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ABSTRACT

A method has been derived for calculating hydrcdynamic interactions in
unbounded suspensions and porous media comprised of spherical particles.
The method relies upon a separation of these interactions into far-field and
near-field components. The far-field, or long-range, interactions are
calculated in terms of an expansion in moments of the force density of each
particle surface about its center, and in principle can be carried out to
any level of accuracy that is desired. These far-field interactions are
properly renormalized and are summed using an accelerated convergence scheme
known as the Ewald summation technique. The near-field, or short-range,
interactions are accounted for in a pairwise additive fashion using the
exact, two-sphere interaction results available in the literature.

This new method of calculation, referred to as the "Stokesian dynamics"
method, has been used to calculate transport properties of both spatially
periodic and disordered suspensions and porous media. The studies on spa-
tially periodic media allowed the accuracy of the method to be examined
through comparisons with the relatively complete set of results available
for those systems. Properties such as the hydraulic permeability, sedi-
mentation velc~ity, and shear viscosity were calculated for cubic arrays of
spheres. It was found that, in almost every case, Stokesian dynamics gave
highly accurate results over the full range of volume fractions possible for
hard spheres.

Calculations for disordered media were accomplished by Monte Carlo simu-
lation, in which a series of disordered samples were generated and their
transport properties calculated and averaged. 1In addition to the properties
mentioned above for periodic media, short-time self-diffusion coefficients
and short-time hindered diffusion coefficients were calculated for single,
Brownian particles in disordered suspensions and porous media, respectively.
The results were compared with other theoretical and experimental results
reported in the literature, and again excellent agreement was obtained in
almost every case. It should be emphasized here that Stokesian dynamics
allowed all the transport properties listed above to be calculated from a
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single theoretical framework, and also permitted what theoretical pre-
dictions do exist for disordered systems to be extended to arbitrarily high

volume fractions.

Finally, two approaches have been developed for calculating long-time,
macroscopic transport coefficients for a spherical solute in a matrix of
fibers. The first method is an effective medium approach based on Brink-
man’s equation, and has the advantage of being applicable to systems for
which very little microstructural information is available. In the second,
and more rigorous calculation, thz Stokesian dynamics method is used to
obtain short-time, or local hydrodynamic coefficients for spherical par-
ticles in arrays of bead-and-string fibers. These local coefficients are
used to evaluate global coefficients, which govern transport over macro-
scopic length scales, through application of generalized Taylor dispersion
theory. Numerical results have been obtained for two different spatially
periodic fiber lattices over a wide range of volume fractions, and for
ratios of solute radius to fiber radius ranging from 0.5 to 5. Comparisons
between the effective medium model and the generalized Taylor dispersion
theory results consistently showed good qualitative agreement, and agreed
quantitatively at volume fractions low compared to the critical volume
fraction (i.e., the volume fraction where macroscopic transport ceases). In
addition, the effective medium model predictions of hindered transport
coefficients were found to be in excellent agreement with experimental data
obtained from the literature, without the use of adjustable parameters.

Thesis Supervisor: William M. Deen
Professor of Chemical Engineering
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CHAPTER 1

INTRODUCTION

The determination of the effective transport properties of suspensions
and porous media has been a topic of theoretical and practical interest for
over a century. The presence of a solid phase immersed in a continuous,
fluid phase drastically alters both fluid flow and solute transport in such
svstems. In general, these effects depend strongly on complex, hydrodynamic
interactions that occur between the various substituents of the solid phase.
These interactions decay slowly with distance and are significantly in-
fluenced by the overall configuracion of the system of interest. Thus, the
focus of past, as well as present, efforts has been on developing methods
for calculating these interactions, thereby allowing the subsequent calcu-
lation of the effective transport parameters themselves. Research in this
area has made significant advances in recent years, particularly with regard
to suspensions and porous media that can be modeled as dilute suspensions of
hard spheres. However, there are many important applications in which these
requirements are overly restrictive, and a more general approach would be of
great use.

One important application is the transport of large solutes through
fibrous media in which the interfiber spacing is comparable to the dimen-
sions of the diffusing macromolecule. Such media include gels and a variety
of membranes. In systems of this type, transport is hindered by the afore-
mentioned hydrodynamic interactions which take place between the solute and
fiber surfaces. In addition, steric interactions reduce the volume acces-

sible to the solute relative to that in bulk solution, resulting in a



partitioning effect. Partition coefficients for spherical solutes in random
arrays of fibers can be predicted theoretically both in the dilute limit
(Ogston, 1958) and for finite concentrations (Fanti and Glandt, 1989). 1In
contrast, little or no information on the increased hydrodynamic resistance
experienced by a sphere in a fibrous medium has been available, and hence
previous attempts to model transport in such systems have neglected the
effects of hydrodynamic interactions entirely (Ogston et al., 1973; Curry
and Michel, 1980; Peppas and Reinhart, 1983). However, the increased
hydrodynamic drag experienced by a solute surrounded by a fibrous medium
could be at least as important an effect as steric partitioning; clearly its
overall significance cannot be known without further study.

A useful starting point for studying the effects of hydrodynamic inter-
actions in suspensions, fibrous media, and other porous media is to examine
previous hydrodynamic investigations of simpler systems. Such studies have
by and large concentrated on examining the transport properties of dilute
dispersions of hard spheres. Thus, it would be helpful to explore ways of
extending the existing understanding of hard-sphere hydrodynamic inter-
actions, and to employ that new knowledge towards gaining insights on
problems with different geometries.

Perhaps the first and most influential contribution to our under-
standing of hard-sphere hydrodynamics was Stokes’ celebratad calculation of
the settling velocity of a hard sphere in an unbounded, pure fluid under
creeping flow conditions (Stokes, 1851). If the sphere is considered to be
settling under the influence of gravity, it could be thought of as one
particle in a sedimenting suspension. Alternatively, if the particle is

held fixed while surrounded by a moving fluid, then it could be thought of



as modeling a particle in a porous medium. Stokes’' calculation thus
provides the starting point for all subsequent modeling of hard-sphere
dispersions. However, corrections to such single-particle models, which can
be significant even for volume fractions much less than unity, can only be
obtained by properly accounting for the particle-particle interactions that
occur in both suspensions and porous media.

The transport properties commonly associated with suspensions include
the sedimentation velocity, the dispersion coefficient of the suspended
particles, and the viscosity of the fluid-particle continuum. Recent
developments in calculating hydrodynamic interactions in such systems have
significantly advanced our ability to calculate each of these properties.
In particular, the solution to the theoretical problem of two spheres
interacting under conditions of low Reynolds number has made an important
contribution (Jeffrey and Onishi, 1984; Kim and Mifflin, 1985), principally
through the application of pairwise additivity assumptions. Examples of
studies applying pairwise additivity are Batchelor’s (1972, 1976) and Glen-
dinning and Russel’s (1982) calculation of sedimentation velocities and
particle dispersion coefficients, and Batchelor and Green's (1972) calcu-
lation of the effective viscosity of a suspension to 0(¢%), where ¢ is the
particle volume fraction. Unfortunately, the use of pairwise additivity is
only accurate for very dilute systems, in which the interaction between two
particles is likely to be unaffected by the presence of a third particle.
For higher volume fractions, at which three or more particles interact

simultaneously, it is important that many-particle interactions be accounted

for properly.



