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1. SUMMARY

The purpose of this study \tI~ to determine the swelling property of

of. Pittsburgh NOe 8 seam coal under different experimental conditioDSo

The experimental variables were the average initial particle size of

coal particles and the peak temperature of the laminar I1.ow reactor ..

employedto obtain paticulate samples for this study.

The study has shown that the average swelling ratio of the

particulate sample increases with the average initial particle siz80

A least square methcxiwas us~ to eorrelate the linear relationship

between the average swelling ratio and the average initial particle size

for unagglomerated particu:la te samples formed at a constant peak

temperature J and the correlation "'M. satisfactory e

The study has also shownthat there is a close relationship between

the rate of thermal decomposition of coa.l and the swelling ratio of the

particulate samples5 namelyJ they both peak at a certain temperature.

Attempts .were madet.o correlate the average swelling ratio of the samples

with the average temperature of th$ Ja.mina.r flow reactor at a constant

average initial particle size. The correlation WA~ not very gooil,

probably due to a lack of information on the reactor average. temperature

correspom1ng -to the average maximumswelling of the particulate samples,

as well as a lack of data obtained at the low temperature of the

laminar flow reactor.



2. INTRODUCTION

2.1 General Background

Recently, there has been a growing cOJlJllerc1al interest in th$ .use ~. ~__

of coal and coal derived fuels. During the past years, intensive research

has been directed toward the developaent of improve:!. coal utilization

procedures t in particular processes for convertiDg coal to clean gases

and liquids, i.e. gasification and liquefaction. The aa1n task of the

coal utilization developaent is to investigate processes for upgrading.

the hydrogen to carbon ratio of the material. The typical atomic hydrogen

to carbon ratio of coals -:.ia Oc6 to 1.9 whereas, for example, it is 4.0

for natural gas and about lea or 1.9 for erude 011. The task of up-

grading can be accomplished to a certain extent by coal pyrolysis.

In coal pyrolysis, which is thermal decomposition accomplished by

elevating the te.lJlpera.ture, the coal is converted. to a hydrogen rich

volatile fraction and a carbon rich solid residue. The residue will then

react with hydrogen gas rapidly during or just after volatile release

(Anthony ani Howard, 1976). There have been many models developed to

describe -the rate of thermal decomposition and volatile yields of

coals upon heating, ani the most satisfactory mcxleldeveloped is

Anthony's Multiple Reaction Model.

2~2'Objective And Motivation

Coal can be characterized as plastic or nonplastic depending upon

whether it goes through a plastic region upon thermal heating within

2
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the experimental operating conditions of interest, namely, rapid heating
o ~ .

rates of 103 a/see to 10 a/see, pressure ranges of 1 atm to 69 atm and.
o 0

temperature ranges of 400 C to 1000 C. It has been observed that some

coals swell under moderate and rapid heating, and. .the swelling phenomenon

is associated wi:th plastic coals. Someworkers have observed swelling

'amountto as muchas a 4000 per cent increas.e in volume (Sinnatt, 1928

1929) • The swelling of coal particles will be a potential problem in i:.he

scaling up of environmentally and economically sound.pyrolysis processes,

especially those based on the use of fluidized beds.

Fluidized beds consists of two phases, a bubble phase and a particulate

phase. The properties of fluidized bed.Qf't strongly dependent on the

particle size, i.e. the superficial incipient fluidization velocity ...

the pres~ure drop across the bedlaM. the proportion of gas passing upward.

via .the bubble .phase and the particulate phase. In the case of plastic

coals, particles will swell and becomesticky as they rise, and both the

swelling and agglomeration of sticky partic les will change the behavior

of the bed. Therefore, it is desirable ~o study the swelling property of

the plastic coal under different experimental comitions •.

The primary objectives of this study can be stated as follows:

1. To experimentally determine the effect of initial coal particle

size on the swelling ratio (final diameter/initial diameter) under a

specific set of experimental conditions, namely, inert atmosphere,

constant peak temperature, constant reaction time and constant heating

rate.

2. To experimentally determine the effect of temperature on the



swelling ratio under the following conditions, namely, inert atmosphere,

constant reaction timeJand constant initial particle size.

A laminar flow reactor of the Badzioch type was used to obtain

particulate samples for the present study of swelling ratio. The

reasons for the choice' were: The dispersion of coal particles in. a gaseous

mediumof a flow reactor is similar to that of a fluidized bed, but a

laminar flOK reactor has exceedingly better control of reaction time •.

and the agglomeration of fresh feed can be minimized with good techniques

of feeding. Since the temJerature of the. laminar flow reactor is not

constant, the average and the peak reactor temperature 'Wereused to

evaluate data obtained in this study. The heating rate was in the range
Q 0

of 43200 C/soo to 64000 C/sec depending upon the peak temperature used.

(See Appendix A-S) 0

The major experimental variables of the study 'Werethe sizes of

coal particles and the peak or the average temperature of the reactor.

Nine different particle size distributions of Pittsburgh No. 8 Searl coal

were examined which bait the following initial average particle sizEG

(affective diameter in pm) I 261, 202, 164, 14S, 122, 89., 71, 46 and
o ••

41. Five different peak temperatures were employed: 960, 8)0, 750,
o o.6so and 600 C. The reaction atmosphere was heliua.a.t a. pressure of 1 atm.

The reaction time was approximately 1/3 secord.

:3 •.. BACKGROUND MATERIAL

During the past years, efforts have been made to study the physical

behavior of plastic coal at an elevated temperature with a rapid heating

4



rate. The commonlyobserved sequence of events is: fusion, intumescence J

ana 'solidification. More specifically,' upon heating a bed of crushed

'plastic coals the coal particles first; soften and fuse. As thema.l

decOIIlpositlon becanes appreciable,' the bed swells and becomes foa.m~

like (Brownam Waters t 1966; Chermin ani Van Krevelen, 1957; Gibson and

Gregory, 1971; Waters, 1962). Under rapid heating condition:», a bed of

particles resembles a boiling liqu:1d (Anthony, 1974). The intumescence

is gen~lly believed to be the fomation of gas bubbles inside the coal

mass. After a significant 18rt of coal has decomposed, the mass solidifies

into coke and it has a muchhigher melting point than the original coal

(Audibert, 1927) c Here the main concern is the physical behavior of

bituminous coal particles upon heating, ioe. swelling property, under

different experimental variablesCi Hence5 it is of interest to review

some of the s~udies on the physical properties of plastic coals which have

contributed to the present understaniing of swelling of bituminous coal

upon heating •

.'.1 Coal .Plasticity

The chemical complexity of coals is partly due to heterogeneous

petrographic cOllponents of the organic part. Neave1 (1915) has made a

5

sttxly on the effect of marcerals on coal plasticity', and he concluded

that the plasticity of bituminous coal is primarily attributed to the

presence of marcerals axinite and vitrinite.

Early work done by Audibert (1927) has shown that the plastic state

is transient, ani the rate of heating greatly affects the point of initial



ius'ion or plastic state. He has concluded that the initial melting point

is always higher for higher heating rates, and is independent of, coal
/

rank.

The rate lor heating also has a significant impact on the maximum

fluidity and duration' of the" plastic region. Vall Krevelen's .study .

(1956) has concluded that the broadenirig;~of duration ':ot.p'iastic .

region and the increase of maximum fluidity are associated with the

increasing heating rate. Whenheated at a constant rate of O.OSoC/sec.

the plastic region lies between 420°C ani~500oc. F~ 'j-la'illuStrates
o

the effect of heating on coal flUidity for heating rates from 0.7 C/min to
o

7.2 cl-.in •.. In too same literature, Van Krevelen (1956) has also. determined

that the developllent and decaying of fluidity and ~he rate of thermal

decomposition upon heating both depend on heating rates.: {See F!gure

3-1b). Walters (1962) has also performed a similar study on the _

relationship. between rates of thermal decomposition ani the developnent

and decaying of fluidity. Figure ..'-2 demonstrates the typical behavior

of fluidity and rate of thermal decomposition at a heating rate of 3DC/min,

and it strongly 1Diic:a.tes that the rate of thermal decCIIPQSitoDcontrols

the fluidity of plastic coals c

3.2 Rheological Property of Coal

Since tem~ture is aa experimental varlable, 'the ~iscosity-time-

tempera.tur~ relationship in. pyrolysis should be studied.

