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ABSTRACT

The HW design methodology is described in detail, and the sensitivity of H
designs to structured uncertainty is determined using Hc controllers designed for
two "practical" plants, an advanced fighter aircraft and a milling circuit. The
effects of near unstable pole zero cancellations on H designs are also studied.
Methods are developed to determine, before an actual design is done, whether the
resulting closed loop system will be sensitive to structured uncertainty. A technique
called inner loop compensation is introduced to desensitize H controller designs to
this type of uncertainty. An inner loop compensated Hm controller for the advanced
fighter aircraft is compared to a traditional classical controller.
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NOTATION AND DEFINITIONS

AT transpose of matrix A

A- 1  inverse of matrix A

Ai(A )  the it h eigenvalue of a matrix A

X(A) the maximum eigenvalue of a matrix A

ai(A) the ith singular value of a matrix A

5(A) the maximum singular value of a matrix A

o(A) the minimum singular value of a matrix A

n(A) A:= condition number of matrix A

G(s) :=F := C(sI - A)-1B + D
transfer function matrix represented in terms of state space

data

sup least upper bound

II G Ji := sup a [G(jw)]

the H -norm of a stable transfer function matrix G(s)w
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The HW design methodology is one of the most recent of the so called robust

multivariable feedback control systems synthesis methods [1,2]. This methodology ,

however, does not take structured uncertainty into account in any direct way but

provision can be made for unstructured uncertainty given an upper bound on the

magnitude of this uncertainty.

In practical situations, it is often not possible to determine plant parameters

very accurately when constructing a nominal plant model. If parametric or

structured uncertainty is present, a compensator which was designed based on a

nominal model, could behave in an undesirable fashion when implemented on the

real plant. The H compensator inverts the stable part of the plant dynamics and

substitutes some desirable dynamics in its place. As this inversion process can be

impeded by structured uncertainty, it is important to know for which "size" of such

uncertainty the controller will still perform adequately.

Control engineers in industry are often reluctant to apply new multivariable

controller design methodologies (e.g. the H. method) to practical problems because

of a lack of experience with these methods, and the few "realistic" examples that



exists in the literature [3]. It is often the case that extensions of SISO

(single-input-single-output) design methods are applied to inherently

multivariable problems. Dealing with the cross-coupling in these multivariable

systems then becomes an art based primarily on experience and not on a sound

theoretical basis. This thesis should help develop some confidence in the application

of the HW methodology to practical design problems.

1.2 Contribution of the Thesis

The are six ways in which this thesis contributes to the understanding of H

designs and control systems in general. They are the following:

* A detailed description is given of the HO design procedure. In particular, the

thesis shows how to incorporate frequency domain specifications into

weighting functions which form part of an augmented plant to which the H

design methodology is applied.

* The thesis provides two "realistic" design examples of He compensators, i.e.

designs for an advanced fighter aircraft and a milling circuit. The milling

circuit example is most likely the first application of the HW methodology to

such a plant. An Hc design is also done for a fictitious plant with a near

unstable pole zero cancellation.

* Equations are derived for the derivatives of singular values and eigenvalues

of a square matrix. These equations are tools which help determine whether

a closed loop H controller will be sensitive to structured uncertainty.
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* The thesis shows that, by looking at the singular values of the open loop

plant, one can determine if the closed loop H. controller will be sensitive to

structured uncertainty.

* A practical way is given to desensitize H controllers to structured

uncertainty, called inner loop compensation.

* A comparison is made between a classical and a desensitized H controller

for the advanced fighter aircraft.

1.3 Organization of the Thesis

The thesis is organized into six chapters. The current chapter has described

the motivation for and the contributions of this thesis. Chapter 2 gives a detailed

description of the H design methodology. In Chapter 3 H. compensators are

designed for an advanced fighter aircraft and a milling circuit.

In Chapter 4, tools are developed to study the effects of structured

uncertainty on H. designs. Sensitivity studies are performed on H. designs for the

advanced fighter aircraft, the milling circuit, and two fictitious plants. An

"artificial" way of making the controller for the aircraft less sensitive to structured

uncertainty, is introduced. Chapter 5 focuses on practical ways of desensitizing H

designs to structured uncertainty. A traditional classical compensator for the

aircraft is compared to an inner loop compensated H. compensator with regard to

stability robustness and performance. The final chapter discusses the results and

proposes directions for future research.



CHAPTER 2

THE H DESIGN METHODOLOGY

2.1 Introduction

This chapter deals with the formal control system synthesis problem, in

which the H -norm performance measure is used [1]. Compensators are designed for

the class of dynamical systems that are assumed to be finite-dimensional and

linear-time-invariant (FDLTI). Although FDLTI systems represent idealizations

of actual physical systems, controller designs based on these systems give good

results, as long as the approximations made, are justified.

The HW methodology is one of the most recent so called robust

(uncertainty-tolerant) multivariable feedback control systems synthesis methods

[2]. The design of a fixed parameter compensator is based on a nominal model, and

the aim is to maintain stability and reasonable performance in the presence of

significant uncertainty (e.g. noise/disturbance signals and modeling errors).

However, neither this nor the H2 (LQG/LTR) [4] design methodology take

structured uncertainty into account in any direct way. Provision can, however, be

made for unstructured uncertainty given an upper magnitude bound on this

uncertainty [5].

The H design procedure can best be described by the following points, each

of which will be elaborated on in this chapter:
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* start with a plant model that has to be controlled to desired

specifications

* express design specifications in terms of weighting functions

* augment the plant model with these weighting functions

* find the desired compensator by solving the HW synthesis problem

* verify if the design specifications are met and if control rate and

magnitude constraints are adhered to

* repeat the design process if necessary

2.2 The Plant Model and Specifications

2.2.1 The Plant Model

The plant model must be FDLTI but can be minimum or nonminimum

phase, square or nonsquare, stable or unstable. An upper bound on the

unstructured uncertainty of the plant must be known, so that realistic robustness

specifications can be set.

2.2.2 Specifications

An obvious specification that is taken care of by the HW synthesis, is that of

nominal stability. Other specifications are normally given in terms of singular value

loop shapes (frequency domain), e.g.
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Robustness specification:

Performance specification:

20 db/decade roll-of and at least -40 db

at 100 rad/sec

minimize the sensitivity function as much

as possible (can also be interpreted as a

robustness specification)

The robustness specifications can also be given in more "classical" terms, like

multivariable gain and phase margins [6,7]. In each loop of a multivariable feedback

system, simultaneously and independently, there are guaranteed gain and phase

margins (denoted GM and PM respectively), given by the following equations:

downward gain margin

upward gain margin

phase margin

GMI < k
k+1

GMT k>
k -- 1

SPM > 2 sin-1(1/2k)

where

k = IS(s)l=

with S(s) = [I + G(s)K(s)]- 1 the sensitivity transfer function matrix of the

standard feedback configuration shown in Figure 2.2.2.1. This means that the gains

or phases of all the feedback loops thay be changed at the same time within the

prescribed limits, without destabilizing the closed loop system. From the equations

(2.2.2.1)

I



above it is evident that minimizing the sensitivity will result in good multivariable

gain and phase margins.

-I.

Figure 2.2.2.1: The standard feedback configuration

The following constraint should always be kept in mind when posing

specifications:

S(s) + C(s) = I (2.2.2.2)

with C(s) = [I + G(s)K(s)]-IG(s)K(s) the closed loop transfer function or

complementary sensitivity matrix (see Figure 2.2.2.1). It does not make sense, for

example, to ask for output disturbance and measurement noise rejection in the same

frequency range, as this violates the constraint given above.

Another performance specification that can be accommodated is zero steady

state errors to constant commands or disturbances in all directions. This can be

achieved by adding low frequency poles (approximation of integrators) to the weight

on the sensitivity transfer function matrix; more on weighting functions in section

2.3. Time domain specifications like rise-time and percentage overshoot, are not

treated directly. The time domain response of the system can be observed by doing

time simulations after the controller has been designed.
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2.3 Singular Value Loop Shaping and the Selection of Weights

Weighting functions are the free parameters in the HW design framework, and

can be used to "tune" designs to meet realistic specifications. This section describes

how weights are accommodated in the H, synthesis problem.

The standard feedback configuration as shown in Figure 2.2.2.1, will be used

to illustrate the selection of weighting functions. Figure 2.3.1 shows how the

weights are connected to the feedback system. G(s) is the plant transfer function

matrix and K(s) represents the compensator. The transfer function matrices of the

weights are given by Wi(s) = wi(s) Inx n (i = 1, 2, 3), and the reference input by ul.
Although the weights used in this thesis are all diagonal, this does not have to be.

Diagonal weights have the advantage of forcing decoupled closed loop responses.

Matched singular values can be achieved by making the diagonal elements equal.

P(s)

Y13

Yll

Y2

Figure 2.3.1: The standard feedback configuration with weights
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The configuration of weights shown in Figure 2.3.1 is by no means the only

one that can be accommodated in the HI synthesis problem, but it serves to

illustrate the selection of weights in the familiar framework of the standard feedback

problem.

Referring to Figure 2.3.1, a disturbance attenuation performance

specification up to the crossover frequency Wc can be expressed as,

lim a [S(jw)] JZ [W1 (jw)] w<Wc  (2.3.1)
7- 7min

-1lim a [S(jw)] _a [w 1 (jw)] w<
7 7rmin

where ymin is the optimal gamma in the gamma-iteration discussed in section

2.5.1. Equation 2.3.1 indicates that the attenuation factor is a function of frequency

w, which implies that one frequency range can be emphasized over another, to

accommodate, for example, both output disturbance and measurement noise

attenuation, subject to the constraint given in equation 2.2.2.2. A good choice for

W1(s) is to set it equal to the inverse of the desired - [S(jw)] at frequencies below

crossover (wc). A typical weighting function W1(jw), is shown below, with n the

number of plant outputs,

k
Wl(s ) = Ianxn k = w , a= .0001

s+aWith k equal to the crossover frequency, W

With k equal to the crossover frequency, W1(s) will help insure that all the singular



values of the loop transfer function crossover at k rad/sec. a is chosen such that

W1(s) approximates a matrix with integrators on the diagonal which will result in

the controller having zero steady state errors to constant commands and

disturbances.

The weights W2 (s) and W3(s) both serve the purpose of specifying stability

margins. Doyle et al [8] proposed a method for solving the H feedback problem,

named gamma (7y)-iteration which will be discussed in section 2.5.1. Using this

method, the weight on the controls W2(s) has to be present. Safonov [9] relaxed

this restriction, and the designer can now choose either between using W2 (s) or

using W3(s). (See section 2.5.1 and Appendix A for more information). Generally,

they are not used at the same time, as they serve the same purpose. Stability

margins can be expressed using the following equations:

-[R(jw)] ~ [W21(jw)] dc (2.3.2)

S[R(j)] " [W21(j)] >

a [C(jw)] [W31(jw)] W>c (2.3.3)

S[C(jwO)] ( [WM31j c>w

with R(s) = K(s)[I + G(s)K(s)]- I (see Figure 2.2.2.1). W2 (s) is used when the

plant uncertainty is described as additive perturbations, and W3(s) is used in the

face of multiplicative perturbations. These perturbations are illustrated in Figure
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2.3.2.

Perturbed plant

+

Figure 2.3.2: Additive and Multiplicative uncertainty

The multiplicative plant perturbations are indicated by AM(S), and the additive

perturbations by AA(s). The multiplicative stability margin is the "size" of the

smallest stable AM(s) which destabilizes the system in Figure 2.3.2 with AA(s) = 0.

The "size" of AM(s), can be expressed in terms of j [AM(jw)], and gives an

indication on how to choose W3(s) (equation 2.3.3). A good choice for W3(s) is to

set it equal to the inverse of the desired - [C(jw)], at frequencies above Wc.

Similarly, the "size" of the smallest stable AA(s), which destabilizes the system in

Figure 2.3.2 with AM(s) = 0, gives an indication on how to choose W2(s).

It is intuitively more appealing to lump the effects of all plant uncertainty

into multiplicative perturbations. Design specifications can then be expressed in

terms of equations 2.3.1 and 2.3.3.

A typical weight on the complementary sensitivity C(s), is given by,

f



s
W3(s)= In ; k = W (2.3.4)

Thus, with the inclusion of dynamic filters for weights, the order of the

compensator that results from the HI design methodology, is equal to the order of

the plant plus the order of the weights. There is thus a trade-off between the

complexity of the weights and the order of the compensator.

More information on the selection of weighting functions can be found in

Chapter 3 where they are actually chosen to meet certain specifications. The

milling circuit example is particularly interesting, as the weights are chosen to

provide a region of loop ( G(s)K(s) ) crossover frequencies. Appendix A shows how

an improper W3(s) can be absorbed into a strictly proper plant such that W3(s)
does not contribute to the order of the compensator.

2.4 Plant Augmentation

In order to solve the HI synthesis problem, it is necessary to augment the

plant model with specific weighting functions. In this section, the plant and weights

shown in Figure 2.3.1, will be used to demonstrate how the plant augmentation is

done.

The augmented plant model P(s) can be partitioned as a block (2x2) transfer

function matrix.



P() P11(s)
P(s) := ()

[P21(s)
P12(s)]
P22(s)

with the relationships between the signals in Figure 2.3.1

Y1 = P11 Ul + P 12 U2

Y2 = P 21 Ul + P 22 U2

Y11

Y1  Y12
Y13

ul + W2  u2
W3G

Y2 = I u 1 -G u 2

with a detectable and stabilizable state space description

P(s) :=
A B 1

C1 D1 1
C2 D2 1

B 2

D 2 2D 12
D22

(2.4.3)

To proceed with synthesis next, let the state space descriptions of the plant

and the weights be

G(s) =

(2.4.1)

(2.4.2)

(2.4.4)



A =

Ap

-BwlC

0
Bw3Cp

0

Aw

0
0

[B1 I B2] =

0

1 0

Aw2
0

0

Bwl

0
0

0

0

0

Aw3

Bp

-BwlDp

Bw2
Bw3D

p

Wi (s) = wi Bwi

Cwi Dwi J

with i = 1, 2, 3.