At first glance there appears to be little difference between sedi-
mentation of a suspension, in which particles are settling through a
stagnant fluid, and flow through a porous medium, in which fluid is flowing
past particles that are held immobile by externally applied forces and
torques. However, as discussed by Saffman (1973), interactions between
particles under these two types of conditions are fundamentally different.
These differences essentially result from the fact that the externally
applied forces and torques present in a porous medium have the effect of
screening hydrodynamic interactions between particles, causing them to decay
more rapidly with distance than in free suspensions. Previously developed
theories concerning interactions in porous media often incorporate this
screening behavior directly by considering interactions within an effective
medium of particles and fluid. Examples of this include the hydraulic
permeability calculations of Brinkman (1947) and Kim and Russel (1985), and
the calculation by Freed and Muthukumar (1978) of the mobility of a sphere
moving through a bed of stationary spheres. These effective medium ap-
proaches are quite accurate when the influences that dominate the behavior
of the solute can be attributed to the presence of the porous medium as a
whole, and not to specific geometric characteristics of the microstructure.
This is the case when the dominant hydrodynamic interactions occur over
distances large compared to the solute dimensions, such as in a dilute
dispersion of hard spheres of equal radii.

Due to the contributions of these earlier works, several features that
one expects to find in a general method for evaluating hard-sphere inter-
actions are now evident. To extend existing calculations of properties of

hard-sphere suspensions beyond the dilute limit, the simultaneous, many-



particle interactions present in such systems must be properly taken into
account. These interactions must also account for the strong, lubrication
forces that can act upon nearly touching spheres if the method is to be
useful at high volume fractions, where dense clusters of particles are most
likely to be present. Finally, the screening behaviog characteristic of
porous media should be exhibited by any model for infinite dispersions of
spheres held fixed in space.

The Stokesian dynamics method described by Brady et al. (1988) combines
these desirable characteristics. The method relies upon a separation of
hydrodynamic interactions into far-field and near-field components. The
far-field, or long-range, interactions are calculated in terms of an
expansion in moments of the force density on each particle surface about its
center, and in principle can be carried out to any level of accuracy that is
desired by including more terms in the expansion. The near-field, or short-
range, interactions are included in a pairwise additive fashion. In other
words, near-fiel. interactions between two spheres are calculated under the
assumption that the effects of the other spheres in the system are negli-
gible, an assumption justified by the short-range nature of these inter-
actions. Thus, far-field, many particle interactions are calculated
rigorously in a manner that does yield screening behavior in porous media
(Durlofsky and Brady, 1987), and near-field interactions are included in a
manner that preserves the strong, lubrication interactions between nearly
touching spheres.

Stokesian dynamics was originally used as a method of performing
dynamic simulations of suspensions of spherical particles in which the

sphere centers all lie in the same plane (i.e., a monolayer). These early



simulations used only pairwise additivity to calculate hydrodynamic inter-
actions. However, unlike the work of Batchelor (1972, 1976) and Glendinning
and Russel (1982), pairwise additivity of forces rather than velocities was
used, as it was found that the lubrication interactions necessary to prevent
sphere overlap are preserved by that approach (Brady and Bossis, 1985). The
more accurate method of including far-field interactions using a moment
expansion was developed by Durlofsky et al. (1987), and is valid for systems
with finite numbers of spherical particles. This dissertation extends the
work of Durlofsky et al. to fully three-dimensional, hard-sphere dispersions
that are infinite in extent. It is this latter method, which is wvalid for
unbounded systems, that shall henceforth be referred to as Stokesian
dynamics (cf. Brady et al., 1988).

Several means are available for examining the accuracy of this method.
These include calculations of the hydraulic permeability (Zick and Homsy,
1982) and viscosity (Zuzovsky et al., 1983; Nunan and Keller, 1984) of
spatially periodic arrays of spheres, and experimental measurements of the
self-diffusion coefficient (Pusey and van Megen, 1983; Ottewill and Wil-
liams, 1987) and viscosity (van der Werff et al., 1989) of disordered
suspensions of spherical particles. In addition, there are the previously
mentioned analytical results for dilute systems that can be used for
comparison at low volume fractions.

One advantage of the Stokesian dynamics method is that it places no
restrictions on the locations of the particles. Thus, it can be readily
applied either to dynamic simulations, in which particle trajectories are
followed over time, or to Monte Carlo simulations, in which transport

properties for instantaneous configurations of particles are calculated and



averaged over several realizations. Futhermore, the Stokesian dynamics
method allows the simultaneous investigation of diffusion, sedimentation,
permeability, rheology, etc.; all of the previously mentioned transport
coefficients for both suspensions and porous media can be determined for any
microstructural arrangement of spherical particles.

This ability to calculate hydrodynamic interacé&ons for any system of
hard spheres has important implications for systems, such as fibrous media,
that resemble neither spatiallv periodic nor disordered hard-sphere dis-
persions. The usual approach to modeling hindered transport in media with
unknown or highly complex microstructures has been to represent the porous
medium as an assemblage of straight, cylindrical pores (Deen, 1987).
However, the precise meaning of model parameters such as pore radius is
unclear when applied to fibrous media. Thus, one important goal of theories
of hindered transport, which is to relate transport parameters to the
microstructure of the system, is very difficult to achieve with such an
approach.

To construct a more appropriate model, one can represent polymeric
chains as rows of aligned spheres that form "bead-and-string" fibers.
Interactions between spherical solutes and arrays of these "bead-and-string"
fibers can then be calculated using the Stokesian dynamics method, since
only hard spheres are present in the system. The interactions between the
mobile solute and the immobile fibers at any given location will determine
both the local mobility and the local velocity of that solute. These coef-
ficients can be calculated for different ratios of solute-to-fiber radius as

well as for different microstructural arrangements of the fibers, thus

allowing a variety of system geometries to be examined.



The term "local" used to describe the transport properties obtained
using Stokesian dynamics refers to the fact that these parameters are valid
cver time scales so short that a solute does not move a distance comparable
to its own size. However, typically one would like to calculate global
coefficients, governing transport over macroscopic length scales. Gener-
alized Taylor dispersion theory, as developed by Brenner and Adler (1982),
provides a convenient way of calculating global coefficients from the local
coefficients obtained using Stokesian dynamics. A rigorous theoretical
framework for calculating hindered transport coefficients in fibrous media
can therefore be developed and applied to specific fiber configurations.

