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ABSTRACT

STALL PROPAGATION nr AXIAL COMPRESSORS

(Submitted to the Department of Mechanical Engineering on
May 10, 1955, in partial fulfil1ment of the requirements
for the degree of Doctor of Science in Mechanical Engineering).

A theory of stall propagation in a cascade of airfoils of
high solidity has been developed which includes the effects of
finite blade chord and of the boundary layer response to changes
in angle of attack. The theory is valid for small perturbations
in velocity about a mean'flow condition with finite pressure
rise across the cascade, provided that the pressure fluctuations
behind the cascade are much smaller than those ahead of the cas-
cade. The solution for the velocity of stall propagation in-
dicates that the velocity increases with the wave length of the
stall cell, tending towards a limiting value for very large
stall cells. The wave length of the stall cells at the beginning
of rotating stall is dependent on the magnitude of the boundary
layer time delay.

The theory predicts propagation velocities within 25% over
a wide range of wave lengths for a stationary circular cascade
and a rotating blade row which have been tested. The experi-
ments have confirmed that an increase in wave length is accompa-
nied by an increase in propagation velocity if other parameters
are unchanged.

Thesis Supervisor: Edward S. Taylor
Title: Professor of Aircraft Engines
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1.' INTROnmTION

In 1941, an investigation of diffusers for centrifugal campres-

sors was madeby Whittle's group, whowere at that time developing

the first British jet engine. They constructed a low-speed research

rig with an observation windowto study, with tufts of thread, the

flow pattern at the diffuser entrance. In one type of diffuser the

observation was madethat at low mass flow rates a region of flow

reversal travelled around the diffuser in the direction of wheel

rotation, causing flow separation on each diffuser blade in turn.

The velocity of the travelling stall was approximately one-sixth

of the rotor tip speed. This was the first recorded example of the

phenomenonnowknownas "rotattng stall". (Ref. 1) The.phenomenon

apparently attracted little attention at the time and no further

reference to it can be found, although in the light of recent dis-

coveries it is possible that rotating stall was the cause of some

blading failures in the early Whittle engines.

Several years later, at a time whencompressor blade failures

had becomeone of the major problems in the development of the axial

jet engine, rotating stall was rediscovered. Although the phenomenon

was noted independently by several researchers, the first detailed

study was apparently madeby a rese.arch group working under the direc-

tion of H. W.Emmonsat Harvard. (Ref. 2) Using hot -wire techniques

to investigate flow conditions in an axial compressor Emmonst group

found, whenthe compressor was throttled, that regions of low velocity

appeared, travelling around the annulus in the direction of wheel

rotation but at a lower speed. It was then apparent that blade fail-

ures previously unexplained were probably caused by vibratory stresses
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induced by rotating stall.

Later investigations of rotating stall in single-stage and multi-

stage compressors-have been carried out at the California Institute of

Technology (Ref. 3) and by the N.A.C.A. (Ref. 4)

The origin of rotating stall may readily be explained from con-

siderationof the flow changes associated with blade stall. When a

cascade of airfoils operates close to the stalled condition, a local

increase in angle of attack on one airfoil may initiate stall on that

blade 0 Due to the increased blockage effect of the separation region,

same fluid spills around the affected channel, increasing the angle

of attack on the blade above the stalled airfoil and decreasing the

angle of attack on the blade below, so that the stalled region propa-

gates along the blade row as shown in Figure 1.

The main concern of the canpressor designer is the frequency with

which stalled regions pass the compressor blades. It is desirable to

be able to predict this frequency for a given compressor and, if

necessary, to alter it to avoid blade resonance. Investigations of

rotating stall in axial compressors have yielded a bewildering variety

of results, with no apparent order, so that at present the desired

goal is not in sight. Some success bas been attained in predicting the

velocity of propagation of the stalled regions, but no means has been

found of predicting the number of stalled regions present in a given

compressor, and this number must be known before the exciting fre-

quency-can be-calculated.

The investigation described in this report was undertaken in the

belief that a thorough study of stall propagation in the simplest
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possible case (the single, two-dimensional cascade) was essential be-

fore approaching the more practical, but many times more complicated,

problem- of rotating stall in the axial compressor. Previous analyses

of stall propagation in single cascades considered only disturbances

of large wave length and were unable to give any clues to the reasons

for the appearance of stalled regions of varying wave lengths as the

inlet angle to the blade-row was changed. An analysis which included

the effects of finite blade chord was therefore carried out and accom-

panied by experimental work on a single cascade and on a single-stage

compressor to determine the validity of the available theories and the

effects which must be included in a successful theory.
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2. A THEORY OF ROTATING STALL

20 1 Background
Theoretical investigations of rotating stall have previously been

undertaken by Emmons, Sears and Marble. In each case, the equations of
motion were linearized, so that the analyses are strictly valid only for
small perturbations in velocity about a mean flow condition.

In any analysis of stall propagation, the results obtained depend
on the assmnptions made about (a) the nature of the flow field after
the cascade, (b) the form of the cascade characteristic and (c) the,

relative ~portance of the different dynamic effects which govern the
velocity of propagation of disturbances along the cascade. The possible
choices which can be made will be discussed before reviewing the three
theories 0

The flow field immediately behind a stalled cascade in steady flow
consists of streams pf fluid which have suffered little loss in stag-
nation pressure, separated by regions of low stagnation pressure shown
in Figure 20 Downstream, mixing occurs between the high and low velocity
regions, and at a distance of ten chord-lengths or so from the cascade
the velocity is approximately uniform across the wake. In analyZing
stall propagation, sane approximation to the real conditions after the
cascade in the unsteady flow must be made. Emphasis may be placed on
the flow field immediately behind the cascade, by considering the flow
to consist of a nmnber of free jets entering a region of constant pressure.
Alternatively, the region where mixing is canplete may be considered
to be of greater importance and the velocity distribution downstream
assmned continuous throughout the fie ld • The true condition lies between
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these two extremes and maybe closer to one or other of them depending

on the size of the propagating stall regions relative to the blade

chord 0 If' the disturbance is very largerelati ve to the blade chord,

then its effect will be felt far downstream, and well beyond the mix-

ing regio~. For this case, the mixing region can be neglected and the

downstreamflow field considered as a continuum. Onthe other hand,

if the disturbance affects only two or three blades, it maybe damped

out within the mixing region and the downstreampressure changes will

.be small. The assumptionAf free jets discharging into a constant

pressure chamber is then to be preferred.

The cascade performance maybe represented by a curve of pressure

coefficient, circulation, or effective discharge coefficient as a

function of inlet angle to the cascade. This function maybe continu-

ous or discontinuous, and considerable disagreement exists as to which

representation is the more accurate. This question will probably be

settled only whendynamicmeasurements of cascade performance can be

made.
In the most .general case, three factors influence the speed of

propagation of a disturbance along a cascade of airfoils in the stalled

condition. These are: (a) the time required for movementof the separar-

tion point on the airfoil after a change in inlet a..'1gle,which will be

called the boundary layer time delay, (b) the inertia of the fluid be-

tween the blades and (c) the inertia of the fluid ou~side the cascade.

The relative importance of these effects depends on the size of the

stall region with respect to the blade chord, because the boundary layer

time delay and the inertia of the fluid within the blades are proportio~l
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to the blade chord, while the inertia of the fluid affected by the dis-
turbance outside the cascade is proportional to the wave length of the
disturbance. In consequence, when disturbances covering many blades
are considered, the boundary layer time delay and the inertia of the
fluid within the cascade can be neglected.

The first analytical treatment of the problem was made by Emmons,
in 1951. (Ref. 2) He showed that the cascade could be represented as a
series of channels in parallel, with variable area outlets to represent
the blockage effect of the separation regions. By investigating the
stability of small disturbances ahead of the cascade, Emmons showed
that if a critical value of rate-of change of effective outlet area with
angle of attack were obtained, disturbances would propagate unchanged
along the cascade. Fer lower values of the derivative, disturbances
died out, while for higher values they were amplified. The propagation
velocity was governed by an arbitrarily assumed time delay between
changes in angle of attack and changes in the flow field ahead of the
cascade. Pressure variations behind the cascade were assumed negligible
and the cascade characteristic was assumed to be a continuous function
of inlet angle. Emmons did not solve the dynamic equations of motion
and therefore was unable to predict the velocity of propagation.

Sears, in 1953 (Ref. 5), considered the case of disturbances large
with respect to the blade chord and obtained the first complete solution.
He assumed the existence of stalled regions moving with steady velocity
along the cascade and calculated their velocity and the conditions re-
quired to produce them. The velocity field downstream of the cascade
was considered to be continuous. Sears failed, however, to realize the
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full consequences of the assumption of large stall cells and introduced
a boundary layer phase lag which he believed to be of prime importance
in influencing stall propagation. Although he obtained a solution
showing stall propagation occurring with zero boundary layer phase lag,
in his conclusions Sears still stated that "the speed of propagation
of this phenomenon is deter.mined by viscous effects." The cascade
characteristic was represented as a continuous function of inlet angle,
and the mean flow condition was considered to be one with no pre~sttre
rise across the cascade and no turning of the flow. The latter assump-
tion is not a good one, because rotating stall commences in a cascade
at an angle of attack only slightly greater than that corresponding
to the peak of the pressure coefficient curve.