Let the augmented plant P(s) have a state vector xap given by

Xap = [p wl Xw2 xw3

where xp and xwi are the state vectors for the plant G(s) and the weights Wi(s),

respectively. The augmented plant matrices can now be expressed in terms of block

matrices of the plant and the weights, as shown below:



C1
2

0 0Cwl

Dwl
0

I

-DwlDp

Dw2
Dw3D
-w3D

-Dn

(2.4.5)

In this section the standard control problem (Figure 2.3.1) was used to

illustrate plant augmentation. Other configurations of plants and weights can be

treated in a similar fashion, as equations 2.4.1 and 2.4.3 are generic to all problems

that can be accommodated by the HC design methodology.

2.5 H. Synthesis

The HW feedback problem is posed with reference to Figure 2.5.1.

U1 ' P (s) ,

u2 Y2

K(Figure 2.5.1: Synthesis block diagram

Figure 2.5.1: Synthesis block diagram
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Given: P(s) FDLTI augmented plant

ul(t) exogenous input vector (commands, disturbances etc.)

Yl(t) output vector (weighted errors, controls etc.)

y2(t) measurement vector

u2(t) control input vector

Find: K(s) A nonunique FDLTI dynamic compensator such that:

* the closed loop system is nominally stable

* the H -norm of the closed loop transfer function

from ul(t) to Yl(t), Hylul(s), is minimized.

When using weights W1(s) and W3(s), the following equation can be given to

illustrate the relationship between Hylul(s) and the weights,

I Hy ul(Jw) JI| = max I w(j )
71ul W3(jw)C(jw)

The optimal solution to the problem posed above cannot be computed

directly. An iterative scheme called -r-iteration, has been formulated to find

solutions arbitrary close to the optimal. The 7-iteration procedure is described in

the next section.

2.5.1 7-Iteration

Doyle et al [10,11] devised a procedure to solve the H. output feedback



problem, called '-iteration. This procedure involves solving two modified Riccati

equations, and consists of finding stabilizing compensators K(s), that guarantee

IHylUl <y 7 (2.5.1.1)

with

rain H = 7optimal
K(s) y1ul loptimal

'Yoptimal <

The relationship between the signals in Figure 2.5.1 is the same as indicated

in equation 2.4.2., with the state space description of P(s) given by equation 2.4.3.

The y-iteration procedure requires that the augmented plant P(s) have the

following properties:

* The state space description of P(s) (equation 2.4.3) must be

detectable and stabilizable

* The transfer functions P11(s) and P22(s) must be strictly proper

1* The transfer functions P12(s) and P21(s) should be proper but not

strictly proper

For P11 (s) and P22(s) to be strictly proper, D11 and D22 must be zero. This

can always be achieved by adding high frequency poles to the appropriate weighting

functions. From equation 2.4.5 it is evident that the weight W1(s) needs to be

strictly proper in order for D11 to be zero. Also, D22 will be zero if the plant G(s)



is strictly proper. If this is not the case, u2 can be weighted to make D22 zero.

P2 1(s) will always be proper in the standard feedback configuration (Figure

2.3.1) where ul is fed through to y2. For P 12(s) to be proper, W2 (s) and/or W3(s)
and G(s) has to be proper, as can be seen from equation 2.4.5. W2(s) and W3(s)
will generally not be used at the same time, which implies that, if the plant is

strictly proper (Dp = 0), W2(s) will have to be present. Another alternative is to

use the method described in Appendix A, where an improper weight W3(s) is

absorbed into a strictly proper plant. Further requirements on D12 and D21 in step

3 of the y--iteration procedure are for D12 to have full column rank and D21 to have

full row rank.

The following steps describe the --iteration procedure [12]:

Step 1: Guess the level of achievable performance 7

Step 2: Scale u1 and/or yl so that the upper bound in 2.5.1.1 is unity, i.e.

IHHy1ulul < 1 where Hy 1u1 is appropriately scaled. The scaling in

step 2, can be done as shown in Figure 2.5.1.1.
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Figure 2.5.1.1: Scaling the augmented plant

The scaled augmented plant P(s), can now be represented as follows:

1P(
2C" P11(s)

P21(s)

P12(s)
7 P22(s)

= P(s) 1I

The state space description of P(s) now becomes

P(s) =
A j -1 B1 F B21

1 C

4f C2 7

Scale u2 and y2 such that

u2

U
2

1

P(s)

P(s)

~ ...

D I
122

D22 -

Step 3:



T
12 12 =

T
21 21 = I

Two square, nonsingular matrices Su and Sy are used for scaling the controls u2 and

the measurements y2, respectively. These scaling matrices can be computed using

the Cholesky decomposition [13] to solve the following equations:

T TSu D 12 D 12

S-1 (-1)T = D DT
y y 21. 21

The scaling can be done as shown in Figure 2.5.1.2.

P(s)

Figure 2.5.1.2: Scaling the controls and measurements



The plant matrices are scaled as follows,

B = B S2

C2 = S C2

D12 = D12 S1
D2 1 = Sy D2 1

•22 = S~ D22S

Step 4: The Hc compensator structure is shown in Figure 2.5.1.3

K(s)

J(s)

Figure 2.5.1.3: The HC compensator structure

Q(s) is any stable system with IQ®, < 1. Guidelines as to how to choose the free

parameter Q are the subject of continuing research [14]. Q(s) = 0 is a legitimate

choice for Q, and it will be used throughout this thesis.

The augmented plant matrices (A, Bj, Ci, Dij; i,j = 1,2) used in step 4 are
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assumed scaled as indicated in steps 2 and 3. The state space description of J(s) is

given by,
A B

J(s) = C D

with

Aj = A - KFC2 - B2KC + Y CT (C-D KC)OD1 (C 12K

Bj = [KF KF1]

-K
C

CJ= KC 1

0 -I'Dj= 10

KC = (B X + DTT2C)(I - Y X)-1
2 m 12

KC1 = (D12B T - C2)(I X -

is the unique, real, symmetric solution of the Algebraic Riccati equation

(A - B2DT2C)TX + X(A - B2DT2C1) - X(B 2BT - BBT)X

with

C = (I - D 12 DT 2 )C1

X

1

-T-ci ci



KF = (YC T + B÷ DT

KF1 = (YC1TD12 + B2)

Y is the unique, real, symmetric solution of the Algebraic Riccati equation

(A - BlDTIC)Y + Y,(A - B 1DT C2 TY (C 2CT - CCT)Y + BTB= 0

with

B 1 = B 1 (I - D2 1D2 1 )

The 7 chosen in step 1 can be achieved if the following three conditions are met

X >0
Y >o

X(YMXM) 5 1

If these conditions are not satisfied, increase 7 and go to step 2. The minimum 7 in

equation 2.5.1.1 should be found that satisfies these conditions.

Step 5: Incorporate the scaling on u2 and y2 into the compensator K(s) as

shown in Figure 2.5.1.4. The compensator matrices are scaled as

follows,
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yl

(s)

Figure 2.5.1.4: Scaling the designed compensator K(s)

The state space description of the compensator K(s) with Q(s) = 0, is given

by

A - KFC2 - B2 KC
+ YCT(C1 - D12Kc) I KF 1

This concludes the discussion on the y-iteration procedure.

K(s) = I

BK = 4 BKSy

CK = f S'1 CK
DK = ̂  Su DKSy



2.5.2 What does the H Synthesis Do ?

The basic idea behind the H. compensator is that it "inverts" the stable

plant dynamics, and substitutes in its place desirable dynamics prescribed by the

weighting functions. In particular, the eigenvalues of the closed loop A matrix

include:

stable plant poles

* poles at the mirror image about the jw - axis of unstable plant poles

* poles at plant zeros (except nonminimum phase ones)

The zeros of the closed loop system are the zeros of the plant and the

compensator.

2.6 Design Verification

This section briefly describes what should be done to check if the controller

that was designed meets the required specifications. Two basic analysis tools are

used for this purpose, i.e. singular value plots and time simulations.

The first and most obvious specification to check would be that of nominal

stability, which is guaranteed by the H. methodology. If this is not achieved, the

-,--iteration procedure has been applied incorrectly.
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Frequency domain specifications can be verified with singular value plots of

the relevant transfer functions, e.g. the sensitivity S(s), and the complementary

sensitivity C(s) transfer function matrices.

The H. design methodology does not treat time domain specifications

directly. Time simulations of the closed loop controller need to be carried out to

check these specifications. This is also the time for the designer to make sure that

control rate and magnitude constraints are adhered to. It might be the case that

the desired frequency domain specifications cannot be achieved within the

constraints on the controls, which would imply that the controller design would

have to be repeated with less demanding frequency specifications.

Of course, the ultimate design verification would be to try the controller out

on the real plant. This step is usually preceded by extensive time simulations, in

which the compensator is "hooked-up" to a realistic model of the plant which

includes for example, nonlinearities, unmodeled dynamics, time delays etc.



A compensator that results from the ---iteration procedure is computed via

the solution of two Riccati equations. Thus, a compensator that meets an H

optimality criterion is no more difficult to obtain than it is to compute an LQG

solution [15]. The H methodology has the advantage that the error is defined

directly in terms of frequency domain specifications, and the maximum error is

minimized rather than averaged across frequency.

H solutions can be computed by any software package that can solve an

algebraic Riccati equation. There is a commercially available package by Chaing

and Safonov [16], for use with PC-MATLAB and PRO-MATLAB, that

accommodates plant augmentation, singular value plots, and H2 and H synthesis.

2.7 Concluding Remarks



CHAPTER 3

H COMPENSATOR DESIGNS

3.1 Introduction

In this chapter, compensators are designed for two plants, an advanced

fighter aircraft, and a milling circuit. These plants were chosen to illustrate the

strengths and the weaknesses of the HC design methodology. The nominal designs

will be used in Chapter 4 for sensitivity studies.

3.2 Advanced Fighter Aircraft

In this section a lateral-directional flight control system (FCS) for an

advanced fighter aircraft is used as an example. The main purpose of the FCS will

be to provide bank angle control as an automatic pilot control mode. The model

used in this section exhibits special characteristics, some of which were studied in

[17].

3.2.1 The Plant

The flight condition and the state space description of the aircraft are given

in Appendix B. The plant is controllable and observable, minimum phase and

unstable, with poles and transmission zeros as shown below:



Ai (A ) = -5.9686e-02 + 2.8437e+00i

- 4.2730e-01

+ 4.8718e-03

(dutch roll mode)

(roll subsidence

mode)

(unstable spiral

mode)

- 1.6129e+02

From the poles

to be,

of the plant the dutch roll mode damping ratio Cd can be calculated

(d = 0.021

Figure 3.2.1.1 shows a plot of the minimum and maximum singular values of

the open loop plant and its condition number versus frequency. The condition

number of the aircraft is very high at low frequencies, which implies that different

input directions can cause a wide range of plant amplification, at the same

frequency.

3.2.2 Design Specifications and the Selection of Weights

The requirements for the control system design include:

(a)
(b)

bank angle control with crossover at 2 rad/sec

increased dutch roll damping

zero =



(c) zero steady state errors to constant commands or disturbances.

(d) unmodeled dynamics and high frequency sensor noise requires the

- [C(jw)] < - 40 db at w = 100 rad/sec

(e) and, of course, nominal stability

Requirements (a), (c) and (d) give an indication as to which weighting functions

should be used. The HO design methodology automatically takes care of

requirement (e), but "circumvents" requirement (b) by canceling the stable portion

of the plant (see section 2.5.2), such that the dutch roll mode will not be visible in

the plant output. This can cause performance degradation or even instability in the

face of structured uncertainty as will be seen in Chapter 4.

Weighting functions which will enable the closed loop control system to meet

requirements (a), (c) and (d), are (see Figure 2.3.1)

2
W 1(s) = I2x2s + .0001

W2(s) = f I 2x 2 , I = 0.1

W3(s) = - I2x2

The weights W1(s) and W3(s) have crossover frequencies at 2 rad/sec, which will

insure that the loop transfer function -plant and compensator- crossover at 2

rad/sec. Singular value plots for the weights W1(s) and W3(s) are shown in Figures



3.2.4.3 and 3.2.4.2 respectively. The low frequency poles in W1(s) takes care of

requirement (c). W2 (s) is included to give D12 (see section 2.5.1) full column rank

without increasing the order of the compensator. e was chosen such that the

controller does not command excessive control action. A state space description for

W3(s) cannot be written, as it is improper and, thus, the technique described in

Appendix A must be used to calculate the augmented plant.

3.2.3 HI Compensator Design

The 7 - iteration procedure described in section 2.5.1, was used to design a

compensator for the aircraft augmented with the weights given in section 3.2.2. The

minimum 7 found via the iteration procedure was 7min = 1.30. The state space

descriptions for the augmented plant and compensator are given in Appendix B.

The poles and transmission zeros for the 6th order compensator are,

Ai(Ak) = - 3.5623e+01

- 9.0694e+00 * 4.2700e+00i

- 6.6815e+00

2 0- 1.000e--04

zeros = - 5.9686e-02 * 2.8437i (dutch roll mode)

- 4.2730e-01 (roll mode)

- 4.8436e-03 (mirror image of

spiral mode)



By looking at the location of the compensator zeros, it would seem that the

compensator "inverts" the stable part of the plant. To prove this, a

controllability/observability study was performed (Appendix B section B.5) on the

closed loop system, and it was found that the stable plant modes are indeed

uncontrollable, which implies pole zero cancellations.

