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ABSTRACT

The Hm design methodology is described in detail, and the sensitivity of H
designs to structured uncertainty is determined using H controllers designed for

two "practical" plants, an advanced fighter aircraft and a milling circuit. The
effects of near unstable pole zero cancellations on Hm designs are also studied.

Methods are developed to determine, before an actual design is done, whether the
resulting closed loop system will be sensitive to structured uncertainty. A technique
called inner loop compensation is introduced to desensitize Hm controller designs to

this type of uncertainty. An inner loop compensated Hm controller for the advanced
fighter aircraft is compared to a traditional classical controller.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The Hm design methodology is one of the most recent of the so called robust
multivariable feedback control systems synthesis methods [1,2]. This methodology ,
however, does not take structured uncertainty into account in any direct way but
provision can be made for unstructured uncertainty given an upper bound on the

magnitude of this uncertainty.

In practical situations, it is often not possible to determine plant parameters
very accurately when constructing a nominal plant model. If parametric or
structured uncertainty is present, a compensator which was designed based on a
nominal model, could behave in an undesirable fashion when implemented on the
real plant. The Hm compensator inverts the stable part of the plant dynamics and
substitutes some desirable dynamics in its place. As this inversion process can be
impeded by structured uncertainty, it is important to know for which "size" of such

uncertainty the controller will still perform adequately.
Control engineers in industry are often reluctant to apply new multivariable

controller design methodologies (e.g. the Hm method) to practical problems because

of a lack of experience with these methods, and the few "realistic" examples that
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exists in the literature [3]. It is often the case that extensions of SISO
(single~input—single—output) design methods are applied to inherently
multivariable problems. Dealing with the cross—coupling in these multivariable
systems then becomes an art based primarily on experience and not on a sound
theoretical basis. This thesis should help develop some confidence in the application

of the H“n methodology to practical design problems.
1.2 Contribution of the Thesis

The are six ways in which this thesis contributes to the understanding of H

designs and control systems in general. They are the following:

) A detailed description is given of the Hm design procedure. In particular, the
thesis shows how to incorporate frequency domain specifications into
weighting functions which form part of an augmented plant to which the Hm
design methodology is applied.

o The thesis provides two "realistic" design examples of Hm compensators, i.e.
designs for an advanced fighter aircraft and a milling circuit. The milling
circuit example is most likely the first application of the Hm methodology to
such a plant. An Hm design is also done for a fictitious plant with a near
unstable pole zero cancellation.

. Equations are derived for the derivatives of singular values and eigenvalues
of a square matrix. These equations are tools which help determine whether

a closed loop Hm controller will be sensitive to structured uncertainty.

17



. The thesis shows that, by looking at the singular values of the open loop
plant, one can determine if the closed loop Hm controller will be sensitive to
structured uncertainty.

. A practical way is given to desensitize Hm controllers to structured
uncertainty, called inner loop compensation.

o A comparison is made between a classical and a desensitized Hun controller

for the advanced fighter aircraft.
1.3 Organization of the Thesis

The thesis is organized into six chapters. The current chapter has described
the motivation for and the contributions of this thesis. Chapter 2 gives a detailed
description of the Hm design methodology. In Chapter 3 Hm compensators are

designed for an advanced fighter aircraft and a milling circuit.

In Chapter 4, tools are developed to study the effects of structured
uncertainty on Hm designs. Sensitivity studies are performed on Hm designs for the
advanced fighter aircraft, the milling circuit, and two fictitious plants. An
"artificial" way of making the controller for the aircraft less sensitive to structured
uncertainty, is introduced. Chapter 5 focuses on practical ways of desensitizing Hm
designs to structured uncertainty. A traditional classical compensator for the
aircraft is compared to an inner loop compensated Hm compensator with regard to
stability robustness and performance. The final chapter discusses the results and

proposes directions for future research.

18



CHAPTER 2
THE H_DESIGN METHODOLOGY

2.1 Introduction

This chapter deals with the formal control system synthesis problem, in
which the H —norm performance measure is used [1]. Compensators are designed for
the class of dynamical systems that are assumed to be finite—dimensional and
linear—time—invariant (FDLTI). Although FDLTI systems represent idealizations
of actual physical systems, controller designs based on these systems give good

results, as long as the approximations made, are justified.

The H_  methodology is one of the most recent so called robust
(uncertainty—tolerant) multivariable feedback control systems synthesis methods
[2]. The design of a fixed parameter compensator is based on a nominal model, and
the aim is to maintain stability and reasonable performance in the presence of
significant uncertainty (e.g. noise/disturbance signals and modeling errors).
However, neither this nor the H, (LQG/LTR) [4] design methodology take
structured uncertainty into account in any direct way. Provision can, however, be
made for unstructured uncertainty given an upper magnitude bound on this

uncertainty [5].

The Hm design procedure can best be described by the following points, each

of which will be elaborated on in this chapter:
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° start with a plant model that has to be controlled to desired
specifications

. express design specifications in terms of weighting functions

) augment the plant model with these weighting functions

o find the desired compensator by solving the H_synthesis problem

. verify if the design specifications are met and if control rate and
magnitude constraints are adhered to

o repeat the design process if necessary
2.2 The Plant Model and Specifications

2.2.1 The Plant Model

The plant model must be FDLTI but can be minimum or nonminimum
phase, square or nonsquare, stable or unstable. An upper bound on the
unstructured uncertainty of the plant must be known, so that realistic robustness

specifications can be set.
2.2.2 Specifications
An obvious specification that is taken care of by the Hm synthesis, is that of

nominal stability. Other specifications are normally given in terms of singular value

loop shapes (frequency domain), e.g.

20



Robustness specification: 20 db/decade roll-of and at least —40 db
at 100 rad/sec

Performance specification: minimize the sensitivity function as much
as possible (can also be interpreted as a

robustness specification)

The robustness specifications can also be given in more "classical" terms, like
multivariable gain and phase margins [6,7]. In each loop of a multivariable feedback
system, simultaneously and independently, there are guaranteed gain and phase

ma.rgixis (denoted GM and PM respectively), given by the following equations:

downward gain margin GM| < k
k + 1
upward gain margin GM?T 2 . k - (2.2.2.1)
phase margin |PM]| > 2 sin—1(1/2k)
where
k= |SG)]_

with S§(s) = [I + G(s)K(s)]—1 the sensitivity transfer function matrix of the
standard feedback configuration shown in Figure 2.2.2.1. This means that the gains
or phases of all the feedback loops may be changed at the same time within the

prescribed limits, without destabilizing the closed loop system. From the equations

21



above it is evident that minimizing the sensitivity will result in good multivariable

gain and phase margins.

&

K(s) ——| G(s)

1

Figure 2.2.2.1: The standard feedback configuration

The following constraint should always be kept in mind when posing
specifications:

S(s) + C(s) =1 (2.2.2.2)

with C(s) = [I + G(s)K(s)]_lG(s)K(s) the closed loop tranmsfer function or
complementary sensitivity matrix (see Figure 2.2.2.1). It does not make sense, for
example, to ask for output disturbance and measurement noise rejection in the same

frequency range, as this violates the constraint given above.

Another performance specification that can be accommodated is zero steady
state errors to constant commands or disturbances in all directions. This can be
achieved by adding low frequency poles (approximation of integrators) to the weight
on the sensitivity transfer function ﬁatﬁx; more on weighting functions in section
2.3. Time domain specifications like rise~time and percentage overshoot, are not
treated directly. The time domain response of the system can be observed by doing

time simulations after the controller has been designed.
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2.3 Singular Value Loop Shaping and the Selection of Weights

Weighting functions are the free parameters in the H_design framework, and
can be used to "tune" designs to meet realistic specifications. This section describes

how weights are accommodated in the Hm synthesis problem.

The standard feedback configuration as shown in Figure 2.2.2.1, will be used
to illustrate the selection of weighting functions. Figure 2.3.1 shows how the
weights are connected to the feedback system. G(s) is the plant transfer function
matrix and K(s) represents the compensator. The transfer function matrices of the
weights are given by W;(s) = w;(s) I __ (i =1, 2, 3), and the reference input by .
Although the weights used in this thesis are all diagonal, this does not have to be.
Diagonal weights have the advantage of forcing decoupled closed loop responses.

Matched singular values can be achieved by making the diagonal elements equal.

P(s)
—_¥3(8) Y13
= Vy(s) ~ Y19
uy N l —| ¥(s) — Y11
U, -|  G(8) —3 Yo

K(s) |~

Figure 2.3.1: The standard feedback configuration with weights
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The configuration of weights shown in Figure 2.3.1 is by no means the only
one that can be accommodated in the Hm synthesis problem, but it serves to

illustrate the selection of weights in the familiar framework of the standard feedback

problem.

Referring to Figure 2.3.1, a disturbance attenuation performance

specification up to the crossover frequency w, can be expressed as,

lim  FS(W] 37 W (w)]  w<uy, (2.3.1)
72 Tmin

lim  g[S(w)] % g W] (iw)]  w<w,
72 Tmin

where Ymin 18 the optimal gamma in the gamma—iteration discussed in section
2.5.1. Equation 2.3.1 indicates that the attenuation factor is a function of frequency
w, which implies that one frequency range can be emphasized over another, to
accommodate, for example, both output disturbance and measurement noise
attenuation, subject to the constraint given in equation 2.2.2.2. A good choice for
W, (s) is to set it equal to the inverse of the desired o [S(jw)] at frequencies below
Crossover (wc). A typical weighting function Wl(jw), is shown below, with n the

number of plant outputs,

k

W,(8) = —I ;7 k=w, a=.0001
1 s + o Dmxn c

With k equal to the crossover frequency, Wl(s) will help insure that all the singular
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values of the loop transfer function crossover at k rad/sec. a is chosen such that
Wl(s) approximates a matrix with integrators on the diagonal which will result in
the controller having zero steady state errors to constant commands and

disturbances.

The weights W(s) and W3(s) both serve the purpose of specifying stability
margins. Doyle et al [8] proposed a method for solving the H_ feedback problem,
named gamma (7)-iteration which will be discussed in section 2.5.1. Using this
method, the weight on the controls Wo(s) has to be present. Safonov [9] relaxed
this restriction, and the designer can now choose either between using W2(s) or
using W(s). (See section 2.5.1 and Appendix A for more information). Generally,
they are not used at the same time, as they serve the same purpose. Stability

margins can be expressed using the following equations:

7 [R(jw)] ¢ 7 [ng_(jw)] w> u, (2.3.2)
o [R(ju)] ¢ ¢ [Wy ()] w> u,
7 [C(jw)] ¢ 7 [W3H(iw)] | w> u, (2.3.3)
2 [C(ju)] € ¢ [W3 ()] w>

with R(s) = K(s)[I + G(s)K(s)] " (see Figure 2.2.2.1). Wi(s) is used when the
plant uncertainty is described as additive perturbations, and W3(s) is used in the

face of multiplicative perturbations. These perturbations are illustrated in Figure
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2.3.2.

Perturbed plant

—| 4,(s) —l

K(s) W G(s) ——| I + Ay(s) Y

- +

&

Figure 2.3.2: Additive and Multiplicative uncertainty

The multiplicative plant perturbations are indicated by AM(s), and the additive
perturbations by A A(s). The multiplicative stability margin is the "size" of the
smallest stable Ay,(s) which destabilizes the system in Figure 2.3.2 with A Al8)=0.
The "size" of Ayy(s), can be expressed in terms of o [A,,(jw)], and gives an
indication on how to choose W,(s) (equation 2.3.3). A good choice for Wa(s) is to
set it equal to the inverse of the desired o [C(jw)], at frequencies above Wy
Similarly, the "size" of the smallest stable A 4 (), which destabilizes the system in

Figure 2.3.2 with Ay (s) = 0, gives an indication on how to choose W,(s).

It is intuitively more appealing to lump the effects of all plant uncertainty
into multiplicative perturbations. Design specifications can then be expressed in

terms of equations 2.3.1 and 2.3.3.

A typical weight on the complementary sensitivity C(s), is given by,
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8
" Iyn i k=u, (2.3.4)

W3(S) =

Thus, with the inclusion of dynamic filters for weights, the order of the
compensator that results from the Hm design methodology, is equal to the order of
the plant plus the order of the weights. There is thus a trade—off between the

complexity of the weights and the order of the compensator.

More information on the selection of weighting functions can be found in
Chapter 3 where they are actually chosen to meet certain specifications. The
milling circuit example is particularly interesting, as the weights are chosen to
provide a region of loop ( G(s)K(s) ) crossover frequencies. Appendix A shows how
an improper W3(s) can be absorbed into a strictly proper plant such that W3(s)

does not contribute to the order of the compensator.
2.4 Plant Augmentation

In order to solve the Hm synthesis problem, it is necessary to augment the
plant model with specific weighting functions. In this section, the plant and weights
shown in Figure 2.3.1, will be used to demonstrate how the plant augmentation is

done.

The augmented plant model P(s) can be partitioned as a block (2x2) transfer

function matrix.
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P,.(s5) P,o(s)
Pis):=| 1 12 (2.4.1)
with the relationships between the signals in Figure 2.3.1
Y =Py up+ Py,
or
11 W, -W,G
Y1=1¥19| = 0 111+ W2 U
Y13 0 WG
with a detectable and stabilizable state space description
A | B, B,
P(s):=|"C;] D;; Dy, (2.4.3)
Co| Da1 Dag

To proceed with synthesis next, let the state space descriptions of the plant

and the weights be

(2.4.4)
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withi=1,2, 3.
Let the augmented plant P(s) have a state vector x ap given by
_ T
Xap = [xp wl *w2 xw3]
where X, and x_. are the state vectors for the plant G(s) and the weights W.(s),

respectively. The augmented plant matrices can now be expressed in terms of block

matrices of the plant and the weights, as shown below:

r ]
Ap 0 0 0
0 0 Aw2 0
_ Bw3cp 0 0 Aw3
0 Bp
B -B_.D
[B; | Byl =| “wl wl™p
0 w2
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'—lecp CW1 0 0 ]
_01_ o 0 C,
02 D wscp 0 0 Cw3
-, 0 0
[ Dy —leDp
Pu| Pro _| 0 Dya (2.4.5)
Dyy| Doy 0 D30,
1 o,

In this section the standard control problem (Figure 2.3.1) was used to
illustrate plant augmentation. Other configurations of plants and weights can be
treated in a similar fashion, as equations 2.4.1 and 2.4.3 are generic to all problems

that can be accommodated by the Hm design methodology.

