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ABSTRACT

A method has been derived for calculating hydrcdynamic interactions in
unbounded suspensions and porous media comprised of spherical particles.
The method relies upon a separation of these interactions into far-field and
near-field components. The far-field, or long-range, interactions are
calculated in terms of an expansion in moments of the force density of each
particle surface about its center, and in principle can be carried out to
any level of accuracy that is desired. These far-field interactions are
properly renormalized and are summed using an accelerated convergence scheme
known as the Ewald summation technique. The near-field, or short-range,
interactions are accounted for in a pairwise additive fashion using the
exact, two-sphere interaction results available in the literature.

This new method of calculation, referred to as the "Stokesian dynamics"
method, has been used to calculate transport properties of both spatially
periodic and disordered suspensions and porous media. The ;tudies on spa-
tially periodic media allowed the accuracy of the method to be examined
through comparisons with the relatively complete set of results available
for those systems. Properties such as the hydraulic permeability, sedi-
mentation velc-ity, and shear viscosity were calculated for cubic arrays of
spheres. It was found that, in almost every case, Stokesian dynamics gave
highly accurate results over the full range of volume fractions possible for
hard spheres.

Calculations for disordered media were accomplished by Monte Carlo simu-
lation, in which a series of disordered samples were generated and their
transport properties calculated and averaged. In addition to the properties
mentioned above for periodic media, short-time self-diffusion coefficients
and short-time hindered diffusion coefficients were calculated for single,
Brownian particles in disordered suspensions and porous media, respectively.
The results were compared with other theoretical and experimental results
reported in the literature, and again excellent agreement was obtained in
almost every case. It should be emphasized here that Stokesian dynamics
allowed all the transport properties listed above to be calculated from a



single theoretical framework, and also permitted what theoretical pre-
dictions do exist for disordered systems to be extended to arbitrarily high
volume fractions.

Finally, two approaches have been developed for calculating long-time,
macroscopic transport coefficients for a spherical solute in a matrix of
fibers. The first method is an effective medium approach based on Brink-
man's equation, and has the advantage of being applicable to systems for
which very little microstructural information is available. In the second,
and more rigorous calculation, the Stokesian dynamics method is used to
obtain short-time, or local hydrodynamic coefficients for spherical par-
ticles in arrays of bead-and-string fibers. These local coefficients are
used to evaluate global coefficients, which govern transport over macro-
scopic length scales, through application of generalized Taylor dispersion
theory. Numerical results have been obtained for two different spatially
periodic fiber lattices over a wide range of volume fractions, and for
ratios of solute radius to fiber radius ranging from 0.5 to 5. Comparisons
between the effective medium model and the generalized Taylor dispersion
theory results consistently showed good qualitative agreement, and agreed
quantitatively at volume fractions low compared to the critical volume
fraction (i.e., the volume fraction where macroscopic transport ceases). In
addition, the effective medium model predictions of hindered transport
coefficients were found to be in excellent agreement with experimental data
obtained from the literature, without the use of adjustable parameters.
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CHAPTER 1

INTRODUCTION

The determination of the effective transport properties of suspensions

and porous media has been a topic of theoretical and practical interest for

over a century. The presence of a solid phase immersed in a continuous,

fluid phase drastically alters both fluid flow and solute transport in such

systems. In general, these effects depend strongly on complex, hydrodynamic

interactions that occur between the various substituents of the solid phase.

These interactions decay slowly with distance and are significantly in-

fluenced by the overall configuration of the system of interest. Thus, the

focus of past, as well as present, efforts has been on developing methods

for calculating these interactions, thereby allowing the subsequent calcu-

lation of the effective transport parameters themselves. Research in this

area has made significant advances in recent years, particularly with regard

to suspensions and porous media that can be modeled as dilute suspensions of

hard spheres. However, there are many important applications in which these

requirements are overly restrictive, and a more general approach would be of

great use.

One important application is the transport of large solutes through

fibrous media in which the interfiber spacing is comparable to the dimen-

sions of the diffusing macromolecule. Such media include gels and a variety

of membranes. In systems of this type, transport is hindered by the afore-

mentioned hydrodynamic interactions which take place between the solute and

fiber surfaces. In addition, steric interactions reduce the volume acces-

sible to the solute relative to that in bulk solution, resulting in a



partitioning effect. Partition coefficients for spherical solutes in random

arrays of fibers can be predicted theoretically both in the dilute limit

(Ogston, 1958) and for finite concentrations (Fanti and Glandt, 1989). In

contrast, little or no information on the increased hydrodynamic resistance

experienced by a sphere in a fibrous medium has been available, and hence

previous attempts to model transport in such systems have neglected the

effects of hydrodynamic interactions entirely (Ogston et al., 1973; Curry

and Michel, 1980; Peppas and Reinhart, 1983). However, the increased

hydrodynamic drag experienced by a solute surrounded by a fibrous medium

could be at least as important an effect as steric partitioning; clearly its

overall significance cannot be known without further study.

A useful starting point for studying the effects of hydrodynamic inter-

actions in suspensions, fibrous media, and other porous media is to examine

previous hydrodynamic investigations of simpler systems. Such studies have

by and large concentrated on examining the transport properties of dilute

dispersions of hard spheres. Thus, it would be helpful to explore ways of

extending the existing understanding of hard-sphere hydrodynamic inter-

actions, and to employ that new knowledge towards gaining insights on

problems with different geometries.

Perhaps the first and most influential contribution to our under-

standing of hard-sphere hydrodynamics was Stokes' celebrated calculation of

the settling velocity of a hard sphere in an unbounded, pure fluid under

creeping flow conditions (Stokes, 1851). If the sphere is considered to be

settling under the influence of gravity, it could be thought of as one

particle in a sedimenting suspension. Alternatively, if the particle is

held fixed while surrounded by a moving fluid, then it could be thought of



as modeling a particle in a porous medium. Stokes' calculation thus

provides the starting point for all subsequent modeling of hard-sphere

dispersions. However, corrections to such single-particle models, which can

be significant even for volume fractions much less than unity, can only be

obtained by properly accounting for the particle-particle interactions that

occur in both suspensions and porous media.

The transport properties commonly associated with suspensions include

the sedimentation velocity, the dispersion coefficient of the suspended

particles, and the viscosity of the fluid-particle continuum. Recent

developments in calculating hydrodynamic interactions in such systems have

significantly advanced our ability to calculate each of these properties.

In particular, the solution to the theoretical problem of two spheres

interacting under conditions of low Reynolds number has made an important

contribution (Jeffrey and Onishi, 1984; Kim and Mifflin, 1985), principally

through the application of pairwise additivity assumptions. Examples of

studies applying pairwise additivity are Batchelor's (1972, 1976) and Glen-

dinning and Russel's (1982) calculation of sedimentation velocities and

particle dispersion coefficients, and Batchelor and Green's (1972) calcu-

lation of the effective viscosity of a suspension to 0(02), where 0 is the

particle volume fraction. Unfortunately, the use of pairwise additivity is

only accurate for very dilute systems, in which the interaction between two

particles is likely to be unaffected by the presence of a third particle.

For higher volume fractions, at which three or more particles interact

simultaneously, it is important that many-particle interactions be accounted

for properly.



At first glance there appears to be little difference between sedi-

mentation of a suspension, in which particles are settling through a

stagnant fluid, and flow through a porous medium, in which fluid is flowing

past particles that are held immobile by externally applied forces and

torques. However, as discussed by Saffman (1973), interactions between

particles under these two types of conditions are fundamentally different.

These differences essentially result from the fact that the externally

applied forces and torques present in a porous medium have the effect of

screening hydrodynamic interactions between particles, causing them to decay

more rapidly with distance than in free suspensions. Previously developed

theories concerning interactions in porous media often incorporate this

screening behavior directly by considering interactions within an effective

medium of particles and fluid. Examples of this include the hydraulic

permeability calculations of Brinkman (1947) and Kim and Russel (1985), and

the calculation by Freed and Muthukumar (1978) of the mobility of a sphere

moving through a bed of stationary spheres. These effective medium ap-

proaches are quite accurate when the influences that dominate the behavior

of the solute can be attributed to the presence of the porous medium as a

whole, and not to specific geometric characteristics of the microstructure.

This is the case when the dominant hydrodynamic interactions occur over

distances large compared to the solute dimensions, such as in a dilute

dispersion of hard spheres of equal radii.

Due to the contributions of these earlier works, several features that

one expects to find in a general method for evaluating hard-sphere inter-

actions are now evident. To extend existing calculations of properties of

hard-sphere suspensions beyond the dilute limit, the simultaneous, many-



particle interactions present in such systems must be properly taken into

account. These interactions must also account for the strong, lubrication

forces that can act upon nearly touching spheres if the method is to be

useful at high volume fractions, where dense clusters of particles are most

likely to be present. Finally, the screening behavior characteristic of

porous media should be exhibited by any model for infinite dispersions of

spheres held fixed in space.

The Stokesian dynamics method described by Brady et al. (1988) combines

these desirable characteristics. The method relies upon a separation of

hydrodynamic interactions into far-field and near-field components. The

far-field, or long-range, interactions are calculated in terms of an

expansion in moments of the force density on each particle surface about its

center, and in principle can be carried out to any level of accuracy that is

desired by including more terms in the expansion. The near-field, or short-

range, interactions are included in a pairwise additive fashion. In other

words, near-fiel. interactions between two spheres are calculated under the

assumption that the effects of the other spheres in the system are negli-

gible, an assumption justified by the short-range nature of these inter-

actions. Thus, far-field, many particle interactions are calculated

rigorously in a manner that does yield screening behavior in porous media

(Durlofsky and Brady, 1987), and near-field interactions are included in a

manner that preserves the strong, lubrication interactions between nearly

touching spheres.

Stokesian dynamics was originally used as a method of performing

dynamic simulations of suspensions of spherical particles in which the

sphere centers all lie in the same plane (i.e., a monolayer). These early



simulations used only pairwise additivity to calculate hydrodynamic inter-

actions. However, unlike the work of Batchelor (1972, 1976) and Glendinning

and Russel (1982), pairwise additivity of forces rather than velocities was

used, as it was found that the lubrication interactions necessary to prevent

sphere overlap are preserved by that approach (Brady and Bossis, 1985). The

more accurate method of including far-field interactions using a moment

expansion was developed by Durlofsky et al. (1987), and is valid for systems

with finite numbers of spherical particles. This dissertation extends the

work of Durlofsky et al. to fully three-dimensional, hard-sphere dispersions

that are infinite in extent. It is this latter method, which is valid for

unbounded systems, that shall henceforth be referred to as Stokesian

dynamics (cf. Brady et al., 1988).

Several means are available for examining the accuracy of this method.

These include calculations of the hydraulic permeability (Zick and Homsy,

1982) and viscosity (Zuzovsky et al., 1983; Nunan and Keller, 1984) of

spatially periodic arrays of spheres, and experimental measurements of the

self-diffusion coefficient (Pusey and van Megen, 1983; Ottewill and Wil-

liams, 1987) and viscosity (van der Werff et al., 1989) of disordered

suspensions of spherical particles. In addition, there are the previously

mentioned analytical results for dilute systems that can be used for

comparison at low volume fractions.

One advantage of the Stokesian dynamics method is that it places no

restrictions on the locations of the particles. Thus, it can be readily

applied either to dynamic simulations, in which particle trajectories are

followed over time, or to Monte Carlo simulations, in which transport

properties for instantaneous configurations of particles are calculated and



averaged over several realizations. Futhermore, the Stokesian dynamics

method allows the simultaneous investigation of diffusion, sedimentation,

permeability, rheology, etc.; all of the previously mentioned transport

coefficients for both suspensions and porous media can be determined for any

microstructural arrangement of spherical particles.

This ability to calculate hydrodynamic interactions for any system of

hard spheres has important implications for systems, such as fibrous media,

that resemble neither spatially periodic nor disordered hard-sphere dis-

persions. The usual approach to modeling hindered transport in media with

unknown or highly complex microstructures has been to represent the porous

medium as an assemblage of straight, cylindrical pores (Deen, 1987).

However, the precise meaning of model parameters such as pore radius is

unclear when applied to fibrous media. Thus, one important goal of theories

of hindered transport, which is to relate transport parameters to the

microstructure of the system, is very difficult to achieve with such an

approach.

To construct a more appropriate model, one can represent polymeric

chains as rows of aligned spheres that form "bead-and-string" fibers.

Interactions between spherical solutes and arrays of these "bead-and-string"

fibers can then be calculated using the Stokesian dynamics method, since

only hard spheres are present in the system. The interactions between the

mobile solute and the immobile fibers at any given location will determine

both the local mobility and the local velocity of that solute. These coef-

ficients can be calculated for different ratios of solute-to-fiber radius as

well as for different microstructural arrangements of the fibers, thus

allowing a variety of system geometries to be examined.



The term "local" used to describe the transport properties obtained

using Stokesian dynamics refers to the fact that these parameters are valid

over time scales so short that a solute does not move a distance comparable

to its own size. However, typically one would like to calculate global

coefficients, governing transport over macroscopic length scales. Gener-

alized Taylor dispersion theory, as developed by Brenner and Adler (1982),

provides a convenient way of calculating global coefficients from the local

coefficients obtained using Stokesian dynamics. A rigorous theoretical

framework for calculating hindered transport coefficients in fibrous media

can therefore be developed and applied to specific fiber configurations.

It has been mentioned that effective medium models are particularly

useful in porous media, since hydrodynamic interactions are strongly

screened in those systems. Since a fibrous medium is a type of porous

medium, one might expect that such an approach could be used as an alter-

native to the hindered transport calculations just described. An effective

medium model can be constructed in which Brinkman's equation (Brinkman,

1947) is used to calculate the hydrodynamic drag on a spherical macro-

molecule in a fibrous medium. This approach has been successfully applied

to the calculation of hydraulic permeabilities in disordered, hard-sphere

dispersions (Brinkman, 1947; Kim and Russel, 1985), but has yet to be used

to evaluate hindered transport parameters. -he relative simplicity of

Brinkman's equation allows one to predict such parameters knowing only the

radius of the diffusing solute and the hydraulic permeability of the fibrous

medium. Thus, an effective medium model could be of great use, particularly

when dealing with systems for which very little structural information is

available.



In Chapter 2, the details of the Stokesian dynamics method are de-

scribed, including the approach used to sum hydrodynamic interactions in an

infinite medium in a convergent and computationally efficient manner.

Results for transport parameters of spatially periodic suspensions and

porous media are then presented and compared with other theoretical results

in Chapter 3. In Chapters 4 and 5, transport parameters for disordered

dispersions of hard spheres, as determined by Monte Carlo simulation, are

presented and compared with a different set of theoretical results as well

as with experimental data.

Following this work on hard-sphere dispersions, two approaches to

calculating global coefficients for fibrous membranes and gels are described

in Chapter 6. The first is an effective medium approach based on Brinkman's

equation. The second, more rigorous approach involves using the Stokesian

dynamics method to obtain local coefficients, and then using generalized

Taylor dispersion theory to calculate global coefficients valid over macro-

scopic length scales. The results of these two approaches will be compared

for spatially periodic arrays of fibers, and comparisons will be made

between the predictions of the effective medium model and experimental data

reported in the literature.

Many of the results to be discussed in the following chapters have been

published in the scientific literature. A summary of the theoretical

development in Chapter 2 and the results for spatially periodic systems in

Chapter 3 can be found in Brady et al. (1988). The Monte Carlo simulation

results presented in Chapters 4 and 5 were reported in Phillips et al.



(1988a,b). Finally, the theoretical development and calculations regarding

hindered transport in fibrous media, which comprise Chapter 6 of this

thesis, are presented in Phillips et al. (1989a,b).



CHAPTER 2

THE STOKESIAN DYNAMICS METHOD

Calculations of hydrodynamic interactions between particles at low

Reynolds number are often classified as "mobility" problems and "resistance"

problems. In a mobility problem, particle forces and torques are pre-

scribed, and particle translational and rotational velocities are unknown.

The inverse, resistance problem corresponds to calculating particle forces

and torques given the velocities. Under creeping flow conditions these

dynamic and kinematic quantities are linearly related, and solutions for the

mobility and resistance problems for two hydrodynamically interacting

spheres are available in the literature (Jeffrey and Onishi, 1984; Kim and

Mifflin, 1985). In addition, a method has recently been proposed that gives

a very accurate approximation to the solutions for a finite number of

interacting spherical particles (Durlofsky et al., 1987). The goal of this

chapter is to extend the method of Durlofsky et al. to an infinite number of

interacting particles.

Calculation of hydrodynamic transport properties of infinite or

unbounded media is complicated by the long-range nature of hydrodynamic

interactions. These interactions decay as 1/r in suspensions of freely

mobile particles, where r is the distance between two spheres. Even in

porous media, where hydrodynamic interactions are screened, the rate of

decay is k/r3 , where k is the hydraulic permeability. The difficulties

caused by these slow rates of decay become apparent if, for example, one

attempts to sum the interactions experienced by a particle sedimenting in a

suspension of overall dimension R, where R is allowed to grow without bound

11



while the number density of particles n is held constant. As the value of R

is increased, the n.mber of new particles being added to the system grows as

O(R3 ), while the slowest decaying interactions contributed by each new

particle decay as O(1/R). Thus, the sum of all interactions diverges as R2

suggesting that this sum is an ill-defined quantity.

This problem has been recognized by several researchers in the past,

and so-called "renormalization" schemes have been successfully applied to

obtain expressions for such quantities as sedimentation velocities and the

bulk stress in a suspension (Batchelor, 1972; Batchelor and Green, 1972;

Hinch, 1977; O'Brien, 1979). The goal of these renormalization methods is

to account for the qualitative changes that affect how particles interact in

infinite as opposed to finite media. Of the various methods that have been

proposed, the one most convenient for use in conjunction with Stokesian

dynamics is that of O'Brien. This is because, unlike the other methods,

O'Brien's approach involves no preaveraging of hydrodynamic interactions,

and thus the capability for calculating hydrodynamic interactions for a

given, specific configuration of particles is preserved.

The use of O'Brien's method will insure that fully convergent expres-

sions are obtained for the sum of particle-particle interactions. However,

in order to obtain meaningful results, the actual evaluation of those sums

must be achieved in an accurate and computationally efficient manner. If

the infinite nature of the system is modeled using periodic boundary

conditions, then the Ewald summation technique (Ewald, 1921) can be used for

this purpose. Ewald's method, first employed by Beenakker (1986) to sum

hydrodynamic interactions, accelerates the convergence of lattice sums and

can be easily incorporated into O'Brien's renormalization procedure.



Finally, the interactions rendered convergent through the use of

O'Brien's method and summed using the technique of Ewald are far-field, or

long-range interactions. Near-field, or short-range, interactions decay

rapidly with distance and therefore can be calculated the same way for an

infinite as for a finite system. Thus, the method of including near-field

effects proposed by Durlofsky et al. (1987) can be used here with essen-

tially no modification.

2.1 RENORMALIZED HYDRODYNAMIC INTERACTIONS

As stated above, the linearity of Stokes' equations allows one to use a

linear expression in defining the relationship among the forces, torques,

and velocities of N' particles under creeping flow conditions:

( Z -{n (: :L ] (2.1)

Here U and 0 are vectors of dimension 3N' containing the particle transla-

tional and rotational velocities, respectively. Similarly, F and L are 3N'

vectors containing the forces and torques applied to the particles. The

angle brackets denote suspension averages, or volume averages over a region

(including both fluid and particles) large enough to represent the local

microstructure of the medium. The vectors (u) and (w) are the suspension-

average velocity and vorticity, respectively, and are related by (w) -

1/2(Vx(u)). The mobility matrix M, shown in partitioned form, relates the

two vector quantities.



To derive expressions for the mobility matrix, one can begin with the

integral representation of the solution to Stokes' equations (Ladyzhenskaya,

1963):

N'

u(x) - - J (x-y)o(y)nk(y) dSy

c-i1 S,
(2.2)

8 I (J (x-y)a C(y) + 2AKi jk(x-y)uj(y)) nk dSy.
Sr,

Here u(x) is the fluid velocity at some field point x in the fluid, A is the

fluid viscosity, and n is a unit normal pointing outward from the surfaces.

Also, the vector operations are expressed using the summation convention

(Whitaker, 1981), which requires that repeated indices be summed from 1 to

3. The first integral in (2.2) is an integral over the surface of particle

a, S., while the second is an integral over a macroscopic boundary Sr,. The

region bounded by Sr, contains the N' particles of the sum, and the surface

itself exists only in the fluid phase (i.e., the surface SF, does not cross

any particle boundaries S.). The tensor J is the Green function for Stokes

flow, given by

6ij r, rj
Jj (r) - r + , (2.3)

while

r i rJ rk
Kijk(r) - -3 .5(2.4)
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Here 61, is the identity tensor, and the vector r is equal to x-y, where y

is a vector to a point on either S, or Sr, (hence the subscript y on dSy).

The stress tensor a for a Newtonian, incompressible fluid is given by

oi, - -p61, + 2eij , (2.5)

where p is pressure and the rate-of-strain eij - 1/2(Viuj + Vjui).

In the renormalization method proposed by O'Brien (1979) it is assumed

that, if the radius of the region bounded by SF, is very large, then the

quantities Ji,(x-y) and Kijk(x-y) will change very little over an element of

area dS , that is large enough to contain both fluid and particles. Thus,

the integration can be performed using appropriately averaged values for the

stress and velocity terms. If one replaces SF, by an analogous surface SF,

which differs from SF, in that it is allowed to cross particle boundaries,

then the appropriate averages to be used in place of a and u in (2.2) are

the suspension averages (~) and (u). However, making this transformation

from primed to unprimed surface also has the effect of generating a third,

quadrupolar contribution to the surface integral as shown by Glendinning and

Russel (1982). Replacing g and u by their averages and including this

additional term yields for the velocity

N'

u i (x) - - 8 Jij(x-y)Cjk(y)nk(y) dSy

a-l So

(2.6)

-8A- (Jij(x-y)(ajk nk + 2pKijk(x-y)(uj nk k ijQk'lj1)nl dS.
Sr



Here n with no subscript is the number density of particles, the derivative

VkJij is with respect to y, and the suspension-average quadrupole density of

the particles (Qklj) is given by

(Qk'lj) - N'1 Q , (2.7)

where

QIt - -(yk- (Ykx)(yY-x~ )jm m dS, (2.8)

So

and xk is the center of particle a.

The expression (2.6) is a completely convergent solution for the

velocity u at a field point x. However, it remains to relate the suspension

average stress to the average rate of strain and other terms contributed by

the presence of the particles. Following Hinch (1977), one obtains for the

averaged form of Stokes' equations

V-(.) - -n(F) , (2.9)

where the suspension average of a is given by

(a) - 1 dV (2.10)

V

and



N'

a-i

(2.11)

The volume in (2.10) includes both fluid and particles, and must be large

enough to reflect the local microstructure of the unboun ion.

expression for the suspension average stress can be obtained by following

the reasoning of Landau and Lifshitz (1959) and Batchelor (1970), yielding

(aj,,) - - 6 + 2i.&(e j) - n((S.j) + (-j) ) , (2.12)

where (p) and (!) are the suspension average pressure and rate-of-strain,

respectively,

N'

(ij) j and (2.13)

The particle stresslet S is the symmetric portion of the first moment of the

force density about the particle surface:

SM - - ( Yik(Y-X) + j k (Yi -X) ijlk (-))nk dSy . (2.14)

Sa

The rotlet 2 is the antisymmetric complement to S



S=- - 2 (ik(yj-X) - Ujk(Yi-x ))nk dSy , (2.15)

SE

and is related to the torque L by

LI - ~ijk k (2.16)

where the third-order tensor cijk is the Levi-Civita tensor. Finally, the

average pressure may be obtained via a macroscopic balance between pressure

forces and forces exerted by the particles on the fluid, yielding

(p) - n(Fi)(x1 -x'), (2.17)

where xO is some reference point at which the pressure is set to zero. The

expression (2.12) is valid so long as the externally imposed force is dis-

tributed evenly throughout the interior of the particles (i.e., for a sus-

pension sedimenting under the influence of gravity, the density of the

particles must be constant).

Using the divergence theorem, the latter, surface integral in (2.6)

(i.e., the integral over Sr) can be rewritten as

81ri p Vk[Jij(jk) + 2pKijk(uj) - nVJ1i(Qjklj ) ] dVy

V'

(2.18)
81 [Jij (jk )nk + 21Kijk (u)nk - nVkJij (Qlj )nl] dSy,

S,



where S, is a spherical surface that is completely enclosed by Sr and

surrounds the field point x, and V' is the volume between the surfaces S,

and Sr. Substituting (!) from (2.12) into the volume integral in (2.18),

and using (p) from (2.17), one can rewrite that volume integral as

n
8-71r fJ Jt(Fj) + Rij(Lj) + Kijk(Sjk) + VkVlIJ(Qijl)) dVy (2.19)

V'

where the Green function, or velocity propagator, for a point torque Rij is

given by

rk ki k iik)Rij i •:jk rT = Clkj 4 (VkJi " V1Jik) (2.20)

Finally, taking the

V' in (2.19) can be

surface integral in

limit as the surface S, shrinks to a point, the volume

replaced by V, the total volume enclosed by Sr , and the

(2.18) becomes

(2.21)

Substituting (2.21) and (2.19) into (2.6) yields the desired convergent

expression for ui(x):

(Ui (X)) + 2n~ [2(Qjji) - (Qi'jj)]



N'

ui(x) - (ui(x)) [2(Q!Ji) - (Qi;jj) 8q - Jiaknk dSy

a-i So

(2.22)

n (Jij(Fj) + Rij(Lj) + Kijk(SJk + VkVlJiJ(Qj) } dV,

V

The expression (2.22) is valid for systems of arbitrarily large size

because, as the system size is increased, terms in the volume integral will

cancel the divergent terms in the sum, yielding a finite result. For an

infinite suspension of sedimenting particles, it is this volume integral

which supplies the "backflow" of fluid, relative to zero-flux axes (u)-O,

that results from the pressure gradient necessary to balance the excess

weight of the particles. The presence of this "backflow" term has been

noted previously for periodic (Hasimoto, 1959) and disordered suspensions

(Batchelor, 1972).

The quadrupole terms in (2.22) can be greatly simplified by equating

the quadrupole moment of each particle with its "mean-field" value pro-

portional to (F). To see how this can be done, it is convenient to express

Qk11 in terms of its trace and the irreducible quadrupole moment density

Q'lj, defined by

Sa
2

QkIj -Qkj 6 k Fjk . (2.23)

The "mean-field" value of Q*lj can be obtained by replacing ! by (') and

evaluating the integral in (2.8), remembering to subtract off the trace as

in (2.23). The result is



S+(F6 2
Qk =  10 6frpa 6km 6 ji 1 1 6 k 6 jm) (2.24)

Making use of (2.23) and (2.24), (2.22) can now be rewritten as

N'(Fi) 3 Qijj> 1
ui(x) - (u6(x)) 2 6Fa 5 6a 3 - 8 JNijjknk dSy

a-i Sa

(2.25)

-~ 8 ((1+ - V2 )J(Fj) + Rij(Lj) + Kijk(Sjk)

+ VkVlJij(Qklj)) dV,

Here 4 is the volume fraction of particles, given by n(4/3ra3 ). The

accuracy of using the mean-field approximation given in (2.24) will be

examined in the next chapter.

To calculate the mobility matrix of (2.1), it will be necessary to use

the fluid velocity given in (2.25) to obtain translational and rotational

velocities of particles in terms of applied forces and torques. This can be

accomplished by taking two additional steps. First, one expands the surface

integral in (2.25) in terms of moments of the force density c.n:



f Jij(x-y)Ojknk dSy - Jij(x-x) aknk dS
So SM

- j(x-y) (y1-x')ajknk dSY (2.26)

SM

1 y y JiJ(x-y) fFa (Y.-x)(yz-xT)ajknk dS,
S,

The zeroth moment of a-n, given by the first integral in (2.32), is the

force on particle a. The first moment, given by the second integral in

(2.32), is a tensor which can be separated into symmetric and antisymmetric

parts. These are given by ýS and 2' in (2.32) and (2.33), respectively.

The second moment, which contributes the quadrupole terms of the expansion,

can be broken down as shown in (2.32). The portion of the quadrupole term

that is proportional to the force (or to the zeroth moment) can be con-

veniently included in the first term of the expansion by replacing Jij(x-x3)

2
by (1.+-V2)Jij(x-x3). Thus, this expansion process relates the fluid

velocity to the forces, torques, and stresslets of the particles, and could

be carried further to include higher moments (octupoles, hexadecapoles,

etc.) if desired. For this development, the expansion will be truncated at

the level of the first moment (torques and stresslets), but the trace of the

quadrupole term that contributes a term proportional to the particle forces

will be included since this requires no additional computational effort.

The second step in calculating the mobility matrix is to use (2.25) and

(2.26) in conjunction with Faxen formulae (Faxen, 1927) to determine the

particle velocities. For systems of equally sized spheres, these formulae



are

Ff - 1 (I+ a 2 V2- (ui(x 6rpa + ( 1 + 6- V ) u,(x")  (2.27a)

L* 1
n - (wi(x")) - a + JkVJu(x') (2.27b)

and

S*
-(ei - ( 2 0 / 3 )xa3 + C I+ 10 V2 ) ej (xa) (2.27c)

Here, u;(x') is the velocity disturbance caused by all the particles except

for particle a, and e' (xa) is the rate of strain of the disturbance flow,

egj - 1/2(Vjuf+Vi u ').

