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Abstract

This thesis involves designing discrete-time filters for modifying the spectrum of
audio signals. The main contribution of this research is the significant reduction in
the order of the filters. To achieve this, we have combined a technique called
frequency transformation, or frequency warping, with an effective Finite Impulse
Response (FIR) filter design algorithm. Both techniques exploit some properties of
audio filters which allow us to relax the design specifications according to human
auditory perception.

We show several properties of frequency transformations and explain their
importance in designing audio filters. We incorporate this technique into design
procedures and test them with sample filters. We study the signal flowgraphs of
warped filters and evaluate their computational requirements and performance in
the presence of quantization noise.
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Chapter 1

Introduction

This thesis deals with the design of discrete-time filters for modifying the spectrum

of audio signals. The main contribution of this research is the significant reduction

in the memory and computational requirements of the filters. To achieve this, we

have combined a technique called frequency transformation, or frequency warping,

with an effective Finite Impulse Response (FIR) filter design algorithm.

Frequency transformation is a technique which allows us to produce a filter whose

frequency response, G(e'ý'), is equal to that of another filter, H(e'"), except that the

frequency axis is rescaled. The ability to design a filter on a rescaled frequency axis

suits the problem of audio equalization very properly. Since human ears have better

frequency resolution at lower frequency than at higher frequency, filter design

algorithms must pay attention to the fine details in the low frequencies. As the low-

frequency details becomes finer, the required filter length becomes longer. By

exploiting the relationship between the frequency response H(ej' ) and the

frequency-transformed response G(e'), we can design a short-length FIR filter h[n]

and choose a transformation such that G(ei') has not only the desired audio

equalization, but also a low order like that of h[n]. Note that due to the frequency

transformation, the filter G(eiJ) will be IIR (Infinite Impulse Response) even though



h[n] is FIR. Thus, we are able to draw on the wealth of FIR filter design algorithms

and use them to design IIR filters.

Further reduction in filter length is achieved by designing FIR filters based on a

model of human audio perception. Specifically, the deviation in the response of a

filter from the desired one is weighted against a perceptual bound. This bound

represents the threshold at which a typical listener can detect an error in the

frequency response. This model allows us to relax the FIR filter design constraint,

from designing a filter that must precisely fit a desired response to designing a filter

that must lie within upper and lower magnitude bounds.

The two FIR filter design algorithms which we used were the well-known Parks-

McClellan algorithm and the lesser-known CONRIP algorithm. Traditionally, the

Parks-McClellan algorithm has been widely used to design lowpass and bandpass

filters. Here we will use it to fit an arbitrary curve with a weighting function

derived from our perceptual model. Though largely overlooked, the CONRIP

algorithm suits our application very appropriately and returns the shortest possible

FIR filter that fits our error model. However, experimental results in Chapter 5

showed that these two algorithms yield the same minimal order almost all the time.

Both of these design algorithms required high numeric precision and failed to

converge when standard double-precision arithmetic was used. To overcome this

problem, we wrote a library of arbitrary precision mathematical functions and used

them during filter design.



Chapter 2 presents an overview of audio equalizer design including frequency

magnitude specifications and error bands based on psychoacoustic measures. This

section also discusses the problems encountered when standard FIR and IIR filter

design methods are used to design audio equalizers. Chapter 3 reviews the idea of

allpass transformations and proves several important properties that they possess.

It also summarizes the design steps involved in applying frequency transformations.

Chapter 4 discusses the Parks-McClellan and CONRIP design algorithms with

emphasis on CONRIP. Chapter 5 presents results from filter design experiments

and Chapter 6 investigates the noise performance when implementing (not

designing) frequency warped filter using finite precision arithmetic. Chapter 7

summarizes the main results of the thesis and suggests directions for future works.



Chapter 2

Audio Filter Specification and
Design

Digital filters can be used in a wide variety of ways to modify audio signals. These

modifications can be grouped into three main categories: spectral, temporal, and

spatial. Spectral changes are perceived as changes in the frequency response of the

audio signal. Temporal changes are perceived in the time domain and examples

include echoes and reverberation. Spatial changes modify the perceived location of

a sound. All of these audio signal modifications can be achieved through digital

filters - digital linear time-invariant systems - and thus there may not always be a

clear distinction between them. For example, a digital filter designed for spectral

modifications may also cause some perceptible time-domain distortion.

In this thesis, we focus on designing digital filters for spectrally modifying an audio

signal. This is probably the most common use of an audio filter and there are many

applications. The simplest application is the implementation of tone controls (bass,

mid-range, treble) commonly found on audio equipment. Another application might

be to compensate for errors in the frequency response of a loudspeaker which result

from shortcomings in the transducer. A further application is to compensate for the



constrained speaker position in an automobile or for the damping of the response

due to the car interior.

In many cases, we want to be able to change the frequency response in the field,

rather than in the factory. In order to accomplish this, the filter design algorithm

must be able to operate without supervision. That is, we need a algorithm that is

robust enough to return the optimal filter without human intervention once inputs

are specified.

In this chapter, we discuss specific features of audio equalizers which affect their

design and implementation. It will be shown that most traditional IIR design

techniques and FIR implementations are not suitable for use in audio equalizers.

2.1 Logarithmic Frequency and Magnitude Specifications

Experiments have shown that the human auditory system has better resolution at

low frequencies than at high frequencies [1]. For example, it is quite easy to

distinguish between 100 and 110 Hz, but extremely difficult to distinguish between

10000 and 10010 Hz. Due to this property, audio equalizers require much higher

resolution at low frequencies than at high frequencies. A good model which

approximates this behavior is to assume that the frequency specifications are

uniform when viewed on a logarithmic frequency scale.

Frequency specifications on a log scale are given in fixed multiplicative increments.

One standard unit of such increments is an octave. A k-octave specification is the



one whose frequency response is given on the set of frequencies fo, 2k fo, 2 2k f0, 23k f 0 ,

and so on. For example, a one-third octave specification shall contain the frequency

response at the following frequencies: fo, 21/3 fo, 22/3 f0 , 2fo, etc.

The auditory system can also perceive signals over an enormous dynamic range;

from a pin drop to a jet plane. The most appropriate manner in which to represent

this range of loudness is in decibels (dB) which is defined as 20 loglo(x). dB is also

the standard scale to use when discussing changes in magnitude such as in a

frequency response.

Loudness is also perceived on a dB scale. For example, increasing a signal level

from 10 to 20 dB roughly doubles its perceived loudness. Doubling again from 20 to

40 dB doubles it again.

2.2 Insignificance of Phase Response

The specifications of an audio filter are usually given in terms of its magnitude

response. For the most part, the human ear is insensitive to small variations in

phase, and there is quite a bit of flexibility in selecting the phase response of a

filter. Phase only becomes an issue when it is perceived as a time-domain effect

such as a delay, early or late echoes, or significant smearing of the audio signal

caused by uneven group delays across the frequencies. One way to minimize the

audible effect of uneven group delays is to restrict the maximum group delay of the

filter. This can be accomplished by designing the audio filter to be minimum-phase.



To achieve minimum-phase, the technique of spectral factorization can be included

into the filter design procedure. As each filter design algorithm in this thesis

returns FIR filters with linear-phase, we can spectrally factor the output into

maximum- and minimum-phase parts. Spectral factorization reduces the order an

FIR filter into roughly half. For FIR filters with zeros on the unit circle, certain

manipulations need to be performed on the input before the factoring. These

procedures are described in detail by Schussler [10, pg. 468].

Since spectral factorization reduces the magnitude of both parts to only the square

root of the specification, we must compensate by squaring the magnitude of the

specifications before designing the target filter.

2.3 Sample Frequency Responses

The filter design algorithm presented in this thesis was tested using a set of 20

prototypical frequency responses. Several of these responses are shown in Figure

2-1 (a) through (d).
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The responses were designed to model the equalization needed to flatten a speaker's

measured frequency response in typical listening environments. These responses

have a frequency resolution of 1/3 octave. That is, the details of the frequency

response are spaced at roughly 1/3 octave.

This data is based on measurements made at Bose Corporation for a variety of

speakers and listening environments, and represents averages over many positions

within the same room. The target responses are a reasonable test of the

performance of a filter design algorithm. Designing filters to actual measured data

would produce similar results.