Marble, in 1954 (Ref. 6), noted the inconsistency in Sears t

analysis with regard to the boundary layer delay, and presented a
theory for large stall cells in which the inertia of the fluid outside
the blade row was considered to be of much greater importance than
either the boundary layer time delay, or the inertia of the fluid be-
tween the blades. In addition, by a very ingenious method, he was
able to treat the effect of a discontinuity in the cascade pressure
rise characteristic and show how the shape or the- _pr.opagating wave
changed as the mean inlet angle to the cascade increased. The propaga-
tion velocities obtained were the same as those predicted by Sears for
zero boundary layer phase lag. Marble I s theory, like Sears I, is valid
only tor a mean flow condition with very small pressure rise across the
cascade, since a finite step in pressure is accanpanied by finite
velocity changes and the theory is based on the assumption of small
perturbations in velocity.
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In summation, the theories presented by Sears and Marble should
predict the veloc~ty of propagation of stalled regions along a cascade
in cases where the stalled regions are so large that the effects of the
boundary layer delay, the inertia of the fluid within the blades, and
the mixing region after the cascade can be neglected. They give no
clues to the reasons for the appearance of different numbers of stall
cells in a compressor as the compressor is throttled, and they are
valid only if the cascade pressure coeffi9ient is small when rotating
stall commences.

In 1954, the author presented a theory which treated the case
where the inertia of the fluid within the cascade could not be neglected,
allowing also a finite pressure rise across the cascade when rotating
stall connnenced. (Ref. 7) A later>development of the theory includes
the boundary layer delay and offers a possible explanation of the vary-
ing number of stall cells which appear when a compressor is throttled.
The complete analysis is presented in the following section.

2.2 Analysis of Stall Propagation in a Cascade
The main objective of the analysis is a consideration of stall

propagation when the boundary layer time delay and the inertia of the
fluid within the cascade cannot be neglected in comparison with the
free stream inertia. As has already been suggested, for this case
(which is one frequently encountered in practice) the pressure fluctua-
tions downstream of the cascade should be small compared with the up-
stream fluctuations, so that the assumption that the flow behind the
cascade consists of free jets discharging into a constant pressure
region appears to be the more accurate one.
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The model representation of the cascade and the method of attack

employed are similar to that used by Etmnons. The advantage of this

method is that it uses the classic techniques of stability analysis

to determine whether disturbances will be amplified or will die away,

and thus gives a good physical understanding of the phenomenon •

.Representation' of the Cascade

The analysis is based on the model shown in Figure 3, with the

cascade simulated by a series of channels of length L arranged in

parallel , with variable area outlets. The fluid enters the cascade

at (1) with entrance angle!.t3~.,;is'turned to t32 at (3) in a short dis-

tance, and leaves the channel at (2). The assumption is made that the

effect of stall is to produce a discrete region of flow separation,

so that the wake behind the cascade consists of a number of free jets

discharging into a region of constant pressure.

The ratio of exit area to inlet area ~; is defined to be a
function of t3~.

~2 = a = F (cott31)
3

The assumption is made that local changes in a lag behind local changes

in t31 exponentially as shown in Figure 4, so that for step changes in ~l'_i:/~]fJo( ;(~O()S~ [ \ - e
where (ea )ss is the steady state change in a corresponding to the change

in t3~ and'1::'is the time constant of the boundary layer time delay. Thus,

=
in general, when t31 changes

'"C ef brA)
2>t

at any instant where (Ea)ss

continually

(~o<)s, - ~o{

is the steady state valu~ of ea



corresponding to the value of t31at that instant or fa =
using operational notation where D denotes ~ •

at:
This representation of the boundary layer response is an extreme

over-simplification of a complex phenamen0n which is not yet fully

understood. It is, of course, not possible to consider the changes
" .

in effective exit area as independent of the fluid velocity in the

passage since the fluid itself' forms the "gate." However, the re-

sponse assumed gives the simplest model which includes the boundary

layer delay and should at least yield some information on the effect

of this delay.

A2/A3 is equivalent to the ratio

actual flow through cascade
ideal flow for same (Ft.- pz.) with no losses

and is obtainable, for a real cascade, from test results.
'AIt can be seen that ex = A; is a mea"sure of the "swallowing

capacity" of the cascade and must therefore be important when the

possibility of flow spillage around the entrance is considered. For

a real cascade, it can be shown that ex is equivalent to
<:0$(3,

<;o~~"2.. { 1- Cp
for a rectilinear cascade, where Cp is the pressure coefficient (See

Appendix I).

Additional assumptions are that the fluid is incompressible and

frictionless, and that changes in t32 in the unsteady flow can be

neglected. The blades are conSidered to be very close tog~ther, so

that a may be taken as a continuous function of y.

For the initial analysis, the boundary layer response is assumed

fast compared with the inertia delays, so that 1: is taken as zero.

-11-



In the unsteady flow,

u = Cx + c.p x

v = cy + Lf y

-12-

The effect of the boundary layer delay is considered later.

Solution in the Field Before the Cascade

The cascade lies on the y-axis in the x-y plane. The fluid is

considered to be incompressible. Perturbations are considered from a

steady flow with inlet angle ~l and velocity components cx' cy•

Since the flow entering the cascade is irrotational a velocity

potential can be used.

~ = cxx + cyy + Lp
Where ~ is the total velocity
potential and tfis the perturba-
tion potential

From continuity, ~~ + ~ = 0; Le. Cf xx + <.f yy = o. ':Solutions, tlll

this equation are obtainable in the form: V\~x
..0 -c.p :: L[0." Cot) CO$ "':'~ +- 10,,(1") s;", ",~y' J e. .,. (1)

V\:=l
representing periodic disturbances of half-wave length b and satisfying

the boundary condition,

Lp X = l.fy = a 0.."" >< = - 0()

The stability of the disturbances depends on the time-dependent functions

an (t), bn (t)~ which are as yet undetermined. From consideration of the

dynamic equations, we may find the conditions required tor the dis-

turbances to be damped, .amplified, or propagated unchanged along the

cascade.

From Euler 1s equation for unsteady flow

where
~t + H = constant

c2 P u2 + v2 pH=-+-=---+-2 p 2 p



Thus )

For small perturbations from the steady flow,
Lf'-t + C ~c: + ~ = 0

f
Equations (1) and (2) are valid in the region - 00 <. X < 0

Entry to the Cascade

The distance (1) - (3) is assumed small so that inertia effects

between (1) and (3) may be neglected.
C'l.. p C'l. 0_, + I = 3 + r3

~ ~ ~ 'f
c be -r ~I ;: C3 ~c;. -r ~~\, r ~

At (1), equation (2) may be rewritten

( L(>-t >. 1- C:I ~ C 1 .;- dt = 0

Momentum Effects in the Cascade

-13-

(2)

(3)

(4)

Considering the flow between (3) and (2) as one-dimensional, the

momentum equation in the ~-direction is
QC +- c:. ~ + ...L c>p ::: 0
ot a e f 2)t

Integrating with respect to ~ fram (3) to (2), with the assumption that

c = c3 between (3) and (2J and the change in velocity,fran c3 to C2 takes

place in a short distance
"l 1.

L OCJ +.:..' - c~ + p1.. f.J = 0
a"t a ~ f ~

For small perturbations from a steady flow,

L 2> (cS, J) • C ~ , - (. ~, - SP3 - 0ot'" I L ~ 3 ~ 1> -
if P2 does not change. Eliminating (C ':!. bC"l 1" ~ ) between (4) and

LEJbC:\) +((0) +C S,~= 0
~1: Tt , 2. '2.

(5)

(5) ,

(6)

From continuity,
1\'1. c"1 = 1\ '- C"'2,.

A ~ ~c.~ :: f:\;. ~c4.. + C'2- ~ A 4.-



-14-

Thus,

and

Also from.continuity u = c, COSt32so that 8u = c..p x = 8c, COSt32.
Substitution for c" 8c, yields

C ~ Co = (A~)'2..,)(, tR>< _ (A~)'" c~7.. • ~ Ala
"2.. 2- A7. (..OS f3,.. A, Co S1 (3"&. A 7-

By substituting this expression for c28c2 in (6) we obtain,
at point (1), the following equation

'R-t: +...b.... Lf>)( i: + ~)(
~O~~ ~~~~~~~

But,

(8 )

that is, at x = O. Substituting the solution for t..p into (8) and
separating coefficients of cos. n: ' sin n~y two simultaneous differ-
ential equations are obtained in an(t) and bn{t)
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'1. I- a. [Y\_1t. _CQ_rt'_TJ_1 _o<__ C_>< J
h b 0( '3 c.osA.

>- n-t'Assuming solutions of the form an = Ane
Ah'"t

bn = Bne

the characteristic equation

-- o

is obtained.

-- o

(Figure 5), the disturbance will persist and an, bn will be

The roots of this equation may represent oscillatory disturbances

which are damped out, amplified, or persist unchanged depending on the

1 f th d i t t i i (1 cotf31CX
I
) ToP cxl< cxva ue 0 e amp ng erm con a n ng - cx • .L.L -c-O-t-f3-1'

the disturbance will die away. If' cx1,,>_ .. cxtA ,i t will be amplifiedco .....1

beyond the range in which a linearized analys:is is valid. If

cxcxl = ---cotf31
of the form Ancos runt + Bnsin ant, Au sin ant -Bn cos ant respective~,

The potential function then represents waves travelling along the cas-

cade. At this point, the characteristic equation becomes,

representing waves of

==-0

~ t:.r.JT(J.. C j(

~' '-o~(3.. [L:1'\ + LQr($-a.]
radians/sec



-16-

The velocity'of wave propagation of the nth harmonic along the

cascade Vn = frequency x wave length.
W~ 2b=
2-r; h

-,- CO+~I C)(

fA'" ,"0:'(>2. (L:1i ....t.0$,1...)