The 10th order closed loop system poles and transmission zeros are,

Ai(Acl) = the 3 stable plant poles (see section 3.2.1)

mirror image of unstable plant pole

- 3.5995e+01

- 8.7283e+00

- 6.3733e+00

- 3.1521e+00 & 1.0167e+00i

- 3.0328e+00

zeros = 1 plant zero

4 compensator zeros

3.2.4 Design Evaluation

In this section, singular value plots and time simulation will be used to

determine if the design in section 3.2.3 meets the specifications that were set in

section 3.2.2.



The bandwidth requirement in (a) is met, as can be verified by looking at the

minimum and maximum singular value plots of the loop transfer function ( T(s) =

G(s)K(s) ) in Figure 3.2.4.1. The minimum and maximum singular value plots of

the closed loop transfer function C(s) in Figure 3.2.4.2 and the bank angle step

response in Figure 3.2.4.4 illustrate that bank angle command following is achieved

without excessive control action. Requirements (c) and (d) are met, as can be

verified from Figure 3.2.4.2.

Figure 3.2.4.3 shows the minimum and maximum singular value plot of the

sensitivity function S(s), and from it k as defined in equation 2.2.2.1 can be found to

be 1.239. This gives the controller the following gain and phase margins in each

loop independently and simultaneously,

GMT _ 5.2

GMI < .55

PM > 47.59 deg

It is evident from Figures 3.2.4.1 to 3.2.4.4 that the dutch roll mode has been

canceled, because it does not show up in any of the figures. It is not clear if

requirement (b) has been addressed adequately and thus this issue will be explored

further in Chapter 4.

The weights W1(s) and W3(s) have been included in Figures 3.2.4.3 and

3.2.4.2 respectively, to show how the maximum singular values of S(s) and C(s)

approach the inverse Bode plots of these weights as 7 goes to its optimal value.



Figure 3.2.4.5 shows the minimum and maximum singular values of HY1 1l(s) (the

transfer function of which the H -norm needs to be minimized) for 7 = 2 and

7 = 1.3.

In conclusion, it can be stated that an H controller has been designed that

meets the posed specifications -except maybe (b)-. Good command following,

disturbance rejection, and insensitivity to high frequency sensor noise are evident

from the figures presented in this section.

3.3 The Milling Circuit

In this section an H. compensator is designed for a milling circuit that

processes gold bearing ore. The main purpose of the controller is to provide particle

size control while regulating the mill load and the sump level. An INA (inverse

Nyquist array) compensator has previously been designed for this plant, and the

successful controller implementation is described in [18].

3.3.1 The Plant

A transfer function model (G(s)) for the plant was derived from "step-tests"

done on the actual milling circuit. The G(s), state space description, nomenclature

used, and a figure and description of the plant are given in Appendix C. Scaling

and model reduction were performed on the plant as described in Appendix C, and

this scaled and reduced order version of the plant -referred to as the design plant

model-, will be used for the design of the compensator.
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The designed plant model is 6th order, controllable and observable,

nonminimum phase and stable, with poles and transmission zeros,

Ai(A ) = - 1.7481e-02

- 1.3158e-03

- 6.0912e-04

- 5.0000e-06

- 5.0006e-06

zeros = 5.5624e-02

- 5.7499e-04

* 3.7481e-03i

- nonminimum phase zero

* 2.8092e-04i

Figure 3.3.1.1 shows a plot of the minimum and maximum singular values of

the design plant model and its condition number versus frequency.

3.3.2 Design Specifications and the Selection of Weights

The specifications for the control system include:

(a) independent PSM, LOAD, and LEVEL control

(b) settling time of 600 sec for the PSM and LOAD
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(c) settling time of 1800 sec for the sump level

(d) zero steady state errors to constant commands and disturbances

(e) unmodeled dynamics and "high" frequency sensor noise requires that

the o [C(jw)] < -60 db at w = 1.0 rad/sec

(f) and, of course, nominal stability

Requirements (b) through (e) determine which weighting functions should be

used. Independent control of the three outputs -requirement (a)- is possible, as

there are three independent controls. The He compensator naturally takes care of

requirement (f).

Weighting functions as depicted in Figure 2.3.1, which will enable the closed

loop control system to meet the posed specifications, are listed below:

1 6.00e-03 0 0
W +(s)=0 6.00e-03 0

W( s + 1.0e-06 0 0 1.50e-03

W2(s)= I 3x3  ; f=0

8.00e--03 0 0 -1
W3(s) = s 0 8.00e--03 0

0 0 2.00e-03

The weighting functions given above are the result of a number of intelligent trial

and error iterations. It was found that changes in the parameters in the numerators

of W1(s) had the biggest impact on the speed of the output response. These

parameters were chosen such that requirements (b) and (c) were met. The



parameters in the denominators of W3(s) were then "tuned" to give acceptable

multivariable gain and phase margins and meet requirement (e), without the

controller demanding excessive control action. Requirement (d) is taken care of by

the parameters in the denominator of W1(s).

A state space description for W3(s) cannot be written since it is improper,

and thus W3(s) is absorbed into the strictly proper plant, as shown in Appendix A.

3.3.3 H Compensator Design

The 7 - iteration procedure described in section 2.5.1, was used to design a

compensator for the scaled milling circuit augmented with the weights given in

section 3.3.2. The minimum 7 found via the iteration procedure that met the

specifications, was 7min = 1.05. The state space descriptions for the augmented

plant is given in Appendix C.

The poles and transmission zeros of the 9th order compensator -same order

as the augmented design plant-, are,

Ai(Ak) = - 4.8949e-02 2.4744e-02i

- 5.7528e-04 * 2.8146e-04i - approximate

reduced order plant

zeros

- 2.6844e-02

- 6.7628e-03



zeros = 6 design plant poles (see section 3.3.1)

The location of the compensator zeros are the same as that of the design plant poles

(section 3.3.1). The compensator has poles at the same location as the design plant

zeros, except for the one nonminimum phase zero.

The closed loop system is 21th order made up of the 9th order compensator

and the 12th order full order plant model. The closed loop poles and transmission

zeros are as follows,

- 6.8919e-02

- 2.7549e--02

- 2.4912e-02

- 2.0959e-02

- 1.5277e-02

- 7.4999e-03

- 1.1002e-02

- 1.0231e-02

- 4.1474e-03

- 2.3795e-03

- 1.0849e-03

- 2.8364e-04

- 7.1382e-04

2.0416e-02i

& 5.9805e-03i

* 3.2040e-04i

* 7.4794e-04i

* 2.0308e-05i

Ai(Ad) =

3 @ - 1.0000e-06



- 5.6385e-04

- 5.0006e-06

- 5.0000e-06

zeros = 9 full order plant zeros (given in Appendix C)

6 compensator zeros

3.3.4 Design Evaluation

In this section, singular value plots and time simulation will be used to

determine if the design in section 3.3.3 meets the specifications that were set in

section 3.3.2. The full 12th order plant model and the compensator based on the

reduced order model are used to evaluate the design.

Figure 3.3.4.1 shows the reaction of the outputs and controls to steps in the

command inputs. The PSM command step is 2%, the LOAD command step 1%, and

that of the LEVEL 3%. From this Figure it can be seen that specifications (a), (b),

and (c) are met.

Specifications (d) and (e) can be verified from Figure 3.3.3.2 which shows the

maximum and minimum singular values of C(s) versus frequency. The singular

values of the weight 1/W3(s) are included in this Figure to illustrate the role of

weighting functions in shaping singular value loop shapes.

Figure 3.3.4.3 shows the minimum and maximum singular values of S(s) and



1/W 1(s) versus frequency, and from it the multivariable gain and phase margins

discussed in section 2.2.2, can be calculated with k = 1.228 to be,

GM > 5.39

GMI < 0.55

IPMI 48.05 deg

Figure 3.3.4.4 shows the minimum and maximum singular values of the loop

transfer function T(s) = G(s)K(s). The crossover frequency range is from 1.5e-3 to

6.0e-3 as dictated by the weighting function W1(s), which is about a decade below

the nonminimum phase zero. This zero does not seem to have a significant influence

on the performance of the control system, as would be expected.

The H controller meets the posed specifications with an 9th order

compensator, which is six states less than a 15th order compensator that would have

resulted from an H. design if the full order plant was used.



Figure 3.2.1.1 :Singular values and condition no. of the plant
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Figure 3.2.4.1 :Singular values of T(s) = G(s)K(s)
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Figure 3.2.4.2 :Singular values of C(s) and 1/W3
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Figure 3.2.4.3 :Singular values of S(s) and 1/W1
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Figure 3.2.4.5 :Singular values of Hylul(s)
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Figure 3.3.1.1 :Singular values and condition no. of the design pl1I I I I I 4 1 Irif I I fif ý .- 1. 1 1 !

10-3 10-2 10-1 100

condition number

10-3 10-2 10-1 100

frequency in rad/sec

-5 10-4

inn
IUU

50

0

-50

-inn

10

60

40

20

0
10

F

-5

-"'"--
`"' -" -"

L L L 1 IIILL ) i L L ILI1 L 1 L 1 ( (II



Figure 3.3.4.1 :Response to steps in command inputs
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CHAPTER 4

SENSITIVITY STUDIES

4.1 Introduction

In practical situations it is often not possible to determine plant parameters

very accurately when constructing a nominal plant model. If parametric

(structured) uncertainty is present, a compensator, which was designed based on a

nominal model, could behave in an undesirable fashion when implemented on the

real plant. In section 2.5.2 it was mentioned that the H. compensator basically

"inverts" the plant and substitutes some desirable dynamics in its place. As this

inversion process can be impeded by structured uncertainty, it is important to know

for which "size" of such uncertainty the controller will still perform adequately.

In this chapter a study is made of the sensitivity of eigenvalues and singular

values of a closed loop system to perturbations in the plant matrices, using tools

developed in Appendix D. These perturbations are intended to simulate structured

uncertainty in the plant.

4.2 Choice of Perturbation Matrices

A perturbation scheme described in this section, will be used to simulate

structured uncertainty. The choice of perturbation matrices should represent



realistic possible changes in the physical plant, given the constraints of the nominal

linear plant model. Although different plants will behave differently to the same

perturbation, it is convenient to study the effect of plant perturbations in a common

framework. One such framework is described below.

Let G(s) be the nominal plant, with a state space description of,

G(s) =

A compensator K(s) is designed based on this plant, and it is represented by,

K(s) =

The resulting closed loop system, with a configuration as shown in Figure 2.2.2.1,

has a state space description given by,

C(s) =

with

Acl = _BkCpAd 10
BpCk

Ak - BkDpCk
I

I

I



Bcl = Bk
and

Cel = [ c I DpCk]

Now, suppose that the A matrix of the real plant is given by,

Ar = Ap + dAp

The real closed loop system is then given by,

Acl + dAd Bl 1
Cr(s) =

cl Dcl
with

dAd =

The effect of these changes dAd on the eigenvalues of Ad and the singular

values of C(s), will be computed in the next section, using the designs from Chapter

3.

4.3 Examples

In this section sensitivity studies will be performed on two fictitious plants

and the two closed loop systems described in Chapter 3, in order to determine how



these systems will behave with respect to stability and performance, in the face of

structured uncertainty.

For each plant a perturbation matrix (as discussed in section 4.2) will be

chosen using physical knowledge of the plant and the equations for dAi and dpi,

which were derived in Appendix D. The closed loop systems will then be perturbed,

and the effect of these perturbations on the closed loop eigenvalues and singular

values will be calculated.

In this section the conjecture will be made that lightly damped stable plant

modes give rise to closed loop systems, designed with the HM methodology, which

are very sensitive to structured uncertainty. In section 4.3.1.2 the closed loop

system for the advanced aircraft is shown to be very sensitive to structured

uncertainty. However, when the dutch roll mode damping is increased in section

4.3.1.3, this is no longer the case. Similarly, the closed loop system for the milling

circuit is shown to be relatively insensitive to structured uncertainty in section

4.3.2.2. In section 4.3.2.3 a lightly damped pole pair is "introduced" into the

reduced order milling circuit of section. 3.3.1, and the resulting closed loop system is

shown to be sensitive to structured uncertainty.

In section 4.3.3 two fictitious plants with unstable poles and zeros at the

same frequency location, are studied. The idea is to determine the effects of near

unstable pole zero cancellations on HC designs, and the sensitivity of such designs to

structured uncertainty.
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4.3.1 Advanced Fighter Aircraft

4.3.1.1 Choice of dAp

In section 3.2.1 it was

very lightly damped ((d -=

designed in section 3.2.3 will

determine the dutch roll

approximations of the aircraft

mentioned that the dutch roll mode of this aircraft is

0.021). It is thus conceivable that the controller

be sensitive to changes in stability derivatives which

mode. These derivatives can be found from

modes given in [17,19]. They are,

dutch roll mode:

roll mode:

spiral mode:

L•
2 (dd ;- (Yv + Nr) - -- (N -

dP

1 L g

Tr  N U0

L11 g L
--- Tr • (- Lr)

Tr U0 N'

(4.3.1.1)

g--- )
U0

(4.3.1.2)

(4.3.1.3)

with the characteristic polynomial of the open loop plant,

1 1 2
A(s) = (s + -)(s + -)(s 2 + 2(dwdS + Wd)

Ts Tr

The stability derivatives that have a significant effect on the dutch roll mode for
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this plant are L', N', Nr, and N1. As these derivatives depend on the particular

flight condition of the aircraft, it is important to know how much of a change in

these parameters will result in an unstable closed loop system.