2.4 Just Noticeable Difference Curves

In order to optimally approximate the target frequency responses by a digital filter,

we must have some error measure. Standard error measures which are frequently

used, such as mean squared error, are inappropriate in this case, because they do

not take into account the behavior of the auditory system.

We will take a slightly different approach to approximating the desired response.

Due to limitations in the auditory system, the human ear is insensitive to small

changes in frequency response. Thus, there is a whole set of filters which sounds

indistinguishable from the desired filter. Our goal is to define this set and identify

a filter which lies within.

The sensitivity of the human auditory system can be described using Just-

Noticeable Differences, or JNDs. The JND for loudness is a frequency dependent

|



frequency (Hz)

Figure 2-2 Frequency response of the filter used in obtaining the Just

Noticeable Difference Curve.

The user is asked if the two signals presented were distinct or indistinguishable.

The results of the experiment depend upon the details of the shelf filter: center

frequency fc, bandwidth W in octaves, and gain h.

The standard method of probing the limits of the auditory system is to keep f, and

W fixed, and then vary the gain h until the signals are "just noticeably different."

The center frequency is changed, and the experiment repeated. This produces a

curve which is a function of frequency and represents the level in dB at which the

listener can detect a W-octave change in level. These curves are plotted in Figure

quantity. It has been experimentally determined through a set of subject-based

listening tests [1] .

The listening tests proceed as follows. The listener is first presented with pink

noise, and then with the same noise filtered by the shelf filter shown in Figure 2-2.

~t3
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Figure 2-3 JND curves for W=1/3 octave, 1 octave and 3 octave.

As can be seen, the auditory system is most sensitive to frequencies between 2 and 5

kHz. Also, the larger W, the easier it is for subjects to detect differences.

Unfortunately, these results are difficult to apply to the problem of determining

general constraints on a filter such that it sounds indistinguishable from another.

Recall that the results are for a single perturbation of width W, and do not apply to

simultaneous perturbations at multiple frequencies. In fact, no results from

psychoacoustics have immediate application to our problem.

W=1/3 octave

W=1 octave

~ "'~" ' ' '""" ' """" ' ' ""~

2-3 for W=1/3 octave, 1 octave, and 3 octaves, and represent results averaged over

many subjects.

L



We will extend the results for loudness JND in a manner similar to that used to

extend audio masking data [1]. An audio signal A can mask another signal B if it is

sufficiently loud in level and close in frequency to B. Experiments were conducted

for the case of a single sinusoid A masking a bandpass noise B. These results were

then extended - without serious experimental evidence - to the case of multiple

sinusoids masking multiple noises. It was shown that as long as the original

masking criterion is obeyed at every frequency, the collection of sinusoids

appropriately masks the collection of noises. This principle has been widely applied

in the design of audio coders.

We will make a similar assumption in this thesis. For example, suppose that we

choose the 1-octave JND curve. Given a desired frequency response, we derive

upper and lower bounds by adding and subtracting (in dB) the JND curve. We will

assume that any filter which falls completely between the upper and lower curves is

audibly indistinguishable from the desired response.

There is one clear difficulty with this assumption. Suppose that the designed filter

falls within the upper and lower bounds of the 1-octave JND curve. However,

instead of having a response close to our desired curve which is vertically centered

within the bounds, the designed filter has a response which is close to, say, the

upper bound for most of the frequencies. Then this means that the width (in

frequency) of the deviation from desired response can be wider than one octave. For

example, suppose that this "ripple" is 2.5 octaves wide. In order to be inaudible, the

height of this ripple must satisfy the tighter 3-octave JND bound instead of the 1-

octave bound. There is no way to avoid this a priori. Instead, after the filter has



been designed, we will verify that the width of its ripples satisfy the 1-octave JND

curve. Experimentally, we have found that this is always satisfied.

2.5 Limitations of Standard FIR and IIR techniques

There are several shortcomings of designing FIR filters to specifications on a broad

frequency range. As specifications are given on log scales, the high density of the

details in the low frequency region cause the FIR filter to be too long and too costly

to implement. Moreover, the large order of the resulting filters require high-

precision arithmetic operations in the design algorithm. Standard double precision

would be insufficient so that the design algorithm would not converge at all. FFT-

based algorithm such as overlap-add or overlap-save may be employed to reduce the

computational complexity. Since these algorithms are block-based, they introduce

substantial latency which may be inappropriate for some real-time applications.

The problem of existing IIR design techniques is that they cannot handle the

required detail of the frequencies response. They often fail to converge to an

acceptable solution and require constant supervision from the filter designer as IIR

design procedures are usually not completely autonomous.



Chapter 3

Frequency Transformations

This chapter introduces the mathematical definition of a frequency transformation

as well as some of its properties. To date, the technique of applying frequency

transformations in audio filter design has not been used extensively, although the

transformation has been recognized for over 20 years by Oppenheim and Johnson

[2]. Classically, this technique was used in the design of filters. We will use it both

in the design of filters and in their implementation. As a result, we are able to

reduce filter lengths by a significant amount, typically by a factor of 80 or so.

Results from filter designs using frequency transformation are summarized in

Chapter 5.

3.1 Allpass Transformation

A frequency transformation or frequency warping in its most general sense is any

mapping E of the z-plane, i.e., ®(z- 1) maps the complex plane to itself. A filter g[n] is

a frequency transformed version of another filter h[n] if their z-transforms are

related by a substitution of variables, or

G(z -1 ) = H( E(z -1)).+ (3.1)

+ In this chapter, we choose to write "®(z-') is a rational function of z- "' instead, of

"E(z) is a rational function of z" because the former sentence provides us with more



We will refer to h[n] as the prototype filter and g[n] as the transformed or warped

filter.

We are only interested in frequency transformations that satisfy the following

properties:

1. ®(z-1) is a rational function of z- 1.

2. E(z-1 ) maps the unit circle to itself.

3. O(z -1 ) maps the interior of the unit circle to itself.

The first constraint ensures that the function G(z-1 ) is a rational transform if H(z-1 )

is rational. This is important because only filters with rational transforms may be

realized. The second constraint ensures that the frequency response G(e-j ' ) of the

transformed filter is related to H(e-j' ) through a warping of the frequency axis. One

way to visualize the response G(e-j") is to think of the frequency response H(e-j • ) but

with the frequency axis rescaled, so that the co-axis is "stretched out" in some region

and "squeezed in" in some other. The third constraints ensures that G(z-1) will, be

stable provided that H(z- 1) is, because all the poles will stay inside the unit circle

with the warping.

A new idea developed in this thesis is to use the frequency transformation not only

in the design phase, but also in the implementation of a filter. Just as the

understanding of the physical implementation; it states that we can substitute

every delay with another filter ®(z-1).



transformed and prototype filters are related by a substitution of variables,

G(z-') = H(O(z-1)), the system structure for G(z- 1) can be derived by a direct

substitution of

z-1 --+ (z-1 ) (3.2)

into the system structure for H(z-1 ). This is illustrated in Figure 3-1.

Canonical Direct Form II
Structure H(z-1)

Transformed Structure
G(z-1)=H(E(z-1))

y[n]

replace z-1

with E(z-1)

Figure 3-1 Derivation of G(z -1) based on a substitution of variables in H(z-').

It has been shown in [3, pg. 432] and [4] that the most general form of O(z -1) that

satisfies the above three properties is

x[n]
.'r-1--__r__-



N -1

6(z-1) -= z -ak foria,k<1. (3.3)
1 1-akz

In other words, ®(z- 1) is a cascade of first-order allpass filters.