-- ~ot(>l

J.~s($a (~"I!" ...(flS(!>~)

to,

In Figures (6) and (7)

The velocity of propagation is taken as the

This result indicates that the velocity of stall propagation increases

with the size of the stall cell, the limiting value of Y.... for stallcx
cells covering many blades being: cot t31

ex2coS2t32
t31 for cascades with 100 and 15° turning andaav is plotted against

cx 1CLdifferent values of b

velocity of the fundamental component of the wave • The expression for

~ includes the number of the harmonic n and indicates that higherCx
harmonics travel more slowly than the primary wave. This is not in

accord with experience and shows that a linearized analysis is inade-

quate in this respect.

The propagation velocity may be conveniently related to the cas-

'cade pressure rise (which is a more familiar parameter than ex) by

replacing ex with its equivalent . COSt31

COSt32 ~ 1 -Cp
Then we obtain

Vn 'QT~1 (l - CI- )- -



--
~( \-Cp)

~ \~ L ~, ( I- V\~ + I)
_ . '0 t.~ 'a.

For stall cells covering. many blades, this expression reduces to
::L _ ~('-Ct')
C-x. - ~i~ "2(1.•.

It should be noted that, with the boundary layer t~e delay ne-

-17-

glected, no limitation is placed on the wave length of the disturbances.

Consideration of the boundary layer delay permits prediction of the

size of the wave in addition to the velocity.

Iriterference Effect of a Blade Row Upstream of the Cascade

With the assumption that pressure changes downstream of the cas-

cade may be neglected, it is not possible to treat the interference

effect of an additional blade row.behind the cascade. Upstream inter-

ference effects are, however, very easily determined. If a row of

closely spaced blades of very large chord is situated distance p from

the cascade (Figure 8), then the perturbation velocity~x will be

forced to zero at x = -p because of the high inertia of the fluid with-

in the guide vanes. In any practical case, l.f x will not be zero at

x = -p because of the fi~ite chord of the guide vanes, but this approxi-

mation will permit an estimation of upstream interference. A solution

for t-f may then be found in the form
~ \,\'1\)( -~ ( X l' "2 F)]" r. ~-ry · V\-r\Y] [-;;- ~Cf -= ~,La ...t+) (.~ -;- + \:> ....c+) (.'" be ....e.

satiSfying the condition fx = 0 at x = -p. Substitution of this solu-

tion into equation (8) as before gives, for the case of undamped waves,
when a' _ cOt131- a
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c..or~ l

~~ [ I -~p Jv h = L. /l... L.. '" 1t - e.. .. + (..0~ It..
C.IC ~ Cas ('" b l+ eo. -~~ ('a..

The equivalent expression for propagation velocity in terms of the

cascade pressure ~oefficient is
2Q -Cp)

Y'n = Sl.. 1.11 rL.~'1r ., - e.-...~ + 'lc ~ (,..L b I ""e. -~~p Iuc
Thus, interference increases the velocity of' propagation for b of

order unity but does not change it for disturbances with wave lengths

large comparedwith the blade chord. If' p/b is very small, then the

Ln1t Y.n. cotf31coefficient of b is effectively zero and wemay put = -_....-0--
Cx a2cos 2132

which is the same result as that obtained without upstream interference

whenthe wave length is large. The addition of a row of guide vanes

upstream of th~'cascade therefore decreases the influence of the inertia

of the fluid within the stalled cascade on the velocity of propagation.

An approximation to the velocity of stall propagation relative to

the rotor in a single stage compressor with guide vanes close to the

wheel thus maybe obtained by putting L = cott3l' • This should be
cx a2cos 2132

valid only whenthe blades are stalled fran root to tip so that the

flow is effectively two-dimensional.

Effects of the BoundaryLayer Delay

The time constant -c of the boundary layer delay will nowbe in-

cluded in the analysis to determine the additional limitations it imposes

on stall propagation. Returning to equation (7)

and setting -
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the equation satisfied by f.{> at (1) is

(10)
"r<fi;i: -i- ~~l..!fl(H +tft- + lfl)(l::LL~t1 ..+ ;:~J

, "'t..A I'

+ ()( tf-< [1- (o1'l~,0( ] c.,;- , ..., e><. . eX c.py =- 0
~'1.c..os-z..(>l. 0( 0<'3 LQ!>~(J2..

Inserting the solution for t.f of equation (1) and separating the co-

f-Pi i t.p n:r(Y. n:r(Y- i t d d di.p-p ti 1e ... c en s 0... cos b' s~n b g yes wo secon or er ......eren a equa-

(ll)

o---

A\Io\.f:-
Taking solutions of the form an = Ane

A ~
bn = Bne ~

a characteristic equation for ~ n is found
'"l.

-t V\1r \..'l: l"A '1- + [\ + ~ (-1::. -+ ~ c)( \1 ~jb ~:a. ~ b (or.(3 .. 0(,. ~ c.os.'1.t1~1~ft

~ c)("l.. [\ - ~t)r(.t, o{'J+ b of." c:.os ~,. \)(

{
n1t' c.~-r"($. 0(' C~

+ -b ~ "1 C-O~ "1..(3 ....
This equation will be examined to find the conditions for undamped

oscillations in time.

Equation (11) is of form
"1. "1-

( f, AI'\'3- + p...~'" -I- 'f'~J + f1" = 0
For undampedoscillations, X n = -: ian must be a root.

With A n = + irona solution

[
"1a"" 11.. ...- f, w~ -t- \....r~W"" .... F"lJ 4- f>, = 0

With A n = - ian a solution

(13)

...
( - PI W"7. - ~ f.W"" -T \0:1J -to

(14)
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Subtracting (14) from (13) and factoring

~ [- 'f, w ~~....P11[ 'L ~ p-a. W ~ 1-= 0
Thus if ~ n = "t iernis a root of equation (12)

then llL 2 = E3.-n Pl

Putting illn = IE; in equation (13)~pi
Then

or
The

-"l. 2-

[- f~+ ~f.J~ + P3] + p... :. 0
.. "2.

p:a. ,f'~l -T P"t :. 0

f3/p, -:: (P+/p".')7-
requirements for an undamped oscillatory solution to equation

(15)

(12)

are, therefore, that E3. = (E.!l)2. With this requirement satisfied, twoPl P2
of the roots of the equation are "t i~ where wn = ~.

P2
A factor of the equation is then [A yo,1. + (~)'1. J and the

remaining two roots satisfy the equation

A: + a(~)~", +[(~:)1.+(~)J-=O (16)
For the remaining two roots to be stable the coefficient of ~ n

in equation (16) must be positive; i.e. (P2) must be positive •. Pl
It can be seen, therefore, that for equation (12) to have roots

representing undamped oscillations of frequencywn:
10 All coefficients must be positive

p4Under these circumstances, un = -
P2

Applying these results to equation (11), the requirement for stall
propagation is
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f

[1; (~~ (1-- '~~,~ )1
Q(1..co:» a-a. 0{

rc l ~ ~ J+ b · (.,,~(3'I.

C.Qt~,
, 11.[~ t)( c~

0(') c.o,S.I$s..--- [I + "'"1\ ( I.. -c c~ "1'Z-b (.o~(3~ ...-
~ .. c.o":.~(Ja. (17)

(18)--
and the frequency of the oscillations at any ~int in radians/second is

"\. ,
(.~t 13. <X C)(

0<." c: Q ~ '1..,1.3 ..

\

If 1:: = 0 the sameresults are obtained as in the earlier analysis. The

importance of this solution lies, not in the precise relationship, but

in the fact that a relation is established between ~,-& , 0, a', t3J. and

t32 for stall propagation to be possible. Moreexplicitly, since for

a given cascade 1::' , ex, a', and t32 all depend on t3J., a relationship has
Lbeen found between band f3J. for stall propagation. Thus, over a range

of inlet angles, stall propagation can occur and the size of the stall

cell will depend on the inlet angle. Thif}result may explain the varia-

tion in size and numberof stall cells found in an axial canpressor

stage over the working range of angle of attack.

It can be seen that with the boundary layer delay included in the

(cott3J.CX' •analysis, sta~l propagation occurs with 0.') less than unJ..ty, so

that the frequency of the disturbances is lower than the frequency of

the stalls of the samewave length whenthe boundary layer is left out.
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The boundary layer delay therefore has the effect of decreasing the

velocities of propagation of the stalled regions. The boundary layer

time constant should be approximately of the order ~ so that thec:;
boundary layer delay may be of equal importance with the inertia delay

of the fluid within the cascade, and will have little effect on the

velocity of propagation of large stall cells.

Calculation of the Wave Length When Rotating Stall Commences

It is now possible, without making any additional assumptions,

to predict the wave length of the disturbanceS when rotating stall

commences. Because of the simple representation employed for the

boundary layer response it would be unwise to attempt to derive

numerical values from this result, but it is of interest inasmuch

as the main features of the phenomenon can be reproduced with a

simple model.

Returning to equation (17), which can be rewritten

[ I- ~otf I 0( f]

[
"C '--o~ ~ (J 1 t:I(' 2. C >(

0< +- ~r;S 7.~ 2-

as the requirement for

]
s~ll propagation to be possible, it can be

seen that as the inlet angle ~~ to the cascade is increased and flow

separation commences on the airfoils, at will increase from almost

zero to a positive quantity. The group on the left side of the

equation (denoted below by A) will therefore have a value which be-

gins as a large positive quantity at the design point and decreases

as ~~ is increased. At any setting of ~~, the group on the right

side of the equation (denoted by C) can have an infinite number of



values for each harmonic, depending on the value of b assumed. Con-

sidering only the pr~ry component of the wave (n = 1), there will

however be a maxtmum value of C corresponding to a wave length which

might be considered as the wave length which is closest to being

propagated. As f3J. is increased, the maximum possible value of C can

be computed for each value of f3J. and compared with the value of A

(see Figure 9), which will in general be larger than C. However, as

f31 is increased the difference between A and C shrinks until, at the

critical value of f3J., the maximum value of C corresponds to the value

of A at that point and stall propagation becomes possible for the

wave length which yields this value of C. The problem is, therefore,

the determination of the value of b which g:bres (e)max.