It has been mentioned that effective medium models are particularly
useful in porous media, since hydrodynamic interactions are strongly
screened in those systems. Since a fibrous medium is a type of porous
medium, one might expect that such an approach could be used as an alter-
native to the hindered transport calculations just described. An effective
medium model can be constructed in which Brinkman’s equation (Brinkman,
1947) is used to calculate the hydrodynamic drag on a spherical macro-
molecule in a fibrous medium. This approach has been successfully applied
to the calculation of hydraulic permeabilities in disordered, hard-sphere
dispersions (Brinkman, 1947; Kim and Russel, 1985), but has yet to be used
to evaluate hindered transport parameters. 7The relative simplicity of
Brinkman’'s equation allows one to predict such parameters knowing only the
radius of the diffusing solute and the hydraulic permeability of the fibrous
medium. Thus, an effective medium model could be of great use, particularly
when dealing with systems for which very little structural information is

available.



In Chapter 2, the details of the Stokesian dynamics method are de-
scribed, including the approach used to sum hydrodynamic interactions in an
infinite medium in a convergent and cecmputationally efficient manner.
Results for transport parameters of spatially periodic suspensions and
porous media are then presented and compared with other theoretical results
in Chapter 3. In Chapters 4 and 5, transport parameters for disordered
dispersions of hard spheres, as determined by Monte Carlo simulation, are
presented and compared with a different set of theoretical results as well
as with experimental data.

Following this work on hard-sphere dispersions, two approaches to
calculating global coefficients for fibrous membranes and gels are described
in Chapter 6. The first is an effective medium approach based on Brinkman's
equation. The second, more rigorous approach involves using the Stokesian
dynamics method to obtain local coefficients, and then using generalized
Taylor dispersion theory to calculate global coefficients valid over macro-
scopic length scales. The results of these two approaches will be compared
for spatially periodic arrays of fibers, and comparisons will be made
between the predictions of the effective medium model and experimental data
reported in the literature.

Many of the results to be discussed in the following chapters have been
published in the scientific literature. A summary of the theoretical
development in Chapter 2 and the results for spatially periodic systems in
Chapter 3 can be found in Brady et al. (1988). The Monte Carlo simulation

results presented in Chapters 4 and 5 were reported in Phillips et al.



(1988a,b). Finally, the theoretical development and calculations regarding
hindered transport in fibrous media, which comprise Chapter 6 of this

thesis, are presented in Phillips et al. (1989a,b).
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CHAPTER 2

THE STOKESIAN DYNAMICS METHOD

Calculations of hydrodynamic interactions between particles at low
Reynolds number are often classified as "mobility" problems and "resistance"
problems. In a mobility problem, particle forces and torques are pre-
scribed, and particle translational and rotational velocities are unknown.
The inverse, resistance problem corresponds to calculating particle forces
and torques given the velocities. Under creeping flow conditions these
dynamic and kinematic quantities are linearly related, and solutions for the
mobility and resistance problems for two hydrodynamically interacting
spheres are available in the literature (Jeffrey and Onishi, 1984; Kim and
Mifflin, 1985). 1In addition, a method has recently been proposed that gives
a very accurate approximation to the solutions for a finite number of
interacting spherical particles (Durlofsky et al., 1987). The goal of this
chapter is to extend the method of Durlofsky et al. to an infinite number of
interacting particles.

Calculation of hydrodynamic transport properties of infinite or
unbounded media is complicated by the long-range nature of hydrodynamic
interactions. These interactions decay as l/r in suspensions of freely
mobile particles, where r is the distance between two spheres. Even in
porous media, where hydrodynamic interactions are screened, the rate of
decay is k/r®, where k is the hydraulic permeability. The difficulties
caused by these slow rates of decay become apparent if, for example, one
attempts to sum the interactions experienced by a particle sedimenting in a
suspension of overall dimension R, where R is allowed to grow without bound

11



while the number density of particles n is held constant. As the value of R
is increased, the n'umber of new particles being added to the system grows as
O(R®), while the slowest decaying interactions contributed by each new
particle decay as O(I1/R). Thus, the sum of all interactions diverges as R?,
suggesting that this sum is an ill-defined quantity.

This problem has been recognized by several researchers in the past,
and so-called "renormalization" schemes have been successfully applied to
obtain expressions for such quantities as sedimentation velocities and the
bulk stress in a suspension (Batchelor, 1972; Batcheior and Green, 1972;
Hinch, 1977; O’Brien, 1979). The goal of these renormalization methods is
to account for the qualitative changes that affect how particles interact in
infinite as opposed to finite media. Of the various methods that have been
proposed, the one most convenient for use in conjunction with Stokesian
dynamics is that of O0’Brien. This is because, unlike the other methods,
O’'Brien’s approach involves no preaveraging of hydrodynamic interactions,
and thus the capability for calculating hydrodynamic interactions for a
given, specific configuration of particles is preserved.

The use of O’Brien’'s method will insure that fully convergent expres-
sions are obtained for the sum of particle-particle interactions. However,
in order to obtain meaningful results, the actual evaluation of those sums
must be achieved in an accurate and computationally efficient manner. If
the infinite nature of the system is modeled using periodic boundary
conditions, then the Ewald summation technique (Ewald, 1921) can be used for
this purpose. Ewald’'s method, first employed by Beenakker (1986) to sum
hydrodynamic interactions, accelerates the convergence of lattice sums and

can be easily incorporated into O’'Brien’s renormalization procedure.
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Finally, the interactions rendered convergent through the use of
O’'Brien’s method and summed using the technique of Ewald are far-field, or
long-range interactions. Near-field, or short-range, interactions decay
rapidly with distance and therefore can be calculated the same way for an
infinite as for a finite system. Thus, the method of including near-field
effects proposed by Durlofsky et al. (1987) can be used here with essen-

tially no modification.

2.1 RENORMALIZED HYDRODYNAMIC INTERACTIONS

As stated above, the linearity of Stokes’ equations allows one to use a
linear expression in defining the relationship among the forces, torques,

and velocities of N’ particles under creeping flow conditions:

- | ) : (2.1)
g - () Mop Mgy L

Here U and O are vectors of dimension 3N’ containing the particle transla-
tional and rotational velocities, respectively. Similarly, F and L are 3N’
vectors containing the forces and torques applied to the particles. The
angle brackets denote suspension averages, or volume averages over a region
(including both fluid and particles) large enough to rcpresent the local
microstructure of the medium. The vectors (u) and (w) are the suspension-
average velocity and vorticity, respectively, and are related by (w) =
1/2(9x{u)). The mobility matrix M, shown in partitioned form, relates the

two vector quantities.
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To derive expressions for the mobility matrix, one can begin with the
integral representation of the solution to Stokes’ equations (Ladyzhenskaya,

1963):

NI

1

u; (x) = - 8xp E J. Jij(x'y)aak(y)nk (y) dsy
a=1 S,
(2.2)
1
- Bnn J- {Jgj(X-Y)OJk()’) + ZpK“k(x-y)uJ (y)) ny ds, .