Substituting (2.25) and (2.26) into (2.27) will now yield expressions

for the particle velocities in terms of forces, torques, and stresslets.

Making these substitutions, but leaving the integral in (2.26) in its

unexpanded form to simplify the result, one obtains the following convergent

expressions:

T(F 3 3 (Qijj > Fi
UT - (u (x')) - • 6ira 5 •  6ira 3 +6 3'6xjpa3 6wpa

1 C r 2
8 ( 1 + a- V2 ) Jijjknk dSn (2.28a)

B,'a S,

- 2( 1 + 2  J2  i(Fj) + Ri j(L + Kijk(Sj )
V

+ VkVlJij(Qklj)) dVy



8-7 8irua-'a + rp a 87rp Uf 2 ijk VJi kal' dS

flo, so

(2.28b)

f 2 JVkj(Jkl(Fl) + Rkl(L1) + Kklm(Slm)) dVy
V

and

S(S,) Si j a2
-(e(x)" "(20/3)rpa + (20/3)xia 3  87r# L 1+ Vym ikaklnl dSy

0 a So

(2.28c)

8~- VYI" ik(Fk) + Rk () + Kik t (Skl)) dVy

V

Here the operator VSym acting on a vector vi is defined by V3ym ,

l/2(V vi+Vivj). In obtaining the term O(Fi)/6rpa in (2.25a), one should

note that it is necessary to apply the (a2/6)V2 operator from (2.27a) to the

surface integral of (2.18). This results in a term 4(Fi)/12rja being added

to (2.21), which when included yields the result shown. Finally, the

quadrupole term in (2.28a) can be evaluated using (2.24), giving

3 _Qi_)_ 1 (Fi)
- 3 ia 6rpa (2.29)

Hence, when the approximation (2.24) is used, (Qijj) is proportional to

(Fi). In addition, quadrupole terms in the volume integral of (2.28a) and

in the surface integrals of (2.26) and (2.28a) can be included with terms

proportional to V2 J. Thus, from this point in the development forward it
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will not be necessary to include quadrupoles in the formulation explicitly.

Making use of (2.28) along with (2.29) and the expansion (2.26), one

can now evaluate the terms of a mobility matrix relating particle velocities

with forces, torques, and stresslets. This relation can be expressed using

a partitioned matrix as follows:

U - (u) MUF MUL Mus F

S- MaF MOL Mns L (2.30)

- I(0MEF MEL MES J

If higher moments than those shown in (2.26) were included, then additional

terms would be added to the bottom of the vectors on both the left- and

right-hand sides of (2.30). For example, if all the quadrupole terms were

to be included, a third-order tensor with each element equaling zero could

be added below -(•) on the left-hand side (note that VV(u) can only be non-

zero in a system with physical boundaries), while the third-order quadrupole

tensor Q could be added below the S on the right-hand side. An additional

Faxen formula would be required to evaluate the new components of the

mobility matrix.

Stresslets and all higher moments are induced moments which are not

applied and must be obtained as part of the calculation. For example, given

the value of (e) one could solve for S in terms of F and L, and from that

solution derive an equation with the form of (2.1). A suspension sed-

imenting in an otherwise quiescent fluid has (e)-O, and therefore



-- MS (EF MEL ) [F , (2.31)

whence

U-(u) MU F Mus -1 Fu-< . u _ M .( MES (MEF MEL 1 )
M-F M MA LNs L

(2.32)

The entire matrix in (2.32), including the matrix accounting for stresslet

interactions, represents the far-field portion of M in (2.1) for any system

with (e)-0. In a similar manner, higher moments than those shown in (2.30)

can always be incorporated into a solution of a form that allows one to

calculate particle velocities given the applied forces and torques, or vice

versa.

2.2 EWALD SUMS

The solution for the particle velocities given in (2.28) is rigorously

correct and absolutely convergent. However, as a practical matter, compu-

tation of the difference between the integrals and sums in these equations,

which is the convergent quantity that is needed, can prove quite difficult.

This is a result of the slow decay of hydrodynamic interactions, and has the

effect of requiring one to deal with very large systems and large numbers of

spheres. In order to reduce the number of particles needed and accelerate

the convergence of the sum and integral terms, one can deal with a finite
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unit cell containing N particles, and impose periodic boundary conditions as

a means of modeling the true, infinite nature of the system. Choosing this

approach allows one to make use of the Ewald summation technique, first

developed by Ewald (1921) and later applied to hydrodynamic problems by

Beenakker (1986).

Previous attempts to model three-dimensional, infinite systems using

periodic boundary conditions without properly summing all hydrodynamic

interactions have at times yielded aphysical results (Dickinson, 1985), a

fact that has been attributed to loss of positive definiteness in t'e

mobility matrix. The characteristic of positive definiteness is important

in that it insures the dissipative nature of the system (i.e., that mechan-

ical energy is dissipated rather than created). Correctly summing the long-

range hydrodynamic interactions, which can be accomplished using Ewald sums,

insures that the mobility matrices will never lose positive definiteness.

To demonstrate the procedure, it is convenient to use the form of

(2.28a) appropriate for a system so dilute that each sphere only feels the

zeroth moment (point-force) interactions of the other spheres. This is

obtained by removing all interaction terms related to the finite size of the

spheres, resulting in the following expression:

N

UT- ("ui(x)" - 67ra + 81rp~tF - 8J J iJ i(Fj) dV (2.33)

Y -1 0

Here - labels the unit cells, 6 labels particles within a given unit cell,

and the restriction f'a only refers to the unit cell 7-1.
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To sum the interactions using the Ewald method, one can use the fact

that Jij in (2.3) can be rewritten as

Ji (r) - (V26j - •i~v)r .(2.34)

One can therefore write

3 J (r) - Mf(r) + Mi ' (r) (2.35)

where

M!)j(r) - (6ijV 2 - VVj)(r erfc(ýr)) (2.36)

and

M (r) - (62 - ViVj)(r erf((r)) . (2.37)

Here ( is a convergence parameter with units of inverse length, erf and erfc

refer to the error function and the complement of the error function, res-

pectively, and the factor of 3/4 has been included for convenience.

The sum in (2.33) can now be rewritten as

6 M(l ) (x-xr)F - M A)(r-O)Fj + M(2)(xa-xJ)F , (2.38)

- #-1 r B-1

where the restriction R#a has been left off the sum over M2 ) (xa-xP), but

the resulting additional term has been cancelled by M(2)(r-0). The ad-

vantage of writing the sum of (2.33) in the form shown in (2.38) is that
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convergence is greatly accelerated. The sum over M1 ), which depends on

erfc(ýr), decays rapidly with distance and therefore poses no computational

difficulties. The second sum, which depends on erf((r), can be Fourier

transformed and converges rapidly in reciprocal space. The sum on the

reciprocal space lattice can be related to a sum over real space using the

Poisson summation formula (Nijboir and de Wette, 1957), given by

g(r,) - g(k) , (2.39)

7 A

where g(k) is the Fourier transform of g(r) according to

g(k) - f elk-rg(r) dr , (2.40)

V is the volume of the unit cell, and k, are reciprocal lattice vectors

satisfying exp(k, r,) - 1 (cf. Kittel, 1976). Using (2.39) and (2.40), one

can write the sum over M(2) in (2.38) as

N

I6rV .exp(-kA- x-x)M 2 )(k,)F ,(2.41)

A B-1

where the Fourier transform of M(2) can be calculated from (2.37) as

(Beenakker, 1986)

M)(k) - (6i - k)(1 + 1 ik2 + 1 (4 k4 )6rk-2 exp(-12k2) . (2.42)



Here the vector k=k/k. Of the remaining terms in (2.38), MfI (x3-xP) can be

found by simple differentiation according to (2.36), while M?) (r-O) can be

found from the inverse of the Fourier transform, giving

MI) (r-0) = (2) M( ) (k) dk - 6ij 2a , (2.43)

where a is the radius of the spheres. Thus, each of the terms needed to

evaluate the sum in (2.38) (and hence the sum in (2.33)) is known.

The sum over M?)' given in (2.41) appears to be ill-defined for k,=O,

since the expression given in (2.42) has a term proportional to k-2

However, closer examination will show that the k,=0 term in (2.41) is

exactly cancelled by the "backflow" volume integral in (2.33). As k*O, the

double sum in (2.41) becomes

N N
1 M 2 (k-O) 1FP - (6iF

6V M 0ij F = - - ki k )k - 2  F (2.44)61rj4V ' V i
#-1 l-1

To evaluate the behavior of the volume integral in (2.33) as k0O, one can

use the convolution theorem to write

SJi dV - 6(k) Jj(k) , (2.45)

where 6(k)a(k) can be taken as meaning the limit of J(k) as k-+O. The
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Fourier transform J of J is

Jij(k) = (6j - kikj)8rk- 2  , (2.46)

and thus

n8 JI( Fj) dV = (6i - k.kj)k-2FFj (2.47)

0

Comparing the right-hand sides of (2.44) and (2.47), and using (F)=(l/N)ZF",

one can see that the volume integral in (2.33) exactly cancels the k,=O term

in the reciprocal-space sum. Thus, Beenakker's requirement that (F)-O is

not necessary.

There is a simple and intuitive reason why Beenakker's restriction

should be superfluous. The mobility matrix depends only on the geometry of

the system, and not on the forces applied to the particles. A mobility

matrix describing the interactions for particles in a particular config-

uration must therefore be valid whatever velocities or forces those parti-

cles have. Thus, any mobility matrix derived correctly under the assumption

that (F)-O must also be valid when that condition is no longer true.

The Ewald sums of the terms of MUF associated with the finite size of

the particles (i.e., terms resulting from the (a2 /6)V2 operator in Faxen's

law (2.27a)) and the terms for the other mobility submatrices in (2.30) can

be carried out in much the same manner as used here. The elements of MUL,

Mnu, etc. are easily expressed in terms of gradients of the Green function

J, and thus they can be written as gradients of the expression given in
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(2.34), and new equations for M;)(r), M( (r=0), and M (r) can be

derived. Just as the "backflow" volume integral cancelled out the divergent

kA-O term in the point-force sum described above, it will also cancel these

same terms in the evaluation of the other submatrices of (2.30), in addition

to the terms proportional to O(F), <(L), and k(S) shown in (2.28). The

expressions required for the summation of all the submatrices shown in

(2.30) are given in Appendix A.

2.3 NEAR-FIELD INTERACTIONS

The interactions calculated thus far have been far-field, or long-range

interactions. It is important to calculate and renormalize these inter-

actions properly if one is to obtain a convergent result. However, near-

field interactions are short-range, and therefore can be accounted for in a

pairwise additive fashion. This is because short-range interactions between

two spheres are unlikely to be strongly affected by "reflections" caused by

the presence of a third sphere. For nearly-touching spheres, these near-

field interactions are responsible for the singular lubrication forces that

can dominate the effects of all other interactions. Thus, it is important

that they be included when dealing with any but the most dilute systems.

The method used to incorporate these interactions is identical to that

described by Durlofsky et al. (1987). One begins with the far-field

mobility matrix shown in (2.30), which shall henceforth be referred to as

M*, where the superscript * indicates that the interactions have been summed

by the Ewald method. It has been shown (Bossis and Brady, 1984) that

pairwise additivity of two-sphere resistances, which corresponds to pairwise



additivity of forces, preserves lubrication interactions, while pairwise

additivity of two-sphere mobilities does not. Thus, Durlofsky et al.

incorporate near-field interactions by inverting the far-field mobility

matrix to form a far-field resistance matrix, and subsequently add in the

known, exact two-sphere resistance interactions that have been calculated

previously (Jeffrey and Onishi, 1984; Kim and Mifflin, 1985). However,

these two-sphere resistances have both far- and near-field components. To

avoid counting the far-field interactions twice, the two-sphere, far-field

resistance terms must therefore be subtracted off, leaving only the near-

field terms. If the total, pairwise additive resistance matrix is desig-

nated by R2B, and the two-body, far-field resistance matrix by RB, then the

process can be expressed mathematically as

R* - (M*)-1 + (R 2 B - R B), (2.48)

where far-field interactions are contained in (M*)-l, while near-field

interactions are accounted for in (R2B - R•B). In Chapters 3, 4 and 5 it

will be shown that k* is a very accurate approximation to the exact resis-

tance matrix (or equivalently that M*-(k*)l- is an accurate approximation to

the exact mobility matrix), and can describe hydrodynamic interactions in

hard-sphere dispersions of any configuration. A FORTRAN computer program in

which the matrices of (2.48) are evaluated is given in Appendix B.



CHAPTER 3

TRANSPORT PROPERTIES OF SPATIALLY PERIODIC DISPERSIONS

Previous studies of the transport behavior of ordered arrays of spheres

provide a set of results which can be compared with those obtained using the

Stokesian dynamics method. One motivation for choosing such systems for

comparison is that a relatively complete set of data is available for these

ordered arrangements. In addition, the imposition of periodic boundary

conditions, which is necessary when using the Ewald summation technique,

complicates studies of disordered systems since the size of the periodic

unit cell can affect the system behavior. No such ambiguity is present in

studies of completely ordered arrays. Thus, even though the Stokesian

dynamics method is applicable to hard-sphere systems of any geometry in a

periodic unit cell of arbitrary size, it will be worthwhile to verify the

accuracy of that method by performing preliminary calculations using simple

cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) arrays

of hard spheres.

3.1 HYDRAULIC PERMEABILITY AND SEDIMENTATION VELOCITY

The hydraulic permeability of a spatially periodic porous medium and

the sedimentation velocity of a spatially periodic suspension are two

closely related properties which will serve as a starting point for calc-

ulations on ordered systems. The discussion here will be primarily con-

cerned with the former property of porous media. However, calculation of



the sedimentation velocity will follow directly as shown in the paragraphs

to follow.

The hydraulic permeability k is a parameter commonly used to relate the

average velocity and pressure drop for flow through a porous medium, and is

defined by Darcy's law:

(u)> V(p) . (3.1)

Equation (3.1) is a mathematical expression of a balance between hydro-

dynamic drag forces and pressure forces. In order to facilitate comparison

with data from the literature, the results here will be presented as drag

coefficients K defined by

(F) - K(u) . (3.2)

For systems that are not isotropic, the scalar K in (3.2) can be expressed

as a tensor K. For isotropic systems, the coefficient K is directly related

to the hydraulic permeability k by

2 1k K (3.3)
90 K

where 0 is the volume fraction of particles.

The calculation of the average drag coefficient for a system of spheres

can be accomplished by averaging the resistance matrix Rju. This averaging



process is equivalent to calculating (F) in (3.2) for a medium in which U1=0

for all particles a. The resulting expression for K is

N N

K - 3 tr N ) (3.4)

a-l 6-1l

Here Ru is the portion of k* that relates the force on particle a to the

velocity of particle P, and the notation tr refers to the trace of the

averaged 3x3 matrix. The matrix 4U can be obtained by inverting either i*

of (2.1) or M* of (2.30), and then removing the terms coupling forces and

velocities and grouping them into a matrix of dimension 3Nx3N.

For the cubic arrays of interest in this chapter, the forces and vel-

ocities of all the spheres in the lattice are the same. Thus, for these

systems the angle brackets around F in (3.2) and the sum over a given in

(3.4) are not necessary, but are included for later use with disordered

systems. In addition, for cubic arrays a sedimentation coefficient Us

defined by

(U) - UsF , (3.5)

where F is the force applied to all of the particles, is easily calculated

using

1IUs , (3.6)



where, again, Us and K are expressed as scalars because of the isotropic

nature of these arrays. The equality (3.6) is not true for disordered

systems, since averaging kU as in (3.4) and then inverting K is not in

general equivalent to first inverting the resistance matrix to obtain MUF

and then averaging that mobility matrix. Only for spatially periodic

arrays, in which all particles have the same forces and velocities, do these

averaging and inverting operations commute (cf. Saffman, 1973). In light of

(3.5), it will not be necessary to report sedimentation velocities explic-

itly for ordered arrays.

The drag coefficient results for SC, BCC, and FCC arrays obtained using

(3.4) are plotted in Figure 3.1(a,b,c) along with the results of Zick and

Homsy (1982). Zick and Homsy's solution was obtained by expanding the

spatially periodic Green function for a periodic array of point forces

(Hasimoto, 1959) in moments, an approach that is conceptually similar to

that described in Chapter 2, but differs in that it is restricted to use

with only periodic systems. For the purposes of this comparison, Zick and

Homsy's results can be considered exact since as many as twelve moments were

included in their expansion. (Recall that torques and stresslets correspond

to only the first moment.)

As can be seen from all three plots of Figure 3.1, the drag coef-

ficients calculated using the Stokesian dynamics method are quite accurate

up to moderate volume fractions (20-40%), but significantly underestimate

the value of K as the limiting value of 0 is approached. (The limiting

values of 0 for SC, BCC, and FCC packing are 0.5236, 0.6802, and 0.7405,

respectively.) Thus, the far-field interactions included in Stokesian
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Figure 3.1a - The dimensionless drag coefficient K/6wAa is plotted as a
function of volume fraction 4 for an SC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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Figure 3.1b - The dimensionless drag coefficient K/6rpa is plotted as a
function of volume fraction 0 for a BCC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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Figure 3.1 - The dimensionless drag coefficient K/6wia is plotted as a
function of volume fraction 0 for an FCC lattice of spheres. The values
reported by Zick and Homsy (1982) are included for comparison.
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dynamics appear to be sufficient to obtain accurate results at the lower

volume fractions studied, but the interactions necessary to obtain compar-

able agreement at high 0 seem to be lacking.

The discrepancy at high volume fraction can be understood by con-

sidering how the resistance matrix R* is constructed. The basic assumption

made is that, for nearly touching spheres, lubrication interactions are

dominant, and thus one can safely neglect the higher moments in (2.26).

However, for flow through densely packed arrays of spheres, only a negli-

gible fraction of the fluid flow takes place in the small gaps where

lubrication is important. This is the reason why K remains finite even in

the limit of close packing. The drag force on a given sphere in a tightly

packed array results almost entirely from flow through the large interstices

that exist even at the highest possible values of 0. Thus, lubrication

interactions are never dominant for hydraulic permeability (and sedi-

mentation velocity) calculations, and higher moments in the expansion (2.26)

cannot be safely neglected for the entire range of 4.

The close correspondence between the method used here and that of Zick

and Homsy makes it possible to examine the magnitude of these higher moments

and, in doing so, assess the accuracy of the mean-field approximation dis-

cussed in the previous chapter. In Table 3.1 values of the drag coefficient

calculated by expanding to the level of dipoles (torques and stresslets) and

quadrupoles are compared for arrays at the limit of close packing. The

mean-field approximation (2.24) was used to include the effect of quad-

rupoles in Stokesian dynamics, whereas Zick and Homsy's results incorporate

them exactly. Clearly the mean-field approximation captures a large portion



Table 3.1

Values of K/6irpa from Stokesian dynamics and from Zick and Homsy are
compared for SC, BCC, and FCC lattices at the limit of close packing.

Stokesian Dynamics Zick and Homsv

# momentsa

SC

BCC

FCC

9.53

9.6

8.4

19.95

84.5

101.8

9.53

9.6

8.4

2

28.04

86.1

135.8

COMPLETE

42.14

162.9

435

aA solution involving only the first moment corresponds to including force,
torque, and stresslet terms in the moment expansion (force terms here
include the (a2/6)F contribution from (2.23)). For Stokesian dynamics, the
second moment corresponds to including the mean-field quadrupole term of
(2.24), while Zick and Homsy account for the quadrupole contribution
exactly. The complete results reported by Zick and Homsy were
extrapolated from the solution including the first twelve moments.

(1982)



of the quadrupolar contribution. However, it is also apparent that even the

complete solution through the level of quadrupoles is inaccurate at high 0.

Indeed, in order to obtain 10% accuracy at the limit of close-packing, Zick

and Homsy found it necessary to include four, six, and eight moments for SC,

BCC, and FCC lattices, respectively. Since including the complete quad-

rupolar contribution would increase the size of the matrix in (2.30) from

11NxllN to 26Nx26N, resulting in a 13-fold increase in computational effort,

it is doubtful whether the increase in accuracy justifies a more complete

treatment of the quadrupole terms than that offered by the mean-field

approximation.

3.2 SHEAR VISCOSITY

Unlike the case of flow through a periodic porous medium, when a cubic

array is sheared there is relative motion between the spheres, and thus

singular lubrication interactions become dominant as 4 is increased. Nunan

and Keller (1984) have calculated the shear viscosity of such an array over

a wide range of 0 using a method similar to that of Zick and Homsy (1982).

However, because of singularities caused by lubrication forces, this method

could not be used in the limit of close packing, and as a result the authors

also provide asymptotic results valid for comparison at high values of 0.

As stated in (2.12), the particle contribution to the bulk stress in a

system with (g)-O is n(S•. (The average rotlet (•) is zero for particles in

a linear shear flow.) The shear viscosity of a suspension relates (S) to

(e), and can be found by solving (2.30) for the particle stresslets under

the condition that FO-LV-O for all a. Solving for the stresslets, and



averaging the resulting matrix that relates the stresslets to the average

rate-of-strain, one obtains

(s) - -(A):(e) , (3.7)

where the fourth order tensor A is given by

-1

Ru R; , RE
A - I Ru yR, ) R J RR

4u R; u R n REi E
RZ, ( RS E

(3.8)

The symmetry of periodic lattices guarantees that the first term on the

right-hand side of (3.8) (the product of the three matrices shown) will be

zero for the calculation considered here, but it is included for generality.

The average of A is given by

N N

(3.9)

where A" relates the stresslet of particle a to the average rate-of-strain

(0 .

The symmetry of the cubic lattice also allows one to completely specify

all the elements of the tensor A in terms of two scalar coefficients, a and

P, according to (cf. Nunan and Keller, 1984 and Zuzovsky et al., 1983)



14 2 1Aijkl - (l+)(6ikj+i6jk- 6ij 6kl) + ,(a-0)(6ijkl- ij 6k), (3.10)

where 6ijkl is unity when all four indices are the same and zero otherwise.

The quantity p in (3.10) is the viscosity of the pure fluid, and the scalars

a and 6 will be referred to as the a and P coefficients of shear viscosity,

respectively. It is important to note that a and 6 are the viscosity coef-

ficients corresponding to a single, instantaneous configuration of par-

ticles, and are not time averages.

The Stokesian dynamics results for a and P and those of Nunan and

Keller (1984) are plotted as a function of 4 for SC, BCC, and FCC lattices

of spheres in Figures 3.2(a,b), 3.3(a,b), and 3.4(a,b), respectively. The

agreement is excellent for every case except the P coefficient of the FCC

lattice. However, Nunan and Keller reported significant difficulty in

obtaining convergence with increasing number of moments for that calcu-

lation, and thus there is some doubt as to whether their result should be

considered exact for that particular case.

For comparisons in the limit of close packing, the aforementioned high

volume fraction asymptotic results can be used. These results for the

effective viscosity coefficients a and P are as follows:

Simple Cubic Lattices:

a -- • 6 + 27 rln(e-') + 3.1 + 0.25e In(c-') + 0(e)

(3.11a)

8 - -Iln(eC 1 ) + 0.63 + 0(e)
4= I(
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Figure 3.2a - The a coefficient of shear viscosity is plotted as a function
of volume fraction 4 for an SC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.
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Figure 3.2b - The $ coefficient of shear viscosity is plotted as a function
of volume fraction 0 for an SC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.
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Figure 3.3a - The a coefficient of shear viscosity is plotted as a function
of volume fraction 0 for a BCC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.
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Figure 3.3b - The 0 coefficient of shear viscosity is plotted as a function
of volume fraction # for a BCC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.
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Figure 3.4a - The a coefficient of shear viscosity is plotted as a function
of volume fraction 0 for an FCC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.
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Figure 3.4b - The $ coefficient of shear viscosity is plotted as a function
of volume fraction ý for an FCC lattice of hard spheres. The results of
Nunan and Keller (1984) are included for comparison.



Body-Centered Cubic Lattices:

a - In(e• 1 ) - 1.73 + 12.3eln(e-1 ) + 0(e)

(3.11b)

T r- 1+ 1 J3 Iln(E- 1 ) + 12.8 - 35e1n(e - 1 ) + 0(e)8 120

Face-Centered Cubic Lattices:

a - 3 ir 1 + .T rln(e-') + 9.7 - 15.5eln(•l') + 0(e)

(3.11c)

T - I re 8- + 4 2Iln(e 1) + 0(1)16 80

Here e is the distance separating the surfaces of neighboring spheres made

dimensionless by the sphere radius. Limiting values of a and 6 obtained

from the asymptotic expansions (3.11) and from Stokesian dynamics are

compared in Table 3.2(a,b,c).

Again, agreement is excellent for all cases considered. Significantly,

however, the two sets of results agree best for cases where the asymptotic

expansion has an O(cE- ) singularity (a for SC, 8 for BCC, a and j for FCC)

as opposed to an O(lne" ) singularity (4 for SC, a for BCC). This obser-

vation is consistent with the explanation given for the trends in the

hydraulic permeability results presented in the previous section. The

agreement is better for the more severe, O(•-') singularity because it

dominates the many-particle, far-field interactions more completely than

does the logarithmic singularity, and thus the pairwise-additive method of

including lubrication used in the Stokesian dynamics method is more accurate



Table 3.2a

Coefficients of shear viscosity for an SC lattice (high 4).

0.520

0.523

0.52359

0.52359877

CaD

262.0

1552

1.054x105

1.653x108

aN &K

136.8

1556

1. 055x105

1. 653x10 8

Ps D

4.943

6.242

9.378

15.00

Coefficients

Table 3.2b

of shear viscosity for a BCC lattice (high 4).

CS D

0.680

0.6801

0.6801747

0.680174761

aN&K

16.38

17.48

26.81

33.03

11.01

12.17

20.32

26.21

BS D

7952

1. 857x10 4

2.254x10 7

2. 361x10 9

Table 3.2c

Coefficients of shear viscosity for an FCC lattice (high 4).

'S D

0.730

0.740

0.74048

0.7404848

96.58

1941

1.890x106

9.546x107

aN &K

110.1

1955

1.890x106

9.546x107

s D

183.7

3867

3.779x10 6

1.909x10 6

189.7

3873

3.779x10 6

1.909x10 6

N &K

4.856

6.268

9.585

15.38

7970

1.859x104

2.254x107

2.361x109

N&K



The dominance of lubrication forces also becomes more complete as the volume

fraction approaches the limiting value, which explains the better agreement

shown in Table 3.2 as 4 is increased.

3.3 ROTATIONAL DRAG COEFFICIENT

By averaging R n in precisely the same manner that RFu was averaged in

(3.4), one can calculate a rotational drag coefficient that relates the

torque and rotational velocity for periodically arranged spheres that are

all rotating with the same value of 0. This coefficient is sometimes called

the "spin viscosity" since it can be used to calculate the contribution of

the antisymmetric average rotlet (•) to the bulk stress (!) (cf. equation

(2.12)). One practical application of such a parameter lies in the use of

ferrofluids, which commonly have antisymmetric stresses (Zuzovsky et al.,

1983; Rosensweig, 1988).

Values for the rotational drag coefficient Kr, which is defined by the

relation

(L) - Kra , (3.12)

are plotted in Figure 3.5(a,b,c) together with the asymptotic results of

Zuzovsky et al. Again, SC, BCC, and FCC lattices are considered. As dis-

cussed above, the angle brackets around L in (3.12) are not needed for these

periodic systems, but are included for later use.

As can be seen in Figure 3.5a, the Stokesian dynamics method captures

both the low and high 4 behavior of K. exactly. As with the shear vis-
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Figure 3.5a - The dimensionless rotational drag coefficient K,/8rpa3 is
plotted as a function of volume fraction 0 for an SC lattice of hard
spheres. Asymptotic results reported by Zuzovsky et al. (1983), valid in
the limits of low and high 0, are also shown (dashed curves).
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Figure 3.5b - The dimensionless rotational drag coefficient Kr/8rupa3 is
plotted as a function of volume fraction 0 for a BCC lattice of hard
spheres. The low 0, asymptotic result reported by Zuzovsky er al. (1983) is
also shown (dashed curve).
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Figure 3.5c - The dimensionless rotational drag coefficient Kr/8rpa3 is
plotted as a function of volume fraction ý for an FCC lattice of hard
spheres. The low 0, asymptotic result reported by Zuzovsky et al. (1983) is
also shown (dashed curve).
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cosity, this accuracy can be attributed to the fact that singular lubri-

cation forces become dominant as periodically arranged, rotating spheres

come into contact, just as is assumed in the Stokesian dynamics method.

Figures 3.5b and 3.5c show the same excellent agreement as Figure 3.5a at

low volume fractions, but Zuzovsky et al. do not give the high volume

fraction asymptotes for BCC and FCC lattices, and so no comparison is made

for those systems in the limit of close packing.

