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Abstract— A new dynamic model is presented for piezoelectric
tube actuators commonly used in high-precision instruments. The
model captures coupling between motions in all three axes such
as bending motion due to a supposedly pure extension of the
actuator. Both hysteresis and creep phenomena are included
in the overall actuator model permitting modeling nonlinear
sensitivity in the voltage to displacement response. Experimental
data on hysteresis and creep are presented to support the
modeling. Experiments and model predictions show that due to
coupling a voltage Vz corresponding to vertical displacement
will produce lateral displacement that acts as a disturbance
to the main lateral response. The resonance frequency for the
lateral dynamics is inherently lower than that of the longitudinal
dynamics. Therefore, Vz is expected to contain frequencies
that may excite the lateral resonance. Accordingly, this out of
bandwidth disturbance will not be well compensated for either
in open or closed loop control of the actuator. In order to preserve
performance in open loop actuator control and stability and
performance in closed loop control, a large reduction in the
bandwidth of vertical motion would be required to avoid exciting
the first bending mode.

I. I NTRODUCTION

Piezoelectric actuators can provide sub-nanometer
displacement and achieve a high-bandwidth. As a result, they
are used in many high-precision motion applications such as
micro and nano-positioning motion stages. Therefore, there
has been extensive work in the literature on dynamic models
of piezoelectric actuators. Piezoelectric actuators come in
many different forms and shapes inc;uding tube actuators.
The tube actuator offer a compact design, three degrees
of freedom motion, and low-cost of construction. These
desirable features have made tube actuators widely used in
precision instruments such as scanning probe microscopes
(SPM).

Several physically-based models for the tube actuator are
available in the litreture such as [1]–[3]. Other researchers [4],
[5], have presented models that were based on experimentally
identified data for motion in a single axis. These models
however, describe the dynamics of an ideal uncoupled tube,
ignoring coupling between motion of different axes. This
coupling would be of great impact on system performance
especially if the actuator was to be part of a feedback
system. In addition, these models describe the fast mechanical
dynamics of the piezoelectric actuator ignoring creep

effects which are of paramount importance to positioning
repeatability in open loop operation such as in most SPM.
Furthermore, hysteresis and nonlinear voltage to displacement
sensitivity are not captured by the aforementioned models.
Therefore, there is a strong need for an accurate dynamic
model that accurately captures these key characteristics of the
tube actuator. This is the objective of this paper.

The paper is organized as follows. Section II presents
modeling results. In Section II-A, a model for the actuator’s
lateral dynamics will be presented, while actuator longitudinal
dynamics are presented in Section II-B. Section II-C, discusses
and presents how a hysteresis model would be correctly
incorporated in the overall model of the tube. Supporting
experimental data is also presented. A creep model is presented
in Section II-D along with experimental results. Discussion is
given in Section III, while summary and concluding remarks
are given in Section IV.

II. PIEZOELECTRICTUBE MODEL

The piezoelectric actuator shown in Figure 1, is a thin-
walled tube. The tube has four electrodes of equal segments
on its outer surface, and either a single or four electrodes on
its inner surface. Applying a voltage to its inner electrode(s)
results in longitudinal motion along theZ axis. Motion in
theX or Y direction is typically generated by subjecting two
opposite electrodes to two voltage signals that have the same
magnitude but180o out of phase. The tube is generally used
with one end fixed and the other end is free to position a load.
Therefore, a massmo representing lumped mass of a load and
a reaction forceFr(t) are included in the model at the tube’s
free end.

A. Piezoelectric Tube Lateral Dynamics

Models avialable in the literature are for an ideal uncoupled
tube actuator. Due to inevitable machining tolerances, some
eccentricity is always present in the tube, typically a maximum
of 50µm for a 12.7mm diameter tube [6]. This seemingly
small eccentricity could be in fact significant when the actuator
is used in precision instruments with nanometer resolution.
The newly developed model presented within is based on two
eccentric cylinders, as shown in Figure 2, with eccentricityδx
and δy from the geometric center of the outer cylinderOo.
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Fig. 1. Piezoelectric tube actuator.
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Fig. 2. Cross-section of the piezoelectric tube actuator.

The outer and inner radii areRo andRi, respectively. The
angleθ is measured from theX-axis.