Using the notation established in section 4.2, dAp can now be chosen to be,

0 0 0 0
L' 0 0 0

dA =e = P ;= E R (4.3.1.4)p N N oN 0
0 0 0 0

with

dAd =
=·[~ :]

The range of e, for which the closed loop system is stable, can be determined by

using this perturbation matrix dAd in equation (12) of Appendix D. This equation

can be written as follows, for a particular dAi of the closed loop system:

dAi = ii + iik (4.3.1.5)
k=1 Ai - Ak
kfi

with 7ij = w i

Equation 4.3.1.5 shows that the first term will dominate as e -, 0, but that the

second term can be large if two or more eigenvalues are close together i.e.



Equation (35) in Appendix D can be used to determine the effect of different

values of e on the closed loop frequency response.

4.3.1.2 Plant Perturbations

In this section, the plant will be perturbed using dAp given in section 4.3.1.1.

The idea is to study the effect of this perturbation on the plant model and then on

the closed loop system. A question that needs to be answered is: Does a study of

the perturbed plant model give an indication as to how sensitive the closed loop

system will be to structured uncertainty in the plant model?

Figure 4.3.1.1 shows what happens to the real part of the poles of the plant

model for values of e ranging form - 0.2 to 0.2 (see equation 4.3.1.4). The plant

becomes more unstable as e becomes increasingly negative.

Figure 4.3.1.2 shows the percentage error in the maximum singular value of

the plant model G(s) for e = - 0.05 and 0.05 . The maximum singular value of the

plant seems to be the most sensitive to changes in e near the frequency of the dutch

roll mode, which is determined by N according to equation 4.3.1.1. Note that a 5%

downward change in the stability derivatives given in equation 4.3.1.4 results in an

78% error in the maximum singular value of the plant at the dutch roll mode

frequency!

- -- __m

(Ai - Ak) -40-



Figure 4.3.1.3 shows what happens to the real part of four of the ten dosed

loop poles which are the closest to the jw - axis, for values of e ranging form - 0.2

to 0.2 (e as defined in equation 4.3.1.4). These four poles correspond to the poles of

the plant model and are chosen to study the stability of the closed loop system. The

figure shows that the closed loop poles at the mirror image of the spiral mode pole

and the roll mode pole do not change much as a function of e. However, the closed

loop poles corresponding to the dutch roll mode pole pair change significantly and

the closed loop system actually becomes unstable for e = - 0.059. Thus a 5.9%

downward change in the stability derivatives given in equation 4.3.1.4, results in an

unstable closed loop system. This is of particular concern since the stability

derivatives can most likely not be determined to better than within 5%.

Figure 4.3.1.4 shows the percentage error in the maximum singular value of

the closed loop system C(s) for e = - 0.05 and 0.05 . The maximum singular value

of the closed loop system seems to be the most sensitive to changes in e near the

frequency of the dutch roll mode, determined by N according to equation 4.3.1.1.

Note that a 5% downward change in the stability derivatives given in equation

4.3.1.4, results in an 400+% error in the maximum singular value of the plant at the

dutch roll mode frequency! Figure 4.3.1.5 shows the minimum and maximum

singular values of the closed loop system C(s) for e = - 0.05 and 0 .

From Figures 4.3.1.4 and 4.3.1.5 it would seem that the closed loop system

will be severely affected by disturbances with the same frequency as the dutch roll

mode. Figure 4.3.1.6 however shows that a step in the bank angle command results

in a closed loop response with e = - 0.05, which is almost exactly the same as when



e = 0. This is because the step function does not have significant frequency content

at the dutch roll mode frequency. Figure 4.3.1.7 shows that the closed loop system

goes unstable for e = - 0.1.

4.3.1.3 Plant Perturbations with Increased Dutch Roll Damping

From the previous section it is evident that the H controller design for the

advanced fighter aircraft is very sensitive to plant structured uncertainty. This

seems to be largely due to the lightly damped dutch roll mode. The aim of this

section is to demonstrate that the lightly damped mode is indeed the culprit. The

damping ratio of the dutch roll mode will thus be increased "artificially", and an HM

compensator will be designed for this "new" plant. The plant perturbations done in

section 4.3.1.2 will then be repeated and, hopefully, the "new" Hc controller design

will be less sensitive to structured uncertainty.

4.3.1.3.1 The "New" Plant and "New" Compensator

The damping of the dutch roll mode can be increased by using the matrix

decomposition given in Appendix A, Theorem 1, i.e. A = V A W. A is a diagonal

matrix with the eigenvalues of the A matrix along its diagonal. The columns of V

are made up of the right eigenvectors of A and W = V- 1.

The real parts of the dutch roll pole pair are multiplied by a factor of 10.3 in

the matrix A to give a damping ratio of Cd = 0.2114, resulting in a new diagonal

matrix conveniently called Anew. The plant poles associated with the roll and the
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spiral modes remain unchanged. The new A matrix, Anew is calculated as follows,

Anew = V AnewW

The B, C, and D matrices of the plant were left unchanged.

An H. compensator was designed for this plant using the same weighting

functions and ymin given in section 3.2. As the design documentation is similar to

what was given in Chapter 3, it will not be repeated here.

4.3.1.3.2 "New" Plant Perturbations

The "new" plant is perturbed using the same dAp that was used in section

4.3.1.2. Figure 4.3.1.8 shows what happens to the real part of the poles of the

"new" plant model for values of E ranging form - 0.2 to 0.2 . The plant becomes

more unstable as e becomes increasingly negative.

Figure 4.3.1.9 shows the percentage error in the maximum singular value of

the "new" plant model Gnew(s) for e = - 0.05 and 0.05 . It is evident from this

figure that the damping ratio of the dutch roll mode has been increased

significantly. The percentage error in the maximum singular value of Gnew(s) at

the dutch roll mode frequency is now only 5%, instead of 78% as Figure 4.3.1.2 had

shown.



Figure 4.3.1.10 shows what happens to the real part of the "new" plant poles

as part of the dosed loop poles, for values of c ranging form - 0.2 to 0.2 . These

four poles are the closest to the jw - axis and are thus chosen to study the stability

of the closed loop system. The figure shows that the pole at the mirror image of the

spiral mode pole and the roll mode do not change much as a function of e. The

"new" dutch roll mode pole pair changes significantly, as was the case in Figure

4.3.1.3, with the difference being that the dosed loop system now only becomes

unstable when e reaches - 0.43. Thus it takes a 43% downward change in the

stability derivatives given in equation 4.3.1.4, to result in an unstable closed loop

system, which is a significant improvement over results shown in Figure 4.3.1.3.

Figure 4.3.1.11 shows the singular values of the "new" closed loop system

Cnew(s ) for e = - 0.1 and 0. The improvement over Figure 4.3.1.5 is evident.

4.3.2 Milling Circuit

4.3.2.1 Choice of dAp

As far as the milling circuit is concerned, there does not seem to be a specific

perturbation matrix to which the controller designed in section 3.3.3, will be

particularly sensitive. dAp is thus chosen to be,

dAp eA ;e eR (4.3.2.1)
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4.3.2.2 Plant Perturbations

The milling circuit given in Appendix C, will be perturbed as described in

section 4.2, using dAp given in section 4.3.2.1. The effect of this perturbation on

the 12th order plant and the 21th order closed loop system will be studied.

Figures 4.3.2.1 and 4.3.2.2 show what happens to the real part of the plant

poles (1 - 7 and 8 - 12 respectively), as e changes form 0.2 to - 0.2.

Figure 4.3.2.3 shows the percentage error in the maximum

the plant model G(s) versus frequency, for e = - 0.1 and 0.05.

singular value of G(s) is clearly not very sensitive to this

perturbation.

singular value of

The maximum

particular plant

Figure 4.3.2.4 shows the singular values of the closed loop system C(s) for

E = - 0.2 and 0. Note that a 20% downward change in the elements of the plant A

matrix does not have a significant effect on the singular values of the closed loop

system. In fact the closed loop system remains stable for e > - 0.61.

4.3.2.3 Plant Perturbations with a Lightly Damped Mode

A lightly damped version of the reduced order milling circuit model of

section 3.3.1 is used here to show how sensitive such models are to structured

uncertainty. The model is 6th order with one complex conjugate pole pair which

has a natural frequency wn = 0.019 and a damping ratio of Cd = 0.98. Using the
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same method as described in section 4.3.1.3.1, the pole pair is changed to,

- 3.4963e-04 i 7.4962e-03i

which results in wn = 0.0075 and Cd = 0.047. The other poles are left intact.

An HO compensator was designed for this "new" plant Gnew(s), using the

weighting functions and 7min of section 3.3.3, and the resulting closed loop system

Cnew(s ) will be used for perturbation studies. The perturbation matrix has the

same structure as given in equation 4.3.2.1, where Ap is now the "new" A matrix of

the plant.

Figure 4.3.2.5 shows the percentage error in the maximum singular value of

Gnew(s) for e = - 0.05 and 0.05. The peak at the approximate value of Wn shows

that this plant is now very sensitive to structured uncertainty, when compared to

Figure 4.3.2.3.

Figure 4.3.2.6 shows the singular values of the closed loop system Cnew(s) as

a function of frequency for e = - 0.05 and 0. It is clear that the closed loop system

is severely affected by only a 5% downward change in the elements of Ap. In fact

Cnew(s ) actually goes unstable for e - 0.068 ,i.e. a 6.8% downward change in the

elements of Ap results in an unstable closed loop system!
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4.3.3 Fictitious Plants with Unstable Poles and Zeros

Two fictitious plants were created to show the effects of approximate

unstable pole zero cancellations on HI designs and their state space descriptions are

given in Appendix E. Both plants have an unstable pole and a transmission zero at

the same location s = 1. The directions of this pole and zero are orthogonal to each

other in the case of plant I, and nearly in the same direction in the case of plant II.

It is well known from [20] that such systems have inherent limitations with respect

to achievable performance, independent of the design method used.

The directions of the pole (vpl) and zero (vzl) at s = 1 for plant I are,

0
= 4.7450e-01]

1.0000e+00
v = [1.00)00e+00

These directions are orthogonal to each other so that this does not represent a pole

zero cancellation, despite the fact that the pole and zero have the same location.

The directions of the pole (vp2) and zero (vz 2) at s = 1 for plant II are,

1.0000e+00
v = 4.7450e-04

Vp2 1.0000e-03
Vz2 = [

These vectors are approximately in the same direction,

near pole zero cancellation.

1.0000e+0000
so that this does represent a



H. designs were carried out for both plants and the weights used are shown

in Appendix E. As expected, the nominal design for plant I gives much better

results than the one for plant II as indicated by ymin and IISfic(S)ll" (infinity norm

of the sensitivity transfer function matrix of the fictitious plant and its

compensator) of the two plants. For plant I, rain = 2.7 and IISfic(S)l. = 2.15, and

for plant II, rmin = 750 and IISfic(S)jII = 527. The large value of yrmin for plant II

is expected due to the inherent limitations of such designs [20].

These plants were perturbed to determine how sensitive H. controllers

designed for these plants are to structured uncertainty. For plant I, its A matrix

multiplied by e, was used as the perturbation matrix dAp. Figure 4.3.3.1 shows the

singular values of the closed loop system Cficl(S) for values of e = 0 and - 0.36.

The closed loop system actually goes unstable for E = - 0.37.

For plant II, the following perturbation matrix dAp was used,

000
.1 00

This particular dAp was chosen because it changes the direction of the pole at s = 1,

for very small values of e. Figure 4.3.3.2 shows the singular values of the closed

loop system Cfic2(s) for values of e = 0 and - 0.008. The closed loop system

actually goes unstable for e = - 0.009. As expected, the H. controller for plant II is

very sensitive to structured uncertainty, particularly if this uncertainty results in a

pole zero cancellation.



4.4 Conclusions

The results shown in section 4.3.1.2 indicate that the nominal H controller

designed for the aircraft in Chapter 3, is totally inadequate when it comes to dealing

with plant structured uncertainty. Note that singular value plots prove to be

invaluable in detecting this inadequacy which cannot be seen from the time

simulation in Figure 4.3.1.6.

When the damping of the dutch roll mode is increased significantly in section

4.3.1.3, the HM controller designed for this "new" plant is shown to be reasonably

insensitive to plant structured uncertainty. Some practical way should be found to

implement the "artificial" increase in the damping ratio of the lightly damped pole

pair. This will be addressed in Chapter 5 where several ways of "desensitizing" a

lightly damped plant to structured uncertainty, will be presented.

In section 4.3.2.2 it was shown that the H controller designed for the milling

circuit in Chapter 3, is reasonably robust to structured uncertainty. However, when

a lightly damped pole pair is "artificially" introduced into the milling circuit model

in section 4.3.2.3, the resulting closed loop system is very sensitive to structured

uncertainty, particularly at the natural frequency wd of this lightly damped mode.

Results shown in section 4.3.3 agree with the intuitively obvious, i.e. that

plants with near unstable pole zero cancellations are sensitive to structured

uncertainty and difficult to control. The fact that the controller designed for plant I

amplifies disturbances is predicted by [20]. The poor closed loop singular value
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shapes for plant II are due to the approximate pole zero cancellation that occurs.

This design is also extremely sensitive to structured uncertainty. The direction and

location of the nonminimum phase zero could possibly be changed by relocating the

actuators and sensors of the plant. The plant should then be easier to control and

less sensitive to structured uncertainty.

In section 4.3.1.2 the following question was asked: Does a study of the

perturbed plant model give an indication as to how sensitive the closed loop system

will be to structured uncertainty in the plant model? From the figures presented

here, e.g. Figures 4.3.1.2, 4.3.1.9, 4.3.2.3 and 4.3.2.5, the answer would seem to be a

definite yes. Large "peaks" with steep slopes (corresponding to lightly damped pole

pairs) in the plots of maximum plant singular value error versus frequency, seems to

indicate that the corresponding HM closed loop system will be extremely sensitive to

structured uncertainty.