2.5 Hm Synthesis

The Hm feedback problem is posed with reference to Figure 2.5.1.

Figure 2.5.1: Synthesis block diagram
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Given: P(s) FDLTI augmented plant

u,(t) exogenous input vector (commands, disturbances etc.)
y;(t) output vector (weighted errors, controls etc.)
¥o(t) measurement vector
uy(t) control input vector
Find: K(s) A nonunique FDLTI dynamic compensator such that:
. the closed loop system is nominally stable
. the Hm—norm of the closed loop transfer function

from u, (t) to y,(t), Hylul(s), is minimized.

When using weights W, (s) and W(s), the following equation can be given to
illustrate the relationship between Hy a (s) and the weights,
171

- [ W1 (iw)$ (jw) ]

H (jw)| =maxge
“ 1M ® w Wa(jw)C(jw)

The optimal solution to the problem posed above cannot be computed
directly. An iterative scheme called <—iteration, has been formulated to find
solutions arbitrary close to the optimal. The ~—iteration procedure is described in
the next section.

2.5.1 p-Iteration

Doyle et al [10,11] devised a procedure to solve the H_output feedback
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problem, called y—iteration. This procedure involves solving two modified Riccati

equations, and consists of finding stabilizing compensators K(s), that guarantee

: S

(2.5.1.1
1% )

o 3
with

r{&g) “Hylulnm = 7optima.l

7optima.1 <7

The relationship between the signals in Figure 2.5.1 is the same as indicated

in equation 2.4.2., with the state space description of P(s) given by equation 2.4.3.

The y—iteration procedure requires that the augmented plant P(s) have the

following properties:

. The state space description of P(s) (equation 2.4.3) must be
detectable and stabilizable

o The transfer functions P,,(s) and P22(s) must be strictly proper

. The transfer functions P,,(s) and P,,(s) should be proper but not
strictly proper

For P,,(s) and P,o(8) to be strictly proper, D, and D, must be zero. This
can always be achieved by adding high frequency poles to the appropriate weighting
functions. From equation 2.4.5 it is evident that the weight Wl(s) needs to be

strictly proper in order for D, to be zero. Also, D, will be zero if the plant G(s)
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is strictly proper. If this is not the case, u, can be weighted to make D22 zero.

P,,(s) will always be proper in the standard feedback configuration (Figure
2.3.1) where u, is fed through to y,. For P,,(s) to be proper, W(s) and/or W,(s)
and G(s) has to be proper, as can be seen from equation 2.4.5. Wo(s) and W,(s)
will generally not be used at the same time, which implies that, if the plant is
strictly proper (Dp = 0), W,(s) will have to be present. Another alternative is to
use the method described in Appendix A, where an improper weight W3(s) is
absorbed into a strictly proper plant. Further requirements on D12 and D21 in step
3 of the y—iteration procedure are for Dy to have full column rank and D,, to have

full row rank.

The following steps describe the y—iteration procedure [12]:

Step 1: Guess the level of achievable performance 7y
Step 2: Scale uy and/or y; so that the upper bound in 2.5.1.1 is unity, i.e.
HHylull‘" < 1 where Hy1u1 is appropriately scaled. The scaling in

step 2, can be done as shown in Figure 2.5.1.1.
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) P(s) )
u2-——-——’ ﬁ —— F———— ﬁ - y2
Figure 2.5.1.1: Scaling the augmented plant
The scaled augmented plant f’(s), can now be represented as follows:
- 1 -
Y| _ | Ful) Pl ||y
Yo Po1(s) 7P22(8) | | v
- u
=P(s) | -
‘ 112

The state space description of 13(s) now becomes

] A | 5B [7B,
Ps)=| 1 1

7% | 3Pu Dy
{7 Cy Dg1 7 Doy
Step 3: Scale Uy and P such that
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DT

19 Dp =1

T _
Dy, D5y =1

21
Two square, nonsingular matrices S and Sy are used for scaling the controls u, and
the measurements Yo respectively. These scaling matrices can be computed using

the Cholesky decomposition [13] to solve the following equations:

Te _ T

815y =D12Dy
A1 eI\T _ T
57! (51T =Dy, D3,

The scaling can be done as shown in Figure 2.5.1.2.

P(s)

P(s)

Figure 2.5.1.2: Scaling the controls and measurements
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The plant matrices are scaled as follows,

-~ -~

B, =B, 57"
Cy=5,C,
Dyp = D12_S;1
Dy1 =5y Dy
Dyg =8y Dyg 5!

Step 4: The Hm compensator structure is shown in Figure 2.5.1.3

K(s)

I(s) |© p)

Figure 2.5.1.3: The H‘m compensator structure

Q(s) is any stable system with ﬂQIm < 1. Guidelines as to how to choose the free
parameter Q are the subject of continuing research [14]. Q(s) = 0 is a legitimate
choice for Q, and it will be used throughout this thesis.

The augmented plant matrices (A, B P Ci’ Dij; i,j = 1,2) used in step 4 are
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assumed scaled as indicated in steps 2 and 3. The state space description of J(s) is

given by,
» Ay | By
S) =
C; | D;
with
_ T
By = [Kp Kpyl
F K
o
Cy=
1=| Xg
r0 I
D, =
701 o

Kg = (B3X_+D],C)I-Y X )"
Koy = (DygB] - G- Y, X,
xm is the unique, real, symmetric solution of the Algebraic Riccati equation
(A-B,DT,c)TX_+x (A-B,DT,C))-X (B,B] ~BB])X, +C]C; =0

with
C, = (I-D,,D1,)C
1 12712771
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: T T

T
Kpy = (Y,C1Dyy + By)
Ym is the unique, real, symmetric solution of the Algebraic Riccati equation

T T ~\T T T T
(A—B,D5,C,)Y_+Y (A—B,Dy Cp)" —Y (CoCy —C;C7)Y, + BB, =0

with

- T
B; = B,(I-Dj;Dy)

The v chosen in step 1 can be achieved if the following three conditions are met

X >0
]
Y >0
®
XY X) <1

If these conditions are not satisfied, increase vy and go to step 2. The minimum v in

equation 2.5.1.1 should be found that satisfies these conditions.

Step 5: Incorporate the scaling on u, and Yo into the compensator K(s) as
shown in Figure 2.5.1.4. The compensator matrices are scaled as

follows,
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By = {7BgS,
- -1~
Cx = {75, Cg

P
DK =¥ Su DKSy

P(s)

K(s)

Figure 2.5.1.4: Scaling the designed compensator k(s)

The state space description of the compensator k(s) with Q(s) = 0, is given

T
KC l 0

k(s) =

This concludes the discussion on the y—iteration procedure.
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2.5.2 What does the Hm Synthesis Do ?

The basic idea behind the Hm compensator is that it "inverts" the stable
plant dynamics, and substitutes in its place desirable dynamics prescribed by the

weighting functions. In particular, the eigenvalues of the closed loop A matrix

include:

. stable plant poles
o poles at the mirror image about the jw — axis of unstable plant poles

. poles at plant zeros (except nonminimum phase ones)

The zeros of the closed loop system are the zeros of the plant and the

compensator.
2.6 Design Verification

This section briefly describes what should be done to check if the controller
that was designed meets the required specifications. Two basic analysis tools are
used for this purpose, i.e. singular value plots and time simulations.

The first and most obvious specification to check would be that of nominal

stability, which is guaranteed by the Hm methodology. If this is not achieved, the

v—-iteration procedure has been applied incorrectly.
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Frequency domain specifications can be verified with singular value plots of
the relevant transfer functions, e.g. the semsitivity S(s), and the complementary

sensitivity C(s) transfer function matrices.

The Hm design methodology does not treat time domain specifications
directly. Time simulations of the closed loop controller need to be carried out to
check these specifications. This is also the time for the designer to make sure that
control rate and magnitude constraints are adhered to. It might be the case that
the desired frequency domain specifications cannot be achieved within the
constré.ints on the controls, which would imply that the controller design would

have to be repeated with less demanding frequency specifications.

Of course, the ultimate design verification would be to try the controller out
on the real plant. This step is usually preceded by extensive time simulations, in
which the compensator is "hooked—up" to a realistic model of the plant which

includes for example, nonlinearities, unmodeled dynamics, time delays etc.
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2.7 Concluding Remarks

A compensator that results from the y—iteration procedure is computed via
the solution of two Riccati equations. Thus, a compensator that meets an Hm
optimality criterion is no more difficult to obtain than it is to compute an LQG
solution [15]. The H_ methodology has the advantage that the error is defined
directly in terms of frequency domain specifications, and the maximum error is

minimized rather than averaged across frequency.

Hm solutions can be computed by any software package that can solve an
algebraic Riccati equation. There is a commercially available package by Chaing
and Safonov [16], for use with PC—MATLAB and PRO-MATLAB, that

accommodates plant augmentation, singular value plots, and H, and Hm synthesis.
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CHAPTER 3
H COMPENSATOR DESIGNS

3.1 Introduction

In this chapter, compensators are designed for two plants, an advanced
fighter aircraft, and a milling circuit. These plants were chosen to illustrate the
strengths and the weaknesses of the H design methodology. The nominal designs

will be used in Chapter 4 for sensitivity studies.

3.2 Advanced Fighter Aircraft

In this section a lateral-directional flight control system (FCS) for an
advanced fighter aircraft is used as an example. The main purpose of the FCS will
be to provide bank angle control as an automatic pilot control mode. The model
used in this section exhibits special characteristics, some of which were studied in

[17].

3.2.1 The Plant

The flight condition and the state space description of the aircraft are given
in Appendix B. The plant is controllable and observable, minimum phase and

unstable, with poles and transmission zeros as shown below:
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A (A)) = —5.96866-02 + 2.8437e+00i (dutch roll mode)

— 4.2730e—01 (roll subsidence
mode)
+ 4.8718¢—03 (unstable spiral
mode)
Zero = — 1.6129e+-02

From the poles of the plant the dutch roll mode damping ratio ¢ 4 can be calculated
to be,

Figure 3.2.1.1 shows a plot of the minimum and maximum singular values of
the open loop plant and its condition number versus frequency. The condition
number of the aircraft is very high at low frequencies, which implies that different
input directions can cause a wide range of plant amplification, at the same
frequency.

3.2.2 Design Specifications and the Selection of Weights

The requirements for the control system design include:

(a) bank angle control with crossover at 2 rad/sec

(b) increased dutch roll damping
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(c) zero steady state errors to constant commands or disturbances.
(d) unmodeled dynamics and high frequency sensor noise requires the
o [C(jw)] < —40db at w =100 rad/sec

(e) and, of course, nominal stability

Requirements (a), (c) and (d) give an indication as to which weighting functions
should be used. The H design methodology automatically takes care of
requirement (e), but "circumvents" requirement (b) by canceling the stable portion
of the plant (see section 2.5.2), such that the dutch roll mode will not be visible in
the plant output. This can cause performance degradation or even instability in the

face of structured uncertainty as will be seen in Chapter 4.

Weighting functions which will enable the closed loop control system to meet

requirements (a), (c) and (d), are (see Figure 2.3.1)

2
W, (s) = ————1

s + .0001 2X2

Wo(s) =€ Ipgg» €=0.1

The weights W,(s) and W(s) have crossover frequencies at 2 rad/sec, which will

insure that the loop transfer function —plant and compensator— crossover at 2

rad/sec. Singular value plots for the weights W ,(s) and W(s) are shown in Figures
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3.2.4.3 and 3.2.4.2 respectively. The low frequency poles in W, (s) takes care of
requirement (c). Wy(s) is included to give D, (see section 2.5.1) full column rank
without increasing the order of the compensator. ¢ was chosen such that the
controller does not command excessive control action. A state space description for
Wa(s) cannot be written, as it is improper and, thus, the technique described in

Appendix A must be used to calculate the augmented plant.
3.23 Hm Compensator Design

"The v — iteration procedure described in section 2.5.1, was used to design a
compensator for the aircraft augmented with the weights given in section 3.2.2. The
minimum 4 found via the iteration procedure was Ymin = 1.30. The state space
descriptions for the augmented plant and compensator are given in Appendix B.

The poles and transmission zeros for the Gth order compensator are,
Ai(Ak) = — 3.5623e+01
—9.0694e+00 + 4.2700e+00i
— 6.6815e+00
2 @ —1.000e—04

Zeros = — 5.9686e—02 + 2.8437i (dutch roll mode)
—4.2730e—01 (roll mode)
— 4.8436e-03 (mirror image of
spiral mode)
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By looking at the location of the compensator zeros, it would seem that the
compensator "inverts" the stable part of the plant. To prove this, a
controllability /observability study was performed (Appendix B section B.5) on the
closed loop system, and it was found that the stable plant modes are indeed

uncontrollable, which implies pole zero cancellations.
The 10"1‘ order closed loop system poles and transmission zeros are,

MAy) = the 3 stable plant poles (see section 3.2.1)
. mirror image of unstable plant pole

— 3.5995e+01

— 8.7283e+-00

—6.3733e+00

— 3.1521e+00 = 1.0167e+4-00i

— 3.0328e+00

ZEros = 1 plant zero

4 compensator zeros
3.2.4 Design Evaluation
In this section, singular value plots and time simulation will be used to

determine if the design in section 3.2.3 meets the specifications that were set in

section 3.2.2.
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The bandwidth requirement in (a) is met, as can be verified by looking at the
minimum and maximum singular value plots of the loop transfer function ( T(s) =
G(s)K(s) ) in Figure 3.2.4.1. The minimum and maximum singular value plots of
the closed loop transfer function C(s) in Figure 3.2.4.2 and the bank angle step
response in Figure 3.2.4.4 illustrate that bank angle command following is achieved
without excessive control action. Requirements (c) and (d) are met, as can be

verified from Figure 3.2.4.2.