The model is based on elementary bending theory for thin-
walled members. The main assumptions are small deforma-
tions and angles, that plane sections of the tube remain plane
after deformation, material is linear elastic, and negligible
effects of rotatory inertia and shear deformation. The rotatory
inertia of the end massmo and tube are also neglected. The
first step in deriving the model is finding the centroidC of the
cross section. The coordinates of the centroidx̄ and ȳ relative
to Oo are giving by

x̄ =
∫
xdA∫
dA

=

∫ 2π

0

∫ Ro

Ri(θ)
r2cos(θ)drdθ

π(R2
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where

Rδ =
√
δ2x + δ2y , θδ = tan−1(

δy
δx

) (3)
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√
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i −R2
δ sin

2(θ − θδ)

For a positiveδx andδy, the centroid will be located below and

to the left ofOo. Because of the eccentricity, theX andY axes
are no longer the principal axes of inertia, i.e. axes along which
lateral deflection occurs. The new principal axes of inertia1
and2 can be found from symmetry. Axis1 is along the point
of minimum thickness atθδ, while the2-axis is perpendicular
to it. The Z-axis (or 3-axis) passes through the centroidC.
For thin-walled members, the only stress is assumed to be in
theZ-direction. Therefore, the linear constitutive relation for
piezoelectric material [7] reduces to(

εz
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)
=
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)
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where σz is the stress,εz is the strain,Dr is the electric
displacement,Er is the applied electric field, and subscript
r denotes the radial direction. The electric fieldEr will be
assumed constant over the tube thickness.

Assuming constant inertiaρpAp per unit length, whereρp

is the density andAp is the cross sectional area, the equation
of motion in the1-direction is

ρpAp
∂2u1p

∂t2
+ bp1

∂u1p

∂t
=
∂F1sp

∂z
(5)

wherebp1 is the viscous damping coefficient, andF1sp is the
shear force in the 1-direction. The shear force is related to the
bending moment byF1sp = −∂M2p/∂z, where the bending
moment is given by

M2p = −
∫ ∫

rcos(θ + θδ)σz dθ dr (6)

In Equation (6), the limits of integration with respect tor are
from RCi to RCo ; the distances fromC to the inner and outer
cylinders, respectively. The variation of the radii with respect
to θ, is given by
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√
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whereRCOi
andRCOo

are the distances fromC to Oi and
Oo, respectively, andRi andRo are the radii of the inner and
outer cylinders measured from their own geometric center as
seen in Figure 2. Substituting the first equation of (4) into (6)
and integrating with respect tor, leads to
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where
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whereM2p is the bending moment about the2-axis,M2V
is

the bending moment about the2-axis due to the applied volt-
ages, andRcurv1p is the radius of curvature of the deformed
tube in the1 − Z plane, which is related tou1p, for small
deformations by

1
Rcurv1p

=
∂2u1p

∂z2
(15)

Substituting Equations (11) and (15) into Equation (5), results
in
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11
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∂z4
= 0 (16)

The boundary conditions are zero deflection and slope at the
fixed endz = 0, and a balance of forces in the1-direction and
zero moment about the2-axis at the free end. Mathematically,
the conditions are

At z = 0
u1p = 0 (17)

∂u1p(0, t)
∂z

= 0 (18)

At z = Lp

F1r(t) = mo
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The concentrated loadsF1r(t) and M2V
appearing in

Equations (19) and (20) result in time-dependant boundary
conditions. As a result, the technique of separation of variables
could not be used to solve for the deflection. Some authors
have suggested moving the time-dependant terms from the
boundary conditions and including them in the equation of
motion as concentrated loads. However, using this method
would result in mode shapes that would not converge in
satisfying the ”true boundary conditions” regardless of the
number of terms retained in the summation of modes. Al-
ternatively, it is possible to use techniques as outlined in
[8]. However, the resulting transfer function model of the
system would be proper (number of zero equals the number
of the poles). Consequently, that model would not capture the
high-frequency magnitude roll-off observed in an experimental
frequency response. Alternatively, an approximate solution can
be used to arrive at a low-order model that captures the
number of modes of interest. Annth mode model based on