In Water's investigation (1962) of rheological properties of a

number of plastic coals, he observed that plastic coals behave like a
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Figure 3-2 Fluidity (full line)
and. decomposition
(broken line) curves
(heating rate, 3°C/min)
(Waters, 1962)
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Newtonian fluid under normal stress during the ear~y stage of fusion.

Based on this observation, he applied 'the Andrade equation for the

liquid viscosities

4{ = . A. exp(E/RT) (ADirad~, 19JQ.}\ '

ani found that- the plastic region of the early stage of fusion obeys the

relationship well. The activation energies of flow for coals, E's. were

determined experimentally, and were fOUDdto be in the range or. 50 - 100

kcal/mole. The values are high for Ol.'dinary Newtonian fluids (Waters.,i962).

The AIXiradeequation is applicable only to plastic regions where the

thermal decomposition is negligible because' the chemica.l changes at coal

in that region am not significant. At the plastic region, where the

thermal decomposition is active, there is a drastic change in the chemical

composition of coal particles; hence the Andrade equation will no longer

be valid.

Recognizing the deficiency of the equation, Lewellen (1975) postulated

the following PRMviscosity temperature relationship.

'1( = I1f 1(dri/ dt)-1

where d~dt is rate. pf pyrol)'Sis, and ~ is an empirically determined
, -.,~~.~.~.~.,.. ". 6
:Parameter. The value of -1(. used in his study was 3 x 10 sec/rse. The

close relationship between the fluidity and the rate of thermal decomposition

physically justifies the above relationship_

3.3 Physical Structure of Char Particles

A. rigorous X-ray study of the internal structure of a wide range

of coals was madeby Hirsch (1954). Hirsch has developed a mexiel
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to characterize the structure of coals. Accordingto h1s model,
I

bi tum1nous 1s classified as having a fC liquid structure n which 1s

characteriz~ by the near absence of pores. But. an examina.tion of

char produots of thermal decompositlonrev~led high large~scale porosity
within the char pu:ticles (Woodset al., 1967, Feldmazmet al •• 1m).

The striking difference can be explained by the formation and motion of

bubbles inside the coal pLrt1cle during pyrolysis. Umer a hot 'stage .

microscope, the }articles may be seen to soften, beCOID8. roUDl. L-U' swell

while large bubbles of gas repeatedly bre&k through the particle surface

as pyrolysis continues (Ergun et ale. 1959' Woodset a1•• 1967.

Spa.ckman and Berry, 1968). Large-scale porosity is presumably formed 'Qy

entrapped gas bubbles (Woods et al., 1967. Feldmann et al., 1971)•.

The development of cenospheres, ~hlch occurs when plastic coals
are heated at B10derateor rapid rates in the absence of air, represents

the extreme case of large scale porosity (Newall am Sinnatt, 1924,

1926, 19271 Simatt et al., 1921. S1nna.tt, 1928, 1929. Masonand

Schora, 1967. Lightan am street.. 1968. street at al., 1969). The

eenosphere is essent1ally a hollow and swollen char particle (see-
Figure 5-Ja),with a reticulated structure containing -b,omajor parts,

ribs and windows. The ribs an brownish-black substanceS!'a.nd the windows

are transparent brCll.nlshthin fUms. A more detailed examination of

cenospheres in the ..windows revealed:. :bhe.presence-of' minute torms •. '(See

Figure 3-:3).

In the Newall Jt.M Sinna.tt study (1924) ~ it vas observed that the

formation of ceneshperes .under a mcxierate'heating" rate ill the abs'ence
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of air is temperature depement. The ribbed windowstructure could not

be clearly detected until 570°0to 600°0was reached. Withan increase

in temperaturs, the detection of cenoshperes Is easler~ and the network

structure increases in ~ize 0 The increase in size of the network structure

causes the rib and windowstructures to becomethinner. The windowsbecome,

nearly colorless at high temperature. However, when the coal particles
~ 0 -

were heated to 800 or 900 C, the distinct ribbed wlmow structure eould

not be detected, the particles becomeoplque am. shrank in size.

In another study of effects of different atmospheres upon the

structure of cenosJileres. by Sinnatt, McCullochand Newall (1927), it

was observed tha.t cenos.phares formed in the presence of h~ogen were

essentially structurally identical with those formed in the pre~ence of

nitrogen. Whenan at.mosphereof steam was used, the formation of ribs and

windows was partially inhiblted.c

In general f the poresi ty of the fine stmcture of char iBcreases

with an increase in temperature. But, the accessibility of these pores

to the penetrant molecules does not follow the sametrena. In plastio
coals, the accessibility of pores to the penetrant molecules displays

C tJa sharp minimum in the Plastic region of the coal (600 0-1000 C) because
C Qof an absence of continous, ~res, and increases below 500 .0 to 600 C.'

(Franklin, 1949&, 1949b, :Som and Spencer, 1958, Van Krevelen, 1961; Evans,

1970) •

3.4 Multiple Reaction Model

There are many kinetic models developed to descrlb&l" the temperature
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dependent behavior of coal pyrolysis. The Multiple Reaction Mexieldeveloped

by Anthony (1974) has been proven to be in good agreement with the

experimental data. The first assumption of the model is that 'the overaU.

rate of volatile yield is the sum of a large number of parallel first

order reaction~~
Cb
~ ,dV~
?'dt,., ..= ki(V • ..; V. ) ~

I •
~dt

dV =dt

In the above expression, subscript i denotes Q particular reaction and

no subscript denotes overall reactions. V is the total weight t'ractlon

*of volatiles evolved at time t, and V is the totallfei~ht'fractlon of

*V at infinite time. Vi and V1 are similarly defined for each reacting
c .species. Ei and ki are the activation energy and the preexpontential

o
factor respectively in the above rate constant of Arrhenius type. ki

is to be determined expo....rimentally.

The second assumption of the _m6:ielis that a Ga~sian

Distribution with mean activation energy of E.and standard d-ev1a.t.loo

(j is used to determine the activation energy distribution of each 'r .. r" r, ~.

reaction.

Combining the two assumptio~s, am assuming ki is identical for all reactions,

Anthony showedthat _

y*y; y = .~~ lfk dtJ f(E)dE .

o *The experimentally determined values of Eo' 0", ki and V have been founi
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13 .to be .54.8 kca1/mole, 17.2 kca1/mole, 1.67 x 10 /sec and 0.462, respectively,

for~Pittsburgh No. 8 bituminous seam coal (A~thon7.and:H~ard,. 1976).

A1thought Anthony's mcx1.e1successfully described the temperature

dependent behavior of bituminous coal pyrolysis 8 there is a decreasing

trend of volatile yield. with an increase in particle size. "(SeeF!gure

3-4). Suuberg (1977) also observed a similar trend of yolati1e yie]ds

with particle sizes in his study using the captive heating technique to

.obtain " the volatile :yields 0 To explain the ~pparent deviation 40£

volatile yields from the Multiple Reaction Modelat la,r,ge particle sizes,"

a secondary reaction mechanismhas been postulated, namely, reaction

between volatile generated by coal decomposition with the remaining char

particle to form solids and gases during the volatile :escape•. Theqsolid

formed by the secondary re",ction is deposited inside the remaining particle,

thereby decreasing the total w:eight loss of the volatile (Ant"honyJ et ale,

1974)• With increased. particle size, the volatile must travel farther

before escaping and thus has more time to react with the char particle.