We can constrain the choice of ®(z-1) by requiring that the mapping from H(e-j") to

G(e-j') be one-to-one. Otherwise, G(e-J') would contain multiple compressed copies of

H(e-j") and would greatly limit the types of frequency responses which can be

obtained. The constraint that E(z- 1) be one-to-one limits the choice of frequency

transformations to first-order, real allpass functions

-1

=a(z- ) -a where a is real and lal<l1. (3.4)
1- az-1

We will call this type of transformation an allpass transformation. Since, by choice,

this transformation maps the unit circle to itself, we can relate a frequency 0 of the

prototype filter with a frequency w of the warped filter by

Se j -a
e - for real 6, 0, a and a < 1. (3.5)

1- ae-j•

from which it follows that

o = arctan[ (1 - a 2) sin 1
[2a +(1+ a2) cos 0(

or equivalently,

S= w + 2 arctan acosin (3.7)

Notice that the function Oa(z-1) is bijective and its inverse is simply another allpass

filter whose warping parameter is -a. That is,



(3.8)

(3.9)

For rational filters, G(z-1 ) can be obtained from H(z- 1) by replacing every delay wivth

an allpass filter. The parameter a in ®(z -1) is called the warping factor. It is a free

parameter and gives us some control between the warping from H(e-J") to G(e-J"). An

example of the function a(e-j") for a few values of a is plotted below.

1
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0
0.2 0.4 0.6 0.8 1

Input Frequency (normalized by pi)

Figure 3-2 Frequencies warped by Allpass frequency transformations with

different parameters.

-1

1 + az -1

=Oa(z-1).

To summarize, a function G(z-') is a frequency transformation of H(z -') if

G(z-1) = H( a (z-'))

-1a
=H( )-

- az-1



For 0 < a < 1, the effect of the allpass transformation is to stretch the low

frequencies of H(e-i') and compress the high frequencies. Similarly, for -1 < a < 0,

the low frequencies are compressed and the high frequencies stretched.

This stretching and compressing of the frequency axis is the key benefit of

frequency warping and yields a substantial reduction in filter order.

As discussed earlier, an audio filter is often specified on a logarithmic scale due to

human auditory perception. If we plot out a typical response specification on a

linear scale, we would find that the filter detail is very dense in the low-frequency

region, and sparse (or monotonic) in the high-frequency. It is conjectured that the

narrow features of the frequency response down in the low-frequency range are the

main cause for long FIR filters. An intuitive understanding of this conjecture can be

obtained by considering the design of a bandpass filter. The narrower the passband

we require, the longer the FIR filter will be. Since an arbitrary audio filter can be

approximated as many passband filters connected in parallel, the minimum order of

an FIR filter that meets the requirement is dictated by the narrowest passband.

Hence, by applying a frequency transformation, we hope to increase the width of the

narrow features of the frequency response and thereby decrease the overall order of

the filter. This conjecture has been confirmed experimentally with the filter design

results in Chapter 5.

3.2 Properties of Allpass Transformations

In this section, we show several properties of allpass transformation which are of

interest to audio applications. We will assume that h[n] is an FIR filter with z-



transform H(z-1). The filter G(z-1) is defined to be the allpass frequency-transformed

(or warped) version of H(z-1) with some warping parameter a as in (3.9).

3.2.1 Order Preserving

Suppose that the FIR filter h[n] has N+1 filter coefficients, or equivalently, N zeros.

Then after allpass transformation, the warped filter G(z- 1) = H(9a(z- 1)) shall be a

rational IIR filter, with N zeros and N poles. Moreover, all the poles occur at a, the

warping factor. This property can shown by direct substitution,

H(z - 1) = h[0] + h[1]z - 1 + h[2]z- 2 +... + h[N]z -N

-1

G(z - 1) = H ( ) -a
1- az-1

z - 1 -a 2 -1 N (3.10)
= h[O] + h[1] + h[2] +... + h[N]

1 - az -  azaz

h[0] + h[1]z - 1 + h[2]z - 2 + ... + h[N]z - N

(1- az - 1)N

Thus, although allpass transformations changes the filter from FIR to IIR, it

preserves its order.

3.2.2 Allpass Property Preserving

It is surprising that if H(z -') is an allpass filter, then G(z- 1) will be an allpass filter

too, since the allpass transformation maps the unit circle to itself. However, for

completeness, we have included a proof here.

The most general form of an allpass filter H(z -1) is

Mr z-1 - dk m _ - e)(z1 - ek)
H(zk) = (3.11)
k=1 1- d k=z 1 k -1 -* 1



where the dk's are the real poles and the ek's are the complex poles of H(z-').

Then by warping the filter H(z-') with parameter a, we get
-1

G(z-l ) = H( Z -a
1 - az-1

Mr _ - dk M - ekJ-1 - - ek (3.12)

=r 1-az-1 kII _-1 1 --1

k=ll - dk -a k=1 - k - ek
1k 1 -  1- az-1  1- az-1)

To help manipulate the complicated expressions in (3.12), we consider the effect of

warping on the real and the complex sections separately. For each real section with

a pole at dk, the warped filter can be reduced to

-1z -a

1-az -1  dk z - 1 (1 + adk)- (a + dk)
- z - 1 - a (1+adk)-(a + dk)z -1

1- az1
(3.13)

-1 a +dkz
1+adk

1-a + d k -1
1+adk

Similarly, each section corresponding to complex-conjugate poles ek and e* can be

reduced to



z -a z -a
-az 1-az z - (1+ae )-(a+ek) z - '(l+ae)-(a+ek)

z-1 -a z - 1 -a (1+aek)-(a+ek )z -1 (lae)-(a + e;)z - 1

1ek1 - e k  OZ
1 - az- 1 - az-

-1 a + ekz- 1  a + ek
1+ ae 1+ aek 1 + ae 1 + ae( 3 1 4 )1 + a k k- -- (3.14)
1+aek 1- a+ek Z- 1 l+aek 1 a+ek -1

1+ aek 1+ aek

-1 a + ek -1 a + ek
z z

1 + aek 1+ aek

1 a+ek -1 a+ek -11 z 1-
1 k+ aek 1+ aek

Substituting (3.13) and (3.14) into (3.12), the warped filter G(z-1) can be expressed

as

Mr -1 M -1 -1
G(z-1) = -rkk (3.15)k=1 rk-1 H -1)(1 - S1

k--1 k= 1 SO- -sk -

where

a+dk
r k 1 + adk

a + ek8 k - -
1+ aek

are the new sets of poles. Since the form of G(z-1) in (3.15) is that of an allpass filter,

we conclude that allpass transformations preserve the allpass property of a filter.

The allpass preserving property of the allpass transformation is not directly useful

for designing audio filters. However, it is useful for the proof of the next property

which is much more significant: the minimum-phase preserving property.
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3.2.3 Minimum-phase Preserving

The allpass transformation also preserves the minimum-phase property of a filter.

Namely, if H(z-') is a minimum-phase filter, then so is the warped version G(z-1). As

discussed earlier, this property is important to audio filters because a minimum-

phase filter possesses the minimum energy delay property. The easiest way to see

why this is true is to notice that the poles and zeros of H(z- 1) which are inside the

unit circle will always stay inside after warping. This is because, by choice, e,(z-1)

must map the interior of the unit circle to itself.

Another intuitive argument of why an allpass transformation preserves the

minimum-phase property relies on the invertibility of the allpass transformation

Oa(z-1). Given a filter H(z-1), we can factor it into minimum-phase and the allpass

components as shown

H(z - 1) = Hap(Z- 1 ) - Hmin(Z-1). (3.16)

On the other hand, the transformed filter G(z- 1) = H(®a(Z-1)) can also be factored in

the same way,

G(z- 1) = Ga(z -1) - Gmi(z-1). (3.17)

Since we have already shown that the transformation preserves the allpass

property, Gap(Z- 1) must contain the transformation of Hap(Z'), which is an allpass

filter, plus possibly some extra allpass filter Kap(-1). That is,

Gap(Z- 1) = Hap(a(Z-1)) - Kap(Z -1). (3.18)



Conversely, since ®(z-1) is invertible, we can transform Gap(z - ) by ®0,-(z -1 ) to obtain

another allpass filter. Moreover, Gap(Oa z-1 -)) must be included in Hap(z- ') because,

by definition, Hap(z- 1) encompasses the entire allpass portion of H(z-1). Thus,

Hap(z- 1) = Gap(O9-11)) Cap(z - ') (3.19)

where Cap(z -1) is any extra term that HW(z-1) might contain. Then by replacing every

z-lin (3.19) with ea(z-1 ), we have a transformation of HaP(z- ) again.