Rayleigh-Ritz method will be formulated. The deflectionu1p

is approximated by a finite sum as

u1p(z, t) ≈
n∑

i=1

ψ1pi(z)T1pi(t) (21)

where ψ1pi are trial functions that satisfy the geometric
(displacement and rotation) boundary conditions but not nec-
essarily the natural (force and moment) boundary conditions.
The resulting model is
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whereT1p = [T1p1...T1pi]T , M is the mass matrix,K is the
stiffness matrix,C is the damping coefficient matrix, andQ1p

is the generalized loads input matrix. The elements of these
matrices are given by
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For a two-mode model withψ1p1(z) = z2 andψ1p2(z) =
z3, the resulting model is given by
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It is worth noting that as a result of machining, actual tubes
are not perfectly round. In addition, the wall thickness may
vary along the tube’s length. This can be handled in the model
by using the desired thickness distribution as a function ofθ,
and depthz, in Equation (6). However, this will only change
the coefficientsγi, and αi slightly, but the structure of the
model will remain unchanged. Finally, the equation of motion
for u2p can be derived similarly.

B. Piezoelectric Tube Longitudinal Dynamics

Under similar assumptions of those in Section II-A, the
equation of motion for the tube’s extensionu3p is given by

ρpAp
∂2u3p

∂t2
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∂z
(31)
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Substituting Equation (32) into (31), results in
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wherebp3 is the coefficient of viscous damping. The boundary
conditions are zero displacement at the fixed endz = 0, and
a balance of forces at the other endz = Lp, which can be
expressed as

At z = 0

u3p = 0 (35)

At z = Lp

mo
∂2u3p(Lp, t)

∂t2
+ bp3int

Lp

0

∂u3p(z, t)
∂t

dz +
Ap

sE
11

∂2u3p

∂z2
=

+
d31

sE
11

∑
j

γ3jVj +
sE
11

Ap
F3r(t) (36)

The solution to Equation (34) can be obtained by means of a
finite sine Fourier transform which is given by

U3p(n, t) =
∫ Lp
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u3p(z, t)sin(nz) dz (37)

Taking the Fourier transform of Equation (34) results in
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By using the boundary conditions of Equations (35) and (36),
Equation (40) reduces to
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Since ∂2u3p(Lp,t)
∂t2 , ∂u3p(Lp,t)

∂t , andu3p(Lp, t) are not known,
they can be eliminated from Equation (41) by setting the sum
of their terms to zero which gives
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which can be solved forpn. The natural frequenciesω3pn are
given byω3pn = ni√
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with initial conditions

U3p(ni, 0) =
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The displacementu3p(z, t) can be found by inverse Fourier
transform given by

u3p(z, t) =
2
Lp
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n=1

U3p(ni, t) sin(niz) (47)

C. Hysteresis and Nonlinear Displacement Sensitivity

Piezoelectric materials are ferroelectric, hence, they
exhibit hysteretic relationship between some of the electric
variables (electric field and electric displacement) and the
mechanical variables (mechanical strain and force). Hysteresis
in piezoelectric materials [9]–[11], is generally attributed
to molecular friction at sites of material imperfections as a
result of domain walls motion. In the absence of an applied
electric field, domain walls form at pinning sites to minimize
associated potential energy. When a small electric field is
applied, domain walls motion is limited and reversible, hence
hysteresis in not observed. At higher magnitudes of electric
field, the local energy barriers associated with the pinning
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sites are overcome and domain walls move an extended
distance. The motion of domain walls across pinning sites
provide an irreversible mechanism that contributes to the
observed hysteresis. The experimental observations of absence
and existence of hysteresis at low and high electric fields,
respectively, is demonstrated in Fig. 3. The figure shows
experimental voltage to mechanical displacement response of
a PZT-5H piezoelectric tube actuator for a sinusoidal input at
300Hz and two voltage amplitudes. It is worth mentioning that
the first mechanical resonance of this particular actuator is at
9.7 kHz. Hence, the experiment is considered quasisteady.

In practice, the electric field applied to a piezoelectric
actuator is limited to avoid saturation and degradation in
the actuator performance. Therefore, typical hysteresis loops
can be characterized by their average slope, loop center
point, and loop width. These characteristics strongly depend
on the piezoelectric compound. In a quasisteady hysteresis
experiment, the frequency of the periodic input voltage signal
should be much lower than the first mechanical resonance. In
addition, it should be chosen to be fast enough such that creep
response is not observed. Under these conditions, the width
of the measured hysteresis loop will be independent of the
input frequency, i.e. rate-independent. The rate independence
nature of piezoelectric hysteresis has been experimentally
verified by several authors [12]–[14].