Figure 3.2.4.3 shows the minimum and maximum singular value plot of the
sensitivity function S(s), and from it k as defined in equation 2.2.2.1 can be found to
be 1.239. This gives the controller the following gain and phase margins in each

loop independently and simultaneously,

GM{ 2 5.2
GM| < .55
PM > 47.59 deg

It is evident from Figures 3.2.4.1 to 3.2.4.4 that the dutch roll mode has been
canceled, because it does not show up in any of the figures. It is not clear if
requirement (b) has been addressed adequately and thus this issue will be explored
further in Chapter 4.

The weights Wl(s) and W3(s) have been included in Figures 3.2.4.3 and

3.2.4.2 respectively, to show how the maximum singular values of S(s) and C(s)

approach the inverse Bode plots of these weights as 7 goes to its optimal value.
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Figure 3.2.4.5 shows the minimum and maximum singular values of Hy u. (8) (the

transfer function of which the H —norm needs to be minimized) for v = 2 and

7=13.

In conclusion, it can be stated that an Hm controller has been designed that
meets the posed specifications —except maybe (b)— Good command following,
disturbance rejection, and insensitivity to high frequency sensor noise are evident

from the figures presented in this section.
3.3 The Milling Circuit

In this section an H_ compensator is designed for a milling circuit that
processes gold bearing ore. The main purpose of the controller is to provide particle
size control while regulating the mill load and the sump level. An INA (inverse
Nyquist array) compensator has previously been designed for this plant, and the

successful controller implementation is described in [18].
3.3.1 The Plant

A transfer function model (G(s)) for the plant was derived from "step—tests"
done on the actual milling circuit. The G(s), state space description, nomenclature
used, and a figure and description of the plant are given in Appendix C. Scaling
and model reduction were performed on the plant as described in Appendix C, and
this scaled and reduced order version of the plant —referred to as the design plant

model—, will be used for the design of the compensator.
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The designed plant model is Gth order, controllable and observable,

nonminimum phase and stable, with poles and transmission zeros,

MA) = —17481e-02 + 3.7481e-03i
~ 1.3158¢—03
— 6.0912e—04
—~ 5.0000e—06
—~ 5.0006e—06

Zeros = 5.5624e—02 + nonminimum phase zero

— 5.7499e—04 + 2.8092e~04i

Figure 3.3.1.1 shows a plot of the minimum and maximum singular values of

the design plant model and its condition number versus frequency.
3.3.2 Design Specifications and the Selection of Weights
The specifications for the control system include:

(a) independent PSM, LOAD, and LEVEL control
(b) settling time of 600 sec for the PSM and LOAD
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(c) settling time of 1800 sec for the sump level

(d) zero steady state errors to constant commands and disturbances

(e) unmodeled dynamics and "high" frequency sensor noise requires that
the ¢ [C(jw)] < —60 db at w = 1.0 rad/sec

(f) and, of course, nominal stability

Requirements (b) through (e) determine which weighting functions should be
used. Independent control of the three outputs —requirement (a)— is possible, as
there are three independent controls. The Hm compensator naturally takes care of

requirement (f).

Weighting functions as depicted in Figure 2.3.1, which will enable the closed

loop control system to meet the posed specifications, are listed below:

1 6.00e—03 0 0
W,(s) = 0 6.00e=03 0
s + 1.0e~06 0 0 1.50e—03
Wo(s) =€l g ;€=0
8.00e~03 0 01t
Wy(s) =5 0 8.00e—03 0
0 0 2.00e—03

The weighting functions given above are the result of a number of intelligent trial
and error iterations. It was found that changes in the parameters in the numerators
of Wl(s) had the biggest impact on the speed of the output response. These

parameters were chosen such that requirements (b) and (c) were met. The
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parameters in the denominators of W3(s) were then "tuned" to give acceptable
multivariable gain and phase margins and meet requirement (e), without the
controller demanding excessive control action. Requirement (d) is taken care of by

the parameters in the denominator of W, (s).

A state space description for W3(s) cannot be written since it is improper,

and thus W3(s) is absorbed into the strictly proper plant, as shown in Appendix A.
333 Hm Compensator Design

The 4 — iteration procedure described in section 2.5.1, was used to design a
compensator for the scaled milling circuit augmented with the weights given in
section 3.3.2. The minimum v found via the iteration procedure that met the
specifications, was Vmin = 1.05. The state space descriptions for the augmented

plant is given in Appendix C.

The poles and transmission zeros of the ch order compensator —same order

as the augmented design plant—, are,

’\i(Ak) = —4.8949e—02 + 2.4744e02i
— 5.7528e—04 + 2.8146e—04i ~ approximate
reduced order plant
Zer1os
—~ 2.6844e-02
— 6.7628e—03
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3 @ —1.0000e—06

Zeros = 6 design plant poles (see section 3.3.1)

The location of the compensator zeros are the same as that of the design plant poles
(section 3.3.1). The compensator has poles at the same location as the design plant

zeros, except for the one nonminimum phase zero.

th th

The closed loop system is 21
th

order made up of the 9" order compensator

and the 12" order full order plant model. The closed loop poles and transmission

zeros are as follows,

MAy) = — 6.8919e—02
— 2.7549e—02 + 2.0416e—02i
— 2.4912e—02
~ 2.0959e—02
~ 1.5277e—02
— 7.4999e—03 + 5.9805e—03i
~1.1002e—02 + 3.2040e—04i
—1.0231e—02
~ 4.1474e—03
— 2.3795e—03
— 1.0849e—03 + 7.4794e—04i
— 2.8364e—04
— 7.1382e—04 + 2.0308e—05i
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— 5.6385e—04
— 5.0006e—-06
— 5.0000e—06

zeros = 9 full order plant zeros (given in Appendix C)

6 compensator zeros
3.3.4 Design Evaluation

In this section, singular value plots and time simulation will be used to
determine if the design in section 3.3.3 meets the specifications that were set in
section 3.3.2. The full 12th order plant model and the compensator based on the

reduced order model are used to evaluate the design.

Figure 3.3.4.1 shows the reaction of the outputs and controls to steps in the
command inputs. The PSM command step is 2%, the LOAD command step 1%, and
that of the LEVEL 3%. From this Figure it can be seen that specifications (a), (b),

and (c) are met.

Specifications (d) and (e) can be verified from Figure 3.3.3.2 which shows the
maximum and minimum singular values of C(s) versus frequency. The singular
values of the weight 1/W3(s) are included in this Figure to illustrate the role of

weighting functions in shaping singular value loop shapes.

Figure 3.3.4.3 shows the minimum and maximum singular values of S(s) and
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1/W1(s) versus frequency, and from it the multivariable gain and phase margins

discussed in section 2.2.2, can be calculated with k = 1.228 to be,

GM{ 2 5.39
GM/ < 0.55
|PM| 2 48.05 deg

Figure 3.3.4.4 shows the minimum and maximum singular values of the loop
transfer function T(s) = G(s)K(s). The crossover frequency range is from 1.5e—3 to
6.0e—3 as dictated by the weighting function W (s), which is about a decade below
the nonminimum phase zero. This zero does not seem to have a significant influence
on the performance of the control system, as would be expected. .

The Hm controller meets the posed specifications with an ch

5th

order
compensator, which is six states less than a 15" order compensator that would have

resulted from an Hm design if the full order plant was used.
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Figure 3. 2 1.1 :Singular values and condition no. of the plant
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100

Figure 3.2.4.1 :Singular values of T(s) = G(s)K(s)
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80

Figure 3.2.4.2 :Singular values of C(s)
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db

Figure 3.2.4.3 :Singular values of S(s) and 1/W1
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Figure 3.2.4.4 :Response to unit step in bank angle command
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Figure 3.2.4.5 :Si
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Figure 3.3.1.1 :Singular values and condition no. of the design plant
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outputs

controls

Figure 3.3.4.1 :Response to steps in command inputs
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db

Figure 3.3.4.2 :Singular values of C(s) and 1/W3
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60

Figure 3.3.4.3 :Singular values of S(s) and 1/W1
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Figure 3.3.4.4

:Singular values of T(s)
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CHAPTER 4
SENSITIVITY STUDIES

4.1 Introduction

In practical situations it is often not possible to determine plant parameters
very accurately when constructing a nominal plant model. If parametrié
(structured) uncertainty is present, a compensator, which was designed based on a
nominal model, could behave in an undesirable fashion when implemented on the
real plant. In section 2.5.2 it was mentioned that the H_ compensator basically
"inverts" the plant and substitutes some desirable dynamics in its place. As this
inversion process can be impeded by structured uncertainty, it is important to know

for which "size" of such uncertainty the controller will still perform adequately.

In this chapter a study is made of the sensitivity of eigenvalues and singular
values of a closed loop system to perturbations in the plant matrices, using tools
developed in Appendix D. These perturbations are intended to simulate structured
uncertainty in the plant.

4.2 Choice of Perturbation Matrices

A perturbation scheme described in this section, will be used to simulate

structured uncertainty. The choice of perturbation matrices should represent
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realistic possible changes in the physical plant, given the constraints of the nominal
linear plant model. Although different plants will behave differently to the same
perturbation, it is convenient to study the effect of plant perturbations in a common

framework. One such framework is described below.

Let G(s) be the nominal plant, with a state space description of,

The resulting closed loop system, with a configuration as shown in Figure 2.2.2.1,

has a state space description given by,

- Aq | Ba
§)=
cl 0
with
Ap | Bka
Ad =
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0
B,=|——m
cl
By

and
Cq=I Cp | Dka]
Now, suppose that the A matrix of the real plant is given by,
Ar = Ap + dAp
The real closed loop system is then given by,

Ay +dA, I By

C.(s)=
r
Ce1 I Dy

with

The effect of these changes dAc1 on the eigenvalues of Acl and the singular

values of C(s), will be computed in the next section, using the designs from Chapter

3.

4.3 Examples

In this section sensitivity studies will be performed on two fictitious plants

and the two closed loop systems described in Chapter 3, in order to determine how
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these systems will behave with respect to stability and performance, in the face of

structured uncertainty.

For each plant a perturbation matrix (as discussed in section 4.2) will be
chosen using physical knowledge of the plant and the equations for dAi and dai,
which were derived in Appendix D. The closed loop systems will then be perturbed,
and the effect of these perturbations on the closed loop eigenvalues and singular

values will be calculated.

In this section the conjecture will be made that lightly damped stable plant
modes give rise to closed loop systems, designed with the Hm methodology, which
are very semsitive to structured uncertainty. In section 4.3.1.2 the closed loop
system for the advanced aircraft is shown to be very sensitive to structured
uncertainty. However, when the dutch roll mode damping is increased in section
4.3.1.3, this is no longer the case. Similarly, the closed loop system for the milling
circuit is shown to be relatively insensitive to structured uncertainty in section
43.2.2. In section 4.3.2.3 a lightly damped pole pair is "introduced" into the
reduced order milling circuit of section.3.3.1, and the resulting closed loop system is

shown to be sensitive to structured uncertainty.

In section 4.3.3 two fictitious plants with unstable poles and zeros at the
same frequency location, are studied. The idea is to determine the effects of near
unstable pole zero cancellations on Hm designs, and the sensitivity of such designs to

structured uncertainty.
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4.3.1 Advanced Fighter Aircraft
4.3.1.1 Choice of dAp

In section 3.2.1 it was mentioned that the dutch roll mode of this aircraft is
very lightly damped (¢ 4= 0.021). It is thus conceivable that the controller
designed in section 3.2.3 will be sensitive to changes in stability derivatives which
determine the dutch roll mode. These derivatives can be found from

approximations of the aircraft modes given in [17,19]. They are,

dutch roll mode: wg s N b (4.3.1.1)
L )
B 8
20qug ¥ — (Y, + N)) ——— (NI” -—)
N U
g 0
1 L g
roll mode: 8- LI’) + — (Nl’i -—) (4.3.1.2)
Tr Nﬂ U0
1 g | LB
spiral mode: 8T, —(——-L;) (4.3.1.3)

with the characteristic polynomial of the open loop plant,

1 1
A=+ s+ )5 + 2Gqugs + uy)

The stability derivatives that have a significant effect on the dutch roll mode for
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this plant a.reLb, N;?’N{" and NI’J

flight condition of the aircraft, it is important to know how much of a change in

. As these derivatives depend on the particular
these parameters will result in an unstable closed loop system.

Using the notation established in section 4.2, dAp can now be chosen to be,

[0 0 0 0]
Lbo 0 0
dAp=e =eP ;eeR (4.3.1.4)
NﬂNp N O
0 0 0 O
with
PloO
=€
010

The range of ¢, for which the closed loop system is stable, can be determined by
using this perturbation matrix dA o in equation (12) of Appendix D. This equation

can be written as follows, for a particular d)‘i of the closed loop system:

v Ttk

2
d\, = €7 + € 2 (4.3.15
i Tk
k#i
Pi{o
. R
with %= Vi . Y

Equation 4.3.1.5 shows that the first term will dominate as ¢ - 0, but that the

second term can be large if two or more eigenvalues are close together i.e.
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Equation (35) in Appendix D can be used to determine the effect of different

values of ¢ on the closed loop frequency response.
4.3.1.2 Plant Perturbations

In this section, the plant will be perturbed using dAp given in section 4.3.1.1.
The idea is to study the effect of this perturbation on the plant model and then on
the closed loop system. A question that needs to be answered is: Does a study of
the perturbed plant model give an indication as to how sensitive the closed loop

system will be to structured uncertainty in the plant model?

Figure 4.3.1.1 shows what happens to the real part of the poles of the plant
model for values of ¢ ranging form — 0.2 to 0.2 (see equation 4.3.1.4). The plant

becomes more unstable as ¢ becomes increasingly negative.