Hap(a(z- 1)) = Gap(z -1) Cap(Oa(-1)) (3.20)

This implies that Hap(O(z-1)) contains at least every term of Gap(Z-1). However,

(3.18) also says that Gap(Z- 1) contains at least every term of Hap(O(z-1)). Therefore,

Gap(z - 1) = Hap(a(Z-1)) (3.21)

which implies that

Gmin(Z- 1) = Hmin( Oa(z-1)). (3.22)

A more formal proof is done by showing that each singularity (pole and zero) of

G(z-') is within the unit circle as long as the corresponding singularity of H(z-') is

within the unit circle. Let us assume H(z-1 ) is a rational, minimum-phase filter

with complex poles and zeros,

H(z-1) = (1-sz -1) (1 -s2z( - -l )  (3.23)
(1 -p1

z -1 ) (1- p2
z-l) (-pnz -l)

Since H(z-1) is minimum-phase, there is an equal number of poles and zeros.

Furthermore, I s I < 1 and I pi I < 1. Let us transform H(z -1 ) with parameter a so

that



Each term in the numerator and denominator can be simplified as

z- 1 -a - 1 - az - - sz - + sia1-s i
1- az-1 1 - az-1

1+ sia - (a + si ) z
- 1

1 - z - 1la 1 si Z-1
= (1+ sia) 1+sa .

1-- az-

By substituting expression (3.25) into (3.24), we obtain

G(z -1 ) = K (1- ciz - 1) (1- c2 z - 1 ) ...

(1-dIz-1) (1- d 2z -1) ...

K i + sia

i=1 1+ pia'

a+si a+p,
ci -=- anddi - a+

1+ sia 1+pia

With this new expression for G(z- 1), the question is whether the new poles and zeros

are inside the unit circle. That is, we must show that I c I < 1 as well as I d, I < 1. To

see why this is true, let us rewrite the magnitude squared of the numerator of ci as

a + si2 = (a+s)(a + )

= a2 + as, + a•, + Si2  (3.28)

= a2 + 2aRe{s,} + Si12

(3.24)

z-1-az-( -a
1 - az-1

1-1 -

1 -az

(3.25)

(3.26)

where

(1- cnz -1)

(1- dnz -1)

(3.27)

G(z-1) = H(O(z- 1))
-1Z -a

=H( )
1- az-1

-1_ -1

(1-s 1 sla )( 1 - s a)
1 - az 1 -az'

1-_1  ) (1 -P2 Z-1 a
1 - azl 1- az-



11 + asi 2 = (1+ as i ) (1 + a-i)

= 1+ asi + as i + a2 Si 2  (3.29)

= 1+ 2aRe(si + a 2 Si 2

Since 0• la I < 1, and 0: I si I < 1, we can write them as

a2 = 1 - for 0 < z 5 1
(3.30)

si,2 =1- a  forO<ac1.

By substituting (3.30) into the expression for the numerator ci in (3.28), we get

a + s2 = (1- ) +2aRe(s +(1 -) (3.31)

= 2 + 2aRe(s, } - -a.

Similarly, the denominator of ci in (3.29) becomes

1 + asi 12 = 1 + 2aRe{si } + (1- e)(1- a)

= 2 + 2aRe(si - - a + ca(3.32)
(3.32)

= a +si + Ea

> a + s i 2.

Therefore,

Ga+8 i
ci = < 1. (3.33)

I1 + as,

By repeating the argument above with si replaced with pi, we can conclude that

IdiJ = a + < 1. (3.34)
l +api

Thus, all of the singularities of G(z-1) are within the unit circle and therefore, G(z-1)

is a minimum-phase filter.

The denominator can be written as



3.3 Design Procedure with Frequency Transformations

This section is an overview of the entire design procedure when the frequency

transformation technique is used. It also discusses how one chooses a warping factor

so that the filter order might be minimized.

3.3.1 Summary of Design Steps

First we are given a target frequency response Hd(f) on a logarithmic scale. We

apply the Just-Noticeable Difference (JND) curve to obtain the upper and lower

tolerance bounds, U(f) and L(f) as shown below.
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Figure 3-3 A typical target Frequency Response Hd(f) with Just-Noticeable

Difference bounds U(f) and L(f).
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Figure 3-4 JND bounds U(e-j ") and L(e -j ') plotted on a linear, sampling-

frequency normalized scale.

Next, we use the allpass frequency transformation to "stretch out" the crowded low-

frequency region and simultaneously "squeeze in" the high-frequency region. How

we determine the parameter a in the transformation is explained in the next

section. Suppose we choose the warping factor a to be 0.93. The frequency warped

15

10

5

0

-5

-10

-15

Notice that the magnitude specification above is in dB or 20loglo(Magnitude), and

that the frequency spans roughly the entire audible range (20 Hz to 20 kHz). On a

linear scale normalized by sampling frequency, the upper and lower bounds, U(e-j~")

and L(e-j") have a very dense low-frequency specification as shown in Figure 3-4.



(Oa(e-"J)) now looks much more similar to its original log-scale specification,

gure 3-5.

-5

0 0.5 1 1.5 2 2.5 3
Frequency (radians/sec)

Figure 3-5 Warped target response Hd(®a(e -j )).

set off to design a filter that lies within those error bounds. We choose to

an FIR filter instead of IIR because of the availability of many design

Is. For this example with a=0.93, the shortest FIR filter has a length of 68

Figure 3-6 below confirms that its magnitude meets our constraints.
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Figure 3-6 FIR filter design results

To implement the actual filter, we simply build the FIR filter network and inverse-

warp it by replacing all the delays with allpass filters with parameter a= -0.93. The

final frequency response of the filter implemented using frequency warping is

shown below.
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Figure 3-7 Effective frequency response of the final system

As described in section 2.2, in general we can reduce the order of the FIR filter into

half by spectrally factoring out the minimum-phase part before the final warping.

However, since spectral factorizations reduce the magnitude of filter to only its

square root, we must compensate by squaring the magnitude of the input upper and

lower bounds before the first warping. The entire design procedure is summarized

into the following diagram.
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Figure 3-8 Summary of Design steps.

3.4 Choosing A Warping Factor

As mentioned earlier, it is only a conjecture that the frequency warping technique is

beneficial to digital filter design when the desired response is given on a logarithmic

Specification
Hd(t)



scale. We made no attempt in proving it. Nor did we mathematically characterize

the "shape" of the frequency response that would yield the low filter order. However,

experiments have shown such positive results (savings of nearly two orders of

magnitude in filter order) that we believe it is a rather plausible assumption and we

state it loosely here.

Assumption 1 (Even Spread): Given a fixed level of error, the order of the

(rational) filter that meets a desired frequency response is lowest when the details

of the desired response are spread out, or warped, as evenly as possible in

frequency. This is when considering the response on a linear frequency scale.

The next question is naturally in the choice of the allpass transformation that

achieves the above assumption. In other words, we must pick the warping

parameter a in the allpass transformation
-1

S(z-1) = -a (3.35)
1- az 1

such that the desired frequency response is spread out as evenly as possible when

plotted on a linear scale. From Figure 3-1, we know that the optimal value of a must

be positive because positive values of a magnify the low-frequency region where the

details of a specification are most crowded. We predict that the relation between the

values of a (in the range [-1,1]) and the corresponding minimal FIR filter is bitonic

in a; the order first decreases monotonically until it reaches a minimum and then

increases monotonically, as shown.
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Figure 3-9 Prediction of the relation between the minimal possible filter

order and the warping factor.

From the figure, it is worth noticing that the because the filter order is discrete, the

plot exhibits a stair-like shape. Secondly, because slight variations in a need not

change the order of the filter, the optimal warping parameter is not single-valued,

but lies in a range of values.

In practice, it would be much more convenient to have an a priori estimate of the

optimal warping factor instead of searching by trial-and-error for all a between 0

and 1. In order to obtain a closed-form solution for such an estimate, we formulate

the problem as follows.