Hysteresis has been extensively studied in the literature. As
a result, there are various models of varying complexity that
may be used to model hysteresis. Examples include Preisach
[15], [16], Krasnosel’skii and Pokrovskii [17], the Generalized
Maxwell Slip model [18], Bouc-Wen [19], [20], Dahl [21],
Chua-Stromsmoe [22], [23], and Coleman-Hodgdon [24].

In piezoelectric materials energy transduction occurs be-
tween electrical and mechanical domains. As discussed earlier,
impediment of domain wall motion contributes to hysteresis.
However, it is not clear whether there are other mechanisms
in the mechanical domain that contribute to the observed
hysteresis. Answering this question allows including a phys-
ically consistent hysteresis model in the overall model of
a piezoelectric actuator. As before, it has been suggested
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Fig. 4. Piezoelectric actuator response to a sinusoidal input voltage at
20 Hz (a) electrical displacement (arbitrary units AU) vs. input voltage, (b)
mechanical displacement vs. input voltage.
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that hysteresis occurs in the electrical domain between the
applied electric field and electric displacement or charge. This
is supported by experimental observations as in Fig. 4 (a).
Hysteresis is also observed, Fig. 4 (b), between electric field
and mechanical strain or displacement. In addition, hysteresis
is noticed between force and mechanical strain [14], when
actuator electrodes are shorted and charge is allowed to flow.
However, no hysteresis is observed when electrodes are open
and no charge flows within the material. More so, charge
vs. mechanical strain as in Fig. 5, shows no hysteresis. Ac-
cordingly, hysteresis is believed to lie mainly in the electrical
domain.

To include hysteresis in the piezoelectric tube model, its
effect will be lumped into a single hysteretic element. Due
to hysteresis, the applied electric fieldEr, is balanced by
a potential dropEh, due to the combined capacitance and
resistance of the hysteretic element, in addition to a drop
Ep, across the hysteresis-free capacitance of the piezoelectric
material as

Er = Eh + Ep (48)

The models of sections II-A and II-B, were derived assuming
thatEr = Ep in the piezoelectric constitutive relation Equa-
tion (4). The new constitutive relation is obtained by replacing
Er with Ep which gives(

εz
Dr

)
=

(
sE
11 d31

d31 εσ3

) (
σz

Ep

)
(49)
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Fig. 6. Two creep experiments: (a) initial fast response, (b) slow creep
response.

In addition, the electric charge in the actuatorqp, is given by

qp =
∫
Dr dAp (50)

As a result, Equations (22) and (42), know become

M
··
T 1p +C

·
T 1p +KT1p = Q1p

[
F1r(t)
d31
sE
11

∑
j γj(Vj − k1jhVh)

]

Fa(t) =
d31

sE
11

∑
j

γ3j(Vj − k3jhVh) +
sE
11

Ap
F3r(t) (51)

wherek1jh andk3jh are constants introduced to account for
the fact that not the whole piezoelectric material necessar-
ily contributes to hysteretic behavior. A hysteresis model in
addition to Equations (48) and (50) are used to express the
relationship between electric charge and the potential across
the hysteresis elementVh. The anhysteretic voltage to dis-
placement curve may be used to model the nonlinear voltage
to displacement sensitivity of the piezoelectric actuator.

D. Creep

The displacement response of a piezoelectric actuator to a
rapid change in input voltage as shown in Fig. 6, consists
of two main parts. The initial part of the response occurs
over a time scale dictated by the mechanical resonance of
the actuator, typically few millisecond. This is followed by
a slow creeping response occurring over tens to hundreds of
seconds and could amount to more than20 % of the total
response. The rate and amount of creep, strongly depend on
the piezoelectric compound. As discussed in Section II-C,
pinning sites impede on the motion of domain walls. When
an electric field is applied to the material, the domain walls
will eventually align in a way to conform with the applied
electric field. The initial fast response would be due to domain
walls experiencing little resistance and their response would be
limited by the maximum mechanical strain rate of the material.
Other domain walls, on the other hand, would experience much
more resistance to their motion. The effective capacitance and
path resistance of these domain walls, will dictate the amount
of motion and time scale over which this motion occurs. This
could amount to the creep response.