From the results shown in this chapter one could conclude that the designer

should do the following before an Hc design is attempted:

calculate the poles and zeros plus their direction, of the plant model

and look for approximate unstable pole zero cancellations.

Plot the error in the maximum singular value of the plant, when the

plant is perturbed with a well chosen "practical" perturbation, and

look for large "peaks" with steep slopes in these plots.

If there are approximate pole zero cancellations in the plant model and/or large



"peaks" with steep slopes in the plot of the maximum singular value error, the plant

should be "robustified" by using methods described in Chapter 5, before an H

design is attempted.

From the evidence presented in sections 4.3.1.2 and 4.3.1.3, and sections

4.3.2.2 and 4.3.2.3, it would seem fair to say that the HC methodology should be

applied to plants with lightly damped pole pairs as is, only if the plant, and, in

particular, the resonant frequencies of the lightly damped pole pairs, is known

exactly, which is hardly ever the case. This and any other linear controller design

method e.g. LQG/LTR, which cancels the stable part of the plant dynamics -only

approximately in real applications-, will have similar problems in dealing with

structured uncertainty in the parameters of plants with lightly damped modes.

Approximate unstable pole zero cancellations are difficult to deal with, no matter

which design method is used.
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Figure 4.3.1.2 :% error in the maximum singular value of G(s)
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Figure 4.3.1.4 :% error in the maximum singular value of rc(t
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Figure 4.3.1.5 :Singular values of C(s)
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1.5 Figure 4.3.1.6 :Response to unit step in bank angle command (eps = -. 05)
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Figure 4.3.1.9 :% error in the maximum singular value of Gnew(s)
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Figure 4.3.1.10 :eps vs. real part of "new" plant poles in Cnew(s)
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Figure 4.3.1.11 :Singular values of Cnew(s)
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Figure 4.3.2.1 :eps vs. real part of plant Doles (1
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Figure 4.3.2.3 :% error in the maximum singular vari,1 nf (rad
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Figure 4.3.2.4 :Singular values of C(s)
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Figure 4.3.2.5 :% error in the maximum singular value of Gnew(s)
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Figure 4.3.3.1 :Singular values of Cficl(s) for eps = 0 and -. 36
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Figure 4.3.3.2 :Singular values of Cfic2(s) for eps = 0 and -. 008
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CHAPTER 5

DESENSITIZING H DESIGNS TO STRUCTURED UNCERTAINTY

5.1 Introduction

In Chapter 4 it was shown that HW controller designs for plants with lightly

damped poles are very sensitive to plant structured uncertainty. It was also shown

that, by increasing the damping ratio of these lightly damped poles "artificially",

the resulting closed loop system can be made relatively insensitive to this type of

uncertainty.

This chapter focuses on practical ways of increasing the damping ratio of

lightly damped poles of the advanced fighter aircraft, called inner loop

compensation. An "inside loop" is closed around the plant to increase the damping

of the lightly damped poles. The "new" plant with increased damping is

incorporated into the augmented plant P(s) described in Chapter 2, for which an H

compensator is then designed.

In section 5.3 a classical compensator designed for the aircraft described in

section 3.2.1, is compared to an inner loop compensated H controller with respect

to performance and robustness. As is well known, classical design methods utilize

loop feedback to increase the damping ratio of lightly damped poles, and are

traditionally used to design lateral-directional flight control systems for fighter
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aircraft.

5.2 Inner Loop Compensation

The type of inner loop compensation used to robustify a particular design,

depends on the physics of the problem and the amount of states that are available

for measurement. When all plant states can be measured, the control system

designer has the freedom to place all the plant poles and to exercise some control

over the eigenvectors, using full state feedback eigenstructure assignment ideas [5].

This method will be used in section 5.2.1 to alter the eigenstructure of the aircraft.

If all the plant states are not available for measurement or, if only partial state

feedback is needed to robustify the design, the method described in section 5.2.2 can

be used to increase the damping of the dutch roll mode of the aircraft.

5.2.1 Full State Feedback Inner Loop

In this section a new design plant model for the advanced fighter aircraft will

be constructed. In order for this new model to be less sensitive to structured

uncertainty, the damping ratio of the lightly damped dutch roll mode needs to be

increased. The plant model is controllable and all the states are assumed available

for measurement, so that full state feedback pole placement techniques can be

applied to achieve an increase in damping. This method was previously applied to

the design of pitch pointing flight control systems [21].
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The assumption that all the states of the advanced fighter aircraft are

available for measurement is, strictly speaking, only valid under test flight

conditions. Normally, the sideslip angle # is not measured and measurements of

yaw and roll rates (rb and pb) are provided by yaw and roll rate gyros. The bank

angle (0) measurement is provided by a vertical gyro. Inner loop compensation can

be successfully applied to the aircraft without the need for additional sensors, as

shown in section 5.2.2. For plants in general, additional sensors may be needed to

accommodate this type of compensation.

5.2.1.1 Inner Loop Design

Following the notation used in previous chapters, let the open loop plant

dynamics be described by,

xp(t) = Apxp(t) + Bpup(t)

Now define the following full state feedback law,

uP(t) = - G xp(t) + u2(t)

with u2 (t) as shown in Figure 2.3.1. The closed loop dynamics are,

xp(t) = [Ap - BpG] xp(t) + BpU2 (t)
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The freedom exists to place all four of the plant poles and to retain two out

of the four entries of each eigenvector of Ap. G was chosen such that the dominant

eigenvector values remain the same, i.e. Ap and [Ap - BpG] have approximately the

same eigenvectors. The dutch roll mode pole pair was changed to be the same as

the "artificial" pole pair that was chosen in section 4.3.1.3.1 (Cd = .2114). The

other two poles were left as is. In choosing G this way, the matrix [Ap - BpG] is as

close to the matrix Anew of section 4.3.1.3.1 as possible. The numerical values of

the full state feedback gain matrix G and the old and new eigenvalues and

eigenvectors, are given in Appendix B, section B.6.

Figure 5.2.1 shows the singular values of Gnew(s) and its condition number

versus frequency. Comparing Figure 5.2.1 to Figure 3.2.1.1, it is evident that the

damping ratio of the dutch roll mode has been increased significantly.

The zeros of the plant remain at their open loop locations, as full state

feedback does not change the location of these zeros. They can, however, become

uncontrollable or unobservable if pole zero cancellations result from pole placement.

The state space description of the new plant with increased damping, is given

by,
Ap - Bp G Bp

Gnew() C D

In choosing the full state feedback gain matrix G, the objective was not to

achieve "good" performance or even nominal stability but, rather, to make the final
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H. controller design less sensitive to structured uncertainty. The pole placement

technique is used to increase the damping ratio of the dutch roll mode and to

maintain the directional properties of the matrix Ap. Performance and stability

issues are addressed by the HM compensator.

5.2.1.2 H. Compensator Design and Evaluation

In this section an H compensator will be designed for the new plant

Gnew(s) described in section 5.2.1.1. The design specifications and weighting

functions used are as given in section 3.2.2.

Using the - - iteration procedure described in section 2.5.1, the minimum

value of -, which does not give rise to excessive control action, was found to be

'7min = 1.3. The poles and transmission zeros of the 6t h order compensator are,

Ai(Ak) = - 9.4829e+00 * 4.3262e+00i

- 3.5603e+01

- 6.6843e+00

2 0 - 1.0000e-04

zeros = - 6.1480e-01 * 2.8437e+00i (damped dutch roll mode)

- 4.2730e-01 (roll subsidence mode)

- 4.8717e-01 (mirror image of spiral

mode)
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Figures 5.2.2, 5.2.3 and 5.2.4 show the singular values of the loop Tnew(s),

sensitivity Snew(s), and closed loop Cnew(s) transfer function matrices respectively.

From Figure 5.2.3, k can be found to be k = 1.231, according to equation 2.2.2.1.

This gives the controller the following gain and phase margins in each loop

simultaneously and independently,

GMT _ 5.33

GMI 5 0.55

PM > 47.93 deg

It would seem that

performance characteristics.

new H controller design be

designed in Chapter 3? This

the controller designed here exhibits good nominal

The question that remains to be asked is : Will the

"less" sensitive to structured uncertainty than the one

question will be answered in the next section.

5.2.1.3 Sensitivity Studies

In this section perturbation studies will be performed in the same manner as

was described in section 4.3. The perturbation matrix dAp used here is the one

described in section 4.3.1.1, and the A matrix of the "true" plant, including the

structured uncertainty is given by,

Anewt = Ap + dAp- BpG

where G is the full state feedback gain matrix.
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Figure 5.2.5 shows the percentage error in the maximum singular value of the

new plant Gnew(s), for e = - 0.05 and 0.05 (see state space description in section

5.2). This figure is almost exactly the same as Figure 4.3.1.9, which portrays the

error in the maximum singular value of the "artificial" plant. The effect of the

dutch roll mode damping is evident when Figure 5.2.5 is compared to Figure 4.3.1.2.

Figure 5.2.6 shows what happens to the real part of the four closed loop poles

which are at the same location as the poles of Gnew(s), for values of e ranging from

- 0.2 to 0.2. Again, the damped dutch roll mode pole pair changes significantly

-compare with Figure 4.3.1.10-, but the closed loop system goes unstable only when

e reaches - 0.51. Thus, the closed loop system remains stable even when the

stability derivatives in equation 4.3.1.4 are simultaneously reduced by 50%.

Figure 5.2.7 shows the singular values of Cnew(s) for e = - 0.1 and 0, and

the improvement over Figure 4.3.1.5 is evident.

5.2.2 One State Feedback Inner Loop

In this section a new design plant model for the advanced fighter aircraft will

be constructed. In the design of classical flight control systems (FCS), it is

standard practice [17] to feed back the yaw rate measurement (rs) to the rudder (6r)

in order to increase the damping of the dutch roll mode. This will be done here and

the feedback will consist of a constant gain represented as a "sparse" matrix G

shown in equation 5.2.1.
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5.2.2.1 Inner Loop Design

Following the notation established before, let the open loop plant dynamics

be described by:

xp(t) = Apxp(t) + BpuP(t)

Now define the following feedback law:

up(t) = - G xp(t) + u2 (t)

with u2(t) as shown in Figure 2.3.1. The inner loop closed loop dynamics are:

xp(t) = [Ap - BpG] xp(t) + Bpu2(t)

Consequently, the state space description of the new plant with increased

damping, is given by:

Gnew(s) =

App -BG

P

Bp

D
P.

The feedback gain matrix G, is given by:

00 0 0o
G =

0 0 - g23 0
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where g23 will determine the damping increase of the dutch roll mode.

Figure 5.2.8 shows the singular values of Gnew(s) and its condition number

versus frequency, for g23 = 0.4 which corresponds to a dutch roll mode damping

ratio of 0.206. Comparing Figure 5.2.8 to Figure 3.2.1.1, it is evident that the

damping ratio of the dutch roll mode has been increased significantly.

5.2.2.2 H Compensator Design and Design Evaluation

In this section an H. compensator will be designed for the plant Gnew(s)

described in section 5.2.2.1 with g23 = 0.4. The design specifications and weighting

functions used are as given in section 3.2.2.

Using the y - iteration procedure described in section 2.5.1, the minimum

value of 7, which does not give rise to excessive control action, was found to be

fmin = 1.3. The poles and transmission zeros of the 6 th order compensator are,

Ai(Ak) = - 9.2811e+00 * 4.2951e+00i

- 3.5637e+01

- 6.6046e+00

2 0 - 1.0000e-04

zeros = - 5.7158e-01 * 2.7102e+00i - new plant poles

- 2.1592e-01 * 2.0054e-01i
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Figures 5.2.9, 5.2.10 and 5.2.11 show the singular values of the loop Tnew(s),
sensitivity Snew(s), and closed loop Cnew(s) transfer function matrices respectively.

The figures presented here show that the controller exhibits good nominal

performance characteristics. Again the question that remains to be asked is : Will

the new HO controller design be "less" sensitive to structured uncertainty than the

one designed in Chapter 3? This question will be answered in the next section.

5.2.2.3 Sensitivity Studies

In this section perturbation studies will be performed in the same manner as

was described in section 4.3. The perturbation matrix dAp used here is the one

described in section 4.3.1.1, and the A matrix of the inner loop modified actual

plant is given by:

Anewt = Ap + dAp - B G

where G is the feedback gain matrix of section 5.2.2.1.

Figure 5.2.12 shows the percentage error in the maximum singular value of

the new plant Gnew(s ) for e = - 0.05. The effect of the dutch roll mode damping is

evident when Figure 5.2.12 is compared to Figure 4.3.1.2. The percentage error at

low frequencies -below the dutch roll mode frequency- has also decreased, but this

is not a factor in determining the robustness of the H controller to structured

uncertainty, as the controller for the full state feedback inner loop compensated
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plant -see section 5.2.1.3-, indicates.

The closed loop system goes unstable only when e reaches - 0.46. Thus, the

closed loop system remains stable even when the stability derivatives in equation

4.3.1.4 are simultaneously reduced by 46%.

Figure 5.2.13 shows the singular values of Cnew(s) for e = - 0.1 and 0, and

the improvement over Figure 4.3.1.5 is evident.

The HW controller becomes more robust as g23 is increased. Column 2 of

Table 5.2 shows how the damping ratio ((d) of the dutch roll mode changes for

different values of g23. Column 3 shows for which value of E the closed loop system

Cnew(S) will go unstable.

Table 5.2 seems to indicate that g23 should be made as large as possible to

achieve a robust dosed loop design. This can be misleading; as g23 increases the

other two poles of [Ap - BpG] become lightly damped for values greater than 1.6.