Consequently the extent of secondary reaction is increased. and the

volatile yield is reduced. Lewellen (1975) assumed that ~he rate of

secondary reaction is a first order reaction and is proportional to the

pressure of volatile inside the coal particle.

~te of secondary reaction: ~ = kdP

where kd is the reaction rate constant of Arrhenius type.

3.5 Mcdeof Transport of Volatile

The macroscopic evidence af~the formation and motion of bubbles inside
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the plastic coal particle leads to the assumption that bubble transport

is an important mexieof transport of v.olatile froll plastic coals during
I

coal pyrolysis c Ananalytical model/has been developEdby Lewellen (1975)

to describe the behavior of bubbles inside the plastic coal. He pictured

the sequence of bubbles inside the coal particle as: (1) init1ation of

bubbles, (2) growth of bubbles and (3) bubble death.

3.51 Bubble Initiation

Twomechanismsof"bubble initiation inside the plastic coal have been

proposed. One is analogous to initiation of bubbles from a vapor filled

cavity at the liqu:id-solid interface (Lewellen, 197.5) t the second is

analogous to bubble initiation in boiling water (Attar, 1977).

Lewellen's study of bubble initiation used the first mechanism. Instead

of developing an. exact analytical solution to describe the behavior of

bubble initiation, he adopted a probability distribution function for

bubble generation in the coal particle. He assumed that the function

depends on four variables t volumetric rate of bubble generation (~I dt)

particle viscosity (41 ). the distance to the nearest surface tQ which volatiles

could otherwise escape ( dmin). ani the initial radius of the bubble

(ao) •

Lewellen!s Probability Distribut ion Function of Bubble Generation:

Figure 2-5 showsthe concepts of bubble generation •. ~

is the initial bubble size probability distribution function. and ~

is an empirical bubble generation constant. (See Figure 3-5 for

concepts of bubble generation).
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Figure )-5 Concepts of bubble generation
(Lewellen, 1975)
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3•.52 Bubble Transport.

Lewellen's lengthy developnent of bubble growth (1915) assumes the

following physical conditions of a plastic coal particle.

1. The coal particle is homogeneous, isotropic and spherical." ' .. _...

2. The coal :Particle 1s isothermal for all tble.

3. The particle is subject to no extemal forces other than pressure.

4. The coal particle has two homogeneousconstituents, a. ,,:olatile

phase and a particle phase.

Based on the above assumptions and other assumptions. i ..e. ideal

behavior of volatile, negligence of the density of volatile phase

compare:lto that of the particle phase, incompressibility of both

volatile and particle phase, and constant surface tension for the inner

and outer shell of bubble surface I an analysis of momemtumtransport lias

performed to determine the rate of bubble growth, a.. (See EquationJ-2

on Table 3-1). In addition to the hydrcxlynamicconsideration of the

bubble growth, Lewellen (1975) also developed a mcx:lelto describe the rate

of increase of mass of volatile inside the coal" particle due to

instantaneous trans port of nellly generated volatile to the bubbles,

which in turn will increase the rate of bubble arowth. In his study,

the mass flux of volatile transport is assumed to be equally distributed

on the total surface area available, this is, the surface areas of bubbles

plus the surface area of the coal partic~. Equation 3-3 show the mass

flux per unit area, F. Lewellen (1975) has also considered the effect

of secondary reaction of the rate of mass accumulation inside the bubble.
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He assumed that only solids formEd from secondary reactions. By a

simple mass balance, the net mass flux to a bubble is determinEd. (See

Equation of 3-4 on Table 3-1) e Equation ;3-13 on Table 3-1 shows the.: expression

of the se60ndary reaction. rate'cbflstant. Equation 3-12 describes the

total rate of the secondary reaction per ~icle. The conceptsof

bubble growth and concepts of secondary reaction chemistry are shown on

Twomechanisms of bubble death have been prop~ed by Lewellea (1975),

namely, dea.th through escape and death through inter5~ction. (See Figure

3-8 for concepts of bubble death). For' death through escape, an : .

instantaneous expulsion of bubble contents fro'Illthe coal particle is.

assumed when the bubble wall reaches a critical distance (~p) fl.'l)m the

surface of the particle and the volume of the particle is instantaneously

contracted by an amount equal to the bubble volume. Th:is 1s onl:? true

for coal particles tlat are in their plastic region am lave high fluidity.

In death through intersection, the walls of two bubbles touch ea~h other and'

the two bubbles combine into one. The location of the newly formed bubble

will depend on the locations of the bubbles before they intel:5act ~ the

volumes of the individual bubbles. (See Equation 3-7, 8, 9, 10 on Table

3-1) • The size of the newly fomed bub'ble will be detennined from the

equilibrium condition; that is, the rate of the bubble growth is zero.

(See Equation 3-ll on Table~3-1) •

The total volume of the coal particle at any time is the sum of the

volume of the particle phase plus the total volume of the bubble phase or
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(Lewellen,1975)
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the volatile phase. The size of the coal particle is calculated from the

total volume assuming the coal particle is a sphere.

3.6 Particle Size Trend Prediction AndTemperatUreTrend Prediction

In Lewellen's simulation (1975) of bubble transport inside the coal

particle, he incorporated" Anthony's Multiple Reaction l-fodelfor the

estimation of the rate of volatile generation of one coal plrticle, and

PRMviscosity prediction with the equations listed on Table 3-1 to predict

the trend of swelling ratio of coal particles and the extent or- secondary

reaction as lRrticle size increases. The conditiom.of his simulation were:
o 0

initial particle temperature of 298 C, final particle temperature of 1000 C.

heating rate of 10'00'0'°C/sec f pressure of 10 atm,. init!U hbb~ .alma of

-6 M -6 / 6 10'-25 x 10' cm, -', = 3 x 10' sec psc a.?ld ~ = x 10' em Cl The results of.

his simulation are presented in Figure J-9~ It is clearly shownthat the

swelling ratio increases with particle size, ani the volatile yield ..

decreases with p!--rticle size. The increasing trend of the swelling ratio

is nearly linear in too particle size range of 120' pm to 230' pn, and it

then i.1'lcreasesmonotonically above the particle size range of 230 pm.
The linearly increasing. trend is primarily due to an increase in the fraction

Of the'"1lumberof. generat.ed bubbles trapped in the particle ~ a -result~'of -

a longer distance each particle has to travel before escaping. As the

particle size increases beyond 230.pm, t~ effect of the secondary reaction

b'ecomesmore significant, and a greater loss of bubble mass results. In

turn the bubble volume is reduced' because of the smaller ;rate' of bubble growth.

Therefore, instead of a linear increase, the trend shows a non-linear but a.

monotonic increase in swelling ratio as the particle size increyee

above 230' m.
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The author is not aware of any analytical solution developed to

predict the effect of temperature on swelling ratio. Therefore, the

effect on temperatUre on the- swellwg ratio of bituminous coal has to be

determined experimentally. However, since it is believed that the

rate of bubble generation inside the coal particle is part~lly dependent

upon the viscosity and the rate,~of 'thermal decomposition of the coal

particle, it was speculated that the swelling-temperature relationship
'"

would be similar to the fluidity-time-temperature or the-.:tMrmal

decomposition rate-time-temperature relationship in pyrolysis (see'

Section 3-1) I na.'Ilely, all of them peak at a certain temperature.

4. EXPERIMENTAL APPARATUS AND PROCEWRE

4.1 Apparatus

The laminar flcrill'reactor needed for this study had already been

constructed for used in previous research. A Microstar Light Microscope

and a Transmission Electron Microscope 200 (TEM200) were used to

photograph the representative sample particles, and a TZG3 was used

for the counting of particle sizes.

4.11 Laminar Flow Reactor

A simplifi~ diagram of the reactor employed in this study is shown

in Figure 4-1. A s;aall stream of helium carrier gas (5 - 10 cc/min)

carried the sample particles through a water-cooled feed tube, 1/16 inches

i.d., into the reaction tube. A vibrator was placed midwaybetween the

top of the feed tube and the top of the reaction tube to avoid plugging

of the feed tube. The main gas (helium) was fed into the reaction tube
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through an expansion chamber to insure uniformity in the gas flow.

