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ABSTRACT

Soil moisture is an important component of the hydrologic cycle. The very
nature of soil moisture makes it extremely difficult to measure at large spatial scales.
In this thesis, a method is proposed to relate the distribution of soil moisture to
topography. An equation with an explicit representation of elevation and soil moisture
is derived from the basic principles of unsaturated flow. Treating elevation and soil
moisture as random variables, this equation is used to relate the spectrum of soil
moisture to the spectrum of elevation for the one- and the two-dimensional cases. This
relationship depends on several soil and climate properties; the sensitivity of the
relationship to these properties is analyzed and discussed. The variability of soil
moisture resulting from variability in soil properties is also analyzed and compared
with the variability resulting from topography.

To test the theoretical results, a field experiment is designed to measure soil
moisture along a hillslope using neutron probe technology. Porosity and saturated
hydraulic conductivity are also determined over the distance of the experimental site.
The soil moisture measurements show the effects of two nearly equal but opposite
forces: the forcing of the soil properties and the forcing of the elevation gradient.
Because soil properties significantly affect soil moisture, it can be concluded that
topography has an observable impact on soil moisture at the experimental site. The
predictions made using the basic equation relating the effect of topography on soil
moisture agreed well with the observed soil moisture conditions. Overall, this study
shows that topography affects soil moisture in a quantitative manner and that this effect
can potentially be used to better quantify the distribution of soil moisture

Thesis Supervisor : Elfatih A. B. Eltahir
Title : Assistant Professor
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CHAPTER 1

Introduction

1.0 Background

Soil moisture, the water occupying space in the unsaturated zone of soil, is a

vital yet difficult to characterize component of the hydrologic cycle. Proper

characterization of soil moisture has important implications ranging from pollution

remediation to climatology. The main factors controlling soil moisture are soil

properties, topography, and climate. Climate affects soil moisture through sources

(e.g. precipitation) and sinks (e.g., evapotranspiration) of water. Soil properties control

soil moisture by influencing the equilibrium of water flow. Topography is also

expected to be a significant factor in soil moisture characterization. However, up to

this point there has been no rigorous theory to explain the influence of topography on

soil moisture.

1.1 Importance of Soil Moisture as a Hydrologic Variable

Soil moisture is a significant component of the hydrologic cycle; however, the

expense and difficulty associated with taking soil moisture measurements makes it

one of the least measured and hardest to quantify components of the hydrologic cycle.

Most of the available information on soil moisture falls into two categories of spatial

and temporal resolution: measurements at discrete locations at discrete points in time,

as taken with soil tensiometers and neutron probes, and measurements which

average soil moisture over large spatial scales and long time scales, as inferred from

satellite measurements. These two categories represent the extremes of spatial and

temporal averaging of soil moisture; little information is available regarding soil

moisture behavior at an intermediate space-time scale. This discrepancy in the
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measurement of soil moisture has traditionally lead to many simplified assumptions

and parameterizations about soil moisture in studies in a wide range of scientific fields.

Consequently, improving in the characterization of soil moisture fields in space and

time could enrich a wide range of hydrologic studies.

Nearly all of the available information on soil moisture is actually the result of

indirect measurements. Point observations of soil moisture measure hydraulic tension

(with a tensiometer) or thermalized radiation (with a neutron probe); satellite

information is derived from microwave emission. Thus it is common practice to use

other forms of information to characterize soil moisture. Given the limitations of the

resolution and the accuracy of current soil moisture information, it is worthy to attempt

using new methods to add to the picture of soil moisture behavior. Topography is one

factor which may have an important causal influence on soil moisture variability. The

wealth of information on topography is enormous: elevation data is currently available

for nearly all of the United States at a 30 m by 30 m scale. Furthermore, elevation is

known to play a significant role in the flow of both groundwater aquifers and in surface

runoff. It can therefore be expected that elevation will also play an important role in the

flow of water in the vadose or unsaturated zone. The wide availability of elevation

data and functional significance of topography suggest that it may be useful for

obtaining information about soil moisture. The goal of this study is to derive an explicit

relationship between soil moisture and topography, test the validity of this relationship

with a field experiment, and utilize this relationship to infer information about the large-

scale distribution of soil moisture.

1.2 Literature Review

The classical description of the flow of water in the unsaturated zone is Klute's

(1952) reworking of Richard's Equation (1931):

-14-



ae = V (KV) (1.2.1)
at

(Philip, 1957). This equation describes the change in soil moisture content (referred to

as soil moisture for simplicity), 0, as the divergence of the product of unsaturated

hydraulic conductivity, K, and the hydraulic gradient, Vc. In his paper, Philip (1957)

uses Equation 1.2.1 to derive a fundamental theory of infiltration.

Later papers advance theories to quantify unsaturated hydraulic conductivity in

terms of soil moisture content. One of the earliest and most widely used formulations

was obtained by Gardner (1957), who began with Equation 1.2.1 above and derived

an analytical form relating unsaturated hydraulic conductivity to capillary tension or

suction head:

K = KoeaV (1.2.2).

where Nr is the capillary tension in the soil. Soil moisture can then be expressed in

terms of capillary tension through the relation

0 = 00 + cV (1.2.3)

(Gelhar and Mantoglou, 1987a). This equation denotes a linear relationship between

soil moisture and capillary tension, which can be a very good approximation for certain

soils (Gelhar and Mantoglou, 1987b). Combining 1.2.2 and 1.2.3 together provides a

simple but powerful formulation relating soil moisture to unsaturated hydraulic

conductivity which has wide use in current theory and applications.

Another formulation, which is widely used in field applications, expresses

unsaturated hydraulic conductivity in terms of soil water parameters

-15-



1

K(s) = K(1)s m  (1.2.4)

w(s) = =(1)s - n

(Brooks and Corey 1966), where s is the soil saturation (soil moisture content divided

by porosity), K(1) and N(1) are the values of conductivity and capillary tension at 100%

saturation, and m an n are constants used to fit the equations to a moisture retention

curve. The advantages of this formulation is that it often agrees well with observed

data and that the unsaturated parameters m, n, and V(1) can all be obtained from one

set of moisture retention measurements (Brooks and Corey, 1966). The disadvantage

of this formulation is the highly non-linear relationship between unsaturated hydraulic

conductivity and soil moisture, which makes the equations in 1.2.4 very difficult to deal

with analytically.

In experimental work, it will be of interest to determine the properties of soils

under study. Stephens (1996) provides an excellent description of many techniques

used to characterize both saturated and unsaturated soil properties. Smith and

Mullins (1991) also provide a great deal of information on standard techniques for

characterization of soil properties; Revut and Rode (1981) present a wealth of

techniques used by Russian scientists over a period of many years. Determination of

properties in undisturbed field conditions is often preferable to using disturbed

samples. Wooding (1968) and Shani et al. (1987) present field techniques for

characterizing the parameter a in Gardner's formulation. Daniel (1990) reviews

several field techniques for measurement of saturated hydraulic conductivity. For

Brooks-Corey formulations, McCuen et al. (1981) and Gregson et al. (1987) present

techniques for estimating the unsaturated parameters using information on soil type

and employing efficient measurement techniques, respectively.

Many of the basic theories and studies of unsaturated flow began out of an

interest in the infiltration in the vertical direction. However, it is expected that there will

-16-



be significant lateral flow in the unsaturated zone as well. Employing an experimental

approach, Hewlett and Hibbert (1963) studied the flow of water in a sloping soil mass.

After reviewing the works of Giorgini et al. (1984), Zaslavasky and Sinai (1981), and

McCord and Stephens (1987) and carrying out qualitative unsaturated flow

experiments, Eltahir (1989)concluded that significant lateral flow occurs within layers

of soil with different moisture content. Genereux and Hemond (1990) state that up to

70% of the streamflow in a small stream in Central Massachusetts originates from the

unsaturated zone. It is then expected that the flow of water unsaturated zone of the

soil will be a significant component of the hydrologic cycle. Classical hydrologic

theory is often incomplete in its description of unsaturated flow processes. Zaslavsky

and Sinai (1981a,b,c,d,e) present a detailed investigation into unsaturated subsurface

flow. Based on observations, theoretical considerations, and field experiments, they

conclude that topographic slope and anisotropy of soils will be both be important

factors influencing unsaturated flow. This important conclusion provides the

motivation for this study.

Beven and Kirkby (1979) proposed the TOP model, a simple and widely

approach model to relate the spatial distribution of soil moisture to topography. This

model is based on the assumption that the water table intersects the ground surface in

locations where the flux of water exceeds the capacity of saturated soil to transport

water. Topography enters the model through the assumption that the hydraulic

gradient of saturated flow is equivalent to the elevation gradient at the ground surface.

However, this model neglects the lateral flow of water in the unsaturated zone: this in

where the considerations of Zaslavasky and Sinai (1987a) can improve hydrologic

characterizations of water flow.

Because of the many factor which affect unsaturated flow and the rule of

heterogeneity of properties in many soils, a stochastic approach to characterizing

unsaturated flow is often employed. Gelhar (1990) presents a thorough treatment on

-17-



stochastic subsurface hydrology, which demonstrates the mathematical techniques

used in the formulation of subsurface problems. Bakr et aL (1978) consider a

stochastic approach to the effect of anisotropy of saturated hydraulic conductivity on

hydraulic head and conclude that dimensional consideration and the correlation scale

of hydraulic conductivity are both very important. Gelhar and Mantoglou (1987b)

present a stochastic unsaturated flow system and suggest that soil variability may be a

cause of observed hysteresis observed in the field; in a companion paper (1987c), the

same authors present an example of the differences in predicted of unsaturated flow

made using both a classical and a stochastic approach. These results demonstrate

that a stochastic formulation of an unsaturated flow system is valid and should better

deal with natural variability than a deterministic approach.

1.3 Outline

This thesis is organized into five chapters. Chapter 2 formulates the basic

unsaturated flow problem and employs a stochastic approach to derive an explicit

relationship between soil moisture and topography. In Chapter 3, the effect of soil

properties on the proposed relationship of soil moisture to topography and the

variability in soil moisture arising from variability in soil properties is studied. Chapter

4 presents the results and explanations of a field experiment designed to test the

relationship of soil moisture to topography. Finally, Chapter 5 presents a brief

summary and the conclusions of this study.
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CHAPTER 2

A Theory for the Relationship Between Soil Moisture and Topography

2.0 Introduction

In this Chapter, the basic principles relating soil moisture to topography are

presented. Section 2.1 reviews the basic principles of unsaturated flow and develops

a governing flux equation for the unsaturated zone. Special cases of this equation

have analytical solutions; these are derived in Section 2.2. Spectral methods can be

used to relate the statistical properties of soil moisture to the statistical properties of

elevation; this procedure is presented for the one-dimensional case in Section 2.3,

and the two-dimensional case in Section 2.5. Examples using real data from the New

England region are shown for the one-dimensional case in Section 2.4 and the two-

dimensional case in Section 2.6. The differences arising between the one- and the

two-dimensional cases are discussed in Section 2.7, and conclusions are summarized

in Section 2.8.

2.1 Formulation of the Problem

Darcy's equation describes the flow of water in porous media. Although this

principle is most commonly used for saturated flow, an equation of form similar to

Darcy's equation is valid for flow in the unsaturated zone. This unsaturated flow

equation states that specific flow in the i-direction is equal to the product of isotropic

unsaturated hydraulic conductivity and the hydraulic gradient in the i-direction:

qi = -K(W) (2.1.1).
axi

The quantity qi is the specific flow in the i-direction. K(W) is the unsaturated hydraulic

conductivity, and h (= N + z) is the hydraulic head, the sum of pressure head, V, and
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elevation, z. In the unsaturated case, the pressure head, x, is capillary tension and

will be negative in sign, decreasing (becoming more negative) with less water in the

soil. The notation K(V) suggests that the unsaturated hydraulic conductivity will be

solely a function of the pressure head; in reality, it will depend on instantaneous

hydraulic head, temperature, and the time history of wetting and drying of the soil

(Bras, 1990). However, at long time scales the short-term influence of variable

temperature, wetting, and drying can be expected to average to a negligible value.

Since this study is concerned with long-term distributions of soil moisture, the effects of

temperature and wetting and drying on unsaturated hydraulic conductivity will be

considered negligible when compared to the effect of pressure head.

In general, the hydraulic tension, y, depends on the amount of water present in

the soil. One measure of soil water is the available water content per unit total volume,

represented by 0. Physically, 0 is the volume of water occupying space in a given

unit volume of soil. This quantity is easily (although indirectly) measured in the field

using the neutron probe. On the other hand, i can be extremely difficult to measure

in situ and will be used only as an intermediate quantity. Gardner (1958) and

Mantoglou and Gelhar (1987) relate 0 to unsaturated hydraulic conductivity with ' as

an intermediate variable using the two equations

K= Koea '  (2.1.2)

0 = 0o + cyf (2.1.3).

Here, Ko is the saturated hydraulic conductivity, a is the dispersion coefficient, 0o is

the saturated water content (equivalent to the porosity of the soil), and c is the specific

soil moisture capacity. By combining Equations 2.1.2 and 2.1.3 to eliminate N,

unsaturated hydraulic conductivity and soil moisture are related directly. Taking the

natural log of Equation 2.1.2 and solving for V,

-20-
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1 K
1 = In( -) (2.1.4).
a KO

This relates y to the ratio of unsaturated to fully saturated hydraulic conductivity of a

soil. Substituting Equation 2.1.4 into the second equation in 2.1.3 to eliminate V, the

relationship between the soil moisture and the unsaturated hydraulic conductivity of a

soil becomes

c K
0 = 0o +-in(-) (2.1.5).

a Ko

With this relationship, there is no longer dependence on the intermediate variable y,

and it will be much easier to study soil moisture from unsaturated hydraulic

conductivity.

Equation 2.1.1 can be expanded and substituted into Equation 2.1.2. Taking

the derivatives of Ny and z in space,
a (1 K(e) Yz _ 1 aK(o) [ 1 aK0  8z 1

qj =-- I-in - -K(O,x) 1 + K( O) o-
xi (a Ko )xi a xj aKo x1  xj

(2.1.6)

which is a non-linear equation of K due to gradients in saturated hydraulic conductivity

(assuming that the pore size distribution parameter, a, is constant in space).
However, the non-linear term 1 o which multiplies K(O,x) is generally expected

aK o xi

azto be of small order compared to elevation gradients, x It is important to note that
axi

Equation 2.1.6 treats elevation as an explicit variable in the horizontal direction. This

treatment of elevation as a variable in space rather than as a spatial dimension will

allow us to relate directly topography and unsaturated hydraulic conductivity.
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Equation 2.1.6 describes flow in the unsaturated zone as the sum of flow due to

unsaturated hydraulic conductivity gradients in the horizontal direction, which result in

diffusion-like flow, and of flow due to elevation gradients, which force a Darcian gravity

flow.