3.4 CONCLUSION

Values for the hydraulic permeability and shear viscosity of spatially

periodic dispersions have been calculated using the Stokesian dynamics

method. It was seen that the Stokesian dynamics result for the hydraulic

permeability was in good agreement with those of Zick and Homsy (1982) up to

volume fractions of about 20-40%, after which the Stokesian dynamics method

significantly underpredicted Zick and Homsy's results. The disparity can be

attributed to the approximations made in the Stokesian dynamics method of

calculating hydrodynamic interactions. One key assumption in this method is

that, for nearly touching spheres, singular lubrication forces come into

play and dominate the effects of other, longer range interactions. However,

fluid flowing through densely packed, fixed arrays of spheres avoids the

small gaps present in favor of large interstices that offer less hydro-

dynamic resistance, and thus lubrication forces are never dominant in the

hydraulic permeability calculation considered here.

In contrast, when a cubic lattice of spheres is sheared, there is

relative motion between the sphere surfaces that insures the dominance of



lubrication forces in the limit of high volume fraction. Since Stokesian

dynamics accounts for these lubrication forces properly, the correct high 4

behavior is obtained for the viscosity coefficients, as shown by comparison

with the results of Nunan and Keller (1984). Similar behavior was demon-

strated by the rotational drag coefficient, or "spin viscosity."

The methods used by Zick and Homsy (1982) and Nunan and Keller (1984)

are somewhat less general than the Stokesian dynamics method in that they

can only be applied to periodic systems. However, there is a close enough

correspondence between Stokesian dynamics and these two methods to allow for

the evaluation of the accuracy of the "mean-field" approach to including

quadrupoles that was described in Chapter 2. It was found that, using this

approximate approach, Stokesian dynamics is able to account for a large

portion of the quadrupole effects reported by Zick and Homsy.

For spatially periodic media, many theoretical results are presently

available and thus the results given here are included mainly for purposes

of comparison. Even so, the rotational drag (or "spin viscosity") calcu-

lations shown in Figure 3.5 supplement the existing knowledge of periodic

systems in that such values had not yet been reported in the literature for

the full range of volume fractions possible. In addition, the generality of

the Stokesian dynamics method makes it amenable for use in analyzing systems

of arbitrary geometry, provided that they are constructed of hard spheres.

The fact that Stokesian dynamics is highly accurate for many transport

calculations involving hard-sphere systems presents several possibilities

for advancing the current understanding of suspensions and porous media. As

will be demonstrated in succeeding chapters, this flexibility can be of

great use in a large number of interesting transport problems.



CHAPTER 4

TRANSPORT PROPERTIES OF DISORDERED SUSPENSIONS

One important attribute of the Stokesian dynamics method is that it

places no restrictions on the locations of particles other than those

required by the imposition of periodic boundary conditions. Thus, it can be

used to calculate hydrodynamic transport properties of disordered dis-

persions as well as periodic arrays such as those considered in the previous

chapter. Examining disordered systems will allow this method to be studied

more extensively than was possible in Chapter 3 by allowing comparison both

with a different set of theoretical results and with experimental data. In

addition to these comparisons, the effects of imposing periodic boundary

conditions, which pose no ambiguities when modeling a periodic system, can

be significant in calculations involving disordered media. Thus, the

results presented in the following paragraphs should both demonstrate the

application of the newly derived theory and give some indication of the

effects of long-range order on disordered systems.

One approach to examining the behavior of disordered systems is dynamic

simulation, in which particle trajectories are calculated and followed over

time. Several studies involving dynamic simulations can be found in the

literature (Brady and Bossis, 1985; Bossis and Brady, 1984; Bossis and

Brady, 1987; Brady and Bossis, 1988). Another approach useful for studying

disordered systems is the Monte Carlo method, in which transport properties

for instantaneous configurations are calculated and averaged over many

realizations. This approach is restricted to calculations of transport

properties valid over time scales so short that the system configuration

60



does not change. However, because particle interactions are not being

recalculated for many time steps, the Monte Carlo approach requires signif-

icantly less computer time than does dynamic simulation. In addition, the

Monte Carlo method can be used to study simultaneously the properties of

suspensions, such as sedimentation velocity, self-diffusiont, and viscosity,

and the properties of disordered porous media, such as hydraulic perme-

ability and hindered diffusion. In this chapter results of the Monte Carlo

simulations are presented for suspension properties. The corresponding

results for properties associated with porous media are given in Chapter 5.

The calculations were carried out over volume fractions ranging from

infinite dilution to the fluid-solid transition, which occurs at approx-

imately 4 = 0.49 for hard spheres (Hoover and Ree, 1968). Three different

levels of approximation in modeling the far-field portion of the hydro-

dynamic interactions are considered. In addition, the effects of changing

the length scale over which periodic boundary conditions are imposed are

examined, and scaling laws for these periodicity effects are derived. In

all cases where it is possible the results are compared both with alter-

native theories and with experimental data from the literature, thereby

providing some criteria for assessing the accuracy of the method.

tThe term "self-diffusion" as used in this thesis refers to diffusion of
a Brownian sphere in a suspension of identical spheres (cf. Rallison and
Hinch, 1986). This process is also often referred to as tracer diffusion or
intradiffusion (Reid et al., 1987).



4.1 SAMPLING TECHNIQUES

The procedure used to generate the hard-sphere microstructure varied

according to the volume fraction of the suspension. For 4 < 0.25, sphere

locations within a given periodic, cubic unit cell were chosen by "random

sequential addition." This process involves the sequential placement of

spheres at random positions within a unit cell. If the location chosen for

a given sphere overlaps with that of a previously positioned sphere, then a

new location is chosen, and the process is repeated until suitable, non-

overlapping positions are obtained for each of the N spheres. For 0.25 < 4

< 0.49, random sequential addition becomes computationally infeasible.

Thus, at these volume fractions, the spheres were placed in an arbitrary

initial configuration and then moved using a random-stepping routine in

order to insure that the sample was disordered. To check that the samples

generated using the latter, random-stepping method were sufficiently inde-

pendent from one another, the linear correlation between the initial and

final coordinates (x) of the particles was monitored through the correlation

coefficient re. For example, the correlation between particle positions in

two samples A and B could be checked by plotting xA vs. xB for the N

particles, and then calculating the three linear correlation coefficients.

If the particles had not moved significantly from their previous positions,

then one would expect values of re close to unity, whereas sufficient

randomization should result in a much lower level of correlation. Because

this method of monitoring spatial correlation is only approximate and is

based primarily on intuitive arguments, the condition re < 0.5 was accepted

as a reasonable criterion for statistical independence and a more rigorous



statistical analysis was not attempted. The FORTRAN 200 function RANF was

used to generate the random numbers needed for both of the sample-generation

techniques used here.

For 4 = 0.25 the criterion on rc was easily met by moving each particle

500 steps between samples, where the length of each step was chosen so that

the probability of success (i.e., no overlap) was about 0.5 - 0.7, values

that agree closely with those suggested by Binder (1986). Radial distri-

bution functions calculated from samples used for these calculations

generally agreed with those of Barker and Henderson (1971) to within 10%,

although the maximum values at contact were sometimes in error by as much as

20%. This error could always be eliminated by increasing the number of

samples. To check the consistency of the two sample-generating methods

used, we performed simulations with each of them at 4 - 0.25 and found that

the two sets of results did not differ by more than about 2-3%. In ad-

dition, our results at 4 - 0.40 were found to be independent of tho initial

configuration chosen, and did not change when the number of randomization

steps was doubled from 500 to 1000 steps per particle.

4.2 CALCULATION OF HYDRODYNAMIC INTERACTIONS

Once the locations of the N particles are specified through the sample-

generating process, the transport properties can be determined by Stokesian

dynamics. Three levels of approximation in the far-field interactions are

considered here, and each of these levels is examined both with and without

the addition of near-field interactions. The different levels are deter-

mined by the point at which the expansion (2.26) is truncated in evaluating



the far-field, many-particle interactions. If truncation occurs after the

zeroth moment, then the only submatrix of the mobility in (2.30) to be
evaluated is M;F. This in turn implies that it is Mt *F that must be inverted

to add in near-field interactions in (2.48). This lowest level of approx-

imation, at which only particle forces are considered (along with the

quadrupole terms that were expressed in terms of particle forces in Chapter

2), will be referred to as the "F method." Similarly, if the moment

expansion (2.26) includes torques (the antisymmetric portion of the first

moment), then the mobility to be used in (2.30) and (2.48) will include MUF,

MUL, M4, and Ma*, and one has what will be referred to as the "F-T method."

Finally, including all the interactions discussed in Chapter 2, which

consist of forces, torques, and stresslets, results in the "F-T-S method,"

the most accurate of the three levels of approximation considered. Note

that the size of the mobility matrix that must be inverted in (2.48)

increases from 3Nx3N to 6Nx6N to 11NxllN as one progresses from the F to the

F-T to the F-T-S method. Since the computation time required to invert a

matrix grows as the cube of the matrix dimension, it is clearly desirable to

have some idea of how the three methods compare in terms of accuracy. This

potential savings thus provides one motivation for the comparison. that will

be made in the next section.

The two-sphere, far-field interactions used to form R of (2.48)

included force, torque, and stresslet interactions for each of the three

cases described above. In other words, these terms were not included in any

of the pairwise-additive calculations of near-field interactions performed

in these simulations. Thus, results for the "F method" do not include

torque and stresslet interactions, even in a pairwise-additive fashion.



Similarly, results for the "F-T method" do not include any stresslet

interactions. Torque and stresslet interactions were not included in the

near-field interactions in order to avoid including non-convergent terms in

the sums in (2.28). As will be seen in Chapter 5, however, pairwise

addition of stresslet interactions between near-neighbors can greatly

improve the accuracy of the "F method" for certain calculations. In the

following discussion, the definitions and averages given will be valid

regardless of whether the F, F-T, or F-T-S methods are used, and whether or

not near-field interactions are included. Thus, for simplicity, no explicit

reference will be made to the level of approximation used in forming the

mobility and resistance matrices that are used in those equations.

All of the calculations described here were done on a CYBER 205 super-

computer. It required 22 seconds of CPU time to fill the complete, Ewald-

summed, F-T-S mobility matrix for a single 27 sphere sample, while 6 seconds

were required to invert that matrix. The CPU time required to form (R2B -

R3B) of (2.48) is negligible compared to that needed for the formation and

inversion of M*. Although these requirements might seem prohibitive to

those interested in doing dynamic simulations, we should point out that

suitable, time-saving approximations can be used to significantly decrease

the time requirements of this method. Two such possibilities are: a) only

recalculating far-field interactions on a time scale that allows for the

particles to move a significant fraction of their own radii, such as every

10 or 100 time steps; or b) using the less accurate F or F-T methods in

order to take advantage of the corresponding reduction in the size of the

mobility matrix. The former approximation is made possible by the fact that

far-field interactions are insensitive to small rearrangements in the system



configuration, while some information on the implications of the latter

approximation will be obtained by examining the results of the next section.

Either or both of these suggestions could be of potential value, depending

upon the particular problem being investigated.

For this work, computer time limitations required that averages be

performed over only 10 samples for each volume fraction studied. Fortu-

nately, however, 95% confidence intervals calculated using the standard

deviations associated with the results were generally within 5% of the

average values reported. The statistical errors were decreased by the

1
isotropic nature of the dispersions. That is, the use of the 3tr operator

in (4.1) and (4.7) reflects the fact that, for each realization, three

independent values of the coefficients are obtained for the sedimentation

velocities and self-diffusion coefficients. Similarly, five independent

values of the shear viscosity are obtained for each realization, since there

are five independent components of ( ) and (.). Thus, although only 10

samples are represented in each data point, that point is actually an

average computed from either 30 or 50 values, depending on the transport

property in question.

4.3 SEDIMENTATION VELOCITY

The sedimentation velocity (U) of a suspension of particles in some

configuration is usually defined as the average translational velocity of

the particles relative to zero volume flux (i.e., such that the suspension

average velocity (u)-O). The value of (U) can be calculated in a manner

directly analogous to that used to obtain (F) in (3.4). Assuming the



particles are all identical and are sedimenting under the same applied

force, U, from (3.6) is given by

N N

U - = tr ( . M) (4.1)

a-i P-1

Here M'O is the portion of MuF that relates the force on particle P to the

velocity of particle a. The velocity (U) is an average over all the

particles of a particular realization. Thus, to complete the Monte Carlo

method described above, (U) must be calculated for several instantaneous

configurations and averaged, yielding a final result that is an average both

over all particles and over all realizations of the suspension micro-

structure.

The complications associated with inserting some degree of periodicity

into a model of a disordered medium are relatively severe in the sedi-

mentation problem. To understand why this is the case, one must look more

closely at exactly what problem is being solved in the simulation. Although

the goal is to model a random, sedimenting suspension, what one actually

has, as a result of the imposed periodic boundary conditions, is N simple

cubic lattices of spheres sedimenting among one another. Each sphere "sees"

the N-I other sphere positions evenly distributed throughout its periodic

box as a result of the averaging that takes place in the Monte Carlo

simulations. Thus, the sedimenting suspension has both periodic and random

characteristics.

To assess the relative importance of these two components, the 4-depen-

dence of the asymptotic, low volume fraction solutions for U, can be
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examined for both periodic and random systems. For a random suspension

Batchelor (1972) gives, to leading order in 4,

Usan

- 1 - 6.554 , (4.2)

while for a suspension of particles in a simple cubic (SC) lattice, Saffman

(1973) gives

USC

Uo 1 - 1.7441/3  (4.3)

The 41/3 dependence of the sedimentation coefficient for periodic lattices

suggests that periodic characteristics of our system are likely to be impor-

tant, particularly at low volume fractions. The sedimentation velocities in

(4.2) and (4.3) have been normalized by Us, the sedimentation velocity of an

isolated sphere in an unbounded fluid.

A simple approach to determining how the effects of periodicity scale

with N is to superimpose a sedimenting, simple cubic lattice of volume

fraction 4/N on a random, sedimenting suspension of volume fraction 0(1 -

1/N). That these two effects are superimposable can be shown by considering

the calculations of the Ewald sums used in constructing IF of the mobility

matrix in (2.30). In that calculation, the self-terms containing the inter-

actions between the spheres of the simple cubic lattice are contained in the

3x3 diagonal matrices MIU1, and are calculated separately from the calcu-

lation of the interactions between those spheres whose positions are

averaged throughout the unit cell. The latter interactions are contained in
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the off-diagonal 3x3 matrices MOU, and are added to the self-terms in the

averaging process described by (4.1). The sedimentation velocity at dilute

should therefore be approximated by

Us

U 1 - 1.740 1/ 3N- / 3 - 6.55(1l - N-1) . (4.4)

The finite-size effects (and the effects of periodicity) should thus decay

as N-1/3 , which is quite slow. From a different perspective, if the peri-

odicity effects are to be small compared to the random results, then one has

the requirement

N >> 4-2 (4.5)

a condition which is extremely severe as 4 - 0.

In Figure 4.1 the results of simulations with values of N equal to 14,

27, and 64 spheres are plotted along with the results of Zick and Homsy

(1982) for an SC lattice (cf. Section 3.1) and Batchelor's low volume

fraction result (4.2). The influence of periodicity is clearly evident and,

as one might expect, tends to be more severe for the 14 sphere simulations

than for the 27 and 64 sphere simulations. Unfortunately, however, there

was no discernable trend with the 27 and 64 sphere samples, and thus an

extrapolation to infinite N was not possible. Such an extrapolation might

be feasible if more than 10 samples were used in the averages and more than

64 particles were included in the periodic unit cells, but the computational

cost of such measures was not deemed warranted as this periodicity limi-

tation was unique to the sedimentation calculations.
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Also included in Figure 4.1 is a correlation of experimental data

reported by Buscall et al. (1982), who measured sedimentation velocities for

suspensions of polystyrene latices. Note that the 0(0) coefficient obtained

by taking the slope of the experimental data, roughly 5.4, differs from that

predicted by Batchelor (cf. (4.2)). Slopes between 5.0 and 5.4 have also

been measured by Maude and Whitmore (1958) and by Cheng and Schachman

(1955), and thus it would appear that the correct result lies somewhere

between those values. The roots of the discrepancy between Batchelor's

calculation and experimental data are related to errors inherent in the use

of pairwise additivity to calculate stresslet interactions. Removal of

stresslet and higher order interactions from Batchelor's calculation results

in a predicted slope of 5.0, as explained in detail by Brady and Durlofsky

(1988).

In Figure 4.2, the results for the 27 sphere simulations using the F

method, the F-T-S method, and the F-T-S method without lubrication (i.e.

without (R2B-R2B) in (2.48)) are presented. The F-T method results were es-

sentially identical to those for the F method and so are left out for sim-

plicity. Perhaps the most interesting conclusion to be drawn from this plot

is that the near-field interactions have virtually no effect on the sedi-

mentation velocity. The explanation for this behavior is the same as that

given in relation to the hydraulic permeability calculations of Chapter 3.

Quite simply, the fluid displaced by the falling particles flows up through

the interstices between particles. Little fluid flows between the narrow

gaps separating the particle surfaces at high 4, and therefore the lubri-

cation forces do not come into play. The only way to obtain better agree-
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ment with experiment at high 0 is to include higher multipole moments in the

development of the mobility matrix.

Thus, the small number of particles used here causes the effects of

periodicity to dominate the sedimentation velocity at small 4, and the

relatively low number of multipoles included reduces the accuracy at high 4.

Improvements could be made on both fronts by including more particles on the

one hand, and by including more multipoles on the other. Either of these

approaches, however, dramatically increases the number of unknowns, or

degrees of freedom, and results in prohibitive computation times. Even if

the F method is used without lubrication, thereby avoiding the costly O(N3)

inversion required by (2.48), calculating the mobility interactions alone

requires O(N2 ) operations. Such a computation is still excessive at low

volume fractions in light of the criterion given in (4.5).

4.4 SHORT-TIME SELF-DIFFUSION

The procedure for calculating the short-time self-diffusion coef-

ficients for a sphere in a suspension of force- and torque-free particles is

very similar to that outlined in the previous section. In this case,

however, instead of all the spheres having the same applied force or torque,

only the sphere whose mobility is being calculated has a non-zero force. The

coefficients relating the velocity and force of the test particle therefore

lie along the diagonal of MGF. Averaging these 3x3 diagonal elements

corresponds to applying a force separately to each sphere in turn, calcu-

lating its velocity to obtain its self-mobility, and then averaging the

self-mobilities. Note that this average is being performed over instan-



taneous configurations of the particles. In other words, the time scale of

the sampling is so short that the particles do not move a distance com-

parable to their own size or to the interparticle spacing. Thus, the

average described corresponds to the short-time diffusivity. The long-time

self-diffusivity, where a particle moves far from its starting point and

und.ergoes many encounters with other particles (cf. Rallison and Hinch,

1986), can be obtained through dynamic simulation (cf. Bossis and Brady,

1987).

In mathematical terms, the short-time self-diffusivities D: are defined

through the Stokes-Einstein relation

kBT
D- - (4.6)

where the average mobility (1/f) appropriate for this case is given by

N
1 1 1
f 3 tr ((M (4.7)

a-i

The 3x3 matrices MO are the diagonal elements of M F mentioned above. The

term kBT in (4.6) is the product of Boltzmann's constant and absolute temp-

erature. In the dilute limit where the volume fraction - 0, one has D: -

kT/(6rpa).

The periodicity problems that plagued the sedimentation velocity

results also play a role in the calculation of the short-time self-diffusion

coefficient. In this case, however, the data follow a perceptible trend



with increasing N, so that an extrapolation to obtain the limiting behavior

as N • is possible. To derive the dependence of D' on N, recall that in

calculating the self-diffusion coefficient, or self-mobility, one is es-

sentially exerting a force on one sphere and calculating its resulting

velocity. Because of the periodic boundary conditions, however, a force

exerted on one sphere is also exerted on all the images of that sphere. We

thus have, again, a simple cubic lattice of volume fraction 4/N "sedi-

menting" in superposition with the motion of one particle in N-1 neutrally

buoyant particles. Hence, the analysis leading to (4.4) is applicable, with

(4.2) replaced by Batchelor's calculation (Batchelor, 1976) of the self-

diffusion coefficient in a random suspension of identical spherical par-

ticles,

D 0
Do 1 - 1.830 . (4.8)

One therefore expects an N-1/3 scaling in the data.

In Figure 4.3, self-diffusion data for values of N equal to 14, 27, 32,

49, and 64 are shown. Here a trend is clearly discernable and, assuming an

N-1/3 dependence, the data have been extrapolated to N -+ to give the solid

symbols. The linear correlation coefficients obtained by plotting the

simulation results versus N- 1/3 were consistently between 0.98 and 1. The

extrapolated results are compared with both experiment (Pusey and van Megen,

1983; Ottewill and Williams, 1987) and an alternative theory proposed by

Beenakker and Mazur (1984) in Figure 4.4. Both sets of experimental data

were obtained using photon correlation spectroscopy to measure rates of

diffusion of colloidal latex particles made of polymethyl methacrylate. The
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theory of Beenakker and Mazur includes only far-field interactions, and can

be thought of as an effective medium approach in which lowest order result

for Ds is obtained by replacing f in (4.6) by 6rpla, where p~ is the

viscosity of the suspension. The agreement between theory and experiment

over the entire range of volume fractions is clearly excellent.

The effects of neglecting the near-field, lubrication interactions in

the extrapolated values of the short-time self-diffusion coefficient are

also shown in Figure 4.4. In contrast to the sedimentation velocity,

lubrication is clearly important in self-diffusion, since at high volume

fractions the particle of interest must push against its tightly packed

neighbors in order to move. The good agreement with experiment shown by the

results of Figure 4.4 also shows that the pairwise additive method of

including the near-field interactions used in Stokesian dynamics quanti-

tatively captures the proper physics.

As a final point, one should note that the self-diffusion coefficients

extrapolated for N - c at low 0 agree with Batchelor's prediction for the

0(0) coefficient, given in (4.8). Specifically, at 0 - 0.001, the simu-

lations yielded a value of D: - 0.998, while at 4 - 0.1, a value of D$ -

0.814 was obtained. These are to be compared with the results 0.998 and

0.817 predicted by (4.8); the good agreement seems to confirm Batchelor's

prediction.

Because of the pronounced effects of periodicity, which scale as N-1/3

in this case, one may speculate as to whether it is possible to use the

"minimum image convention" (Levesque et al., 1986) without Ewald sums as a

better model of a disordered system. This convention corresponds to

accounting only for those interactions that occur between each particle and



other particles that are in its periodic unit cell (i.e., in a periodic unit

cell with the particle of interest at its center), thereby neglecting the

influence of particles outside the unit cell. Although it would result in a

considerable savings in computation time, this approach has one serious

difficulty: mobility matrices constructed using periodic boundary condi-

tions without Ewald sums lose positive definiteness at volume fractions as

low as 0.05. Non-positive definite matrices lead to completely aphysical

behavior, such as negative diffusion coefficients! Only by properly

accounting for the long-range hydrodynamic interactions are the correct

physics obtained.

4.5 ROTATIONAL VELOCITY AND ROTATIONAL DIFFUSION

Quantities analogous to the sedimentation velocity and translational

self-diffusion coefficient can also be defined for particle rotation. The

rotational analog to (U) is (0), which is the average rotational velocity of

the particles of a suspension in which each particle is subjected to the

same applied torque. For an isotropic medium, this rotational velocity is

related to the applied torque by

(a) - ,L , (4.9)

where 0, can be calculated by substituting Mfe for Mgf in (4.1). Note that,

in calculating U, it is assumed that LO-0 for all a, while in calculating 02

it is assumed that FO-O for all a. Similarly, a short-time rotational dif-

fusion coefficient can be calculated using the rotational friction factor fr



in (4.6), where fr is obtained by substituting RiL for IRF in (4.7).

There are at present no experimental results for these rotational pro-

perties, and the theoretical predictiors are limited to periodic systems

(Zuzovsky et al., 1983). It should be noted, however, that any of the

theoretical approaches used for the translational properties could be

extended to the rotational case. It is also noteworthy that rotational

diffusion coefficients have been measured for non-spherical particles in a

variety of contexts (Berne and Pecora, 1976), and could be obtained for

spherical particles if the particles themselves, although spherical, somehow

had an anisotropic light scattering ability. The rotational velocities may

be directly relevant to ferrofluids (Rosensweig, 1987) where small magnetic

colloidal particles are caused to rotate by an applied magnetic field. (The

inverse problem of determining the average torque produced by an average

rotational velocity, which is discussed in the next chapter dealing with

transport properties of porous media, yields the spin viscosity referred to

in Chapter 3 and is relevant to the antisymmetric stresses generated in fer-

rofluids (Brady et al., 1988; Zuzovsky et al., 1983; Rosensweig, 1987)).

As in the translational problems, the periodic boundary conditions and

Ewald sums imply that one rotating sphere in a rotational velocity calcu-

lation must necessarily be replicated by other rotating spheres arranged in

an infinite SC lattice. In Figure 4.5 the results for rotational velocities

calculated with N equal to 14, 27, and 64 spheres are shown. The fact that

the three sets of results are essentially identical indicates that peri-

odicity is not an important factor in this calculation.
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To explain this observation, one can follow the approach used to assess

the periodicity effects in the sedimentation velocity, and look for a low

volume fraction solution for 0,. The solution provided by Zuzovsky et al.

(1983) for a dilute, SC lattice of rotating spheres is independent of struc-

ture:

O, - 1 - 0 . (4.10)

The fact that (4.10) is valid for both periodic and disordered systems

suggests that the effect of a rotating sphere's periodic self-reflections,

all of which are at least one periodic box length away from the central

sphere, is no different than if they were located at random positions.

Clearly this argument is supported by the data shown in Figure 4.5.

It is known from the work of Durlofsky and Brady (1987) that the resis-

tance matrix formed from the inverse of the mobility has O(N-1) errors owing

to the effects of the periodic boundary conditions on the satisfaction of

overall mass and/or momentum balances. Thus, these O(N "1) errors may also

be present in the rotational mobility problems, and a conservative estimate

is that the periodicity effects scale as N-1. However, the data in Figure

4.5 were not extrapolated with this scaling as the resulting values would

not lie outside the error in the results shown.

In Figure 4.6, rotational velocities calculated using the F-T method

and using the F-T-S method without including lubrication are shown. As one

might expect, the stresslets, which result from a symmetric distribution of

force density about the particle surfaces, have only a slight effect on the

rotational velocities. In addition, note that the results with no lubri-
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cation fall precisely along the line given by (4.10), showing that the far-

field interaction terms alone give rise to the dilute limit result.

Finally, one also sees from Figure 4.6 that, in contrast to what was

observed for the sedimentation velocity, lubrication does play an important

role in the rotational velocity calculations. This is due to the fact that,

for this case, there is relative motion between particle surfaces, and thus

as spheres approach one another lubrication has a considerable effect.

In Figures 4.7 and 4.8 results are presented for D,, the short-time

rotational self-diffusion coefficient. The normalization parameter is the

rotational diffusion coefficient for an isolated sphere, D1 - kT/(8ipa3 ).

In Figure 4.7 one finds that, as was the case with the rotational velocity

calculation, periodicity effects are negligible. An analysis similar to

those discussed above will explain why this is the case. From (4.10) it is

known that the rotating sphere's periodic reflections hinder its motion by

O/N, while it will be assumed that the effect of the neutrally buoyant

spheres can be accounted for by an effective viscosity that grows like

(5/2)(1-L/N)O (Einstein's low 0 viscosity result). Thus, the criterion for

neglecting periodicity effects is

( /N)
= 0.4/N << 1 , (4.11)

(5/2)0(1 - 1/N)

an inequality that is satisfied in all of the simulations discussed here.

Again, the finite size effects scale as N-1.

Unlike the rotational velocity calculations, however, from Figure 4.8

one can see that the stresslecs are important in this calculation. The
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reason for this should be clear: in a suspension of spheres that have no

applied forces or torques, the only far-field quantities left to interact

with a single rotating sphere are the stresslets, in the absence of which it

can only interact with its own periodic images. Indeed, although these data

were left out for simplicity, if the F-T results that do not include

lubrication effects were plotted, they would be identically reproduced by

(1-/!N). which is just the result given by (4.10) for an SC lattice of

spheres in an otherwise pure fluid. This behavior underscores the impor-

tance of stresslets in determining the average properties of suspensions.

4.6 EFFECTIVE VISCOSITY

The final property that will be evaluated for suspensions is the shear,

or effective, viscosity. This quantity is calculated exactly as described

in (3.8), (3.9), and (3.10) of the previous chapter. However, for a

disordered, isotropic suspension, one has in place of (3.10)

(Aj1) - ( 61 ik6 + 16k -2 6 k ) , (4.12)

where 0 is a function of the volume fraction 4 only. Substituting (4.12)

and (3.7) into (2.12), one can calculate a relative viscosity Ur, defined as

the suspension viscosity divided by the fluid viscosity, as

Ar - 1 + EP_ (4.13)
2p



5
As 0 - 0. 3 - (20/3)ixa 3 and the correction term in (4.13) becomes 50,

yielding Einstein's result for the viscosity of a dilute suspension. The

0(l2) correction has since been calculated by Batchelor and Green (1972)

(see also Yoon and Kim, 1987), yielding

r - 1 + (5/2)0 + 5.0702 (4.14)

Note that the 0(o) correction term is independent of structure, and thus the

finite size effects here are expected to be at most O(N-:) as they were for

the rotational velocity. The same scaling in the two cases might also be

expected since both the torque and stresslet are first moments of the force

distribution on the surface of a particle.