Sl'"

Here u(x) is the fluid velocity at some field point x in the fluid, u is the
fluid viscosity, and n is a unit normal pointing outward from the surfaces.
Also, the vector operations are expressed using the summation convention
(Whitaker, 1981), which requires that repeated indices be summed from 1 to
3. The first integral in (2.2) is an integral over the surface of particle
a, S,, while the second is an integral over a macroscopic boundary SF" The
region bounded by SF' contains the N’ particles of the sum, and the surface
itself exists only in the fluid phase (i.e., the surface SP' does not cross
any particle boundaries S,). The tensor J 1is the Green function for Stokes

flow, given by

6U r,r,
Ji_]’(r) - r T ’ (2.3)
while
r,r,r,
Kijk(r) -3 —_— (2.4)
s
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Here §,, is the identity tensor, and the vector r is equal to x-y, where y
is a vector to a point on either S, or SF' (hence the subscript y on dS;).
The stress tensor ¢ for a Newtonian, incompressible fluid is given by

g, = -pSy, + 2ue;; (2.5)

i3
where p is pressure and the rate-of-strain e;; = 1/2(Vyuy + V u;).

In the renormalization method proposed by O’Brien (1979) it is assumed
that, if the radius of the region bounded by SP’ is very large, then the
quantities J;  (x-y) and K; ;, (x-y) will change very little over an element of
area dSr, that is large enough to contain both fluid and particles. Thus,
the integration can be performed using appropriately averaged values for the
stress and velocity terms. If one replaces Sr, by an analogous surface SP’

which differs from S in that it is allowed to cross particle boundaries,

r’
then the appropriate averages to be used in place of g and u in (2.2) are
the suspension averages (g) and (u). However, making this transformation
from primed to unprimed surface also has the effect of generating a third,
quadrupolar contribution to the surface integral as shown by Glendinning and

Russel (1982). Replacing g and u by their averages and including this

additional term yields for the velocity

N'
u, (x) = - 811m_ } IJU(x-y)ojk(y)nk (y) ds,
a=1 S,
(2.6)
1 )
" TBnp I (Jij(x‘Y)<03k>nx + 2uK1,k(X-y)(uj)“x - nkaij<lej>nl) ds,
S
r
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Here n with no subscript is the number density of particles, the derivative
VyJy; is with respect to y, and the suspension-average quadrupole density of

the particles (Q/,;) is given by
/ 1 ' a
<Qk1j> “ N lej ’ (2.7)
[0 4

where

1
%15 = - 5 (Y - %) (Y1 =X )0, p 1y dS, (2.8)

w

and x* is the center of particle a.

The expression (2.6) is a completely convergent solution for the
velocity u at a field point x. However, it remains to relate the suspension
average stress to the average rate of strain and other terms contributed by
the presence of the particles. Following Hinch (1977), one obtains for the

averaged form of Stokes' equations
V-{g) = -n(F) |, (2.9)

where the suspension average of g is given by

(g) = % J o dv (2.10)
v

and
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N'
(F) = % } o (2.11)

a=1
The volume in (2.10) includes both fluid and particles, and must be large
enough to reflect the local microstructure of the unbounded suspension. An

expression for the suspension average stress can be obtained by following

the reasoning of Landau and Lifshitz (1959) and Batchelor (1970), yielding
<013> - '<p>8ij + 2I‘<eij> - n(<s1j> + <213>) ) (2.12)

where (p) and (g) are the suspension average pressure and rate-of-strain,

respectively,
N’ N’
{S;.) L) s d (£, ) L) e 2.13
i3 - N' ijg an ij = N' ig - ( . )
a=1 a=1

The particle stresslet S is the symmetric portion of the first moment of the

force density about the particle surface:

1 2
S3, = - 5 J (045 (¥5-X5) + 053 (3 -x3) - 3 63500, (71 -xE)Imy dS, . (2.14)
s

a

The rotlet £ is the antisymmetric complement to S,
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x
2ij

1
=TT I (o3 (¥5-%5) - o5 (yy-x§)Iny, dS, (2.15)
S

a

and is related to the torque L by
LY = €:50%5x (2.16)

where the third-order tensor ¢,;, is the Levi-Civita tensor. Finally, the
average pressure may be obtained via a macroscopic balance between pressure

forces and forces exerted by the particles on the fluid, yielding
() = n(Fy)(x;-x3), (2.17)

where x{ is some reference point at which the pressure is set to zero. The
expression (2.12) is valid so long as the externally imposed force is dis-
tributed evenly throughout the interior of the particles (i.e., for a sus-
pension sedimenting under the influence of gravity, the density of the
particles must be constant).

Using the divergence theorem, the latter, surface integral in (2.6)

(i.e., the integral over S;) can be rewritten as

1 , '
8np I Vi [J35€055) + 20K 55 Cuy) - nv, 0, 5(Qe,5) ] dv,
v'
(2.18)
-1 '
8 J [Jis€o50 0 + zﬂxijk<u3>“k - nkaij<Qk1j>n1] as,,

S

€
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where S, is a spherical surface that is completely enclosed by S and
surrounds the field point x, and V'’ is the volume between the surfaces S,
and Sp. Substituting (g) from (2.12) into the volume integral in (2.18),

and using (p) from (2.17), one can rewrite that volume integral as

n
8ru

I (JU(FJ) + R“.(Lj) + Kijk(sjn + vkvlJU(Q,;lJ)) av, , (2.19)
Vl

where the Green function, or velocity propagator, for a point torque R, is

given by

Ty
1

Finally, taking the limit as the surface S, shrinks to a point, the volume
V’ in (2.19) can be replaced by V, the total volume enclosed by S;, and the

surface integral in (2.18) becomes

(u, (0) + o (2(Q)51) - (@) - (2.21)

Substituting (2.21) and (2.19) into (2.6) yields the desired convergent

expression for u, (x):
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N‘
u (x) - (u(x)) = i?p [2€Q5;:) - €Qi;;5)] - L } f Jy,95xm dSy

8nu
a=1 S

a

(2.22)

n ’
" T8na I (5 €F3) + Riy(Ly) + Ky (S ) + % ViJ,54Qy5)) av,
v

The expression (2.22) is valid for systems of arbitrarily large size
because, as the system size is increased, terms in the volume integral will
cancel the cdivergent terms in the sum, yielding a finite result. For an
infinite suspension of sedimenting particles, it is this volume integral
which supplies the "backflow" of fluid, relative to zero-flux axes (u)=0,
that results from the pressure gradient necessary to balance the excess
weight of the particles. The presence of this "backflow" term has been
noted previously for periodic (Hasimoto, 1959) and disordered suspensions
(Batchelor, 1972).