Figure 4.3.1.2 shows the percentage error in the maximum singular value of
the plant model G(s) for ¢ = — 0.05 and 0.05 . The maximum singular value of the
plant seems to be the most sensitive to changes in ¢ near the frequency of the dutch
roll mode, which is determined by N b according to equation 4.3.1.1. Note that a 5%
downward change in the stability derivatives given in equation 4.3.1.4 results in an
78% error in the maximum singular value of the plant at the dutch roll mode

frequency!
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Figure 4.3.1.3 shows what happens to the real part of four of the ten closed
loop poles which are the closest to the jw — axis, for values of ¢ ranging form — 0.2
t0 0.2 (€ as defined in equation 4.3.1.4). These four poles correspond to the poles of
the plant model and are chosen to study the stability of the closed loop system. The
figure shows that the closed loop poles at the mirror image of the spiral mode pole
and the roll mode pole do not change much as a function of e. However, the closed
loop poles corresponding to the dutch roll mode pole pair change significantly and
the closed loop system actually becomes unstable for ¢ = — 0.059. Thus a 5.9%
downward change in the stability derivatives given in equation 4.3.1.4, results in an
unstable closed loop system. This is of particular concern since the stability

derivatives can most likely not be determined to better than within 5%.

Figure 4.3.1.4 shows the percentage error in the maximum singular value of
the closed loop system C(s) for ¢ = — 0.05 and 0.05 . The maximum singular value
of the closed loop system seems to be the most sensitive to changes in ¢ near the
frequency of the dutch roll mode, determined by N b according to equation 4.3.1.1.
Note that a 5% downward change in the stability derivatives given in equation
4.3.1.4, results in an 400+ % error in the maximum singular value of the plant at the
dutch roll mode frequency! Figure 4.3.1.5 shows the minimum and maximum

singular values of the closed loop system C(s) for e = —0.05 and 0 .

From Figures 4.3.1.4 and 4.3.1.5 it would seem that the closed loop system
will be severely affected by disturbances with the same frequency as the dutch roll
mode. Figure 4.3.1.6 however shows that a step in the bank angle command results

in a closed loop response with € = — 0.05, which is almost exactly the same as when
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¢ = 0. This is because the step function does not have significant frequency content
at the dutch roll mode frequency. Figure 4.3.1.7 shows that the closed loop system

goes unstable for ¢ = —0.1.
4.3.1.3 Plant Perturbations with Increased Dutch Roll Damping

From the previous section it is evident that the Hm controller design for the
advanced fighter aircraft is very semsitive to plant structured uncertainty. This
seems to be largely due to the lightly damped dutch roll mode. The aim of this
section is to demonstrate that the lightly damped mode is indeed the culprit. The
damping ratio of the dutch roll mode will thus be increased "artificially", and an Hm
compensator will be designed for this "new" plant. The plant perturbations done in
section 4.3.1.2 will then be repeated and, hopefully, the "new" Hm controller design

will be less sensitive to structured uncertainty.
4.3.1.3.1 The "New" Plant and "New" Compensator

The damping of the dutch roll mode can be increased by using the matrix
decomposition given in Appendix A, Theorem 1,i.e. A=V A W. A is a diagonal
matrix with the eigenvalues of the A matrix along its diagonal. The columns of V

are made up of the right eigenvectors of A and W = vL,
The real parts of the dutch roll pole pair are multiplied by a factor of 10.3 in

the matrix A to give a damping ratio of (; = 0.2114, resulting in a new diagonal

matrix conveniently called Anew' The plant poles associated with the roll and the
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spiral modes remain unchanged. The new A matrix, Anew is calculated as follows,

Arew = Viiew W

The B, C, and D matrices of the plant were left unchanged.

An Hm compensator was designed for this plant using the same weighting
functions and Ymin given in section 3.2. As the design documentation is similar to

what was given in Chapter 3, it will not be repeated here.
4.3.1.3.2 "New" Plant Perturbations

The "new" plant is perturbed using the same dAp that was used in section
4.3.1.2. Figure 4.3.1.8 shows what happens to the real part of the poles of the
"new" plant model for values of ¢ ranging form — 0.2 to 0.2 . The plant becomes

more unstable as ¢ becomes increasingly negative.

Figure 4.3.1.9 shows the percentage error in the maximum singular value of
the "new" plant model G, (s) for ¢ =- 0.05 and 0.05 . It is evident from this
figure that the damping ratio of the dutch roll mode has been increased
significantly. The percentage error in the maximum singular value of Gpew(8) at
the dutch roll mode frequency is now only 5%, instead of 78% as Figure 4.3.1.2 had

shown.
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Figure 4.3.1.10 shows what happens to the real part of the "new" plant poles
as part of the closed loop poles, for values of € ranging form — 0.2 to 0.2 . These
four poles are the closest to the jw — axis and are thus chosen to study the stability
of the closed loop system. The figure shows that the pole at the mirror image of the
spiral mode pole and the roll mode do not change much as a function of e. The
"new" dutch roll mode pole pair changes significantly, as was the case in Figure
4.3.1.3, with the difference being that the closed loop system now only becomes
unstable when ¢ reaches — 0.43. Thus it takes a 43% downward change in the
stability derivatives given in equation 4.3.1.4, to result in an unstable closed loop

system; which is a significant improvement over results shown in Figure 4.3.1.3.

Figure 4.3.1.11 shows the singular values of the "new" closed loop system

Cnew(s) for ¢ = — 0.1 and 0. The improvement over Figure 4.3.1.5 is evident.

4.3.2 Milling Circuit
4.3.2.1 Choice of dAp

As far as the milling circuit is concerned, there does not seem to be a specific
perturbation matrix to which the controller designed in section 3.3.3, will be

particularly sensitive. dAp is thus chosen to be,

dAp =€ Ap ;e€R (4.3.2.1)
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4.3.2.2 Plant Perturbations

The milling circuit given in Appendix C, will be perturbed as described in
section 4.2, using dAp given in section 4.3.2.1. The effect of this perturbation on

the 12"'h order plant and the 21th order closed loop system will be studied.

Figures 4.3.2.1 and 4.3.2.2 show what happens to the real part of the plant
poles (1 — 7 and 8 — 12 respectively), as ¢ changes form 0.2 to —0.2.

Figure 4.3.2.3 shows the percentage error in the maximum singular value of
the plant model G(s) versus frequency, for ¢ = — 0.1 and 0.05. The maximum
singular value of G(s) is clearly not very sensitive to this particular plant

perturbation.

Figure 4.3.2.4 shows the singular values of the closed loop system C(s) for
€ =—0.2 and 0. Note that a 20% downward change in the elements of the plant A
matrix does not have a significant effect on the singular values of the closed loop

system. In fact the closed loop system remains stable for ¢ > —0.61.
4.3.2.3 Plant Perturbations with a Lightly Damped Mode

A lightly damped version of the reduced order milling circuit model of
section 3.3.1 is used here to show how sensitive such models are to structured

uncertainty. The model is 6th order with one complex conjugate pole pair which

has a natural frequency w, = 0.019 and a damping ratio of ¢ q = 0.98. Using the
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same method as described in section 4.3.1.3.1, the pole pair is changed to,
— 3.4963e—04 + 7.4962e—03i
which results in w, = 0.0075 and ¢ q = 0.047. The other poles are left intact.

An Hm compensator was designed for this "new" plant Gnew(s)’ using the
weighting functions and v . of section 3.3.3, and the resulting closed loop system
Cnew(s) will be used for perturbation studies. The perturbation matrix has the
same structure as given in equation 4.3.2.1, where Ap is now the "new" A matrix of

the plant.

Figure 4.3.2.5 shows the percentage error in the maximum singular value of
Gnew(s) for ¢ = — 0.05 and 0.05. The peak at the approximate value of w_ shows
that this plant is now very sensitive to structured uncertainty, when compared to

Figure 4.3.2.3.

Figure 4.3.2.6 shows the singular values of the closed loop system C__(s) as
a function of frequency for ¢ = — 0.05 and 0. It is clear that the closed loop system
is severely affected by only a 5% downward change in the elements of Ap. In fact
Cnew(s) actually goes unstable for ¢ ¢ —0.068 , i.e. a 6.8% downward change in the
elements of Ap results in an unstable closed loop system!
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4.3.3 Fictitious Plants with Unstable Poles and Zeros

Two fictitious plants were created to show the effects of approximate
unstable pole zero cancellations on H‘m designs and their state space descriptions are
given in Appendix E. Both plants have an unstable pole and a transmission zero at
the same location s = 1. The directions of this pole and zero are orthogonal to each
other in the case of plant I, and nearly in the same direction in the case of plant II.
It is well known from [20] that such systems have inherent limitations with respect

to achievable performance, independent of the design method used.

The directions of the pole (vpl) and zero (v,,) at s = 1 for plant I are,

0 1.0000e+00
v, = | 4.7450e—01 v, = 0
p 1.0000e+00 0

These directions are orthogonal to each other so that this does not represent a pole

zero cancellation, despite the fact that the pole and zero have the same location.

The directions of the pole (vpz) and zero (v,,) at 8 = 1 for plant II are,

1.0000e+00 1.0000e+00
Voo = | 4.7450e—04 V0 = 0
P 1.0000e—03 0

These vectors are approximately in the same direction, so that this does represent a

near pole zero cancellation.
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H_ designs were carried out for both plants and the weights used are shown
in Appendix E. As expected, the nominal design for plant I gives much better
results than the one for plant II as indicated by 7, . and ||Sg (s)|| (infinity norm
of the sensitivity transfer function matrix of the fictitious plant and its
compensator) of the two plants. For plant I, v . = 2.7 and ISg.(8)l, = 2.15, and
for plant II, . = 750 and "sﬁc(s)"m = 527. The large value of . for plant II

is expected due to the inherent limitations of such designs [20].

These plants were perturbed to determine how sensitive Hm controllers
designed for these plants are to structured uncertainty. For plant I, its A matrix
multiplied by ¢, was used as the perturbation matrix dAp. Figure 4.3.3.1 shows the
singular values of the closed loop system Cﬁcl(s) for values of ¢ = 0 and — 0.36.
The closed loop system actually goes unstable for ¢ = — 0.37.

For plant II, the following perturbation matrix dAp was used,

This particular dA~p was chosen because it changes the direction of the pole at s = 1,
for very small values of e. Figure 4.3.3.2 shows the singular values of the closed
loop system Cg o(s) for values of ¢ = 0 and — 0.008. The closed loop system
actually goes unstable for ¢ = — 0.009. As expected, the H@ controller for plant II is
very sensitive to structured uncertainty, particularly if this uncertainty results in a

pole zero cancellation.
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4.4 Conclusions

The results shown in section 4.3.1.2 indicate that the nominal H controller
designed for the aircraft in Chapter 3, is totally inadequate when it comes to dealing
with plant structured uncertainty. Note that singular value plots prove to be
invaluable in detecting this inadequacy which cannot be seen from the time

simulation in Figure 4.3.1.6.

.When the damping of the dutch roll mode is increased significantly in section
4.3.1.3, the Hm controller designed for this "new" plant is shown to be reasonably
insensitive to plant structured uncertainty. Some practical way should be found to
implement the "artificial" increase in the damping ratio of the lightly damped pole
pair. This will be addressed in Chapter 5 where several ways of "desensitizing" a

lightly damped plant to structured uncertainty, will be presented.

In section 4.3.2.2 it was shown that the H_controller designed for the milling
circuit in Chapter 3, is reasonably robust to structured uncertainty. However, when
a lightly damped pole pair is "artificially" introduced into the milling circuit model
in section 4.3.2.3, the resulting closed loop system is very sensitive to structured

uncertainty, particularly at the natural frequency Wy of this lightly damped mode.

Results shown in section 4.3.3 agree with the intuitively obvious, i.e. that
plants with near unstable pole zero cancellations are sensitive to structured
uncertainty and difficult to control. The fact that the controller designed for plant I

amplifies disturbances is predicted by [20]. The poor closed loop singular value
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shapes for plant II are due to the approximate pole zero cancellation that occurs.
This design is also extremely sensitive to structured uncertainty. The direction and
location of the nonminimum phase zero could possibly be changed by relocating the
actuators and sensors of the plant. The plant should then be easier to control and

less sensitive to structured uncertainty.

In section 4.3.1.2 the following question was asked: Does a study of the
perturbed plant model give an indication as to how sensitive the closed loop system
will be to structured uncertainty in the plant model? From the figures presented
here, e.g. Figures 4.3.1.2, 4.3.1.9, 4.3.2.3 and 4.3.2.5, the answer would seem to be a
definite yes. Large "peaks" with steep slopes (corresponding to lightly damped pole
pairs) in the plots of maximum plant singular value error versus frequency, seems to
indicate that the corresponding Hm closed loop system will be extremely sensitive to

structured uncertainty.

From the results shown in this chapter one could conclude that the designer

should do the following before an H  design is attempted:

° calculate the poles and zeros plus their direction, of the plant model
and look for approximate unstable pole zero cancellations.

. Plot the error in the maximum singular value of the plant, when the
plant is perturbed with a well chosen "practical" perturbation, and

look for large "peaks" with steep slopes in these plots.

If there are approximate pole zero cancellations in the plant model and/or large
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"peaks" with steep slopes in the plot of the maximum singular value error, the plant
should be "robustified" by using methods described in Chapter 5, before an Hm

design is attempted.