The weak dependence of pr on N is borne out in Figure 4.9, where the

relative viscosity determined by the F-T-S method is plotted as a function

of 0 for N equal to 14, 27, and 64. Also shown in the figure are the low #

asymptotic result (4.14) and two correlations given by Krieger (1972). The

upper curve of Krieger corresponds to the limit of low shear rate (low

Peclet number), while the lower curve corresponds to the limit of high shear

rate (high Peclet number). One should view these curves as simply providing

an idea of where a representative sample of experimental data lies in

relation to our simulation results.

In general, agreement between experiment, the simulation results and

the low o asymptotic result is quite good up to 0 - 0.15, which may be taken

as a confirmation of Batchelor and Green's calculation. At higher 0, both
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Figure 4.9 - The relative viscosity p, is plotted as a function of volume

fraction 0 for several cases. The open symbols are the Monte Carlo simu-
lation results for 14, 27, and 64 spheres per periodic unit cell, showing
the insensitivity of this calculation to changes in N. The dashed curve is

the low 0 result of Batchelor and Green (1972), and the solid curves are
correlations of experimental data reported by Krieger (1972). The upper,
solid curve corresponds to the low Peclet number limit, while the lower
curve corresponds to the high Peclet number limit.



the simulation and the experimental results lie significantly above the low

o asymptote and increase rapidly with increasing 0.

Although the simulation results compare favorably with Krieger's high

Peclet number asymptote, caution must be exercised in making a direct com-

parison between theory and experiment in this case. At low shear rates,

Brownian motion has a strong randomizing effect, and the microstructure

obtained through the Monte Carlo method (i.e., the hard-sphere micro

structure) is close to that of the slightly deformed, low-Peclet-number

limit suspension corresponding to the upper curve of Krieger. (The Peclet

number referred to here is (e1ya
2/Do), where it has been assumed that the

imposed velocity gradient is in the y-direction.) Hence, one may think that

the simulation results should be compared with these data. However, as

discussed by Batchelor (1977), there is an additional direct Brownian

contribution to the bulk stress that can only be obtained by calculation of

the deformed microstructure. Recent simulations (Bossis et al., 1988)

indicate that this contribution to M, is about equal in magnitude to the

part calculated here. Thus, the simulation results are expected to fall

well below the upper curve of Krieger, an expectation confirmed by Figure

4.9.

The Brownian contribution to the stress decreases with increasing shear

rate (shear thinning), explaining the lowering of the curve for high shear

rates. At high shear rates, however, the suspension microstructure is far

from being a hard-sphere distribution. Dynamic simulations of monolayers of

hard spheres performed under such conditions (Brady and Bossis, 1985; Bossis

and Brady, 1987) indicate that the viscosity corresponding to the equi-

librium, hard-sphere distribution (i.e., the distribution used in the Monte



Carlo simulations) is lower than that corresponding to the actual micro-

structure that develops at high shear rates. This trend is evident in

Figure 4.9, where the Monte Carlo results fall slightly below the high

Peclet curve reported by Krieger. Hence, the reasonable agreement in

magnitude and general trends suggests that the Ftokesian dynamics method is

capturing the proper physics.

There is an experimental situation which does correspond to the

viscosity calculated in the Monte Carlo simulations. In high frequency, low

amplitude shearing of Brownian suspensions, the microstructure is only

slightly deformed from the equilibrium hard-sphere structure used here, and

the direct Brownian contribution is out of phase with the applied oscil-

lating shear field. (This situation also results in a shear modulus of

elasticity, as discussed by Russel and Gast, 1986.) Thus, in the limit of

small deformation, this "dynamic viscosity" corresponds to the Monte Carlo,

hard-sphere viscosities In Figure 4.10, the simulation resul's are

compared with the results of the high frequency experiments of van der Werff

er al. (1988), in which the dynamic viscosity was measured for suspensions

of silica particles. The agreement is quite satisfactory considering the

sensitivity of the data to slight changes in q. This therefore serves as an

additional confirmation of the quantitative accuracy of the Stokesian

dynamics method.

Because van der Werff et al. provide experimental data for systems with

d > 0.40, included in Figure 4.10 are simulation results for ' - 0.55 and d

S0.60. These results were obtained using a value of N - 32 because 27

spheres cannot be packed into a cubic unit cell at such high volume frac-

tions. The error bars shown are the standard error, i.e., the standard
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Figure 4.10 - Comparison of the simulation viscosities for 27 and 32 spheres
per periodic unit cell with the high frequency, dynamic viscosities measured
by van der Werff er al. (1989). The open circles are the theoretical
predictions of Beenakker (1984). The open triangles are results for the F-
T-S method without lubrication, and are described well by Batchelor and
Green's low 4 result over the entire range of 4 studied.
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deviation of the set of 50 results (5 values from each of the 10 samples

used) divided by the square root of 50. The relatively large standard

deviations associated with these points can be attributed to the presence of

clusters of particles which vary in size from one sample to another, and

hence cause large fluctuations in r,. A macroscopic system at these high

values of 0 would undoubtedly have clusters in some regions and freely

mobile particles in others, a situation that is difficult to model with the

number of particles considered here. More accurate results could undoubt-

edly be obtained by performing simulations with enough particles to model

the complete structure. At present, however, computer time limitations make

such an endeavor infeasible. Finally, it is noteworthy that the exper-

imental results of van der Werff et al. show the proper hydrodynamic scaling

with particle size and shear rate for all volume fractions studied, up to 0

in excess of 0.7, even for particles as small as 28 nm. This indicates that

the continuum mechanical description for smooth, hard spheres applies down

to remarkably small particle surface-surface separations.

Also shown in Figure 4.10 are the effects of neglecting lubrication on

the simulation calculations and the theoretical results of Beenakker (1984).

Remarkably, the low 0 result (4.14) agrees with the far-field, Stokesian

dynamics results to volume fractions as high as - 0.60. All the deviation

from (4.14) and the rapid rise with increasing can therefore be attributed

to the pairwise additive lubrication interactions. Thus, as with the self-

diffusion coefficient calculations, the pairwise-additive method of ac-

counting for near-field interactions is in quantitative agreement with

experiment.



Beenakker has developed the most rigorous alternative theory available

for the viscosity of a suspension with the hard-sphere microstructure (i.e.,

the high frequency visccsity), and his results agree well with the simu-

lation results and with the experimental data up to a volume fraction of 4 =

0.4. At higher volume fractions, Beenakker's theory underpredicts the

relative viscosity, as it apparently does not incorporate enough of the

near-field structure and interactions to obtain a high viscosity.

4 7 CONCLUSION

The primary purpose of this chapter was to present Stokesian dynamics

predictions for the hydrodynamic transport properties of disordered hard-

sphere suspensions. The hard-sphere distribution represents a convenient

reference microstructure, and in many ways one could view these results as

"experimental" data. It is hoped that they can play a role in developing

theories and understanding of suspension properties much the same way

conventional molecular dynamics has aided the development of liquid state

theory. Indeed, one can use these results to begin to derive a "pertur-

bation theory" of suspensions, similar to liquid state perturbation theory.

This approach has actually been implemented for the low Peclet number limit

(Russel and Gast, 1986), and recently dynamic simulations have been used to

help test these perturbation theories (Bossis and Brady, 1988).

The comparisons made with experiment have been as complete as possible.

It has been seen that the calculated sedimentation velocities do not agree

particularly well with experiment, owing to the severe effects of peri-

odicity at low volume fractions and the need for higher order, many-particle



multipole moments at higher volume fractions (cf. Figure 4.1). These

problems could be eliminated at increased computational cost.

Comparisons of experimental results with the effective viscosity and

self-diffusion coefficients calculated using Stokesian dynamics have been

much more favorable. The effective viscosity results lie near the exper-

imental data corresponding to steady shear at high Peclet numbers. What

discrepancies do exist could result from deviations from the hard-sphere

microstructure that are expected in suspensions at high shear rates.

Experimentally measured high frequency, dynamic viscosities and self-

diffusion coefficients are in very good agreement with the simulation

results (cf. Figures 4.4 and 4.10). Significantly, for these latter two

cases the hard-sphere distribution is the microstructure actually present in

the experimental systems, and thus these comparisons provide a rigorous test

of the Stokesian dynamics method of calculating hydrodynamic interactions.

Comparison between experimental data and the rotational properties (velocity

and self-diffusion) must await experimental measurement.

An exhaustive comparison with all the available theories was not at-

tempted. However, the results obtained here were compared with the dilute

suspension theories of Batchelor (1972; 1976) and Batchelor and Green

(1972), and it was found that the two sets of predictions were generally in

excellent agreement, the notable exception being the low 0, limiting

behavior of the sedimentation velocity. The other theories that are

discussed are those of Beenakker (1984) and Beenakker and Mazur (1984),

whose treatment of the self-diffusion coefficient and dynamic viscosity are

the most complete and rigorous available. Their predictions are in excel-

lent agreement with the simulations up to volume fractions of about 0.4. At



higher 0, evidently more interactions need to be included in their analyses.

Nevertheless, these theories represent a remarkable accomplishment.

In addition to the simulation results themselves, the rates of decay of

the periodicity effects resulting from the use of periodic boundary condi-

tions have been determined as a function of N, the number of particles per

periodic unit cell. These effects are most severe for the sedimentation

velocity and self-diffusion coefficient, where the decay with number of

particles is an extremely slow N-1'3. This behavior makes it possible,

although somewhat difficult, to extract the N - c limiting results. On the

other hand, for the rotational properties and the effective viscosity, the

finite-size effects scale at most as N-1. It is thus only the translational

properties of free suspensions that are severely affected by the perio-

dicity. There are, of course, other constraining effects of periodic

boundary conditions, such as the necessity of fitting all important micro-

structure length scales within the periodic unit cell, but these constraints

are not related to the long-range nature of the hydrodynamic interactions

discussed here.



CHAPTER 5

TRANSPORT PROPERTIES OF DISORDERED POROUS MEDIA

In the previous chapter, it was shown how the Stokesian dynamics method

for evaluating hydrodynamic interactions could be used to calculate bulk

properties of disordered suspensions, such as sedimentation velocities,

self-diffusion coefficients and effective viscosities. This approach can

also be used to calculate transport properties of porous media, and thus in

this chapter an analogous set of results will be presented for disordered

porous media made up of hard spheres. The transport properties that are

discussed consist of permeabilities, short-time hindered translational

diffusion coefficients, rotational drag coefficients or spin viscosities,

and short-time hindered rotational diffusion rnefficients. As in Chapter 4,

volume fractions (4) ranging from infinite dilution to the fluid-solid

transition at 0 - 0.49 are examined, and the effects of calculating the

hydrodynamic interactions at three levels of approximation are compared.

Finally, whenever possible the results are compared with experiment and with

other theoretical results obtained from the literature, which thereby

provide some criteria for assessing the accuracy of the method.

Several researchers have commented on the qualitative differences

between the nature of hydrodynamic interactions in free suspensions and in

porous media (Brinkman, 1947; Saffman, 1973; Hinch, 1977). Essentially

these differences result from the fact that, in porous media, it is neces-

sary to apply external forces (and torques) to particles in order to hold

them immobile, whereas in suspensions of neutrally buoyant particles no such

forces need be applied. The effect of these applied forces is to screen the
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hvdrodvnamic interactions between particles, causing them to decay as k/r 3

over long distances, where k is the permeability, rather than decaying as

1 'r, as is the case for Stokes flow in a suspension of freely mobile

particles.

As stated in Chapter 1, it is common to incorporate this screening

behavior directly into the method of calculation by considering interactions

within an effective medium of particles and fluid. Brinkman (1947) pio-

neered this approach in his calculation of the hydraulic permeability of a

disordered porous medium of hard spheres. The Stokesian dynamics method

used here does not rely upon a similar effective medium assumption. It

does, however, provide a method that allows one to calculate many-body

interactions accurately in the far-field limit, and thus the screening

behavior just discussed arises naturally for systems in which the sphere

velocities are constrained to be zero. Indeed, Durlofsky and Brady (1987)

have carefully studied such interactions in porous media and have shown

that, using the Stokesian dynamics method, one can observe Brinkman screen-

ing. Thus, there is ample evidence to show that this method correctly

captures the rather complicated nature of long-range hydrodynamic inter-

actions in porous media.

As in Chapter 4, the results to be presented here were obtained using a

Monte Carlo approach. The procedure consists of generating a series of

samples, each modeling a portion of the microstructure of a porous medium,

calculating the transport property of interest for each sample, and then

averaging to obtain values describing the behavior of a macroscopic system.

In the following section the averages used to calculate the relevant

transport properties are derived. These are similar in nature to those used



in Chapter 4. This discussion of methods is followed by a presentation of

the simulation results, and then a conclusion in which some apparent

differences between the results obtained here and in Chapter 4 will be

discussed.

5.1 CALCULATIONAL PROCEDURES

The samples used for the calculations of Chapter 4 were also used for

the calculations presented here. Indeed, once the resistance matrix (or its

inverse, the mobility matrix) is formed, all of the information needed to

calculate the suspension properties discussed in the previous chapter and

the properties of porous media discussed here is available. It is merely

necessary to perform the appropriate averaging procedures to obtain the

transport property of interest.

Calculation of the drag coefficient K (and hence, from (3.3), the

hydraulic permeability k) and the rotational drag coefficient Kr (or the

spin viscosity) is discussed in Chapter 3 in the context of periodic systems

(cf. equations (3.2), (3.4) and (3.11)). The procedures described there are

general and can also be applied to disordered systems. However, the calcu-

lation of the mobilities, or hindered diffusion coefficients, of individual

particles requires a somewhat different approach.

In order to calculate the hindered translational diffusion coefficient

of a particle moving through a fixed array of like particles, one can set

N-i particle velocities equal to zero, and evaluate the relationship between

the force and velocity of the one freely mobile particle. This relationship

is governed by a 3x3 matrix that lies along the diagonal of R*U, and thus



the mobility of particle a is given by (RIF)-! This mobility averaged over

all the particles in the system, along with the Stokes-Einstein relations,

defines the short-time hindered diffusion coefficient according to

N

HDF= U tr ( N (R)-1 (5.1)

a-i

where kT is the product of Boltzmann's constant and absolute temperature,

and the term tr has the same meaning as in (3.4). The fact that DHD is

expressed as a scalar again reflects the isotropic nature of the porous

medium.

Note the distinction between this diffusion coefficient and the short-

time self-diffusion coefficient reported in Chapter 4: DHD describes dif-

fusion of a particle surrounded by other particles that are fixed in space

(i.e., a porous medium), whereas in Chapter 4 (cf. equation (4.3)) the sur-

rounding particles were mobile and were required to be free of any applied

forces or torques (i.e., a free suspension). Just as in Chapter 4, however,

the Monte Carlo method of simulation restricts the analysis to the calcu-

lation of short-time coefficients, which describe motion on a time scale so

short that the mobile particle does not move a distance comparable either to

its own radius or to the distance between particle surfaces. The importance

of this restriction is readily apparent for the case of a mobile particle

wandering randomly within a small "cage" in which the distance between the

immobile particles is too small for the mobile particle to escape. Clearly

the instantaneous mobility or hindered diffusion coefficient of the mobile
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particle will be finite, while its long-time hindered diffusivity will be

zero. Finally, results are also presented here for the rotational hindered

diffusion coefficient DrD, analogous to DHD, which is obtained by simply

substituting (RnL) - I for (RnF) -l in (5.1).

The calculations required to obtain the results presented in the next

section were all performed on a CYBER 205 supercomputer, with the specifics

of the time requirements being identical to those given in Chapter 4.

Again, note that statistical errors are reduced by the fact that each sample

produces three values for each of the transport properties described, a

consequence of the independence of those quantities when calculated in each

of the three coordinate directions. Thus, although only 10 samples are

represented in each data point, that point is actually an average over 30

values.

5.2 RESULTS AND DISCUSSION

The results for the calculations described above can be examined in

several ways. First, the effects of changing the size of the periodic unit

cells that make up the infinite systems are studied by varying the number of

particles per periodic unit cell N, and the accuracy of the F, F-T, and F-T-

S methods will be compared as in Chapter 4. This latter information should

be of interest to those who wish to perform similar calculations, but do not

necessarily require the most accurate, and hence most computationally de-

manding, formulation available. Such comparisons also shed some light on

the nature of the hydrodynamic interactions being studied. In addition,

whenever possible comparisons will be made between the simulation results
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and those that have been reported previously in the literature. In making

these comparisons one should bear in mind the flexibility of the Stokesian

dynamics method, with which one can calculate all the transport properties

of porous media that are reported here, the transport properties of sus-

pensions reported in Chapter 4, and also perform dynamic simulations if so

desired.

5.2.1 Hydraulic Permeability

As in Chapter 3, the permeability results will be presented in the form

of the average drag coefficient K (cf. equation (3.3)). In Figure 5.1

values of K calculated for N equal to 14, 27, and 64 particles per periodic

box are compared with the results of Kim and Russel (1985), the Carman

correlation (Happel and Brenner, 1965), and the results of Zick and Homsy

(1982) for a periodic simple cubic lattice of spheres. Note that, in

general, the results for random systems lie below those for SC lattices, a

fact which is no doubt related to the larger void spaces through which fluid

can flow in disordered media. Also, the Stokesian dynamics results agree

well with those of Kim and Russel and the Carman correlation up to volume

fractions of about 0.35, while at higher volume fractions the simulation

results tend to underestimate the correct value of K. This trend is

consistent with the results obtained for periodic systems in Chapter 3 and

for sedimenting suspensions in Chapter 4, and can again be explained by the

fact that lubrication forces are not a dominant (or even significant) part

of these calculations at any volume fraction.
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Figure 5.1 - Values of the dimensionless drag coefficient K/6ffa are plotted
as a function of 4 for 14, 27, and 64 spheres per periodic unit cell. The
Carman correlation, the results of Kim and Russel (1985) for random arrays,
and those of Zick and Homsy (1982) for SC lattices are also shown.
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One other significant observation that is evident from Figure 5.1 is

the absence of periodicity effects, as evidenced by the roughly equivalent

results obtained for the three values of N studied. As in Chapter 4, one

can explain this result by comparing the effect on the permeability of a

sphere's periodic reflections with the effect of all the other spheres in

the system. The sphere's reflections are arranged in a simple cubic lattice

with volume fraction 0/N, whereas the immobile spheres are assumed to behave

as a random porous medium of volume fraction 0(l-1/N). The drag coefficient

for a sphere in a dilute, simple cubic lattice is (Saffman, 1973)

Ks5

6pa - 1 + 1.744'
/1 (5.2)

while for a dilute, fixed, random array Kran is given by (Brinkman, 1947)

Kran

- 1 + (3//2)01/2 (5.3)
67pa

Therefore, for the effect of the periodic reflections to be negligible one

requires that

1.74 (O/N)1 1 3

(4.5)1/2 (1-1/N)/'7'/2 << 1 , (5.4)

or, for large N,
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N >> 0.55 -1/2(

The inequality (5.5) is also the requirement that the Brinkman screening

length k /2 , given by (T2/3)a4-1/2 for random arrays of spheres (for which k

= 2a2 /90), be small compared to the size of the periodic unit cell. As long

as this condition is satisfied, the medium will appear disordered rather

than ordered. Except for the most dilute systems studied, the inequality

(5.5) was satisfied in these simulations.

The observation made above that lubrication forces do not significantly

affect permeability calculations is clearly illustrated in Figure 5.2, where

it is seen that results with and without the effects of near-field, lub-

rication interactions are virtually identical. In contrast, including the

dipole interaction terms of the moment expansion (2.26) (i.e., moving from

the F to the F-T-S method) does significantly improve the accuracy of the

calculations. (Including torques only, as in the F-T formulation, did not

significantly alter the F method results, and so for simplicity those data

were not plotted.) The effect of the stresslet terms is indicative of what

would be required to obtain more accurate values of K using the Stokesian

dynamics method: the moment expansion used in determining the far-field

interaction terms would have to be extended to include quadrupole, octupole,

and several higher multipole moments (cf. Table 3.1), a procedure that would

require excessive computer time.
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Figure 5.2 - Comparison of the effects of various levels of approximation
the formation of the resistance matrix on the calculation of the average
drag coefficient K. The open squares are the complete, F-T-S calculation
for N - 27 with near-field interactions included. The crosses (+) are
results for the F-T-S calculation without near-field effects, and show that
lubrication forces are not important in this calculation. The open tri-
angles are the results for the F method with near-field interactions
included.
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5.2.2 Hindered Diffusion

As already stated, the calculation of short-time, hindered diffusion

coefficients is accomplished by evaluating the mobility of a given sphere in

a porous medium and applying the Stokes-Einstein equation. The mobility of

a given sphere is evaluated by exerting a force on it and calculating the

resulting velocity, given that the other spheres in the porous medium are

held immobile. Note that restricting the surrounding spheres to be force-

and torque-free rather than immobile yields the self-diffusion coefficient

of a particle in a suspension, as discussed in Chapter 4.

For an unbounded porous medium with no periodicity, when the given test

particle moves both the average velocity (u) and the average force (F) are

zero. However, with the imposition of periodic boundary conditions it

becomes impossible to insure that both of these conditions will hold. The

disparity between the two situations results from the fact that, when

periodic boundary conditions are used, any motion of the test particle is

accompanied by motion of that particle's periodic reflections, which are

arranged in an SC lattice. Since an infinite number of particles is moving

rather than one, single particle, a "backflow" of fluid is necessary to

insure that (u)-O. This backflow is caused by a pressure gradient that

arises to balance a non-zero average force (cf. section 2.1), and can reduce

the calculated mobility if the periodic unit cells are not large enough.

Fortunately, for the hindered diffusion coefficient calculation considered

here, these periodicity effects decay rapidly, decreasing as N-1 as the

number of particles per unit cell is increased (Durlofsky and Brady, 1987).

In Figure 5.3, the simulation results for 14, 27, and 64 particles per
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periodic unit cell are shown together with the asymptotic low 0 result

derived by Freed and Muthukumar (1978). Clearly the agreement between the

two sets of results is excellent for the dilute systems where Freed and

Muthukumar's result is valid. At higher 0, Freed and Muthukumar's calcu-

lations seem to underestimate the hindered diffusivity, although they do

give the proper trend. Finally, periodicity effects are seen to be negli-

gible, a result of the weak dependence on N discussed above.

In Figure 5.4, the complete F-T-S method results for N - 27 are shown

and are compared with those obtained from the simpler F method and those

from the F-T-S method without lubrication. As in Figures 5.1 and 5.2, the

results for the F-T method deviate only slightly from those for the F method

and so were left out for clarity. The data of Figure 5.4 can be interpreted

as meaning that lubrication and stresslet interactions are of comparable

importance up to volume fractions of about 0.25, while for higher volume

fractions lubrication interactions begin to dominate the effects of all the

higher-order moments.

Because stresslets do seem to be important here over such a wide range

of volume fractions, it could be worthwhile to explore possible alternative

methods of including them in the formulation. One such approach is to

include torques and stresslets (i.e., terms resulting from the dipole moment

in (2.26)) in a pairwise fashion through the terms (R2B-R2B), thereby

classifying torque and stresslet contributions as near-field rather than

far-field interactions. This would increase the computational efficiency of

the method by reducing the size of the mobility matrix that must be inverted

in (2.48) from 11NxllN to 3Nx3N, resulting in a 50-fold savings in compu-

tation time.
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Figure 5.3 - Simulation results for the short-time hindered diffusion
coefficient DBD are plotted as a function of volume fraction 0 for three
values of N. The result reported by Freed and Muthukumar (1978), valid at
low 4, is included for comparison.
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Figure 5.4 - Comparison of the effects of various levels of approximation in
the formation of the resistance matrix on the calculation of the short-time
hindered diffusion coefficient DID. The open squares are results for the
complete F-T-S method for N - 27, including near-field interactions. The
open circles are the results without near-field interactions, and the open
triangles are the results for the F method with near-field interactions.
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In Figure 5.5, results for such a variation of the F method are pre-

sented. These results were obtained for N - 27, and should be compared with

the F-method results of Figure 5.4, in which the effects of stresslets and

torques are left out entirely (cf. section 4.1). Clearly the agreement is

excellent, showing that pairwise incorporation of torque and stresslet

interactions results in essentially no loss in accuracy for this calcu-

lation. It should be noted, however, that from a rigorous mathematical

point of view torque and stresslet interactions are not absolutely conver-

gent, and therefore should be properly summed as described in Chapter 2.

Thus, pairwise addition of these interactions, which seems to work extremely

well in calculations of DHD, should not be assumed to be equally valid for

other calculations.

5.2.3 Rotational Drag and Rotational Hindered Diffusion

This discussion of transport properties of porous media is completed by

presenting the results for the rotational analogs of the transport prop-

erties discussed above. Results for the rotational drag coefficient Kr are

presented in Figures 5.6 and 5.7, white the rotational hindered diffusion

coefficients are plotted in Figures 5.8 and 5.9. As was the case for the

translational transport properties, neither set of rotational quantities

calculated show any effects of periodicity, as the three values of N used

all seem to yield essentially identical results. In addition, for both

cases the lubrication terms appear to be much more important than the

stresslet interaction terms, particularly at the higher volume fractions
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Figure 5.5 - Results for DeO calculated using a variation of the F method in
which torque and stresslet interactions are included in a pairvise fashion
are compared with the complete F-T-S results (both sets of simulations were
performed with N - 27).
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Figure 5.6 - The rotational drag coefficient K. is plotted as a function of
0 for different values of 1N, the number of spheres per periodic unit cell.
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Figure 5.7 - Comparison of the effects of different levels of approximation
in the formation of the resistance matrix on the calculation of the rota-
tional drag coefficient Kr.
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Figure 5.8 - The rotational hindered diffusion coefficient DID is plotted as
a function of 0 for different values of N, the number of spheres per
periodic unit cell.
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Figure 5.9 - Comparison of the effects of different levels of approximation
in the formation of the resistance matrix on the calculation of the rota-
tional hindered diffusion coefficient DD.
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studied. Note also that, in contrast to the results for the drag coef-

ficient K, lubrication is important for the rotational drag coefficient as

there is now relative motion between particle surfaces. At present there

are no theoretical or experimental results with which to compare these data.

It may be remarked, however, that the calculations of Kim and Russel and

those of Freed and Muthukumar could be extended to the rotational case.

5.3 CONCLUSION

The Stokesian dynamics method described in Chapter 2 has been suc-

cessfully applied to a wide class of problems involving free suspensions and

porous media. In Chapter 4 results for transport properties associated with

suspensions of hard spheres, including sedimentation velocities, self-dif-

fusion coefficients, and effective viscosities, were presented and analyzed.

In this chapter a similar set of results were given for porous media, in-

cluding calculations of permeabilities and short-time hindered diffusion

coefficients. Among the more prominent differences between the results

presented in these two chapters are the effects incurred by the imposition

of periodic boundary conditions. While periodicity effects were clearly

important in the translational properties (sedimentation and self-diffusion)

of free suspensions, they are not at all apparent in the results presented

in this chapter. The reasons for this difference lie in Brinkman screening

effects, which cause interactions to decay more rapidly in porous media than

in suspensions, thereby decreasing any effects of long-range order.

Finally, although the Stokesian dynamics method was originally applied to

dynamic simulations of hard-sphere suspensions, the work presented in this
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and in the previous chapter has shown that it can be useful in other

applications as well, a fact that will be made even more apparent in the

chapters to follow.
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CHAPTER 6

HINDERED TRANSPORT IN FIBROUS MEDIA

The problem of predicting rates of transport for globular proteins in

fibrous membranes and gels has relevance to many important physiological and

industrial processes. Ultrafiltration and size-exclusion chromatography

serve as two examples. When the permeating macromolecules have dimensions

comparable to the interfiber spacing, transport is hindered by steric as

well as long-range interactions with the fibers. Steric interactions make

some fraction of the fluid volume in the fiber matrix inaccessible to the

center of a solute molecule. For fibers arranged in a spatially periodic

fashion, this excluded volume can be calculated using elementary geometric

principles. The corresponding calculation for random arrays of fibers is

considerably more complicated, but has already been carried out for both the

dilute (Ogston, 1958) and non-dilute case (Fanti and Glandt, 1989).

Unfortunately, there is much less information available on the effects

of long-range interactions. Even in the absence of electrostatic effects,

long-range hydrodynamic interactions between the solute macromolecule and

the fibers will lead to an increase in the hydrodynamic drag. Previous

studies on hindered transport in cylindrical or slit-like pores suggest that

this increased drag can contribute significantly to the lowering of the

apparent diffusivity (Deen, 1987). In the past, theories have been applied

primarily to infinitesimally small solutes in fibrous media (Perrins eat al.,

1979; Brenner and Adler, 1982; Carbonell and Whitaker, 1983; Koch and Brady,

1986). However, under these conditions neither steric nor hydrodynamic
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interactions play an important role. Thus, there is a great need for a

better theoretical understanding of the effects of hydrodynamic interactions

on the transport of finite-sized solutes in fibrous media.

In this chapter, two approaches for calculating transport coefficients

for a spherical macromolecule in a matrix of fibers are described. The

first method is an effective medium approach based on Brinkman's equation.

In the second calculation, the Stokesian dynamics method is used to calc-

ulate local hydrodynamic coefficients at any position in a fibrous bed.

These local coefficients describe transport over time scales so short that a

mobile macromolecule does not move a distance comparable to its own radius,

and are therefore not appropriate for calculating a macroscopic flux through

a membrane or gel. However, local coefficients can be used in conjunction

with dynamic simulations (Brady and Bossis, 1988) or with generalized Taylor

dispersion theory (Brenner and Adler, 1982) to calculate global transport

coefficients, that do describe diffusion and convection over macroscopic

length scales.