Hence, g23 = 1.1 is a good choice for this particular plant, i.e. the closed loop

system will remain stable even if the stability derivatives in dAp are reduced by

106% (- e x 100). g23 was chosen to be 0.4 in section 5.2.2.1, such that the

resulting H. design could be compared to the one designed for the "artificial" plant

of section 4.3.1.3.1 ((d z 0.21).
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g2 3

0

0.01

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Cd
0.0210

0.0255

0.0434

0.0661

0.1119

0.1587

0.2064

0.2550

0.3047

0.3550

0.4070

0.4596

0.5128

0.5665

0.6204

0.6740

0.7269

0.7787

0.8292

0.8780

-- E

0.060

0.075

0.12

0.18

0.28

0.38

0.46

0.55

0.64

0.72

0.80

0.88

0.97

1.06

1.15

1.24

1.35

1.46

1.60

1.25
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5.3 Other Possible Desensitizing Measures

5.3.1 Classical Compensator

Classical design methods are traditionally used to design lateral-directional

flight control systems (FCS) for fighter aircraft [17]. These designs, although

somewhat ad hoc in a multivariable sense, are popular because of their robustness to

structured uncertainty, i.e. uncertainty in the relevant stability derivatives, in the

plant model. The aim of the classical compensator is to meet specifications similar

to those presented in section 3.2.2 and, in particular, feedback is used to increase

the damping of the dutch roll mode in order to make the closed loop dutch roll

characteristics robust to structured uncertainty.

5.3.1.1 Compensator Design and Evaluation

A classical compensator designed for the aircraft [17] is shown in Figure

5.3.1. The plant model is controllable and three of the states (p,, rs and 0s ) can be

measured.

The transfer function matrix for a (3 x 2) classical compensator is given by,

6 -Pb

S= K(s) c - bLr -r
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with 0c the bank angle command and

.3(.2s + 1) .66
.04s + 1

0 0

0
-. 8s

s + 1.5

Kc(s) is 2nd order and its

B.7.

state space description is given in Appendix B, section

Figure 5.3.1 : Plant and Classical Compensator

5.3.1.2 Comparison - Classical versus the Inner Loop Compensated H Controller

In this section, a comparison will be made between the classical controller

designed in section 5.3.1.1, and the inner loop compensated H controller of section

5.2.1.2. The classically compensated system goes unstable with e = - 1.01 (see

equation 4.3.1.4). In order to make a fair comparison, g23 = 1.1 is chosen from

Table 5.2, the value for which the H controller with inner loop compensation goescvD
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unstable for e = -1.06.

Figure 5.3.2 shows the Bode plot of the closed loop transfer function between

the bank angle command c and the bank angle Ob, and the singular values of the

HO closed loop system Cnew(s ) . The two systems have more or less the same

bandwidth.

Figure 5.3.3 shows the response of the classical system to a step in .c"

Figure 5.3.4 shows the response of the HO controller to the same command. The

step response of the classical system is slightly oscillatory and is also somewhat

slower than the step response of the H controller.

Figure 5.3.5 shows the response of the classical and HM system to a rapidly

changing bank angle command with e = 0. Figure 5.3.7 shows the response of the

two systems to the same command with e = - 0.5 and gives an indication of the

performance robustness of the two systems. The systems are perturbed using the

perturbation matrix given in equation 4.3.1.4 with e = - 0.5, i.e. the relevant

stability derivatives are reduced by 50%. When unperturbed, both controllers do a

reasonable job of following the command, but the classical system overshoots and

lags the HO controller's response by a small amount. The HO controller follows the

shape of the command better than the classical system. Both systems seem to

handle the perturbation well, with the H controller doing slightly better than the

classical system.
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The response of the controls that correspond to Figures 5.3.5 and 5.3.7, are

shown in Figures 5.3.6 and 5.3.8 respectively. The HO controller seems to use the

controls more efficiently than the classical compensator. The controls commanded

by the classical compensator shows a significantly increase when the plant is

perturbed, whereas the controls used by the HW controller are approximately the

same.

Figure 5.3.9 shows the response of the classical and HM system to a sinusoidal bank

angle command with e = 0. Figure 5.3.11 shows the response of the two systems to

the same command with e = - 0.5. The corresponding controls are shown in

Figures 5.3.10 and 5.3.12 respectively. The frequency of the sinusoidal command

corresponds to the dutch roll mode frequency (w = 2.83 rad/sec). Both controllers

do a reasonable job of following the command, but the classically compensated

system response lags the H compensated system response and the command by a

significant amount. The outputs of both controllers are attenuated, as one would

conclude by looking at Figure 5.3.2.

5.3.2 Frequency Shifting

The basic idea with frequency shifting is to regard the lightly damped poles

as unstable poles, by shifting the jw-axis in the s-plane to the left. The H. design

methodology then "thinks" that the lightly damped poles are unstable and, as a

result, the compensator will not try to cancel these poles with zeros. This method is

equivalent to having an exponential weight in the cost function of a Linear

Quadratic -LQ- regulator [22], and is illustrated in Figure 5.3.13.
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new jw - axis -

Figure 5.3.13 : Frequency Shifting

This method in conjunction with inner loop compensation should result in a

controller which is very robust, but which performs relatively poorly due to the fact

that the damping ratios of lightly damped pole pairs are not increased. There is,

thus, a trade off between robustness and performance.

5.4 Conclusions

Chapter 4 stressed the need for increasing the damping ratio of the lightly

damped dutch roll mode of the advanced aircraft before designing an H

compensator for it, such that the resulting dosed loop system will be robust to

structured uncertainty.

In this chapter some practical methods were presented to achieve this

increase in damping ratio. The method presented in section 5.2.2, where only one

state is fed back in an inner loop, seems to work well for this particular plant. The

increase in damping is achieved with a gain matrix G, without increasing the

dimensionality of the design plant model. The HW controller designed in section

5.2.2.2 for this design plant model is reasonably insensitive to structured

uncertainty, as was shown in section 5.2.2.3.
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In section 5.3 a traditional classical compensator was designed for the

advanced aircraft. A comparison between this design and the H controller of

section 5.2.2 showed that the H. design can be made to perform at least as well as

the classical design as far as robustness to structured uncertainty is concerned. The

performance of the H. controller, however, is slightly better than that of the

classical controller -especially in the upper part of the controller bandwidth-, which

could make all the difference in combat situations.

The classical compensator has in its favor the fact that it is of low order

-two states-, and that it performs adequately under most circumstances. However,

the design of such a compensator is more of an art than a science, as SISO

techniques are used to design a compensator for a multivariable plant. As these

designs are somewhat ad hoc in a multivariable sense, they can be difficult to

reproduce for a different but similar plant. Usually, time consuming parameter

"tuning" is undertaken to get a satisfactory design.

The H. compensator, on the other hand, is more complex -six states- and

performs slightly better than the classical compensator. The big advantage that the

HM design method has over the classical design method, is that it has a strong

theoretical base and that it is a truly multivariable design technique. With the

complexity of the HM design also comes design flexibility. Frequency specifications

are "built" into the design method, and nominal stability is guaranteed. The H

design methodology is easily reproducible, i.e. it is applied the same way to all

FDLTI plants and the tediousness of a lengthy trial and error design procedure, as

in classical control, is avoided. However, "robustifying" steps should be taken when
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required as was discussed in this chapter.

The frequency shifting technique does not address the question of increased

damping. The only guarantee that it provides is that the lightly damped pole pair

of the plant will not be canceled by H compensator zeros. This technique,

however, in conjunction with inner loop compensation could lead to very robust

designs, at the expense of very sluggish performance.



Figure 5.2.1 :Singular values and condition no. of Gnew(s)
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Figure 5.2.2 :Singular values of Tnew(s) = Gnew(s)Knew(s)
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Figure 5. 2.3 :Singular values of Snew(s)T ....7
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Figure 5.2.4 :Singular values of Cnew(s)
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Figure 5.2.5 :% error in the maximum sineular valuep f c,,,,.\0I*\
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Figure 5.2.7 :Singular values of Cnew(s)
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Figure 5.2.8 :Singular values and condition no. of Gnew(s)
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Figure 5.2.9 :Singular values of Tnew(s) = Gnew(s)Knew(s)
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Figure 5.2.10 :Singular values of Snew(s)
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Figure 5.2.11 :Singular values of Cnew(s)
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Figure 5.2.13 :Singular values of Cnew(s)
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Figure 5.3.2 :Closed loop frequency response of the 2 compensators
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Figure 5.3.5 :Command following capabilities of the 2 controllers
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Figure 5.3.7 :Command following capabilities of the 2 contre
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Figure 5.3.9 :Command following capabilities of the 2 controllers
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Figure 5.3.11 :Command following capabilities of the 2 controllers
1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

0 1 2 3 4 5

time/sec

6 7 8 9 10

145

I -

- I



of controls to command

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

time/sec

146

0.5

0

-0.5

0.5

-0.5

L

I



CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

In this thesis the H design methodology was applied to two "realistic"

plants, an advanced fighter aircraft and a milling circuit. It was shown that, while

the milling circuit closed loop system is robust to structured uncertainty, the

aircraft closed loop system is extremely sensitive to such uncertainty due to the very

lightly damped dutch roll mode of the plant. The reason for this is that the H

compensator cancels the lightly damped pole pair with zeros to make them

unobservable. When structured uncertainty is present, the lightly damped poles are

not canceled exactly and thus become observable, causing performance degradation

and, in addition, due to the fact that they are so close to the jw - axis, instability

can result for relatively small perturbations of the plant A matrix.

It was shown that H designs for plants with unstable poles and

nonminimum phase zeros, are reasonably insensitive to structured uncertainty,

unless there is an approximate unstable pole zero cancellation. In the latter case,

H. designs delivered very bad performance and were extremely sensitive to

structured uncertainty. A relocation of plant sensors and actuators is a possible

solution to this problem.
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It was shown that the control system designer can determine, before an

actual H. design is done, whether the resulting closed loop system will be sensitive

to structured uncertainty by studying the singular values of the design plant model.

A practical way of desensitizing HM designs to structured uncertainty, called

inner loop compensation, was given in Chapter 5. The idea is to close an inner loop

around the plant to increase the damping of lightly damped pole pairs. This inner

loop compensated plant acts as the new design plant model for which an H

compensator is then designed. Resulting designs were shown to be robust to

structured uncertainty.

A classical controller for the aircraft was compared to an HW controller with

inner loop compensation. Classical methods have traditionally been used for the

design of flight control systems for fighter aircraft, largely because such controllers

deliver adequate performance and are very robust to structured uncertainty. In this

thesis, it was shown that H controllers with inner loop compensation can be made

as robust to structured uncertainty as their classical counterparts, while delivering

slightly better performance. LQG/LTR controllers with inner loop compensation

should give similar results.

Furthermore, the HD design methodology was shown to be a very powerful

multivariable design technique. The ease with which frequency specifications can be

accommodated in the design procedure, and the fact that H. controllers can be

made robust to structured uncertainty, makes this design method a tool that every

control engineer should have in his/her toolbox.
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APPENDIX A

iPROPER WEIGHT W3(s) INTO THE PLANT G(s)

ppendix, the state space description of the transfer function

ill be derived. W3(s) is assumed to be an improper diagonal

Ld G(s) a strictly proper transfer function.

liminaries

Suppose that the n x n matrix A has n distinct

linearly independent eigenvectors vi . Now if vi make up the

V, the matrix A can be expressed in terms of V, a diagonal

follows,

A=VAW

W = V-1

Tins the left eigenvectors ( wi ) of A and the eigenvalues of A

e diagonal of A.

ee [13] page 190
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n TFrom (1) it is evident that A = E Aiviwi
i= 1

5 Theorem:

assumed to be nonsingular,

For the same matrix A as described in (1), where A is

the following equations hold,

ni= T

T A-'1 TiiwT
vi i i

Proof

that

8

From the definition of an eigenvector and an eigenvalue follows

A vi = Aivi

now multiply (8) from the right with wi and summing over i,

n T n T
A Eviwi = E Aiviw

i=1 i=1

9 =A

(9) follows from (4) and implies that (6) is true.

To prove (7), just multiply (8) from the left by A- 1 and from the right by wT.i
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A.2 The State Space Description Of W3(s) G(s)

The m x m transfer function G(s) can be expressed as

10 G(s) = C (sIn - A) - 1 B

with

A vi = Aiv i

T T
w i A = Aiw i

as described in section A.1. G(s) can also be written in a residue expansion form as

follows,

G(s) =
n Ri

i=I s - Ai

with
TC B

Ri =C viw iB

With W3(s)
=

mIk
, the product W3(s) G(s) becomes,

W3(s)
1 n

G(s)=--- E
k i=1 s - Ai

Applying partial fraction expansion to each term in the sum in (12) gives,
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1 n A.R
W3(s) G(s) = - E i + Rik i= s - Ai

1 rn Xv;wT n
-CII +E v wt IB
k Li=l s - Ai i=1 1

now letting results (7) and (6) from (5) act on the first and second summations of

(13) respectively, it follows that,

1
W3(s) G(s)=

k

1

k

The new C and D matrices of

shown in (15), are given by,

(CA

T
n vi'w

CA E B+CB]
i=1 s- Ai

(sIn -A) - 1 B + CB

the state space description for the transfer function

Cnew

Dnew

1
= -CA

= -CB
k

The A and B matrices of the plant stay

state space description of W3(s) G(s).

intact. This concludes the derivation of the
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APPENDIX B

AIRCRAFT EXAMPLE

In this appendix the aircraft's equations of motion are given in terms of the

flight condition and aircraft stability derivatives. Nomenclature used, is given in

section B.3. State space descriptions for the augmented plant and the H

compensator, are given in section B.4. Section B.5 contains a

controllability/observability study of the closed loop system of section 3.3.3.