From the evidence presented in sections 4.3.1.2 and 4.3.1.3, and sections
4.3.2.2 and 4.3.2.3, it would seem fair to say that the Hm methodology should be
applied to plants with lightly damped pole pairs as is, only if the plant, and, in
particular, the resonant frequencies of the lightly damped pole pairs, is known
exactly, which is hardly ever the case. This and any other linear controller design
method e.g. LQG/LTR, which cancels the stable part of the plant dynamics —only
approximately in real applications—, will have similar problems in dealing with
structured uncertainty in the parameters of plants with lightly damped modes.
Approximate unstable pole zero cancellations are difficult to deal with, no matter

which design method is used.
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Figure 4.3.1.1 :eps vs. real part of plant poles G(s)
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% error

Figure 4.3.1.2 :% error in the maximum singular value of G(s)
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Figure 4.3.1.3 :eps vs. real part of plant poles in C(s)
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7% error
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Figure 4.3.1.4 ;%
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Figure 4.3.1.5 :Singular values of C(s)
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outputs

controls

Figure 4.3.1.6 :Response to unit step in bank angle command (eps = -.05)
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L5 Figure 4.3.1.7 :Response to unit step in bank angle command (eps = -.1)

0 ............................ S L e W LW NP A A VA WA

_0.6 It 1 A I I L 1
0 10 20 30 40 50 60 70 80

e
(o]
-
4

0.4} 4
]
g

= 0.2¢ 4
o
Q

0 '{ e e e W P

_0'2 i A I i i A L
0 10 20 30 © 40 50 60 70 80
time/sec

91



Figure 4.3.1.8 :eps vs. real

part of "new’ plant poles
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7% error

Figure 4.3.1.9 :% error in the maximum singular value of Gnew(s)
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Figure 4.3.1.10 :eps vs. real part of '"'new” plant poles in Cnew(s)
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Figure 4.3.1.11 :Singular values of Cnew(s)
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Figure 4.3.2.1 :eps vs. real part of plant poles (1 - 7)
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Figure 4.3.2.2 :eps vs. real part of plant poles (8 - 12)
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Figure 4.3.2.3 :%

error in the maximum singular value of G(s)
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Figure 4.3.2.4 :Singular values of C(s)
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Figure 4.3.2.5 :Z error in the maximum singular value of Gnew(s)
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Figure 4.3.2.6 :Singular values of Cnew(s)

10-4 10-3 ‘ 10-2

frequency in rad/sec

101



Figure 4.3.3.1 :Singular values of Cficl(s) for eps
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Figure 4.3.3.2 :Singular values of Cfic2(s) for eps = 0 and -.008
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CHAPTER 5
DESENSITIZING H_ DESIGNS TO STRUCTURED UNCERTAINTY

5.1 Introduction

In Chapter 4 it was shown that Hm controller designs for plants with lightly
damped poles are very sensitive to plant structured uncertainty. It was also shown
that, by increasing the damping ratio of these lightly damped poles "artificially",
the resulting closed loop system can be made relatively insensitive to this type of

uncertainty.

This chapter focuses on practical ways of increasing the damping ratio of
lightly damped poles of the advanced fighter aircraft, called inner loop
compensation. An "inside loop" is closed around the plant to increase the damping
of the lightly damped poles. The "new" plant with increased damping is
incorporated into the augmented plant P(s) described in Chapter 2, for which an H

compensator is then designed.

In section 5.3 a classical compensator designed for the aircraft described in
section 3.2.1, is compared to an inner loop compensated Hm controller with respect
to performance and robustness. As is well known, classical design methods utilize
loop feedback to increase the damping ratio of lightly damped poles, and are

traditionally used to design lateral—directional flight control systems for fighter
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aircraft.
5.2 Inner Loop Compensation

The type of inner loop compensation used to robustify a particular design,
depends on the physics of the problem and the amount of states that are available
for measurement. When all plant states can be measured, the control system
designer has the freedom to place all the plant poles and to exercise some control
over the eigenvectors, using full state feedback eigenstructure assignment ideas [5).
This method will be used in section 5.2.1 to alter the eigenstructure of the aircraft.
If all the plant states are not available for measurement or, if only partial state
feedback is needed to robustify the design, the method described in section 5.2.2 can
be used to increase the damping of the dutch roll mode of the aircraft.

5.2.1 Full State Feedback Inner Loop

In this section a new design plant model for the advanced fighter aircraft will
be constructed. In order for this new model to be less semsitive to structured
uncertainty, the damping ratio of the lightly damped dutch roll mode needs to be
increased. The plant model is controllable and all the states are assumed available
for measurement, so that full state feedback pole placement techniques can be
applied to achieve an increase in damping. This method was previously applied to

the design of pitch pointing flight control systems [21].
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The assumption that all the states of the advanced fighter aircraft are
available for measurement is, strictly speaking, only valid under test flight
conditions. Normally, the sideslip angle 8 is not measured and measurements of
yaw and roll rates (rb and pb) are provided by yaw and roll rate gyros. The bank
angle (¢) measurement is provided by a vertical gyro. Inner loop compensation can
be successfully applied to the aircraft without the need for additional sensors, as
shown in section 5.2.2. For plants in general, additional sensors may 'be needed to

accommodate this type of compensation.
5.2.1.1 Inner Loop Design

Following the notation used in previous chapters, let the open loop plant

dynamics be described by,

xp(t) = Apxp(t) + Bpup(t)
Now define the following full state feedback law,
up(t) =-G xp(t) + u2(t)

with u,(t) a8 shown in Figure 2.3.1. The closed loop dynamics are,

Jcp(t) = [A, —B_G] x(t) + B,uy(t)
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The freedom exists to place all four of the plant poles and to retain two out
of the four entries of each eigenvector of Ap. G was chosen such that the dominant
eigenvector values remain the same, i.e. Ap and [Ap - BpG] have approximately the
same eigenvectors. The dutch roll mode pole pair was changed to be the same as
the "artificial" pole pair that was chosen in section 4.3.1.3.1 ({d = .2114). The
other two poles were left as is. In choosing G this way, the matrix [Ap - BpG] is a8
close to the matrix Anew of section 4.3.1.3.1 as possible. The numerical values of
the full state feedback gain matrix G and the old and new eigenvalues and

eigenvectors, are given in Appendix B, section B.6.

Figure 5.2.1 shows the singular values of G _(s) and its condition number
versus frequency. Comparing Figure 5.2.1 to Figure 3.2.1.1, it is evident that the

damping ratio of the dutch roll mode has been increased significantly.

The zeros of the plant remain at their open loop locations, as full state
feedback does not change the location of these zeros. They can, however, become

uncontrollable or unobservable if pole zero cancellations result from pole placement.

The state space description of the new plant with increased damping, is given

by,

In choosing the full state feedback gain matrix G, the objective was not to

achieve "good" performance or even nominal stability but, rather, to make the final
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Hm controller design less sensitive to structured uncertainty. The pole placement
technique is used to increase the damping ratio of the dutch roll mode and to
maintain the directional properties of the matrix Ap. Performance and stability

issues are addressed by the Hm compensator.
5.2.1.2 H_Compensator Design and Evaluation

In this section an Hm compensator will be designed for the new plant
G ow(8) described in section 5.2.1.1. The design specifications and weighting

functions used are as given in section 3.2.2.

Using the vy — iteration procedure described in section 2.5.1, the minimum
value of v, which does not give rise to excessive control action, was found to be
Ymin = 1.3. The poles and transmission zeros of the Gth order compensator are,
Ai(Ak) = — 9.4829e+-00 + 4.3262e+00i

— 3.5603e+01
— 6.6843e+00
2 @ - 1.0000e—04

Zeros = — 6.1480e—01 + 2.8437e+00i (damped dutch roll mode)
—4.2730e-01 (roll subsidence mode)
—4.8717e-01 (mirror image of spiral
mode)
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Figures 5.2.2, 5.2.3 and 5.2.4 show the singular values of the loop T . (s),

sensitivity S _(s), and closed loop C ey (8) transfer function matrices respectively.
From Figure 5.2.3, k can be found to be k = 1.231, according to equation 2.2.2.1.
This gives the controller the following gain and phase margins in each loop

simultaneously and independently,

GMT 2 5.33
GM| < 0.55
PM > 47.93 deg

It would seem that the controller designed here exhibits good nominal
performance characteristics. The question that remains to be asked is : Will the
new H_ controller design be "less" semsitive to structured uncertainty than the one

designed in Chapter 3?7 This question will be answered in the next section.
5.2.1.3 Sensitivity Studies

In this section perturbation studies will be performed in the same manner as
was described in section 4.3. The perturbation matrix dAp used here is the one
described in section 4.3.1.1, and the A matrix of the "true" plant, including the

structured uncertainty is given by,
A = Ap + dAp - BpG

newt

where G is the full state feedback gain matrix.
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Figure 5.2.5 shows the percentage error in the maximum singular value of the
new plant Gnew(s)’ for e = — 0.05 and 0.05 (see state space description in section
5.2). This figure is almost exactly the same as Figure 4.3.1.9, which portrays the
error in the maximum singular value of the "artificial" plant. The effect of the

dutch roll mode damping is evident when Figure 5.2.5 is compared to Figure 4.3.1.2.

Figure 5.2.6 shows what happens to the real part of the four closed loop poles
which are at the same location as the poles of Gnew(s), for values of ¢ ranging from
— 0.2 to 0.2. Again, the damped dutch roll mode pole pair changes significantly
—compare with Figure 4.3.1.10—, but the closed loop system goes unstable only when
€ reaches — 0.51. Thus, the closed loop system remains stable even when the
stability derivatives in equation 4.3.1.4 are simultaneously reduced by 50%.

Figure 5.2.7 shows the singular values of C___(s) for ¢ = — 0.1 and 0, and

new
the improvement over Figure 4.3.1.5 is evident.

5.2.2 One State Feedback Inner Loop

In this section a new design plant model for the advanced fighter aircraft will
be constructed. In the design of classical flight control systems (FCS), it is
standard practice [17] to feed back the yaw rate measurement (rs) to the rudder (6r)
in order to increase the damping of the dutch roll mode. This will be done here and
the feedback will consist of a constant gain represented as a "sparse" matrix G

shown in equation 5.2.1.

110



5.2.2.1 Inner Loop Design

Following the notation established before, let the open loop plant dynamics

be described by:

xp(t) = Apxp(t) + Bpup(t)
Now define the following feedback law:

up(t) =-G xp(t) + u,(t)

with u2(t) as shown in Figure 2.3.1. The inner loop closed loop dynamics are:

Scp(t) = [A, ~B,G] x(t) + B u,(t)

Consequently, the state space description of the new plant with increased

damping, is given by:

Gpewl®) =

The feedback gain matrix G, is given by:

00 0 O
G =

111
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where 893 will determine the damping increase of the dutch roll mode.

Figure 5.2.8 shows the singular values of G _(s) and its condition number
versus frequency, for 83 = 0.4 which corresponds to a dutch roll mode damping
ratio of 0.206. Comparing Figure 5.2.8 to Figure 3.2.1.1, it is evident that the

damping ratio of the dutch roll mode has been increased significantly.
5.2.2.2 Hm Compensator Design and Design Evaluation

‘In this section an H_ compensator will be designed for the plant G _(s)
described in section 5.2.2.1 with 8oz = 0.4. The design specifications and weighting

functions used are as given in section 3.2.2.

Using the 7 — iteration procedure described in section 2.5.1, the minimum
value of 7, which does not give rise to excessive control action, was found to be
6th

in = 1-3. The poles and transmission zeros of the

Ymi order compensator are,

MAY = —9.2811e+00 £ 4.2051e+00i
— 3.5637e+01
— 6.6046e+00
2 @ — 1.0000e—04

Zeros = — 5.7158e—01 # 2.7102e+00i +~ new plant poles
— 2.1592e—01 # 2.0054e—01i
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Figures 5.2.9, 5.2.10 and 5.2.11 show the singular values of the loop T  _(s),

sensitivity Snew(s), and closed loop C_ _ _ (s) transfer function matrices respectively.

new

The figures presented here show that the controller exhibits good nominal
performance characteristics. Again the question that remains to be asked is : Will
the new Hm controller design be "less" sensitive to structured uncertainty than the

one designed in Chapter 3? This question will be answered in the next section.
5.2.2.3 Sensitivity Studies

In this section perturbation studies will be performed in the same manner as
was described in section 4.3. The perturbation matrix dAp used here is the one
described in section 4.3.1.1, and the A matrix of the inner loop modified actual

plant is given by:

Apewt = A, +dA -B G

where G is the feedback gain matrix of section 5.2.2.1.

Figure 5.2.12 shows the percentage error in the maximum singular value of

the new plant G___(s) for ¢ = — 0.05. The effect of the dutch roll mode damping is

new
evident when Figure 5.2.12 is compared to Figure 4.3.1.2. The percentage error at
low frequencies —below the dutch roll mode frequency— has also decreased, but this
is not a factor in determining the robustness of the H_ controller to structured

uncertainty, as the controller for the full state feedback inner loop compensated
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plant —see section 5.2.1.3—, indicates.

The closed loop system goes unstable only when e reaches — 0.46. Thus, the
closed loop system remains stable even when the stability derivatives in equation

4.3.1.4 are simultaneously reduced by 46%.

Figure 5.2.13 shows the singular values of C___(s) for ¢ = — 0.1 and 0, and

new
the improvement over Figure 4.3.1.5 is evident.

The H_ controller becomes more robust as 893 is increased. Column 2 of
Table 5.2 shows how the damping ratio ({;) of the dutch roll mode changes for
different values of 893- Column 3 shows for which value of ¢ the closed loop system
Cnew(s) will go unstable.