Here the theory of Brenner and Adler is used to obtain numerical

results for these global coefficients, and the predictions of the effective

medium model and of generalized Taylor dispersion theory are compared for

two different spatially periodic lattices of bead-and-string fibers. In

addition, the effects of the size of the solute relative to that of the

fibers is examined by varying the ratio of the solute radius to the fiber

radius (A) from 0.5 to 5. Finally, this comparison between two different

theoretical results is complemented by a comparison between results obtained

using the effective medium model and experimental data reported in the

literature.
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6.1 THEORY

6.1.1 Effective Medium Approach

The macroscopic flux J* of probability density P through an effective

medium can be described by the equation

J - -D*-VP + U*P . (6.1)

Here the overbar on the probability density indicates that this is a macro-

scopic probability density. It is the volume average of the local proba-

bility density P over a length scale large enough to represent the micro-

structure of the porous medium. For a spatially periodic porous medium, the

appropriate length scale for averaging is the dimension of a single unit

cell. Thus, P varies over a length scale which is large compared to that of

a unit cell. The dispersivity tensor D* in (6.1) can be thought of as the

quantity that governs the flux resulting from a gradient in probability

density, while the solute velocity U' determines the flux resulting from an

average velocity (u). The time scale over which these flux terms are

measured must be long enough to allow the Brownian solute to sample enough

positions in the porous medium to obtain an adequate representation of its

microstructure. For a spatially periodic medium with unit cells of dimen-

sion L', an order-of-magnitude estimate of the time t* required for this to

occur is t* >> L'2/Do.
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The dispersion tensor for an isotropic porous medium can be expressed

as the product of an effective dispersion coefficient D* and the identity

tensor I. A value for D* can be obtained using the Stokes-Einstein equa-

tion, which states that D* - kBT/f, where kBT is the product of Boltzmann's

constant and absolute temperature, and f is the friction coefficient, equal

to 67rpa s for a sphere of radius as in a pure fluid with viscosity p. The

friction coefficient for a sphere in a porous medium can be calculated by

using Brinkman's equation (Brinkman, 1947) for flow in a porous medium:

pV2v - V(p) - (p/k)(u) . (6.2)

Here (p) is the pressure and (u) is the velocity averaged over both the

fluid and the fiber phases. Equation (6.2) can be seen as Stokes' equations

with an additional term to account for the force exerted on the fluid by the

fibers. This additional resistance term is proportional to (u) and is

distributed evenly throughout space. Alternatively, Brinkman's equation can

be viewed as Darcy's law with an additional term that accounts for viscous

stresses in the fluid phase. The only structural information included in

this effective medium model is contained in k, the hydraulic permeability.

The value of f obtained by solving (6.2) subject to no-slip boundary

conditions at the sphere surface and constant velocity far from the sphere

center is (Brinkman, 1947; Howells, 1974)

S1 + (a,/k)1/ 2 + (a2/k) . (6.3)
6ira, 3 /

Thus, from the Stokes-Einstein equation, one would expect
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= 1(6.4)
Do 1 + (a/k)1 / 2 + (a/k)

for the effective medium, where Do is the diffusivity in a pure fluid. For

a force-free particle, Brinkman's equation would require that the particle

velocity U* be equal to the velocity (u) averaged over both the fiber and

fluid phases. However, for a particle that cannot access positions in the

fiber phase, one expects that a better approximation can be obtained by

equating U* with the average velocity of the fluid phase only. Thus, for a

medium with volume fraction 4, one has

U'- uI (6.5)

and both quantities required to evaluate the flux using (6.1) are known.

The hydraulic permeability k can be measured directly in many cases. It can

also be determined theoretically for certain fiber geometries (Hasimoto,

1959; Spielman and Goren, 1968), or can be evaluated using well-known, semi-

empirical correlations (Jackson and James, 1986).

The result given by (6.3) can be derived rigorously for a medium consis-

ting of a dilute, disordered array of hard spheres (Childress, 1972;

Howells, 1974; Hinch, 1977; Freed and Muthukumar, 1978). Although one might

expect that the details of a fibrous versus a hard-sphere microstructure

might not be important for small enough volume fractions, it is not at all

clear that this will be true for volume fractions of interest for hindered

transport. Further examination of equations (6.4) and (6.5) (see below) is

therefore required before passing judgement as to their value.

123



6.1.2 Calculation of Local Transport Coefficients

Following Brenner and Adler (1982), one can define a local flux J of

probability density P at any point in the unit cell of a spatially periodic

lattice by

J - -D D-VP + UP, (6.6)

where P is a function of position X and the time since the diffusing macro-

molecule was released at some particular position. The terms DHD and U are

the local dispersion coefficient and local velocity of the tracer macro-

molecule, respectively. The probability density P is normalized such that

its integral over all space, including the fluid and solid phases of all

unit cells, is unity.

The quantities DHD and U in (6.6) can be calculated using the Stokesian

dynamics method. Extension of this method to spheres of different radii was

achieved by evaluating near-field interactions according to the method of

Jeffrey and Onishi (1984) and far-field interactions using the equations

given by Beenakker (1986). The local, or short-time hindered diffusion

coefficient is obtained in exactly the same way as described in Chapter 5

(cf. Equation (5.1)), but with the immobile spheres aligned in rows to model

fibers rather than randomly dispersed as in the Monte Carlo simulations.

The velocity U can be found by solving for the velocity of the force- and

torque-free spherical solute given that the translational and rotational
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velocities of the spheres in the bead-and-string fibers are zero. The

result for a system with average velocity (u) is

N

- ( (R• -1 ) (u) , (6.7)

B-1

where RIO is a 3x3 matrix relating the force on particle a to the velocity

of particle # relative to the average velocity (u). The quantity R* is a

component of the resistance matrix formed by inverting the mobility matrix

of (2.1).

The resistance matrices used to calculate DHD and U were obtained using

a variation of the F method described in Chapters 4 and 5. This approach is

discussed in section 5.2 (cf. Figure 5.5), and differs from the F method

described in section 4.2 in that torque and stresslet interactions are

included in a pairwise additive fashion rather than being neglected en-

tirely. Results obtained using this variation of the F method were consis-

tently within 2-3% of those calculated using the complete F-T-S method.

This finding is in accordance with the excellent agreement observed between

the results of Monte Carlo simulations performed using these two levels of

approximation (cf. Figure 5.5).

In addition to errors associated with truncation of the moment expan-

sion (2.26), there are errors associated with the periodic boundary condi-

tions used in the Stokesian dynamics method. This error has the same

origins as the periodicity effects discussed in Chapters 4 and 5, and is

related to the fact that properties such as the average velocity (u), which
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are specified for the infinite medium as a whole in equations such as (6.7),

must actually be satisfied in each periodic unit cell if all of the unit

cells are to be identical. This error alters the local coefficients by an

amount that is 0(1/N), and is discussed in some detail by Durlofsky and

Brady (1987).

6.1.3 Calculation of Global Transport Coefficients

It now remains to relate the local coefficients of (6.1) to global

coefficients, which describe transport on a macroscopic length scale (i.e.,

over many periodic unit cells). The global transport coefficients D* and U*

of (6.1), distinguished from the coefficients in (6.6) by the asterisk, can

be evaluated using generalized Taylor dispersion theory. As this theory is

quite involved and has been presented elsewhere (Brenner and Adler, 1982),

only the relevant equations and definitions of the appropriate variables

will be presented here.

If, as is the case here, one is studying a fibrous medium that is

periodic on the length scale of a unit cell, then one can write the position

vector X as the sum of global and local variables,

X - Xn + r , (6.8)

where X, identifies a particular unit cell and r specifies a position within

that unit cell. By summing the probability density in all of the unit

cells, one can calculate Po, where
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Po(r,tir') - P(X,,-n,r,t r' ) . (6.9)

n

Physically, Po(r,tlr') is the probability of finding the diffusing macro-

molecule at a particular position r in any of the unit cells at some time t,

given that it was at a position r' at time t - 0. The sum over n in (6.9)

is a sum over all the unit cells in space. One can eliminate the time-

dependence of P0 by restricting the analysis to long times and using as a

probability density P', where

Pe(r) - lim P 0 (r,tIr') . (6.10)

The probability density P (r) represents the probability of finding the

diffusing macromolecule at some local position r after it has had enough

time to achieve steady state with respect to transport over the length scale

of a unit cell, but not over the global, or macroscopic length scale. For a

periodic unit cell of dimension L', an order-of-magnitude estimate of the

time t* required for this to occur is c* >> L'2/Do. It can be shown that

the asymptotic approach to steady-state is exponentially rapid with time

(Brenner and Adler, 1982).

The equation governing P' is

V.(UPO) - V-D-VP= - 0 , (6.11)

with the boundary conditions
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SP' = 0 and [ VPJ - 0 on boundaries of the unit cell (6.12)
in the fluid phase

and

n-(UP' - D-VP ) = 0 on the solid surfaces (6.13)

and the normalization condition

SPw dr- 1 . (6.14)

ro

In (6.12) the symbol [ I denotes the difference between the values of the

argument at geometrically equivalent positions on opposite faces of a unit

cell, and n is a unit normal vector pointing into the unit cell. The

velocity U' is given by

U(- (UP' -D VP ) dr . (6.15)

ro

The integral over ro in (6.14) and (6.15) implies an integral over the

volume of a unit cell in the periodic lattice. Note that setting P' equal

to a constant satisfies (6.11), (6.12), and (6.13) if the average velocity

(u) is zero, since if (u) - 0 then the local solute velocity U must also be

zero. In this case, the value of P' is determined by (6.14), and the value

of U* given by (6.15) is just a spatial average of the local coefficient U.

The result for D* is most conveniently expressed in terms of a vector

field B, defined by the solution to
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V - (PD-VB) - (UPO - D-VP ) • VB - PoU ,

with boundary conditions

B = - r and [ VB J - 0 on boundaries of the unit cell
in the fluid phase

and

n.D.VB - O on the solid surfaces. (6.18)

The global dispersion coefficient, D*, is then given by

(6.19)- (P=(VB) t-.D-VB ) dr

where (VB)t denotes the transpose of the tensor VB. The vector field B,

which one must evaluate in order to make use of (6.19), arises as a matter

of mathematical convenience in the development of Brenner and Adler (1982),

and is related to physical quantities by Koch et al. (1989).
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6.2 RESULTS

As stated previously, results have been obtained for two different

periodic lattices of bead-and-string fibers, and for ratios of the solute

radius to the fiber radius A ranging from 0.5 to 5. The periodic lattices

were chosen so as to provide a better understanding of the effects of

inhomogeneity on transport through a fibrous bed, and also to allow one to

examine the ability of the effective medium model to capture those effects.

Similarly, the studies in which A was varied provide new information on the

influence of solute size on hindered transport in fibrous media. Finally,

the ability of the effective medium model to predict hindered dispersion

coefficients in fibrous media is investigated further by comparison with

experimental data obtained from the literature.

6.2.1 Square Lattice of Fibers

Two cross-sections of a square lattice of bead-and-string fibers are

shown in Figure 6.1. Parallel, bead-and-string fibers aligned along the z

axis were arranged in a square lattice in the x-y plane, with fiber-to-fiber

spacing L and a gap spacing d separating the spheres of a given fiber. The

dimensions L and d are made dimensionless by the sphere radius a,. This

configuration was selected because it seemed the simplest geometry which

could yield meaningful results for the hindered transport problem.

Transverse cross-sections of the square lattice of fibers were taken at

the positions denoted by the lines AA' and BB' in Figure 6.1 (lower), and

(6.11) and (6.16) were solved for each of these two cross-sections by neg-
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lecting the true three-dimensional nature of the bead-and-string fibers. In

other words, once the local coefficients were obtained for the AA' and BB'

cross-sections, (6.11) and (6.16) were solved assuming the fibers were

cylinders of constant radius aligned in the z direction. The difference

between these two cross-sections is that a diffusing macromolecule can

sample a higher fraction of the total area in the cross-section taken at BB'

than in that taken at AA'. These differences can be minimized by choosing d

to be a small fraction of the fiber radius. A value of d - 0.05 was used in

this work. One would expect the actual result for a matrix of such fibers

to lie between the two results obtained in this manner. Thus, when the

transport properties calculated from the two cross-sections differed by more

than about 2%, the average of the two results is reported and the range of

results is given by the error bars shown.

Equations (6.11) and (6.16) were solved using a Galerkin finite element

method with bilinear basis functions (Finlayson, 1980). The choice of a

finite element method of solution is particularly convenient in this problem

because of the form of the boundary conditions (6.13) and (6.18). For a

finite-sized solute molecule, D and U are identically zero on solid sur-

faces, and thus it is difficult to specify any properties of P and B other

than that they and their gradients must be finite. The advantage of the

finite element approach is that specific statements regarding the behavior

of P and B are not required. Rather, one applies the conditions of no flux

on the solid surfaces in precisely the form given in (6.13) and (6.18), and

thus the proper physical requirement of no flux into the fibers is easily

incorporated into the method of solution.
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Figure 6.1 - Upper: Transverse cross-section of a periodic lattice of bead-
and-string fibers. Lower: The cross-sections marked by the lines AA' and
BB' were used in solving the equations of generalized Taylor dispersion
theory (i.e., (6.11) and (6.16)) Using either cross-section results in a
two-dimensional lattice like that shown in Figure 1 (upper), but t gap
between the fibers is larger for the BB' cross-section than for the 4A'
cross-section. The dashed curves bound the region accessible to a mobile
sphere of radius a,, where a, - af.
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The size of the periodic unit cell used to calculate the hydrodynamic

interactions was not the same as the size of the periodic unit cell used in

the Taylor dispersion calculations (i.e., in solving (6.11) and (6.16)).

For the latter, the smallest possible unit cell dimension L was employed.

However, as discussed previously, there is an 0(1/N) error in the terms of

the resistance matrix caused by the use of periodic boundary conditions in

modeling the infinite system. It is therefore necessary to choose a large

enough periodic unit cell (i.e., a large enough value of N) to make this

error in the calculation of the local coefficients negligible. In this

work, D and U were obtained using a unit cell of 9 fibers, each containing

10 spheres aligned in the z direction. The results were not changed by more

than 2-3% when unit cells with 16 fibers or with 15 spheres per fiber were

used, indicating that artifacts arising from periodic images were not

important in these calculations. The calculations were done on a CYBER 205

supercomputer. A typical configuration required the evaluation of local

coefficients at about 500 positions, which used about 30 minutes of CPU

time. The computer time required to solve (6.11) and (6.16) was negligible

compared to the time required to calculate the local coefficients.

6.2.2 Comparison of Theoretical Predictions

In Figure 6.2(a,b) drag coefficients and hydraulic permeabilities for

flow in the x or y directions through a square lattice of fibers are plotted

as a function of the interfiber spacing L for the two periodic fiber

lattices of interest here. (See below for a description of the second

periodic lattice.) The results for the drag coefficient K were obtained
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using (3.4), and are related to the hydraulic permeability by (3.3). Also

plotted in Figure 6.2 are the theoretical results of Hasimoto (1959), who

calculated the permeability of a square lattice of straight, cylindrical

fibers in creeping flow. The good agreement between the two sets of results

underscores both the validity of the Stokesian dynamics approximation for

the resistance matrix and the hydrodynamic similarity of the bead-and-string

and cylindrical rod models of fibers.

Although the parameter L used in Figure 6.2(a,b) is useful for de-

scribing square lattices of fibers, for other geometries it is often con-

venient to use the volume fraction of fibers 0. For a square lattice of

bead-and-string fibers such as that shown in Figure 6.1, 0 and L are related

by

4

- 2+dL 2  (6.20)(2+d) L2

whereas for a square lattice of smooth, cylindrical fibers

(6.21)

Thus, a given value of 0 will correspond to different values of L for the

two types of fibers. Since the choice of whether to describe two fibrous

systems using 0 or L is somewhat arbitrary, the data of Figure 6.2(a,b) are

replotted in Figure 6.3(a,b) as a function of 0. Clearly good agreement is

obtained regardless of which of the two parameters is chosen to describe the

square lattice. For most fibrous systems, the volume fraction is more
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readily obtained than the interfiber spacing, and thus the remaining results

of this section will be presented as a function of 0 rather than L.

In Figure 6.4, values of the dispersion coefficient are shown for a

spherical macromolecule with the same radius as the fibers (A - 1) diffusing

in a medium with no flow ((u) - 0). The scalar coefficient Dxx is the com-

ponent of D* that governs dispersion in the x direction due to a probability

density gradient in the x direction. For this periodic system, D* will

equal Dxx , while D* and Dyx will be zero. The bulk solution diffusivity is

denoted by Do , and the volume fraction of fibers is given by 4. The calcu-

lations were done both with and without near-field interactions.

The solid curve in Figure 6.4 is the Brinkman, or effective medium

result, obtained using (6.4) together with hydraulic permeabilities calcu-

lated from (3.3). The Brinkman results and the generalized Taylor dis-

persion results are in remarkably good agreement, especially when near-field

interactions are neglected. This observation is consistent with the

expectation that Brinkman's equation should become more accurate for dilute

systems, where far-field interactions dominate. Indeed, Durlofsky and Brady

(1987) demonstrated that the rate of decay of far-field hydrodynamic

interactions evaluated using the Stokesian dynamics method corresponds

closely to the prediction of Brinkman's equation. Including the near-field

interactions caused a deviation of about 20% from the Brinkman results at

the maximum volume fraction studied, 4 - 10.1%, which corresponds to L -

4.5. (From Figure 6.1, macroscopic transport in the x and y directions

ceases for L < 4, or 4 > 12.8%, for the AA' cross-section.) The close

correspondence between the Brinkman results and those of the more detailed

hydrodynamic model suggests that the hydraulic permeability k embodies the
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Figure 6.2a - The dimensionless drag coefficients K/12lTa Z for square and
checkered lattices of bead-and-string fibers are plotted as a function of
the interfiber spacing L (cf. Figure 6.1). The result for a square lattice
of cylindrical fibers (Hasimoto, 1959) is included for comparison.
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Figure 6.2b - The hydraulic permeability (calculated using (3.3)) is plotted
as a function of L for a square lattice of bead-and-string fibers, a
checkered lattice of bead-and-string fibers, and a square lattice of smooth,
cylindrical fibers.
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Figure 6.3a - The data of Figure 6.2a are replotted as a function of fiber
volume fraction 0 (cf. equations (6.20) and (6.21)).
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Figure 6.3b - The data of Figure 6.2b are replotted as a function of fiber
volume fraction 0 (cf. equations (6.20) and (6.21)).
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Figure 6.4 - The dimensionless, global dispersion coefficient DZ*/Do is
plotted as a function of volume fraction 0 for the case where A - 1. The
solid circles denote the result obtained from (6.19) using local coef-
ficients calculated from the complete (i.e., including far- and near-field
interactions) approximation to the resistance matrix. The open circles show
results obtained if near-field interactions are neglected, while the solid
squares represent the spatial average of local coefficients that do include
near-field interactions. The solid curve is the result predicted by Brink-
man's equation (see equation (6.4)) using the hydraulic permeabilities for
square lattices of bead-and-string fibers shown in Figures 6.2 and 6.3.

140

O FAR-FIELD APPROXIATION

0 SPATIAL AVERAGE

BRINKMAN RESULT
r r , I r r i r I

I A



principal effects of the fibers on diffusion, as well as their effect on

solvent flow. In other words, the details of the shape and arrangement of

the individual fibers appear to be only of secondary importance in deter-

mining hindrances to diffusive transport of a macromolecular solute.

The solid squares in Figure 6.4 are the results obtained by neglecting

the effects predicted by generalized Taylor dispersion theory and simply

spatially averaging the local coefficient DHD. The values obtained in this

manner differ significantly from the Brinkman prediction, and even more so

from the more rigorous calculation involving (6.15) and (6.19). That one

should not expect the spatial average of DHD to be the same as D* can be

seen clearly by considering the case where a mobile solute is trapped inside

a "cage" of surrounding fibers. For the periodic system under consideration

here, such a condition could be achieved by setting L - 4 using the AA'

cross-section of Figure 6.1. Because the solute is not able to escape from

its "cage," the global dispersion coefficient D* must be zero. However, the

local dispersion coefficient DHD is still finite everywhere except on the

lines connecting the fiber centers, and thus the spatial average of DHD is

non-zero. Only by properly solving (6.11) and (6.16) can the correct global

coefficients be obtained. This simple example illustrates the important

distinction between local and global coefficients.

In Figure 6.5, results for the dispersion coefficient D*z are shown

for values of the ratio of solute radius to fiber radius A varying from 0.0

to 5.0. The result for A - 0.0 was obtained from the work of Perrins et al.

(1979), and was derived for a square lattice of smooth, cylindrical fibers:
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D = 1 - .305827(6.22)
Do 1 + .- I9584 - 0.01336208

Equation (6.22) is valid only for an infinitesimally small solute that does

not interact with the fibers. The dashed lines in Figure 6.5 represent a

curve-fit to the data shown. The exponential expression used was

D*XX
Do exp(-a3/4) , (6.23)

where values of the adjustable parameter a are given by

a - 5.1768 - 4.0075A + 5.4388A 2 - 0.6081A3  , (6.24)

and 4 is the volume fraction of fibers. The expressions (6.23) and (6.24)

are presented as an aid to interpolating between results presented for A -

0.5 and A - 5.0. Thus, no special significance should be attached to the

power of 4 in (6.23), and care should be taken in extrapolating beyond the

results shown. No attempt was made to include the result of Perrins et al.

in the curve-fit. As in Figure 6.4, the solid lines of Figure 6.5 are the

Brinkman result given by (6.4) using the values of k shown in Figure 6.3.

For any given ratio of sphere radius to fiber radius, the dispersion

coefficient decreases as the volume fraction of fibers increases, as shown

in Figure 6.5. Moreover, at a fixed value of 4, D1x/Do decreases as A is

increased, due to the more restricted motion of the larger spheres. The

trends exhibited by the more rigorous, generalized Taylor dispersion calcu-
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Figure 6.5 - The dimensionless dispersion coefficient Dzz/Do is plotted as a
function of volume fraction ý for square lattices of bead-and-string fibers.
The points for A - 0.5 - 5.0 are the Taylor dispersion results, the solid
curves are the results of the Brinkman prediction (6.4), and the dashed
curves are results of the correlation (6.23). The curve for A - 0.0 was
obtained from the work of Perrins eC al. (1979).
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-lations are consistently reproduced by the effective medium results.

Quantitative agreement appears to be best for A - 1.0 and when the value of

D.X/Do approaches unity. The fact that the Brinkman prediction becomes

worse in each case as transport becomes more hindered is consistent with the

fact that individual solute-fiber interactions are not accounted for in an

effective medium model. Instead, the influence of the fibers is present

only in an average sense, and so the more severe hindrances that occur when

the solute moves directly between two fibers are not fully taken into

account.

In Figure 6.6, values of U*/(u,) are plotted as a function of volume

fraction for A - 1 in the limiting case where (ux) - 0. As in Figure 6.4,

both the far-field and the complete results are plotted. The solid curve is

the average fluid velocity given by (6.5). Note that the particle velocity

should not be expected to equal the average fluid velocity, even for small

0. This is because the finite size of the particle prevents it from

sampling regions near solid boundaries, where the fluid velocity is lowest.

The far-field approximation tends to overestimate U. by a significant

amount. The result obtained from (6.5) underestimates it up to volume

fractions of about 0 - 5%, after which point the hindering effect of the

fibers causes the particle velocity to fall below the average fluid velo-

city. Note that this qualitative behavior must be obtained in order for

macroscopic transport to cease at 4 - 0.13, which corresponds to L - 4. The

overall effects of the fibers on convective solute transport for A - 1.0 are

seen to be relatively small over the volume fractions studied, the values of

Ux/(ux) from (6.15) never deviating more than 10% from unity.
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Figure 6.6 - The dimensionless solute velocity U./(u.) is plotted as a
function of volume fraction 4 for the case where A - 1. The solid circles
and open circles are analogous to those in Figure 6.4, and show the results
obtained from (6.15) using the complete and far-field approximation to the
resistance matrix, respectively. The solid line is the average fluid
velocity given by (6.5).
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In Figure 6.7, values for Uz/(ux) are shown for values of A varying

from 0.5 to 5.0. In this case, the value of U./(ux) corresponding to A - 0

is given by (6.5), the average fluid velocity. The parabolic shape of the

curves in Figure 6.7 can be understood in the context of the competing

effects felt by the spherical solute when exposed to fluid flow. One effect

is that the finite size of the solute prevents it from sampling positions

closest to solid boundaries, where the fluid velocity is slowest. On this

basis, one expects finite-sized solutes to move through the fibrous medium

faster on average than does the fluid. This trend has been found theo-

retically for both cylindrical pores (Brenner and Gaydos, 1977) and for

periodic porous media in general (Brenner and Adler, 1982), and has been

observed experimentally for colloidal particles moving through porous beds

(Small, 1974; Silebi and McHugh, 1979). However, as the radius of the

solute is increased and grows closer to the gap spacing between adjacent

fibers, at some point its motion begins to be hindered by hydrodynamic

interactions with those fibers. This hindrance will eventually dominate to

the point where Ux - 0 for all (u,) when L - 2 + 2A (using the AA' cross

section).

The two curves in Figure 6.7 which lack significant maxima do so for

different reasons. For A - 0.5, the solute is able to sample a relatively

high fraction of the fluid volume. Thus, at this low value of A the average

solute velocity will most c-osely approximate the average fluid velocity,

and even weak interactions with the fibers will cause it to fall below the

line given by (6.5). In contrast, for A - 5.0 the particle is restricted to

sampling the portion of fluid moving most quickly. However, even at values

of 0 as low as 0.01, such a large solute will be significantly hindered by
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Figure 6.7 - The dimensionless solute velocity UI/(u.) is plotted as a
function of volume fraction 0 for square lattices of fibers. The points for
A - 0.5 - 5.0 are the Taylor dispersion results, and the dashed lines show
the results of the correlation (6.25). The solid line is the average fluid
velocity given by (6.5).
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interactions with the immobile fibers and thus the curve descends very

quickly. The other two curves, corresponding to A - 1.0 and A - 2.0, each

show a definite maximum before the effects of solute-fiber hydrodynamic

interactions become dominant.

As with the results shown in Figure 6.5, the curves in Figure 6.7 have

been fitted to an analytical expression to aid in interpolation. The poly-

nomial expression used, shown as dashed curves in Figure 6.7, is

U*
T - 1 + + 742  (6.25)

where

= 5.1712 - 0.9724(1/A) - 1.1355(1/A)2 + 0.2511(1/A)3  (6.26a)

and

y - -9.97883 + 8.9787A - 31.6717A2 - 2.9586A3  (6.26b)

Again, caution should be used in applying (6.25) and (6.26) outside the

range of parameters studied here (0.5 < A < 5.0).

The results shown in Figures 6.4-7 are valid in the limit of low Peclet

number, Pe - (ux)af/D o - 0. For nonzero Pe, the probability distribution P0

in (6.15) changes, and thus, in principle, both D*/D o and U /(ux) can change

also. In Figure 6.8, D*/D o is plotted versus Pe for A - 1 and various

values of 4. As seen in many other systems (Taylor, 1953; Brenner and

Gaydos, 1977; Brenner and Adler, 1982), the dispersion coefficient increases

with increasing Peclet number. In interpreting Figure 6.8 it is important to

note that the length scale used in the Peclet number is the fiber radius.

In most applications, even where convection contributes appreciably to the

macroscopically observable transport, this "microscopic" Peclet number will
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Figure 6.8 - The dimensionless, global dispersion coefficient Dzz/D, is
plotted as a function of Peclet number Pe for A - 1 and volume fractions
ranging from 4 - 0.02 (L - 10.0) to 4 - 0.10 (L - 4.5). Although the error
bars have been left off for clarity, they are comparable in size or smaller
than those shown in Figure 6.4 for the corresponding volume fraction.
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be exceedingly small. Thus, in general, the effect of Pe on D ; will be

negligible, as has been shown for hindered transport in cylindrical pores

(Deen, 1987). The dependence of U,/(ux) on Pe did not significantly alter

the results shown in Figures 6.6 over the range of Pe considered (Pe 5 1).

6.2.3 Inhomogeneous Fiber Matrix

A variation of the spatially periodic lattice was studied in order to

examine the impact of spatial heterogeneity on dispersive behavior, as well

as to see how such a change would affect the agreement between the two

theoretical approaches used. The "checkered" lattice used for this purpose

is shown in Figure 6.9. To relate this pattern to the previous geometry,

consider grouping the fibers of a square lattice such as that in Figure 6.1

into cells of 4 fibers each, and then removing alternating cells in both the

x and y directions. The resulting lattice provides a model system con-

taining significant variations in fiber density. As with the square

lattice, AA' and BB' cross-sections can be used for calculations on the

checkered lattice. Thus, where local coefficients from the two cross-

sections yield different results, error bars will again be used to mark the

range of the two values. It was found that a periodic cell containing 81

spheres (8 fibers of 10 spheres each and one mobile sphere) was sufficient

to limit errors related to the cell size to about 2%.