Assume that the desired frequency response takes the form of N+1 piecewise

constant, logarithmically spaced bands, called band 0 through band N. Let the log-

scale center (in radians/sec) of the ith band be

B i = Bor ' for 0 < iN and for some r > 1 (3.36)

Minimal FIR filter order



where Bo is the log-scale center of the lowest band. r controls the spacing between

adjacent bands. For example, suppose that a sample of 44.1 kHz is used, the first

band is centered at 25 Hz, and the band spacing is one-third octave, Then

2,r25
B o - _____5 3.56 x 10- 3 rad / sec (3.37)

44100

and

r = 21/". (3.38)

We will assume the ith band occupies the frequency in the range

[Bir-g,Bir2). (3.39)

Therefore, the width of ith band is

1 1

Wi = Bir - Bir .  (3.40)

Define the linear-scale center of the ith band to be the average of the upper and

lower boundary, i.e.,

1 1

Ci = (B r + Bi r ) .  (3.41)

For convenience, we will now replace the notation ea(e-j" ) with Oa(w). After

frequency transformation, the width of the ith band will become

1 1

Wa.i = Oa(Bir ) -e(Bir 2) .  (3.42)

Let the log-optimal warping factor d be the one which maximizes the narrowest

band after warping, or more formally,

a = arg max min Wa,i. (3.43)
-l<a<l O<i<N-1



This minimax problem can be solved numerically using an exhaustive search by a

computer. It might seem at first difficult to perform an exhaustive search over the

variable a since it is a continuous variable. However, experience has showed that d

is usually in the range between 0.8 and 1. This allows us to search through a

discretized set of a within a restricted range.

As an example, suppose we design an equalizer for the entire audible frequency

range which extends from 20 Hz to 20 kHz. There are 30 bands (band 0 through 29)

and each band is spaced apart at one-third octave (r=2113). The first log-scale band

center is fixed at 25 Hz. Assuming that the sampling rate is at 44.1 kHz, then by a

searching through the values of a discretized to multiples of 0.001, we find that

6 = 0.933. We will use this value of the warping factor in the designs in Chapter 5.



Chapter 4

Polynomial Fitting within Upper
and Lower Bounds

As described earlier, our specification for an audio filter will take the form of two

real boundary functions, the upper and lower bound. We look for filters whose

magnitude responses are vertically bounded by those two functions, and have a

maximum ripple width less than some fixed bandwidth.

Our design procedure is as follows. First, we ignore the second requirement about

the maximum ripple width for a moment, and only search for filters that fall within

the prescribed magnitude bounds. We will call this the Constrained Ripple problem.

Then, after obtaining such filters, we will verify that they also satisfy the ripple

width constraint. This chapter concerns only the first part: designing filters that fit

within the upper and lower bounds.

We will concentrate only on Type I filters. That is, a filter h[n] with an odd length

M+1 that satisfies h[n]=h[M-n]. From Oppenheim and Schafer [3, pg. 465], a type I

linear-phase FIR filter can be transformed to a polynomial, and vice versa. By

applying this polynomial transformation to the upper and lower bounds, we

effectively get two polynomials in the range [-1,1]. We will refer to the upper and

lower bound as U(x) and L(x) respectively. Our job now is to find a polynomial that



lies in between these polynomials. Therefore, our discussion in this chapter will only

be based on a polynomial in the variable x. Once we find that polynomial, we can

inverse-transform it back to an FIR filter and then warp h[n] to obtain the audio

equalizer g[n].

In this chapter, we describe two design algorithms which return such polynomials:

Parks-McClellan and CONRIP. We will emphasize the lesser known algorithm

discovered by M. T. McCallig [5], [6]. The algorithm CONRIP (CONstrained RIPple)

iteratively finds a polynomial that meets the upper and lower bound constraints.

Moreover, the algorithm guarantees that the polynomials found has the minimum

possible length of all valid polynomials.

We chose not to analyze the performance of the windowing design method, because

this method cannot be performed without supervision. In Parks-McClellan and

CONRIP, the algorithms always perform a solution search as exhaustively as they

can for each given filter order. If the algorithms fail to find a solution, the only way

to proceed is to keep increasing the order until a solution is found. On the other

hand, when a windowing design method fails for a given filter order, it is unknown

whether the correct approach is to increase the filter order or to modify the target

response. This is due to the lack of direction in choosing the target frequency

response, which is allowed to lie anywhere within the vertical bounds. Certainly, we

may take an arbitrary approach in increasing the order every time windowing fails,

but this will yield a solution with unnecessarily large order.



4.1 Parks-McClellan (Remez) Algorithm

The algorithm of Parks-McClellan [7] adapted the second algorithm of Remez [8, pg.

95] to find a polynomial whose weighted error is minimized. Although Parks-

McClellan has been traditionally used in designing filters with piecewise constant

or piecewise linear response mixed with don't-care regions, there is nothing intrinsic

about the underlying theory that prevents one from designing a polynomial to fit an

arbitrary curve. The set of classes of functions to which the Remez exchange

algorithm can apply is very broad. Precise necessary conditions on the desired

function Hd(x) can be found in [8].

There are only three inputs to the Parks-McClellan algorithm: a filter order, a

desired function Hd(x) and a weighting function W(x). The Parks-McClellan

algorithm returns the Mth-order polynomial A(x) which minimizes the maximum

weighted approximation error. That is, it determines a set of coefficients

{po0, P, .. PM } such that for

M

A(x) = pxi, (=4.1)

and for a closed subset Fp consisting of disjoint union of closed subsets of the real

axis x, the maximum weighted error

max I W(x)(Hd (x)- A(x)) (4.2)
x Fp

is minimized [3, pg. 468]. Note that the weighting function W(x) does not give us

direct control over the absolute sizes of the approximation errors. Rather, W(x)

controls the ratio of the ripple sizes. Thus, for a given set of tolerances, it is



necessary to apply the Parks-McClellan iteratively with various filter orders until

the specifications are met.

In the audio filter design problem, we are given upper and lower bounds U(x) and

L(x) (where U(x) > L(x)), but no desired response Hd(x). In order to adapt the audio

filter design problem to use the Parks-McClellan algorithm, we propose using

Hd (x) = (U(x) + L(x)) (4.3)

and

1
W(x) = (4.4)

Y2 (U(x) - L(x)

If we apply the Parks-McClellan algorithm on this set of inputs and increment the

filter order until the weighted error is less than 1, then we have found a solution to

the constrained ripple problem as well. More precisely, if A(x) has a weighted error

less than 1 then,

1> W(x)(Hd (x)- A(x)), Vx EF,

Y (U(x) + L(x)) - A(x) (4.5)
Y (U(x) - L(x))

which makes

Y (U(x) - L(x)) > Y2(U(x) + L(x))- A(x) > -Y2(U(x) -L(x)). (4.6)

This reduces to

A(x) > L(x) (4.7)
and A(x) < U(x)

as desired.
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Figure 4-1 Polynomials of upper and lower bound U(x) and L(x) on the

interval [-1,1]. The middle curve Hd(x) is the average magnitude of U(x) and

L(x).

4.1.1 Automatic Order Increase

Another advantage of using the constant 1 as the threshold for rejecting or

accepting a design is the ability to detect early on if a given polynomial order is too

small. This capability allows the filter designer to increase the order without

carrying the algorithm to convergence. The detection can be done as follows.

Suppose the Remez algorithm is currently searching for an optimal polynomial at

An intuitive argument is as follows. Hd(x) is the middle curve between the two

bounds, and W(x) the inverse of one-half of the gap width. So at any point x, if the

error is larger than one-half the width of the gap, then it must have exceeded the

bound. The conjecture in setting Hd(x) to be the midline allows the resulting

polynomial to have as large a vertical "swing" as we can afford, which, in turn,

should keep the polynomial order low.

I



order L. In each iteration, we must compute an approximating polynomial based on

a certain set of interpolation points I xi, yi I for 0 • i • L. The algorithm states that

the y-coordinate of this set of points must be chosen to be as close to Hd(x) as

possible. Specifically, the weighted error between Hd(x) and the interpolating

polynomial when evaluated at xo, x1 , X 2 ,..., x, must be minimized. Note that this

does not mean that the weighted error evaluated at other points would be

minimized as well. By the alternation theorem, this produces a unique polynomial

whose weighted error at the points xi are of equal magnitude and alternating sign.:

g,-s, , -s,..., (-1) L+1&

In the proof of convergence of this algorithm, Cheney [8, pg. 98] has shown that the

absolute value of the weighted error, 6S , forms a bounded, monotonically

increasing sequence with each iteration. This means that we can increment the

polynomial order L as soon as S11 > 1, instead of waiting until I15 converges.