There was also a flow straightener placed at the end of the feed tube to

prevent a spiral flow in the reaction tube. The flow rate of the main ~

was set to insure a laminar flow in the reactor tube at the temperature

of interest. (See Appendix A-3). The one inch i.d., 22 in'. long react-

ion tube was constructed of 99.8% aluminum. The temperature profile of

the reaction tube was not vertically uniform (See Appendix A-i). The

lOKer part of the reaction tube overlapped. with the sample probe,. and the

sample probe was water-cooled to quench the reaction; therefore8 the

reaction zone was only eight inches long. The temperature profile ~f the

8 inch long reaction zone with the insertion of the water-cooled. sample

probe showed no appreciable deviation from that of the 8 inch reaction

zone without the insertion of the water-cooled sample probe. (See

Appendix A-2). A ceramic vial was connected to the sample probe to

collect the char samples for size determination.

4.12 l*1icrostar Light Microscope & TEM200

See the manuals of the Microstar Lig~t Microscope and the TEM200

for a description of the apparatus and methcxls of operation.

4.13 'I2G :3

The TZG:3 was used to determine the average particle size of -tkt.

samples of interest. The TZG:3 employed in this study is shown in Fig. 4-2

Twomeasuring relationships between the iris diameter and the counter

number were incorporated in the TZG:3, namely, the linear and exponential



Figure 4-2 TZG 3
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relationship between the iris diameter and the counter number. The

linear modeof operation is used for narrow particle size distributions.

and the exponential modeof operation;,"is used for wide particle size.

distributions. For each measuring mo:le, there are two measuring ranges,

the standard range (1.2 mmto 27.7 mm)and the reduced range (0.4 mmto

9.2 mm). The TZG:3 also has two modes of recording the relationship

between the counter number and the iris diameter, namely.the distribution

curve and the cumulative curve. There are eight modes of operation

altogether. In this study, only two modes of operation were used:

a standa:rd linear modeof"operation and a reduced linear mode of oper-

ation, both using the distribution curve.

The method of operating of the TZG:3 is very simple. After the mode

of operation is chosen, the diameter of the iris is adjusted manually

with the rotary switch to cover the area of the particle image of int-

erest until the two areas coincide. To recom the size of the particle

image on the counter number, the foot switch is pressed. This makes a

mark on the image and releases the numberc

4.2 Procedure

4.21 Pre:pa.ration of C.losely 5ize-Graded c.oal P.articles

In order to examine the swelling property of different particle

sizes of Pittsburgh SeamCoal, closely size-graded coal particles are

needed. The molecalar sieve method was employedto narrow the particle

size distributions. {See Appendix A-4 for the relationship between
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u .S. Standard mesh# and particle size). Nine different closely size-

graded coal samples were obtained and each sample was transferred to a

crucible and stored separately in a s~all dessicator partially filled

with silica gel to prevent contamination from air moisture.

4.22 Preparation of Cbar Sample

After the proper size range had been chosen, approximately 20 mg of

the coa.+sample was spread carefully on the center portion. of the feed

_ belt of the reactor. The length of the spread was usually 3-4 inches

long, and the width of the spread was approximately t/8 to t/16 of an

inch. The exact amount of the coal charged to the reactor was determined

by the w:eight difference between the initial and final weight of the

cruciblec The feed tube was closed during the process of feeding to

prevent partic les from ~ntering the reaction tube prior to the start of

the reaction run. After the charging of the reactor, -the top of the.

laminar flow reactor was sealed, and a ceramic vial was connected to the

sample probe. Then th~ "flow velocity of the main gas was set at 2 ft/sec.

The top of the reactor was pressurized. slightly above one.atmosphere

with the feed tube closed to prevent back flow of the main gas in the

rea~tion tube. The final steps were turning on the vibrator, opening up

the feed tube and tuming on the feed belt. The velocity of the feedJ' .

belt was set at tln./min. Each run lasted about 6 minutes. At the end

of each run, the ceramic vial was disconnected from the sample probe and

weighed before transferring the char sample to a glass bottle for storage.

The weight of sample collected was calculated from the weight difference



between the initial and final weight of the ceramic vial.

4.23 Preparation of .particle Images for Size Analysis.

After the sample had been collected, a portion of it 'Was"spread

uniformly on a microscope slide, and examined under the light microscope •

. (The procedure for char products produced at the peak temperature of 6s<f C

'Wasslightly different from the above. See Section 6.2.). The magnifi-

cation used was 4X or 10X', depending upon the particle sizes. Therepr~-

sentative sample sites 'Werephotographed using Type .52 ".~o1aroidfi1m •..

The number of particles photographed was about 200-300 for most of the

samples. Since the swelling ratio was the main interest, th~ ~r1ginal

average particle size was needed to complete the anal~~. The orig~l

particle samples were photographed in a similar manner, except for the

particle size distributions of 4ltpm - 53pm and 53 pm - 63 pm. It was

felt that the ave--rageparticle size of these two size distributions could

not be accurately determined using the light microscope. So the TEM200

was used to prepare particle images for the size analysis.

Before the sample could be examined under the"TEM200, it had. to be

placed on a grid of mesh #200. The grid was coated with a very thin

film of collodion. While the coating was drying, the sample of interest

'Wassuspended in the distilled 'Water. After the coating had been dried,

a drop of the liquid-solid suspension was placed on top of the coated

grid. The water was allowed to evaporate before the sample was placed

inside the TEM200 to be photographed. Finally, the plates were develo-

ped and the pi"ctures were printed. The plate magnification used here
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was 2600.

It was soon discovered that the particle size distributions of"

44 fIn - 53 pm and 53 fIn - 63 pm had a ~ge fraction of particle sizes

muchsmaller than the 4¥ pm or 53 pm. Although all other particle size

distributions had particle sizes muchsmaller than the lower limit of

the mesh# used (probably due to adhesion of smaller particles to the .

larger particles). they could be ignored since the weight fraction of

them was expected to be negligible comparedto the rest of the particle

size distribution. The problem became more pronounced as the particles

decreased in size. At 44 pm - 53 pm and 53 pm - 63 pm, it was a serious

problem. It was decided -to ignore part-icle sizes smaller than )0 pn ."

for the present study. App~oximately3D particles were used for part-

icle size analysis in these size dj,stributions.

4.24 Determination of A.verageparticle ~izes of Samples.

The 4t and lOX magnification used for the light microscope does not

mean that the particle images photographed were 4i or lOX their original

sizes. Therefore, the calibration of TZG3 was needed to determine the

particle sizes of the images. The method of calibration was as follows:

first, a very accurate reference system was photographed for each mag-

nification , then, the iris diameter of the TZG3 was matched with one

particular length of the magnified scale for each modeof operation of

interest, and finally, the length of the iris diameter was recorded.

The magnification factor was then calculated by taking the ratio of the

length of iris diameter recorded to the co:rresponding reference length.



Each counter number of TZG3 was then calibrated by dividing the corres-

ponding iris diameter by the same magnification factor. (See Appendix

A-7) • This procedure was performed four times for different magnifica-

tion and modes of operation of TZG3. For the case of TEN200. there

was no need to calibrate the TZG3. The magnification factor was

simply the product of the magnification of particle images on the plate

and the magnification of the enlarger.

After all the particle images of a char sample 'Wererecorded by

TZG3. the arithmetic averages of swelling ratio 'Werecalculated for each

sample,

4.25 Determination of f:resh Feed Agglomeration.

At' an early stage, it was realized that the fresh feed agglomeration

of coal particles might account for the large increase in volume of

char products of small particles. Most of the fresh agglomeration

could not be detected under the microscope because agglomerated

particles fused to form one particle ~ In. order to determine the extent

of agglomeration of coal particles. the following experinient was

perfonned.