In Figure 6.10, values of the dispersion coefficient for the checkered

lattice are plotted versus 1/L. Values for the square lattice are also

shown, as are the Brinkman predictions for the two cases. Hydraulic
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Figure 6.9 - Transverse section of a spatially periodic, checkered lattice
of bead-and-string fibers.
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Figure 6.10 - The dimensionless dispersion coefficient Do /D o is plotted as
a function of I/L for a checkered lattice of bead-and-string fibers.
Results for a square lattice of fibers (cf. Figure 6.4) are included for
comparison. All results shown are for A - 1. The two curves shown were
calculated using the Brinkman prediction (6.4).
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permeabilities used for the checkered lattice were obtained using the

Stokesian dynamics method (cf. Equation (3.3)) and are shown in Figure 6.3.

As one would expect, removing alternate groups of fibers while keeping L the

same results in an increase in the dispersion coefficient. In addition, one

sees that once again there is qualitative agreement between the more

rigorous results and the Brinkman prediction (6.4). However, the effective

medium approach seems to lose accuracy for the less homogeneous matrix.

The dispersion data of Figure 6.10 are plotted versus the volume

fraction of fibers in Figure 6.11. In interpreting this graph one should

note that, for a given value of 4, the checkered lattice will have a much

lower value of L than will the square lattice. In other words, the check-

ered lattice, which has large regions in which there are no fibers, must

have much smaller gaps between those fibers that do remain in order to have

the same volume fraction as the homogeneous, square lattice. This results

in the dispersion coefficients for the inhomogeneous fibrous medium actually

being lower than those for the homogeneous medium at the same volume

fraction. Significantly, the effective medium approach misses this effect

of inhomogeneity entirely, and predicts that the inhomogeneous medium, which

has a slightly higher permeability, will also have a higher dispersion

coefficient.

One should also note the fact that both theories predict only a slight

change in the dispersion coefficient when plotted versus 4. This suggests

that contributions from those regions in the inhomogeneous medium that do

not contain fibers, where local dispersion coefficients are relatively high,

roughly cancel those from the regions of tightly packed fibers, where
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Figure 6.11 - The results of Figure 6.10 are replotted as a function of the
volume fraction of fibers 0.
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local dispersion coefficients are relatively low. Thus, the most important

parameter in describing transport is simply the volume fraction. This fact

is particularly significant since it is often easier to measure the volume

fraction of fibers than it is to describe other, more subtle features of the

microstructure.

Values of Uz/(ux) for the square and checkered lattices are shown in

Figure 6.12. The two sets of results are similar, except that at the higher

values of 1/L the fibers hinder the solute somewhat less for the "checkered"

lattice since there are large gaps where no fibers are present. For both

systems the overall effect is small, U*/(u,) never deviating from unity by

more than about 10%.

6.2.4 Comparison With Experiment

Calculations involving the more rigorous bead-and-string model are

rather involved, and therefore have only been carried out for periodic

lattices of fibers. However, the results predicted by Brinkman's equation,

which agree closely with the more rigorous theory, can be readily applied to

any fibrous system for which the hydraulic permeability is known. Indeed,

the good agreement between these two approaches suggests that the effective

medium model may be a very useful one for fibrous systems in general. It is

therefore of interest to compare the predictions of (6.4) with experimental

data taken from the literature.

Laurent and Pietruszkiewicz (1961) and Laurent et al. (1963) measured

the sedimentation rates, and hence friction coefficients, of several

proteins in hyaluronic acid solutions. Hydraulic permeabilities for
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Figure 6.12 - The dimensionless solute velocity Uz/(u.) is plotted as a
function of 1/L for a checkered lattice of bead-and-string fibers, for the
case where A - 1. Results for a square lattice of fibers are included for
comparison (cf. Figure 6.6). The curves were fitted to the data shown.
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hyaluronic acid solutions have been measured by several research groups, and

the results are critically summarized by Ethier (1986). In Figure 6.13, the

results predicted using (6.4) together with the experimentally measured

hydraulic permeability data are compared with the experimental results for

D*/D 0 . In generating the solid curves shown, the sphere radius as in (6.4)

was assumed to be equal to the Stokes-Einstein radii r, of the proteins. As

shown, theory and experiment agree to within about 2-3% for the 7-crystallin

and bovine serum albumin measurements, and to within 10% for the human 7-

globulin, a-crystallin, and turnip yellow mosaic virus measurements. Note

that these solutes represent more than a 5 fold variation in the Stokes-

Einstein radius. Remarkably, no adjustable parameters were needed to obtain

this excellent agreement between theory and experiment. In addition, the

only structural information required was the Stokes-Einstein radius of the

diffusing macromolecules and the hydraulic permeability of the hyaluronic

acid medium. Such information is readily available for many systems of

interest. Thus, the simplicity and accuracy of the effective medium model

suggest that it could be of great use in predicting rates of hindered trans-

port through fibrous membranes and gels used in both physiological and

industrial processes.

6.3 DISCUSSION

Two methods of calculating hindered transport coefficients in fibrous

media have been discussed and compared. The first was an effective medium

theory based on Brinkman's equation. The fact that the Brinkman prediction

given by (6.4) requires very little information on the details of the
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Figure 6.13 - Dispersion coefficients that were measured experimentally for
proteins in hyaluronic acid solution (Laurent and Pietruszkiewicz, 1961;
Laurent et al., 1963) are compared with values predicted by (6.4). The
macromolecules used and their Stokes-Einstein radii rs are 7-crystallin (r,
- 23.5A), bovine serum albumin (r, - 34A), human and bovine 7-globulin (r, -
56A), a-crystallin (r. - 97A), and turnip yellow mosaic virus (r. - 155A).
Experimental data reported in Ethier (1986) were used in (6.4) to obtain the
values predicted by Brinkman's equation (solid curves).
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fibrous microstructure could make it very useful in a variety of practical

situations. However, it suffers the drawback that it is not able to account

for local solute-fiber interactions which, under certain conditions, can be

very important. The second method, which involves deriving global transport

coefficients from local coefficients using generalized Taylor dispersion

theory, is by far the more rigorous of the two theories. However, it

requires the assumption of a particular arrangement of fibers in order to

obtain results. Since this information is not available in many practical

situations, it is worthwhile to gain some idea of how accurate the first

method is as well as how important a role the fibrous microstructure might

play.

To begin to ascertain this information, a series of calculations were

performed in which the predictions of the two theories were compared for a

square lattice of bead-and-string fibers. For a given volume fraction of

fibers, the dispersion results obtained showed a strong dependence on A, the

ratio of the solute radius to the fiber radius, with the value of D* de-

creasing significantly as A was increased from 0.5 to 5.0. The solute

velocities showed evidence of competing effects with changes in either 4 or

A, as larger solutes are restricted from sampling regions where the fluid

velocity is lowest, but are also more severely hindered by hydrodynamic

interactions than are smaller solutes. The effective medium approach

consistently predicted the trends in the dispersion coefficients calculated

by the more rigorous method. However, quantitative agreement varied

depending on the fiber volume fraction and the value of A.

In addition, the homogeneous, square ]ittice was modified to the less

homogeneous "checkered" lattice of fibers, in which alternate groups of four
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fibers were removed. Interestingly, when plotted versus the volume fraction

q, values of the dispersion coefficient for the two systems were very

similar. This suggests that the details of the microstructure of the

inhomogeneous system were much less important than the overall volume

fraction. Again, the effective medium result correctly predicted that

removal of some fibers would lead to an increase in the dispersion coef-

ficient, but it seemed less accurate for the inhomogeneous medium than it

was for the homogeneous, square lattice.

One might wonder to what extent the approximations made in the Stokes-

ian dynamics method affect the comparisons between the Brinkman prediction

(6.4) and the Taylor dispersion results. In Chapters 3 and 5 it was shown

that Stokesian dynamics tends to underestimate the drag coefficients of

particles in porous media (cf. Figures 3.1(a,b,c) and 5.1). One would

therefore expect hydraulic permeabilities calculated using Stokesian

dynamics to be higher than the actual value, making the agreement shown in

Figures 6.4 and 6.5 appear less favorable than it would if the true value of:

k were used in (6.4). It is assumed here that the local dispersion coef-

ficients used in the Taylor dispersion calculations were close approx-

imations to the actual values since, for every case considered in Chapters-

3-5 where there was relative motion between sphere surfaces, Stokesian

dynamics was shown to yield highly accurate results (cf. Figures 3.2, 3.3,

4.4, 4.10, and 5.3). Thus, if the approximations used in Stokesian dynamics

did affect the results presented here, then the error incurred would tend to

make the agreement between the Brinkman prediction and the Taylor dispersion

results appear worse than is actually the case. However, one should bear in

mind that, at the volume fractions considered in the fibrous media calcu-
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lations (4 < 0.17), the permeabilities reported in Chapters 3 and 5 were

always in excellent agreement with other theoretical and experimental

results (cf. Figures 3.1(a,b,c) and 5.1).

Although remarkably accurate in many of its predictions, the inability

of the effective medium model to capture local interactions can lead to

highly inaccurate results under certain conditions. As an example, consider

transport of a spherical solute in a square lattice of cylindrical fibers.

In the limit where the interfiber spacing L grows very large (or 4 - 0),

Hasimoto (1959) calculated the permeability as

k -1n4
-a -84 (6.27)

and thus

k -ln(
azs (6.28)

If one additionally considers the case where A - L-2, so that transport is

severely hindered, then one obtains for L >> 2

-- = -- (6.29)

Substituting (6.28) and (6.29) into (6.4) and considering the limit where 4

0 and A - gives

D*

1- . (6.30)
Do
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In actuality, one clearly expects the dispersion coefficient to be zero when

A = L-2, which corresponds to the diameter of the solute equaling the

spacing between two adjacent fibers. The effective medium model fails to

capture the interactions that hinder a large solute in an extremely dilute

fibrous medium, since these interactions originate more from the two nearest

fibers than from the fibrous bed as a whole. This example should serve as a

caution against applying an effective medium approach in cases where

transport is severely hindered, since these types of local interactions are

expected to be most significant under such conditions. Choosing a specific

value of D*/D o that constitutes "severe hindrance" is somewhat arbitrary,

but based on Figure 6.5 a choice of about 0.5 would seem reasonable.

In spite of its inaccuracy under certain conditions, one should note

that the only information required to obtain the results from (6.4) is the

hydraulic permeability of the fibrous medium and the solute radius. Each of

these parameters is easily obtained for many physical situations, and thus

the effective medium approach provides a means for making at least rea-

sonable estimates for D*/D o based on very little information.

For many applications it is desirable to write the solute flux in (6.1)

in terms of a concentration C instead of P. The use of concentration in

conjunction with finite-sized solutes can pose conceptual difficulties

since, because of steric interactions, no more than one solute macromolecule

can be located in a finite region at a given time. However, these dif-

ficulties do not give rise to inconsistencies so long as C is recognized as

representing a time average at a particular point (for a macroscopically

steady process) or, alternatively, a spatial average covering many equiv-

alent positions in the fibrous matrix. For transport which is macro-
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scopically one-dimensional in the x direction, "equivalent" positions are

those having the same value of x.

In computing fluxes across phase boundaries, it is important to note

that the volume occupied by the fibers, and the solute-fiber steric interac-

tions, will result in discontinuities in both the fluid-phase and volume-

average concentrations. Thus, appropriate boundary conditions under these

circumstances will require the use of partition coefficients. Because the

probability density P used in (6.1) represents an average over the total

volume, including fluid and fibers, the partition coefficient # describing

the discontinuity in concentration must be based on the total volume also.

For systems involving only steric interactions, values of 4 can therefore be

computed by dividing the volume accessible to the solute center by the total

volume of the medium. For the square lattice of bead-and-string fibers

shown in Figure 6.1, the resulting expression for c4 is

= - 1 - [(A+l)3 - ! (A-d/2)2 (2A+3+d/2)] (6.31)

Note that the form of (6.31) will vary depending on the geometry of the

fibrous medium of interest. For example, the partition coefficient for a

sphere in a random array of fibers has been shown to have an exponential

dependence on 0 (Ogston, 1958; Fanti and Glandt, 1989).

By comparing 4 and D*x/Do, one can get an estimate of the relative

importance of partitioning and hydrodynamic interactions in hindered

transport through a fibrous membrane composed of a square lattice of fibers.

Such a comparison is made in Table 6.1. It would appear that, for this

particular geometric configuration and for the range of A considered here,
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partitioning and hydrodynamic effects are of comparable importance.

Although the values given in Table 6.1 could vary greatly for other fiber

configurations and other values of A, they do suggest that hydrodynamic

interactions can play a very significant role in the transport of spherical

macromolecules across fibrous membranes and gels.
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TABLE 6.1

Comparison of Values of Dispersion and Partition Coefficientsa

A - 0.5

Dxx/Do

0.9902

0.9804

0.9674

0.8370

0.6741

0.4459

0.9445

0.9084

0.8685

0.6242

0.4527

0.3073

L-1.

x x/Do

0.9832

0.9663

0.9439

0.7194

0.4388

0.9260

0.8787

0.8272

0.5302

0.3441

A - 5.0

Dxx/Do

0.8356

0.6711

0.4519

0.5610

0.3782

0.2402

aValues shown are for a square lattice of bead-and-string fibers with A - 1.
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CHAPTER 7

CONCIUSION

The Stokesian dynamics method of calculating hydrodynamic interactions

in unbounded systems of spheres is a powerful new approach to studying sus-

pensions and porous media. Because this method does not require that any

restrictions be placed on the locations of the spherical particles within a

unit cell, it is well suited for use in studying systems with different

microstructures. In this thesis it has been applied to calculating such

parameters as diffusion coefficients, drag coefficients, and viscosities for

both spatially periodic and disordered hard-sphere dispersions. In ad-

dition, fibrous systems were studied using "bead-and-string" fibers formed

by aligning spheres in rows. This method is also adaptable for use in

dynamic simulations, or "computer experiments" in which particle trajec-

tories are calculated and followed over time, although none were reported

here. Indeed, Stokesian dynamics was originally developed for this purpose,

and modified versions of the method described in Chapter 2 have already been

of use in gaining a better understanding of the properties of suspensions

(Brady and Bossis, 1988).

Stokesian dynamics is an approximate method, and relies upon the as-

sumption that hydrodynamic interactions can be separated into two cate-

gories. Far-field interactions are accounted for in terms of a moment

expansion of the force density on the particle surfaces about their centers.

In principle this expansion could be carried out to any level of accuracy

desired, but in the development provided in this thesis it is truncated at

the level of quadrupole moments, which are themselves calculated using a
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mean-field approximation. Near-field, or lubrication interactions are

calculated in a pairwise additive fashion and are added to the far-field

interactions in exactly the same manner as was done for finite systems of

spheres by Durlofsky et al. (1987).

Calculations of far-field interactions become complicated for unbounded

systems, as care must be taken to properly account for the qualitative

differences between interactions in infinite and finite media. Failure to

account for these differences using an appropriate "renormalization" process

will often result in sums over those interactions being divergent. The

method of O'Brien, as adapted for use in hydrodynamic calculations in

Chapter 2, provides one method of renormalization that does not require any

preaveraging of hydrodynamic interactions, thereby allowing one to perform

calculations for specific configurations of particles. The resulting ex-

pressions for the renormalized interactions are absolutely convergent, but

are still difficult to handle computationally. As a result, periodic

boundary conditions are applied, thereby allowing one to model an infinite

system with a relatively small number of particles. This choice of boundary

conditions also allows the convergence of the sums over hydrodynamic

interactions to be accelerated through use of the Ewald summation technique.

Because of the relatively complete set of information available for

spatially periodic media, one convenient way to examine the accuracy of the

Stokesian dynamics method is to calculate transport coefficients for cubic

lattices of spheres and compare with other theoretical results available in

the literature. Such calculations and comparisons are described in Chapter

3. Excellent agreement was obtained for rotational drag coefficients and

shear viscosities of the cubic arrays over the full range of volume frac-
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tions possible, and similarly good agreement was obtained for the trans-

lational drag coefficients for volume fractions up to about 30%. The drag

coefficient calculations differ from the others in that, during flow through

a stationary porous medium, there is no relative motion between spheres, and

near-field interactions between neighboring spheres never become singular.

As a result, these near-field or lubrication interactions never dominate

other interactions. Thus, the higher moments that are lost through trun-

cation of the aforementioned moment expansion are not negligible in this

case, and must be included to obtain an accurate result at high volume

fractions. A complete accounting for these higher moments is not compu-

tationally feasible at this time.

Although the calculations performed for ordered arrays of spheres

provide a useful means for assessing the accuracy of Stokesian dynamics, the

method is also general enough to be applied to disordered systems. Trans-

port properties of such systems have been evaluated by Monte Carlo simu-

lation, as described in Chapters 4 and 5. In general the properties

calculated in this manner showed excellent agreement with the existing body

of theoretical and experimental results. The results for the short-time

self-diffusion coefficients and shear viscosities of suspensions showed

particularly good agreement with experiment. This good agreement demon-

strates the remarkable extent to which these two properties can depend upon

hydrodynamic interactions. In addition, these simulation results can serve

as a starting point for future research on how other types of interactions,

such as electrostatic or DLVO interactions, might affect transport prop-

erties in suspensions and porous media.
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Fibrous media represent a particularly interesting class of porous

media in that they constitute materials such as fibrous membranes and gels,

which are commonly used in both physiological and industrial separations

processes. The Stokesian dynamics method can be easily adapted to calcu-

lating local, or short-time hindered diffusion coefficients of spherical

solutes in systems of bead-and-string fibers. These local coefficients can

be used in conjunction with generalized Taylor dispersion theory to evaluate

global coefficients, which describe transport over experimentally observable

length scales. Global coefficients for two different spatially periodic

lattices of bead-and-string fibers have been calculated in this manner, and

were used in Chapter 6 to determine the accuracy of predictions of an

effective mediumi model based on Brinkman's equation. Comparisons between

the two models were made for ratios of the solute radius to fiber radius

varying over a factor of ten. In every case, the effective medium model

qualitatively reproduced the trends of the more accurate generalized Taylor

dispersion theory calculations. In addition, quantitative agreement was

obtained for volume fractions at which hindrance due to the presence of the

fibers was not too severe (i.e., for D*/D o less than about 0.5). The

success of the effective medium approach is somewhat surprising in light of

the fact that so little of the microstructure of the periodic media is

incorporated into Brinkman's equation.

Although the Brinkman prediction is not as accurate as the generalized

Taylor dispersion theory calculation for the full range of volume fractions

studied, it does have the advantage of being readily applicable to systems

with highly complex or unknown microstructure. Indeed, this approach can be

used to predict dispersion coefficients for any system provided that the
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hydraulic permeability of the medium and the radius of the solute are known

or can be determined. A comparison of the effective medium model's pre-

dictions with experimental measurements of protein dispersion in hyaluronic

acid solution showed remarkably good agreement. This agreement suggests

that hydrodynamic interactions can play a dominant role in hindering the

motion of macromolecules in fibrous media. This hindrance was found to be

significant even for fiber volume fractions less than 1%. In addition, it

appears that accounting for the detailed microstructure of the fibrous

medium is less important than accounting for its presence in an average

sense, as in Brinkman's equation. This finding could be of great use in

future experimental and theoretical research on hindered transport in

fibrous media of unknown or highly complex microstructure.
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APPENDIX A

The following are the real and reciprocal space parts of the far-field

mobility interactions for use in conjunction with the Ewald summation

method. The terms coupling translational velocities and forces were first

derived by Beenakker (1986). The remaining terms can be derived as ex-

plained in Chapter 2. The parameter ( has units of inverse length and

governs the speed of convergence of the two sums. Beenakker recommends

using a value of _ - V- 1 / 3 , where V is the volume of a unit cell. The

vector e is a unit vector along the line connecting the particle centers, r

is the interparticle separation distance, and k is a unit vector in the

reciprocal lattice. All lengths have been nondimensionalized by the

particle radius a (see Beenakker's derivation for an explanation of how to

include spheres with different radii), and a common normalization of 6rpa n

has been used for the mobility functions, where n - 1,2, or 3 depending on

the mobility coupling.

(a) Translational velocity/force, or U-F coupling:

Mf) (r) - 6ij (( + 2 3 ) erfc((r) + 1- ( 4( 7 r4 + 3( 3 r2

- 20-5 r2  + 14 3 + e 2

+ eej ( ( ~ - 2r 3 ) erfc(Cr) + - ( -447 r 4 - 3( 3 r 2

i3 r - -_r ý2r2

+ 16 5 r2 + - 2 3 -4) e 3

M (k) - k2 r k) k2

M(2 ) ( k ) - (6Sj - ki j)(l1- k2/3) I+1I+ 4 I k 4 ) 6wk-2 exp( -_4k2
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MIf' (r=0) - 7L 6 - 340

(b) Translational velocity/torque, or U-L coupling:

Mfl)(r) - - .((- 3 erfc(ýr) + 1 ( !+ r 'M2 - 4 ~r 2) e2r) ek 6i 1

+ ( 1 erfc(r) + -- ( 12- 22 ) e ". 2 r 2 ) el]6 k

M)(k) - 3 r(EikJkk) + 2+ ) exp(- )cZ

M(2)(r-o) - 0

(c) Rotational velocity/torque, or O-L coupling:

M8) (r) - 6 (- Lerfc((r) - 3- ((/r 2 + 14 3 - 20 5 r 2 + 4 7r 4 )e 2)

- eej ( - ~ 3 erfc(ýr) + 1 (-3e/r 2 - 2( 3 + 16( 5 r 2 - 4 7 r 4 ) e22 )

3(2 k2 k4  k2
M =2(k) - - (61- kk )(+ 4 + 8 ) exp(- 4

M( r - 0) -; •

(d) Translational velocity/stresslet, or U-S coupling:

M(r)- ( (x4 + x5)(eke + ej6 ik) + 2 x 5 (eij6 k) + 2 x 5 (eie8ek)

+ 15 (x1 + X2)(ek6 ij + ej6 ik) + 2 X2 (ei6jk) + 2x 3 (elejek))
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M k - -3•(1 - T- k2) [kk(6Si - kk j) + k (6ik - kikk)I

x (I+ + + 8 exp(- 4k2

M2) (r - 0) - 0

where

x, - -(6/r4)erfc(ýr) + 4 (-3(/r 3 - 2( 3 /r - 68ý5 r + 56ý7 r3 - 8 9 r5 )e 2r2

3 3 . 2r2
2 -4 - 4 erfc(r) + (-3/r - 2 3/r + 16( 5 r - 4ý7 r 3 ) e )

x 3 -4 r 15 2

X4 erfc(r) + 1 (15ý/r 3 + 10 3 /r + 4ý5 r - 40ý7 r 3 + 8ý 9gr)e" )22

x 4 - -2 erfc(r) + -2 (-l/r + 10ý 2 r - 4 4r 3 ) e " 2r2

1 2 -72 r2

x 5 -1 rerfc(r) + 2 (l/r - 2ý2r) e"
3 2 r277

X6 - - 2 erfc(r) + - (-3/r - 2C2 r + 4 4 r 3 )) e - r2

(e) Rotational velocity/stresslet, or O-S coupling:

Mfj(r) - - 3 (Y2 " Yl)[fkk(•C1lij) + kj(klelik)]

M ( 2) 3ir k 2  k 4M)(k)= --- [kk(kelij)] + kj(kelik)](1 + 4 2 +-4

k2x exp(- k-2 )

M(2)(r•) - 0

where
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Yi - - erfc((r) + ~ (3/r 2 + 2(2 - 28( 4 r2 + 8ý 6 r 4 ) e2

Y2 - 3 r erfc((r) + 2 (3/r2 - 2 ý + 4A4 r 2 ) ee2 r2

(f) Rate of strain/stresslet, or E-S coupling:

jk (r) - 1 r2 M(1)(r) - ) (r)

Mifk(k) - 3 (1 - k2)[ lkk( 1j -kik + j (6ik kikk)

+ kikk(61j - k, k) + ki kj(6 1 k
k 2

4ý2
k4  k2

+ 8( ) exp(- -4 )

M (3 126 )(
li(lk(r- O) - (2ý 3  25 26,Uj6,lk + 6 ik 6 lj 3 6il6jk )

Tr25 * 
63~k

where

MI(A)(r) - 2(z + z+)(6lk6ij + 6jl6ik) + 4z36jk 6i

+ (Z2 + 3 z4)( 6 ijelek + 6jleiek + 61keiej + 6ikejeI)

+ 4 z4 ( 6 itejek + 6jkeiel) + 4 zselejekel

M jk(r) - 2(D2z1 + 2z2 + 6z 4 + D2 z3 )( 6 j16ki + 6 k1 6 1j)

+ 4(D2z3 + 4z4 )6k,61i + 4(D2z4 + 2z5 + 4Dz4 )

x (61iekej + 6jkeiel)

+ [3(D2z 4 + 2z, + 4Dz4 ) + 4Dz 2 + D2z 2 + 2z5](Sike e

+ 6Skieej + &jeiek + 6ij eel) + 4(8Dzs + D2z 5 )eiejekel

and

zl - -(1/r 5 )erfc(ýr) + 2 ý (-1/r' + 10 2/r 2 - 4 )e
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z2 -(3/r 5 )erfc(r) + (3/r 4 - 28 4 + 2 2 /r 2 + 8( 6 r 2 )e 2r2

z3 - (1/r5)erfc((r) + 2( (1/r 4 - 22/r2)e2r2

z- -(3/rs)erfc(r) + 2 e (-3/r 4 -2C 2 /r 2 + 4e4) e2r

2 4 + 10e2/r2 + 4e4 _ 8e6r2 )eer 2

z, - (15/r 5 )erfc(er) + T (15/r 4 + 10 2 /r 2 + " 866r2)e2

2 -• 2 r 2

Dz1 - (3/rS)erfc(er) + •2 (3/r' - 8e4 + 2 2 /r 2 - 20 4 + 8 6 ry2) e

Dz2 - (15/r)erf r) + (-15/r - 102/r2 + 72e6r2 - 4e4
-16e 8 r 4 )e r

Dz3 - -(3/r 5 )erfc(er) + 2• e (-3/r 4 - 2e 2 /r 2 + 4 4)e2

Dz4 - (15/rS)erfc(er) + 7 (15/r 4 + 10O2 /r 2 + 44 - 86r2)e22

Dz5 - -(105/r 5 )erfc(r) + 2 (-105/r4 - 70O2/r2 - 28e 4 - 8~ 6 r 2

-(1 /r)erfc(r) + 2

+ 16e 8 r4 )e

D2z - -(6/r 5 )erfc(r) + 2 e (-6/r4 - 8 8e 4 - 4e 2 /r 2 + 96e6 r2 - 16e 8 r 4 )

x e2r

D2z 2 - (60/r 5 ) erfc((r) + - ( (60/r4 + 40e 2 /r 2 + 224e6r2 + 16• 4 -224 8r4

+32~10r 6 )e 2

D2z 3 - (6/rs)erfc(er) + 2 (6/r'4 + 4 2/r2 + 4• 16 -_86r2)e2r

D2z 4 -- (60/r 5 )erfc(er) + 2 (-60/r4 - 40O2/r2 - 16e4 - 32e 6 r2

+ 16(8r4)ee 2 r 2

D2z 5 - (630/r 5)erfc(er) + (630/r + 4202/r 2  2
+++2 r 2

+ 649e 8 r 4 - 32o'0r6)e
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APPENDIX B

The following FORTRAN 77 computer program, entitled SIMl, evaluates the

complete, F-T-S resistance matrix R for N particles in a periodic unit cell

that is periodically replicated throughout space. The far-field inter-

actions are calculated and renormalized using the moment expansion process

described in Chapter 2, and are summed using the Ewald summation technique.

Near-field, or lubrication interactions are included in a pairwise fashion

according to (2.48). Once formed, the 11NxllN resistance matrix can be used

to calculate any of the transport properties described in Chapters 3-6. In

the case considered here, it is assumed that one sphere is force- and

torque-free, thereby modeling a spherical solute. The remaining N-i spheres

are fixed in place, and are arranged so as to form a square lattice of bead-

and-string fibers. The program output file VEL.DAT gives the local hindered

diffusion coefficient D"D and the local velocity U of the mobile sphere.

The input parameters required by SIMI are as follows:

1) NSPH - Number of spheres per periodic unit cell (i.e., NSPH in
SIMl is the same as N).

2) NROW - Number of rows of fibers in the square lattice.

3) PHI - Volume fraction of spheres.

4) DIM - L/2, where L is defined as in Figure 6.1.

5) SHRI, SHR2, and SHR3 - Relative lengths of the periodic unit
cell in the x, y, and z directions,
normalized so that the product
(SHRl)(SHR2)(SHR3) - 1.

In addition, the data files with numbers 29-36 provide tabulated, two-sphere

interactions that are needed for the calculation of near-field interactions.

These are not calculated or listed here, but can be evaluated using the

methods of Jeffrey and Onishi (1984) or Kim and Mifflin (1985).
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The subroutines called by SIM1 and their roles in the calculation of R

are as follows:

1) FIBPOS -

2) STOKES1 -

3) EWMOBA -

4) EWMOBB -

5) EWMOBC -

6) EWFTS -

7) EWMOBES -

8) ASSLE1

9) ASSLE2 -

10) SSIl -

Sets the positions of the spheres.

Calculates the resistance matrix given the sphere posi-
tions and the dimensions of the periodic unit cell.
Except for CHINVTR, all of the subroutines to follow are
called from STOKES1.

Calculates the mobility interactions that couple forces
and translational velocities for use in conjunction with
the Ewald summation technique.