Unfortunately, even if we try every order n starting from n=2 as the polynomial

order, until the weighted error is less than unity, we still cannot be certain if the

filter order we have arrived is the minimum taken over all polynomials which are

the solutions to the constrained ripple problem; it is only the minimum order taken

from the set of solutions from Remez algorithm when given the above Hd(x) and

W(x) as inputs.

4.2 CONRIP algorithm

Although the method above describes a way in which we can arrive at a solution, it

does not guarantee that the solution has minimal order. In his thesis [6], McCallig



proved that a filter resulting from his algorithm will always have the minimal

length among the valid filters meeting the upper and lower constraints. Also, he

showed that if his algorithm fails to find such a polynomial, then no polynomial

exists which meets the constraints.

To date, there have been very few references to his thesis. Hence, we would like to

reiterate some of the highlights of the theories that he developed. Although some

theorems have been proven for generalized polynomials (or Chebyshev Systems), our

presentation here is in terms of ordinary polynomials 1, x, 2,..., x" since they are of

main interests to us.

Definition (P,): Given continuous functions U(x) and L(x) on [-1,11 such that U(x)

> L(x) for each x, let P, be the set of all polynomials p(x) of order n,

n

p(x) = pix i  (4.8)
i=O

such that L(x) < p(x) < U(x) for -1 < x < 1. By the Weierstrass Approximation

Theorem [8, pg. 66], P, is non-empty for sufficiently large n.

Before introducing the next definition, it is worthwhile to point out that in order to

specify a polynomial of degree n uniquely, we need exactly n+1 coefficients

Po, P 1,...,Pn. Alternatively, we can also specify it with n+1 interpolation points

(Xo',Yo), (xi, yO), -.. , (Xn, y,) where xi ,xj for i#j.

Definition (P,): Given U(x) and L(x), let P, be the set of nth-order polynomials

which can be specified by interpolation points alternately on U(x) and L(x), the first



point being on U(x). The abscissas of the interpolation points are arranged in

increasing order, i.e., xo < x1 < ... < x,.

Definition (Pd): The set P1 has the same definition as Pu except that the first

interpolation point is on L(x).

Note that a polynomial could be in P, and P1. For example, consider a polynomial

g(x) from Pu. At xo, g(xo)=U(xo) by definition. However, in the region where x < Xo, we

cannot predict how g(x) behaves. It might cross L(x) at, say, x 1_. This means we can

also specify g(x) by interpolating through

(x-_,L(x-1)), (x0,Yo), (x1,Y1 ), "", (Xn-1,Yn-1)-

Therefore, g(x) e Pu n P1.

Theorem 4.1 (Existence of p. and p_): If n is large enough so that Pn is not empty,

then

I. P, rn P, contains a single polynomial p+

II. Pn n P1 contains a single polynomial p_

Proof: The proof may be found in [9, pg. 72].

Theorem 4.1 is fundamentally important to CONRIP. It states that if, for a fixed

order, there exists any polynomial lying within the bounds at all, then there must

also exist two polynomials which touches the upper and lower boundaries



alternately. This is the reason that CONRIP directs all its effort only into searching

those two particular polynomials: p+ and p_.

4.2.1 Conditions on the Minimal Order of the Solutions

McCallig also proved the following two theorems which are very useful in

determining if a given order n is the minimal order.

Theorem 4.2 (Conditions on n being too small): P, is empty if and only if P,: n

Pt is not empty.

Theorem 4.3 (Conditions on n being too large): The coefficients of the term x"

of p+ and p_ are of opposite signs if and only if the polynomial order n is not

minimal.

Proof: The proof can be found in [6].

4.2.2 Description of the Algorithm

As an important part of his thesis, McCallig presented a very efficient algorithm

that finds p, and p_. The CONRIP algorithm is strikingly similar to the Remez

exchange algorithm. With each passing iteration, the state of the algorithm takes

the form of n+1 interpolation points (xi, yi). During each iteration, the interpolation

points would produce a unique polynomial, from which we obtain the new set of

interpolation points. If n is sufficiently large so that Pn is non-empty, then the

algorithm converges to p+, and, with some modification in the algorithm, p_. If n is

too small, the algorithm would eventually produce a polynomial which is in P, n Pt.

Therefore, we need not carry the algorithm to convergence in order to realize that



the order is too small, because we can monitor if the current polynomial has the

characteristics of both P, and P1, and if so, we must increase the order n.

4.2.3 Solution Polynomials: p. and p_

In his thesis, McCallig also showed that except in some very special cases, these two

polynomials are different. By definition, these two polynomials are different in the

manner in which they touch the boundaries. The polynomial p. touches the upper

bound before the lower bound, while for p_, the opposite is true. Experience has

shown that these two curves often "move" in opposite directions. That is, when p. is

near U(x), p_ would be near L(x) and vice versa. Moreover, because p, and p_ are

both solutions to the constrained ripple problem, any weighted sum

ap, + (1 - a)p_ for 0< a 1 (4.9)

would be a valid solution as well. This suggests that we can use a combination of p+

and p_ to reduce the size of the ripples in the final solution.

4.3 Comparisons on Practical Issues

From an implementation point of view, the Parks-McClellan and CONRIP

algorithms are nearly equal. Both algorithms involve evaluating a polynomial on a

discrete x-axis, and finding the maxima and minima of errors.

The characterization of the polynomial of the minimal order n is only available in

CONRIP but not in Remez. By merely observing the polynomial coefficients, it

allows us to detect if the current filter order n is too large and may be reduced.

However, the ability to detect early on that n is too small can be done in both

algorithms. This option is especially valuable when we are searching for the



minimal order n starting from a small value. It enables us to stop iterating before

the polynomial has converged and move on to a higher order.

4.4 Precision Requirements in Filter Design

Both CONRIP and the Remez exchange algorithm produce intermediate polynomial

coefficients. We have found that for high order designs (n > 30) the precision needed

to represent these coefficients exceeded that of standard double precision. In order

to solve this problem, we created a custom arithmetic system in C with variable

precision. With each iteration, the precision is adjusted dynamically according to

the numerical error in the interpolated data. Fortunately, after the transformation

from Chebyshev polynomials to Type I FIR filters, the coefficients of the final FIR

filters usually have a dynamic range of about two to three orders of magnitude,

which is conducive to actual finite-precision implementation.



Chapter 5

Results From Filter Design
Experiments

We tested an overall design procedure using the target frequency response curves

that were described in section 2.3. We examined 20 designs and compared the

resulting filter orders that result from using Remez and CONRIP. We also discuss

the experimentally obtained optimal warping parameter and compare it with the

theoretical results.

5.1 Filter Orders and Comparison with Remez Algorithm

Recall that in obtaining a truly minimal filter order for a given target frequency

response, there are two successive minimization processes. First, we must warp the

target response with an optimal warping factor. Second, we must design an FIR

filter of the minimal order to fit the warped response. In the first minimization, we

first find the solution in (3.43) by a computer search to obtain an approximate

warping factor. Then we search in the (discretized) neighborhood of that estimate.

For each neighboring warping factor, we use both CONRIP and Remez to design

FIR filters with orders as low as the algorithm can find. As described in section 3.3,

the FIR filter is then implemented with warping so that the effective response

meets the target.



Some of the final design results of both algorithms follow. In the figures below, the

effective filter response is shown with the Just-Noticeable Difference bound. All the

results from CONRIP are for the average response (p, + p_)/2.
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Figure 5-1 (a)-(d) Sample design results.
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The following table summarizes the minimal filter orders from each algorithm.

Target # CONRIP order Remez order Remez-CONRIP

1 65 65 0
2 63 63 0
3 77 77 0
4 116 116 0
5 60 60 0
6 63 62 -1
7 63 63 0
8 72 72 0
9 60 61 1
10 71 71 0
11 91 91 0
12 67 67 0
13 98 98 0
14 49 50 1
15 62 62 0
16 44 44 0
17 64 64 0
18 64 64 0
19 > 130 > 130 N/A
20 > 130 > 130 N/A

Table 5-1 Minimal orders of FIR filters.

Several observations can be made from the above table. First, the minimal order

from the two algorithms are nearly always equal. There are three filters in which

the minimal filter orders of the two algorithms are different. It is surprising that

Remez even outperforms CONRIP in target#6, because the theory behind CONRIP

guarantees the minimal order of its solution. We believe that this phenomenon can

be explained by the way the design algorithms are coded on the computer.