Approximately 0.) mg of particles with average diameter of

41 pm were carefully spread unifonnly on a microscope slide. The

amount of coal particles on the slide was determined by the difference

between the initial and final' weight ofuthe slide. The ~presentative

sample sites were then photographed, and the number of particles '.of diameter

approximately equal to )0 pm or greater were counted. Then the
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average number of particles per unit area of spread was calculated by'

dividing the total number of pu-ticles counted by the area of the photo-

gra phed. si tes. The total number of pu-ticles on the slide was determined.

by multiplying the average number of particles per unit area of spread

by the estimated total area of spread. The total number of J::6rlicles

per unit mass of the sample was calculated by dividing the total number of

particles on ~he slide by the weight of the particles on the slide.

Similarly, the experiment was carried out for the char particles with
f)'

initial diameter of 41 Fm at a peak temperature of 650 'C. It was found

that the agglomeration was more than 200 particles. by assuming the weight

loss was negligible in the char product. The' same analysis was performed

for the char }Srlicles of. average initial particle sizes of 46fm and 71 pm
o

formed at a peak temperature of 650 CJ it was found that the agglomeration

was.approximately 60 and 5 respectively. Since the main interest of the

study was the determination of the swelling ratio of unagglomerated parti-

cles, data olr'~ined for initial average particle size of 41 pm, 46 )1m,

and 71 pm were discarded ~romthe analysis. But•.:there was also some question

as to whether the char prcxlucts obtained from the initial average particle

size of 89 pm were agglomerated since some char products appeared to be

agglomerations of two.or more particles. (See Figures 5-.5a, b,c. ) e Because'

of the uncertainty, data obtained for char particles with initial average
o. ". 0 . 0

particle sizes of 89 pm at peak temperatures of 650 c, 830 C, and 960 C

were discarded.



s'. RESUL'lS AND PHarOGRAPHS

Table 5-1
Average Swelling Ratio of Char Particles

Peak temp. 600 650 7;0 830 960
(Oc)

Avg. temp. 550 600 700 780 900
Inlt. avg. Final avg. particle size/lnit. avg. part. sizepttt. size

Do (pm) Din D/D'~' '. , 'D/D DID " /D' .. •D ..... : ..
0 0 0 0 Q .

267 1.286 1.289 1.060 1.011 .. 0 •.909

202 1.080 1.568 1.045 0.954 . 0.821

164' 1.075 1.176 0.896 0.965

14.5 1.083 0.865

122 0.997 1.109 0.848 0.906

*
0.869

* *
89 0.982 1.1.50 1.465 1.158

1.817
* *

1.90)*71 2.180

46
* *

. 2.410*4.920 2.816

41
* * * * *

4.058 6.41 3.789 4,24 . 3.774

No data collected.

* Agglomerated char products.
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Table 5-2
Results of the Least Square Method for The.

Relationship between Swelling Ratio and Particle Size

37

Peak temperature 00
(Average temperature)

600
(550)
650
(600)

750
(700)

830
,(780)

960
(900)

Derived correlation

DID = 1.548 X 10-3 D + 0.819o 0

DID = 1.330 X 10-3 D + 0.832o 0

DID = 1.305 X 10-3 D + 0.723
00"

p(DO = 6.158 X 10-4 Do + 0.842"

DID = 3.878 X 10-4 D + 0.786o o ..

Table 5-3
Results of the Least Square Method forrrh£

Relationship between Swelling Ratio and Average Temperature

Initial average S - (DID ) X 102
particle size

A = (llr) X 104
Do (pm)

"

267 S - 11.607 A -109.685
202 S ~ 13.886 A - 137.696
164 S =- 11.14 A - 115.364
122 S a 11.355 A - 123.613
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Figure S-la ..'Relationship between swelling ratio and! particle size.



39

5

0.8

l,

1.4
I

(OC).. Peak Te:aperature ..

:3 (0) 750
4 (X) 830
5. (t) 960

1.2..........
0

~~
'-""

0 -H :1f-:t
-<~
C1

~ 4
J%1' . 1.0
::;:
v)

'" c

• I."' •. t)

0.6 ..l '-; .. I
~'::: 100"

t.d - .h.- t 11117

'.200
I

'.~',-:...--')00

DO' (pm)

Figure 5-11)" ":ReJ.at10rislup between sweiiing ratio and particle size



40

33

AAverage Initial Partlcle:~~e
1(Ii) 267 pm
2 (D) 202 pm

I
J-
L_~ __ 'L- ..,-L--L ;1--,_~, -...L.----L-_..t.--..!..._..t--..--,-
7.9 9.4 1<l.9 ~.4

RECIPROCAL OF AVERAGE TEm'ERATtJRE C tiT ) x 104

Figure 5-2CL Relationship between swelling ratio
and average temperature
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Showing possible agglomeration.
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Figure 5-8a Opaque particles and cenospheres
formed at 7500 c. (n0:.267 JAm, 4X)
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Figure 5-9c Opaque particles and cenospheres .
formed at 830°C. (Do=l6l+fm, 4X)
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Figure 5-l0c Cenospheres and char particles formed
at 9600 C. (Do=122f m, 4X)

Showing open and closed window structure.
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Figure 5-llg Agglomerated opaque particles and cenospheres
fomed at 9600 c. (Do=41j<mt 4x) .
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6. DISCUSSION

6.1 Error Analysis

: .. 6.1l~D.etenniila..tion .of'Parld.cle ~Size

The greatest poss.ible source of error in determining the swelling ratio

of .qha.r parliC+BS"comesfr~the assumption ''that. each coal. particle

has uniform cross sectional area for all possible orientations, i.e. a sphere"

A"large portion of coal particles counted had randomconfigurations,

therefore the assumption is not very good. The situation can be

improved if a lJa:ie number of particles of a narrow particle size

distribution is used. It i~ hoped that by counting a large number of

particles, all possible particle cress sectional areas are cov~ed so

that the average of them is the representative cross sectional <area of the

particles whenthe particles assume a spherical configuration.

The measuring process employed using TZG:3 has several possible

sources of error. The most important one :is the error in matching

the area of a circular iris with the area of a noncircular particle

imageby equating the area of the particle image outside the iris

with the area inside the iris not convered by the particle image.'

The equating process is purely dependent upon personal judgement, ,

thereby making consistency and care essential in the process of

measuring. Hopefully, by emploY)!)3alarge number'of particles in size

counting, the errors will cancel each other. To test the consistency

of the process, several particle sizes were measured twice, and it

Was found tl'at the average particle sizes differed by 2 pm to
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5 fIB- other errors intrcxluced in this measuring process involved. the

sensitivity of the TZG3. It was mentioned earlier that the (:o~ter

number.::o:(~..~ :3 was calibrated using a magnified reference scale. For

the operation of the stamdard linear distribution curve, the sensitivity

of the counter number is 12 pm and. 4 pm for maginification of 4 X and

lOX:-respectively. For the operation of the reduced linear distribution

curve, the sensitivity of the counter number is 4 pm and l.~"pm

for magftificatlon of 4X and lOXrespectively. "Since the standard"

lhear distribution."~e for 4Xhas an error of 12 pm in counting, .."

it was us~ only for particle sizes greater than 200 pm.

6.12 Constant Residence TimeAnd Heat Transfer Limitation

Constant residence time for all particle size distributions of

interest is required. This can be accomplished by using a constant main

gas velocity in the laminar flow region above the final settling

velocity of the coal particles, so that the coal particles will

travel downthe reaction tube with the main gas at approximately

equal velocity. The flow rate of the main gas was adjust"ed for

different peak tem~ratures to achieve a constant ~in gas velocity.