Since the region of interest in this study is the unsaturated zone, this region will

be used as the control volume for conservation of mass. To determine changes in the

water content of the unsaturated zone in time, conservation of mass can be applied to

the control volume

D e= -D qi - ss+R (2.1.7)
at ax i

where D is the depth of the root zone, s is the vertical divergence of water, and R is

infiltration rate into the soil. Equation 2.1.7 states that the overall change in water

content in the root zone, D- is equal to the loss of water due to horizontal fluxes,at
D i, minus the loss of water due to other sinks, s, plus the input of water due toaxi
precipitation, R. R, or effective precipitation, is the amount of rainfall infiltrating the soil

and is equivalent to precipitation minus runoff for bare soils. When considerable

vegetation is present, effective precipitation may be considerably reduced from actual

precipitation through evaporative interception loss. For the purposes this analysis, R

will be assumed a constant fraction of precipitation and constant in space. The sink of

water due to vertical divergence, s, includes loss to evaporation and percolation.

These flows may be combined and parameterized as proportional to hydraulic

conductivity as s = PK. Conceptually, this parameterization is justifiable because

divergence due to gravity (groundwater recharge) and to suction (from roots taking up

water for evaporation) should result in a slow, Darcian flow that will be proportional to

the hydraulic conductivity of a soil. With this parameterization, P can then be thought
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of as the hydraulic gradient of sinks of water in the root zone. Substituting for qi from

Equation 2.1.6 into Equation 2.1.7 results in

D- a 1 a + K(O, x)1[• oazxi  K(6) + R (2.1.8).
St xi a axi aK0 xi xi

This equation quantifies the water balance in the root zone in terms of hydraulic
aK OZ

conductivity gradients, -; soil properties, a, Ko, and D; topographic slope, ; and
Dxi axi

climatological forcings, R and P. Equation 2.1.8 can be used to establish the

dependence of soil moisture conditions, K and 0, on elevation, z.

Often, it is of interest to consider the long-term behavior of soil moisture. In such

cases, soil moisture should be near an equilibrium. Using the notation Et[ ] to denote

the expected value, or average in time, Equation 2.1.8 can be averaged in time to

obtain

aE,[e] D 1 aEt[K(0,x)] az(x)D a I a --E[K(O, x)] -PEtK(0,x)] + Et[R] (2.1.9)at axi a axi axi )

where the effect of variability in saturated hydraulic conductivity is assumed to be

negligible. Because soil moisture considered at seasonal or yearly time scales will be

very near to equilibrium, the left-hand side of Equation 2.1.9 will be negligible, since

the change in the time-average of soil moisture will be zero. This results in the

equation

Dxi (1• -xi Et[K(O,x)] -3Et[K(O,x)]+ Et[R]= 0 (2.1.10)
axi a axi axi)
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which is a special case of Equation 2.1.8 for which variability in saturated hydraulic

conductivity is negligible and the long-term behavior of unsaturated hydraulic

conductivity (which is used here as a surrogate for soil moisture) is considered. This

equation is linear on Et[K ] , which makes it desirable for theoretical and analytical

purposes.

2.2 Analytical Solutions to the Deterministic One-Dimensional Flow

Equation

The equation describing flux of water in the unsaturated zone, Equation 2.1.8,

can be studied for either the steady state or the transient case. In the steady-state

case, soil moisture is considered as a long time scale (i.e., seasonal or yearly)

process. As mentioned above, when the long-term expectation of this process is taken

in time, the time-dependent term, Do-, can be considered nearly zero. The resultingat
equation is only dependent on distance, x, and becomes a second-order partial

differential equation. In the case where hydraulic conductivity is constant, the

derivatives of Ko are also zero. These two conditions will transform equation 2.1.8

into a second-order ordinary differential equation. With knowledge of conditions at two

boundaries, unsaturated hydraulic conductivity (and hence soil moisture) can then be

completely described within the boundaries. Dropping the Et[ ] notation for simplicity

of presentation, the ordinary differential equation derived from Equation 2.1.8 is

d ( -dK(x) + PK(x) - R = 0 (2.2.1)
dx a dx dx

where K(x) and R are understood to mean Et[K(x)] and Et[R]. All of the soil

parameters Ko, a, 0o, and c are characteristics of soil type; a and c are also

somewhat dependent on soil moisture. However, all the soil parameters can be

considered constant in space over the appropriate averaging scale, and a and c are
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often constant for certain ranges of soil moisture. For constant soil parameters,
dz

topographic slope, -, and soil depth, this is a second-order, non-homogenousdx'
ordinary differential equation in K with constant coefficients. This type of equation has

a solution given by

K(x) = CleXix + C2eX2x aR (2.2.2)
D

where

a dz 2(dz 2 4ap
1 =--+ - +4- (2.2.3)

2 dx Tdx) D

= a dz -2( + 4 (2.2.4)
2 dx dx D

are the roots of the characteristic equation of 2.2.1. The boundary conditions can be

used to evaluate C1 and C2; Equation 2.2.1 can then be combined with Equation 2.1.8

to give predictions for soil moisture. This results in

c K'x)
O(x) = 0 o +- InK(x) (2.2.5).aLKo

It is noteworthy that the soil properties ,0 and c do not appear in the solution of

hydraulic conductivity in Equation 2.2.2. Since the solution K(x) is independent of

these two variables, they need not be constant over the domain of x. If these variables

can be described as a function of distance, 0c(x) and c(x), then these descriptions can

be substituted into 2.2.5 without any loss of generality. This more general solution for

soil moisture is

-25-



0(x) = 60(x) + In (2.2.6).

Further, if effective rainfall, R, is variable with distance and has a well-behaved

functional form, the solution for K that includes this variability can be found in general

by the method of variation of parameters. The resulting solution for K(x) can then be

incorporated into the solution of soil moisture, Equation 2.2.6. Thus, only the
dz

parameters a, ,03, , Ko, and D need be strictly constant in space in order to achievedx
an analytical solution to 6. Averaged over several months to a year to ensure

equilibrium, this expression may be used to predict soil moisture conditions which can

then be compared to observations of soil moisture data, thereby testing the proposed

theory. This will be performed in Chapter 4.

At smaller time scales, it is not appropriate to take the temporal expectation of

the - term in Equation 2.1.8. For such cases, the solution of unsaturated hydraulicat
conductivity will be a function of both space and time. In order to find a solution to

Equation 2.1.8, it will first be necessary to express 6 in terms of K. Using Equation

2.1.5 to relate 6 to K, the time derivative - becomesat

ae _ ae0  c K c aln(K) c 1 K(2.2.7).

at at at(a KO a at aKat

soil properties 60, c, a, and Ko should remain constant in space in this case. For the

case when saturated hydraulic conductivity is constant, - can be substituted directlyat
into 2.2.1, and K becomes the only unknown:

c 1 aK D D 2K dz aK
D + D K + R (2.2.8).
aK at a ax2 dx ax
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This equation can be solved numerically. However, the rainfall rate, R, will be non-

zero only during precipitation events; for times with no rainfall, Equation 2.2.8

simplifies to a quasi-linear second-order form of the diffusion equation

c 1 aK D D 2K dz aKD----= + D K (2.2.9).
a K at a x2  dx ax

By setting

- D
K= -K

- dz
x=D D- x

dx

t = t (2.2.1 Oa-d).

aD dz
kdx)

Equation 2.2.9 simplifies to

1 aK 2 K aK-
= K  (2.2.11).K- t a-2 '-

Using the concept of similarity solutions, which arise in similar problems of fluid

mechanics, (Lister and Kerr 1989), the solution of Equation 2.2.11 should take the form

K= teH(l) (2.2.12)

where
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X

t
(2.2.13)

and E and v are arbitrary constants. Taking the appropriate derivatives of this form of

K yields

-et H+ at
at

-F- OhlidH
ax dil

= -E a
ax(

-= EtE-H +He DTE dH
at dil

=eti EH+ ( -v
dH

=-E1 (dH
=t dtv d·l

ah dH t- a
,.ax di v ax

dH)
di)

ta dH) t a2 H
-V 'T -72v -%,2= a

Substituting these expressions into Equation 2.2.11 results in

x dH
TT -1=
tV+ lull

te a2H
ja%

t" dH+ d tH
tV dn

Since e and v are arbitrary, they can be selected to result in a manageable form of

Choosing E= -1 and v=O makes 2.2.15 linear and reduces the partial

differential equation in x and t

equation is

a2H dH-1 = o + - H

c 2 dil

which has the following solution

to an ordinary differential equation in 1.

(2.2.16)
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a2H= i E a 2xx

(2.2.14).

-C.t (H +tc

Equation 2.2.15.

(2.2.15).

This new



H = Clexl t +C2e'%t -1

+1 = -- + (2.2.17)
2 2

2 2

which will be valid for times of no rainfall. To use this equation, rainfall events will

need special consideration. H, K, and 0, can be calculated from the following

algorithm:

1) Given a set of initial conditions of K in space over the domain of x, the constants Ci

and C2 can be determined. This will allow K to be calculated in both time and space

as long as no rainfall occurs.

2) When precipitation does occur, previous procedure for calculating K must end.

Typically, the rainfall events will be relatively short compared to the overall time; the

changes in soil moisture due to unsaturated flow during the time-scale of the rainfall

event should also be very small compared to the changes in soil moisture due to

rainfall input. With this in mind, the total precipitation input to the soil can be added to

the solution of 0 (and thereby K) from the beginning of the rainfall event.

3) The new solution for K at the end of the rainfall event can be used as new initial

conditions for the system. Starting again at step 1), the calculation of unsaturated

hydraulic conductivity and soil moisture in time can continue through rainfall events.
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2.3 One-dimensional Stochastic Analysis of the Steady-State

Relationship Between Topography and Soil Moisture

Given the form of Equation (2.1.10), in which both unsaturated hydraulic

conductivity and elevation are variable, it is possible to relate explicitly the

characteristics of unsaturated hydraulic conductivity in space to the characteristics of

elevation in space. Since soil moisture content can be directly related to unsaturated

hydraulic conductivity by Equation 2.1.5, this is equivalent to relating soil moisture to

elevation or topography. In the seasonal to yearly water balance studies used in many

water resources and climatological applications, the long-term (near-equilibrium)

behavior of soil moisture is needed. For these purposes, the equilibrium case in time

will be considered in which the expectation of soil moisture in time can be used.

Because the long-term expectation of soil moisture in time, Et[O], will be constant, the

left-hand side of Equation 2.1.10, Et[, will be zero. Taking the expectation in time
at

(and dropping the Et[ ] notation for simplicity, as in the previous section), Equation

2.1.8 takes the form

D (_(1 K ! K~)+PK-R = 0 x(2.3.1)ax a ax ax)

where K and z are unsaturated hydraulic conductivity and elevation fields which vary

in space. These two fields can be represented as stationary random fields composed

of a spatial mean plus a random fluctuation in space. Using this concept, K and z may

be described as

K=_K+K' (2.3.2a, b)
Z = z+z'
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where K and z are the spatial means and K' and z' are the random spatial

perturbations of K and z, respectively. The perturbation terms K' and z' are expected

to be small compared to the spatial averages K and z and to average to zero in

space. Taking the spatial expectation of K and z results in

and

where

and z.

yields

Ex[K] = Ex[K + K'] = E[K]+ E[K'] = K

Ex[z]= Ex[z+z']= E[[z] + E[z'] = z

(2.3.3a)

(2.3.3b).

Ex[] is meant to emphasize that the expectation in space is being taken for K

Substituting for K and z from Equations 2.3.2a and 2.3.2b into Equation 2.3.1

D 1 (K + K') _ +K')
ax a ax ax (2.3.4).

When this equation is averaged in space, all the perturbation terms become zero,

resulting in an average equation

D 1 K Ki8D- - + K -R =O
ax a ax ax) (2.3.5).

The expectation of the perturbation cross-products,

zero in this equation: this makes the equation
azanalytically. For stationary field of K and -, the
horizontal directions are zero. These conditions will

horizontal directions are zero. These conditions will

K'-, has been assumed to be
ax

linear and easier to work with
azderivatives of K and - in the
ax

simplify Equation 2.3.5 to the form
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-- RK = - (2.3.5a)

which yields a simple expression for the spatial average hydraulic conductivity in

terms of the average long-term rainfall and climatic conditions.

Unlike the spatial averages, the spatial perturbations K' and z' do vary in

space and will have non-zero derivatives. Subtracting Equation 2.3.5 from 2.3.4, the

resulting equation contains only perturbation terms:

a 1 WK' -.az' az I a z' 1 0D K -- K' K' + K'= (2.3.6).ax a ax ax ax ax J

Since the perturbation terms are expected to be of small order, products of

perturbation terms will be even smaller; therefore, the cross-product involving
az'multiplication of two perturbation terms, K'-, is assumed to be small compared with
ax

the products containing only one perturbation term. This term will be ignored,

simplifying Equation 2.3.6 to

a 1 aK' -- z' zD +K K' + PK'= 0 (2.3.7)
ax a ax ax ax

where K and - are the spatial means discussed above. Using spectral
ax

representation of stationary random fields, K' and z' may be described as the integral

sum of random complex amplitude dZK and dZz, each with an associated wave

number, k. This representation of K' and z' is given by

z'= feikxdZz(k) and K'= feikxdZK(k) (2.3.8a,b).
-00 -00
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The random amplitudes have special properties useful in spectral analysis. In

particular, they are related to the spectral density function, which gives the distribution

of variance with frequency. The relationship of the spectral density function to the

random amplitudes is given by

E[dZK(k)dZ (k) = SK(k)dk

where dZ*z(k) and dZ*K(k) are the complex conjugates of dZz(k) and dZK(k) ,

respectively, and Sz(k) and SK(k) are the spectra of z and K, respectively. This result

will be useful later in relating the variance of hydraulic conductivity to the variance of

elevation.

Substituting the spectral representations of K' and z' in Equations 2.3.8a and

2.3.8b into Equation 2.3.7, results in the form

D__ 1 /0 eikx dZK(k)- ~ eikxdZz(k)- JemdZK(k)
ax a x -00x ).x

+ofeikx dK(k)= 0 (2.3.10).

Since the spectral amplitudes dZz(k) and dZK(k), and a and K are independent of x,

all differentiation can be taken inside of the integrals, resulting in

7[D a2e ikx - 2eikx _ke
ikx

dZK(k) - DK dZz(k) dZK(k)D- + +eikxdZK(k) = 0
a ax ax ax ax)

(2.3.11).
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After differentiating and grouping together terms with the same spectral amplitudes,

2.3.11 becomes

J e k2 -iD k dZK(k)+D ý2dZz(k) =0 (2.3.12).