For the primary component of the wave

-23-

c

--

For a maximum (or minimum)' value of e, de this whendb = 0 and occurs

b 1\L
[ ;(l..1c~1 '1-- t.Qt.~a.
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A study of the expression for C shows that this value of b gives a

maximtnn value of C, at a value of b which may be positive or negative
'rdepending on whether o<~ (L/e.",) is greater than, or less than unity.

There are nowtwo possibilities. If' e( ~I./C') ') I , then for

positive ( i.e. real) values of b, C has a maxillll~whenb= :~1l.[.;:("/C))-I]
and this will be the value of b when stall propagation commences. If'

"'t:
o(...(t..k~) < I ,then the maximtnn value of C for positive values of b

occurs when b = 0, and stall propagation will commence with the small-

est values of b that are physically possible. Thus, the wave length
~

is governed by the ratio (~/~~) which is the ratio of the boundary

layer time delay to the inertia delay of the fluid within the cascade.

Stall Propagation in a Circular, Radial Flow Cascade

For a radial outflow cascade, of the type used for the experimental

study, an expression for propagation velocity may be derived in r-Q

coordinates (See Appendix II).

With guide-vane interference effects included, but omitting the

v--G",

boundary laYer time delay,

(

(j 1.. c. 01""(3,
: r..) r1..'l.c.oS~2. [ l- ho'\ ~- ("'If', )'l.M ... c.os(l .. ]

'" , + (RI'(\)~
r inside radius of cascadewhere (-1.) is the ratio ------------, R is the outsider2 outside radius of cascade

radius of the guide vanes, and m is the number of stall cells in the

cascade. Consideration of the boundary-layer time delay yields lower

than does the expression given above.v-crl
In terms of the cascade pressure coefficient

values of

v---C1":, --
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and this reduces to the same form as for the rectangular cascade when

the stall cells are very large, or the gap between the guide-vanes and

the cascade is small.

2.3 Discussion of the Solutions

The most tmport~nt point of difference between the present

analysis and those of Sears and Marble is the assumption made here that

downstream pressure fluctuations may b~ neglected. For the case con-

sidered by Sears (that with no pressure rise across the cascade when

stall propagation occurs), Cp = 0 and the- present analysis then yields'
V 2for disturbanoes with large wave length - = . 2 t3. This is double
Cx sJ.n .1

the value obtained by Sears. Because Cp always lies in the range 0.3

to 0.6 when stall propagation commences, the values for propagation

velocity given by the present theory~n any practical case are never

double Sears' values, but may be greater or less than those predicted

by htm depending on the pressure rise and whether the wave length of

the disturbance is large with respect to the blade chord, or of the same

order of magnitude.

The values of propagation velocity predicted when the boundary-

layer delay is neglected should be larger than those obtained experi-

mentally, with the difference most pronounced for the case of disturb-

ances covering only a few airfoils, when the boundary-layer delay will

have an important effect. An increase in the wave length of the stall

cells should be accompanied by an increase in propagation velocity, if

other variables are unchanged.
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3. AN EXPERlMENTAL INVESTIGATION OF ROTATING STALL

Experimental work has been carried out using both a stationary

cascade and a single stage axial compressor. This combination has

proved exceedingly useful, because a wide range of stall wave lengths

could be examined and the measured characteristics compared with

theory. In addition, a comparison of phenomena observed in the two

test rigs has given an indication of the value and limitations of the

circular cascade as a research tool to reproduce effects found in

turbomachines.

3.1 The Stationary Cascade

In order to obtain the simplest possible type of flow in which a

stable rotating stall pattern could be observed, the cascade was con-

structed in the form of a circle between two flat plates (Figure 11).

Air flows outwards tlttough the cascade, and the angle of incidence of

the air entering the blades is controlled by a set of variable-angle

nozzles ahead of the cascade. There are fifty-four compressor blades

and an equal number of' nozzles. Provision has been made for removal

of' the wall boundary layers by suction through slots machined in the

casing just after the nozzles. Air enters the test section through

two pipes parallel with the central axis of the cascade and turns into

the plane of the cascade before being accelerated in the nozzles. After

leaving the cascade, the air is collected in a scroll and returned to

the compressors.

Details of the test rig are shown in Figures 12 to 17 and a

schematic of the flow circuit with fluid properties tabulated for a
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typical operating condition is given in Figure 17. With the closed

circuit arrangement, the Reynolds number and Mach number may be varied

independently by changing the pressure level in the circuit. Reynolds

numbers up to 300,000 (based on blade chord and conditions entering the

cascade) and approach Mach numbers up to 0.8 are attainable.

The dimensions of' the cascade blading are 1.71" length by 0.96"
chord and the airfoil section is shown in Figure 18. The airfoil shape

was obtained by conformal mapping of a rectilinear cascade into a
outside radius of cascadecircular cascade with radius ratio d of 1.09.inside radius of casca e

In the transformed cascade, the chord of the airfoil (defined as the

straight line joining the centers of curvature of the leading and

trailing edges) makes an angle of 42 degrees with the radius through

the leading edge. The design point inlet air angle is 48.50 to the

radius and the outlet air angle is 380
• The blades of the cascade are

located in position by pins which fit into holes drilled in the casing

on a circle of'radius 8.23" (Figures 14 and 18). After the stagger

angle has been set, the blades are clamped into position at one end

with bar-clamps which fit over the ends of' the pins and fasten adjacent

blades together in pairs. It is thus possible to change the stagger

of the cascade by loosening the clamps and resetting the blades. A

different procedure is required for the three blades in the observation

window since clamps would obscure the picture. These blades are re-

tained in position by a wire soldered to their trailing edges and to the

trailing edges of the clamped blades adjacent to the window.

At the commencement of the test program, difficulty was encountered

with frequent torsion failures of the pins on the clamped ends of the
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blades. In addition, blade vibration caused chipping of the optical

flats around the pins (showing as a circular blemish on the Schlieren

photographs) and the solder failed to hold the connecting wire to the

blades in the window. These problems were ameliorated, though not com-

pletely solved, by cementing the blades to the casing on the clamped

side and covering the pins of the blades in the test window with cement

before inserting them in the window, thus increasing the damping and

also cushioning the surface of the glass.

The design of the test rig and cascade is described in detail in

References 8 and 9.
,.1.1 Instrumentation

Th~ observations made in the cascade may be divided into two

classes, measurements of mean or steady state values of pressure,

velocity and flow direction, and observations of instantaneous values

of these parameters and of the changes in the flow field around the air-

foils in rotating stall.

To obtain mean values of static pressures before and after the cas-
ocade, three pressure taps were fitted before the cascade at 120 from.

each other on a circle of 7.69" radius, and three pressure taps mounted

after the cascade between the first three on a circle of 8.94" radius.

Total pressure probes were mounted in both inlet pipes to pe~it a

total pressure traverse before the nozzles, and the test window could be

removed and replaced by a small traversing g~ar to obtain a total pressure

traverse ahead of the blades in the window.

The air angle leaving the cascade was measured with an uncertainty
+ 0of - 2 using tufts attached to the connecting wire. The air angle enter-

ing the cascade was assumed equal to the nozzle outlet angle, since flow
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deviation is small for nozzles and the nozzles were so close together

that accurate measurementof the air angle could not be obtained. An

error of the order! 20 is therefore possible in air inlet ~gle.

The mass flow through the cascade was'obtained with an estimated

accuracy of -: 1/210 using a standard A.S.M.E. orifice meter. The total

temperature leaving the compressor was measured using a thermocouple
< + 0with an accuracy of -2 F. Froma knowledgeof mass flow, air angle, total

temperature and static pressure it was possible to compute the magni-
M JTotude of the parameter ----- entering the cascade from which,
1\ p

using gas tables for compressible flow, the mean entry Machnumber,

velocity, and total pressure could be found. A check on the accuracy of

this method of calculating the conditions entering the cascade was a-

vailable, inasmuchas the mean total pressure obtained should be very

close to the average value found from a total pressure traverse ahead

of the cascade. A.comparison of the two values at several operating

points showedagreement within 0.510, so that it was not necessary to make

total pressure traverses ahead of the cascade at each operating condi-

tion to find the mean total pressure.

For observations in the unsteady flow, the main instrument used was

the Gas Turbine Laboratory portable Schlieren apparatus, which proved

effective for entry Machnumbers to the cascade as low as 0.2. Schlieren
I

photographs were taken us ing a General Radio 35 mmhigh speed camera,

and a 16 mm Fastax camera, in conuunction with an Edgerton high speed

stroboscopic flash unit operated at flash rates up to 6000 c.p.s. The

schlieren photographs showedthe propagation velocity and the frequency
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of the rotating stalls, as well as the changes in air angle ahead of the

cascade and the nature of the flow around the airfoils. A pair of hot

wire instruments gave another method of calculating the propagation

velocity and number of stall cells, and also showed qualitatively the

nature of the velocity fluctuations. A barium crystal was used for com-

parisons of the pressure fluctuations before and after the cascade.