The quadrupole terms in (2.22) can be greatly simplified by equating
the quadrupole moment of each particle with its "mean-field" value pro-
portional to (F). To see how this can be done, it is convenient to express
Q15 in terms of its trace and the irreducible quadrupole moment density

3
Q%13 defined by

2
Qfs = U1§ - ‘%"‘ Fiéy, . (2.23)

The "mean-field" value of Qf,; can be obtained by replacing g by (g) and
evaluating the integral in (2.8), remembering to subtract off the trace as

in (2.23). The result is
20



é (F2) 2
Q;IJ = 10 67['[13 {‘Skm‘sjl + 6lm6kj - T leSJm} . (2.24)

Making use of (2.23) and (2.24), (2.22) can now be rewritten as

N'
< ) ¢ <Fi) 3 (Qijj) 1
W - e ) =5 e 5 T E T13%5m 93
a=1 S,
(2.25)
n a? 2 \
" Bmp (L= © ) 5€Fy) + Ryy(Ly) + Ky 5, (S;y)

v

+ VleJU(Q“J.)) av,

Here ¢ is the volume fraction of particles, given by n(4/37a®). The
accuracy of using the mean-field approximation given in (2.24) will be
examined in the next chapter.

To calculate the mobility matrix of (2.1), it will be necessary to use
the fluid velocity given in (2.25) to obtain translational and rotational
velocities of particles in terms of applied forces and torques. This can be
accomplished by taking two additional steps. First, one expands the surface

integral in (2.25) in terms of moments of the force density g-n:



J Jij(X-y)ajknk ds, = Ji; (x-x%) J o;,n, dS,

S, Sq
-2 C(x-y) | (y,-x3)o;,n, dS (2.26)
aYL i3 y_xa YJ. 1 jk*k Yy .
Sa
+ 1 8 8 | a a ds
2 3y, 9y, 15 (X-y) y=x° (Yo -%g ) (Y1 -X]) o5 0y y

Sa
The zeroth moment of g-n, given by the first integral in (2.32), is the
force on particle a. The first moment, given by the second integral in
(2.32), is a tensor which can be separated into symmetric and antisymmetric
parts. These are given by g“ and g“ in (2.32) and (2.33), respectively.
The second moment, which contributes the quadrupole terms of the expansion,
can be broken down as shown in (2.32). The portion of the quadrupole term
that is proportional to the force (or to the zeroth moment) can be con-
veniently included in the first term of the expansion by replacing J,; (x-x*)
by (1+§iV2)Jij(x-x°). Thus, this expansion process relates the fluid
velocity to the forces, torques, and stresslets of the particles, and could
be carried further to include higher moments (octupoles, hexadecapoles,
etc.) if desired. For this development, the expansion will be truncated at
the level of the first moment (torques and stresslets), but the trace of the
quadrupole term that contributes a term proportional to the particle forces
will be included since this requires no additional computational effort.

The second step in calculating the mobility matrix is to use (2.25) and
(2.26) in conjunction with Faxen formulae (Faxen, 1927) to determine the

particle velocities. For systems of equally sized spheres, these formulae
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are

-] F? a2 2 [
U - (u (x*)) = erpa * (1+ e v ) ul(x*) , (2.27a)
Lg 1
ﬂg - (wi (Xa)> - m + 3 e”kVJu;(x") (2.27b)
and
s 1+ 22 e (x 2
'<eij> = (20/3)"“33 + ( + 10 ) ei_j( ) (2.27¢)

Here, u{(x*) is the velocity disturbance caused by all the particles except
for particle a, and e;J(x“) is the rate of strain of the disturbance flow,
e{j - 1/2(Vju;+Viu5).

Substituting (2.25) and (2.26) into (2.27) will now yield expressions
for the particle velocities in terms of forces, torques, and stresslets.
Making these substitutions, but leaving the integral in (2.26) in its
unexpanded form to simplify the result, one obtains the following convergent

expressions:

FY o, Q) R
6rpa S5 6npad | 67ua

U - (u(x*)) = ¢

1 a2
" 8rp } I (1+ 5 vz ) Jyjosen dSy (2.28a)

Bra S,
2
n a
T 8w _[ ((1+ 6 V2 ) 3 s(Fy) + Ry(Ly) + Ky (Ssx)
v

+ VeV 5 (Qeyy)) dvy

23



1 1
- (u(x)) - 4 J;;:%a' - } Igeijkijkxalm% 45y

81pa 8xu
Bra S,
(2.28b)

n 1
" Bmp szmvjwmm * R (L) + Ko (Si0)) dv,
\Y

and

<sij) 513 a? sym
(e X)) = 4553yt * 0yt 8u } I (145 ) %57™Jixoam ds,
pra Sy

(2.28¢c)

- §2- I VTR U (F) + Ry (L) + Ky (Sey)) av,
v

Here the operator VY™ acting on a vector v, is defined by VYT =
1/2(V3v1+Vivj). In obtaining the term ¢(Ft)/6wpa in (2.25a), one should
note that it is necessary to apply the (a?/6)V? operator from (2.27a) to the
surface integral of (2.18). This results in a term ¢(F, )/12mua being added
to (2.21), which when included yields the result shown. Finally, the

quadrupole term in (2.28a) can be evaluated using (2.24), giving

3 <Q133> 1 (F1>
5 ¢ 6rpas - 75 ¢ 6mrua (2.29)

Hence, when the approximation (2.24) is used, (Qijj) is proportional to
(F;). In addition, quadrupole terms in the volume integral of (2.28a) and
in the surface integrals of (2.26) and (2.28a) can be included with terms
proportional to Vzg. Thus, from this point in the development forward it
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will not be necessary to include quadrupoles in the formulation explicitly.
Making use of (2.28) along with (2.29) and the expansion (2.26), one

can now evaluate the terms of a mobility matrix relating particle velocities

with forces, torques, and stresslets. This relation can be expressed using

a partitioned matrix as follows:

U - (u) Myp My Mys F
2 - (v) - Map Mo Mgs : L (2.30)
-(e) Mep  Mgp Mg S

If higher moments than those shown in (2.26) were included, then additional
terms would be added to the bottom of the vectors on both the left- and
right-hand sides of (2.30). For example, if all the quadrupole terms were
to be included, a third-order tensor with each element equaling zero could
be added below -{e) on the left-hand side (note that VV(u) can only be non-
zero in a system with physical boundaries), while the third-order quadrupole
tensor Q could be added below the S on the right-hand side. An additional
Faxen formula would be required to evaluate the new components of the
mobility matrix.