In order for this equation to be satisfied in general, the entire expression inside the

brackets must vanish at all values of k because of the uniqueness of the spectral

amplitudes. This expression relates the spectral amplitudes of K to the spectral

amplitudes of z by the following relation:

k 2+0i-D)-ki]dZK(k)= DKk2dZz(k) (2.3.13a)a ax
or

DKk2
dZK(k) = dZz(k) (2.3.13b).

[ak +0)- Daxki
a ax

Now the complex conjugates of the spectral amplitudes will be related by

dZ(k) = D dZ(k) (2.3.14)
k +0 +D a-kia ax

which can be used with Equation 2.3.13b and the identities in Equations 2.3.9a and b

to relate the spectrum of K to the spectrum of z:

Dk2+2 +D2k(2  2SK(k)dk= (Da2)2 Sz(k)dk (2.3.15).
( a2 a
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This relates the spectrum of K and z for every wave number k. If the spectrum of the

elevation field can be determined, as from commonly available elevation maps, the

spectral density function of unsaturated hydraulic conductivity can be estimated from

2.3.15. It is important to note that this relationship is dependent on the large-scale

vertical elevation gradient, -a; this suggests that elevation slope will be an importantax
factor in the relationship between topography and soil moisture.

A further property of the definition of spectrum is that the total integral of the

spectrum is equal to the variance of the random field,

JSz(k)dk = 2 (2.3.16)

JSK(k)dk = o2  (2.3.17).

With the use of these identities, Equation 2.3.15 can be used to relate the variance of

the elevation field to the variance of the hydraulic conductivity field. This relationship

is given by

2K = 02a2RC2o (2.3.18)

where

o (k22k2 () 2 S(k)dk (2.3.19).
(k2+ 00)2 + a2k2 (aZ2 Crz

D ax
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(0 is a dimensionless coefficient which is a function of both the physical relationship

between elevation and hydraulic conductivity (from the physics of Equation 2.3.1) and

of the variability of elevation itself (from the spectral density function of elevation). The

variance of unsaturated hydraulic conductivity it thus directly related to the variance of

elevation through the mean unsaturated hydraulic conductivity, the pore size

distribution parameter a, soil depth D, and the vertical divergence parameter P.

Physically, the variance of soil moisture will be dependent on its relation to capillary

tension (through the parameter a), the local climate (through mean unsaturated

hydraulic conductivity and vertical divergence) and geologic properties (soil depth).

The variable of prime interest is soil moisture. To obtain this, it is necessary to

relate the spectral properties of soil moisture to those of unsaturated hydraulic

conductivity. Equation 2.1.5 expresses soil moisture in terms of unsaturated

conductivity:

c K
0 = 00 + -ln(-) (2.3.20).

a K o

Soil moisture can be expressed as a stationary random field with mean and

perturbation terms just as elevation and unsaturated conductivity, 0= 6+'.

Substituting the perturbation notation for 0 and for K as a random fields in space into

Equation 2.3.20 yields

S+ '=0+ In = 0++K In ( )1+ 1 (2.3.21).
a KO) a Ko K

This can be re-arranged using law of logarithms
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S+ '= o +- In(-)+ In 1+ ] (2.3.22).
a KO

Since K' should be small compared to K, In 1+ K'1can be approximated by

In(l + - =-- (2.3.23).

Mean soil moisture can now be approximated by

6+Y' _= o + In(o ) + I] (2.3.24).

Equation 2.3.24 can be used to evaluate both the expected mean and variance of 0.

The mean of soil moisture can be derived by taking the mathematical expectation in

space of each side of Equation 2.3.24. For the preliminary analysis in which the soil

parameters 00, c, a, and Ko, and K are constants, their expectation is simply the

average values of these parameters. The expectation of the perturbation terms, 0' and

K', is zero. The expression for mean soil moisture becomes

Ex[] Ex o +- KIn( )+ a G In( (2.3.25).a Ko KRa KO

Subtracting Equation 2.3.25 from 2.3.24 results in

c K'o' = . (2.3.26).
a K

Using the spectral representations K' and Y', Equation 2.3.26 may be written as
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je ikx dZ(k) - ( )dZK(k) =0 (2.3.27).

This may be used to directly relate both the spectral density and the variance of soil

moisture to elevation:

So(k) = (C )2SK(k) (2.3.28a)
aK

S= ( C)2a2K (2.3.28b).aK

This relates the parameters of the distribution of soil moisture to the parameters of the

distribution of unsaturated hydraulic conductivity. Since the statistics of hydraulic

conductivity are already known from the statistics of elevation, elevation and soil

moisture are now related through hydraulic conductivity. For the special case in which
ozthe large-scale topographic slope, -, is zero, combining 2.3.15 and 2.3.27 gives theax,

spectral relationship between soil moisture and elevation:

So(k)dk = c2  k Sz(k)dk (2.3.29a)
(k2 +222

0 = c2C2o2 (2.3.29b).

Thus, if the spectrum of elevation is known, the spectrum of soil moisture can be

inferred using 2.3.28. In the example in the next section, techniques for evaluating the

distribution of soil moisture in one spatial dimension are presented.
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2.4 One-Dimensional Example of the Distribution of Soil Moisture

Equation 2.3.29a expresses the spectrum of soil moisture in terms of the

spectrum of elevation. This relationship can be exploited to infer the spectrum and the

autocovariance function of soil moisture if either one of the corresponding functions of

elevation is known. In order to characterize the distribution of soil moisture, the

distribution of elevation must first be studied. The large-scale distribution of soil

moisture can be described though its spectrum in the frequency domain, or by the

autocovariance function in the spatial domain. With the large amount of available

information on elevation, it is a straightforward procedure to estimate the

autocovariance function of elevation for nearly any region of interest.

The observations of soil moisture that will to be described in Chapter 4 are from

Central Massachusetts. For the purpose of illustration and to maintain consistency

with the observations, an elevation field will be chosen from the same region.

Elevation data was obtained from the USGS World Wide Web server

(http://edcwww.cr.usgs.gov/nsdi/gendem.htm). The particular data set used covers the

"Albany-East" region, a 10 by 10 region with equal arc-second (2") resolution of

elevation. This is equivalent to 92.5 m by 62.5 m resolution in distance. This large

database provides freedom in selecting an area for analysis: in general, it is desirable

to work with stationary elevation fields. Stationarity requires that the statistical

properties (mean and variance) do not vary in space. The Kendall Ranking Test

determines whether or not a particular set of data exhibits a trend: this can determine

the stationarity of the data. To select a stationary elevation field, a code was written to

implement the Kendall Ranking Test over multiple 30 km by 30 km subgrids of the

elevation dataset. Trends were tested for in the mean and the variance in both the

latitudinal (East-West) and longitudinal (North-South) directions. Based on the results

of this test, the region with boundary enclosed from 420 19' to 420 51' W and 720 38'to

720 56' N was selected as the most stationarity region tested: the normalized Kendall-
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Ranking Statistics (which will have a N(0,1) distribution) for the directional means and

variances are presented in Table 2.4.1.

With a stationary elevation field, it is straightforward to estimate the sample

autocovariance function for the region. The covariance function is a quantitative

measure of the persistence of correlation of elevation over distance. For a stationary

field, it can be calculated from the formula

nx
Fz(i) = X[z(x) - z][z(x + i) - z] (2.4.1)

i=O

for a one-dimensional field in space (Jenkins and Watts, 1979). Once the covariance

has been estimated numerically, curve-fitting techniques can be used to estimate the

approximate analytical form for the covariance. The spectrum of elevation, Sz(k), can

be obtained from the covariance function, Rz(x), chosen to describe the elevation

field. From observations of a transect in Central New England, the covariance function

of elevation can be estimated as

Rz(x) = a2e-lIlxl cos(Axx)

(2.4.2)

where c z, X, and Ax are estimated from elevation data using curve-fitting techniques.

which has an exponentially-declining correlation with a sinusoidal modulation in

space. The parameters X1, a2, and Ax are listed in Table 2.4.2. Elevation contours for

the region are shown in Figure 2.4.1; the covariance function in the latitudinal direction

is shown in Figure 2.4.2. The spectrum can then be evaluated from the Fourier

Transform of the autocovariance function:

Sz(k)= - Je-iRz(k)dx (2.4.3).
2n-
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Table 2.4.1: Normalized Kendall Ranking Statistic (r) of the Mean (z) and Variance

(Gz )of Elevation in the Latitudinal (x) and Longitudinal (y) Directions.

Statistic Normalized Tt

Zx 0.51
az x -1.02

Zy 1.03
'z y 1.02

t The Normalized Kendall Ranking Statistics indicates the presence of a trend in the

data at the 95% confidence level when it exceeds 1.996; all of these values of r test

negative for a trend in the data.
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Table 2.4.2: Parameters of the One-Dimensional Autocovariance Functions of

Observed Elevation and Simulated Soil Moisture.

Parameter
2

Ax
CY2a0

Value

(87)2

1/(5500)

1/(5000)

(0.0284)2

1/(60)

Units

m2

m-1

m-1

m-1
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Figure 2.4.1: Elevation Contours in Central New England

Elevation of Central New England

C,

a,
E
0

Ca,caT)j
a,
ca:5
C
0

-J

3.13 6.25 9.38 12.50 15.63 18.75 21.88 25.00 28.13 31.25
Latitudinal Distance--Kilometers

Elevation is in meters; contour interval is 50 meters.
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Figure 2.4.2:
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New England Elevation
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By substituting the identity

eiax - i ax
cos(ax) = (2.4.4)

2

into 2.4.3 and combining the exponentials, Equation 2.4.2 can be written

0 2e[-i(k+a)+ ,]x +[-i(k-a)+,]x ]
I [e•] a +X - - dx +

1 = 2
Sz(k) =-

21re i2 e[-i(k+a)-]x + e[-i(k-a)-]x ldx
(2.4.5).

Equation 2.4.5 can be simplified analytically to

Sz(k,j)(2.4.6)
2n )•' +(k-_a)2 X2 +(k+a) 2

This form can be used in Equation 2.3.19 to evaluate co .

For this particular spectral density of elevation, there is no closed form

expression for o2, so Equation 2.3.19 can be integrated numerically using a simple

iterative code. Using the nominal values of soil and climate conditions listed in Table

2.4.3, Equations 2.3.5a and 2.3.25 to evaluate the mean soil moisture, and Equations

2.3.19 and 2.3.29b to evaluate the variance of soil moisture, the value of ao (standard

deviation of soil moisture) is evaluated at 0.0284, or about 11% of the average value of

soil moisture of 0.27.

Since the proposed spectrum of soil moisture for this region does not have an

integratable form, the covariance function of soil moisture cannot be derived

analytically. However, a Monte Carlo simulation of soil moisture as a random field can

be carried out to approximate the covariance of soil moisture. In the simulation,
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unsaturated hydraulic conductivity is simulated for 500 points in space using the

spectrum given in Equation 2.3.15. This realization of unsaturated hydraulic

conductivity can then be converted to soil moisture using Equation 2.1.5. Properly

done, this procedure will result in a realization of soil moisture with the same spectral

properties as the theoretical soil moisture field. It is important to make certain that the

simulated spectrum of elevation has the same spectral properties as actual elevation;

the observed and estimated covariance functions are shown in Figure 2.4.1. It is also

crucial that the resulting soil moisture field have the same variance as the predictions

from Equation 2.3.27 above. For the Monte Carlo simulation, the value of a0 is

0.0286, within 1% of the value from the numerical integration, for 500 samples. The

covariance structure of soil moisture can be evaluated from the simulation as well.

The functional form of the simulated covariance of soil moisture is approximated by:

Rg(x) = ae- Xol xl cos(Aox) (2.4.7).

The resulting correlation function of soil moisture is shown in Figure 2.4.3. The

comparison of the spectral properties of soil moisture and elevation are shown in

Table 2.4.2. Soil moisture in this case has a much shorter correlation scale than

elevation: about 60 meters for soil moisture compared with 5 kilometers for elevation.

The distributions of elevation and of soil moisture from the simulation are shown

in Figures 2.4.4 and 2.4.5. Whereas elevation has a flatter, more uniform distribution,

soil moisture has a more centered, nearly Gaussian distribution. This result along with

the results of the covariance analysis suggest that in a one-dimensional system, large-

scale variability of a relatively unstructured distribution of topography will force small-

scale variability in a more structured soil moisture distribution. Thus, topography is

important as a soil moisture forcing because large-scale variability in topography is

capable of introducing variability in soil moisture at much smaller scale.
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vertical divergence:

porosity

able 2.4.3: Values of Soil and Climate Parameters used in Monte Carlo Simulations

ymbol Variable Nominal Value

: Depth of Root Zone: 2 m

o: Saturated Conductivity: 12.2 cm/hr

Dispersion Coefficient: 0.02 (cm)-1

pore tension parameter: 0.001 (cm) -1

Yearly Rainfall: 1 m/yr

o:



- Simulated

o 0 o o 0 0 o o o o0o 0 0 0 0 0 0 0 0

Dsn (meters)
Distance (meters)
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Figure 2.4.3: Autocorrelation Function of Simulated Soil Moisture
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Figure 2.4.5: Distribution of Soil M

Simulation.

0.25 0.30
Soil Moisture

oisture from One-Dimensional

0.35

-50-

300

240

S0

1i80

0 120
qjc
0

1E

0.

0
01.20 0.40

Z

I



2.5 Two-Dimensional Stochastic Analysis of the Steady-State

Relationship between Topography and Soil Moisture

In this section theory that describes the two-dimensional influence of

topography on soil moisture distribution is developed. This begins with the combined

flow and mass balance equation describing soil moisture. Again, long-term properties

of soil moisture are of interest; since this deals with the long-term expectation of soil
moisture in time, Et[O], the derivative Et[ is again zero. This allows the

at

simplification of dealing with only two spatial dimensions, x and y. Dropping the Ej]

notation and substituting the perturbation expressions for K and z, the two-dimensional

flux equation is similar to the one-dimensional case, analogous to Equation 2.3.4

D 1 ((K + K'K +) (z + z') +
D -(K +K') +ax a ax ax

- tx a •) ix (2.5.1).a 1 a(K + K'a) (z + z')
D a-a1 ( K+K'+K)a ) +P(K+K')-R 0

ay a y ay

Taking the expectation of the entire equation in space,

D -- K-x •x+D ---- K- +PK-R= 0 (2.5.2).
ax ax ax ay a ay y)

This is the deterministic form of the two-dimensional problem. As with the one-
az azdimensional case, if the spatial averages K , , , and - do not change in space,
ax ay

their derivatives in the horizontal direction are zero; this will again simplify the

deterministic solution to the same result as the one-dimensional case

- RK = - (2.5.3)0
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which again specifies the average hydraulic conductivity as a function of precipitation.