3.1.2 Cascade Performance

Before commencing the test program, total pressure traverses

were made in the inlet pipes and ahead of the blades in the test win-

dow. The thickness of the boundary layer in each inlet pipe was of'

the order of 0.1" and outside the boundary layer a maximum variation

in total pressure equal to 810 of the.mean dynamic pressure was. ob-

served, so that the total variation in velocity outside the boundary

layer.did not exceed 4% of the mean velocity. Variation in mean total

pressure between the two inlet pipes did not exceed 3% of the mean

dynamic pressure in the inlet pipes. In spite of the uniformity of the

conditions entering the test section, considerable asymmetry in static

pressure around the cascade was observed after the nozzles, especially

when the inlet angle f31 to the c~scade was low. At the design inlet

angle, the total variation in static pressure around the cascade was
12% of the mean dynamic pressure leaving the nozzles. The asynnnetry

gradually disappeared as the rotating stall region was entered. These

pressure variations were too large to be explainable by errors in

nozzle throat area. Also, the scroll shape should have had little up-

stream effect since the velocity in the scroll was very low. The most

plausible explanation of the pressure variation around the cascade

appears to lie in the possible presence of regions of separated flow
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within the duct which turned the flow leaving the inlet pipes into the

plane of the cascade. Due to the space requirements of the schlieren

apparatus, the duct was designed for no acceleration of the air as it

turned, so that unfavorable pressure gradients in some areas may have

caused flow separation before the nozzles. This effect would explain

the decrease in the percentage asymmetry with increasing ~l' since up-

stream irregularities become less important as the pressure drop across

the nozzles increases.

Ahead of the blades in the test window variations in total pres-

sure outside the wall boundary layers and the nozzle wakes were less

than 510 of the mean dynamic pressure entering the cascade. The thick-

ness of the wall boundary layers was of the ord~r of 0.050" and the

width of the nozzle wakes was approximately 0.070".
The cascade performance was obtained in terms of the pressure rise

across the cascade and the cascade outlet angle and is shown in

Figures 19, 20 in which the cascade pressure coefficient Cp and the

outlet angle ~2 to the radial direction are plotted versus t31. It was

found most convenient to operate the wind-tunnel compressors at con-

stant rotational speed during a test run and vary the air angle enter-

ing the cascade. Because of the compressor characteristic, this pro-

cedure resulted in almost constant mass flow through the cascade at

anyone rotational speed, independent of nozzle angle, and in con-

sequence the Mach number leaving the nozzles increased as the nozzles

were closed. Each curve in Figure 19 corresponds to a constant value
of the ratio compressor tip sp~ed denoted byspeed of sound in air entering compressor
1Cm, and in Figure 21 the Mach number entering the cascade is plotted
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against ~1 for each of the three compressor speeds used. It can be

seen in Figure 19 that for any value of ~1' there is a slight increase

in Cp with increas ing Mach number. Wi thin experimental error, no change

in ~2 with Mach number could be determined.

Starting at an inlet angle of 420, the pressure coefficient in-

creases with ~1 until at 480 the curve flattens out briefly before

rising again. The explanation of this dip lies in the fact that the

nozzle wakes wash over the airfoils at a value of ~1 equal to 490 and

have a serious effect on the cascade performance. The pressure co-

efficient then rises. once more until a peak value is attained at an

inlet angle of 560• Thereafter, the pressure coefficient falls, until

when '~1 equals 590 the curve starts to flatten, has a minimum value at
o . 060 , a second peak at 63 , and then falls off again. The nozzle wakes

ocross the airfoils a second time when ~1 attains a value of 60 and at

this point same unsteadiness was observed in the nozzle and cascade

wakes, but stall propagation did not begin until the nozza. "wakes passed

the cascade. oRandom stalls were observed at an inlet angle of 61 , and

periodic rotating stall commenced at an inlet angle of 640•

It has been suggested that the temporary rise in pressure co-

efficient after initiation of the unsteady flow may be partly due to

the increase in the root~ean-square value of the velocity entering the

cascade. For a given inlet angle. and mass flow rate in an unsteady

flow, the mean pressure rise across the cascade is proportional to the

time mean value of (velocity)2, which increases as the velocity fluctua-

tiona become larger.

At the lowest compressor speed, the Mach number entering the cas-
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cade does not exceed 0.35, so that compressibility effects should be

small and the exper~ental results may be used to test the theory of

Chapter 1. Using the method of Appendix I, ex has been calculated for

each inlet angle up to the point where rotating stall commences, and

is plotted against cott31 in Figure 22. At the point where rotating

stall begins, the curve is practically a straight line, with a gradient

very close to the value predicted by the theory, the tangent passing

slightly below the origin instead of through it. This result is in

agreement with exper~ental evidence for rectilinear cascades presented

by Emmons in Reference 2. In the circular cascade, rotating stall

started at a value of ex of approximately 0.80. It is, of course, im-

possible to find values of ex for higher angles of attack in the ro-

tating stall region because of the unsteady flow, and the nozzle angle

could not be increased sutfic iently to pass through the unsteady flow

region into a state of steady, fully stalled flow.

Spark schlieren photographs of the airfoils in the steady flow are

4 0 4 0 4 01 0presented in Figure 23, at inlet angles of 2, 6, 9.5, 53.2 ,
56.80 and 60.40

• The nozzle wakes and the cascade boundary layers are

visible and the forward movement of the separation point with increasing

131. can be observed.

3.1.3 Rotating Stall in the Cascade

As the nozzle angle was increased beyond 600,the onset of

rotating stall was accompanied by an increase in air noise from the

apparatus, with a sharp intensification of the sound at 640 when full

rotating stall commenced. For inlet Mach numbers above 0.5, lambda shocks

appeared on the upper surface of the airfoils at high nozzle angles and
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the occurrence of these shock waves was signalled by a high pitched
screaming sound. The rotating stall phenomena at low Mach numbers
will be described first, since compressibility effects had a strong
influence on the periodicity of the stall pattern.

To obtain satisfactory Schlieren pictures, MJ. was required to
be at least 0.2. In consequence, a compressor 1fm of 0.173 (with MJ.
ranging from 0.2 to 0.35) was most suitable for evaluation of rotating
stall phenomena at low Mach numbers and extensive testing was carried
out at this speed setting of the wind-tunnel compressor. As can be
seen from Figure 23f, just before the transition from steady flow to
random stall occurred the separation point on the suction surface of
the airfoils was approximately 3CYfo of the chord length aft of the lead-
ing edge. A 10 increase in angle of attack from this point was sufficient
to start random stall.

In this region of operation, the disturbance did not always propa-
gate from blade to blade across the window but would frequently die out
before reaching the last blade. Small differences in blade setting may
have been responsible for this effect, since the possible variation from
the nominal setting was estimated at :10

• Figure 24 shows one cycle of
stall and unstall in the random-stall regime. Some of the pictures talteft
in this region of operation showed the airfoils in the window remaining
stalled for 20 to 30 milliseconds before unstalling, while others re-
vealed stalls propagating across the window at intervals of 5 to 10 milli -
seconds. With increasing ~J.' the disturbances appeared more regularly
until at ~J. = 640 the disturbances crossed the window at time intervals
ranging from 3.2 to 5.6 milliseconds and could now be properly called
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"rotating stall" (Figure 25). An airfoil was now stalled for approxi-
mately 40% of the time, and the wave length of the stalls was about six
blade-spacings. With further increases in ~~, the stalls appeared more
regularly and at r31 = 670 (Figure 26) the time intervals between dis-
turbances varied only from 3.0 to 3.6 milliseconds. From the film
records the velocity of propagation could be calculated within 5~ and
it was found that at any nozzle setting there was little variation in
propagation velocity between stall cells, but the average propagation

ovelocity increased from 90 fps to 120 fps as r31 was increased from 63

to 670
• Due to the variation in the time interval between stalls and

the uncertainty in propagation velocity the number of stall cells could
only be estimated within :1 cell, but there appeared to be approximately
nine cells in the cascade at r31 = 640, with the number increasing to
eleven at r31 = 670

• In Table I on page 38, the measured propagation
velocities are tabulated and compared with the results obtained using
hot wire equipment.

Over the whole range of inlet angles for which rotating stall was
obtained, it was found that the time required to unstall an airfoil
was always greater than the time required to stall the airfoil, the
former process requiring approximately 0.6 to 0.8 milliseconds, while
the latter was completed in 0.4 to 0.5 milliseconds (Figures 24, 25, 26,
27). That this should be so is not surprising when it is considered
that the fluid in the separated region can only be removed at its own
low velocity after boundary-layer reattachment becomes possible, while
the boundary layer can separate from all points of the upper surface of
the airfoil when stall occurs and fill the passage very rapidly. At the
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higher values of 131, reversed flow was observed in the channels between

airfoils after stall had occurred, so that after the reverse flow had

stopped, a slug of initially stationary fluid had to be removed from the

channel before good flow could recommence (Figures 26, 27). It can be

seen, 'therefore, that it is impossible to separate the boundary layer

time delay from the inertia effect for measurement purposes during the

unstalling process since the flow rate through the channel must be

changed before the reattached boundary layer can be seen. On the other

hand, when the airfoil stalls, flow separation and a decrease in a can

take place without necessarily being accompanied by a change in flow

rate through the channel, so that the time taken to stall after a

change in inlet angle can be used to obtain an upper limit for the bound-

ary layer delay. The average time for stall was approximately 0.5 milli-

seconds throughout the range of inlet angles; but this is not equal to

the boundary layer time delay -,:, since for the equivalent exponential-

lag system, the minimum time required to attain 95% of the final change

in a after a step change in 131 would be 3'"r. An approximate value for 1::

is therefore 0016 milliseconds. The inertia time constant L/c3 was equal

to 0.35 milliseconds for this operating condition, since c~ = cr13 = 230 fps
..I COS 2

and the blade chord L = 0.96 inches. Thus" the upper limit to the value

o:f7: was approximately 1/2 ~3 and the true value was certainly smaller

than this since the inlet angle did not change instantaneously and the

observed response of the boundary layer was therefore slower than the

theoretical response to a step-change in inlet angle.