Calculates the mobility interactions that couple forces
and rotational velocities (or torques and translational
velocities) for use in conjunction with the Ewald
summation technique.

Calculates the mobility interactions coupling torques
and rotational velocities for use in conjunction with the
Ewald summation technique.

Calculates the mobility interactions coupling forces and
torques with the suspension average rate-of-strain for
use in conjunction with the Ewald summation technique.

Calculates the mobility interactions coupling stress-
lets and the suspension average rate-of-strain for use in
conjunction with the Ewald summation technique.

Expresses 3 rd and 4th order tensors as two-dimensional
arrays, a more convenient form for matrix manipulations
(i.e., matrix inversion).

Assembles the submatrices coupling forces and velocities,
torques and velocities, etc. into larger matrices for
later use.

Calculates near-field interactions in the form of a tem-
porary matrix (TEMP), which is used to form the lubri-
cation matrix (RL) in ASSLE2.

In addition to these subroutines, a function DERFC is called in EWMOBA.

This function calculates the complementary error function of a given

argument, and can be obtained in the IMSL routine MERRCD.
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PROGRAM SIMI
IMPLICIT INTEGER (I-N)
COMMON/BLK 1/X(21),Y(2(21Z(21),NSPH,NROW
COMMON/BLK 2/Al(231,231),YUP(231,3),A3(231,231),YUP1(231,3),

I 'iP2(231.5)
COMMON/BLK 3/TEMP(12,12),DS
COMMON/BLK 4/ E(3),EP(3,3,3),D(3,3)
COMMON/BLK 5/A(231,231)
COMMON/BLK 6/RSS(50),Xll1AS(50),X12AS(50),Y11AS(50),Y12AS(50),

C YllBS(50),Y12BS(50),X1lCS(50),XI2CS(50),YllCS(50),
C Y12CS(50)

COMMON/BLK 7/X11ASINF(50),Xl2ASINF(50),Y11ASINF(50),
C Y12ASINF(50),Y1lBSINF(50),Yl2BSINF(50),
C Y11CSINF(50),Y12CSINF(50),X11CSINF(50),Xl2CSINF(50)

COMMON/BLK 8/XM11(5,5),H11(3,5),G11(3,5),XM12(5,5),HI2(3,5),
C G12(3,5),H12T(3,3,3),Gl2T(3,3,3),XMi12T(3,3,3,3)

COMMON/BLK 9/XMES(105,105),XMUS(126,105),XMOBMATA(63,63),
C XMOBMATB(63,63),XMOBMATC(63,63),RL(126,126),I,J

COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),AIN(3,3),DK,EK(3),
C B1N(3,3),ClN(3,3),PHI

COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,C1O,
C RN1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,EXPO,
C XKC,XKC2,DK2

COMMON/BLK 13/RSS1(60),XGIINFS(60),
C XG21NFS(60),YGlINFS(60),YG2INFS(60),YINFS(60),
C YH2INFS(60),XMINFS(60),YMINFS(60),ZMINFS(60)

COMMON/BLK 14/S1,S2,S3,S4,S5,S6,S7,S8,S9,S10O,X11AR,Y11AR,
C Y11BR,X11CR,Y11CR

COMMON/BLK 15/DAM111(3,3,3),DBM111(3,3,3),DCM111(3,3,3),
C GRADR(6,6,3)

COMMON/BLK 16/DRSS(55),DX11AS(55),DY1IAS(55),DYllBS(55),
C DX11CS(55),DY11CS(55)

DIMENSION AVGU(3),U(3),PMOB(6,6),RAB(3,3),CONV(3,3)
DIMENSION DX12AS(55),DY12AS(55),DY12BS(55),DX

C DY12CS(55),DIVRINV(3),SIGMA(3,3),RX(3
OPEN (23,FILE - 'DATAIN1.DAT',STATUS - 'OLD',
OPEN (24, FILE-'IPOS.DAT')
OPEN (25, FILE - 'VEL.DAT')
GEN (29, FILE - 'SLOPE1')
OPEN (30, FILE - 'SSFCNS.DAT', STATUS - 'OLD'
OPEN (31, FILE - 'SSFI.DAT', STATUS - 'OLD',
OPEN (32, FILE - 'SSFIXC.DAT', STATUS - 'OLD'
OPEN (35, FILE - 'SSFI2.DAT')
OPEN (36, FILE - 'SSMI.DAT')
READ (30,2800)
READ (31,2900)
READ (32,3000)
READ (35,2900)
READ (36,3000)
DO 40 I - 1,56

(12CS(55),
),RSTEP(3)
RECFM - 'DS')

RECFM
RECT7 -

RECFM

- 'DS')
'DS')
- 'DS')

READ (35,3075) RSSl(I),XG1INFS(I),XG2INFS(I),YG1INFS(I),
YG2INFS(I) ,YH1INFS(I),YH2INFS(I)
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READ (36,3050) RSSI(I),LXMINFS(I),YMINFS(I),ZMINFS(I)
40 CONTINUE

DO 50 I - 1,47

READ (30,2800) RSS(I),X11AS(I),X12AS(I),Y11AS(I),Y12AS(I),
C Y11BS(I),Y12BS(I),XilCS(I),X12CS(I),Y11CS(I),
C Y12CS(I)

C
READ (31,2900) RSS(I),X11ASINF(I),X12ASINF(I),Y11ASINF(I),

C Y12ASINF(I),Y11BSINF(I),Y12BSINF(I),
C Y11CSINF(I),Y12CSINF(I)

C
READ (32,3000) RSS(I),X11CSINF(I),X12CSINF(I)

50 CONTINUE
READ (29,2800)
DO 80 I - 1,54

READ (29,2800) DRSS(I),DX11AS(I),DX12AS(I),DY11AS(I),
C DY12AS(I),DY11BS(I),DY12B2BS(I),DX11CS(I),DX12CS(I),
C DY11CS(I),DY12CS(I)

80 CONTINUE
C
C READ IN PARAMETERS
C

READ (23,*) NSPH,NROW,NLAY,PHI
READ (23,*) DIM,SHR1,SHR2,SHR3
PI - 3.14159265400

XSP - ((4.00/3.00)*PI/PHI)**0.3333333333300
N - 3*NSPH

NX5 - 5*NSPH

NDIM - 2*N

XNR - FLOAT(NROW-1)

XN - FLOAT(NSPH)

W - (XN*(4.0/3.0)*PI/PHI)**0.33333333333
V - W/2.00
DSEED - 21474.DO

PIP5 - 1.00/(PI**0.500)

C - (PI**0.500)/W

C2 - C*C

C3 - C2*C

C4 - C2*C2

C5 - C3*C2

C6 - C3*C3

C7 - C4*C3

C8 - C4*C4

C9 - C5*C4

C10 - C5*C5

C
C CREATE KROENECKER DELTA AND PFRMUTAION SYMBOLS
C

DO 112 I - 1,3

DO 111 J - 1,3
D(I,J) - 0.00

111 CONTINUE
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112 CONTINUE
DO 113 I - 1,3

D(I,I) - 1.00

113 CONTINUE
DO 120 1 - 1,3

DO 118 J - 1,3

DO 115 K - 1,3

EP (I,J,K) - 0.00

115 CONTINUE
118 CONTINUE
120 CONTINUE

EP(1,2,3) - 1.00

EP(1,3,2) - -1.00

EP(2,1,3) - -1.00

EP(2,3,1) - 1.00

EP(3,1,2) - 1.00

EP(3,2,1) - -1.00

C
C SET SPHERE POSITIONS
C

CALL FIBPOS(DIM)
C
C WRITE POSITIONS IN IPOS
C

DO 140 I - 1,NSPH
WRITE(24,1500) X(I),Y(I),Z(I)

140 CONTINUE
WRITE(24,1500)
WRITE(24, 1500)
XCT - 0.00

142 CONTINUE
XCT - XCT + 1.00

C
C CALL STOKES TO GET RESISTANCE MATRIX FOR
C ENTIRE SYSTEM, THEN ABSTRACT HINDERED DIFFUSION
C COEFFICIENT.
C

DO 145 I - 1,3

DO 144 J - 1,3

RAB(I,J) - 0.00

CONV(I,J) - 0.00
144 CONTINUE
145 CONTINUE

DO 150 1 - 1,6

DO 149 J - 1,6

PMOB(I,J) - 0.00

149 CONTINUE
150 CONTINUE
C

CALL STOKESl(SHR1,SHR2,SHR3)
C
C CALL PERM2(NDIM,NSPH)
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ICT - ICT + 1

C
C THE RESISTANCE MATRIX IS NOW IN "A." ABSTRACT PORTION
C CORRESPONDING TO THE HINDERED RESISTIVITY OF THE ONE
C MOBILE SPHERE (SPHERE ONE).
C

DO 160 I - 1,3
DO 155 J - 1,3

PMOB(I,J) - A(I,J)

PMOB(I,J+3) - A(I,N+J)
PMOB(I+3,J+3) - A(I+N,J+N)
PMOB(I+3,J) - A(I+N,J)

155 CONTINUE
160 CONTINUE
C
C WRITE OUT THE HINDERED RESISTIVITY
C

DO 165 I - 1,6

WRITE(25,8000) (PMOB(I,J), J- 1,6)
165 CONTINUE

WRITE(25,8000)
WRITE(25,8000)

C
CALL CHINVTR(PMOB)

C
C
C WRITE OUT THE HINDERED MOBILITY
C

DO 167 I - 1,6
DO 166 J - 1,6

WRITE(25,8000) (PMOB(I,J), J - 1,6)
166 CONTINUE
167 CONTINUE

WRITE(25,8000)
WRITE(25,8000)

C
C EVALUATE THE VELOCITY
C

NL - 3*NSPH-2

DO 200 NUM - 1,NL,3

NUM1 - NUM - 1
DO 190 1 - 1,3

DO 180 J - 1,3

RAB(I,J) - RAB(I,J) + A(I+NUMl,J)
180 CONTINUE
190 CONTINUE
200 CONTINUE

WRITE(25,8000)
WRITE(25,8000)
DO 220 I - 1,3

DO 210 J - 1,3

SUM - 0.00
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DO 205 K - 1,3
SUM - SUM + PMOB(I,K)*RAB(K,J)

205 COtNTINUE
CONV(I,J) - SUM

210 CONTINUE
220 CONTINUE
C
C WRITE OUT THE VELOCITY (THIS 3X3 MATRIX CAN BE DOTTED
C WITH THE SUSPENSION AVERAGE VELOCITY TO YIELD THE
C PARTICLE VELOCITY).
C

DO 229 I - 1,3
WRITE(25,1500) (CONV(I,J),J - 1,3)

229 CONTINUE
WRITE(25,1500)
WRITE(25,1500)

1500 FORMAT (3(F12.4,1X))
2800 FORMAT (IX,F5.3,10E12.6)
2900 FORMAT (1X,F5.3,8E15.6)
3000 FORMAT (1X,F5.3,2E15.6)
3050 FORMAT (1X,F5.3,3E15.6)
3075 FORMAT (1X,F5.3,6E15.6)
3200 FORMAT (6(1X,E12.6))
8000 FORMAT (6(IXE12.6))
9000 FORMAT (3(1X,E12.6))

END
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SUBROUTINE FIBPOS(DIM)
IMPLICIT INTEGER (I-N)
COMMON/BLK 1/X(21),Y(21),Z(21),NSPH,NROW

C
C POSITION FIBERS
C

DO 100 1 - 2,6

X(I) - 0.00
X(I+5) - 2.0*DIM

X(I+10) - 0.00

X(I+15) - 2.0*DIM
C

Y(I) - 0.00

Y(I+5) - 0.00

Y(I+10) - 2.0*DIM

Y(I+15) - 2.0*DIM

100 CONTINUE
DO 200 I - 2,21,5

Z(I) - 0.0

Z(1+1) - 2.05

Z(I+2) - 4.10

Z(I+3) - 6.15

Z(I+4) - 8.20
200 CONTINUE

X(1) - 2.50000
Y(1) - 0.00

Z(1) - 0.000

RETURN
END
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SUBROUTINE STOKES1(SHR1,SHR2,SHR3)
IMPLICIT INTEGER (I-N)
COMMON/BLK 1/X(21),Y(21),Z(21),NSPH,NROW
COMMON/BLK 2/Al(231,231),YUP(231,3),A3(231,231),

C YUP1(231,3),YUP2(231,5)
COM•MON/BLK 3/TEMP(12,12),DS
COMMON/BLK 4/ E(3),EP(3,3,3),D(3,3)
COMMON/BLK 5/A(231,231)
COMMON/BLK 6/RSS(50),X11AS(50),X12AS(50),Y11AS(50),Yl2AS(50),

C Y11BS(50),YI2BS(50),X11CS(50),X12CS(50),Y11CS(50),
C Y12CS(50)

COMMON/BLK 7/X11ASINF(50),X12ASINF(50),Y11ASINF(50),
C YI12ASINF(50),Y11BSINF(50),Y12BSINF(50),
C Y11CSINF(50),Y12CSINF(50),Xl1CSINF(50),X12CSINF(50)

COMMON/BLK 8/XM11(5,5),H11(3,5),G11(3,5),XM12(5,5),,H12(3,5),
C G12(3,5),H12T(3,3,3),Gl2T(3,3,3),XM12T(3,3,3,3)

COMMON/BLK 9/XMES(105,105),XMUS(126,105),XMOBMATA(63,63),
C XMOBMATB(63,63),XiMOBMATC(63,63),RL(126,126),I,J

COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),A1N(3,3),DK.EK(3),
C B1N(3,3),C1N(3,3),PHI

COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,CI0,
C RNI,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,EXPO,
C XKC,XKC2,DK2

COMMON/BLK 13/RSS1(60),XG1INFS(60),
C XG2INFS(60).YGlINFS(60),YG2INFS(60),YH1INFS(60),
C YH2INFS(60),XMINFS(60),YMINFS(60),ZMINFS(60)

COMMON/BLK 14/SI,S2,S3,S4,S5,S6,S7,S8,S9,S1O,XllAR,Y11AR,
C Y11BR,X11CR,Y11CR

COMMON/BLK 15/DA111(3,3,3),DB111(3,3,3),DC111(3,3,3),
C GRADR(6,6,3)

COMMON/BLK 16/DRSS(55),DX1AS(55),DY11AS(55),DY11BS(55),
C DX11CS(55),DY11CS(55)

DIMENSION F(42),U(42),R(126,126),SAV(105,126),DZP(21)
DIMENSION RAVG(6,6),CORM(126,126),A2(231,231),DXP(21),DYP(21)
XSP - ((4.00/3.00)*PI/PHI)**0.3333333333300
N - 3*NSPH
NX5 - 5*NSPH
NDIM - 2*N
N11il - 11*NSPH
V - W/2.00

C
C SET DIMENSIONS OF PERIODIC BOX
C

WX - SHRI*W
WY - SHR2*W
WZ - SHR3*W
NLAY - 2

C
C INITIALIZE ARRAYS TO ZERO
C

DO 143 I - 1,6
DO 142 J - 1,6
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DO 141 K - 1,3
GRADR(I,J,K) - 0.00

141 CONTINUE
142 CONTINUE
143 CONTINUE

DO 156 I - 1,NDIM

DO 155 J - l,NDIM
RL(I,J) - 0.00

155 CONTINUE
156 CONTINUE
C
C LOOP OVER SPHERES IN SYSTEM TO CALCULATE INTERACTIONS. THE
C LOOP OVER J GOES FROM I+1 TO NSPH TO MAKE USE OF THE SYMMETRY
C IN THE INTERACTIONS - THAT IS, IF THE INTERACTION BETWEEN
C SPHERES 1 AND 2 HAS BEEN CALCULATED, THEN ONE NEED NOT CALCU-
C LATE THE INTERACTION BETWEEN 2 AND 1, ETC.
C

DO 400 I - 1,NSPH-1

DO 350 J - I+1,NSPH

DX - X(J) - X(I)

DY - Y(J) - Y(I)

DZ - Z(J) -Z(
C
C APPLY PERIODIC BOUNDARY CONDITIONS
C

DX1 - DX - WX
DX2 - DX + WX

DY1 - DY - WY

DY2 - DY + WY

DZ1 - DZ - WZ

DZ2 - DZ + WZ

IF (ABS(DX1).LT.ABS(DX)) DX - DX1
IF (ABS(DX2).LT.ABS(DX)) DX - DX2
IF (ABS(DY1).LT.ABS(DY)) DY - DY1
IF (ABS(DY2).LT.ABS(DY)) DY - DY2
IF (ABS(DZ1).LT.ABS(DZ)) DZ - DZ1
IF (ABS(DZ2).LT.ABS(DZ)) DZ - DZ2

154 CONTINUE
DS - (DX*DX + DY*DY + DZ*DZ)**O.500

DR - DS

E(1) - DX/DS

E(2) - DY/DS

E(3) - DZ/DS

177 CONTINUE
C
C

DO 160 K - 1,3

DO 159 L - 1,3

A1N(K,L) - 0.00

BIN(K,L) - 0.00

C1N(K,L) - 0.00

DO 158 KI - 1,3
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H12T(K,L,Kl) - 0.00

G12T(K,L,Kl) - 0.00

DO 157 L1 - 1,3

XM12T(K,L,K1,L1) - 0.00

157 CONTINUE
158 CONTINUE
159 CONTINUE
160 CONTINUE

DO 175 L - -NLAY,NLAY
DO 170 K - -NLAY,NLAY

DO 165 M - -NLAY,NLAY
DL - FLOAT(L)

DN - FLOAT(K)

DM - FLOAT(M)

DN1 - DX + DN*WX
DL1 - DY + DL*WY

DM1 - DZ + DM*WZ
DRS - (DN1*DN1+DL1*DL+DM1*DMI)**O. 500

ES(1) - (DX+DN*WX)/DRS

ES(2) - (DY+DL*WY)/DRS

ES(3) - (DZ+DM*WZ)/DRS

DK -(((DN/WX)*(DN/WX)+(DL/WY)*(DL/WY)+(DM/WZ)*(DM/WZ))**0.5)
C *2.00*PI

IF (DK.EQ.O.O0) GO TO 164
EK(1) - 2.00*PI*(DN/WX)/DK
EK(2) - 2.00*PI*(DL/WY)/DK

EK(3) - 2.00*PI*(DM/WZ)/DK
164 CONTINUE

CALL EWMOBA
IF (L.GT.1) GO TO 165
IF (L.LT.-1) GO TO 165
IF (K.GT.1) GO TO 165
IF (K.LT.-1) GO TO 165
IF (M.GT.1) GO TO 165
IF (M.LT.-1) GO TO 165
CALL EWMOBB
CALL EWMOBC
CALL EWFTS
CALL EWMOBES

165 CONTINUE
170 CONTINUE
175 CONTINUE

CALL ASSLEL
176 CONTINUE
C

CALL SSI
CALL ASSLE2(N)

350 CONTINUE
400 CONTINUE
C
C COMPUTE INTERACTIONS WITH SELF REFLECTIONS
C
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DO 442 L - 1,3
DO 441 K - 1,3

A1N(L,K) - 0.00

CIN(L,K) - 0.00

441 CONTINUE
442 CONTINUE

DO 444 L - 1,3

DO 443 K - 1,3

DO 439 LI - 1,3

DO 438 KI - 1,3

XM12T(L,K,L1,Kl) - 0.00
438 CONTINUE
439 CONTINUE
443 CONTINUE
444 CONTINUE

DO 455 L - -NLAY,NLAY

DO 450 K - -NLAY,NLAY

DO 445 M - -NLAY,NLAY

DL - FLOAT(L)

DN - FLOAT(K)

DM - FLOAT(M)

DLI - DL*WY

DNI - DN*WX

DMI - DM*WZ

DRS - (DN1*DN1 + DL1*DL1 + DM1*DM1)**0.500

IF (DRS.EQ.O.00) GO TO 445
DK - 2.00*PI*(((DN/WX)*(DN/WX)+(DL/WY)*(DL/WY)

C +(DM/WZ)*(DM/WZ))**0.5)
ES(1) - (DN*WX)/DRS

ES(2) - (DL*WY)/DRS

ES(3) - (DM*WZ)/DRS

EK(1) - 2.00*PI*DN/(WX*DK)
EK(2) - 2.00*PI*DL/(WY*DK)
EK(3) - 2.00*PI*DM/(WZ*DK)
DX - 0.00

DY - 0.00

DZ - 0.00

CALL EWMOBA
IF (L.GT.1) GO TO 445
IF (L.LT.-1) GO TO 445
IF (K.GT.1) GO TO 445
IF (K.LT.-1) GO TO 445
IF (M.GT.1) GO TO 445
IF (M.LT.-1) GO TO 445
CALL EWMOBC
CALL EWMOBES

445 CONTINUE
450 CONTINUE
455 CONTINUE

CALL ASSLEI
DO 500 I - 1,N
XMOBMATA(I,I) - ALN(1,1)-6.00*PIP5*C+(40.00/3.00)*PIP5
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C *(C**3)*(1.00-0.200*PHI)+1.00
XMOBMATC(I,I) - 0.7500+C1N(1,i)-10.00*PIP5*(C**3)

500 CONTINUE
DO 510 I - 1,!NX5,5

J -4
XMES(I,I) - 0.900*(2.00/1.00)+(3.00/16.00)*PIP5*(-128.00

C *(C**3)+(8064.00/25.00)*(C**5))+XM12(1,1)
XMES(I+J,I+J) - XMES(I,I)

C
XMES(I+1,I+1) - 1.8000+(3.00/16.00)*PIP5*(-128.00*

C (C**3)+(8064.00/25.00)*(C**5))+XM12(2,2)
XMES(I+2,I+2) - XMES(I+1,I+1)
XMES(I+3,1+3) - XMES(I+1,I+1)

C
XMES(I,I+J) - 0.500*XMES(I,I)
XMES(I+J,I) - 0.500*XMES(I,I)

510 CONTINUE
C
C USE SYMMETRY TO FILL IN XMOBMATS
C

DO 550 I - 1,N

DO 525 J - 1,I

XMOBMATA(I,J) - XMOBMATA(J,I)
XMOBMATC(I,J) - XMOBMATC(J,I)

525 CONTINUE
550 CONTINUE
551 CONTINUE
C
C USE SYMMETRY TO FILL IN RL AND XMES
C

DO 558 I - 1,NDIM

DO 555 J - 1,1
RL(I,J) - RL(J.I)

555 CONTINUE
558 CONTINUE

DO 408 I - 1,NX5
DO 405 J - I,NX5

XMES(J,I) - XMES(IJ)
405 CONTINUE
408 CONTINUE
C
C INVERT MOBMATS USING CHOLESKI'S METHOD
C

DO 560 I - 1,N11

DO 559 J - 1,N11

A2(I,J) - A3(I,J)

559 CONTINUE
560 CONTINUE
C
C FILL IN 11NX11N MATRIX FOR INVERSION
C

DO 580 I - 1,N
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570
580

581
582

583
584

585
586
C
C
C

587
588
596
600
C
C
C

625
650

195

DO 570 J - 1,N

A(I,J) - XMOBMATA(I,J)

A(I,J+N) - XMOBMATB(I,J)

A(I+N,J+N) - XMOBMATC(I,J)
A(J+N,I) - A(I,J+N)

CONTINUE
CONTINUE
DO 582 I - 1,NDIM

DO 581 J - 1,NX5
A(I,J+NDIM) - X.MUS(I,J)

CONTINUE
CONTINUE
DO 584 I - 1,NX5

DO 583 J - 1,NX5
A(I+NDIM,J+NDIM) - XMES(I,J)

CONTINUE
CONTINUE
DO 586 I - 1,N11

DO 585 J - 1,N11

A(J,I) - A(I,J)

A3(I,J) - A(I,J)

CONTINUE
CONTINUE

INVERT FAR-FIELD MOBILITY

CALL CHINV(N11)
DO 588 I - 1,N11

DO 587 J - 1,N11

Al(I,J) - A(I,J)
CONTINUE

CONTINUE
CONTINUE
CONTINUE

CREATE COMPLETE R BY ADDING MINV TO RL

DO 650 1 - 1,NDIM
DO 625 J - 1,NDIM

A(I,J) - A1(I,J) + RL(I,J)
CONTINUE

CONTINUE
RETURN
END



SUBROUTINE EWMOBA
IMPLICIT INTEGER (I-N)
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),AIN(3,3),DK,EK(3)

C ,B1N(3,3),C1N(3,3),PHI
COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,C10,

C RN1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,
C EXPO,XKC,XKC2,DK2

DIMENSION XM1A(3,3),XMlB(3,3),XM2(3,3)
DO 4 I - 1,3
DO 3 J - 1,3

XM1A(I,J) - 0.00
XM1B(I,J) - 0.00
XM2(I,J) - 0.00

3 CONTINUE
4 CONTINUE

RN1 - 1.00/DRS
RN2 - RN1*RN1
RN3 - RN1*RN2
RN4 - RN3*RNI
RN5 - RN4*RN1
R2 - DRS*DRS
R3 - R2*DRS
R4 - R2*R2
R5 - R3*R2
R6 - R3*R3
CR - C*DRS
CR2 - CR*CR
ERFCO - DERFC(CR)
EXPO - 2.00*PIP5*C*EXP(-CR2)
DK2 - DK*DK
XKC - DK/C
XKC2 - XKC*XKC
PHIX - 1.00 - 0.200*PHI
DO 20 I - 1,3
DO 10 J - 1,3
XM1A(I,J) - D(I,J)*((0.7500*RN1+0.500*RN3*PHIX)*ERFCO+

C ((4.00*(C7)*R4+C*RN2
C -20.00*(C5)*R2+14.00*(C3))*PHIX
C +3.00*(C3)*R2-4.500*C)*PIP5*EXP(-CR2))

C
XMlB(I,J) - ES(I)*ES(J)*((0.7500*RN1-1.500*RN3*PHIX)*ERFCO

C +(-4.00*(C7)*R4*PHIX-3.00*(C3)*R2
C +16.00*(C5)*R2*PHIX+1.500*C-2.00*(C3)*PHIX
C -3.00*C*RN2*PHIX)*PIP5*EXP(-CR2))

C
IF (DK.EQ.0.00) GO TO 5
XM2(I,J) - (D(I,J)-EK(I)*EK(J))*(1.00-(DK2*PHIX)/3.00)

C *(1.00+0.2500*(XKC**2)+0.12500*(XKC**4))
C *6.00*PI*EXP(-0.2500*XKC2)/DK2

5 CONTINUE
10 CONTINUE
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20 CONTINUE
DO 40 I - 1,3

DO 30 J - 1,3

A1N(I,J) - A1N(I,J) + XM1A(I,J)+XM1B(I,J)
C +XM2(I,J)*COS (DK*(EK(1)*DX+EK(2)*DY+EK(3)*DZ))/(W**3)

30 CONTINUE
40 CONTINUE

RETURN
END
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SUBROUTINE EWMOBB
IMPLICIT INTEGER (I-N)
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),A1N(3,3),DK,EK(3),

C B1N(3,3),C1N(3,3),PHI
COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,C1O,

C RN1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,
C EXPO,XKC,XKC2,DK2

DIMENSION XM1A(3,3),XM2(3,3),DOT(3,3),DOTK(3,3),DDOT(3)
DO 2 I 1,3

DDOT(I) - 0.0
2 CONTINUE

DO 4 I - 1,3

DO 3 J - 1,3
XM1A(I,J) - 0.00

XM2(I,J) - 0.00

DOT(I,J) - 0.0

DOTK(I,J) - 0.0

3 CONTINUE
4 CONTINUE
C

DO 20 I - 1,3

DO 10 J - 1,3

DO 5 K - 1,3
DOT(J,I) - DOT(J,I) + ES(K)*EP(K,J,I)
DOTK(J,I) - DOTK(J,I) + EK(K)*EP(K,J,I)

5 CONTINUE
10 CONTINUE
20 CONTINUE

DO 40 I - 1,3

DO 30 L - 1,3

XM1A(I,L) = (3.00/8.00)*DOT(I,L)*(-RN2*ERFCO
C +(-RN1+10.00*DRS*C2-4.00*C4*R3)*EXPO-RN2*ERFCO
C -(RN1-2.00*DRS*C2)*EXPO)

C
IF (DK.NE.O.00) THEN
XM2(I,L) - (-3.00*PI)*(-DOTK(I,L)-EK(I)*DDOT(L))

C *(1.00/DK+DK/(4.00*C2)+(DK**3)/(8.00*C4))
C *EXP(-XKC2/4.00)

ENDIF
30 CONTINUE
40 CONTINUE

DO 60 I - 1,3

DO 50 J - 1,3

BIN(I,J) - BlN(I,J) + XM1A(I,J) - XM2(I,J)*

C SIN(DK*(EK(1)*DX+EK(2)*DY+EK(3)*DZ))/(W**3)
50 CONTINUE
60 CONTINUE

RETURN
END
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SUBROUTINE EWMOBC
IMPLICIT INTEGER (I-N)
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),AIN(3,3),DK,EK(3),

C B1N(3,3),CIN(3,3),PHI
COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,ClO,

C RN1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,
C EXPO,XKC,XKC2,DK2

DIMENSION XM1A(3,3),XM2(3,3),DOT(3,3),DOTK(3,3),DDOT(3)
C ,XM1B(3,3)