Subtracting Equation 2.5.2 from Equation 2.5.1, the differential equation describing the

random fluctuation terms is

a 1 K' -az' a a 1 aK' -az' IzD K-+K- +D- -K-+K'- +3K'=0 (2.5.4)ax a x ax ax ay a ay ay yay

where cross products of perturbation terms have been assumed ignored. As in the

one-dimensional case, this is justifiable when the cross-product terms are of small-

order compared with the other terms. The spectral representations of K' and z', which

are now two-dimensional random fields, are

z'= jei(jx+ky)dZz(j,k) and K'= fei(jx+kY)dZK(j,k) (2.5.5a, b).

These expressions may be substituted into Equation 2.5.4. Carrying out the

differentiation with respect to x and y inside the integral of j and k, this becomes

( 1D f 1_.2 )ei(jx+ky)dZK (j, k)-R(-j2 )ei(jx+ky)dZz(j,k)+ (ij)ei(jx+ky)dZK(j,k) a +
a ax

DJ I- (-k 2 )ei(jx+ky)dZK(j,k) -RK(-k 2 )ei(ix+ky)dZz(j,k)+(ik)ei(jx+ky)dZK(j,k)- +
.aay)

f Jei(jx+ky)dzK(j,k) = 0

(2.5.6).

Grouping together similar spectral amplitudes, this becomes
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+ik
ax

+ij + )ei(jx+kY)dZK(j,k)+K(j +k2)ei(jx+k)dZz(j,k) = 0
y D

(2.5.7).

As in the one-dimensional case with Equation 2.3.12, Equation 2.5.7 relates the

complex amplitudes of K to those of z. Because of the uniqueness of the spectral

amplitudes, the terms inside the parentheses will vanish at all points leaving

D(J 2 + k2 +D(a D
a D

- i a)ei(jx+ky)dZK(j,k) =

Dy -DK(j 2 + k2 )ei( jx+ky)dZz (j, k)

The complex conjugates of dZK(j,k) and

D
+ilcz

ax
+ ii )ei(jx+ky)dZK (j,l

ay

dZz(j,k) are then related by

k) = -DK(j 2 + k2 )e i (j x+ ky )d Z z(j,k)

The definition of the spectrum in two dimensions is analogous to that for one

dimension:

E[dZ z (j,k)dZ (j,k]) = Sz (j,k)djdk

E[dZK (j, k)dZK (j, k)] = SK(j,k)djdk

(2.5.9a)

(2.5.9b).

Multiplying the right- and left-hand sides of Equations 2.5.8a and 2.5.8b, and using the

identities in Equations 2.5.9a and 2.5.9b, this yields

SK(j,k)djdk = a2R2[
(j2 +k 2 +a")2

D
a(jxax

) Sz(j,k)djdk
+k k) 2

ay
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(2.5.8b).
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This expression relates the spectral density function of K to the spectral density

function of z in two dimensions. As in the one-dimensional case, the variance of a two-

dimensional random variable is the total integral of the spectral density function.

Using this definition of variance in terms of the spectral density function, Equation

2.5.10 can be used to relate the variance of K to the variance of z

S2= ISK(j,k)djdk=fI f22
-00-00 -00-00

Sz(jk)djdk

or as in equation 2.3.18

a2K 2= f2a 2

(2.5.11)

(2.5.12)

where

0 002R2 (j2 +k2 2 Sz(j,k)d
72 2R- - l~djdk

-0-0 (j2 + k2 +a0) 2 +(j a +k az)2 2
D ax ayj

(2.5.13)

which can be evaluated either analytically or numerically, depending on the form of

the spectral density function. To get the variance of soil moisture, variance of

unsaturated hydraulic conductivity must be used. The relation between the variance of

soil moisture and the variance of unsaturated hydraulic conductivity derived in Section

3 made no general use of spatial dimension: thus, the same relation will be true for

two dimensions as was true for one dimension. Variance of soil moisture in two
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dimensions is thus related to variance of elevation in two dimensions by the same

relation given in Equation 2.3.29b:

a = C2o2a 2 (2.5.14)

while the spectrum of soil moisture is related to the spectrum of elevation by

Se(jk)djdk = c )22 -(•x2 Sz(j,k)djdk (2.5.15).
(2+2 2+aZ+kaz)2

For the special case in which the spatial average of topographic slope in both

directions is zero, this reduces to:

=2 (j2 + k2)2SS(j,k)djdk = c2 [ +k2 JSz(j,k)djdk (2.5.16).
(j2 +k 2 +(X 0)2

D-

Now the statistics of soil moisture in two dimensions have been related to the statistics

of elevation in two dimensions. In the next section, an example of the two-dimensional

analysis of soil moisture distribution is presented.

2.6 Two-Dimensional Example of the Distribution of Soil Moisture

As in Section 2.4, prediction of the distribution of soil moisture begins with an

analysis of elevation. The covariance function of elevation is of specific interest: a two-

dimensional extension of the covariance function of z used in Section 4 results in

Rz(x,y) = -2 exp(-Xxlxl- ,yly[)cos(ax)cos(by) (2.6.1)

-55-



This form merely allows the exponential and sinusoidal properties of the one-

dimensional covariance function to extend into a second direction. For isotropic

distributions, It is reasonable to expect that Xx = Xy and a = b, although this condition is

not necessary. The spectral density function of z can then be obtained by taking the

inverse Fourier Transform:

1 (,x00Y)
Sz(j,k) = e-i(jx+ky)Rz(x,y)dxdy (2.6.2)

which can be evaluated in closed form in the same manner as for the one-dimensional

case. This results in

Szz(k,j) = + XX Y (2.6.3).
S4x 2 x2 + (k - a , 2 +(k+a)2 2+(j-b)2 Y2 +(j+b)2)

This can be substituted into Equation 2.5.13 to evaluate (o2 . It can also be combined

with Equation 2.5.14 to evaluate the spectrum and the variance of soil moisture. The

spectrum of soil moisture in two dimensions is then given by

S C20z2 2 k4 +j4 x ,x 7 Xy y
e(kj) = 2  k+ 4 + 2 Xx2+(k-a) 2  2 + (k +a)2 X2+(j-b)2 2+(j+b2

(2.6.4).

For this example the same region in New England as in Section 2.4 is used. The

values of ,x, Xy, a, and b given by the best-fit curves to observed elevation covariance

are listed in Table 2.6.1. Integrating Equation 2.5.14 numerically using these values for

elevation covariance and the same values of soil and climate as listed in Table 2.4.3,
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the standard deviation of soil moisture is evaluated as 0.101, or about 37% of the

value of the mean. This value of variance is approximately 3.5 times as large as in the

one-dimensional case.

As with the one-dimensional case, there is no integratable form of the spectrum

of unsaturated hydraulic conductivity with which evaluate the covariance function of

unsaturated hydraulic conductivity. Again, we turn to Monte Carlo techniques to infer

information about the covariance structure of unsaturated hydraulic conductivity and

soil moisture. A Monte Carlo simulation of 90,000 points in space is carried out,

creating a realization of unsaturated hydraulic conductivity in space. From this field of

unsaturated hydraulic conductivity, the corresponding field of soil moisture can be

determined at every point using Equation 2.1.5. The two-dimensional covariance

function of soil moisture can then be estimated from the simulation. The simulated

covariance of elevation is shown in Figure 2.6.2, which is comparable to the observed

covariance of elevation shown in Figure 2.6.1. In the Monte Carlo simulation, the

standard deviation is evaluated at 0.0982, very close to that evaluated numerically.

The two-dimensional covariance structure of soil moisture can be approximated

by

Re(x) = a22e-'lxl-21y (2.6.5),

where the parameters X1 and A2 are given in Table 2.6.1. The simulated

autocorrelation functions are shown in Figure 2.6.3 for the x-direction (latitude, y=O)

and in Figure 2.6.4 for the y-direction (longitude, x=0); the two-dimensional

autocorrelation function is shown in Figure 2.6.5.

The distribution of soil moisture resulting from the Monte Carlo simulation is

shown in Figure 2.6.6. Compared with the same distribution of elevation as in Figure

2.4.4. Although much more centered than the elevation distribution, the two-
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Parameter
2

XXi

Xx2

a

b

a0

xxi

xxi

A0

Be

Value

(87.3) m2

(1/5500) m-1

(1/5500) m-1

(1/5000) m-1

(0)
(0.0248)2

(1/1250) m-1

(1/2300)m -1

(1/350) m-1

(0)
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Table 2.6.1: Parameters of the Two-Dimensional Autocovariance Functions of

Observed Elevation and Simulated Soil Moisture



Figure 2.6.1: Observed Two-Dimensional Autocorrelation Function for

Selected Region in New England.
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Figure 2.6.2: Simulated Two-Dimensional Autocorrelation Function for
Selected Region in New England.
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Figure 2.6.3: Latitudinal Autocorrelation of Two-Dimensional Simulation of
Soil Moisture
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Figure 2.6.4: Longitudinal Autocorrelation of Two-Dimensional Simulation
of Soil Moisture
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Figure 2.6.5: Autocorrelation Function of Two-Dimensional Simulated Soil
Moisture Field in Two Dimensions.
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dimensional distribution of soil moisture is more spread out than the one-dimensional

case. Also, rather than a Normal distribution, it appears that the soil moisture

distribution is more nearly Log-normal. Still, the effect of topography is clear: a nearly

uniform distribution of elevation is capable of forcing a more structured distribution in

soil moisture. In two dimensions, the theory predicts that topography will play an

important role in shaping the distribution of soil moisture, in determining its variance,

its correlation in space, and the shape of its distribution.

2.7 Comparison of One- and Two-dimensional results

It is important to study the differences that arise between the one- and the two-

dimensional considerations of soil moisture flow. The statistics of mean and variance

will be examined. The mean values for the two variables under consideration will

determine if the overall behavior of the two systems are the same. The variance of the

system will indicate whether the number of dimensions increases or decreases the

variability of soil moisture to vary over the domain of the system. Information about the

variance can in turn give insight to how the two-dimensional considerations allow for

differences in the flow of soil moisture water.

The comparison of the statistics of soil moisture for the one- and the two-

dimensional flow is straightforward. In the numerical evaluation of the one- and two-

dimensions considerations, the means of K and e are not affected by differences in

the number of dimensions considered. Expressions for the mean hydraulic

conductivity for the one-dimensional (Equation 2.3.5a) and the two-dimensional

(Equation 2.5.3) problems reveal that the analytical expressions for the mean of

unsaturated hydraulic conductivity are the same for the two cases. Since the

expression relating the mean soil moisture to mean unsaturated hydraulic conductivity

developed in Equation 2.3.39 has no dependence on dimension, it is expected that
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mean soil moisture should also be the same for the one-and two-dimensional cases.

Both of these results are reflected in the numerical experiments and suggest that the

fundamental concepts used to formulate the two problems are similar.

Variance (and therefore the coefficient of variation), on the other hand, is

substantially different for the two cases. The expression for the variance of K, Equation

2.3.20, shows that the variance of K (and therefore for 0 )will be dependent on the

functional form used to characterize the covariance function of elevation. This choice

is somewhat arbitrary, but should be chosen by some objective criterion. For the

purposes of illustration, a particular covariance function of elevation will be used to

contrast the two cases. For the simple sinusoidally-modulated negative-exponential

covariance function used to describe elevation (Equations 2.4.2 and 2.6.1), the

numerical routines evaluate the variance in the two-dimensional case to be 3.5 times

larger than the one-dimensional case.

The higher variance in the 2-D model has a physical basis. The flow of water

due to elevation gradients can be expected to have a wider distribution in two spatial

dimensions due to differing surface area for each elevation. The one-dimensional

case will force soil moisture to be distributed in a thin slab with a single point

describing each elevation and equal weighting for each value of 0 used to determine

a). In contrast, the two-dimensional case will allow soil moisture flow to be spread

over a different range of points at each elevation, allowing for differential weighting of

each value of 0 used to calculate ae. The one-dimensional case gives equal

weighting to soil moisture values at each elevation in determining the variance. In

contrast, the two-dimensional case has differential weighting at each elevation,

according to the geometric structure of elevation. This differential weighting in the two-

dimensional case will then result in a higher variance since the mean for each case is

the same. The two-dimensional case will then have a broader distribution of soil

moisture, resulting in greater variance than with the one-dimensional case. From the
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perspective of variance, the two-dimensional consideration probably better describes

the actual flux of water in the natural environment.

Also of consideration is the correlation structure of soil moisture in space

Whereas the one-dimensional case has a relatively weak correlation, the two-

dimensional case has a strong correlation along the principal directions of topographic

forcings. This suggests that in two dimensions, soil moisture is forced into a more

regular pattern than in one dimension. Explanation of this behavior requires a furthei

look at the spectrum of soil moisture. Going back to Equations 2.3.29 and 2.5.16, the

one- and two-dimensional spectra of soil moisture are:

iX2 +(k-a)2 2 + (k+a)2

(One-Dimensional)

so X

SX + +X2 (2.7.2)
x2 + (k-a)2  x2++(k+a) 2  y 2 +(jb2 b y2 +(j+b)2

(Two-Dimensional).

Each of these expressions is composed of two products: the spectrum of elevation, Sz

multiplied by the term describing spectral relationship of soil moisture to elevation

here referred to as _, where
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k4
E1 = 2 (2.7.3)

k2 + ap

k4 +j4
12 =  2 (2.7.4)

(k2 +2 +

In one dimension, -1 is zero at k=O and approaches the limit of 1 as k grows large; Sz,

on the other hand, has a value close to 1 at k=0 and approaches a value of 0 as k

grows large. These two opposing terms act to dampen the spectrum of soil moisture at

all values of k, resulting in a flat spectrum and a soil moisture field with low correlation

in space.

In two dimensions, the behavior of the spectrum of elevation is the same. Sz is

large at small values of k and j and asymptotically approaches zero as either k or j

grows large; when both k and j are large, the approach to zero is quickly increased.

12, on the other hand, will be significantly different from zero when either k or j is

nonzero. Thus, when either k or j is zero, the product of Sz Y2 will be of significant

value: the corresponding behavior of Sz and L1 in one dimensional case does not

occur along the k (or x) and j (or y) axes in the two-dimensional case. With a

significant value of the spectrum in these directions, it is expected that there will be a

significant correlation in space, which is the result reflected in Figure 2.6.5. The

spectral relationship of soil moisture to elevation thus suggests that soil moisture will

be correlated in space principally in the axes of anisotropy.