An interesting feature of the photographs is the occasional appear-

ance of what seem to be vortex-planes at the entrance to a channel after
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after stall at the moment when the fluid within the channel is stationary

and the unstalling process is about to commence (Figure 27)0 The planes

retain their identity in subsequent pictures and move through the channel

as good flow is re-established. These planes may be formed by shear ac-

tion between the deflected main flow and the staionary fluid within the

passage, and are visible as sharp lines only when they are perpendicular

to the plane of the cascadeo

Hot wire equipment was used to check the number of stall cells and

the propagation velocity, and also for traversing in the spanwise direc-

tion to determine whether the whole passage was affected by rotating

stall. The equipment employed-was of the type manufactured by the Flow

Corporation of Cambridge, Massachusetts and is shown in Figure 28 with

the dual-beam oscilloscope, Land Camera, and audio-oscillator o' . Two hot

wire probes were installed behind the cascade at a distance apart of

nine blade spacings. The signals from the probes were amplified, fed

to the dual-beam DuMont Type 322 oscilloscope, and photographed with a

Land Camera to be analyzed latero A time scale was added to each photo-

graph by feeding an oscillatory signal to the beam intensity control of

the oscilloscope and thus superimposing a line of blips of any desired

frequency on the trace" Since the approximate number of stall cells

was already known to be in the neighborhood of 12, two probes set a fixed

distance apart were sufficient for determination of the phase lag and it

was not necessary to resort to the more complex procedure required for

identification of the number of stalls when no other information is

available. From the phase lag measurements, the number of stall cells

could be calculated, and this information together with the frequency
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of the disturbances passing one wire was sufficient for computation of

the propagation velocity. The accuracy of this method depends entirely

on the regularity of the disturbances since the phase lag can be meas-

ured sufficiently closely to pinpo~nt the numberof stall cells only if

the phenomenonis periodic. As can be seen from the traces in Figure 29,

the variation between stall cells was responsible for an uncertainty

of about on.ecell. For example, at 13). = 680 the estimated numbervaried

from eleven to twelve, with twelve the most likely number. In addition,

it is possible that the numberof cells changed with time. In Table I

below the results of the hot wire measurements are comparedwith those

obtained from schlieren photographs and the agreement is good.

TABLE I

Total Temperature 5350R
Cascade Reynolds Number240,000

Schlieren Photographs Hot Wire Method

No.. of - Propaga- No. of Propaga-
stalls tion Stalls tion

Cr). Velocity Velocity

132 M). fps fps Vfcr~ fps Vfer).

63.80 .326 161 9 1.04 .64 9 99 .62-

65.50 .343 160 10 110 .69 9 112 .70

67.20 .361 159 11 117 .74 11 116 .74

68.50 .377 159 -- --- --- 12 115 .72

(

All the testing described above was carried out with a cascade

Reynolds numberof 240,000. By lowering the pressure at inlet to the wind-

tunnel compressors from 20 psia to 10 psia the Reynolds numberwas

lowered to 120,000 without changing the Machnumberand velocity. At the
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lower Reynolds number rotating stall did not begin until ~1 attained

630,and the propagation velocity was approx~tely 15% lower than at

the higher Reynolds number. There appeared to be 12 stall cells in

the cascade. Since the Reynolds number should affect only the boundary

layer delay, and possibly the downstream pressure fluctuations, one

would expect only a small change in propagation velocity with Reynolds

number.

By traversing the passage with the hot wire probes, the discovery

was made that periodic rotating stall existed in a sharply-defined band

of about 1/4" depth adjacent to each end-wall of the cascade while the

disturbances were still of a random nature over the rest of the cascade.

The tip stall began at ~1 = 610 and persisted until ~1 = 630, after

which the periodic stall filled the cascade.

Removal of the boundary layer through the slots after the nozzles

had no measurable effect either on the rotating stall characteristics of

the cascade or on the Cp versus ~1 curve. If' more than 2% of the main

flow were. removed the cascade pressure rise decreased, indicating that

fluid from outside the nozzle boundary layer was lost and that the inlet

velocity to the cascade was reduced. The tip stall persisted and may

have been caused by corner vortices being shed by the nozzles, as de-

scribed in Reference 10. Carbon-black patterns showed that the ends of
othe blades were stalled at ~1 = 56 .

With increasing Mach number, the hot wire pattern remained periodic

until shock waves first appeared, after which a further increase in Mach

number was followed by a rapid deterioration in the periodicity of the

trace. A high speed film taken at ~1 = 67.20 with M1 = 0.65 showed
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the stall pattern building up and then collapsing as described-below.

F~llowing a period of 14 milliseconds with all the airfoils stalled, a

brief period of partial unstall movedacross the window. Twenty-eight

milliseconds later, six cycles of unstall movedpast the window,each

cycle occupying 1.5 milliseconds. After a further 20.7 milliseconds

from the appearance of the cells, the cluster of stalls movedby once

again, but there were noweight of them apparently occupying one-half

of the circle since they took 12 milliseconds to pass the windowand

had a propagation velocity of 184 fps, corresponding to a time of 21

milliseconds for one revolution. Another interval of nine milliseconds

duration followed, with all the airfoils in the test windowfully

stalled, and at the end of this time the eight cells cameby again,

but this time they had apparently sprung apart to fill the cascade

since the interval between each cell had doubled. The film terminated

at this point, but the hot wire traces indicated that this process was

typical of the phenomena'at high Machnumbers and was probably followed

by collapse and a later reforming of the pattern. A portion of the

.film is reproduced-lri'Figu;~- 31 and shows strong lambda shocks appear-

ing on the upper surface of the airfoils after the inlet angle increase~

with boundary-layer separation behind the Shockwaves. At this Mach

numbervier had a value of 0.66.

Pressure fluctuations before and after the cascade were compared

by recording the signals from barium titanite crystals connected to

static pressure taps. At very low Machnumbers the pressure fluctua-

tions ahead of the cascade were ~hree times as large as those behind

the cascade (Figure 30). With increasing Machnumber, the relative
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magnitude of the pressure fluctuations behind the cascade increased,
until at M1 = 005 they were as large as those ahead of the blades.

The nozzle-vakes gave a useful indication of the inlet angle to
the cascade during rotating stall, and a comparison of the high speed
motion pictures with the steady flow spark pictures showed that during
the unstalled portion of the cycle the inlet angle was never less than
560, so that the airfoil was not operating to the left of the peak on
the Cp curve at any time during the cycle.

No steady-state hysteresis effects were observed in the cascade
response to changes in inlet angle, the pressure coefficient and ro-
tating stall characteristics being dependent only on t31 and u.na.:ffected
by the way in which the operating point was approached. This suggests
that interference effects between blade-rows are responsible for the
hysteresis found in compressor stall characteristics.

3.1.4 Effect of Cascad~ Solidity on Rotating Stall
With the original blade spacing, the stall cells had the appear-

ance of a cloud of material of fixed identity rolling along the cas-
cadeo This illusion of continuity was so strong that, when the film was
projected, the observer received the ~pression that the stall was flow-
ing over and through the blades rather than being propagated from one
blade to the next. The position of the boundary of the stall cell was
a linear function of time and there was no appearance of discontinuity
due to the finite blade spacing. In order to determine the effect of
cascade solidity on the appearance, velocity and number of the stalls,
every second blade was removed'from the cascade so that the solidity 6

chord) ,(defined as "t h was reduced to 0.5, and the cascade was tested oncep~ c
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again. In Figure 32, the pressure coefficient is shown for compressor
~m of 0.173 and 00287, and in Figure 33, ~2 is plotted against ~~.
There was now very little turning of the flow and the greater part of
the pressure rise was due to the change in radius, which was responsible
for a theoretical pressure coefficient of 0.25. The Cp curve still
showed the same characteristics as those observed with the higher
solidity, with a dip in the curve at ~~ = 490, a peak at ~~ = 540, a
minimum value at ~~ = 600 and a second peak at ~~ = 620

• Rotating stall
was observed in the wall boundary layer at the ends of the blades at
an inlet angle of 610

, and full rotating stall commenced at 640
• The

pressure coefficient and flow deflection were now too small to permit
accurate measurement of'ex, which was approximately 0.9 when rotating
stall began.

High speed schlieren photographs taken with an inlet Mach number
of 0.35 showed that the number of stall cells was approximately 13, with
6 increasing from 0.76 at ~~ = 65° to 0.86 at ~~ = 68.6°. There were
r

now only two airfoils in one wave length of'the disturbance, and yet the
stalls still moved with uniform velocity along the cascade. Flow separa-
tion on the suction surface of'one blade commenced when the pressure
side of'the blade ~s touched by the stalled region generated by the
previous blade (Figures 34, 35). Frequently, the boundary layer re-
attached on one blade before stall commenced on the blade above it, so
that part of the passage had good flow while the upper portion of the
passage was still occupied by low-energy fluid. When a blade stalled,
a region of flow separation appeared first at the leading edge, then
grew and moved back along the blade, requiring approximately 0 •5 milli-
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seconds to cover the blade. To obtain better definition of the nozzle
wakes, a high speed motion picture was taken with an inlet Mach number
of 0.45 (Figure 36) and from this it can be seen that the air inlet
angle to an airfoil increased sharply just before the airfoil was
touched by the stall propagating from the adjacent blade.

A further reduction in solidity to 0.33 was accomplished by re-
moving nine ot the remaining blades from the cascade. Only one blade
was now visible in the window, but rotating stall still occurred and the
turbulent air from the adjacent blade could be seen crossing the window
before stall occurred on the blade in the window (Figure 37). The fre-
quency of the disturbances was now almost twice the frequency obtained
wi~.ha cascade solidity of unity, being 630 cps at t3~ = 68.6~. Hot
wire 'measurements showed that there were still approximately thirteen
stall cells in the cascade, propagating with a,velocity of 200 ips.