Numerical data that relates to the full state feedback inner loop design of section

5.2.1.1 is given in section B.6. The state space description of the classical

compensator of section 5.3.1.1 is given in section B.7.

B.1 Flight Conditions

The flight condition used in this example is given by straight and level flight

at,

mach number M =0.6

altitude = 35,000 ft

true speed VTo = 584 fps

trim angle of attack ao = 12.4 deg (body axis)

flight path angle -o = 0 deg

load factor no = 1 g
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B.2 Equations Of Motion

The lateral equations of motion given here are for straight, wing level,

horizontal flight. The equations are expressed in arbitrary body fixed axis and

results in the following state space description.

x=Ax+Bu

y=Cx

with

x = (P, pr,, s)T

u = (6a, r)T
and = (b

and

A

g cos O0
YV sin ao -cos aO  V 0

v To
L' L' L 0

N' N' N' 0
S1 tan r

0 1 tan 0 0

*

y 6aY6 Y6r
L' L'La Lr

N' N'
a r

0 0

1000
10 0cos J
100 0
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With a0 = 0 = 0, and 0ob = 12.4 deg, the state space matrices for the stability

axis are given by,

-. 0868 0 -1 .055
-31.31 .1340 2.352 0

A = 7.971 -.0879 -.5890 0

0 1 0 0

0 .0179

6.569 6.251
B = .3064 -2.583

0 0

C = 0 0 0 1.024 1

100 0

B.3 Nomenclature

s stability axis

b body axis

0 side slip angle (deg)

p roll rate (deg/sec)

r yaw rate (deg/sec)

0 roll angle (deg)

' a  aileron deflection from trim (deg)

Ir rudder deflection from trim (deg)

Yv resultant aerodynamic force (1/sec)

L rolling moment



B.4 State Space Descriptions

Let the plant and weights have state space descriptions as

3.4.4 (section 3.4). The augmented plant can then be described as

ApwlC
BwlCp

given in equation

follows.

0

Awl

[B1 I B2] = P

Bwl -BwlDp

[-DwiCp C l

0 0

Cnew 0
-Cp 0

C2

D11  D12 2
D2 1 D2 2

Dwl

0

L
-DwlDp

Dw2

D new

-DPp

with Cnew and Dnew as derived in Appendix A.
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K(s) =

with
-6.8404e--01 -3.7683e-02 -8.8967e--01
-2.6972e+01 -4.1531e+01 4.2523e+00

1.0408e+02 4.0203e+00 -1.8219e+01
kl = -3.8345e-05 1.0000e+00 -2.3657e--08

0 0 0
0 0 0

-1.5726e--01 3.4197e-01 1.1150e+00
-2.3326e+02 3.7680e+02 4.9125e+01

2.3199e+01 -3.7342e+01 -1.7676e+02
k2  -9.7435e-03 1.2278e--08 4.0030e-08

0 -1.0000e--04 0
0 0 -1.0000e--04

Ak= [Akl Ak 2 ]

-3.9238e--05 -1.5801e-07
-4.6361e--05 -1.8670e-07
-5.1979e--04 -2.0932e--06

k -9.5161e--03 -3.8322e--05
1.0000e+00 0

0 1.0000e+00

C [ 3.2411e+01 -4.3393e+00 -5.5762e+00
k -3.3365e+01 -2.1052e+00 6.1638e+00

C r-2.4228e+01 3.9180e+01 -5.1795e+01 1
Ck2 L-1.1 856e+01 1.9104e+01 6.2288e+01

Ck = [Ckl Ck2]
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Dk= [000J

B.5 Controllability/Observability Study

An eigenstructure analysis [5] is done to determine if the closed loop system

of section 3.3.3 is observable and controllable. Let D be a vector containing the

poles of Acl with V and W as defined in Appendix A, theorem (1). D is given by,

D = D21

with

-3.5995e+01
-8.7283e+00

D1 = -6.3733e+00
-5.9686e-02 2.8437e+00i
-3.1521e+00 . 1.0167e+00i

-4.2730e--01
D2 = -3.0328e+00

---4.8718e--03

Note that rows 4, 5, and 8 of D represent the dosed loop poles which are at the

same location as the stable plant poles.

Let Bdl and Ccl be the B and C matrices of the closed loop system

respectively. To determine if the closed loop system is controllable and/or

observable, the absolute values of each entry of the matrices CdV and WBcl, will

be studied:
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abs(CdV) = [ Ob i Ob 2 ]

Ob [ 2.8446e-02 2.0192e-02 2.6290e-02 3.5998e-01 3.5998e-01

1 3.3951e-03 1.0938e-01 1.5232e-01 8.9704e-02 8.9704e-02

Obh [ 3.0915e-01 3.0915e-01 2.4492e-01 6.7429e-02 2.9568e-03 1

2 7.5553e-02 7.5553e-02 3.5771e-03 3.2928e-01 1.3169e-05

[Co]
abs(WBd) Co2 J

1.2470e+01
1.8144e+01

Co0 = 2.3993e+01
7.6802e--14
7.6396e-14

1.8479e+01
1.8479e+01

Co2 = 6.4726e--13
7.4854e+00
9.5437e--03

2.6467e+00
1.0590e+02
1.3166e+02
1.3160e--13
1.3149e--13

3.0589e+00
3.0589e+00
7.5298e-13
2.5053e+01
3.8432e-05

The closed loop system will be fully observable if the 2x10 matrix CdV has full

column rank. This is indeed the case. For the closed loop system to be fully

controllable the 10x2 matrix WBcl must have full row rank. This is not the case as

rows 4, 5, and 8 of this matrix have zero entries for all practical purposes. These

rows correspond to the closed loop poles which are at the same location as the stable

plant poles. The entries in row 10 of WBcl are relatively small which indicate that

the closed loop pole at the mirror image of the unstable open loop pole, is only

weakly controllable.
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B.6 Full State Feedback Eigenstructure Assignment

The gain matrix G of the full state feedback design described in section

5.2.1.1, is given by:

G 1.9444e-03 -2.1413e-03 -2.2787e-01 1.1344e-02

1.3075e-01 - 6.6904e-03 - 4.7757e-01 2.3292e-02

The full state inner loop closed loop A matrix is given by:

.- 8.9140e--02
[A-BG] = -3.2140e+01

p 8.3081e+00
L 0

1.1976e--04
1.8989e--1

-1.0453e--01
1.0000e+00

-9.9145e-01
6.8341e+00

-1.7527e+00
0

5.4583e-02
-2.2012e-01

5.6688e-02
0

The eigenvalues of Ap and [Ap - BpG] are given by:

[ Ai(A) I Ai(A p - BpG) ] =

-5.9686e-02 2.8437e+00i
-4.2730e-01

4.8718e-03

-6.1480e-01 * 2.8437e+00i
-4.2730e-01

4.9000e-03

The eigenvectors of Ap and [Ap - BpG] are given by:

-1.2902e--02 * 8.9337e-02i
1.0000e+00 2.5479e-17i

= -2.5410e--01 * 1.9778e-02i
[ -7.3778e-03 3.5150e-01i

-3.6213e--03
-4.2730e--01

5.3767e--02
1.0000e+00

4.1233e--03
4.8718e--03
5.4622e-02
1.0000e+00
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vi(Ap - BpG) =1-2.8497e-02
1.0000e+00

-2.5410e--01
-7.2632e--02

8.1972e-02i
1.8702e-17i
1.9778e-02i
3.3595e-01i

-3.6213e-03
-4.2730e--01

5.3767e--02
1.0000e+00

4.7895e-03
4.9000e-03
5.4600e-02
1.0000e+00

B.7 Classical Compensator State Space Description

The state space description of the classical compensator described in section

5.3.1.1, is given by,

K(s) =

with

Ak[ -1.5000e+00k = 0 -5000+
-2.5000e+01

0 0 -5.2144e-02
-7.2369e-01 0 0

0 4.1454e+01
-2.3013e+01 0

· D [ -1.5000e+00 6.6000e-01
k = 0 0

0 1
-8.0000ooooe-Ol1
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APPENDIX C

MILLING CIRCUIT EXAMPLE

In this appendix a transfer function mathematical model is given for a

typical milling circuit that processes gold bearing ore. The state space description

for the plant is derived in section C.2. Nomenclature used, and a short description

of how the plant operates, are given in section C.3. The plant need to be scaled to

reflect the relative importance of the inputs and outputs, and this is done in section

C.4. Plant model reduction is discussed in section C.5 and a state space description

for the augmented plant is given in section C.6.

C.1 The Transfer Function Mathematical Model

The transfer function model given here was derived from "step-tests" done

on an actual milling circuit. The G(s) of the plant is as follows,

y(s) = G(s) u(s)
with

[PSM LOAD LEVEL]T

[SFW SLF CFF]T
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and

g11(s) g12(s) g13(s)
G(s) = g21(s) g22(s) g23(s)

g31( s ) g32 (s) g33 (s)

0.105 e- 5 s

g 1 1(s) =
83s + 1

-0.082 e- 80 s

g12 (s) =
1766s + 1

-0.0575 e-460s

g13 (s) =
167s + 1

-0.0468 e- 14 0 s

g21(s)
1864s + 1

0.0001217
g22(s) =

0.1148 e-120s
g23 (s) =

1981s + 1

.00253

g31(s) = S

g3 2 (s) = 0
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-. 00299
g3 3 (s) =

S

A first order Pade approximation was used for the time delays, using the following
equation,

7S

1- 2--75
e

7s
1+

2

Using this Pade approximation, G(s) can be written in partial fraction expansion
form as,

2.8 9 34e-03 - 4 .15 84e-03
gll(s) = +s + 1/83 s + 2/65

- 4 .8 585e-05 9.5 017e-05
g12 (s) = +s + 1/1766 s + 2/80

2. 1697e-03 -1.8254e-03
gl3(s) = +

s + 1/167 s + 2/460

-2. 7067e-05 5.21 74e-05
g21 (s) = +s + 1/1864 s + 2/140

1.2170e-04
g2 2(s) =

6.15 71e-05 -1.19 52e-04
g23(s) = +

s + 1/1981 s + 2/120
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2.5300e-03
g31(s) =

g32(s) = 0

-2.9900e-03
g33(s) =

C.2 Deriving The State Space Description

The state space description of the G(s) given in section C.1, is derived using

Gilbert's diagonal realization [25]. Let the p x m plant G(s) be written in a residue

expansion form as in section A.2, with r distinct roots and a denominator

polynomial,

r
d(s)= II (s-Ai) ;Ai #A

i=1

r Ri
G(s) = E

i=1 s - A

with

Ri = lim (s - Ai) G(s)
Ss-4 A

pi = rank(Ri)
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and Ri= CiBi
Ci - p x pi

Bi - Pixm

The state space description is then given by,

A = block diagonal { Ai pi , i = 1, ..., r}

T T[T
B =[B T),..., Br

C =[ Cl, ... , Cr I

with G(s) = C (sI - A) - 1 B

The minimum order of this or any other state space realization is given by,

r
n= E pii=l

The state space description

fraction expansion form has n = 12,

with

for the milling circuit G(s) as given in partial

and can now be found to be,

dd = dd l1
dd2

167

A = diag { dd }
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1.0000e+00
1.0000e+00

0
1 0

0
0

1.0000e+00
1.0000e+00

0
2 0

2.5300e--03
-8.440 le--01

0
0

1.0000e+00
1.0000e+00

0
0

0
0

1.0000e+00
1.0000e+00
2.9900e--03
2.5300e-03

0
0
0
0

1.0000e+00
1.0000e+00

0
0

1.0000e+00
1.0000e+00

-2.9900e--03
9.9747e--01
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-1.2048e-02
-3.0769e-02

dd 1 = -5.6625e-04
1 -2.5000e-02

-5.9880e-03
-4.3478e-03

-5.3648e-04
-1.4286e-02

dd -5.0480e-04
2  -1.6667e-02

-5.0000 e-06
-5.00OOe--06

The three integrators in G(s) were approximated by s = -5.0e-06 in the A matrix

given above, so as to keep the Riccati equation solvers needed to compute the H

compensator, "happy". The B matrix is,

B= 
B1]

B2

with



with Ci (i = 1,

S= [ c c c3 c 4]
... , 4) 3x3 matrices given by,

2.8934e-03 -4.1584e-03
0 0
0 0
0 0

-2.7067e-05 5.2174e-05
0 0

9.5017e-05 2.1697e-030 0
2 0 0S0 0
C4 -1.1952e-04 4.0599e-02

0 2.5300e-03

-4.8585e-05
0
0
0

6.1571e-05
0

-1.8254e-03
0
0
0

1.2170e-04
-2.9900e-03

000
000

The poles and zeros of the state space description given above are,

Ai(A) = poles are the elements of dd.

4.7582e-02 s- nonminimum phase zero

- 2.4870e-02

- 1.6875e-02

- 1.4241e-02

- 7.9281e-03

- 1.1474e-03 * 2.7639e-04i

- 2.8806e-04

- 5.7060e-04
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C.3 Plant Description and Nomenclature

C.3.1 Plant description

The milling circuit is shown in Figure C.3.1.1, and its operation can briefly

be described as follows:

Gold bearing ore is fed into the mill via a conveyor belt, after which water is added.

The turning motion of the mill lifts rocks and when it falls down, it breaks itself and

other rocks beneath it into smaller pieces. At the outlet of the mill there is a grid

which only lets small pieces of ore through into a sump. More water is added, and

the mixture of water and ore (called "slurry"), is pumped to a hydrocyclone. The

cyclone separates fine and course slurry. The fine slurry leaves the milling circuit as

product, and the coarse slurry is returned back to the mill inlet.

cyclone
I i.