Stresslets and all higher moments are induced moments which are not
applied and must be obtained as part of the calculation. For example, given
the value of (e) one could solve for S in terms of F and L, and from that
solution derive an equation with the form of (2.1). A suspension sed-

imenting in an otherwise quiescent fluid has (e)=0, and therefore
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( 3 ) = - (M )-1’ (Mer Mep ) - [ E } , (2.31)

whence
U- (u) Myp My, Mys -1 F
= [ - '( Mgs ) '(MEF MEL)
Q- (w) l Mor Mgy Mas L
(2.32)

The entire matrix in (2.32), including the matrix accounting for stresslet
interactions, represents the far-field portion of M in (2.1) for any system
with (e)=0. In a similar manner, higher moments than those shown in (2.30)
can always be incorporated into a solution of a form that allows one to

calculate particle velocities given the applied forces and torques, or vice

versa.

2.2 EWALD SUMS

The solution for the particle velocities given in (2.28) is rigorously
correct and absolutely convergent. However, as a practical matter, compu-
tation of the difference between the integrals and sums in these equations,
which is the convergent quantity that is needed, can prove quite difficult.
This is a result of the slow decay of hydrodynamic interactions, and has the
effect of requiring one to deal with very large systems and large numbers of
spheres. In order to reduce the number of particles needed and accelerate

the convergence of the sum and integral terms, one can deal with a finite
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unit cell containing N particles, and impose periodic boundary conditions as
a means of modeling the true, infinite nature of the system. Choosing this
approach allows one to make use of the Ewald summation technique, first
developed by Ewald (1921) and later applied to hydrodynamic problems by
Beenakker (1986).

Previous attempts to model three-dimensional, infinite systems using
periodic boundary conditions without properly summing all hydrodynamic
interactions have at times yielded aphysical results (Dickinson, 1985), a
fact that has been attributed to loss of positive definiteness in tte
mobility matrix. The characteristic of positive definiteness is important
in that it insures the dissipative nature of the system (i.e., that mechan-
ical energy is dissipated rather than created). Correctly summing the long-
range hydrodynamic interactions, which can be accomplished using Ewald sums,
insures that the mobility matrices will never lose positive definiteness.

To demonstrate the procedure, it is convenient to use the form of
(2.28a) appropriate for a system so dilute that each sphere only feels the
zeroth moment (point-force) interactions of the other spheres. This is
obtained by removing all interaction terms related to the finite size of the

spheres, resulting in the following expression:

N ©
Fi
1
U - (u (%)) = ra * B } EJ“(x"-xﬁ)Fg - 8—:—;J'JU(FJ) av  (2.33)
v p=1 0
pra

Here vy labels the unit cells, B labels particles within a given unit cell,
and the restriction f»a only refers to the unit cell y=1.
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To sum the interactions using the Ewald method, one can use the fact

that Jyij in (2.3) can be rewritten as

Ji, () = (V8,; - V,9)r . (2.34)

One can therefore write

2 3,(0) =MD (D) + M (D) (2.35)
where
M{D () = 2 (8,7 - 9,9,)(r erfe(£r)) (2.36)
and
M{3 (o) = % (8,392 - 9, Vi) (x erf(ér)) . (2.37)

Here £ is a convergence parameter with units of inverse length, erf and erfc
refer to the error function and the complement of the error function, res-
pectively, and the factor of 3/4 has been included for convenience.

The sum in (2.33) can now be rewritten as

N
61];;; } } M} (e -x0)F] - M{} (z=0)F§ +§ } M{} (x*-x*)F]| , (2.38)
v B=1 v B=1
Bra

where the restriction B»a has been left off the sum over M{%’(x*-xf), but
the resulting additional term has been cancelled by M{2’(r=0). The ad-
vantage of writing the sum of (2.33) in the form shown in (2.38) is that
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convergence is greatly accelerated. The sum over g‘l), which depends on
erfc(€ér), decays rapidly with distance and therefore poses no computational
difficulties. The second sum, which depends on erf(€r), can be Fourier
transformed and converges rapidly in reciprocal space. The sum on the
reciprocal space lattice can be related to a sum over real space using the

Poisson summation formula (Nijboir and de Wette, 1957), given by

} g(r,) - % } gk (2.39)
Y A

where g(k) is the Fourier transform of g(r) according to
g(k) = I el Tg(r) dr , (2.40)

V is the volume of the unit cell, and k, are reciprocal lattice vectors
satisfying exp(kk-r7) = 1 (cf. Kittel, 1976). Using (2.39) and (2.40), one

can write the sum over M{2’ in (2.38) as

N
1
Grav } } exp(-k, -x*-x")M{ P’ (k)F§ (2.41)
X p-1

where the Fcurier transform of M‘2’ can be calculated from (2.37) as

(Beenakker, 1986)

1

M{3) (k) = (8y, - k) + % €72k% + g £k )6nk2 exp(-%fzkz) . (2.42)
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Here the vector k=k/k. Of the remaining terms in (2.38), M{1)(x*-%P) can be
found by simple differentiation according to (2.36), while M{%’(r=0) can be

found from the inverse of the Fourier transform, giving

1 6
M{2) (r=0) = a0’ JM§§’(R) dk = §,; —1726a , (2.43)

where a is the radius of the spheres. Thus, each of the terms needed to
evaluate the sum in (2.38) (and hence the sum in (2.33)) is known.

The sum over M{2) given in (2.41) appears to be ill-defined for k,=0,
since the expression given in (2.42) has a term proportional to k2.
However, closer examination will show that the k,=0 term in (2.41) is
exactly cancelled by the "backflow" volume integral in (2.33). As k-0, the

double sum in (2.41) becomes

N N
1 1 £n g
i M{2) (k»0) }Ff = v i - kikyk 2 EF@ : (2.44)
=1 B=1

To evaluate the behavior of the volume integral in (2.33) as k-0, one can

use the convolution theorem to write

JJ“ dv = §(k) J,, (k) , (2.45)

where S(k);(k) can be taken as meaning the limit of g(k) as k»0. The
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N

Fourier transform of is

N

Ji; (k) = (655 - k;ky)8nk2 (2.46)
and thus
@D
L I, (FYav = 26, - k kK 2(F,) (2.47)
87 13345 p ‘013 15 3 : :
0

Comparing the right-hand sides of (2.44) and (2.47), and using (F)=(1/N)§F“,
one can see that the volume integral in (2.33) exactly cancels the k,=0 term
in the reciprocal-space sum. Thus, Beenakker's requirement that (F)=0 is
not necessary.

There is a simple and intuitive reason why Beenakker’s restriction
should be superfluous. The mobility matrix depends only on the geometry of
the system, and not on the forces applied to the particles. A mobility
matrix describing the interactions for particles in a particular config-
uration must therefore be valid whatever velocities or forces those parti-
cles have. Thus, any mobility matrix derived correctly under the assumption
that (F)=0 must also be valid when that condition is no longer true.

