURFACE POSITIONS
C

DELTA(1,1) = STABRS
DELTA(2,1) = STABLS
DELTA(3,1) = AILRS
DELTA(4,1) = AILLS
DELTA(5,1) = RUDS

ISKIPTBL = 0
IEGEPASS = 1 ! Tell SYSDYN this is an estimator

! pass.
do i = 1i, NQUAN
A(SURF) = theta(i) ! set the model's estimate
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call SYSDYN
pd_m(i) = PDOT(1)
qd_m(i) = QDOT(1)
rd_m(i) = RDOT(1)
ay_m(i) = AY(1)
az m(i) = AZ(1)
ISKIPTBL = 1

end do ! i = 1i, NQUAN
IEGEPASS = 0
ISKIPTBL = 0
RETURN
END

i Store the accelerations

! ONLY DO TBL LOOKUPS ONCE
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Appendix III

Fortran Code for the Multiple Surface
Extended Kalman Filter

The following FORTRAN source listing is the multiple

surface Kalman filter code developed for this thesis.
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SUBROUTINE MULTIEKF
C
C QDOT - MEASURED PITCH ACCELERATION (RAD/SEC**2)
C PDOT - MEASURED ROLL ACCELERATION
C (RAD/SEC**2)
C RDOT - MEASURED YAW ACCELERATION
C (RAD/SEC**2)
C
C IPASS - INITIALIZATION CODE (1 FOR INITIALIZE)
C R(5,5) - MEASUREMENT NOISE COVARIANCE.
C Q(5,5) - PROCESS NOISE COVARIANCE.
C P(5,5) - COVARIANCE OF ESTIMATE
C P0(5) - INITIAL VALUE FOR COVARIANCE MATRIX DIAGONAL
C
C EZ(5) - ARRAY CONTAINING THE RESIDUALS COMPUTED BY RESID
C
C

LOGICAL NINIT,NCLEAR

REAL NYS,NZS,NYSI,NZSI

include 'EKFout.inc'

COMMON /INDYN/ ALPHS,BETASY, DELTA(6,2) ,THES, PHIS,
PBS, QBS,RBS,AXBH,ALT,VTS,AS(6)

COMMON /OUTDYN/ FILLER(12), B(5,6), H(5,6)

CHARACTER*75 LABEL
DATA EST SAV /1.,1.,1.,1.,1./
DATA X EST /1.,1.,1.,1.,1./

COMMON/WINDEG/ RSPD,RSQD,RSRD,RSNY,RSNZ

COMMON /HPAST/ HDATA(5,5)

COMMON /COVARI/ P(5,5),Q(5,5),R(5,5),P0(5)

COMMON /KALOUT/ X_EST(5),EZ(5)

DIMENSION HIN(5,5), HINT(5,5)

DATA NINIT /.TRUE./
DATA NCLEAR /.TRUE./
DATA IPASS /1/

IF (NINIT) THEN ! "power on"
OPEN(UNIT=35,FILE='COVAIR.QN',STATUS='OLD')

125 FORMAT(A75)
READ(35,125) LABEL
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READ(35,*) (P0(I), I = 1,5)
READ(35,125) LABEL
READ(35,*) (Q(I,I), I = 1,5)
READ(35,125) LABEL
READ(35,*) (R(I,I), I = 1,5)
CLOSE(UNIT=35, STATUS='KEEP' )

NINIT = .FALSE.
DO I= 1,5
EST_SAV(I) = 1.0

END DO
ENDIF ! POWER UP

C
C START INITIALIZATION
C

IF (IPASS.EQ.1) THEN
DO I = 1,5

X EST(I) = 1.0
END DO
ICONVR = 0

DO I=1,5
EST SAV(I) = AS(I)

ENDDO
ENDIF

C
C END OF INITIALIZATION
C

C
C CLEAR OUT OLD WINDOW VALUES
C

IF (IPASS.EQ.1) THEN
IF (NCLEAR) THEN
NCLEAR = .FALSE.
IPASS = 0
DO I = 1,5

DO J = 1,5
P(I,J) = 0.0

END DO
END DO
DO J = 1,5

P(J,J) = PO(J)
END DO
DO I = 1,5
EST SAV(I) = X_EST(I)

END DO
ENDIF

ELSE
NCLEAR = .TRUE.

ENDIF
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EZ(1) = RSPD
EZ(2) = RSQD
EZ(3) = RSRD
EZ(4) = RSNY
EZ(5) = RSNZ

C
C X EST() = RTSTAB
C LTSTAB
C RTAIL
C LTAIL
C RUDDER
C
C T
C SETUP THE H AND H MATRICES
C

DO J = 1,5 ! ACCELERATION
DO I = 1,5 ! NUMBER OF SURFACES 1,5
HIN(J,I) = HDATA(I,J)
HINT(I,J) = HDATA(I,J)

END DO
END DO

CALL KALEST(XEST,EZ,HIN,HINT)

RETURN
END

SUBROUTINE KALEST(XHAT,EZ,H,HT)
C
C XHAT - STATE ESTIMATE VECTOR
C EZ - MEASUREMENT ERROR VECTOR (from RESID)
C H,HT - OBSERVATION MATRIX AND ITS TRANSPOSE
C
C P - STATE ESTIMATE COVARIANCE MATRIX
C Q - PROCESS NOISE COVAIRANCE
C R - MEASUREMENT NOISE COVARIANCE
C

include 'EKF out.inc'

DIMENSION XHAT(5),EZ(5),H(5,5),HT(5,5)

COMMON /COVARI/ P(5,5),Q(5,5),R(5,5)

C
C Space for local temporary variables
C

DIMENSION HP(5,5),TEMP(5,5),TEMP2(5,5),PZINV(5,5)
DIMENSION K(5,5), DX(5)
REAL*4 K

C
C Calculate Kalman Gain
C
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C -1
C K = PH' (HPH'+R)
C

CALL MATMUL(5, H, P, 5, 5, 5, HP)
CALL MATMUL(5, P, HT, 5, 5, 5, TEMP)
CALL MATMUL(5, HP, HT, 5, 5, 5, TEMP2)
CALL MATADD(5, TEMP2, R, 5, 5)
CALL GMINV(5, 5, 5, TEMP2, PZINV, IRANK)
CALL MATMUL(5, TEMP, PZINV, 5, 5, 5, K)

C A

C Update the estimate X
C
C x = x + K(z - Hx) = x + Kez
C

CALL MATMUL(5, K, EZ, 5, 5, 1, DX)
CALL VADD(5,1.0,XHAT,DX)

C
C Constrain the estimate
C

DO I = 1,5
IF (XHAT(I) .GT. 1.0) THEN
XHAT(I) = 1.0

ENDIF
IF (XHAT(I) .LT. 0.0) THEN
XHAT(I) = 0.0

ENDIF
END DO

C Compute the error covariance P for this estimate
C Uses optimal gain K assumption
C
C P = (I - KH)P = P - KHP
C

CALL MATMUL(5, K, HP, 5, 5, 5, TEMP)
CALL MATSUB(5, P, TEMP, 5, 5)

C
C Project ahead the error covariance P for the
C next measurement
C
C P= P+ Q
C
C Projection ahead of x is done in call to sysdyn
C

CALL MATADD(5, P, Q, 5, 5)

RETURN
END
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