Table 5.2 seems to indicate that 893 should be made as large as possible to
achieve a robust closed loop design. This can be misleading; as 893 increases the
other two poles of [Ap - BpG] become lightly damped for values greater than 1.6.
Hence, 83 = 1.1 is a good choice for this particular plant, i.e. the closed loop
system will remain stable even if the stability derivatives in dAp are reduced by
106% (— € x 100). g, was chosen to be 0.4 in section 5.2.2.1, such that the
resulting H  design could be compared to the one designed for the "artificial" plant
of section 4.3.1.3.1 ((d 8 0.21).
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Table 5.2 :Robustness of the Hm controller as a function of 893

823 Cd €
0 0.0210 0.060
0.01 0.0255 0.075
0.05 0.0434 0.12
0.1 0.0661 0.18
0.2 0.1119 0.28
0.3 0.1587 0.38
0.4 0.2064 0.46
0.5 0.2550 0.55
0.6 0.3047 0.64
0.7 0.3550 0.72
0.8 0.4070 0.80
0.9 0.4596 0.88
1.0 0.5128 0.97
1.1 0.5665 1.06
1.2 0.6204 115
1.3 0.6740 1.24
1.4 0.7269 1.35
1.5 0.7787 1.46
1.6 0.8292 1.60
1.7 0.8780 1.25
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5.3 Other Possible Desensitizing Measures
5.3.1 Classical Compensator

Classical design methods are traditionally used to design lateral—directional
flight control systems (FCS) for fighter aircraft [17). These designs, although
somewhat ad hoc in a multivariable sense, are popular because of their robustness to
structured uncertainty, i.e. uncertainty in the relevant stability derivatives, in the
plant model. The aim of the classical compensator is to meet specifications similar
to those presented in section 3.2.2 and, in particular, feedback is used to increase
the damping of the dutch roll mode in order to make the closed loop dutch roll

characteristics robust to structured uncertainty.
5.3.1.1 Compensator Design and Evaluation
A classical compensator designed for the aircraft [17] is shown in Figure

5.3.1. The plant model is controllable and three of the states (ps’ I and ¢s) can be

measured.

The transfer function matrix for a (3 x 2) classical compensator is givezi by,

5, ~Pp
s 1= K.(s) | ¢.— %
- T

r 8
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with ¢, the bank angle command and

3(.2s + 1)
Kc(s)= .04s + 1

O 0 —.88
s + 1.5

.66 0

K C(s) is 2 order and its state space description is given in Appendix B, section

B.7.

(.28 + 1) |
1 (0045 + 1) |~
- - a
) 0.66 = | airframe (P
0 +_;& N G(S) ¢b
- 5, -
I —0.8s8
(s + 1.5)

Figure 5.3.1 : Plant and Classical Compensator
5.3.1.2 Comparison — Classical versus the Inner Loop Compensated Hm Controller

In this section, a comparison will be made between the classical controller
designed in section 5.3.1.1, and the inner loop compensated Hm controller of section
5.2.1.2. The classically compensated system goes unstable with ¢ = — 1.01 (see
equation 4.3.1.4). In order to make a fair comparison, g3 = L1 is chosen from

Table 5.2, the value for which the Hm controller with inner loop compensation goes
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unstable for ¢ = —1.06.

Figure 5.3.2 shows the Bode plot of the closed loop transfer function between
the bank angle command ¢c and the bank angle ¢b, and the singular values of the
Hm closed loop system C
bandwidth.

new(s)' The two systems have more or less the same

Figure 5.3.3 shows the response of the classical system to a step in ¢c'
Figure 5.3.4 shows the response of the H  controller to the same command. The
step response of the classical system is slightly oscillatory and is also somewhat

slower than the step response of the Hm controller.

Figure 5.3.5 shows the response of the classical and Hm system to a rapidly
changing bank angle command with ¢ = 0. Figure 5.3.7 shows the response of the
two systems to the same command with ¢ = — 0.5 and gives an indication of the
performance robustness of the two systems. The systems are perturbed using the
perturbation matrix given in equation 4.3.1.4 with ¢ = — 0.5, i.e. the relevant
stability derivatives are reduced by 50%. When unperturbed, both controllers do a
reasonable job of following the command, but the classical system overshoots and
lags the Hm controller’s response by a small amount. The Hm controller follows the
shape of the command better than the classical system.  Both systems seem to
handle the perturbation well, with the H controller doing slightly better than the

classical system.
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The response of the controls that correspond to Figures 5.3.5 and 5.3.7, are
shown in Figures 5.3.6 and 5.3.8 respectively. The Hm controller seems to use the
controls more efficiently than the classical compensator. The controls commanded
by the classical compensator shows a significantly increase when the plant is
perturbed, whereas the controls used by the Hm controller are approximately the

same.

Figure 5.3.9 shows the response of the classical and Hm system to a sinusoidal bank
angle command with ¢ = 0. Figure 5.3.11 shows the response of the two systems to
the same command with ¢ = — 0.5. The corresponding controls are shown in
Figures 5.3.10 and 5.3.12 respectively. The frequency of the sinusoidal command
corresponds to the dutch roll mode frequency (w = 2.83 rad/sec). Both controllers
do a reasonable job of following the command, but the classically compensated
gystem response lags the Hm compensated system response and the command by a
significant amount. The outputs of both controllers are attenuated, as one would

conclude by looking at Figure 5.3.2.
5.3.2 Frequency Shifting

The basic idea with frequency shifting is to regard the lightly damped poles
as unstable poles, by shifting the jw—axis in the s—plane to the left. The Hm design
methodology then "thinks" that the lightly damped poles are unstable and, as a
result, the compensator will not try to cancel these poles with zeros. This method is
equivalent to having an exponential weight in the cost function of a Linear

Quadratic —LQ— regulator [22], and is illustrated in Figure 5.3.13.
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nev jw — axis = ~ o0ld jw - axis

X X

Figure 5.3.13 : Frequency Shifting

This method in conjunction with inner loop compensation should result in a
controller which is very robust, but which performs relatively poorly due to the fact
that the damping ratios of lightly damped pole pairs are not increased. There is,

thus, a trade off between robustness and performance.
5.4 Conclusions

Chapter 4 stressed the need for increasing the damping ratio of the lightly
damped dutch roll mode of the advanced aircraft before designing an H_
compensator for it, such that the resulting closed loop system will be robust to

structured uncertainty.

In this chapter some practical methods were presented to achieve this
increase in damping ratio. The method presented in section 5.2.2, where only one
state is fed back in an inner loop, seems to work well for this particular plant. The
increase in damping is achieved with a gain matrix G, without increasing the
dimensionality of the design plant model. The H controller designed in section
5.2.2.2 for this design plant model is reasonably insensitive to structured

uncertainty, as was shown in section 5.2.2.3.
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In section 5.3 a traditional classical compensator was designed for the
advanced aircraft. A comparison between this design and the Hm controller of
section 5.2.2 showed that the H_ design can be made to perform at least as well as
the classical design as far as robustness to structured uncertainty is concerned. The
performance of the Hw controller, however, is slightly better than that of the
classical controller —especially in the upper part of the controller bandwidth—, which

could make all the difference in combat situations.

The classical compensator has in its favor the fact that it is of low order
—two states—, and that it performs adequately under most circumstances. However,
the design of such a compensator is more of an art than a science, as SISO
techniques are used to design a compensator for a multivariable plant. As these
designs are somewhat ad hoc in a multivariable sense, they can be difficult to
reproduce for a different but similar plant. Usually, time consuming parameter

"tuning" is undertaken to get a satisfactory design.

The Hm compensator, on the other hand, is more complex —six states— and
performs slightly better than the classical compensator. The big advantage that the
H_ design method has over the classical design method, is that it has a strong
theoretical base and that it is a truly multivariable design technique. With the
complexity of the Hm design also comes design flexibility. Frequency specifications
are "built" into the design method, and nominal stability is guaranteed. The Hm
design methodology is easily reproducible, i.e. it is applied the same way to all
FDLTI plants and the tediousness of a lengthy trial and error design procedure, as

in classical control, is avoided. However, "robustifying" steps should be taken when
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required as was discussed in this chapter.

The frequency shifting technique does not address the question of increased
damping. The only guarantee that it provides is that the lightly damped pole pair
of the plant will not be canceled by Hm compensator zeros. This technique,
however, in conjunction with inner loop compensation could lead to very robust

designs, at the expense of very sluggish performance.
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Figure 5.2.1 :Singular values and condition no. of Gnew(s)
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db

Figure 5.2.2 :Singular values of Tnew(s) = Gnew(s)Knew(s)
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Figure 5.2.3 :Singular values of Snew(s)
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Figure 5.2.4 :Singular values of Cnew(s)
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7% error

80

Figure 5.2.5 :% error in the maximum singular value of Gnew(s)
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eps

Figure 5.2.6 :eps vs. real part of Gnew(s)'s poles in Cnew(s)
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Figure 5.2.7 :Singular values of Cnew(s)
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Figure 5.2.8 :Singular values and condition

no. of Gnew(s)
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100

Figure 5.2.9 :Singular values of Tnew(s) = Gnew(s)Knew(s)
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10

Figure 5.2.10 :Singular values of Snew(s)
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Figure 5.2.11 :Singular values of Cnew(s)
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% error

Figure 5.2.12 :% error in the maximum

singular value of Gnew(s)
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Figure 5.2.13 :Singular values of Cnew(s)
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20

Figure 5.3.2 :Closed loop frequency response of the 2 compensators
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CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

In this thesis the H  design methodology was applied to two "realistic"
plants, an advanced fighter aircraft and a milling circuit. It was shown that, while
the milling circuit closed loop system is robust to structured uncertainty, the
aircraft closed loop system is extremely sensitive to such uncertainty due to the very
lightly damped dutch roll mode of the plant. The reason for this is that the H
compensator cancels the lightly damped pole pair with zeros to make them
unobservable. When structured uncertainty is present, the lightly damped poles are
not canceled exactly and thus become observable, causing performance degradation
and, in addition, due to the fact that they are so close to the jw — axis, instability

can result for relatively small perturbations of the plant A matrix.

It was shown that Hm designs for plants with unstable poles and
nonminimum phase zeros, are reasonably insensitive to structured uncertainty,
unless there is an approximate unstable pole zero cancellation. In the latter case,
Hm designs delivered very bad performance and were extremely sensitive to
structured uncertainty. A relocation of plant sensors and actuators is a possible

solution to this problem.
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It was shown that the control system designer can determine, before an
actual Hm design is done, whether the resulting closed loop system will be sensitive

to structured uncertainty by studying the singular values of the design plant model.

A practical way of desensitizing Hm designs to structured uncertainty, called
inner loop compensation, was given in Chapter 5. The idea is to close an inner loop
around the plant to increase the damping of lightly damped pole pairs. This inner
loop compensated plant acts as the new design plant model for which an Hm
compensator is then designed. Resulting designs were shown to be robust to

structured uncertainty.

A classical controller for the aircraft was compared to an Hm controller with
inner loop compensation. Classical methods have traditionally been used for the
design of flight control systems for fighter aircraft, largely because such controllers
deliver adequate performance and are very robust to structured uncertainty. In this
thesis, it was shown that Hm controllers with inner loop compensation can be made
as robust to structured uncertainty as their classical counterparts, while delivering
slightly better performance. LQG/LTR controllers with inner loop compensation

should give similar results.

Furthermore, the Hm design methodology was shown to be a very powerful
multivariable design technique. The ease with which frequency specifications can be
accommodated in the design procedure, and the fact that H_ controllers can be
made robust to structured uncertainty, makes this design method a tool that every

control engineer should have in his/her toolbox.
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6.2 Directions for Future Research

In this thesis structured uncertainty was indirectly incorporated in the Hm
design methodology. Research should be done on how to include this uncertainty
into the design methodology directly. The structured singular value introduced by
Doyle [23,12] is a step towards this goal.

The Hm compensator design for the advanced fighter aircraft addressed only
one operating point in the lateral control problem. Hu'3 compensators should be
designed for different flight conditions and a global controller could be constructed

using gain scheduling ideas [24].

In the design of an H controller for the milling circuit, weighting functions
were chosen which gave rise to different time responses for the milling circuit
outputs. Research could be done to find a way to incorporate time domain

specifications directly into the Hm design framework.

The ultimate success of a design methodology lies in its acceptance by the
control engineering community. To this end, the Hm design methodology should be
applied to many more practical problems such that the "average" control engineer

becomes familiar with its use.
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APPENDIX A
ABSORBING THE IMPROPER WEIGHT W3(s) INTO THE PLANT G(s)

In this appendix, the state space description of the transfer function
matrix W4(s) G(s), will be derived. W(s) is assumed to be an improper diagonal

weighting function, and G(s) a strictly proper transfer function.
A.1 Mathematical Preliminaries

1 Theorem : Suppose that the n x n matrix A has n distinct
eigenvalues ’\i and n linearly independent eigenvectors v;. Now if v; make up the

columns of a matrix V, the matrix A can be expressed in terms of V, a diagonal
1

matrix A, and V"~ as follows,

2 A=VAW
with

3 w=vl

The rows of W contains the left eigenvectors ( w'f ) of A and the eigenvalues of A

can be found along the diagonal of A.

Proof see [13] page 190
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n
4 Remark : From (1) it is evident that A= % Aiviw'ir
i=1
5 Theorem : For the same matrix A as described in (1), where A is

assumed to be nonsingular, the following equations hold,

n
6 iilviwl = In
T _ ,\—1 T
7 A A Aiviw i

Proof From the definition of an eigenvector and an eigenvalue follows
that
8 A v, = '\ivi

now multiply (8) from the right with w; and summing over i,

(9) follows from (4) and implies that (6) is true.

To prove (7), just multiply (8) from the left by A~ and from the right by wci[‘.
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A.2 The State Space Description Of W,(s) G(s)

The m x m transfer function G(s) can be expressed as

10 G(s)=C (sl —A)'B
with

A v, = ’\ivi

T T

as described in section A.1. G(s) can also be written in a residue expansion form as

follows,
n Ri
11 G(s)= %
i=1 8 —A,
1
with
- T
Ri =C ALK B
8
With W3(s) = - I, the product W3(s) G(s) becomes,
Wys) (o) = — B —1
12 8 8) =
3 k i=l s - )

Applying partial fraction expansion to each term in the sum in (12) gives,
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1 n A: R.
Wa(s) G(s) = — I [—1_1- +R.]
k i=1% s— ) 1
T
1 n AV.W. n
13 =_c[ g i1l Ly v.w?]s
k i=1 s - A j=1 11

now letting results (7) and (6) from (5) act on the first and second summations of

(13) respectively, it follows that,

1 n viw'f
14 w3(s)G(s)=—[CA 5 ————B+CB]
1 -1
15 =——[CA(s1n-A) B+CB]
k

The new C and D matrices of the state space description for the transfer function

shown in (15), are given by,

1.
C. _=—=CA
new ~

- C
D =—CB
new

The A and B matrices of the plant stay intact. This concludes the derivation of the

state space description of Wq(s) G(s).