2.8 Conclusions

In this chapter, a general theory relating soil moisture to topography was

developed. Both the one- and the two-dimensional case show that topography will

create a significant component of variance in soil moisture fields, although topography
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should not affect the mean value of soil moisture. Of the two cases, the two-

dimensional case gives better consideration to true soil moisture behavior: the

physical distribution of topography in two dimensions should account for larger

variability in soil moisture. The two-dimensional case also predicts stronger

correlation in space of soil moisture: this result is directly explainable in terms of the

derived spectral relationship between soil moisture and topography.

The preceding theoretical study has shown that topography can be expected to

have a strong influence on the distribution of soil moisture. Also, proper quantification

of soil properties is necessary to obtain an idea of how significant soil moisture

variability can be. In the next Chapter, soil and climate properties will be studied to

ascertain their effect on soil moisture, both from the perspective of their influence on

the relationship of soil moisture to topography and from the basis that they can

introduce soil moisture variability on their own.
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CHAPTER 3

Effect of Soil Properties and Climate on Soil Moisture Variability

3.0 Introduction

This chapter deals with the effect of soil properties and of climatic forcings on

soil moisture. Each of these types of forcings can affect soil moisture variability in two

ways. First, the magnitude of soil and climate forcings can strongly dampen or

sharpen the significance of topography as a major forcing of soil moisture variability.

The importance of soil and climate from this perspective is presented as a sensitivity

analysis in Sections 3.1 and 3.2. Second, variability in soil properties may itself

introduce significant variability into soil moisture. A general stochastic theory relating

soil moisture and soil and climate properties is developed in Section 3.3 and

discussed in Section 3.4. The overall summary and conclusions are made in Section

3.5.

3.1 Influence of Soil Properties on the Relationship of Soil Moisture to

Topography

As seen in Equations 2.2.6 and 2.2.19, the influence of each soil property and

parameter must be accounted for in order to use properly the theory developed in this

study. Hence, the proposed relationship between soil moisture and topography will

depend strongly on the properties of the soil. Depending on the value of certain soil

properties, the effect of topography on soil moisture may be either enhanced or

dampened. It is therefore necessary to determine quantitatively the sensitivity of the

soil moisture-topography relationship to variations in soil properties. To accomplish

this, a basic soil-climate-topography system is chosen for study. The parameters and

properties that describe this system are listed in Table 3.1.1. With this nominal set of

parameters, the mean and the variance of soil moisture can be evaluated numerically
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Table 3.1.1: Nominal Values of Soil, Climate, and Elevation parameters used in the

Sensitivity Analysis.

Symbol

D:

Ko:

a:

C:

R-

1a:
00:

,x:

xy:
Ax:

Ay:

Variable

Depth of Root Zone:

Saturated Conductivity:

Dispersion Coefficient:

pore tension parameter:

Yearly Rainfall:

vertical divergence:

porosity

variance of elevation

x-correlation scale of covariance
y-correlation scale of covariance

x-modulation scale of covariance

y-modulation scale of covariance

Autocovariance Function: Rzz(x,y) = a$ exp(-lxlx - kylyl)cos(Axx)cos(Ayy)

* from Mantoglou and Gelhar (1987b)

t from Bras(1990)
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Nominal Value

1.5 m

12.2 cm/hrt

0.02 (cm)-1*

0.001 (cm) -1*

1 m/yr

1

0.4t

121.0 m2

1.0/(1200) m-1

1.0/(1200) m-1

1.0/(240) m- 1

1.0/(240) m- 1
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using Equations 2.5.3 and 2.5.14, respectively. The two-dimensional case of

topography forcing soil moisture is considered, since it gives a more realistic

consideration to actual conditions. Because these statistics are based on the

formulation developed in Chapter 2, topography will be the main forcing of soil

moisture.

For the nominal case listed in Table 3.1.1, the mean, variance, and coefficient of

variation of soil moisture are presented in Table 3.1.2. The system under

consideration is typical of a temperate climate with an isotropic elevation field of gently

rolling hills. For this system, the topography-induced soil moisture variability,

measured by its standard deviation, is about 7% of the mean, a small but significant

value. It will be of interest to determine at what values of soil properties the variability

induced by soil moisture will become more or less significant. For this purpose, a

computer program was developed to evaluate the mean, variance, and coefficient of

variation of soil moisture using the parameters listed in Table 3.1.1, varying the value

of one parameter at a time from the nominal case. The on the statistics of soil moisture

were carefully recorded for all the perturbed values of each soil parameter. This

information can be used to evaluate the sensitivity of 0 to each parameter and can act

as an aid in future studies about soil moisture variability. More practically, this

information will provide a guide to the limits of certainty required in each parameter to

use the new soil moisture theory with accuracy.

By studying variability in the mean, variance, and coefficient of variation, it can

be determined in which statistics each soil parameter will be important: in this

topography-driven system, this information will show how each soil or climate

parameter affects the relationship between soil moisture and topography. The effect

on the mean will provide insights as to how strongly the parameters influence the

overall behavior of the elevation-soil moisture system. Influences on the variance of 0,

ae, will be useful in determining how strongly topography forces variations in soil
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Table 3.1.2: Statistics of Unsaturated Hydraulic Conductivity and Soil Moisture

For the Nominal Case Considered

Statistic K (m/hr) 0

I9 0.011 0.28

c 0.0048 0.02

0/g (%) 42 7.4
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moisture for given values of soil parameters. Finally, values of the coefficient of

variation can be used to determine at what values of each parameter the significance

of soil moisture variability due to topographic forcing will be damped or exaggerated.

Study of these three statistics will therefore be useful in assessing the theoretical

importance of topographic forcing of soil moisture in a given region and in determining

which parameters need to be most strongly quantified. Some parameters affect only

the mean or variance; others change both statistics. In all cases the coefficient of

variation (ag /Ike) is affected by changing the parameters from the nominal values of

the experiments. It is useful to elaborate the physical reasons for these changes. In

the following section, the role and significance of each parameter is discussed.

3.2 Sensitivity of the soil-topography relationship to soil and climate

properties

* pore size distribution parameter

The soil parameter a relates the unsaturated hydraulic conductivity, K, to M

and the saturated conductivity, Ko, through the relationship in Equation 2.1.2. Since

there is an exponential relationship between K and N, the magnitude of a will strongly

affect K; soil moisture, on the other hand, is affected only through the calculations of

mean soil moisture and of y0. As can be seen in Equation 2.3.5, mean soil moisture is
1K Klinearly related to -In( ), where In( ) will be negative. For large values of a,
a Ko Ko

sensitivity of mean soil moisture to mean unsaturated hydraulic conductivity will be

dampened, resulting in larger (more positive) 6 ; for small values of a, this effect will
be reversed and a smaller 6 is expected. The value of y2 is inversely proportional to

the value of a, and a2 is directly proportional to y2. Small values of a should then

result in higher variance of soil moisture and large values of a in smaller values of soil
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moisture variance. This agrees with the result in Figures 3.2.1a and b, which

demonstrate that mean soil moisture increases with a and that the variance of soil

moisture decreases with a. Furthermore, as a increases, the coefficient of variation

tends to decrease in magnitude, suggesting that larger values of a dampen the

significance of soil moisture variability, as shown in Figure 3.2.1c. Thus, a is an

important factor in determining how strongly topography will act as a forcing of soil

moisture variability.

* vertical divergence parameter

0 is proportional to the amount of water lost from the unsaturated zone due to

vertical divergence, which includes evaporation and percolation. Since PK describes

the vertical flux of water in the unsaturated zone Equation 2.1.10, P acts as the

hydraulic gradient imposed by evaporation and percolation. For large values of 3,

water is taken from the unsaturated zone relatively rapidly and in large amounts; for

small 0, less water is lost and at a slower rate. At small values, 0 is then likely to result

in a large volume of water retained in the unsaturated zone, with a resulting increased

unsaturated conductivity and soil moisture. The larger hydraulic conductivity will

increase the natural flow of water, resulting in a higher variance of 0. A large value of

p indicates that very little water is retained in the unsaturated zone, resulting in a lower

average 0 as well as reduced natural unsaturated flow and variability of 0. These

results are reflected in Figures 3.2.2 a and b, which shows that the mean and variance

of 0 grow small as 1 grows large. The coefficient of variation of 0 also decreases as

0 grows large, suggesting that the significance of soil moisture variability will become

smaller as shown in Figure 3.2.2c. It is then to be expected that in areas of high

evaporation, percolation recharge, or other form of vertical divergence, the effect of

variability of elevation on variability of soil moisture will be reduced, whereas in areas
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Figure 3.2. la: Sensitivity of Mean of Soil
Moisture to a
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Figure 3.2. Ib: Sensitivity of Standard Deviation
of Soil Moisture to a
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Figure 3.2. Ic: Sensitivity of coefficient of
variation of soil moisture to a
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Figure 3.2.2a: Sensitivity of the Mean of
Soil Moisture to p
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with lower vertical divergence, the influence of topography on soil moisture variability

will be increased.

* pore tension parameter

The soil parameter c determines the sensitivity of 0 to capillary tension; in effect, it is
aethe derivative of soil moisture with respect to capillary tension, V-. The pore tension

parameter is therefore a direct sensitivity of 0 to w: soils with large values of c will be

more sensitive to changes in i than soils with smaller values of c. The parameter c

could also be thought of as a measure of the amount of water drawn out of a soil

subjected to a given capillary tension i. Soils with small values of c can be expected

to have a higher average soil moisture, due to more water retained, and a reduced

variability of topography-driven soil moisture, due to the relationship of ae to az in

Equation 2.5.14. On the other hand, soil with large values of c can be expected to

have lower average 0 due to increased drainage for a given value of yand higher

variance of 0 due to increased sensitivity to variability of z. Higher values of c also

result in a higher coefficient of variation due to the coupled effect of reduced mean and

increased variance. These properties of c are reflected in the numerical experiments.

The mean soil moisture decreases linearly with c, as shown in Figure 3.2.3a, while the

variance of soil moisture increases linearly with c, as shown in Figure 3.2.3b. The

coefficient of variation increases in a sharply nonlinear fashion with c, as shown in

Figure 3.2.3c. Under certain conditions, the pore tension parameter is a very important

soil property which can greatly amplify or dampen the significance of topographic soil

moisture variability.

* Soil Depth

D is the depth of the unsaturated zone under consideration. Soil depth has no

effect on mean soil moisture, which can be seen in Equation 2.3.5a. However, both
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Figure 3.2.3a: Sensitivity of the Mean of
Soil Moisture to c
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the variance and the coefficient of variation of soil moisture increase linearly with
depth of the root zone. Mathematically, y2 is directly proportional to depth, so that

increasing depth increases the strength of the relationship between the variance soil

moisture and topography. Physically, D is a factor in the divergence and the

perturbation Equations, 2.3.7 and 2.5.4. The effect of increasing soil moisture

variability with increasing depth can then be explained because large depth increases

divergence of flow, resulting in more variability in the distribution of soil water. Depth

also increases the coefficient of variation of soil moisture, so increased depth will act to

increase the role of topography in bringing about variation in soil moisture. The effects

of soil depth on the variance and coefficient of variation of soil moisture are shown in

Figures 3.2.4a and b.

* Saturated Hydraulic Conductivity

The saturated hydraulic conductivity, K0, affects only the mean of soil moisture. Since

Ko does not affect either the mean Equation 2.3.5a or the variance Equation 2.3.7 of

unsaturated conductivity, it has no effect on the divergence and therefore no effect on

the variance of soil moisture in the unsaturated zone. Ko affects only the mean of soil

moisture, 0, through the saturation factor In(-K) in Equation 2.3.36. Here, the ratio of
Ko

unsaturated to saturated hydraulic conductivity is a measure of the saturation of a soil,

which in turn determines soil moisture. Soil with a high saturated hydraulic

conductivity will have smaller (more negative) values of In( ) and of 0 for a given
Ko

value of K. However, this physical relationship has no bearing on the variance of soil

moisture, as seen in Equation 2.3.27 and shown from the numerical experiments in

Figure 3.2.5a. Average soil moisture show an inverse linear proportionality to Ko. On

the other hand, as Ko increases, the coefficient of variation of soil moisture will also

increase since average soil moisture will be smaller while the variance of soil moisture
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Figure 3.2.4a: Sensitivity of the Standard Deviation
of Soil Moisture to D
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Figure 3.2.5a: Sensitivity of the Mean of
Soil Moisture to K0
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remains constant. This effect is nonlinear as shown in Figure 3.2.5b. In general, soils
with higher Ko will have a slightly more significant topography-driven soil moisture

variability.

* Rainfall Rate

The amount of rainfall infiltrating the soil directly influences the average soil moisture,

as well as the average unsaturated hydraulic conductivity. With more available water,

the average soil moisture will be higher; with less available water, soil moisture will be

lower. This effect is nonlinear, as depicted in Figure 3.2.6a. Rainfall rate does not

affect the variability of soil moisture, since it has no effect on the horizontal flow of

water. This is reflected in equation (2.3.29b), in which the variance of soil moisture

has no dependence on rainfall rate or on average unsaturated hydraulic conductivity.

Since more rainfall increases only the mean soil moisture, it will decrease the

coefficient of variation and the overall significance of soil moisture variability, which is

reflected in Figure 3.2.6b.

* Porosity

The porosity of a soil affects only the average soil moisture, which increases with

increasing porosity. This can be expected since soils with higher porosity will be

capable of storing greater amounts of soil water than soils with lower porosity; this is a

one-to-one linear effect as depicted in Figure 3.2.7a. Increased porosity steadily

decreases the coefficient of variation of soil moisture because as average soil

moisture decreases, the same value of variance of soil moisture will become less

significant. Porosity thus decreases the coefficient of soil moisture in a non-linear

manner as shown in Figure 3.2.7b, and will be an important factor in the degree to

which topography influences soil moisture variability.
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Figure 3.2.6a: Sensitivity of the Mean of Soil
Moisture to R
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Figure 3.2.7a: Sensitivity of the Mean of Soil
Moisture to Porosity
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3.3 Stochastic Analysis of the Relationship Between Soil Moisture and

Soil and Climate

The methods needed to relate the spectra of two variables have been

demonstrated in the Section 2.3 using hydraulic conductivity (soil moisture) and

elevation as examples. In reality, many factors will affect the nature of soil moisture

variability: non-uniformity in all of the soil properties and parameters used to relate soil

moisture to elevation will potentially influence variance in soil moisture.