PSI

SLF

pump
* measurements

Figure C.3.1.1 : The Milling Circuit

o CFF
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The variables that need to be controlled in the milling circuit are:

The PSM which is a measure of the "fineness" of the product, the mill load, and the

sump level. The mill load and sump level act as integrators and are thus open loop

unstable.

The control variables are:

The rate of ore fed into the mill, the rate of water added to the sump, and the the

rate of slurry pumped to the cyclone.

C.3.2 Nomenclature

PSM particle size measurement - output size (% -75 pm)

LOAD mill load (% of capacity up to axis level)

LEVEL sump level (% of capacity)

SFW sump feed water rate (m3/hour)

SLF solids feed rate (metric tons/hour)

CFF cyclone feed flow rate (m3/hour)

C.4 Scaling

In MIMO systems the control and the output variables have different units

and, thus, it is usually necessary to scale the plant in order to reflect the relevant

importance of commands or outputs. A compensator is designed for the scaled

plant, and then the scaling matrices are absorbed into the compensator. The
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eigenvalues and eigenvectors of the A matrix do not change with scaling but the

singular values and singular vectors, i.e. the plant transmission zeros, do.

The solids feed rate input is first scaled to be in m3/hour. With the average

density of the ore 2700 kg/m 3 , this scaling can be accomplished by multiplying the

second column of the B matrix by 2.7.

In order to reflect the relative importance of the outputs, the following

relationships are established:

* 1% PSM error is as serious as a 1% error in mill load

* 1% PSM error is 10 times as serious as a 1% error in sump level

These relationships and the range of the outputs, lead to the output scaling matrix

Qy given by,

1/5 0 0]
Qy = 01/5 1 /50

0 0 1/50

The controls are scaled, using their saturation levels. The control scaling

matrix Qu that results is,

1/125 0 0o
Qu 0 1/34 0

0 0 1/125.
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The scaled plant Gs(s) is given by,

Gs(s) = Qy G(s) Q-l

After a compensator Ks(s) has been designed for the scaled plant augmented

as shown in section C.6, the scaling matrices are absorbed into the compensator, to

give

K(s) = Q-1 Ks(s) Q

C.5 Plant Model Reduction

The order of the H, compensator is equal to the order of the augmented

plant, which in this case is 15. If a reduced order milling circuit model can be found

that gives an adequate representation of the milling circuit, this reduced order

model can be used for compensator design. In this section the order of the scaled

milling circuit model will be reduced by 50%, i.e. six states will be removed. Schur

balanced model reduction will be used, as described in [26].

Let the milling circuit model be given by G(s), and the reduced order model

by Gm(s) . The accuracy of the reduced order model can be expressed by,

IIG(jw) - Gm(jw)lI _< bnd

When six states are removed, bnd = 0.889. Figures C.5.1 to C.5.6 show that the

outputs of G(s) and Gm(s) in response to steps in each of the three milling circuit
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inputs, are more or less the same. The singular value plots of G(s) and Gm(s) are

shown in Figures C.5.7 and C.5.8.

The state space description of the reduced order plant is as follows,

A=[A 1 A2 ]

with
-5.0502e-06
-4.0717e-06

1.6341e-05
7.1548e-06
2.6505e-05

-6. 1984e-05

-3.4292e-06
-6.0542e-04

5.7029e-04
5.0717e-04
4.1073e-04

-4.5121e-04

1.4925e-05
5.3080e-04

-8.8664e-03
-6.9803e-03
-1.1130e-02

2.0616e-02

2.0953e-06 2.2336e-05 -6.4768e-07
3.2246e-04 1.7722e-03 -3.6808e-05

= -2.3118e-03 -9.9893e-03 -3.6029e-03
2  -3.5567e-03 -7.7426e-03 -6.5040e-03

-9.0770e-04 -1.5275e-02 5.2946e-04
-3.1866e-03 2.1212e-02 -8.5897e-03

1.0542e+02 -2.5069e--01 -1.2418e+02
-3.4921e+01 -6.3706e+00 1.0030e+02

= -1.0720e+02 -2.3154e+01 -6.2767e+01
-1.3399e+02 -3.3715e+01 -7.0415e+01
-9.1434e+01 1.7352e--01 6.0475e+01

5.6788e+01 5.0151e+00 -2.3873e+01

C=[C1 0C2

-1.0315e-06
-6.3698e-06

5.9911e-05
-1.6704e-04
-3.9591e-03
-2.4606e-05

4.5504e-06
9.3679e-04
5.4447e-06
5.5722e-05

-3.5120e-04
-2.0896e-06

2.2226e-04
5.3167e-03
3.3111e-05

-3.2488e-04
7.4653e-04
4.5892e-06
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Let the plant and weights have state space

3.4.4 (section 3.4). The augmented plant can then

descriptions

be described

given in equation

follows.

A 0

=Bwl p A W1

[BI I B2] = B
Bwl -BwlD p

-DwlC Cwl

0 0

Cnew 0
-Cp 0
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C[1C2

000D= 000]

From Figures C.5.1 to C.5.8, it is evident that the reduced order model gives

an adequate representation of the milling circuit.

C.6 State Space Descriptions



Dwl -DwlD

D11 D12  _ 0 0
D21  D22 J D

new

I -D

with Cnew and Dnew as derived in Appendix A.
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Figure C.5.1 :Response of full order model to a unit step in SFW
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Figure C.5.2 :Response of reduced model to a unit step in SFW
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Figure C.5.3 :Response of full order model to a unit step in SLF
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Figure C.5.4 :Response of reduced model to a unit step in SLF

180

-0.5

-0.5

, x10- 7

600

-1

-2

-3

-4

0



0.5

0

-0.5

200 400

time in sec

200 400

I

0.5

600
-0.5

200 400

600

Figure C.5.5 :Response of full order model to a unit step in CFF
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Figure C.5.6 :Response of reduced model to a unit step in CFF
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APPENDIX D

DERIVATION OF EQUATIONS USED IN SENSITIVITY STUDIES

D.1 Derivatives of Eigenvalues and Eigenvectors

In this section, an expression is derived for the derivative of an eigenvalue of

a matrix. Second order terms are included in this expression which implies that the

first order terms of the derivative of an eigenvector of a matrix, must also be found.

Reference [27] provides a detailed description of material covered here, including

alternate proofs for theorems given in this section.

Assumptions and Definitions: A is a square n x n matrix with distinct

eigenvalues Ai and corresponding right and left eigenvectors vi and wi respectively,

such that,

Av i = Aiv i

wiA =i Ai

wTvi 1

=0
i =j

4 Theorem : The derivative of a right eigenvector vi of the matrix A

described by (1), including only first order terms, is given by:
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n
5 dvi E= aik'k ;aijEC

k=1

k i

Proof: Let pi be a right eigenvector of the n x n matrix A + dA, with the

corresponding distinct eigenvalue 1i such that,

(A + dA)pi = 1iPi

Pi can be expressed as a linear combination of the right eigenvectors vi (i = 1,...,n)

which spans C nx i.e.,

Pi = tilVl + ."' + iivi + .."' + YinVn ; ij E C

or

Pi n
6 .= + E c= ikvk

k=1
k#i

with

rik
cik = ik

7ii

Pi
Now let vi + dv i = . (5) follows from substituting vi + dvi in (6).

7ii

7 Theorem: aij used in (4) is given by the equation,
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w dA v.
8 aiJ = wj vi  ;i'jAi j- A

Proof: Let Ai + dAi be a distinct eigenvalue of the n x n matrix A + dA,

with the associated right eigenvector vi + dvi . From (1) it follows that,

9 (A + dA)(v i + dvi) = (Ai + dAi)(v i + dvi)

Neglecting second order terms and multiplying (9) from the left by w (i # j),

results in,

10 w TAdvi + wTdAvi 
- AiwTdvi + dAiwTvi

Now using (2) and (3) in conjunction with (4), (10) results in (8) which concludes

the proof.

11 Theorem: The derivative of an eigenvalue Ai described by (1) and

(2), which includes second order terms, is given by,

n 7ki 'ik12 d A. =7.i

1 i k
k#i

with wTij = w dAvj

Proof: Let vi + dvi be the right eigenvector of the n by n matrix A + dA,

with the associated eigenvalue Ai + dAi. From (1) it follows that,
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(A + dA)(v i + dvi) = (Ai + dAi)(vi + dvi)

Now multiplying (13) from the left by wT and rearranging terms, results in,

14 dAi iV + dAiwT dvi = (wA - A iw )dvi + w dAvi + w dAdvi

Letting (2), (3) and (5) act on (14), the following equation results,

dAi = iTdAvi1I1

n+wTdA E aik
k=l

kfi

Substituting (8) in (15) results in (12), which concludes the proof.

D.2 Derivatives of Singular Values and Singular Vectors

In this section the derivative of a singular value will be derived up to second

order. This implies that the first order terms of the derivative of a singular vector

of a matrix, must also be found. The results given here are for square matrices but

can easily be generalized to the nonsquare case.

Assumptions and Definitions:

a singular value decomposition given by,

G is a complex, square n x n matrix with

G = UEVH16

with
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17 E = UHGV

18 E is a diagonal, n x n real matrix with singular values ai along the

diagonal

19 U is a n x n unitary matrix( U = U- 1 )

20 column vectors ui of U (called left singular vectors of G), are

orthonormal, i.e. uAuj = 6 .Ij J ij

21 column vectors ui of U are also the right eigenvectors of the

Hermitian matrix GGH. The eigenvalues Ai of this matrix are the

squares of the singular values of G, i.e. Ai = i
22 V is a n x n unitary matrix( VH = V- 1 )

23 column vectors vi of V (called right singular vectors of .G), are

orthonormal, i.e. vH-vj = 6.i1 j ij
24 column vectors vi of V are also the right eigenvectors of the

Hermitian matrix GHG. The eigenvalues Ai of this matrix are the

squares of the singular values of G, i.e. Ai = Ii
T25 the left eigenvector wT of an Hermitian matrix is equal to the

hermitian of the corresponding right eigenvector, i.e. w =i  u i

the case of (21)

26 Sij =1 ;i=j

=0 ;ifj

27 Theorem: The derivative of the left singular vector ui of G, is

given by,
n

28 du= aikuk ; aik E C
k=1
k i
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eigenvectors ui .

30 Theorem :

Analogous with proof of (4), where the matrix A = GGH have right

aij used in (28) is given by the equation,

a =ii

uH (dGGH
u1

2
1i

+ GdGH)
;i#j

2
- °j

Let Ai + dAi be a distinct eigenvalue of the n x n matrix A + dA,

with the associated right eigenvector ui + dui . Let A = GGH, then it follows from

(21) that ui is also a left singular vector of G. From (1) it follows that,

(A + dA)(u i + dui) = (Ai + dAi)(u i + dui)

Neglecting second order terms and multiplying (32) from

eigenvector u H (i # j) of A according to (25) results in:
eigevectr u

uHAdui H+u .dAu.
3

the left by a left

= u j dui + dAiu ui
13 1 131

Now using (2) and (20) in conjunction with (28), and noting that Ai =

dA = dGGH + GdGH ,(33) results in (31) which concludes the proof.

ai and that
1

34 Theorem : The derivative of a singular value ai described by (16)

and (18), which includes second order terms, is given by,
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1 n 7kiOikd I i + 2 •2 k
21 . k=1 2 2

kfi i k
with

7ij = uiH(dGGH + GdGH)uj

Proof: Let ui + dui be the right

with the associated eigenvalue Ai + dAi .
that ui is also a left singular vector of G.

eigenvector of the n x n matrix A + dA,

Let A = GGH, then it follows from (21)

From (1) it follows that,

(A + dA)(u i + dui) = (Ai + dAi)(u i + dui)

Now

(25),

multiplying (36) from the left by

and rearranging terms, results in,

the left eigenvector ui of A according to

37 dAiui + dAiudui = (uA -AiuH)dui + udAui + udAdui

Letting (2), (20) and (28) act on (37), the following equation results,

a n
dA. = u'dAu. + u'dAES

1 1 1 1 k=1 iLKA k1
k i

(35) follows from substituting (31) into (38), and noting that Ai = 2•

dAi = 2aida i and dA = dGGH + GdGH , which concludes the proof.
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What is dG, where G = Cp(SInx n - Ap)-B p, if Ap is perturbed?

Differentiating G with respect to Ap, it follows that,

dG = Cp(SInx n- Ap) - 1 dAp (SInx n- Ap)-1Bp



APPENDIX E

FICTITIOUS PLANTS

In this appendix, state space descriptions are given for the two

fictitious plants described in section 4.3.3. Weighting functions used in the H.

design for these plants are given in section E.3.

E.1 Plant I

The state space description of plant I is given by,

G1(s) =

with

-2.0418e+00
-4.1042e--01
-1.7004e+00

9.6489e-02
-1.8398e+00

2.4946e-O1

-4.5784e--02
1.3475e+00
8.8163e--01

9.1287e-01 0
B = -1.7501e-01 9.0345e-01

3.6883e-01 4.2869e-01

[ 0 -1.4661e-01 2.6417e+00
'1 = 0 9.0345e-01 4.2869e-O01

D1 =[0oo]
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The state space description of plant II is given by,

G2(s) =

with

1.0055e+00 -2.7103e--01 -5.4082e+00
7.4706e-04 -1.8894e+00 6.2396e-01
3.0952e-03 4.4009e-02 -2.1161e+00

with B1, C1 and D1 as given in E.1.

E.3 Weighting Functions

The weighting functions used in the design of H compensators for

plant I and II are given by,

1
W1(s) = I2x2

s + .0001

W3(s) = - 2x2
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