In this s"tudy, it was assumed that all particle sizes of interest

traveled downthe reaction tube with a velocity of 2 ft/sec, which

is the velocity of the main gas. To determine the validity of the

assumption, final ~ettling velocitj:es for initial coal particle

sizes of 270. 200 and 180 pm were calculated for temperatures of

60 ~ . 0" 0
.0,\ 700., 800 and 900 C using Stoke's Law and the Ladenburg wall

correction factor. It was found that the final particle settling
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velocit.ies were greater than t.he main gas velocity for particle sizes

greater than 200 pm. (See Appendix A-6). For the particle size of

270pm, the final settling velocity exceeds the main gas velocit.y

by a factor of 1 to 0.5; therefore, the residence time for an

average particle size of 267 pm is probably smaller t.han 1/3 second.

The higher value of the final particle settling velocity t.han of the

gas velocity has an important effect on the particle temperature.

The main concern here is the developnent of an effecti ve thermal

bOundary layer which is higher than the effective thermal boundary. ' ,

layer of a stagnant flow due to a difference between the gas

and the particle velocity. As the effective thermal boundary

layer incr~~~~because of increasing particle size.and deviation

from stagnant flCTIf,the temperature of the particles will decrease

and deviate from the main gas temperature. Since there is no diI:ect

'Wayof measuring the lB.rticle temperature, the extent of the temperature

deviation from "that of tpe main gas due to non-stagnant .flow and large particle

size can not be determined. ,.But a hint of the existence of -the' gNater

temperature deviation from the main gas due to non-stagnant flow and

large particle size oan be Mta1nad. by examining the char products of

different size distributions ca.llect'Gd at the same peak temperature. It

o •was discovered. that, at a peak temperature of 600 OJ char products of

the initial average particle size of 267 pm were not round although

the rest of the char prcxiucts were round•. (See Figure ....S-6b Jd)

The difference is probably due to the incomplete fusion of char

prcxlucts of the initial average particle size of 267 pm because of



a lower particle temperature'.

6.2 Treatment of Tar Condensation on Char Products

.The experimental procedure for the preparation of particle images

•of char particles formed at the peak temperature of 650 C differed

from the preparation of the rest of the char samples because condensation

of .tar occured at the surface of these particles.

Before char products were examined under the microscope, it was

noticed that. the color of the inside wall of the ceramic vial became

more'intense than its original color (light brown) at the end of
o tJ

each run for peak temperatures of 650 C and 750 C. But the intensity
oof the color decreased as the peak temperature 'Wentup to 830 C. At

" 0the peak temperature of 960 C and 600 C, the color of the inside wall

of the ceramic vials remained the same. It 'Was?lso observed'that the
I) 0

char pa.-rticles prcduced at the peak temperatures<of.~50and ..750.C .had:':

a greater tendency to stick to the ceram1c wall than' ..other char proclucts
000

formed at the peak temperatures of 600, .8JO_and 960.c. A microscopic

examination of the char particles formed at the different. peak
o

temperatures revealed that at 650 C, some particles were ccated with

a dark brown, tar-like substance, arrl that tar droplets were present

in. the 'samples. (See Figure 5-4a). The coating of tar at the surface
o

Oy the particles was less intense at the peak temperature of 750 C.
o b 0

(See Figure 5-4b). At 600, 830 and 960 C, there was little or no

visible tar coating at the surface of the !articles. (Nearly all

char samples collected had a very :thin layer of film which could not
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be detected unier the microscope. The presence of this thin film was

demonstrated by the dtlfraction effect ,observed under the microocope.)

Most o£ the tar coating was one side:! a.t the surface of the particles.

This was explained as caused by tar condensation in the main gas upon

cooling. Whenthe main gas carried too evolved tar to the ceramic vial

through the water-cooled. sample probe, it condensed out and then

deposited at t.he surface of the particle, the surface of the ceramic

vial and "the wall of the water-cooled sample probe. As the temperature

increased, the 'amount of ,tar, present .in,the' main gas- increased due to

a' greater",eXtent of tper'W\al1ecomposition of coal at a high temperature.

So when the main gas was cooled, the amount aftar condensed also

increased with temJeratvre._ But when the tem~rature increased to

a certain point, the cracking of tar to solids and gases started to

take place, and therefore the amount of tar present in the main gas

decreased. So when the main gas was coolei, the amount of tar condensed

decreased as the rate of tarcra.:c.k\n.,9 increased with temperature. La.u

(1977) experimented with cracking of propane in the laminar flow reactor.

He <>bserved that the cracking of propane started to take place at

•the peak temperature of 750 C,.aM that the amount of propane being

cracked increased with an increase in the peak temperature. Whenthe

peak temperature reached 960°C, 98% of the original material was cracked.

His observed cracking phenomena coincided well with the abserved tar

condensation phenomenaat the surface of the char particles.

Since. some of the condensed tar at the surface of the char
o

particles formed at the peak temperature of 650 C If(:aS, dark brown, the'
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distinction between the char phase and tar phase couJd not be readily

detected in the particle images. For fear of interference of condensed

tar during size cou..'lting, it was decided to suspend the char particles
o .

formed at the peak temperature of 650 C in a benzene so tv.tion on a

microscope slide to wash out the tar. Then they were dried carefully ..

before photographing. The only concern of this method was the possibility.

of destruction of cenospheres, but it was found tl'at the cenospheres did

not disappear when a few drops of benezene were ca.:r:efully added to them

Sometimes. however, the window structure was dissolved partially if

too much benezene was added. (See Figure 5-3b ).' .Since the.tar condensation

at the peak temperature of 7500C.was not s.1gnificanh, and less ~:lnt..ense...iIJ

color, the benzene .treatment was. not applied: to them.

6.3 Structure of Coal Residue

Although the physical structure of coal is complex, when the

particles were examined under the light microscope, no complexity

was observed. Host coal particles examined were opaque under the

light microscope of. TEM200, but they were a felf exceptions •.. It: was

observed that less than 1 % of the coal partic les examined appeared

to be either dark brown or. silver under the light microscope. The

dark brown particles were suspected to be mostly tar, and the silver

particles to be tletal. The silver particles did not appear to go

through any :physical change under these experimental conditions.

The structure of the char products appeared to be more

heterogeneous than the original coal particles. The heterogeneity Wlt~
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caused by the fact that.:portions of coal particles were transparent. A

microscopic examination of unagglomerated char products formed at the
o

temperature of 600 C revealed the occurence of transparent coal particles,~h~'

formation of cenospheres. (See Figure .5-6b,f,g,h, j). But the: number of

cenospheres which could be detected under the light microscope at this,

peak temperature was nots igilificant. On the average, fewer than % of

the particles examined had detectable ribbed windowstructures, and

even a fewer number of cenospheres had the distinct ribbed window

structure as shown in Figure 5-Ja.. Cenospheres having the distinct ribbed

windOlfstructure usually exhibited a much largetincrease in volume

than the average char particles. (See Figure 5-6f). Meat of the pu-ticles

were op:a....queand rourxi, and some had minute vesicles at .their particle.'

surface. (See Figure 5-6d). But, for the initial average particle size

of 267 fIR' most of the particles were not round. There waS some swelling.

at this peak, temperature, but it was not very significant •. (See Figure

5-6a,:b, c, d, e, f,: i, j).

Char particles of agglomerated coal particles appeared similar

to unagglomerated coal particles, namely" round and opaque. There were

no cenospheres detected for agglomerated coal particles. (See Figure 5-

lIb) •
o

Whenthe peak temperature increased to 650 C, the IIlost drastic change

in char products was a significant increase in the number of cenospheres

detected. Most of tm cenospheres formed had distinct ribbed window

structures. The size of cenospheres andwindowsalso increased.