DO 4 I - 1,3

DO 3 J - 1,3

XM1A(I,J) - 0.00

XM1B(I,J) - 0.00

XM2(I,J) - 0.00
3 CONTINUE
4 CONTINUE

EXP1 - EXPO

EXPO - EXPO/(2.00*PIP5*C)
C

DO 20 I - 1,3
DO 10 J - 1,3

XM1A(I,J) - D(I,J)*((3.00/8.00)*RN3*ERFCO+0.7500*
C PIP5*(C*RN2+14.00*C3-20.00*R2*C5+4.00*R4*C7)*EXPO)

C
C

XM1B(I,J) - 0.7500*ES(I)*ES(J)*(-1.500*RN3*ERFCO
C +PIP5*(-3.00*C*RN2-2.00*C3+16.00*R2*C5-
C 4.00*R4*C7)*EXPO)

C
IF (DK.EQ.0.00) GO TO 5

XM2(I,J) - -1.500*PI*(D(I,J)-EK(I)*EK(J))
C *(1.00+0.2500*XKC2+0.12500*(XKC2**2))
C *EXP(-XKC2/4.00)

5 CONTINUE
10 CONTINUE
20 CONTINUE

DO 40 I - 1,3

DO 30 J - 1,3

C1N(I,J) - C1N(I,J) - XM1A(I,J)-XM1B(I,J)-
C XM2(I,J)*COS(DK*(EK(1)*DX+EK(1)*DX+EK(2)*DY+EK(3)*DZ))/
C (W**3)

30 CONTINUE
40 CONTINUE

EXPO - EXP1

RETURN
END
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SUBROUTINE EWFTS
IMPLICIT INTEGER (I-N)
COMMON/BLK 3/TEMP(12,12),DS
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 8/XM11(5,5),H11(3,5),GI1(3,5),XM12(5,5),H12(3,5),

C G12(3,5),H12T(3,3,3),Gl2T(3,3,3),XM12T(3,3,3,3)
COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),AIN(3,3),DK,EK(3),

C B1N(3,3),C1N(3,3),PHI
COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,C1O,

C R±N1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,EXPO,
C XKC,XKC2,DK2

DIMENSION H12AT(3,3,3),H12BT(3,3,3),Gl2AT(3,3,3),
C G12BT(3,3,3),DOT(3,3),DOTK(3,3),DDOT(3)

C
C FILL IN XM11(5,5)
C

DO 20 I - 1,5
DO 10 J - 1,5

XM11(I,J) - 0.00
10 CONTINUE
20 CONTINUE

DO 25 I - 1,5
XM11(I,I) - 9.00/5.00

25 CONTINUE
XM11(5,1) - 9.00/10.00
XM11(1,5) - 9.00/10.00
DO 33 I - 1,3

SUM2 - 0.00
DO 30 J - 1,3

SUM - 0.00
SUMi - 0.00
DO 28 K - 1,3

SUM - SUM+ES(K)*EP(K,J,I)
SUM1 - SUM1+EK(K)*EP(K,J,I)
SUM2 - SUM2 + EK(K)*EK(J)*EP(K,J,I)

28 CONTINUE
DOT(J,I) - SUM
DOTK(J,I) - SUM1

30 CONTINUE
DDOT(I) - SUM2

33 CONTINUE
C
C TO CREATE OTHER 2D ARRAYS, FIRST FILL IN 3D AND 4D ARRAYS
C
C

DO 50 I - 1,3
DO 45 J - 1,3

DO 40 K - 1,3
H12AT(I,J,K) - 0.00
H12BT(I,J,K) - 0.00
G12AT(I,J,K) - 0.00
G12BT(I,J,K) - 0.00
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40 CONTINUE
45 CONTINUE
50 CONTINUE

EXP1 - EXPO
EXPO - EXPO/(2.00*PIP5*C)

C
X1 - (-6.00/R4)*ERFCO+4.00*PIP5*(-3.00*C*RN3-68.00*C5*DRS

C +56.00*R3*C7-2.00*C3*RN1-8.00*C9*R5)*EXPO
X2 - 4.00*((-1.500/R4)*ERFCO+(-3.00*C*RN3-2.00*C3*RN1

C +16.00*C5*DRS-4.00*R3*C7)*PIP5*EXPO)
X3 - 4.00*((7.500/R4)*ERFCO+(15.00*C*RN3+10.0*C3*RN1

C -40.00*C7*R3+4.00*C5*DRS+8.00*C9*R5)*PIP54EXPO)
X4 - (-RN2*ERFCO)+(-RN1+10.00*C2*DRS-4.00*C4*R3)*2.00*C

C *PIP5*EXPO
X5 - RN2*ERFCO+(RN1-2.00*C2*DRS)*2.00*C*PIP5*EXPO
X6 - -3.00*RN2*ERFCO+(-3.00*RN1-2.00*C2*DRS+4.00*C4*R3)

C *2.00*C*PIP5*EXPO
C

X7 - 3.00*RN3*ERFCO+(3.00*RN2-28.00*C4*R2+2.00*C2+8.00
C *C6*R4)*2.00*PIP5*C*EXPO

X8 - -3.00*RN3*ERFCO+(-3.00*RN2-2.00*C2+4.00* C4*R2
C )*2.00*C*PIP5*EXPO

X9 - 15.00*RN3*ERFCO+(15.00*RN2+10.00*C2+4.00*C4*R2-
C 8.00*C6*R4)*2.00*C*PIP5*EXPO

C
DO 100 K - 1,3

DO 90 J - K,3
DO 80 I - 1,3

G12AT(K,J,I) - (3.00/8.00)*((X4+X5)*(ES(K)*D(I,J)
C +ES(J)*D(I,K))+2.00*X5*ES(I)*D(J,K)+2.00*X6*
C ES(K)*ES(I)*ES(J)+(4.00/15.00)*((X1+X2)*(ES(K)
C *D(I,J)+ES(J)*D(I,K))+2.00*X2*E(I)*D(J,K)
C +2.00*X3*ES(I)*ES(J)*ES(K)))

C
H12AT(K,J,I) - (-3.00/16.00)*(X8-X7)*(ES(K)*DOT(I,J)

C +ES(J)*DOT(I,K))
IF (DK.EQ.0.O0) GO TO 80

G12BT(K,J,I) - 0.7500*0.500*(-1.00+(4.00/15.00)
C *DK2)*(EK(K)*(D(I,J)-EK(I)*EK(J))+EK(J)*
C (D(I,K)-EK(I)*EK(K)))*8.00*PI*(1.00/DK+
C DK/(4.00*C2)+(DK**3)/(8.00*C4))*EXP(-XKC2
C /4.00)

C
H12BT(K,J,I) - (3.00/16.00)*(-DOT(I,J)*EK(K)

C -DOT(I,K)*EK(J))
C *(8.00*PI)*(1.00+XKC2/4.00+(XKC2**2)/8.00)
C *EXP(-XKC2/4.00)

80 CONTINUE
90 CONTINUE
100 CONTINUE
C

DO 120 I - 1,3
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DO 110 J - 1,3
DO 105 K - 1,3

G12T(I,J,K) - G12T(I,J,K)+Gl2AT(I,J,K)+
C G12BT(I,J,K)*SIN(DK*(EK(1)*DX+EK(2)*DY+EK(3)*DZ))
C /(W**3)

C
H12T(I,J,K) - H12T(I,J,K)+H12AT(I,J,K)+

C H12BT(I,J,K)*COS (DK*(EK(1)*DX+EK(2)*DY+EK(3)*DZ) )
C /(W**3)

105 CONTINUE
110 CONTINUE
120 CONTINUE

EXPO - EXP1
RETURN
END
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SUBROUTINE EWMOBES
IMPLICIT INTEGER (I-N)
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 8/XM11(5,5),H11(3,5),G11(3,5),XM12(5,5),

C H12(3.5),G12(3,5),H12T(3,3,3),G12T(3,3,3),
C XM12T(3,3,3,3)

COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),AIN(3,3),DK,EK(3),
C B1N(3,3),C1N(3,3),PHI

COMMON/BLK 12/R2,R3,R4,R5,R6,C,C2,C3,C4,C5,C6,C7,C8,C9,C1O,
C RN1,RN2,RN3,RN4,RN5,W,PI,PIP5,CR,CR2,ERFCO,
C EXPO,XKC,XKC2,DK2

DIMENSION XM1A(3,3,3,3),XMlB(3,3,3,3),XM2(3,3,3,3)
C
C

DO 50 I - 1,3
DO 45 J - 1,3

DO 40 K - 1,3
DO 35 L - 1,3

XM1A(I,J,K,L) - 0.00
XMIB(I,J,K,L) - 0.00
XM2(I,J,K,L) - 0.00

35 CONTINUE
40 CONTINUE
45 CONTINUE
50 CONTINUE
C
C

X1 -(-RN3*ERFCO+(-RN2+10.00*C2-4.00*C4*R2)*EXPO)*RN2
X2 -(3.00*RN3*ERFCO+(3.00*RN2-28.00*C4*R2+2.00*C2

C +8.00*C6*R4)*EXPO)*RN2
X3 -(RN3*ERFCO+(RN2-2.00*C2)*EXPO)*RN2
X4 -(-3.00*RN3*ERFCO+( -3.00*RN2-2.00*C2+4.00*C4*R2)*EXPO)*RN2
X5 -(15.00*RN3*ERFCO+(15.00*RN2+10.00*C2+4.00*C4*R2

C -8.00*C6*R4)*EXPO)*RN2
C
C

DX1 - 3.00*RN5*ERFCO+(3.00*RN4-8.00*C4+2.00*C2*RN2
C -20.00*C4+8.00*C6*R2 ) *EXPO

DX2 - -15.00*RN5*ERFCO+(-15.00*RN4-10.00*C2*RN2
C +72.00*C6*R2-4.00*C4-16.00*C8*R4)*EXPO

DX3 - -3.00*RN5*ERFCO+( -3.00*RN4-2.00*C2*RN2+4.00*C4)*EXPO
DX4 - 15.00*RN5*ERFCO+(15. O0*RN4+10.00*C2*RN2+4.00*C4

C -8.00*C6*R2)*EXPO
DX5 - -105.00*RN5*ERFCO+(-105.00*RN4-70.00*C2*RN2-28.00*C4

C -8.00*C6*R2+16.00*C8*R4)*EXPO
C
C

D2X1 - -6.00*RN5*ERFCO+(-6.00*RN4-88.00*C4-4.00*C2*RN2
C +96.00*C6*R2-16.00*C8*R4)*EXPO

D2X2 - 60.00*RNS*ERFCO+(60.00*RN4+40.00*C2*RN2+224.00
C *C6*R2+16.00*C4-224.00*C8*R4+32.00*C10*R6)*EXPO

D2X3 - 6.00*RN5*ERFCO+(6.00*RN4+4.00*C2*RN2+16.00*C4
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C -8.00*C6*R2)*EXPO
D2X4 - -60.00*RN5*ERFCO+(-60.00*RN4-40.00*C2*RN2

C -16.00*C4-32.00*C6*R2+16.00*C8*R4)*EXPO
D2X5 - 630.00*RN5*ERFCO+(630.00*RN4+420.00*C2*RN2

C +168.00*C4+48.00*C6*R2+64.00*C8*R4
C -32.00*C10*R6)*EXPO

C
C

DO 100 I - 1,3
DO 90 L - 1,3

DO 80 J - L,3
DO 70 K - 1,J

XM1A(I,L,J,K) - 2.00*(X3+X1)*(D(L,K)*D(I,J)+D(J,L)*D(I,K))
C +4.00*X3*D(J,K)*D(I,L)+(X2+3.00*X4)*(D(I,J)*ES(L)*ES(K)
C +D(J,L)*ES(I)*ES(K)+D(L,K)*ES(I)*ES(J)+D(I,K)*ES(J)
C *ES(L))+4.00*X4*(D(I,L)*ES(J)*ES(K)+D(J,K)*ES(I)*ES(L))
C +4.00*X5*ES(I)*ES(J)*ES(K)*ES(L)

C
XMlB(I,L,J,K) - 2.00*(D2X1+2.00*X2+6.00*X4+D2X3)*(D(J,L)*

C D(K,I)+D(K,L)*D(I,J))+4.00*(D2X3+4.00*X4)*D(J,K)*
C D(I,L)+4.00*(D2X4+2.00*X5+4.00*DX4)*(D(I,L)*ES(K)*
C ES(J)+D(J,K)*ES(I)*ES(L))+(3.00*(D2X4+2.00*X5
C +4.00*DX4)+4.00*DX2+D2X2+2.00*X5)*(D(I,K)*ES(L)*ES(J)
C +D(K,L)*ES(I)*ES(J)+D(J,L)*ES(I)*ES(K)+D(I,J)*ES(K)
C *ES(L))+4.00*(8.00*DX5+D2X5)*ES(L)*ES(K)*ES(I)*ES(J)

C
IF (DK.EQ.0.00) GO TO 65

C
XM2(I,L,J,K) - (1.00-0.200*DK2)*(EK(L)*EK(K)*(D(I,J)-

C EK(I)*EK(J))+EK(L)*EK(J)*(D(I,K)-EK(I)*EK(K))
C +EK(I)*EK(K)*(D(L,J)-EK(L)*EK(J))+EK(I)*EK(J)*
C (D(L,K)-EK(L)*EK(K)))*8.00*PI*(1.00+0.2500*XKC2
C +0.12500*(XKC2**2))*EXP(-0.2500*XKC2)

65 CONTINUE
XM12T(I,L,J,K) --(3.00/16.00)*R2*XM1A(I,L,J,K)+XM12T(I,L,J,K)

C -(3.00/80.00)*XM1B(I,L,J,K)+(3.00/16.00).YXM2(I,L,J,K)
C *COS(DK*(EK(1)*DX+EK(2)*DY+EK(3)*DZ))/W**3

70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE

RETURN
END
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SUBROUTINE ASSLE1
COMMON/BLK 8/XM11(5,5),H11(3,5),G11(3,5),XM12(5,5),

C H12(3,5),GI2(3,5),H12T(3,3,3),Gl2T(3,3,3),
C XM12T(3,3,3,3)

C
C TWO DIMENSIONALIZE STRESSLET PIECES OF MOBILITY
C

H12(1,1) - H12T(1,1,1) - H12T(3,3,1)
H12(1,2) - 2.00*H12T(1,2,1)
H12(1,3) - 2.00*H12T(1,3,1)
H12(1,4) - 2.00*H12T(2,3,1)
H12(1,5) - H12T(2,2,1)-H12T(3,3,1)
H12(2,1) - HI12T(1,1,2)-H12T(3,3,2)
H12(2,2) - 2.00*H12T(1,2,2)
H12(2,3) - 2.00*H12T(1,3,2)
H12(2,4) - 2.00*H12T(2,3,2)
H12(2,5) - H12T(2,2,2)-Hl2T(3,3,2)
H12(3,1) - H12T(1,1,3) - H12T(3,3,3)
H12(3,2) - 2.00*H12T(1,2,3)
H12(3,3) - 2.00*H12T(1,3,3)
H12(3,4) - 2.00*H12T(2,3,3)
H12(3,5) - H12T(2,2,3) - H12T(3,3,3)

C
C CREATE G12(3,5)
C

G12(1,1) - G12T(1,1,1) - G12T(3,3,1)
G12(1,2) - 2.00*Gl2T(1,2,1)
G12(1,3) - 2.00*Gl2T(1,3,1)
G12(1,4) - 2.00*Gl2T(2,3,1)
G12(1,5) - G12T(2,2,1) - G12T(3,3,1)
G12(2,1) - G12T(1,1,2) - G12T(3,3,2)
G12(2,2) - 2.00*G12T(1,2,2)
G12(2,3) - 2.00*Gl2T(1,3,2)
G12(2,4) - 2.00*Gl2T(2,3,2)
G12(2,5) - G12T(2,2,2) - G12T(3,3,2)
G12(3,1) - G12T(1,1,3) - G12T(3,3,3)
G12(3,2) - 2.00*Gl2T(1,2,3)
G12(3,3) - 2.00*Gl2T(1,3,3)
G12(3,4) - 2.00*G12T(2,3,3)
G12(3,5) - G12T(2,2,3) - G12T(3,3,3)

C
XM12(1,1) - XM12T(1,1,1,1)-2.00*XM12T(1,1,3,3)+XM12T(3,3,3,3)
XM12(1,2) - 2.00*(XM12T(1,1,2,1)-XM12T(1,2,3,3))
XM12(1,3) - 2.00*(XM12T(1,1,3,1)-XM12T(1,3,3,3))
XM12(1,4) - 2.00*(XM12T(1,1,3,2)-XM12T(2,3,3,3))
XM12(1,5) - XM12T(1,1,2,2)-XM12T(1,1,3,3)-XM12T(2,2,3,3)

C +XM12T(3,3,3,3)
XM12(2,2) - 4.00*XM12T(1,2,2,1)
XM12(2,3) - 4.00*XM12T(1,2,3,1)
XM12(2,4) - 4.00*XM12T(1,2,3,2)
XM12(2,5) - 2.00*(XM12T(1,2,2,2)-XM12T(1,2,3,3))
XM12(3,3) - 4.00*(XM12T(1,3,3,1))
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XM12(3,4) - 4.00*XM12T(1,3,3,32)
XM12(3,5) - 2.00*(XM12T(2,2,3,1)-XM12T(1,3,3,3))
XM12(4,4) - 4.00*XM12T(2,3,3,2)
XM12(4,5) - 2.00*(XM12T(2,2,3,2)-XM12T(2,3,3,3))
XM12(5,5) = XM12T(2,2,2,2) - 2.00*XM12T(2,2,3,3)+XM12T(3,3,3,3)

C
DO 120 I - 1,5

DO 110 J - 1,5
XM12(J,I) - XM12(I,J)

110 CONTINUE
120 CONTINUE

RETURN
END
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SUBROUTINE ASSLE2(N)
IMPLICIT INTEGER (I-N)
COMMON/BLK 3/TEMP(12,12),DS
COMMON/BLK 8/XM11(5,5),H11(3,5),G11(3,5),XM12(5,5),

C H12(3,5),Gl2(3,5),HI2T(3,3,3),GI2T(3,3,3),
C XM12T(3,3,3,3)

COMMON/BLK 9/XMES(105,105),XMUS(126,105),XMOBMATA(63,63),
C XMOBMATB(63,63),XMOBMATC(63,63),RL(126,126),I,J

COMMON/BLK 11/V,DX,DY,DZ,DRS,ES(3),A1N(3,3),DK,EK(3),
C B1N(3,3),C1N(3,3),PHI

C
DO 250 K - 1,3

DO 200 L - 1,3
N1 - L+3*(J-1)
N2 - K+3*(J-1)
N3 - K+3*(I-1)
N4 - L+3*(I-1)

C
XMOBMATB(N3,N1) - BlN(K,L)
XMOBMATB(N1,N3) - XMOBMATB(N3,N1)
XMOBMATA(N3,N1) - A1N(K,L)
XMOBMATC(N3,N1) - C1N(K,L)

C

RL(N3,N4) - TEMP(K,L) + RL(N3,N4)
RL(N3,N4+N) - TEMP(K,L+6) + RL(N3,N4+N)
RL(N3,N1) - TEMP(K,L+3)
RL(N3,N1+N) - TEMP(K,L+9)
RL(N1,N3+N) - RL(N3,N1+N)
RL(N3+N,N4+N) - TEMP(K+6,L+6) + RL(N3+N,N4+N)
RL(N3+N,N1+N) - TEMP(K+6,L+9)

C
RL(N2,N1)- TEMP(K,L) + RL(N2,N1)
RL(N2,N1+N) --TEMP(K,L+6) + RL(N2,N1+N)
RL(N2+N,N1+N) - TEMP(K+6,L+6) + RL(N2+N,N1+N)

200 CONTINUE
250 CONTINUE
C
C ASSEMBLE XMUS(5NX6N) AND XMES(5NX5N) FOR FTS METHOD
C

DO 280 K - 1,5
DO 270 L - 1,5

N1 - L+5*(J-1)
N2 - K+5*(J-1)
N3 - K+5*(I-1)
N4 - L+5*(I-1)

C
XMES(N3,N1) - XM12(K,L)

270 CONTINUE
280 CONTINUE

DO 320 K - 1,3
DO 310 L - 1,5

N1 - L+5*(J-1)
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N2 - K+3*(J-1)

N3 - K+3*(I-1)

N4 - L+5*(I-1)

XMUS(N3,Nl) - G12(K,L)

XMUS(N2,N4) - -Gl2(K,L)

XMUS(N3+N,N1) - H12(K,L)

XMUS(N2+N,N4) - H12(K,L)
310 CONTINUE
320 CONTINUE

RETURN
END
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SUBROUTINE SSI
IMPLICIT INTEGER (I-N)
COMMON/BLK 3/TEMP(12,12),DS
COMMON/BLK 4/E(3),EP(3,3,3),D(3,3)
COMMON/BLK 6/RSS(50),X11AS(50),X12AS(50),Y11AS(50),Y12AS(50),

C Y11BS(50),Y12BS(50),X11CS(50),Xl2CS(50),Y11CS(50),
C Y12CS(50)

COMMON/BLK 7/X11ASIN(50),Xl0),X12ASINF(50),Y1IASINF(50),
C Y12ASINF(50),Y11BSINF(50),Y12BSINF(50),
C Y11CSINF(50),Y12CSINF(50),XI1CSINF(50),X12CSINF(50)

COMMON/BLK 14/SI,S2,S3,S4,S5,S6,S7,S8,S9,S10,X11AR,Y11AR,
C Y11BR,X11CR,Y11CR

C

C DETERMINE WHICH RANGE DR FALLS IN
C

DR - DS

S1 - 1.00/DR

S2 - Sl*Sl

S3 - S2*S1

S4 - S2*S2

S5 - S3*S2

S6 - S4*S2

S7 - S4*S3

S8 - S4*S4

S9 - S4*S5

SIO - S5*S5

R1 - SI

R2 - S2

R3 - S3
R4 - S4
R5 - S5
R6 - S6
R7 - S7
R8 - S8
R9 - S9
R10 - S10
IF (DR.GE.4.00) GO TO 20
IF (DR.LE.2.0200) GO TO 125
IF (DR.GE.2.100) GO TO 150

C
IB - -1 + INT(100.00 * (DR - 2.00))
GO TO 175

C
20 CONTINUE
C

X11AR- 1.00+2.2500*R2+5.812500*R4+18.70300*R6
C +77.42600*R8

Y11AR- 1.00+0.562500*R2+1.816400*R4+3.599900*R6
C +8.697800*R8

Y11BR- -(0.7500*R3+1.421900*R5+5.737300*R7+20.70800*R9)
Y11CR- 1.3333300+R4+5.895800*R6+15.56600*R8
X11CR- 1.3333300 + 1.3333300*R6 + 4.00*R8
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C X12AR- -(1.500*R1+2.37500*R3+12.09400*R5+41.64800*R7
C C +148.6600*R9)
C Y12AR- -(0.7500*R1+0.9218800*R3+2.206100*R5+5.471400*R7+
C C 16.98100*R9)
C Y12BR- R2+0.562500*R4+2.191400*R6+10.49800*R8
C X12CR- -1.33333300*R3-1.3333300*R9
C Y12CR- 0.66666700*R3+0.7500*R5+1.921900*R7+1.935200*R9

DO 40 I - 1,12
DO 35 J - 1,12

TEMP(I,J) - 0.00
35 CONTINUE
40 CONTINUE

GO TO 655
125 CONTINUE

XI - DR - 2.00
XII - 1.00/XI
DLX - LOG(XI1)
XDLX - XI*DLX

C
X11AR- 0.2500*XI1+0.22500*DLX+0.9953800+0.02678600*XDLX

C - (2.2257900 - 1.86700*XI)
Y11AR- 0.16666700*DLX+0.998300 - (1.3922400-1.03500*XI)
Y11BR- -0.16666700*DLX+0.159400-0.O83333*XDLX

C -(-0.24888600+0.800000*XI)
X11CR- 1.4024000 + 0.16666700*XDLX

C -(1.354500-0.062500*XI)
Y11CR- 0.26666700*DLX+0.937200+0.2506700*XDLX

C -(1.5426300-0.72600*XI)
X12AR- -X11AR + 0.6451800-(-1.5837300+1.92500*XI)

C -(2.2257900 - 1.86700*XI)
Y12AR- -Y11AR + 0.724600 -(-0.67227600+1.12900*XI)

C -(1.3922400-1.03500*XI)
Y12BR- -Y11BR + 0.158300 -(0.40487800-0.89200*XI)

C -(-0.24888600+0.800000*XI)
Y12CR- 0.066666700*DLX-0.0365300 + 0.500*0.1653300*XDLX

C -(0.17550200-0.57300*XI)
X12CR- -0.20034300+0.16666700*XDLX

C -(-0.169312000+0.2565000*XI)
C

Y11AR - Y11AR + 0.110800*XI
Y12AR - Y12AR - 0.0236500*XI
Y11BR - Y11BR - 0.192900*XI
Y12BR - Y12BR + 0.0941800*XI
GO TO 200

C
150 CONTINUE

IB - 7+INT(20.00*(DR-2.00))
175 CONTINUE

IA-IB +1
C1-(DR-RSS(IB))/(RSS(IA)-RSS(IB))
X11AR- (X11AS(IA)-X11AS(IB))*C1+X11AS(IB)
Y11AR- (Y11AS(IA)-Y11AS(IB))*C1+Y11AS(IB)
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Y11BR-
X11CR-
Y11CR-
X12AR-
Y12AR-
Y12BR-
X12CR-
Y12CR-

X11ARIN
Y11ARIN
Y11BRIN
X11CRIN
Y11CRIN
X12ARIN
Yi2ARIN
Y12BRINI
X12CRINI
Y12CRINI

X11AR -
Y11AR -
Y11BR -
X11CR -
Y11CR -
X12AR -
Y12AR -
Y12BR -
X12CR -
Y12CR -
CONTINUE

(Y11BS(IA)-Y11BS(IB))*C1+Y11BS(IB)
(X11CS(IA)-X11CS(IB))*C1+X11CS(IB)
(Y11CS(IA)-Y11CS(IB))*C1+Y11CS(IB)
(X12AS(IA)-X12AS(IB))*C1+X12AS(IB)
(Y12AS(IA)-Y12AS(IB))*C1+Y12AS(IB)
(Y12BS(IA)-Y12BS(IB))*C1+Y12BS(IB)
(X12CS(IA)-X12CS(IB))*C1+X12CS(IB)
(Y12CS(IA)-Y12CS(IB))*C1+Y12CS(IB)

F- (X11ASINF(IA)-X11ASINF(IB))*C1+X11ASINF(IB)
F- (Y11ASINF(IA)-Y11ASINF(IB))*C1+Y11ASINF(IB)
F- (Y11BSINF(IA)-Y11BSINF(IB))*C1+Y11BSINF(IB)
F- (X1 ZSINF(IA)-X11CSINF(IB))*Cl+XllCSINF(IB)
F- (Y11CSINF(IA)-Y11CSINF(IB))*C1+Y11CSINF(IB)
F- (X12ASINF(IA)-Xl2ASINF(IB))*CI+X12ASINF(IB)
F- (Yl2ASINF(IA)-Yl2ASINF(IB))*Cl+Y12ASINF(IB)
F- (Yl2BSINF(IA)-Y12BSINF(IB))*C1+Y12BSINF(IB)
F- (X12CSINF(IA)-Xl2CSINF(IB))*C1+X12CSINF(IB)
F- (Y12CSINF(IA)-Yl2CSINF(IB))*CI+Yl2CSINF(IB)

X11AR - X11ARINF
YI11AR - Y11ARINF
Y11BR - Y11BRINF
X11CR - X11CRINF
Y11CR - Y11CRINF
X12AR - X12ARINF
Y12AR - Y12ARINF
Y12BR - Y12BRINF
X12CR - X12CRINF
Y12CR - Y12CRINF
E

FILL TEMP MATRIX

DO 400 I - 1,3
DO 350 J - 1,3
DOT - 0.00
DO 300 K - 1,3

SUM1 - EP(J,I,K)*E(K)
DOT - DOT + SUM1

CONTINUE
TEMP(I,J+6) - Y11BR*DOT
TEMP(I,J+9) --Yl2BR*DOT
TEMP(I+3,J+6) - -TEMP(I,J+9)
TEMP(I+3,J+9) - -TEMP(I,J+6)

TEMP(I,J) - X11AR*E(I)*E(J)+Y11AR*(D(I,J(IJ)-E()*E(J))
TEMP(I,J+3) - X12AR*E(I)*E(J)+Yl2AR*(D(I,J)-E(I)*E(J))
TEMP(I+3,J+3) - TEMP(I,J)

TEMP(I+6,J+6) - X11CR*E(I)*E(J)+Y11CR*(D(I,J)-E(I)*E(J))
TEMP(I+6,J+9) - X12CR*E(I)*E(J)+Y12CR*(D(I,J)-E(I)*E(J))
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TEMP(I+9,J+9) - TEMP(I+6,J+6)
350 CONTINUE
400 CONTINUE

DO 650 I - 1,12

DO 625 J - 1,12

TEMP(J,I) - TEMP(I,J)

625 CONTINUE
650 CONTINUE
655 CONTINUE
C
C SUBTRACT RINF FROM TEMP
C
C DO 1000 I - 1,12
C DO 950 J - 1,12
C TEMP(I,J) - TEMP(I,J) - RINF(I,J)
C CONTINUE
C CONTINUE

RETURN
END
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