The Ewald sums of the terms of My associated with the finite size of
the particles (i.e., terms resulting from the (a2/6)V? operator in Faxen's
law (2.27a)) and the terms for the other mobility submatrices in (2.30) can
be carried out in much the same manner as used here. The elements of M,
Mpy, etc. are easily expressed in terms of gradients of the Green function

J, and thus they can be written as gradients of the expression given in
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(2.34), and new equations for M{}’(r), M{}’(r=0), and M{2)(r) can be
derived. Just as the "backflow” volume integral cancelled out the divergent
k,=0 term in the point-force sum described above, it will also cancel these
same terms in the evaluation of the other submatrices of (2.30), in addition
to the terms proportional to ¢(F), ¢(L), and ¢(S) shown in (2.28). The
expressions required for the summation of all the submatrices shown in

(2.30) are given in Appendix A.

2.3 NEAR-FIELD INTERACTIONS

The interactions calculated thus far have been far-field, or long-range
interactions. It is important to calculate and renormalize these inter-
actions properly if one is to obtain a convergent result. However, near-
field interactions are short-range, and therefore can be accounted for in a
pairwise additive fashion. This is because short-range interactions between
two spheres are unlikely to be strongly affected by "reflections" caused by
the presence of a third sphere. For nearly-touching spheres, these near-
field interactions are responsible for the singular lubrication forces that
can dominate the effects of all other interactions. Thus, it is important
that they be included when dealing with any but the most dilute systems.

The method used to incorporate these interactions is identical to tnat
described by Durlofsky et al. (1987). One begins with the far-field
mobility matrix shown in (2.30), which shall henceforth be referred to as
M*, where the superscript * indicates that the interactions have been summed
by the Ewald method. It has been shown (Bossis 2nd Brady, 1984) that

pairwise additivity of two-sphere resistances, which corresponds to pairwise
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additivity of forces, preserves lubrication interactions, while pairwise
additivity of two-sphere mobilities does not. Thus, Durlofsky et al.
incorporate near-field interactions by inverting the far-field mobility
matrix to form a far-field resistance matrix, and subsequently add in the
known, exact two-sphere resistance interactions that have been calculated
previously (Jeffrey and Onishi, 1984; Kim and Mifflin, 1985). However, )
these two-sphere resistances have both far- and near-field components. To
avoid counting the far-field interactions twice, the two-sphere, far-field
resistance terms must therefore be subtracted off, leaving only the near-
field terms. If the total, pairwise additive resistance matrix is desig-

nated by R,5, and the two-body, far-field resistance matrix by Ry, then the

process can be expressed mathematically as

R" = ") ! + (R, - Ryp), (2.48)

where far-field interactions are contained in (M*)"!, while near-field
interactions are accounted for in (R,z - R;5). In Chapters 3, 4 and 5 it
will be shown that R* is a very accurate approximation to the exact resis-
tance matrix (or equivalently that M*=(R*)"! is an accurate approximation to
the exact mobility matrix), and can describe hydrodynamic interactions in
hard-sphere dispersions of any configuration. A FORTRAN computer program in

which the matrices of (2.48) are evaluated is given in Appendix B.
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CHAPTER 3

TRANSPORT PROPERTIES OF SPATIALLY PERIODIC DISPERSIONS

Previous studies of the transport behavior of ordered arrays of spheres
provide a set of results which can be compared with those obtained using the
Stokesian dynamics method. One motivation for choosing such systems for
comparison is that a relatively complete set of data is available for these
ordered arrangements. In addition, the imposition of periodic boundary
conditions, which is necessary when using the Ewald summation technique,
complicates studies of disordered systems since the size of the periodic
unit cell can affect the system behavior. No such ambiguity is present in
studies of completely ordered arrays. Thus, even though the Stokesian
dynamics method is applicable to hard-sphere systems of any geometry in a
periodic unit cell of arbitrary size, it will be worthwhile to verify the
accuracy of that method by performing preliminary calculations using simple

cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) arrays

of hard spheres.

3.1 HYDRAULIC PERMEABILITY AND SEDIMENTATION VELOCITY

The hydraulic permeability of a spatially periodic porous medium and
the sedimentation velocity of a spatially periodic suspension are two
closely related properties which will serve as a starting point for calc-
ulations on ordered systems. The discussion here will be primarily con-

cerned with the former property of porous media. However, calculation of
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the sedimentation velocity will follow directly as shown in the paragraphs

to follow.‘

The hydraulic permeability k is a parameter commonly used to relate the
average velocity and pressure drop for flow through a porous medium, and is

defined by Darcy’s law:
k
(u) = - 2 ¥p) . (3.1)

Equation (3.1) is a mathematical expression of a balance between hydro-
dynamic drag forces and pressure forces. In order to facilitate comparison
with data from the literature, the results here will be presented as drag

coefficients K defined by
(F) = K(u) . | ‘ (3.2)

For systems that are not’isotropic, the scalar X in (3.2) can be expressed

as a tensor K. For isotropic systems, the coefficient K is directly related

to the hydraulic permeability k by

k=-2__1 | (3.3)

where ¢ is the volume fraction of particles.
The calculation of the average drag coefficient for a system of spheres

can be accomplished by averaging the resistance matrix ﬁ;u. This averaging
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process is equivalent to calculating (F) in (3.2) for a medium in which U*=0

for all particles a. The resulting expression for X is

~
i
Wi

N N
o (§F ) YR ) (3.4)

a=1 p=1

Here RZf is the portion of R* that relates the force on particle a to the
velocity of particle B, and the notation tr refers to the trace of the
averaged 3x3 matrix. The matrix Rfy can be obtained by inverting either M
of (2.1) or M* of (2.30), and then removing the terms coupling forces and
velocities and grouping them into a matrix of dimension 3Nx3N.

For the cubic arrays of interest in this chapter, the forces and vel-
ocities of all the spheres in the lattice are the same. Thus, for these
systems the angle brackets around F in (3.2) and the sum over a given in
(3.4) are not necessary, but are included for later use with disordered
systems. In addition, for cubic arrays a sedimentation coefficient U,

defined by
(U) = U,F , (3.5)

where F is the force applied to all of the particles, is easily calculated

using
U --11(— , (3.6)
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where, again, Ug and K are expressed as scalars because of the isotropic
nature of these arrays. The equality (3.6) is not true for disordered
systems, since averaging ﬁ;u as in (3.4) and then inverting K is not in
general equivalent to first inverting the resistance matrix to obtain Mj;
and then averaging that mobility matrix. Only for spatially periodic
arrays, in which all particles have the same forces and velocities, do these
averaging and inverting operations commute (cf. Saffman, 1973). 1In light of
(3.5), it will not be necessary to report sedimentation velocities explic-
itly for ordered arrays.

The drag coefficient results for SC, BCC, and FCC arrays obtained using
(3.4) are plotted in Figure 3.1(a,b,c) along with the results of Zick and
Homsy (1982). Zick and Homsy's solution was obtained by expanding the
spatially periodic Green function for a periodic array of point forces
(Hasimoto, 1959) in moments, an approach that is conceptually similar to
that described in Chapter 2, but differs in that it is restricted to use
with only periodic systems. For the purposes of this comparison, Zick and
Homsy'’s results can be considered exact since as many as twelve moments were
included in their expansion. (Recall that torques and stresslets correspond
to only the first moment.)