(See Figure 5-7a, b, c, d, e, f. h). The fomation of cenosphereswas most
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significant at the initial particle size of 202 pm. More than half of

this sample had detectable ribbed windowstructures. This 15 a muchhigher

percentage than that of the rest of the char sample formed at this peak

temperature. Onthe average, approximately 30 % of the char particles

had detectable cenospheres. It is difficult to conceive of an .~

expla..nQtjon for the significant difference. It is probably due to

experimental errors, i.e. I the peak tem~rature was off for this particular

run. Most of the particles were spherical, and there were also minute

vesicleS at the particle surface. The swelling of the particles at

this peak temperature appeared to be more significant than the char.
o

particles formed at the peak temperature of 600 C. Both agglomerated

and unagglomerated char particles beha.ved similarly at this peak

temperature. (See Figure 5-llc, d)
o

At atempe:ra.ture of 750 C, the formation of cenospheres was

observed. But, the number of cenospheres that could be detected was

reduced, and the sizes of cenospheres were also reduced. (See Figure

5-Ba, b, Cs d, e) c There was an increase in the o~ity of particless

Approximately 10 % of the char products ~ detectable ribbed ~lfindOW

structures at this peak temperature. but there were no cenosph~es

behaving like the one shown,on Figure 5-Ja. Most char particles

formed were not as round as char particles formed at the peak .-

temperature of 650°C. Miinute vesicles cou]d still be detected at

this peak temperature. Both agglomerated and unagglomerated char

particles behaved similarly. (See Figure 5-lle) It,::' The.shI:ink~g
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of the unagglomerated char :(articles was observed at this peak temperature.
o tl

Whenthe peak temperature reached 8)0 C and 960 C,. mast of the particles

were oplque. There were no detectable particles bemving like the one
o

shown in Figure 5-Ja.. At the peak temperature of 830 C, a small portion

of the char particles had ribbed window structures. (See Figure 5-9a,
o

b, c). At the peak temperature of 960 C, some of the ribbed window -

structures~were open, i.e. there were contin"o\l~ pores. (See Figur~. 5-l0a,

b, c). Minute vesc1les could also be det~ed at th~two pe~ temperatures.

The agglomerated:am unagglomerated char particles behaved similarly.

at these two ~empera.tures. The unagglomerated char particleS .....

formed at. these ~wopeak temperatures were smaller. than the original

coal particle.

In brief, the detection 'of .the ce!lospheres was_highly temperature

dependent under the employed experimental ca'lditions • The trend observed

in this study coincided with Newall and Sinnatt's ~b~ervation. (See

Section 3.3). The 1UUlber of cenospheres~c:1etected and the size of

cenospheres peaked with a certain temperature. The exact point of the maximum.

detection of cenoshperss is not known at present, but it. is suspected to
o 0

be in the peak tem~rature range of 600 C to 750 C.

The minute forms observed. by Newall and. Sinnatt (1924) could

not be detected under the light microscope since the magnification

used. in this study was not high enough.

6.4 Relationship Between Swelling Batio And Particre. Size

Table 5-1 shows the effect of particle size on the average swelling
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ratio at the constant peak temperature for all particle size distributions

~mployedin the study • Too data here do not always f?howan increase in the

swelling ratio of char samples free of agglomeration with an increase

in particle sizec But it is reasonable to conclude that the swelling

ratio increases with an increase in particle size. The relationship

between the swelling ratio and the initial particle size predicted by

Lewellen (1975) is nearly linear with the initial particle size in the

range of 120pm to 230pm. (See Figure 3-9). Data fancU.ysis--of"_

swelling ratio vs. particle size at constant peak temperature' was performed.

for samples that were free of agglomeration 0 The least square metl?od

was used for this analys is c The results are tabulated in Table 5-2

and the graphical results are presented in Figure 5-la and 5-lb. It

is interesting to note that the slopes of DIDO VSe DOfor peak temperatures
000

of 600, 650 and 750 C were very similar to that of Le':orellen'sPlrticle

size trend prediction ( 1.6 x 10-3). The experimental conditions employed

in this study were not .similar to that of Lewellen's simulation, so the

significance of the coincidence is uncertain. Tm slope of the curve

d.e~reases as the peak temperature increases. This implies that, at the

high peak temperature, the plrticle size has less effect on the swelling

ratio. Curve J and Curve4 on Figure 5-1b intersect at 16.5'pm. This is

unlikely and it is probably caused by the scattering of data. In general,

the 'linear relationship between the ~welling ratio and.the.particle

size fits the data well. The deviation. of data from the corresponding

value detennined by the least square method is within 5 % of its

corresponding value. There are a few exceptions which have approximately
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10 %. deviation.

Due to_~icle agg+omeration...no ,accurate data were obtained for

initial average particle sizes less t~ 89 pm. But it is expected tb1.t

the swelling ratio will be nearly constant for very small particle sizes

since. the bubbles generated' inside the coa.l particle will be instantaneously

transported to the surface and escape.

Accoming to lewellen's study (1975), the sw~lling ratio will not'

increase linearly with particle sizes above 230 pm. The increase

in swelling ratio with the initial particle size will be less significant

as the particle size increases above 230 pm. Since not enough experiments

have been done for average particle sizes greater than 230pm. the

validity of Lewellen's predicted trend remains uncertain.

6.5 Relationship BetweenSwelling Ratio Ani. Temp!rature

Table 5-1 also shows the effect of temperature on the average s.welling

ratio of unagglomerated char particles at ~he constant initial average

particle size. The table shows that the_swelling ratio peaks at the

peak temperature of"'650° C. The swelling ratio increases with the peak
o 0

temperature whenthe peak temperature increases from 600 C to 650 c, and
+

peak temperature of 65(l CIi Increasing the peak temperature from 6000C

~~ 6500 C always increases the swelling ratio; in most cases however,

increasing the peak temperature from 6500 C to 960°c causes a decrease in

swelling ratio. The observed trend agrees well with the predic'ttd trend

discussed in Section 3-6. The swelling-temperature relationship is similar

to the thermal decomposition. rate-time-temperature relationship iB i>yrolysis,

i.e. both peak at a certain temperature. It 'Wasdecided to correlate In{D/D)o

with 1/T (reciprocal of the average temperature of the reactor) at a constant



initial particle size. The ave1;agetempera,!!urerange for the corre.1ation
. 60 0 0was 0 C to 900 C. The least square method was used for this correlation.

The results of the correlation are tabulatea. on Table 5-3. and plotted

in Figure 5-2a, b. As-is evident f.'romFigure 5-2atl a linear relationship

exists between the In(D/DO) and l/T at the initial particle. sizes of

267 and 202 pm. But the correlation was not satisfactory fC?rthe initial

particle sizes ..of 164 am 122 pm. This is probably due to errors in size

counting or scattering of data. Since -insufficient da;ta were

obtained to draw any correlation between the swelling ratio and the
o •", , ,"

average temperature for average temperatures -below 600 C ~ the empirica.l

relationship between -the swelling ratio and the temperature is still

undefined.

There were two assumptions: made'in correlating the swelling ratib .

with the average temperature. First, the nonunifo:rmity of heating

rate at different average or peak temperatw:es has little or no

effect on the swelling.~property of_the coal samples. - Secondly, the

average or peak temPerature of the reactor corresponding to the maximum

swelling ratio does not lie in the average temperature range of
o 0 -,

600 C to 700 c. Since the assumptions were not tested experimentally,

the validity of the above correlation is still uncertain. But in

general, the swelllng ...te~perature relationship is similar to

the thermal decomposition rate ...-:tirqe-temperature .relati:.,onshipor the

fluidity-time-temperature relationship in pyrolysiS ~fbituminou~ coal.