Specifically, we believe that the minimal order for target#6 was on the borderline

between order 62 and 63. Because both programs detect the convergence based on



some reasonably small, yet arbitrary constant, CONRIP might have decided

prematurely that the algorithm has converged but does not meet the boundary

conditions; if it had continued a few more iterations at order 62, it might have

succeeded without having to increase the order to 63.

The other thing we noticed from Table 5-1 is that the last two target designs did not

reach a result, although attempts were made to design filters of order up to 130. To

design a filter of such a high order requires very high precision arithmetic. At the

time we aborted these design processes, the computer was using roughly 33 bytes to

store the mantissa of each variable. This is equivalent to about 80 decimal digits,

which is five times as accurate as standard double precision. The polynomial

interpolation procedure required too much time and was aborted. This suggests that

without warping, these algorithms would have required such a long mantissa

representation that a computer might either run out of memory or take an

unreasonably long time to design.

5.2 Experimentally Obtained Optimal Warping Factors

Based on the numerical solution to (3.43), the optimal warping factor is estimated to

be d =0.933. In the design experiments, we search for the optimal warping factor in

the neighborhood of that estimate. By discretizing the values of the warping factor a

to multiples of 0.01, we find the minimal filter order (according to each algorithm)

for each value of a until we find a local minimum. As described in section 3.4, we

conjecture that there is only one minimum for all a, which implies that the local

minimum found is also tlhe global minimum. The experimentally obtained optimal

warping factor according to each algorithm is shown in the following table.



In Table 5-2, we notice that Remez and CONRIP always achieve minimal order at

the same warping factor. This shows even further that the two algorithms are

roughly equivalent in terms of performance for filter orders within our interests.

Moreover, the experimentally obtained warping factor is always below the predicted

g =0.933, which is greater than the observed optimal warping factor in Table 5-2.

Recall from Figure 3-2 that a warping factor with higher values corresponds to

stretching out the low frequencies even further. This is reasonable when one takes

into account the form of the JND curves in Figure 2-3. Due to human perception's

better resolution in low frequencies, JND curves have bigger values in the low-

frequency range, which means bigger errors are allowed. Since the problem

statement from which i. is derived assumes no partiality in the low-frequency

Table 5-2 Experimentally obtained warping factors.



range, it predicts a value that would "help" the low-frequency range more than it

really needs to.

I



Chapter 6

Implementation Issues

Thus far, the frequency warping technique seems like an attractive method of

equalizing signals due to the considerable reduction in the filter orders when

compared to non-warped methods. In this chapter, we address other issues

concerning the actual implementation of this technique. We analyze the signal flow

graph of typical implementations and calculate the error due to finite numerical

effects. We also summarize the number of arithmetic operations and number of

registers required per output sample, and compare them to some other filtering

methods.

6.1 Quantization Noise Analysis in Fixed-Point Arithmetic

Several questions naturally arise concerning the behavior of warped filter in the

presence of coefficient quantization and roundoff noise. For a given transfer function

H(z), there are several different implementations (e.g., direct form, cascade,

parallel, etc.) which are theoretically equivalent but behave differently in the

presence of numerical errors. We will focus on system structures derived by direct

replacement of delays by first order allpasses. We will analyze structures based on

direct form FIR and transposed direct form FIR filters.

Direct replacement is used without further simplification for a number of reasons:



1. It is well-known that structures based on a cascade or sum of low-order

sections are more robust than high-order structures [3, pg. 337].

2. First order allpasses remain allpass regardless of the quantization of a,

as long as the coefficients in the numerator and the denominator are

quantized the same way. Thus, we will always realize a true frequency

warping. The quantization of a is of no real concern because we can limit

a to realizable values during the filter design procedures.

3. There is no penalty in memory over higher order implementations. As for

computation, the number of multiplications is 1.5 times more than that

required by high-order implementations.

6.1.1 Warped Direct-Form FIR Implementation

This section analyzes implementations based on direct form FIR systems. These are

the more apparent choice of implementation and we describe them first. A direct

form FIR is shown in Figure 6-1 (a) and the corresponding warped version in Figure

6-1 (b).

z-1  z-1  Z-1

x[n]

h[O] h[1] h[2] h[3] h[M-1]
(ay[n]

(a)



(b)

Figure 6-1 (a) Direct Form FIR Implementations. (b) Warped, Direct Form

FIR Implementations.

Since every multiplication in the above flowgraph is performed with finite-precision

fixed-point arithmetic, there is some error introduced after each multiplication. We

model that error as a noise source injected into the signal, as shown in Figure 6-2.

y[n]

Figure 6-2 Warped, Direct Form FIR implementation with noise source

injected after each multiplication.

We will make the same assumptions about the each quantization noise source as do

Oppenheim and Schafer 13, pg. 353]. Those assumptions are:

1. Each quantization noise source ci[n], di[n], and el[n] is a wide-sense stationary

white-noise process.

y[n]



2. Each noise source has a uniform distribution of amplitude over one quantization

interval.

3. Each quantization noise source is uncorrelated with the input to the

corresponding quantizer, all other quantization noise sources, and the input to

the system.

Assuming that we use B-bit arithmetic in all of the above operations, each

quantization noise source would be uniformly distributed in the range +± 2-B. Thus

the variance of each noise source is

2 2 2 2 -2B
C0, d, e= 1 (6.1)

To calculate the output of this system due to the noise sources, we first notice that

we can combine all the sources ci[n] to a single source C[n] which is injected right

into the output y[n] with a variance M times as high as that of each individual ci[n].

Namely,

Cr2 = MU2 = M 2 - 2B

ac = a =M (6.2)

Next, in each of the allpass sections, the noise di[n] is filtered by an allpass filter

before combining with ei[n] of the same section. However, since allpass filters have a

unity gain and leave the variance of the filtered noise di[n] unchanged, we can

combine ei[n] and the allpass-filtered version of di[n] into a noise source Di[n] whose

variance is

2 U2 1 +r21 2
Di e= e di 2 H, (ej ) 2 da

2 2
= ei + ad (6.3)

2-2B
12



With the new, lumped noise sources C[n] and Di[n], the system now looks as shown

in Figure 6-3.

Figure 6-3 Warped, Direct Form FIR implementation with the noise

sources ci [n] combined into C[n], and di[n] and ei[n] into Di[n].

Let us now analyze the path from each noise source Di[n] to the output y[n] as well

as any amplification occurring along it. At each junction A, B, C,... in Figure 6-3, the

signal Di[n] may branch out two ways; it may continue to flow horizontally to the

right through a series of allpasses, or it may travel down a vertical branch where it

is multiplied by some filter coefficient h[n] before being accumulated to the output.

Since allpass filters have a unity gain, the variance of Di[n] is unchanged until it is

multiplied by h[n]. The variance of the output due to each noise source Di[n] is

M-1

Output variance due to D i [n] = n i h[n] I2 a
n=i+l (6.4)

<5 (M - i - 1)o2 hax

where

hmax= max h[n]l.
O n5M-1

The variance of the total noise due to numerical roundoff is therefore



M-2 2-2B M-2
Output var. from C[n] + Z Output var. from DA [n] M--+ (M -i -1)cr h

i=0 i=o

2 -2B M 2  
2 -2B

- M + h 2 ) (6.5)
12 2 12

2-2B
- (M+h 2  M2

12

To measure the effect of the roundoff noise in number of bits, we calculate the ratio

between the noise standard deviation and the amplitude of the least significant bit,

and then take the log of that quantity. Assuming that all operations are done in B-

bit arithmetic, the number of output bits that are "roughly" corrupted by the

roundoff noise in the direct form FIR implementation is

ND = log[ standard deviation of total roundoff noise
magnitude of least significant bit

--2B (M + h 2M2

12 max
< log 2  (6.6)

= llog2 (M+h2:M2)- 0log2 12

=1 log 2(M+h2M2)_1.8 bits.

Suppose there were no warping, then the output noise would be due to C[n] alone.