Consequently, it will be useful to know how the variability in these parameters will

affect the variability of soil moisture. The same procedure used to relate the spectrum

of soil moisture to elevation can be used to relate the spectrum of soil moisture to the

spectrum of any soil property of interest. The spectrum of soil moisture is related to the

spectrum of each individual parameter by the following equations:

So(k) = So, (k) (3.3.1)
2

Se(k) = -SCKo (k) (3.3.2)
a

So(k) = [In K )2 Sc(k) (3.3.3)

Se(k) = c2 In 2 S(k) (3.3.4)

Se(k) = SK (k) (3.3.5)

In addition, the spectral density of hydraulic conductivity, which can be directly related

to soil moisture by Equation 3.3.5 above, is related to the spectral density of effective

precipitation by
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/)2
a2 1

SK (k) 21 SR(k) (3.3.6)

oror

Se(k) = SR(k) (3.3.7)

where Se(k) is the spectrum of precipitation in space only. Equations 3.3.6 and 3.3.7
8zare for the special case in which the overall elevation gradient, -, is zero. Theax

variance of soil moisture will depend on the spectrum of each variable; however, for

the equations in which the variable of integration k does not appear explicitly, the

formal definition of the spectrum may be used to calculate the variance

SS,(k)dk = a (3.3.8)

for random variable x. Making use of this identity, Equations 3.3.1, 3.3.2, 3.3.3, 3.3.4

and 3.3.5 above can easily be simplified to

2a = 2o (3.3.9)
2

02a = In Ko (3.3.10)

C2
LtKo -.

a = - 2K (3.3.13)
aK)2
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where a2 is the variance of 1 and 02Ko is the variance of In(Ko). It is further
0c

important to note that these results have no dependence on the number of dimensions

considered; they will be the same for the one- and the two-dimensional cases. For

precipitation, the variance will have to be evaluated by integrating the factor

times the spectrum with respect to k; this will result in a form relating the

D

covariance of soil moisture and precipitation similar to that of the parameter y7 which

described the correlation between the elevation and the hydraulic conductivity fields in

one-dimension. Defining 002 as

)2

1 SR(k)o2 i aj SR(k)dk (3.3.14)
-0 k2 + R

the variance of soil moisture may be related to the variance of precipitation by

a =(c ~ 2a (3.3.15)

A more realistic consideration will be to account for the effect of multiple

variables. In particular, both elevation and rainfall are of considerable interest;

extensive information should be available for both quantities. Using a stochastic

analysis analogous to that in Section 2.3, the following relationship between

unsaturated hydraulic conductivity, elevation, and rainfall can be derived
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/2

Sz (k) k2Sz(k)+ -SR(k) (3.3.16)
D Dk 2 +

k D

SK(k)= a-2R 2

where SRZ(k) is the cross-spectrum of precipitation and elevation. SRZ(k) should bE

expected to be very nearly zero unless some known mechanism, such as orographic

lifting, were present to link precipitation to topography. The spatial variability o

precipitation described by SR(k) could be variability in precipitation infiltrating the

ground surface over large areas where yearly precipitation is nearly uniform. SR(k

could then be a function of land cover and vegetation, which results in differentia

interception loss and therefore differential effective rainfall.

Ideally, soil properties would also be incorporated into this multi-variate spectra

analysis. If enough reliable information on the large-scale saturated hydraulic

conductivity and porosity fields of a region were available, both of these variable,

could be incorporated into the analysis. By using the relationship between thE

spectral amplitudes of K, z, and R, and substituting into the perturbation equatior

relating , lIn(Ko), and 00, the following equation relating the effect of all four variable!

can be derived:

S0(k) = C12Sln(Ko)(k) + C 2
2 S0 o (k) + C3

2Sz(k) + C4
2 SR(k) + CIC 2 SIn(Ko)eo (k)

(3.3.18)
+CIC 3SIn(K )z(k) + CIC4Sln(Ko)R(k) + C2C3 Sz (k) + C2 C4 S6,R(k) + C3 C4SRz(k)

-89-



c 1
C = 1 In( K )

C2 =1
k2

C3 =C k2c + 0a)

D(k2+ Pa)I

where Sxy(k) is the cross-spectrum of variables x and y. Naturally, applications using

Equation 3.3.18 will require a large amount of data on all four variables, z, R, Ko, and

o0. In practice, all of this data may not be available, so Equation 3.3.18 may provide

an upper bound on the characterization of soil moisture than cannot readily be put into

practice. For the variables (such as Ko and 00) which are not well characterized at a

large scale, the terms involving those variables may be dropped in Equation 3.3.18,

simplifying the final result. On the other hand, this theory can be extended to any

number of variables desired, although the limit on data availability may create a

practical limit of not more than three or four variables.

3.4 Examples of Soil as a Forcing of Soil Moisture Variability

Studying each parameter individually will give insight to how variability in that

parameter alone will contribute to variability in soil moisture. Gelhar and Mantoglou

(1987b) provide estimates of the variability of soil parameters for two soil types, as

listed in Table 3.4.1. This information can be combined with the equations relating soil

moisture variability to soil property variability described in Section 3.3 above. The

values of soil moisture variability resulting from the relative effects of each soil

parameter are listed for both soil types in Table 3.4.2. For example, using the values
2

for the Panoche clay loam listed in Table 3.1.1, in Equation 3.3.10 above, .- will beý_2
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Stochastic Soil Properties from Mantoglou and Gelhar (1987b).

PanochA CIl~v I r~m
Maddock 

Sandy 
Loam

a (cm- 1)

c(cm-1)

K (cm/s)

Ko(cm/s)*

n*

a2 (cm2 )*
a

a2 (cm-2)

21KaflnKO

0.0294

0.0052

3.2e-6

6.8e-6

0.4
100

8.95e-8

2.48

* estimated
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0.147

0.00245

3.2e-6

2.7e-4

0.35
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N/A

7.45
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Table 3.4.2: Variability in Soil Moisture Resulting from Variability in Soil Properties.

ae resulting from variability in

z a c Ko

Panoche 0.087 0.04 0.008 0.28

Maddock 0.012 0.066 N/A 0.045
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evaluated at 0.032; variance in In(Ko) is of order 2.5. It may be expected that

variability in saturated hydraulic conductivity will make an important contribution

(ae=0.27) to variance in soil moisture. For the nominal parameters in Table 3.1.1, the

average soil moisture is evaluated at 0.27, so the variability introduced by saturated

hydraulic conductivity will be nearly the same size as the average value of soil

moisture. In contrast, in Equation 3.3.12, the quantity c2 InK will be about

11.5x10 -5 cm- 2 ; variability in - is estimated to be approximately 100 cm2, so that
a

variability in the dispersion coefficient a will make a contribution to Ce of about 0.04.

For the pore tension parameter, variance is estimated at about 9x10 -8 cm-1; the

coefficient InK )J is approximately 700 cm2, creating a variance contribution to

aeof 0.008. For the elevation covariance parameters in Table 3.2.1, the topographic

forcing alone would result in ae=0.09. This value is comparable in size to the

variance created by a but less than the variance resulting from ln(Ko). Information on

the variability of porosity is not available, but the natural variations in porosity will

contribute directly to soil moisture variability, as shown in Equation 3.3.9. Also, the

variability in infiltration described in the previous section would be difficult to quantify,

so it is hard to characterize such effects in a real system. However, the available data

shows that variability in soil properties will contribute very significantly to the variability

in soil moisture at the large scale--this contribution will be larger than the contribution

of topographic forcing for the clay loam.

The soil moisture variance resulting from soil properties of the Maddock sandy

can also be calculated. In this case, average soil moisture is evaluated at 0.28. The

contribution to ae of saturated hydraulic conductivity will be greatly reduced from the

previous case: for the Maddock loam, the variability introduced to ae will be about

0.05. The contribution of the pore size distribution parameter will increase; the
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1addition to a• by a- will be about 0.07. The variability introduced by both of thesea

soil properties will be larger than that brought about by topography. For the nominal

case elevation field, the contribution to ae given the Maddock loam soil parameters

will be 0.02. Thus, for the case of the sandy loam, overall soil moisture variability will

be smaller than for a clay loam, although the ratio of soil to topographic variance will

be nearly twice as large for the Maddock loam as for the Panoche loam. From the

results of these two examples, variability in soil properties is expected to be a

significant source of variability along with the variability due to topography.

3.5 Conclusions

Soil and climate properties will be important in the large scale distribution of

soil moisture in two ways. First, the value of soil and climate parameters will influence

the significance of topographic forcing of soil moisture variability. In this situation, the

soil and climate properties do add variability to soil moisture only in the sense that they

influence the effect of topography. Among the parameters that are most important in

this sense are a, 3, c, and 0 o. Over certain ranges, all four of these parameters can

greatly affect the importance of topographic forcing as evidenced through the value of

the coefficient of variation of soil moisture. The properties D, Ko, R are less significant:

over a wide range of values, these three soil and climate parameters tend to have a

smaller effect on the significance of topography-induced soil moisture variability.

Second, variability in soil and climate variables can bring about significant

variability in the distribution of soil moisture. Theoretically, variability in all of the soil

and climate parameters will bring about soil moisture variability: verifying the

significance of each parameters is more difficult. Using data available for two soil

types, it was determined that typical variability in a and Ko will definitely bring about

strong variability in soil moisture, whereas soil moisture variability arising from
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variability in c was relatively insignificant for one soil type studied. Variability in the

other soil and climate parameters was not quantified in this study. The importance of a

both in affecting the influence on soil moisture due to topographic variability and in

forcing soil moisture variability itself suggest that it is a very important parameter in the

large-scale distribution of soil moisture. With increased study of the variability of soil

properties, the relative importance of each soil parameter could be ascertained.
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CHAPTER 4

Results of Field Experimentation

4.0 Introduction

This chapter examines the results of a field-scale soil moisture experiment

designed to test the theory developed in Chapter 2: this will be the key to making

practical use of the theory developed in Chapters 2 and 3. In Section 4.1, the

experimental location is described. Section 4.2 covers the experimental procedures

used to measure soil moisture and to determine the values of the relevant soil

properties. The observed relationship of soil moisture to topography is presented and

discussed in Section 4.3; the relationship between soil moisture and soil properties is

discussed in Section 4.4. Predictions using the theoretical equations relating soil

moisture to topography are made and then compared to observations in Section 4.5.

Finally, the conclusions of this Chapter are presented in Section 4.6.

4.1 Background

In order to properly test the theoretical equations developed in Chapter 2, it is

necessary to evaluate how well they describe soil moisture flow in a natural setting.

To carry out this requirement, a field experiment to test the correlation of soil moisture

on topography was carried out at the Harvard Forest research area. The forest

contains a wide range of native species, almost completely undisturbed geologic

formations, and topography characteristic of the New England area (Moore et al 1996,

Wofsy et al. 1994). Harvard Forest is unique in the wide range of meteorological

measurements and other environmental studies taking place within its boundaries

(Wofsy et al. 1994). This wide range of information available at the measurement

location and the potential for cooperation with other research groups made Harvard

Forest an excellent location to carry out the field experiment. The main experiment
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was carried out along Prospect Hill, located approximately 1 km away from Harvard

Forest's Environmental Monitoring System (EMS) tower, (Moore et al. 1996). The site

at which the soil moisture measurements were taken was chosen for its uniformity of

slope and soil type, and its proximity to other measurement locations. At the EMS

Tower, sensible and latent heat flux measurements were made. Near the EMS Tower,

precipitation was measured both above and below the forest canopy. These

measurements will provide the necessary information about environmental forcings,

such as evaporation and precipitation, that are required to properly evaluate the

various forms of Equation 2.1.8 by using the experimental data. Localized maps of the

Prospect Hill and of the EMS Tower showing local topography and measurement

locations are shown in Figures 4.1.1 and 4.1.2, respectively. A topographic map

showing the locations of the measurements along the hillslope is presented in Figure

4.1.3. As can be seen in that figure, the area covered by the measurement locations

has uniform slope and covers a range of elevation of about 35 meters over a
ozhorizontal distance of about 150 meters, resulting in a slope . = 0.24. These
ax

conditions should provide a good testing grounds for unsaturated flow driven by

topography, which will be proportional to the local slope as seen in Equation 2.1.8.

4.2 Experimental Procedure

The experiment is designed to sample soil moisture at different elevation levels

to attempt to determine the relationship between soil moisture and topography. for this

purpose, soil moisture was measured at the eight locations as previously shown in

Figure 4.1.3; the elevation along the hillslope is listed in Table 4.2.1. Each location

has three access tubes: a steel pipe driven into the ground to create an entry to the

soil. The soil moisture measurements were taken with a neutron probe, which

contains an Americium:241 radioactive source. To take measurements, the source is

lowered down the access pipe where it emits neutrons into the surrounding soil. As
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Distance Uphill Elevation

(meters) (meters)

0 365

22 370

44 375

66 381

89 386

111 392

133 397

155 401

Table 4.2.1: Elevation along Prospect Hill



the neutrons strike certain species of atoms, they lose energy and give off heat

(undergo thermalization). The neutron probe measures the rate of thermalization (the

count measure) during each measurement. Measurements can be taken using 30-

second, 1-minute, or 4-minute sampling lengths: the neutron probe reading is the

average rate of thermalization for the measurement interval, so the longer the

measurement, the better the sampling of soil conditions. The count measure can then

be compared with the current emission rate of the source (the standard count), which

is measured every day on which soil moisture measurements are taken. The ratio of

the count measure to the standard count (the count ratio) is then a measure of the

thermalization potential of the soil. Because hydrogen atoms are exceptionally strong

thermalization species, the count ratio is strongly proportional to the amount of water

present in the soil. Thus, the number of thermalizations during a neutron probe

reading can be taken as a measure of soil moisture. However, the neutron probe

measurement cannot be used by itself to determine soil moisture. Since other

thermalization species, such as iron atoms and organic molecules, occur naturally in

the soil, the neutron probe needs to be calibrated in the laboratory to determine the

exact relationship of the count ratio to soil moisture for a given soil type.

The laboratory calibration of the neutron probe was carried out with soil taken

from the field site. This was done by placing the soil into a 2'x2'x2' crate and taking

neutron probe measurements of the soil, using an access tube identical to those used

in the field. The soil was then removed, samples were taken at several depths, and

the moisture content of these samples was determined (ASTM Standard D-2216). The

soil was allowed to dry to a new moisture content and then replaced to the same

volume in the crate, after which the procedure was repeated. The neutron probe

measurements were then plotted against soil moisture; the resulting curve can be

used to give absolute soil moisture for future neutron probe measurements (Stephens,

1995). This curve is shown in Figure 4.2.1. The high degree of correlation (r2=0 .95)
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of the calibration curve shown in the diagram suggests that the laboratory results

should be highly reproducible. Combined with the measurement uncertainty of the

neutron probe, this curve can be used to quantify the uncertainty of the soil moisture

measurements. The error inherent in the neutron probe measurements is proportional

to the length of the sampling time and the amount of water in the soil (Troxler 1983).