As can be seen from all three plots of Figure 3.1, the drag coef-
ficients calculated using the Stokesian dynamics method are quite accurate
up to moderate volume fractions (20-40%), but significantly underestimate
the value of K as the limiting value of ¢ is approached. (The limiting
values of ¢ for SC, BCC, and FCC packing are 0.5236, 0.6802, and 0.7405,

respectively.) Thus, the far-field interactions included in Stokesian
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Figure 3.1a - The dimensionless drag coefficient X/6nua is plotted as a
function of volume fraction ¢ for an SC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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Figure 3.1b - The dimensionless drag coefficient K/6xupa is plotted as a
function of volume fraction ¢ for a BCC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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Figure 3.1c - The dimensionless drag coefficient X/6mua is plotted as a
function of volume fraction ¢ for an FCC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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dynamics appear to be sufficient to obtain accurate results at the lower
volume fractions studied, but the interactions necessary to obtain compar-
able agreement at high ¢ seem to be lacking.

The discrepancy at high volume fraction can be understood by con-
sidering how the resistance matrix R* is constructed. The basic assumption
made is that, for nearly touching spheres, lubrication interactions are
dominant, and thus one can safely neglect the higher moments in (2.26).
However, for flow through densely packed arrays of spheres, only a negli-
gible fraction of the fluid flow takes place in the small gaps where
lubrication is important. This is the reason why K remains finite even in
the limit of close packing. The drag force on a given sphere in a tightly
packed array results almost entirely from flow through the large interstices
that exist even at the highest possible values of ¢. Thus, lubrication
interactions are never dominant for hydraulic permeability (and sedi-
mentation velocity) calculations, and higher moments in the expansion (2.26)
cannot be safely neglected for the entire range of ¢.

The close correspondence between the method used here and that of Zick
and Homsy makes it possible to examine the magnitude of these higher moments
and, in doing so, assess the accuracy of the mean-field approximation dis-
cussed in the previous chapter. In Table 3.1 values of the drag coefficient
calculated by expanding to the level of dipoles (torques and stresslets) and
quadrupoles are compared for arrays at the limit of close packing. The
mean-field approximation (2.24) was used to include the effect of quad-

rupoles in Stokesian dynamics, whereas Zick and Homsy's results incorporate

them exactly. Clearly the mean-field approximation captures a large portion

41



Table 3.1

Values of K/6mpa from Stokesian dynamics and from Zick and Homsy are
compared for SC, BCC, and FCC lattices at the limit of close packing.

Stokesian Dynamics Zick and Homsy (1982)
j# moments? 1 2 1 2 COMPLETE
SC 9.53 19.95 9.53 28.04 42 .14
BCC 9.6 84.5 9.6 86.1 162.9
FCC 8.4 101.8 8.4 135.8 435

2A solution involving only the first moment corresponds to including force,
torque, and stresslet terms in the moment expansion (force terms here
include the (a®/6)F contribution from (2.23)). For Stokesian dynamics, the
second moment corresponds to including the mean-field quadrupole term of
(2.24), while Zick and Homsy account for the quadrupole contribution
exactly. The complete results reported by Zick and Homsy were
extrapolated from the solution including the first twelve moments.
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of the quadrupolar contribution. However, it is also apparent that even the
complete solution through the level of quadrupoles is inaccurate at high ¢.
Indeed, in order to obtain 10% accuracy at the limit of close-packing, Zick
and Homsy found it necessary to include four, six, and eight moments for SC,
BCC, and FCC lattices, respectively. Since including the complete quad-
rupolar contribution would increase the size of the matrix in (2.30) from
11INx11N to 26Nx26N, resulting in a 13-fold increase in computational effort,
it is doubtful whether the increase in accuracy justifies a more complete
treatment of the quadrupole terms than that offered by the mean-field

approximation.

3.2 SHEAR VISCOSITY

Unlike the case of flow through a periodic porous medium, when a cubic
array is sheared there is relative motion between the spheres, and thus
singular lubrication interactions become dominant as ¢ is increased. Nunan
and Keller (1984) have calculated the shear viscosity of such an array over
a wide range of ¢ using a method similar to that of Zick and Homsy (1982).
However, because of singularities caused by lubrication forces, this method
could not be used in the limit of close packing, and as a result the authors
also provide asymptotic results valid for comparison at high values of ¢.

As stated in (2.12), the particle contribution to the bulk stress in a
system with (£)=0 is n(S). (The average rotlet (£) is zero for particles in
a linear shear flow.) The shear viscosity of a suspension relates (S) to
(g), and can be found by solving (2.30) for the particle stresslets under

the condition that F*=L*=0 for all a. Solving for the stresslets, and

43



averaging the resulting matrix that relates the stresslets to the average

rate-of-strain, one obtains

(8) = -{a):(e) ., (3.7)

where the fourth order tensor A is given by

-1
. - : :

RLE

A= (Ry Rgq ) - [

* *
RLU RL Q

The symmetry of periodic lattices guarantees that the first term on thz
right-hand side of (3.8) (the product of the three matrices shown) will be
zero for the calculation considered here, but it is included for generality.

The average of A is given by

N N
(a) = % E } a*f (3.9)
a=1 f=1

where A*? relates the stresslet of particle a to the average rate-of-strain

(e).
The symmetry of the cubic lattice also allows one to completely specify

all the elements of the tensor A in terms of two scalar coefficients, a and

B, according to (cf. Nunan and Keller, 1984 and Zuzovsky et al., 1983)

44



2 1
Ayjir = 5 (W4B)(8;56,1+65,855-3 8;3651) + w(@-B)(§i5x1-3 8:581), (3.10)

where §; ;4; 1is unity when all four indices are the same and zero otherwise.
The quantity p in (3.10) is the viscosity of the pure fluid, and the scalars
a and B will be referred to as the a and B8 coefficients of shear viscosity,
respectively. It is important to note that a and B are the viscosity coef-
ficients corresponding to a single, instantaneous configuration of par-
ticles, and are not time averages.

The Stokesian dynamics results for a and B and those of Nunan and
Keller (1984) are plotted as a function of ¢ for SC, BCC, and FCC lattices
of spheres in Figures 3.2(a,b), 3.3(a,b), and 3.4(a,b), respectively. The
agreement is excellent for every case except the B coefficient of the FCC
lattice. However, Nunman and Keller reported significant difficulty in
obtaining convergence with increasing number of moments for that calcu-
lation, and thus there is some doubt as to whether their result should be
considered exact for that particular case.

For comparisons in the limit of close packing, the aforementioned high
volume fraction asymptotic results can be used.