The amplitude of this noise when measured in bits would be

No = 1g2 standard deviation of C[n]

I[magnitude of least significant bit

2 (M2-2B/ 12)1/2 (6.7)= log2 -6m7)
2-B

S1log 2 M- 1.8 bits.
2

Therefore, by warping, we have increased the number of corrupted bits by



ND -N o = log 21(M+hax,,M2 )-1.8 -( g2
(6.8)

= log 2 (1+h 2M) bits.

As an example, a typical value of M for a warped filter designed to equalize the

audible range spectrum is about 2'. If we let hma be 1, then the roundoff error of the

warped implementation will cost us an extra ND - No ½ h log 2 27 = 3.5 bits in

addition to the inevitable No = 1h log2M - 1.8 = 1.7 bits. This can be a serious penalty

especially when considering that most systems today handle audio signals at no

more than 16 bits. Moreover, the number of additional corrupted bits due to

warping, NDo - No, grows as a function of M. This shortcoming makes warping from

a direct form FIR structure a rather unattractive implementation, despite all its

simplicity.

6.1.2 Warped, Transposed, Direct-Form FIR Implementation

We now analyze the transposed direct form implementation. Surprisingly, the effect

of numerical noise is not as severe when we start with a transposed structure.

Consider a transposed system and its corresponding warped version below.

y[n]

(a)



a a a

(b)

Figure 6-4 (a) A Transposed Direct Form implementation of an FIR filter.

(b) A warped version of the transposed form.

With the same assumptions as in the previous section, we introduce roundoff error

noise after each multiplication, as shown in Figure 6-6.

Figure 6-5 Warped, Transposed Direct Form FIR with noise sources.

From the above diagram, we observe that we can combine noise sources which are

injected to the same node into a new noise source. Namely, we can define

rMl[n] = cM_-[n] + dM_l[n]

r,[n] = c,[n] + d,[n] + ei+ [n] for 1< i < M - 2 (6.9)

and ro[n] = co[n] + e1[n].

so that the system looks as follows.

y[n]

dm, [n] dM-2[n] dM_[n]



y[n]

Figure 6-6 Warped Direct Form FIR with noise source combined

The variance of the noise ri[n] is now

2 3 3 3 2 - 2B  - 2

or < +cd+ e =3 2 -2B-2 . (6.10)
12

Note that the equality holds except at endpoints h[M-1], and h[O].

Let R[n] be the output due to ri[n] summed over all i. Since an allpass filter has

unity amplitude gain, the variance of R[n] can be expressed simply as

a2 < Ma 2 = M2 - 2B- 2

Finally, to measure the effect of the noise in terms of bits, we calculate the log of the

ratio between the noise standard deviation and the magnitude of the least

significant bit to be

NT = log2 aR
log magnitude of LSB

(M 2-2B-2 ) 1/2
= log2  (6.12)

2-B

S1log2 M-1.
2



Without warping, the output due to roundoff would be due to all the sources c,[n]

alone. Therefore, the number of corrupted bits of a transposed, unwarped, direct

form is equal to that obtained from an untransposed, unwarped implementation, or

No in (6.7). The number of extra corrupted bits that warping incurs is then

NT -N o = 0log2 M- 1)- 10(log2 M-1.8 (6.13)

= 0.8 bits

which is independent of M.

As an example, for a typical value of M as 2', the number of corrupted bits of a

warped, transposed structure is NT = ½ log 2 27 - 1 = 2.5 bits, whereas that of an

unwarped implementation is No = ½ log227 - 1.8 = 1.7 bits. This shows that warping

from a transposed structure gains us the numerical accuracy without any additional

computation cost, and is a more desirable method of implementation than warping

from an untransposed form.

6.2 Memory and Computational Requirements

Given a warped implementation of a length M FIR filter as above, the following

table summarizes the number of operations and storage required per output sample

when implemented using the warped, transposed direct form FIR implementation.

It also compares these requirements to those required by unwarped transposed

direct form FIR, as well as by N-point overlap-save Fast Fourier Transform (FFT).

In creating this table, we have assumed that one complex multiplication requires

four real multiplications and two real additions. Also, we assume that the FFT

coefficients of the FIR filter is computed off-line.



Number of Warped, Unwarped, Overlap-Save N-point
operations transposed direct direct form FIR Fast Fourier

form FIR Transform (FFT)
(Typically M - 70) (Typically M ~ (Typically M ~ 4,000)

4,000)
4Nlog2 N + 2N

Real Multiplication 3(M-1)+1 = 3M-2 M N- M +1

6N log2 N+N
Real Addition 3(M-1) = 3M-3 M-1 N - M +1

Registers M-1 M-1 7N

Table 6-1 Computation requirements.

Let us substitute in typical values in the table above to obtain a rough comparison

among the three techniques. Without warping, the order of the target FIR filter will

be much larger than that designed through warping. From design results in

Chapter 5 and our experience, the orders of the FIR filters designed with and

without warping are on the order of 70 and 4,000 respectively. The unwarped, direct

form FIR is clearly the most inefficient method of convolution and can be eliminated

from our comparison first. A reasonable value of N, the FFT length, is twice as big

as M. Therefore, assuming N to be 8,000, we find that the total number of

operations (additions and multiplications) per output sample of overlap-save is

about 270, while that of warping is 420. This shows that the FFT-based overlap-

save is more computationally efficient than warping, at least when measured in

number of arithmetic operations.

Still, warped filtering has a few advantages over overlap-save method from a

practical point of view. First, the latency of the warping method is essentially zero,

since each input sample affects the output instantaneously. Overlap-save, on the



other hand, requires the buffering of up to N-M+1 samples before the convolution of

each block. Typically, this latency would be unacceptable in real-time audio

applications. The reason is that the longest latency that our ears can tolerate is

approximately 30 ms. This limits N to be no more than (44.1 kHz).(30 ms) = 1323

for a sampling rate of 44.1 kHz. Therefore, either M must be significantly smaller

than N which is 1323, or we would lose the efficiency of FFT. Clearly, such a low

order of M is not realizable with dense, unwarped low-frequency details. Another

advantage of warping is the low memory requirement. For M=70, the registers

required by warping is only about 70, as opposed to 7N=7.(8,000)=56,000 required

by overlap-save.



Chapter 7

Conclusions and Suggestions for
Further Research

The goal of this research was to apply the technique of frequency transformations to

the design of practical audio equalizers. We have discussed some properties of the

allpass transformation, and described how it is incorporated into filter design

processes. As experimental results in Chapter 5 show, frequency transformations

can reduce the order of the result significantly. We also made use of the JND

bounds by constraining our filters within the prescribed error bounds.

The two filter design algorithms that we used, Parks-McClellan (Remez) and

CONRIP, have demonstrated nearly equivalent performance in terms of design

order. This is somewhat surprising since we anticipated that CONRIP would clearly

outperform Remez especially when we consider CONRIP's many rigorous theorems

supporting its optimality. A typical audio filter with 1/3-octave resolution would

have an order of about 70, which is substantially lower than that of a typical FIR

filter without warping. Finally we showed that a fixed-point implementation of

warped filters has satisfactorily low quantization error, and is therefore, feasible to

implement.



An open question one might pursue is to determine a more efficient implementation

of warped filters. In Chapter 6, we showed how warping might be done by replacing

delays in a direct form FIR structure with allpasses. This essentially changes the

filter type from FIR to IIR, which means we can no longer use the efficient FFT to

convolve audio signals. However, the class of IIR filters to which warped filters

belong is so special that it suggests an FFT-like implementation. Specifically,

although warped filters have poles, all poles occur at a, the warping factor.

However, the question of efficient forms of implementation is not as serious when

we consider that typical warped filters have orders of less than 100 points, which

are usually low enough that most designers might be indifferent about using the

FFT.

The problem of finding an optimal warping factor a for a given specification also

remains. In this thesis, we have shown how to obtain an estimate of ac which is

generally an upper bound of the true i, as discussed in section 5.3. Having a closed-

form solution for e or an estimate that takes into account the JND curve would

save the time to search in the neighborhood of the estimate.

Finally, we need to conduct listening experiments to test if our assumptions about

the JNDs are correct. As elaborated in section 2.4, the test filter from which the

JND curves are derived contains only one ripple in frequency, rather than multiple

ripples as in our design results. It still remains to be tested if this extension of the

JND bounds causes the listener to detect any difference in the audio signals.
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