For the laboratory calibration curve, four-minute measurement intervals were used:

this results in a 95% confidence that the measurement error is not more than 0.5% for

natural soil moisture conditions. The field measurements were taken using a 30-

second measurement, typically at eight different soil depths. This is equivalent to

taking a four-minute measurement, so measurement error at each soil station is

typically around 0.5% as well. Combined with the excellent fit of the calibration curve

(uncertainty of about 2%), the error resulting from the translation of neutron probe

readings to soil moisture should be minimal, on the order of 1-2%.

Saturated hydraulic conductivity, Ko, was determined in the laboratory using

the falling head permeameter test (Smith and Mullins, 1991). Disturbed soil samples

were taken from near (80-100 cm) each of the eight soil moisture sampling locations.

This was accomplished by driving a 3" pipe into the ground to a depth of

approximately 30 cm, and then removing the pipe with the soil sample intact inside.

Great care was taken to attain minimal disturbance of each sample. The volume that

the sample occupied in the field was taken to equal the volume that the pipe intruded

into the soil (Revut and Rode 1981); this record allows the sample to be returned to

nearly the same volume in the laboratory as it held in the field. The falling head

permeameter test was then executed for each soil sample. The results of these

experiments are shown in Figure 4.2.2. Ko shows a decreasing trend from the bottom

to the top of the hillslope, with a sharp decrease near the top. This trend is a reflection

of subtle changes in soil properties: near the bottom of the hill, the average particle

size increases to include small pebbles, which result in higher saturated hydraulic
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conductivity. Values of Ko and coefficient of determination (which reflects the

goodness of fit) of each falling head permeameter test are shown in Table 4.2.2.

Porosity was estimated in the field. This was done by fully saturating the soil

around the soil access tubes at each elevation, measuring the residual capillary

tension at depth, ii, with a tensiometer, and taking neutron probe measurements and

the calibration curve to determine soil moisture (Stephens, 1995). This procedure

should give a very good measure of the water-holding capacity of soil in its

undisturbed field condition. On the other hand, the standard test to determine porosity

involves taking a large (0.1 ft3 minimum) field sample and to record carefully its volume

by filling the hole either with sand or with a water-filled balloon (ATSM D-2167). Both

the bulk density and the specific gravity of the soil (ASTM 854) are then determined in

the laboratory, and porosity is estimated as

0 = 1-bulk density (4.2.1).
specific gravity

With the proper equipment, this procedure can be expected to give reliable results

(Revut and Rode 1981). However, given the constraints on availability of proper

equipment to determine the volume of the soil in the field, the remote location of the

experimental site, and the limitations on the determination of specific gravity of the soil,

this test was deemed inappropriate. The much simpler neutron probe test is expected

to give higher accuracy for less investment of time, minimal to no disturbance of soil

structure, and without the use of heavy equipment which could severely damage the

pristine state of the Harvard Forest. The results of the neutron probe tests are shown

in Figure 4.2.3, and the values with error are presented in Table 4.2.3. The soil type at

the experimental site is a fine sandy loam, which typically has a smaller porosity listed

in the literature (on the order of 0.30 to 0.35) than was obtained from the field

measurements. However, Bras (1990) notes that it is common for the actual field value
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Table 4.2.2: Saturated Hydraulic Conductivity Results

Distance Hydraulic Coefficient of

Uphill (m) Conductivity (m/hr) Determination

0 0.014 0.99

22 0.014 0.94

44 0.014 0.98

66 0.013 0.96

89 0.013 0.97

111 0.006 0.99

133 0.011 0.99

155 0.007 0.99
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Figure 4.2.3

Porosity along Prospect Hill
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Table 4.2.3: Porosity Results

Distance

Uphill (m) Porosity

0 0.36

22 0.37

44 0.42

66 0.43

89 0.44

111 0.43

133 0.47

155 0.51



of porosity to be at least 0.1 larger than laboratory values: this may be a further

indication of the acceptability and the usefulness of the neutron probe determination of

porosity.

Values of the parameters relating soil moisture to unsaturated hydraulic

conductivity, a and c, are also needed. Determination of these parameters in the field

or in the laboratory requires specialized equipment that was unavailable for use.

Since these parameters were not determined experimentally, values were determined

from the instantaneous moisture profile and soil moisture retention experiments for a

sandy loam (the same USDA soil classification as the soil along Prospect Hill)

described by Smith and Mullins (1991, pp. 238-254). The values obtained from that

study are a = 0.06 cm- 1 and c = 0.0014 cm- 1; these values are acceptable in lieu of

experimental values However, it should be emphasized that these are estimates of a

and c taken from laboratory experiments for a different soil and should be regarded

strictly as parameters and not true soil properties. With further experimental resources,

the values of a and c could be tested in the field and compared with the values used

in this study.

It is also necessary to quantify the vertical fluxes of water in the unsaturated

zone at the experimental site. Evaporation and precipitation are important sinks and

sources of water for the experimental site. Fortunately, both of these components of

the hydrologic cycle were measured at the Harvard Forest EMS Tower. Precipitation

and throughfall (the amount of water reaching the forest floor) were measured with a

network of twelve Texas Electronics tipping bucket raingauges; the measurements

were recorded with an R.M. Young 26700 Programmable Translator. Because

throughfall measurements were available and runoff was minimal, the amount of

water infiltrating the ground surface is expected to be very nearly the same as the

throughfall measurements. Evaporation was measured on the EMS Tower by the

Wofsy research group at Harvard University. Eddy correlation measurements were

-110-



used to estimate evaporation, using a five-minute time interval of measurement (Wofsy

1993 et al., Moore et al. 1996). The EMS tower is south-southwest (slightly downwind

on the average) of the Prospect Hill Site. Using the formulation in Gash (1986) and

the estimates for the roughness length of the forest surface from Choi (1996), the 95%

effective fetch or contributing distance upwind of the EMS Tower is estimated at 7000

meters: this measurement along with the average wind direction suggest that the EMS

measurements should provide a good estimate of the evaporation at the hillslope site.

Throughfall and evaporation for September through November are shown in Figures

4.2.4 and 4.2.5. These two estimates together should provide excellent quantification

of the vertical hydrologic sinks and sources of moisture at the measurement site.

It is noteworthy that precipitation for the period greatly exceeds evaporation.

Because the Prospect Hill site is directly adjacent to the stream channel running

through Harvard Forest, visual observations of runoff were made every time soil

moisture measurements were taken: from September to November, no noticeable

runoff was observed in the stream channel. Using a simple mass balance, this implies

that there should a net accumulation of water in the unsaturated zone for the

measurement period. This is reflected in Figure 4.2.6, which shows the spatially

averaged soil moisture for each soil moisture measurement date. A sharp increase in

soil moisture occurs in early October, coinciding with the decline of the forest canopy

and the resulting decrease in evapotranspiration. For the period of October 1 to

November 25, soil moisture remains fairly constant, increasing at an average rate of

D--e=0.001 cm/hr. This estimate was determined by dividing the change in soil
at

moisture for period, multiplying by the average soil depth, and dividing by total time.

This is smaller than, though comparable to, the average rate of evaporation and

rainfall measured at the EMS Tower (approximately 0.005 cm/hr and 0.025 cm/hr,

respectively). This large differential in the precipitation and evaporation rates are

consistent with the increase in unsaturated zone soil moisture seen in Figure 4.2.6.
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Figure 4.2.4

Daily Throughfall at Harvard Forest
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Figure 4.2.5

Evaporation from Harvard Forest. Fall 1995
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Figure 4.2.6
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From October 27 to November 25, soil moisture decreases at an even smaller average

rate (0.000023 cm/hr), so that the rate of change of the time average of soil moisture

for that period is practically zero (0.1%) compared with the other fluxes of water. This

condition is consistent with the assumptions involved in deriving Equation 2.2.1, in

which the time-average rate of change of soil moisture is assumed zero: the resulting

solution to Equation 2.2.1 should be valid for this period.

4.3 Relationship of Soil Water to Topography and Soil Properties

The ultimate goal of the field experiments is to test the notion that there is a

noticeable and predictable correlation of soil water with elevation. Here, soil water

refers to the general concept of water contained in the soil. Three specific measures of

soil water can be directly compared using the experimental results. Soil moisture, 0,

is measured almost directly using neutron probe measurements and the neutron

probe calibration curve. Unsaturated hydraulic conductivity, K, can be estimated at

each observation point using the observations of 0 and the estimates of soil

properties, a, c, 80, and K0. Soil saturation, s, can also be estimated at each

observation point by dividing the 0 measurement by the porosity at each elevation. Of

the three quantities, 0, is most directly a measured quantity, since the neutron probe

readings measure attenuation of radiation, which is strongly proportional to soil

moisture. Saturation, s, is dependent only on the measurements of 0 and on the

determination of 0o. Unsaturated conductivity, K, is more an inferred quantity rather

than a measured quantity: values of K are actually soil moisture observations

translated into unsaturated hydraulic conductivity using the equation:

a(0-0o)
K = Koe c (4.3.1)
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and substituting for measurements of 6 and the appropriate soil properties, a, c, 80,
Ko. Since estimation of K involves the largest number of estimated parameters, it is

most subject to experimental error of the three quantities. However, because of the

high degree of accuracy of the soil moisture and soil property results (Tables 4.2.2 and

4.2.3), and the fact that the same values of a and c are used in each conversion, error

of this sort should not be significant and K can also be considered an accurate

measure of actual soil water conditions.

The observed data are presented in two fashions. First, observations of soil

moisture(O), soil saturation (s), and unsaturated hydraulic conductivity (K) are plotted
against elevation (z), saturated hydraulic conductivity, (Ko) and porosity(%o) in Figures

4.3.1(a-c), 4.3.2(a-c), and 4.3.3(a-c). Examination of these figures shows that the

observed relationship between the three measures of soil water and the three forcings

(z, Ko, 0o) can be approximated as linear. With this in mind, linear regressions

between the three measure of soil water and the three forcings can be calculated.

Two statistics from these regressions will be used to evaluate the dependence of soil

moisture on the three forcings. First, r2, which is the percent of variability observed in

the soil water explained by a linear relationship with the forcing will be used. This will

measure the correlation between soil water and the forcings and how well each

forcing explains the observations. r2 can also be calculated for regressions of soil

water to multiple forcings: the gain in r2 from the simple regressions is a measure of

the independent information contained in each forcing. This can be used to evaluate

which of the three forcings are most informative in explaining soil water behavior. r2

for the single and multiple regressions is shown in Table 4.3.1

The slope of the regression line is an important statistic. The slope of the

regression line divided by its standard error is a t-statistic which can be used to give

the level of confidence that the slope is significantly different from zero. When this is

the case, then there is a significant associative statistical relationship between the
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Figure 4.3.1a Observations of 0 plotted against Elevation
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Figure 4.3.2a Observations of S plotted against Elevation
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Table 4.3.1:r2 of regresssions of z, 0o, and Ko to 0, s, and K

Dependent r2 Of Regresssion with Independent Variable(s)
Regression
Variable z K n z and z' z and K
K 0.82 0.55 0.74 0.82 0.82

0 0.39 0.28 0.35 0.39 0.39

s 0.54 0.18 0.66 0.67 0.64
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measure of soil water and the forcing. The value of these statistics along with critical

values of the t-distribution are shown in Table 4.3.2.

Soil moisture, 0, the preliminary variable of interest, shows a weak correlation

to elevation (r2 = 0.38, slope of regression significant at 90% confidence level). This

result is somewhat discouraging at first. However, it is important to note that 0 does

not appear explicitly in the divergence equation of soil moisture (Equation 2.2.1). Soil

moisture has a dependence on topography through its relation to unsaturated

hydraulic conductivity, a relation which is dependent on four soil properties: 0o, Ko,

a, and c. Although the values of a and c along the hillslope are unknown and

assumed to be constant, there is measured variability in saturated hydraulic

conductivity and porosity, as shown in Figures 4.2.2 and 4.2.3. Thus, topography is

not the only force at work on the distribution of soil moisture: soil properties will also

affect the behavior of soil moisture at the experimental site.

It is enlightening to consider the effect that soil properties along Prospect Hill

would have on soil moisture in the absence of an elevation gradient. A qualitative

example of the soil properties along Prospect Hill and the equivalent flat slab of soil is

shown in Figure 4.3.4. In the flat surface, the elevation is constant but porosity and

hydraulic conductivity have gradients identical to those observed along Prospect Hill.

Since the time-average soil moisture along Prospect Hill is nearly constant during Late

October into November (see Section 4.2 above), the simple equilibrium case can be

considered. Inside this flat surface, soil moisture at equilibrium would flow until the

hydraulic head were constant at all points: since z is constant, capillary potential

would also need to be constant. The condition of constant capillary potential in the soil

is approximately equivalent to the condition of constant saturation throughout the soil.

Since porosity increases uphill, soil moisture in the flat slab of soil must increase to

maintain a constant level of saturation. If the elevation gradient along Prospect Hill

had no effect on soil moisture, then the same pattern of soil moisture would be seen
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t-statistics of Linear Regressions

Dependent

Variable

Independent

Variable

z

K..

Stand;
1.974t
-1.508'

S---

0 0o 1.807*

s z -2.652

s Ko  1.1470

s o -3.417

z -5,291

Ko 2

I

ard Error

$
2.7454

4.117:

o insignificant
* exceeds critical value of 80% certainty of significant slope

t exceeds critical value of 90% certainty of significant slope

$ exceeds critical value of 95% certainty of significant slope
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Figure 4.3.4: Comparison of Soil Moisture for Prospect Hill
and a Flat Surface with the Same Porosity Distribution
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along the hillslope: soil moisture would increase uphill due to the effects of porosity

alone. However, soil moisture along Prospect Hill remains nearly constant. In order to

account for the observed behavior of soil moisture, another force must be at work. The

most logical suggestion is that the elevation gradient along Prospect Hill is the factor

that re-distributes the soil moisture away from the equilibrium condition predicted by

soil properties alone.