When nine of the remaining blades were removed (leaving nine blades
in the cascade) rotating stall did not appear, and for inlet angles
greater than 610 the flow separated from the leading edge as shown in
Figure)8. The stalling process was quite abrupt, with the separa.tion
point jumping suddenly from the 3\110 chord position to the leading edge
as t3~ was increased from 600 to 610•

In Figure 39, the frequency of the stalls is plotted against solidity
ofor (31 = 68.6 , M1 = 0.35, and on the same diagram the frequency of

eddy formation for a single airfoil (VonKarman vortex street) as deter-
mined by Fage and J;ohanson (Reference 11) is shown. The formula for the

Veddy frequency of a plate or airfoil is f = 0.155 h' where f is the fre-
quency incps, V is the free stream velocity fps and b is the component
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of chord normal to the free stream (feet) 0 The stall frequency apparent-

ly tended towards the single airfoil eddy frequency as the solidity was

decreased 0 When the cascade solidity is too low to permit rotating

stall, the a~foils shed ~ddies, and for the nine airfoils in the cas-

cade an attempt. was made to measure the eddy frequency. Accurate de-

termination was difficult because of stream turbulence and because the

hot wire could not be traversed to rind the position where the dis-

turbances were most regular, but the eddy frequency appeared to be

approximately 1,000 cps and this point lay on a smooth curve through

the single-airfoil eddy frequency and the rotating stall frequencies.

Although accurate determination of the eddy frequency was not possible

with the present arrangement of the apparai?us, this result suggests

that there may be a connection between the eddy frequency in the ab-

sence of rotating stall and the frequency of stall cells with small

wave lengths. No experimental work bas apparently been done on the

effect of blade spacing on eddy frequency and it would appear that

such a study might shed some light on the relationship (if any) between

eddy frequency and rotating stall. The eddy frequency is governed by

the same parameters that determine the boundary layer response in ro-

tating stall and the fact that no satisfactory theory of vortex shedding

has yet been developed is an indication of the complexity of the prob-

lem and the inadequacy of the simple exponential lag representation of

the boundary layer response.

3.1.5 Comparison of Theory with Experiment

Using the simple theory with 1: assumed negligible, the theore-

tical propagation velocities w~re computed from the Cp and ~2 versus ~1
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curves for the cascade with solidity unity and one-half. The calcula-

tions could be made only in the steady flow region since it is unlikely

that the pressure measurements in the rotating stall region represent

the steady cascade performanceo In consequence,it is not possible to

compare the theoretical propagation velocities directly with the ex-

perimental results for the same angles. In Figure 40, the computed

propagation velocities for 9, 10, 11 and 12 stalls are plotted versus

131 ford = 1, together with the experimental velocities. The broken

lines represent the extrapolation of the theoretical curves into the

rotating stall regime and it can be seen that most of the experimental

points lie within this area, which is as much as could be hoped for

from a simple, linearized theory. In this case, omission of the inertia

of the fluid within the cascade would result in an error of the order of

100% in the predicted propagation velocity. The propagation velocity

with a Reynolds number of 120,000 and twelve stall cells is slightly

smaller than that with twelve cells and a Reynolds number of 240,000.

In Figure 40, the computed and observed propagation velocities

are shown for the lower solidity, and here the agreement is not as good.

The assumption of one-dimensional flow within the passages is certainly

not valid for low cascade solidity and the effective inertia of the air

within the cascade may be considerably less than the value given by the

theory. The good agreement between the experimental results and the

simple theory for the high solidity cascade suggests that the boundary

layer time delay't may be considerably smaller than the approximate

value calculated earlier, since a value of 1:' equal to 1/2 ~3 would

reduce the predicted propagation velocity by about 3f11.,. From Figure 39,



it can be seen that increasing the cascade solidity beyond 0.75 has

little e~~ect on the stall ~requency and hence on the propagation velocity.

Accordingly, it woul-ci'°appearthat the neglect o~ finite blade-spacing

in the theory is justifiable for solidities greater than 0.75.
3.2 The Single-Stage Axial Compressor

An investigation of rotating stall in a single-stage comPressor

has been carried out by S. R. Montgomeryand Lt. J. J. Braun (U.8.N.)

and a full report on this work will be available shortly. For com-

parison with the cascade performance and the theory, someof the re-

sults obtained are presented here.

3.2.1 Rotating Stall in the Free-Vortex Rotor

The compressor is a free-vortex machine with a hub-tip ratio of

0.75, and the stage consisted of a row of inlet guide vanes, a rotor,

and a set of stator blades. The axial clearance between the rotor and

guide vanes was 1.5" and the rotor had an outside diameter of 23.25"

and held 44 blades with a meanchord length of 1.5". With the stator

removed, an investigation of the rotating stall characteristics of the

machine wasmadeusing hot wire equipment. For the rotor, the geometry

of the blading was quite similar to that of the stationary cascade, with

a design-point air inlet angle of 480 at the meanradius.

The performance of the rotor in terms of pressure coefficient and

relative outlet angle at the meanradius versus relative inlet angle is

shownin Figures 42 and 43. A13the mass flow was decreased at 1500 rpm,
oeight stall cells appeared at f3~ = 67 , covering the blades from root

to tip and propagating at approximately thirty percent of rotor speed

relative to the rotor. A further decrease in flow caused a change to
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nine cells at ~l = 710, with approx~tely the same propagation speed •.
At ~1 = 750, the nine cells were replaced by a single stall cell
propagating at fifty percent of rotor speed relative to the rotor.

o 0Three stall cells appeared at f31 = 80 and four cells at ~1 = 84 •

Throughout the whole rotating stall range, the pressure fluctuations
ahead of the inlet guide vanes were less than 25% of the pressure
variations between the guide vanes and the rotor, indicating that the
effect of the guide vanes on the unsteady flow was substantially as
assumed in the analysis. The pressure variations behind the rotor
caused by rotating stall (that is, the difference between the fluctua-
tions with and without rotating stall) were less than 25% of those
ahead of the rotor throughout the whole flow range in which rotating
stall was obtained.

In Figure 44, the predicted and observed values of propagation
velocity are plotted on a base 'of~1. At the conunencement of rotating
stall where the linearized theory is most likely to be applicable, the
agreement is remarkably good. As in the cascade, the accuracy of the
simple theory indicates that the effect of the boundary layer delay on
velocity must be small. The change from nine cells to one cell at
~1 = 750 was accompanied by a considerable increase in propagation velocity,
verifying the prediction that propagation velocity should increase with
wave length. The theory comes within 2510 in predicting the propagation
velocities of the large stall cells, probably because the pressure
fluctuations after the rotor were small in this case even for large cells.
By considering the flow field after the cas~ade as a continuum, it is.
pOSSible to obtain a solution for propagation velocity which reduces to
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the Sears-Marble result for large waves with small pressure rise across

the cascade (Appendix 111)& This solution predicts propagation veloci-

ties which are much lower than the experimental values both for the

stationary cascade and the rotor, showing that neglecting the down-

stream pressure fluctuations is the better assumption for a single blade

row.
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4 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

USing the two extreme assumptions for the downstream flow field,
solutions for the velocity of stall propagation have been obtained.
With the assumption that the downstream field is a continuum, the solu-
tion reduces to the Sears-Marble result for the special case considered
by Sears and Marble, and does not give good agreement with experiments.
The solution obtained by neglecting downstream pressure variations pre- .
diets propagation velocities within 25% over a wide range of wave
lengths. It may be possible to develop a more realistic model of the
downstream field which will cover the whole range of wave lengths and
predict downstream interference. In addition, it is desirable to
analyze oscillations of finite amplitude, since the linearized solu-
tions are certainly not valid for the large changes in velocity which
can occur in rotating stall.

Although a good start bas been made in studying the velocity of
stall 'propagation, only the first step has been taken towards predict-
ing the number of stall cells present in a given configuration. A
model has been suggested which reproduces the main features of the
phenomenon and indicates that the boundary layer response may be of
great importance in determining the wave length, but it seems likely
that the:boundary layer behavior is much more complex than the simple ~
exponential delay used in the analysis. A study of the effect of cas-
cade blade spacing on eddy-shedding may yield some information on stall
frequency for the short -wave cells. By decreasing the stagger of the
blades in the stationary cascade, it will be possible to test the cas-
cade over a larger portion of the rotating stall region. If transition
from a large number of cells to one or two cells {as observed in the



compressor) can be obtained, the schlieren photographs may give some

information about the cause of the changeo
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A

b

c

cr

NOMENCLATURE

Area

Functions of time

Half-wave length of the disturbance

Velocity

Steady state velocity in x direction

Steady state velocity in y direction

Steady state radial velocity

Steady state tangential velocity

Cascade pressure coefficient = P2 - Pl
p/2 C12
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D Operator ~2rt
L

m

n

M

P

Po

r

To
u

v

V

a'

Equivalent chord length of blade

Mass flow rate

Number of harmonic

Mach number

Stream pressure

Total pressure

Radius

Total temperature

Total velocity in x (or r) direction

Total velocity in y (or Q) direction

Velocity of stall propagation

Discharge coefficient of cascade
Cia

d(cott31)

•



p

Inlet angle to cascade

Outlet angle from cascade

Root of characteristic equation
" chordCascade sol~dity "t h. p~ c

Compressor rotational speed parameter

Radian frequency

Time constant of boundary layer delay

Density

Total velocity potential

Perturbation velocity potential
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APPENDIX I

Calculation of a for a Real Cascade

a has been defined as the ratio of the actual mass flow through

the cascade to the. ideal mass flow for the same (Pot - P2.) . and flow

deflection with no losses. It may be obtained fran conventional test

results as follows:

(a) Rectilinear cascade
Actual mass flow

a = Ideal mass flow for same (Po~ - P2)

C I t:&:)s (31

'0$(3a.) c.:'-
~QS ($.-= ---:::.-=.-=.-::..-::..-:..-:..-co~t>l.J I - Cp

( p~- p,~ 1-
./ ~C,

Since P02 = P01 with no losses

(\ COSt!,

tc"a..~A~\ (oS (>,
C, ~os (!.,.

c"~(>...J~(Pol - P,.)

c I ~o!.(3~

'O$~~ J~[(f..,- P,) - (fa.o Po)

--

0( ::

0(

where

therefore

Thus

(b) Circular Cascade

oZ = "2.1\ ~ C I (.oS,(J I

'21\ ~2.. (C~) ..~ lOS(Jz.
which reduces to

(;.C$ (3.
(,r,» (J ..~ , -Cp
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APPENDIX II

Stall Propagation in a Circular Cascade

The cascade arrangement is as shown in Figure (10).