153



APPENDIX B
AIRCRAFT EXAMPLE

In this appendix the aircraft’s equations of motion are given in terms of the
flight condition and aircraft stability derivatives. Nomenclature used, is given in
section B.3. State space descriptions for the augmented plant and the H
compensator, are given in section B.4. Section B.5 contains a
controllability /observability study of the closed loop system of section 3.3.3.
Numerical data that relates to the full state feedback inner loop design of section
5.2.1.1 is given in section B.6. The state space description of the élassica.l

compensator of section 5.3.1.1 is given in section B.7.
B.1 Flight Conditions

The flight condition used in this example is given by straight and level flight
at,
mach number M = 0.6
altitude = 35,000 ft
true speed VT 0= 584 fps
trim angle of attack o = 12.4 deg (body axis)
flight path angle T =0 deg

load factor n =1g
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B.2 Equations Of Motion

The lateral equations of motion given here are for straight, wing level,
horizontal flight. The equations are expressed in arbitrary body fixed axis and

results in the following state space description.

x=Ax+Bu
y=Cx
with
x= (B, By Ty §) "
u=(5,,8)"
y = (dy, e
and
. g cos 0]
Yv sin @, —08 a T
a=|Lp L L} 0
Nb NI’) Nx’.' 0
|0 1 tan 4, ]
Y Y]
2 R
. Ly L
Nba. N(’Sr
[0 0
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With a, = 00 = 0, and 00b = 12.4 deg, the state space matrices for the stability

axis are given by,

[ —.0868 0 -1 .055]
-31.31 1340 2.352 O
A=| 7.971 -0879 —.5890 O

0 1 0 0
0 .0179 ]
6.569 6.251
B = .3064 -2.583
0 0

c—[000 102
100 0

B.3 Nomenclature

n

stability axis

b body axis

J¢] side slip angle (deg)

p roll rate (deg/sec)

T yaw rate (deg/sec)

¢ roll angle (deg)

&, aileron deflection from trim (deg)
8 rudder deflection from trim (deg)
Y, resultant aerodynamic force (1/sec)
L rolling moment
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N yawing moment
a, trim angle—of—attack (deg)

0, trim pitch angle (deg)

B.4 State Space Descriptions

Let the plant and weights have state space descriptions as given in equation

3.4.4 (section 3.4). The augmented plant can then be described as follows.

A Ap 0 }
-_Bwlcp Agt
[0 B
[B1 | B2] = P
wl Bwle
- 1
lecp CWl
[_‘il__] o o
C2 Cnew 0
—Cp 0
I
[ Dyt _leDp
D D
[Dn % D12 _ | oo v
21 22 0 new
I —Dp

with Cn ow and D ew 3 derived in Appendix A.
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The state space description of the Hm compensator is,

with

1=

k2 =

—6.8404e—01 —3.7683e—02 —8.8967e—01 ]
~2.6972e+01 —4.1531e+01  4.2523¢+00
1.0408e+02 4.0203e+00 —1.8219e+01
~3.8345e—05 1.0000e+00 ~2.3657e—08
0 0 0

0 0 0]

[—1.5726e—01 3.4197e—01 1.1150e+00 ]
—2.3326e+02 3.7680e+02 4.9125e+01
2.3199e+01 —3.7342e+01 —1.7676e+-02
—9.7435e—03 1.2278e—08 4.0030e—08
0 —1.0000e—04 0

0 0 —1.0000e—04 |

-

Ay Axo ]

-

—3.9238e—05 —1.5801e—07 |
—4.6361e—05 —1.8670e—07
B, — |—5.1979e—04 —2.0932¢—06
k = |-9.5161e—03 —3.8322e—05
1.0000e+00 0
0 1.0000e+00 |

_ [ 3.2411e+01 —4.3393e+00 —5.5762e+00 ]

|—3.3365e+01 —2.1052e+00 6.1638e+00

_ [—2.4228e+01 3.9180e+01 -5.1795e+01]

|—1.1856e+01 1.9104e+01 6.2288e+01

Cy = [Cm Ckz]
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_foo
Dy = [ 00 ]
B.5 Controllability /Observability Study

An eigenstructure analysis [5] is done to determine if the closed loop system
of section 3.3.3 is observable and controllable. Let D be a vector containing the

poles of A o with V and W as defined in Appendix A, theorem (1). D is given by,

D
D

1
2

D=

with

—3.5995e+01
—8.7283e+00
—6.3733e+00

—5.9686e—02 + 2.8437e+00i
—3.1521e+00 + 1.0167e+00i

—
)

—4.2730e—01
—3.0328e+-00
—4.8718e—03

D2=

Note that rows 4, 5, and 8 of D represent thg closed loop poles which are at the

same location as the stable plant poles. -

Let B d and Ccl be the B and C matrices of the closed loop system
respectively. To determine if the closed loop system is controllable and/or
observable, the absolute values of each entry of the matrices CclV and WB o’ will
be studied:
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abs(C4V) = [ Ob; Ob, ]

[ 2.8446e—02 2.0192e—-02 2.6290e—02 3.5998e—01 3.5998e—01 ]
17 | 3.3951e—03 1.0938e—01 1.5232e—01 8.9704e—02 8.9704e—02 |

Ob

[3.0915e—01 3.0915e—01 2.4492e—01 6.7429e—02 2.9568e—03 ]

Oby = | 7.55536—02 7.5553e—02 3.5771e~03 3.29286—01 1.3169e—05 |

Co,

[ 1.2470e+01 2.6467e+00 ]
1.8144e+01 1.0590e+02
Co, = | 2.3993e+01 1.3166e+02
7.6802e—14 1.3160e—13
| 7.6396e—14 1.3149e—13 |

[1.8479e+01 3.0589e+00 ]
1.8479e+01 3.0589e+00
Co, = | 6.4726e—13 7.5298e—13

7.4854e+00 2.5053e+01
| 9.5437e—03 3.8432e—05 |

The closed ioop system will be fully observable if the 2x10 matrix C dV has full
column rank. This is indeed the case. For the closed loop system to be fully
controllable the 10x2 matrix WB ; must have full row rank. This is not the case as
rows 4, 5, and 8 of this matrix have zero entries for all practical purposes. These
rows correspond to the closed loop poles which are at the same location as the stable
plant poles. The entries in row 10 of WB o are relatively small which indicate that
the closed loop pole at the mirror image of the unstable open loop pole, is only

weakly controllable.
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B.6 Full State Feedback Eigenstructure Assignment

The gain matrix G of the full state feedback design described in section

5.2.1.1, is given by:

1.9444e—03 —2.1413e—03 —2.2787e—01 1.1344e—02
- 1.3075e—01 —6.6904e—03 —4.7757e—01 2.3292e—02

The full state inner loop closed loop A matrix is given by:

-8.9140e—02 1.1976e—04 —9.9145e—01 5.4583e—02

[A_ —B_G] = —3.2140e+01 1.8989e—01 6.8341le+00 —2.2012e—01

p "p ' | 8308le+00 —1.0453e—01 —1.7527e+00 5.6688e—02
0 1.0000e+00 0 0

The eigenvalues of Ap and [Ap -B pG] are given by:

[M(A) | N(A)-B Q)] =

—5.9686e—02 + 2.8437e+00i | —6.1480e—01 + 2.8437e+00i
—4.2730e-01 —4.2730e-01
4.8718e-03 4.9000e-03

The eigenvectors of Ap and [Ap -B pG] are given by:

—1.2902e—02 = 8.9337e~02i ~3.6213e—03 4.1233e—03

vi(A) = 1.0000e+00 = 2.5479e—17i —4.2730e—01 4.8718e—03
i‘'p —2.5410e—01 = 1.9778e—02i 5.3767e—02 5.4622e—02
—7.3778¢—03 + 3.5150e~01i 1.0000e+00 1.0000e+00
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—2.8497e—02 + 8.1972e—02i —3.6213e—03

v.(A. —B_G) = 1.0000e+00 + 1.8702e—-17i —4.2730e—01
iV Tp/ T | —2.5410e—01 x 1.9778e—02i 5.3767e—02
—7.2632e—02 + 3.3595e—01i  1.0000e+00

B.7 Classical Compensator State Space Description

4.7895e—03
4.9000e—03
5.4600e—02
1.0000e+-00

The state space description of the classical compensator described in section

5.3.1.1, is given by,

with
A = [ —1.5000e+-00 0
k=] o —2.5000e+01
[ 0 0 —5.2144e—-02

By = | —7.2360e-01 0

Cx = | —2.3013e+01

~1.5000e+00 6.6000e—01 0

Dy= [ 0 0 —8.0000e—01
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APPENDIX C
MILLING CIRCUIT EXAMPLE

In this appendix a transfer function mathematical model is given for a
typical milling circuit that processes gold bearing ore. The state space description
for the plant is derived in section C.2. Nomenclature used, and a short description
of how the plant operates, are given in section C.3. The plant need to be scaled to
reflect the relative importance of the inputs and outputs, and this is done in section
C.4. Plant model reduction is discussed in section C.5 and a state space de§cription

for the augmented plant is given in section C.6.
C.1 The Transfer Function Mathematical Model

The transfer function model given here was derived from "step—tests" done

on an actual milling circuit. The G(s) of the plant is as follows,

y(s) = G(s) u(s)
with
y = [PSM LOAD LEVEL|T
u = [SFW SLF CFF]T
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and

G(s)

gll(s) =

512(3) =

813(5) =

821(3) =

Boq(8) =

823(3) =

831(3) =

832(3) =0

rgll(s) 312(3) 313(5) ]

821(5) 89q(s) 823(5)
_g31(s) 839(5) g33(s)J

0.105 ¢958

83s + 1

~0.082 508

1766s + 1

—0.0575 ¢—460s

167s + 1

—0.0468 1408

1864s + 1

0.0001217

S

0.1148 ¢—120s

1981s + 1

.00253
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—.00299

83318) = ————

S

A first order Pade approximation was used for the time delays, using the following

equation,

T8

T8

Using this Pade approximation, G(s) can be written in partial fraction expansion

form as,

2.8934e-03 —4.1584e-03

811(s) = +
11 s + 1/83 s + 2/65
o —4.8585e-05 9.5017e05
819(8) = +
12 s + 1/1766 s + 2/80
o 2.1697¢-03  —1.8254e-03
B14(8) = +
13 s+ 1/167 S + 2/460
o ~2.7067e~05  5.2174e-05
B54(8) = +
21 s + 1/1864 s + 2/140
(g = L2100
8oo(s) =
22 -
6.1571e05  —1.1952e-04
523(5) =

+
s + 1/1981 s + 2/120
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2.5300e—-03

831(5) = 5

832(5) =0

—2.9900e—-03

833(3) = S

C.2 Deriving The State Space Description

The state space description of the G(s) given in section C.1, is derived using
Gilbert’s diagonal realization [25]). Let the p x m plant G(s) be written in a residue

expansion form as in section A.2, with r distinct roots and a denominator

polynomial,
r
r Ri
G(s)= 8 ———
i=1 s — A,
i
with

R, = lim_(s— ) G(s)
s A

p; = rank(R;)
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The state space description is then given by,

A = block diagonal { A Ip. ,i=1,..,r1}
i

BT =[BT, .., BT}
C =[Cp... C,]

with G(s)=C (sI-A)!B

The minimum order of this or any other state space realization is given by,

The state space description for the milling circuit G(s) as given in partial

fraction expansion form has n = 12, and can now be found to be,

A =diag {dd }

dd

with
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—1.2048e—02 ]
—3.0769e~02
4d. = |—5-6625e—04

—2.5000e—02
—5.9880e—03
| —4.3478¢~03 |

p—t
I

—5.3648e—04 ]
—1.4286e—02
dd. = |~5-0480e—04
—1.6667e—02
—5.0000e—06
| —5.0000e—06 |

The three integrators in G(s) were approximated by s = —5.0e—06 in the A matrix
given above, so as to keep the Riccati equation solvers needed to compute the Hco

compensator, "happy". The B matrix is,

with
[ 1.0000e+00 0 0]
1.0000e+00 0 0
B. = 0 1.0000e+00 0
1~ 0 1.0000e+00 0
0 0 1.0000e+00
i 0 ~ 0 1.0000e+00 |
1.0000e+00 0 0
1.0000e+00 0 0
B. = 0 1.0000e+00 1.0000e+00
2 0 1.0000e+00 1.0000e+00

2.5300e—03 2.9900e—03 —2.9900e—03
—8.4401e—01 2.5300e—03 9.9747e—01
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with C, (i =1, ..., 4) 3x3 matrices given by,

2.8934e—03 —4.1584e—03 —4.8585e—05

0 0 0
Ci]_ 0 0 0
o= 0 0 0

31 |-2.7067e-05 5.2174e—05 6.1571e—05
0 0 0
[ 9.5017e—05 2.1697e—03 —1.8254e—03
c 0 0 0
2| _ 0 0 0
o = 0 0 0
4l |-1.1952¢—04 4.0599e—02 1.2170e—04
L 0 2.5300e—03 —2.99006—03 |

000

D=000

000

The poles and zeros of the state space description given above are,

A(A) = poles are the elements of dd.

Zeros = 4.7582e—02 : «~ nonminimum phase zero
— 2.4870e—02
— 1.6875e—02
—1.4241e—-02
—7.9281e—03
—1.1474e—03 + 2.7639e—04i
~— 2.8806e—04
— 5.7060e—04
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C.3 Plant Description and Nomenclature

C.3.1 Plant description

The milling circuit is shown in Figure C.3.1.1, and its operation can briefly
be described as follows:
Gold bearing ore is fed into the mill via a conveyor belt, after which water is added.
The turning motion of the mill lifts rocks and when it falls down, it breaks itself and
other rocks beneath it into smaller pieces. At the outlet of the mill there is a grid
which only lets small pieces of ore through into a sump. More water is added, and
the mixture of water and ore (called "slurry"), is pumped to a hydrocyclone. The
cyclone separates fine and course slurry. The fine slurry leaves the milling circuit as

product, and the coarse slurry is returned back to the mill inlet.

cyclone

[ — e

PSK
\\ E{i__4 s CFF

- mill

SFV
SEF 5 l l o level
load sump @_

pump

¢ measurements

Figure C.3.1.1 : The Milling Circuit
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The variables that need to be controlled in the milling circuit are:
The PSM which is a measure of the "fineness" of the product, the mill load, and the
sump level. The mill load and sump level act as integrators and are thus open loop

unstable.