Soil saturation observations, s, are also important to examine. The time

average saturation is plotted against elevation in Figure 4.3.2a: the result is a striking

correlation of soil saturation to elevation (r2 = 0.54, slope significant at 95%

confidence). As previously stated, soil saturation is directly proportional to the

capillary tension head in the soil, i. Soils with high saturation are being forced to

hold more of their potential of water; in the observational results, these are areas of

lower elevation. The soil at the lower elevation therefore has lower V and is holding a

greater percentage of its potential to draw in water. Again, if there were no effect from

the elevation gradient, soil saturation would be constant along the hillslope. Since

saturation displays a strong increase with elevation it can be reasonably concluded

that elevation is at work driving the soil saturation higher downhill than would be

observed if elevation had no role in soil moisture behavior.

Unsaturated hydraulic conductivity, K, also shows a strong correlation to

elevation, with r2 = 0.82 and regression slope significant at the 95% confidence level.

The dependence of K on elevation is physically important: as water travels down the

hill, the hydraulic conductivity increases. This indicates that soil at higher elevation

has less capacity to transport water per unit area than soil at lower elevations. This is

a valuable property because the "observed" unsaturated conductivity is dependent on

soil properties and yet is still observably affected by elevation. That unsaturated

hydraulic conductivity shows such a strong correlation to elevation is especially

significant since the proposed equation relating soil water to elevation (Equation 2.1.8)
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has an explicit dependence between the soil moisture surrogate, K, and z, elevation.

Of the three measures of soil water, K much more strongly accounts for soil variability

than 8 or s, and has a more robust relationship with elevation. This suggests that

there is a definite dependence of unsaturated hydraulic conductivity on topography

and that unsaturated hydraulic conductivity is a significant variable in studies of

topographic and geologic forcings on soil water.

4.4 Predictions of the Theory Relating Soil Moisture to Topography

The final step in testing the relation of soil moisture to topography is to evaluate

how well predictions from the governing flow equation compare to actual observations.

Both the steady state (Equation 2.2.1) and the transient (Equation 2.2.7) flux equations

can be tested. The steady equation can be used to evaluate how well the theory

predicts the long-term soil moisture behavior in space if the rate of change of soil
ae

moisture (-) is near to zero; this conditions is close to being satisfied for the periodat
of October 27 to November 25. The value of the neglected term o from

aKo ax

Equation 2.1.6 is compared to topographic slope in Table 4.4.1: this confirms that the

contribution of this term is indeed negligible and that the simplified version Equation

2.1.6 can be used.

The measurements of evaporation can be used to infer the vertical divergence

parameter, 0. Since the soil at the measurement site is shallow ( 1 meter in depth)

and lies directly on bedrock, downwards percolation from the unsaturated zone is

expected to be minimal. Evaporation should therefore be the main component vertical

sink of water from the unsaturated zone. Since vertical sinks of water are

parameterized as s=OK in Equation 2.1.8, P can estimated for the measurement site

with the formulation

D= (evaporation)/(average unsaturated hydraulic conductivity)
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Using the data from Figures 4.2.5 and 4.3.3, [ is estimated at a value of 0.004 for the

experimental site.

Figures 4.4.1 a-c show the predictions versus observations made with Equations

2.2.2 and 2.2.6 for the time average of 0, K, and s for Fall 1995 for the eight elevation

levels. The average RMS error for these predictions (not including the boundaries,

which are automatically satisfied) is 0.022 for 0, or about 6.3% of the average: RMSE,

r2, and the significance of the regression between predictions and observations are

presented in Table 4.4.2. This results indicate that the steady-state equation is

reasonable for predicting the idealized soil saturation, s, and unsaturated hydraulic

conductivity, K, behavior in a natural system: heterogeneity in the natural

environment will be expected to produce some degree of model error. Soil moisture,

0, is not predicted as well as K and s. Predicted 0 is translated from predictions of

unsaturated hydraulic conductivity by Equation 2.1.5 which depends highly on soil

properties; observed 0 is relatively independent of soil properties. It is to be expected

that the two values will not be in strong agreement.

Unsaturated hydraulic conductivity is the basic variable of the steady-state

predictions: the predictions of K depend only on the boundary conditions of soil

moisture and on the quantities D, 0, a, and -in Equations 2.2.3. The predictionsax
agree very strongly with the observations, which are highly dependent on the soil

properties a, c, 00, and Ko. These two sets of values for K are expected to very

relatively independent of each other: their only similarity is the value of a, which is

used in two completely separate equations, and in the two boundary conditions.

However, the agreement of the observations to predictions is excellent: the regression

of observations to predictions yields an r2 of 0.85 and significance of slope at over

95% confidence. The agreement of these two independent quantities is extremely

significant and strongly indicates that the theory relating unsaturated hydraulic
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Elevation

level (m)

133 to 155

111 to 133

89to 111

66 to 89

44 to 66

22 to 44

O to 22

1 AKo
aK0 Ax

0.0018

-0.0011

0.0026

0.00018

0.0020

-5.4e-5

-7e-5

az

ax

of 1 AK0 in Equation 2.1.9.
aK0 Ax

oz 1 AK oratio of a to
ax aK 0 Ax

0.24

0.24

0.24

0.24

0.24

0.24

0.24

0.72%

-0.46%

1.1%

0.07%

0.08%

-0.02%

-0.03%
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Figure 4.4.la

Soil Moisture along Prospect Hill
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Figure 4.4.1b

Unsaturated Hydraulic Conductivity along Prospect Hill
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Figure 4.4.1c

Soil Saturation along Prospect Hill
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Table 4.4.2: RMSE, r2, between Steady-State Predictions and
Average Soil Moisture

Variable

Average

RMSE
% RMSEF

0.0065

0.0016
24_9%

0.36

0.022

6.3%)£

0.85

0.053

6.3%

r2 Of predictions

vs. observations 0.85 0.11 0.65
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conductivity in Equation 2.2.1 is capable of accurately describing the behavior of soil

water in space for topography-driven flux.

The next step is to determine how well the unsteady equation predicts soil

moisture: this will test the ability of the theory to make predictions in time as well as

space. Using each measurement date as a set of initial conditions, along with the

rainfall and the evaporation record, Equations 2.2.10, 2.2.12, and 2.2.17) can be used

to make predictions for the next measurement date. This involves predicting the initial

conditions in space and then predicting the future behavior of soil moisture in time, as

described in the algorithm for unsteady predictions in Section 2.2. The predictions can

then be compared with the observed results as shown in Figure 4.4.2a-h. The

agreements between the two is not perfect. However, the coefficient of determination

of a simple linear regression between observations and predictions of soil moisture

8in time is quite good at each location, as shown in Table 4.4.3; RMSE for the eight

dates on which predictions were made is about 20% of the mean, or three times as

large as when steady-state predictions made in space alone.

It is also important to note that the bias of the unsteady predictive error changes

with time. At the beginning of the experimental period, the unsteady equation

underpredicts soil moisture on the average: as autumn progresses, the bias goes to

zero and then to overprediction towards the end of the fall. Since predictions of the

initial conditions of soil moisture do not show this bias (and actually show a positive

bias for the period) as shown in Table 4.4.4, this bias must arise from predictions in

time. The bias of the predictions of initial conditions has no correlation with the bias of

the predictions for the next time measurement date. As shown by Equation 2.2.11, the

predictions in time are the initial conditions divided by time: the temporal rate of decay

for unsteady predictions is (ct)-1, from the formulation in Equation 2.2.10c. Since time

is always known, it follows that c, the pore tension parameter, may possibly change in

time. This would not be unexpected behavior, since c is in general dependent of the
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Pigure 4.4.2a:
Unsteady Predictions for 10/3/95
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Figure 4.4.2b:
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Figure 4.4.2c:
Unsteady Predictions for 10/20/95

0.5

0.4

0.3

0.2----------------- -----

0.1 ..- --------- .......... -----------...........------ .. Observatins
0.1, , 1 -,-- Observations

------ Predictions

0 20 40 60 80 100 120 140 160
Distance Uphill (meters)

Figure 4.4.2d:
Unsteady Predictions for 10/27/95
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Figure 4.4.2e:
Unsteady Predictions for 11/3/95
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Figure 4.4.2f:
Unsteady Predictions for 11/11/95
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Figure 4.42g:
Unsteady Predictions for 11/17/95
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Figure 4.4.2h:
Unsteady Predictions for 11/25/95
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Table 4.4.3: r2 of Unsteady Predictions versus Observations of Soil Moisture

Distance Uphill (meters) r2

0

22

44

66

89

111

133

155

0.67
0.71

0.54

0.61

0.63

0.72

0.66

0.51
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Table 4.4.4: Bias of Unsteady Predictions of Soil Moisture

Date

9/24/95

10/3/95

10/9/95

10/20/95

10/27/95

11/3/95

11/11/95

11/17/95

11/25/95

Average:

Bias of

Initial Conditions

0.34

0.43

0.25

-0.01

0.10

0.26

0.19

0.21

0.09
0.21

Bias in Resulting

Prediction

0.22

-0.48

-0.18

-0.22

-0.34

0.22

-0.11

0.21

N/A

-0.09

r2 of regression of temporal to spatial biases = 0.01
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moisture content of the soil, the time history of wetting and drying, and temperature

(which may significantly affect the viscosity of water as well). The assumption that c is

constant may not be entirely accurate for the flux system under consideration. The

dependence of c on soil moisture would need to be quantified in order to test it this is

true. One immediate limit of the predictive use of the theory is the present capability to

quantify soil parameters. Although the predictions are acceptable using a simplified

approach to unsaturated behavior of soil, they will ultimately be limited by the

complexity of unsaturated soil behavior.

4.5 Conclusions

The field experiment shows some very significant results. Observed soil

moisture, 0, soil saturation, s, and unsaturated hydraulic conductivity, K, all show

significant dependence on topography and on soil properties. These forcings of

topography and soil properties act on soil moisture in significant but opposing

manners. The effect of soil properties can be predicted by elementary physics: soil

moisture should increase and saturation should remain constant uphill due to

increasing porosity. In the observations, soil moisture remains constant and saturation

decreases: the best explanation for this behavior is the proposed effect of topographic

forcing.

Predictions in space made with the steady-state theory show K to have an

important relationship with topography and soil properties. Observations of K are

primarily dependent on soil properties such as a, c, 0o, and K0, while predictions of K
Dzare made using boundary conditions and the values of D, 03, a, and -. These two

sets of K are determined in a relatively independent manner: strong agreement with

the experimental observations to the theoretical predictions prove the significance of

the theory.
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Unsteady predictions also agree well with observations. Using observations to

make predictions for the next measurement date, predictions of soil moisture were

made in space as well as time. The results are quite good, with high r2 and RMSE

about three times as large as for predictions in space alone.

In summary, the field experiment demonstrates 1) a significant role of

topography in explaining the observations of soil moisture and 2) reasonable

agreement of predictions to observations of unsaturated hydraulic conductivity made

using the governing flow equation.
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CHAPTER 5

Conclusions

5.0 Introduction

This chapter summarizes the theoretical and experimental results and the

conclusions based on the findings of this study.

5.1 Soil Moisture Theory.

The main theory developed in this study is a formulation relating the distribution

of soil moisture to topography. Using an explicit representation of elevation, the

relationship between soil moisture and topography is derived from the basic principles

of unsaturated flow. Both the one- and the two-dimensional cases are considered.

Using spectral techniques, the spectrum of soil moisture can then be expressed in

terms of the soil and climate properties and spectrum of topography. This effectively

relates the distribution of soil moisture to the distribution of topography.

The theory predicts that the two-dimensional case will result in larger variance

and stronger spatial correlation of soil moisture. Of the two cases, the two-dimensional

consideration gives better regard to true soil moisture behavior: the flow of soil

moisture in the real world will inherently be multidimensional. In two physical

dimensions, the distribution of topography is expected to result in a larger variability of

soil moisture. Mathematically, the spectral relationship between soil moisture and

topography will also predict a higher variance and stronger spatial correlation in the

two-dimensional case.

Soil and climate will also be important in the large scale distribution of soil

moisture. To test the importance of soil and climate in the relationship of soil moisture

distribution to topography, a sensitivity analysis was carried out for a ideal system with

topography as the main forcing. The pore size distribution parameter (ax), vertical
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divergence parameter (0), pore size distribution parameter (c), and porosity (o0) most

significantly affect the significance of soil moisture variability. This is demonstrated by

the changes in the coefficient of variation of soil moisture resulting from changes in

these properties. The properties of root zone depth (D), saturated hydraulic
conductivity (Ko), and effective precipitation (R) have a less significant impact on

topography-driven soil moisture variability.

Theoretically, variations in all soil properties can bring about significant soil

moisture variability. The magnitude of this variability was examined using data for two

soil types. It was determined that variability in a and Ko bring about significant soil

moisture variability of the same magnitude or larger than the variability resulting from

topography. In can be concluded that both topography and soil properties will create

important contributions to soil moisture variability.

5.2 Field Observations

For the theory in Chapters 2 and 3 to be validated, it is necessary to test the

actual impact of topography on soil moisture. For this purpose, measurements of soil

moisture and soil properties were taken along a hillslope at a research facility in

Central Massachusetts. In the observations, soil moisture remains nearly constant

with elevation while porosity increases with elevation. The effect of porosity alone

would be to redistribute soil moisture to a constant saturation level along the hill,

resulting in higher soil moisture uphill. The observations of a nearly constant soil

moisture profile strongly suggests that the elevation gradient acts to redistribute soil

moisture downhill. Therefore, forcings of topography and soil properties act on soil

moisture in significant but opposing manners.

Predictions in space made with the steady and unsteady theory also show

unsaturated hydraulic conductivity, K, to have an important relationship with

topography and soil properties. Observations of K are primarily dependent on soil
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properties such as a, c, 0o, and Ko, while predictions of K are made using boundary
azconditions and the values of D, P3, a, and x. These two sets of K are determined in
ax

a relatively independent manner: strong agreement of the experimental observations

with the theoretical predictions prove the significance of the theory.

5.3 Future Research

Several aspects of the work in this study can be continued. First, the next step

in advancing the theory relating soil moisture distribution to topography is to consider

the unsteady case in which soil moisture will vary in time as well as space. This

consideration will add a third dimension to the theory developed in Chapter 2.

Second, the soil moisture experiments are currently in progress, so the opportunity

exists to create a picture of the long-term behavior of soil moisture. This information

will aid in further understanding the spatial and temporal processes which affect soil

moisture. Third, with quantitative large-scale information on the variability of soils, the

general theory developed in Section 3.3 can be used to make predictions about the

large-scale distribution of soil moisture based on considerations of topography and

soil properties. Finally, the theory developed in this study could be combined with

other techniques for estimating the large-scale distribution of soil moisture. This could

potentially improve operational predictions of the distribution of soil moisture. As these

refinements are carried out, it is hopeful that the scope and impact of hydrologic

studies will be improved and that the value of this research will be significant.
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