Consider disturbances from an incompressible plane source-vortex

flow with velocity components CQ = Cel • !:..J..
r

and angle f3l to the radial direction. The flow before the cascade

is irrotational so that a velocity potential can be used.

In the disturbed flow u = Crl • !:J. + t.f r
r

From continuity
+ -0

Therefore

Solutions to this equation are obtained in the form

Lf = ~ [ 0.", (0\-) ~s 1'\ e + b..l+)s.i ... ""e] f' ~
Y\c2.

satisfying the condition tpr : t..(' e :;a (P.+- r': 0

For n = 1, the velocity perturbation does not die out at the origin.

From Bernoulli's equation for unsteady flow

(l.R.). -t- C::,bc., + ~Plf = 0
If inertia effects may be negle~ted between (1) and (3) then

C, &'-1 .,. Sf'.!r - C"1~ C,:\ -r ~P:l If-
so that

~ f:J IS'(({it )\ + <=:~ ~c') + - 0-
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Inertia Effects Within the Cascade

With the assumption that the blades are in the form of logarithmic

.spirals of small curvature (valid if r2 is close to unity) the mOplen-
i r~

tum equation along the mean line of the passage (called the ~iS)

can be written

~ + C ~ +), 2>p = 0-at ~e.. ~~!
as for the rectilinear cascade and by a similar process of integration

we arrive at the equation
L ~l ~C~) .,. (~~)I ... c... aC-a., = 0

~f; I

Also,

as in the case of the rectilinear cascade. However, a is now given

by a = ~~ . ~; , since the outlet area with no separation region is now
r2
- • A3.r~
Therefore,

which reduces to ,-~-~
An equation for Lf at (1) is obtained in the form

~ ~,.t +- J. (!1)'l.CrLl't" r 1_ t"';-(Jlc(.') + t:.' (.~ ~ '0+1.13. C~~e = 0
~f)S~. o(~ 1"1. G.o~'~, l ~ ",,:I 1"\. J 'oSl-~1. fi

By inserting the solution for ~ and separating the terms in
cos nQ, sin nQ two differential equations in an, bn are obtained which

yield the characteristic equation
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stall propagation occurs when cx' ex and the velocity of' the- cotf31.
nth harmonic is given by

,,~ _ (f\)4 cor(1 t

Cr\ - r\. o(Lc.OJ.(31.L'*=f.. +tos(3a.l
Thus, if' there are m synnnetrical stall cells in the circular cascade,

the velocity of propagation of the primary component is obtained from

Upstream Interference.Effects

If a row of inlet guide vanes is placed before the cascade, with

outside radius R, then t.f r will be forced to zero at r = R and a

solution is obtained in the form

cf = f [o....(~) '~~nFJ -+- b...l~)..~~w\eJ[r~+ ~..'" \'"-~J
"..Substituting this solution as before in the differential equation

satisfied by tp at (1) and carrying through the rest of the solution we

obtain

::i
Cra

where V

r: 1.. c.ot ~ \

- (;).)7- ~ ~L-VV\ l- (R/r,)'l.W\ ~ (JJ
- 1.. 11\ '"0$ - ----- ,.-- ~o~

4. V; I+(P../(\)),.W\ '2.

is the velocity of propagation of the fundamental component

of the wave when there are m symmetric stall cells in the cascade.
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APPENDIX III

By assuming that the fluid from each blade passage mixes without

pressure recovery ~ediately after leaving the cascade so that the

downstream flow field is a continuum, it is possible to obtain an ex-

pression for propagation velocity which reduces to the Sears-Marble

value for large waves with small pressure rise across the cascade.

Under these circumstances, the x-component of velocity ~ediately

after the cascade in the unsteady flow will be C)( + (~~), and the y-

componentof velocity will be (C>( +~~l(\1+fJ."l($7.
In the downstream flow field, let

I
,LA.. ': c.)( + \.A "1.J :

The linearized momentum equations are
(~ ) ~~I C> / G) /..J.- ~p -r _ ...,.ex..J!' -r c){ ~ t~'Af' -= 0

~ ~ K ?)~ Q)( '0 ":::) :i.

.J.. Gl(~f') + ou' + Cox: ~vl' +(y,.~f"'4:ta;O
~ 'a~ ~t" G>)( "2>~

Differentiating the x~omentum equation with respect to x, and the

y~omentum equation with respect to y and adding we obtain (by using the
continuity relation d tAl + ~' :' 0 )~')( o~

~'f') ~ o'1.(Ip) = 0
ox ~ ~~...

A solution to this equation may be obtained in the form
~ - V\ '«')('

~I" :: ~ [C", (~) ~ ~ -+ c:l",(+) s ,.~1'\:;] .e -;
f WO\:_

From the x ~omentum equation
~ I

I o (dr) d~1' c ~ d_~ -+- C "'- A ~l..i\ - 0~ 2iX + ~1:"" ..... "" >( >< -. f\ "', -'2. ~ -

But ?Jv! a\J/
- + -. = 02> X' ~..,



Therefore

By substituting this value for

in equation (5) i,~stead of putting ~r~:.0, the -final expression for

propagation velocity is

v-c~ -- ~(\-'t)
S;P\ '2.~1 [~~s(k +'2.. ]

and this reduces to the Sears -Marble value for Cp = 0 and Lib = o.
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FIG.IO REPRESENTATION OF CIRCULAR CASCADE
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FIG. 15 - TEST SECTION



FIG. 16 - TEST SECTION BLADING



COOLER

SCREENS

• •

CD

COM PRESSOO ~

2

STATION RADIUS MACH.NQ VELOCITY P LB-M P Po PSIA P T ofINCH'S F.P.S. o FT3

1 78 .0712 .0710 14.54 14.49 90
2 62 .0855 .0854 18.09 18.06 90

30 127 .0814 .0809 16.60 I 6.47 89
3b 133 .0786 .0781 16.01 15.86 89

3c .44 498 .0786 .0715 16. 0 I 14,02 70
4 6.0 .45 509 .0786 .0714 16.01 13.93 68
5 7.2 .7 1 776 .0771 .0608 15.69 I 1 .25 45
6 7.9 .59 658 .0771 .0652 15,69 12.40 54
7 8.7 .39 443 .0759 .0703 15.47 13.93 73
8 12.0 .28 317 ,0759 .0730 15.47 14.56 82
9 23.0 . I 0 I I 5 .07 14 .071 1 14.56 15 .86 89

FIG. 17 AIR CIRCUIT - SCHEMATIC DIAGRAM AND TABULATED
PROPERT IES.



FIG.18 COMPRESSOR CASCADE AIRFOIL

.09Z d,,:r .

. 09/



Cp

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o
40 44 48 52 56 60 64 68

FIG. 19 CASCADE PERFORMANCE

PRE SSUR E CO E F Fie IEN T VS (j 1 FOR (J = I.0



~
~ '5

~~
) a..~ - --

60

50

40

20

10

o
40 44 48 52

{3~
56 60 64

FIG. 20 CASCADE PERFORMANCE {32 VS {31 FOR a- = 1.0



I I I
0 7Tm = 0.173
X 7Tm = 0.288
~ 7Tm = 0.40 I

./

/ &r

-tr' --""~

~
~

b<"""
~~

~ ~

~~ ~ """.",..u
~

.... X.........

~ ---
___ X .......

........x--
x- _x.-----

l----C ~ ~-- ----- --
__ .r

-
.-r ..I _

.-r
I"'"

f31°

FIG.21 MACH NUMBER ENTERING CASCADE VS PI

1.2

1.0

0.8

0.6

0.4

0.2

o
40 44 48 52 56 60 64 68



-
(!)

l1..

II

o

b
a::
o
l.1..

-
<:Q.

r-ou
Ul
>
c:s

wu
Z
<1:
:E
a::
O.
l1..
a::
W
Q.

Wo
<1:
U
en
<1:
U

C\J
C\J

~o

q

C\J
o

CD.0-
0CXl,

r-

°uCD
o

C\J

o
oC\J

o
v
o

CD

o
CD
o

o

I

I
.

,
"'-/

~

'"~ ""'- "
"-

""" .......

~

~
"-

"'-

"~
C\J



0 0

lO V
0'>

-
0

u ~ -.- W ~- II II 0
en. - ...Jen. l1..

>-
0
<r
w
~
(/)

Z

W
0«
0
(/)

«
()

w
I

0
0 ~

<.0
CO-

~ W l1..
..c II lO 0

Q)

- II

en. (/)

en. I
a..«
a::
<!)

0......
0
:r:
a..
z
w
a::
w-
...J
I
0
(/)

0
C\J

0 - tf)

C\J tf) C\J
~ lO

0
-0 <.9II .......... II- -- l1..en. en.



--.- TIME

FIG. 24 ROTATING STALL. :.000 FRAMES/SEC.
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FIG. 25 ROTATING STALL. 5000 FRAMES/SEC.
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