The control variables are:

The rate of ore fed into the mill, the rate of water added to the sump, and the the

rate of slurry pumped to the cyclone.

C.3.2 Nomenclature

PSM particle size measurement — output size (% —75 um)
LOAD mill load (% of capacity up to axis level)

LEVEL sump level (% of capacity)

SFW sump feed water rate (m3/ hour)

SLF solids feed rate (metric tons/hour)

CFF cyclone feed flow rate (m3 /hour)

C.4 Scaling

In MIMO systems the control and the output variables have different units
and, thus, it is usually necessary to scale the plant in order to reflect the relevant
importance of commands or outputs. A compensator is designed for the scaled

plant, and then the scaling matrices are absorbed into the compensator. The
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eigenvalues and eigenvectors of the A matrix do not change with scaling but the

singular values and singular vectors, i.e. the plant transmission zeros, do.

The solids feed rate input is first scaled to be in ms/hour. With the average
density of the ore 2700 kg/m3, this scaling can be accomplished by multiplying the

second column of the B matrix by 2.7.

In order to reflect the relative importance of the outputs, the following

relationships are established:

. 1% PSM error is as serious as a 1% error in mill load

° 1% PSM error is 10 times as serious as a 1% error in sump level

These relationships and the range of the outputs, lead to the output scaling matrix

Qy given by,

1/
Q-]

5 0 0
01/5 0
0 0 1/50

The controls are scaled, using their saturation levels. The control scaling

matrix Qu that results is,

/125 0 0
Q, = 01/3¢ 0
0 0 1/125
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The scaled plant Gs(s) is given by,

Gy(s) = Q, G(s) Q5

After a compensator Ks(s) has been designed for the scaled plant augmented
as shown in section C.6, the scaling matrices are absorbed into the compensator, to
give

—n-l
K(s) = Q7 Ky(s) Q

C.5 Plant Model Reduction

The order of the H compensator is equal to the order of the augmented
plant, which in this case is 15. If a reduced order milling circuit model can be found
that gives an adequate representation of the milling circuit, this reduced order
model can be used for compensator design. In this section the order of the scaled
milling circuit model will be reduced by 50%, i.e. six states will be removed. Schur

balanced model reduction will be used, as described in [26].

Let the milling circuit model be given by G(s), and the reduced order model
by G (s). The accuracy of the reduced order model can be expressed by,

1G(iw) = Gy (i)l < bnd

When six states are removed, bnd = 0.889. Figures C.5.1 to C.5.6 show that the

outputs of G(s) and G_ (s) in response to steps in each of the three milling circuit
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inputs, are more or less the same. The singular value plots of G(s) and G (s) are

shown in Figures C.5.7 and C.5.8.

The state space description of the reduced order plant is as follows,

A=[A; Ayl

with

[—5.0502e—06 —3.4292e—06 1.4925e-05 ]
—4.0717e—06 —6.0542e—04 5.3080e—04
A 1.6341e-05 5.7029e—04 —8.8664e—03
17 | 7.1548e—06 5.0717e—04 —6.9803e—03
2.6505e—05 4.1073e—04 —1.1130e—02
| —6.1984e—05 —4.5121e—04 2.0616e—02 |

[ 2.0953e—06 2.2336e—~05 —6.4768e—07 |
3.2246e—04 1.7722e—03 —3.6808e—05
A = |2-3118e—03 —9.9893e—03 —3.6029e—03
27 |-3.5567e—03 ~7.7426e—03 —6.5040e—03
—9.0770e—04 —1.5275e—02 5.2946e—04
|—3.1866e—03 2.1212e—02 —8.5897e—03 |

[ 1.0542e+02 —2.5069e—01 —1.2418e+02 ]
—3.4921e+01 —6.3706e+00 1.0030e+02
—1.0720e+02 —2.3154e+01 —6.2767e+01
~1.3399e+02 —3.3715e+01 —7.0415e+01
—0.1434e+01 1.7352e—01 6.0475e+01
| 5.6788e+01 5.0151e+00 —2.3873e+01 |

c=[C; Gl

[—1.0315e—06 4.5504e—06 2.2226e—04 ]
C —6.3698e—06 9.3679e—04 5.3167e—03
1 5.9911e~05 5.4447e—06 3.311le-05
~ |-1.6704e~04 5.5722e—05 —3.2488e—04
—3.9591e—-03 —3.5120e—04 7.4653e—04

| —2.4606e—05 —2.0896e—06 4.5892e—06 |
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From Figures C.5.1 to C.5.8, it is evident that the reduced order model gives

an adequate representation of the milling circuit.

C.6 State Space Descriptions

Let the plant and weights have state space descriptions as given in equation

3.4.4 (section 3.4). The augmented plant can then be described as follows.

Ao Ap 0 ]
—By1Cp Awi
[ 0 B
[B1 | B2] = P
LByt —Bwle
-—lecp Cy1 |
[ C1 } _ 0 0
C2 Chew O
—Cp 0
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( le _leD
[ 11 | Do J _| o 0
| D
91 | Dogg 0 Do
-D
L P

with Cnew and Dnew as derived in Appendix A.
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Figure C.5.1 :Response of full order model to a unit step in SFW
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Figure C.5.2 :Response of reduced model to a unit step in SFW

load

0.1

' |
0 4
-0.1 .
-0.2 1
-0.3 : l
0 200 400 600

178



level

0 .
-0.2} 4
-0.4 : .

0 200 400 600

time in sec
-18
10219 — :
5+ 4
0 .
_5 L o,
0 200 400 600 -

Figure C.5.3 :Response of full order model
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Figure C.5.4 :Response of reduced model to a unit step in SLF
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Figure C.5.5 :Response of full order model to a unit step in CFF
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Figure C.5.6 :Response of reduced model to a unit step in CFF
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Figure C.5.7 :Singular values of full order model G(s)
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Figure C.5.8 :Singular values of reduced model Gm(s)
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APPENDIX D
DERIVATION OF EQUATIONS USED IN SENSITIVITY STUDIES

D.1 Derivatives of Eigenvalues and Eigenvectors

In this section, an expression is derived for the derivative of an eigenvalue of
a matrix. Second order terms are included in this expression which implies that the
first order terms of the derivative of an eigenvector of a matrix, must also be found.
Reference [27] provides a detailed description of material covered here, including

alternate proofs for theorems given in this section.

Assumptions and Definitions: A is a square n x n matrix with distinct

eigenvalues A, and corresponding right and left eigenvectors v; and w; respectively,

such that,
1 Avi = Aivi ;i=1,...,n
Ty T
T, = =
3 w jvi =1 ji=j
=0 i
4 Theorem : The derivative of a right eigenvector v, of the matrix A

described by (1), including only first order terms, is given by:
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5 dVi= 2 akvk ;auEC

k=1 N
k#i
Proof: Let p; be a right eigenvector of the n x n matrix A + dA, with the

corresponding distinct eigenvalue s such that,
(A+ dA)Pi = kP;

p; can be expressed as a linear combination of the right eigenvectors \A (i=1,..,n)

which spans (™ Pie,

Bi=MVit -t %%t + Ny ; 7ij €C

or
Pi n
6 =v.+ ¥ a.v
" i% o, ikk
ii
k#i

with
Yik
N

p.
Now let v, +dv, = —2—. (5) follows from substituting v; + dv, in (6).
T

7 Theorem : &; used in (4) is given by the equation,
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w‘l.‘ dA v;

S D W W
1 J
Proof: Let A, + dA; be a distinct eigenvalue of the n x n matrix A + dA,

with the associated right eigenvector v, + dv;. From (1) it follows that,

Neglecting second order terms and multiplying (9) from the left by w}‘ @+ i),

results in,

T T _ T T
10 w jAdvi +w jdAvi = Aiw jdvi + d/\iw jvi

Now using (2) and (3) in conjunction with (4), (10) results in (8) which concludes
the proof.

11 Theorem : The derivative of an eigenvalue ), described by (1) and

(2), which includes second order terms, is given by,

n To: Y
12 i =%+ 5 _kiik
k#i
: T
with %= Yi dAvj
Proof : Let v, + dvi be the right eigenvector of the n by n matrix A + dA,

with the associated eigenvalue A, + d);. From (1) it follows that,
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Now multiplying (13) from the left by w? and rearranging terms, results in,

T T, _ T T T T
14 dA\w, v, +dhw dv, = (w;A - Awi)dv; + w; dAv, + w;dAdv,

Letting (2), (3) and (5) act on (14), the following equation results,
n

X %
ki

_.T T
15 d,\i—widAvi+widA

Substituting (8) in (15) results in (12), which concludes the proof.

D.2 Derivatives of Singular Values and Singular Vectors

In this section the derivative of a singular value will be derived up to second

order. This implies that the first order terms of the derivative of a singular vector

of a matrix, must also be found. The results given here are for square matrices but

can easily be generalized to the nonsquare case.

Assumptions and Definitions: G is a complex, square n x n matrix with

a singular value decomposition given by,

16 G = UgvE
with
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17 1 = vigv

18 ¥ is a diagonal, n x n real matrix with singular values o; along the
diagonal

19 U is a n x n unitary matrix ( R )

20 column vectors u, of U (called left singular vectors of G), are
orthonormal, i.e. uIiIuj = 6i i

21 column vectors u, of U are also the right eigemvectors of the
Hermitian matrix GGH. The eigenvalues A of this matrix are the
squares of the singular values of G, i.e. ’\i = a?

22 V is a n x n unitary matrix ( vHE -yl )

23 column vectors v, of V (called right singular vectors of G), are

. H. _

orthonormal, i.e. vy vj = 6ij

24 column vectors v of V are also the right eigenvectors of the
Hermitian matrix GHG. The eigenvalues A of this matrix are the
squares of the singular values of G, i.e. A, = a?

25 the left eigenvector w'il‘ of an Hermitian matrix is equal to the
hermitian of the corresponding right eigenvector, i.e. w'f = u? in
the case of (21)

26 6i j =1 ii=j

=0 1]
27 Theorem : The derivative of the left singular vector U of G, is
given by,
n
k#i
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Proof : Analogous with proof of (4), where the matrix A = GGH have right

eigenvectors u,.

30 Theorem : &; used in (28) is given by the equation,
o (466" + adef) u,
31 @, = —I it
H 2 2
g ——
1 J
Proof: Let A, + dA bea distinct eigenvalue of the n x n matrix A + dA,

with the associated right eigenvector u; + dui. Let A = GGH, then it follows from

(21) that u, is also a left singular vector of G. From (1) it follows that,
32 (A + dA)(y; + duy) = (A + dA;)(y; + duy)

Neglecting second order terms and multiplying (32) from the left by a left
eigenvector u}jI (i # j) of A according to (25) results in:

H H _,.H H
33 u i Adui +u i dAui . )\iu jdui + d)\iu jui

Now using (2) and (20) in conjunction with (28), and noting that A, = a? and that
dA = dGGE + GdGH (33) results in (31) which concludes the proof.

34  Theorem: The derivative of a singular value o; described by (16)

and (18), which includes second order terms, is given by,
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35 do, = (v;+ 2
P oo2g M k=1 2 2 )
k#i
with
x: = 1 (dGGH + GagHy,
J 1 J
Proof : Let u, + dui be the right eigenvector of the n x n matrix A + dA,

with the associated eigenvalue A, + dA;. Let A = GGH, then it follows from (21)
that u, is also a left singular vector of G. From (1) it follows that,

36 (A + dA)(y; + du;) = (}; + dA)(y; + du,)

Now multiplying (36) from the left by the left eigenvector uIiI of A according to
(25), and rearranging terms, results in,
H

H, _(H H H H
37 diusy + diudy = (up A = Auy)dy + v dAu, + uydAdu,

Letting (2), (20) and (28) act on (37), the following equation results,
n

Z o
kii

_H H
38 d = u; dAu, + ujdA

(35) follows from substituting (31) into (38), and noting that A= a? ,
dAi = 2:Jid¢ri and dA = d(?rGILI + GdGH , which concludes the proof.

191



What is dG, where G = Cp(sI

nxn — AP)—IBp, if Ap is perturbed?

Differentiating G with respect to AP, it follows that,

_ .\l 4 -l
4G = C(sL,, = Ap) ™ dAp (ST~ Ap) B
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APPENDIX E
FICTITIOUS PLANTS

In this appendix, state space descriptions are given for the two
fictitious plants described in section 4.3.3. Weighting functions used in the H

design for these plants are given in section E.3.

E.1 Plant I

The state space description of plant I is given by,

G,(s) =

with
—2.0418e+00 9.6489e—02 —4.5784e—02

A1= —4.1042e—01 —1.8398e+00 1.3475e+-00
~1.7004e+00 2.4946e—01 8.8163e—01

B, = | -1.7501e-01 9.0345e-01

9.1287e=01 0
171 36883e—01 4.2869¢—01

c.=19 —~1.4661e—01 2.6417e+00
17 [0 9.0345e—01 4.2869e—01
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E.2 Plant I

The state space description of plant II is given by,

Gy(s) =
with

7.4706e—04 —1.8894e+00 6.2396e—01

A 1.0055e+00 —2.7103e—01 —5.4082e+00
2 3.0952e—03 4.4009e—02 —2.1161e+00

with B;, C,and D, as givenin E.1.
E.3 Weighting Functions

The weighting functions used in the design of Hm compensators for

plant I and II are given by,
Wl(s) =— 1
: s + .0001

Wos) =€ly g, €=0

W3(s) = —Ioxo
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