6.6 Agglomeration
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Although the swelling ratio of agglomerated' char particles ...". ~;...,
o

displays a maximumat the peak temperature of 6.50 C, it does not

necessarily suggest that the agglomeration of coal is tem:t:erature
;

dependent~ Since the agglomeration of char :p!.rticles is caused

mainly by the agglomeration of raw coal particles before entering

the reactor tube, the effect of the peak temperature of the reactor

on the agglomeration of char particle should be insignificant. The
o

maximumswelling ratio .observed at the peak temperature of ,650 C is

probably due to the more intensive swelling of agglomerated coal .
~

Particles at the peak temperature of 6.50 C than that _of agglomerated

coal particles at other temlEratures. It is evident frOJ1\Table 5-1, tkat

the extent of agglomeration 6f char particles increases. as .the particle

size decreases. No correl QtIOt'l. has been made to establish the
of

relat~0!1ship between.~he extent.)agglomeration: and. the particle size in

this studys

1c CONCLUSION

1. At constant peak temperature~ the swelling ratio increases

with the average initial particle size. A linear relationship can be

used to describe the reJa tionship between the swelling ratio and the

initial particle sizes of 89 pm to 267 p_

2. At. constant initial average particle size, the swelling-

temperature relationship is similar to the thermal decomposition rate-time-

temperature relationship or the fluidity-time-temperature relationship in

pyrolysis of bituminous coal. i.eo swelling. fluidity and thermal decomposition

rate all peak at a certain tellpe%.."?;ture.Based on the data obtained,
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an empirical relationship has been developed to correlate the swelling

ratio with the average temperature of the reactor.~ The average
. '0 0

temperature ranges were 600 C to 900 C. But the exact correlation of

swelling ratios and. the temperatures is st ill undefined due to a lack

of information on the average reactor temperature corresponding -to

the maximum swelling ratio, and insufficent,-.data obtained'L.at'_low

temperatures.

8. RECOMMENDATION

The validity of the assumptions used in corre4ting', the average

'swelling. ratio with the average_reactor temperature at a cOnstant

a.verage initial- particle size were not tested experimentally .. Future

study should first determine the average or peak temperature of.the'

reactor corresponding'to the maximumswelling ratio of coal particles,

and the effect of heating rates on the swelling ratio of char

particles at constant peak temperature. The peak temperature

of the reactor corresponding to the maximumswelling of char particles
o

probably lies in the temperature region near 650 C. Therefore, future

study should focus on the effect of peak tem];eratura ..on ...,oll1Dg ratio

near that region. But the effect of heating rate on the swelling

ratio of char Iarticles can not be investigated in the present set up

of the laminar flow reactor since there is a one to one reJationship

between the heating rate and the peak temperature of the reactor. (See

Appendix A-S) • Once the peak temperature of the maximumswelling

ratio of char: pa.rtic~es is determined~ a correlation- of the swelling
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ratio with the average or peak temperature of the reactor can then

be madeat a constant initial particle 'size.

Besides particle size and peak temperature ,of the laainar flow reactor,

there are other experimental variables such as pressure and reaction

~tmosphere which will have significant effects on the swelling

ratio of char pa.rtic1es c Therefore, future research can also include

the study of the dependence of the swelling ratio of closely size-

graded bituminous coal particles on the pressure and the atmosphere

employedin the reactor.

Since the extent of fresh feed. agglomeration is very significant for

avera.ge initial particle sizes. less than e 9 J.llll, future' researCh should
I

not include particle sizes less than 89}lI1l. The non-stagnant flow.

between the coal particles and the main gas is also undesirable, hence

future research shouJd exclude particle sizes which have final settling

velocity greater than the velocity of the min gas at the experimental

conditions of interest.

Too examination of char particles under the light microscope '

reveals only the surface structure of the char particles;, it does not

provide ,information on the porosity inside the char particles. Future

study can also focus on the study of porosity of char particles of

bituminous coal formed under different experimental variable. If there

is a large scale of porosity present inside the char particles, it can

be detected using a refractive microscope. The char particlcasmust be

imbeddedin epoxy resin and polished before examining them under a

refractive microscope.
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Appem.1x A-)

Helium Flow Rate Setting for the Laminar Flow Reactor

0 SeeM HeliumPeak temperature C
600 6248.5
700 5606•.5
800 5084
900 46.51

1000 4285.6
1100 3973.5

Appendix A-4

~elationsh1p between Mesh # and Farticle Size

U.Sc Stamard Mesh # Particle Size
80 177

100 149
120 125
140 105
170 88
200 74.
2.30 6)
270 53
325 44

8)
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Appendix A~6

Determination of Final Particle Settling Velocity
vf - final settling velocity (rt/sec)

Average 270 Jum 200,.wn 180}lDltemperature(Oe) vf vf vf
600 4.08 2.42 1.96
100 3.ao 2.30 1.83
800 3.48 2.10 1.68
900 3.37 2.03 1.62
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Appendix A-7
Calibration of TZG 3

Counter standaxd .Reduced Counter standard Reduced
number 4x (fihl) lOX 4X9~')10X number 4Xjam) lOX 4x /a",}lOX

/

1 26.8 :10.9 9.5 3.8 25 320.5 130.6 108.3 43.5
2 39.0 15.9 13.5 5.4 26 332.7 135.6 112.4 45.1
3 51.4 20.9 17.6 7.1 27 344.9 140.5 116.6 46.8
4 63.6 25.9 21.6 8.7 28 357.3 145.6 120.7 48.4
.5 .75.8 30.8 25.6 10.3 29 369.5 150.4 124.9 50.2
6 88.0 35.8 29.7 12.0 30 381.7 155.4 129.0 51.8
7 100.2 40.7 34.0 13.6 .31 393.9 160.3 133.0 53.4
8 112.6 45.8 38.0 15.2 32 406.1 165.; 1;7.3 55.1
9 124.•8 ,50.8 42.; 17110 ;3 418.5 170.3 141.4 56.7

10 137.0 ~5,7 46.3 18.6 J4 430.7 175.3 145.6 58.5
11 149.2 60.7 50.3 20.2 ;5 442.9 180.3 150.0 .60.1
12 161.4 65.6 ,54.6 21.9 ;6 455.1 185.2 153.7 61.7
I; 173.8 70.7 .58.7 23.5 37 467~3 190.2 1.58.0 63.4
14 186.0 75.6 62.9 25.; 38 479.7 195.2 162.0 65.0
15 198.2 80.6 67.0 26.9 39 491.9 200.2 166.3 66.8
16 210.4 85.5 71.0 28.5 40 504.1 205.2 170.3 68.4
17 222.6 90.5 75.3 30.2 41 516.3 210.1 174.4 70.0
18 235.0 .95.7 79.3 31.8 42 528.5 215.1 178.7 71.7
19 247.2 100.7 8;.6 33.6 4; .540.9 220.1 182.7 73.3
20 259.4 105.7 87.6 35.2 44 553.1 225.1 187.0 75.1
21 271.5 110.6 91.7 36.8 45 565.3 2)0.1 190.0 76.7
22 28).8 115.6 96.0 38.5 46 577.5 235.1 195.1 78.3
23 296.2 120.7 100.0 40.1 47 589.6 240.0 199.3 80.0
24 308.3 125.6 104.3 41.9 48 602.1 245.0 203.4 81.6
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Appendix A-a

Nomenclature of Table )-1

Initial bubble size.
Radius of bubble l,j.
Growth rate of bubble i

Distance between the particle wall and the center of bubbles i.j.
Distance to the nearest surface through which volatUe can escape.

Activation energy of the secondary reaction.

Volatile nux per unit surface area •.

Preexponential factor of the secondary reaction rate constant.

Secondary reaction rate constant.
Original eoal masst

Coal mass.

PresstL.~ of surroundings.

Rate of ~ecoMa:ry reaction per unit area.
Rate of the secondary reaction per bubble.
Radius ot ];8.rllcle or universal gas constant •.

Total mass loss of ];8.rlicle.

Mean molecular weight of the bubble.

Spatial coordinates of bubble i,j,k.

Bubble generation probability distribution function.



I\~D Initial bubble size probability distribution function •

.~ Viscosity.

o ~urface tension of bubble shell.

~ Density of particle phase.

~'.;'I lIJ') alL Massof bubble i,j,k •.
V: . Rate of mass accumulation inside bubble 1.

6-

d.J.. Rate of volatile generatioD per un!t mass of original coal.
~
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