The aforementioned discussion on the origin of creep, may
suggest that a model composed of capacitive and resistive
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Fig. 7. Experimental frequency response between input voltage and dis-
placement of a PZT-5H actuator (a) Full frequency range, (b) zoom on10 to
300 Hz range.
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Fig. 8. Schematic representation of a model for both fast and creep dynamics.

elements may be appropriate. Furthermore, experimental fre-
quency response of piezoelectric actuators shown in Fig. 7
(a), displays very little variation in phase at low frequency
between input voltage and displacement, Fig. 7 (b). Moreover,
as seen in Fig. 7 (b), a slight decrease in gain is observed with
increased frequency;4.5% from 10Hz to 300Hz. Therefore,
a transfer function model between the input voltage and
actuator displacement would have a relative degree zero at
frequencies much lower than the actuator’s first resonance
frequency. The relative degree is defined as the number of
poles minus the number of zeros of the transfer function. It is
possible therefore, to simulate creep behavior using a suitable
LTI model composed of capacitive and resistive elements.
A schematic representation of the overall dynamic model
including a creep model is shown in Fig. 8. Its mathematical
representation for the actuator vertical dynamics withVz as
input is given as

up

V
=

bm+n−2s
m+n−2 + bm+n−3s

m+n−3 + . . .+ b0
sm+n + am+n−1sm+n−1 + . . .+ a0

= Gf (s)Gcreep(s) (52)

whereGf is the transfer function containing the fast dynamics
and retainsn poles andn − 2 zeros as suggested by the
models presented in Sections II-A and II-B.Gcreep is the
transfer function modeling the creep which has a zero relative
degree and contains m poles. The model assumes that the
ratio between the amount of creep and the fast actuator
displacement is independent of input amplitude and rate. Both
assumption have been experimentally verified [25].



III. D ISCUSSION

The physically based model presented within can be tailored
to be of low or high-order linear or nonlinear depending on
what the model will be used for. In contrast to experimentally
identified models such as [4], it is not specific to a particular
actuator and can be generally used for quasistatic or dynamic
analysis and design for either open or closed loop systems.
The equations governing the displacements of the tube’s free
end and rotations aboutX andY axes, namelyθpx and θpy

are given by

xp(t) = cos(θδ) u1(Lp, t)− sin(θδ) u2(Lp, t) (53)

yp(t) = sin(θδ) u1(Lp, t) + cos(θδ) u2(Lp, t) (54)

zp(t) = u3p(Lp, t) (55)

θpx(t) = sin(θδ)
∂u1

∂z
+ cos(θδ)

∂u2

∂z
(56)

θpy(t) = cos(θδ)
∂u1

∂z
− sin(θδ)

∂u2

∂z
(57)

In an ideal concentric and symmetric tube actuator, applying
a voltage signalVz to command a displacement in theZ-
direction, results in no lateral displacement. Practically, how-
ever, a coupled response is observed. This can be seen from
Equations (22) and (42) for which a nonzeroγz results from
eccentricity in the actuator. Similarly, lateral displacement
causes a vertical displacement due to the applied voltage
in addition to a geometric coupling. Geometric coupling is
inherent in the construction of this tube actuator since lateral
displacements result from actuator bending which causes the
actuator’s length (inZ-axes) to shrink slightly. As an illustra-
tion for coupling, consider the case where creep and hysteresis
effects are ignored. The transfer function between the lateral
displacementxp and the voltage for vertical displacementVz

is given as

xp(s) =
∞∑

j=1

kjz Vz

s2 + 2ζθjωθjs+ ω2
θj

(58)

where,ζ is damping ratio,ω is natural frequency, andkjz is
a constant. Accordingly, in applications where the actuator
is used to provide both lateral and vertical displacements,
the voltage corresponding to vertical displacementVz will
produce lateral displacements governed by Equation (58).
These displacements will be seen as disturbances to the main
lateral response corresponding toVx and Vy. The resonance
frequency for the lateral dynamics is inherently lower than
that of the longitudinal dynamics. Therefore,Vz is expected
to contain frequencies that may excite the lateral resonances
acting as an out of bandwidth disturbance. Accordingly, this
disturbance will not be well compensated for either in open
or closed loop control.

As a demonstration for effects of coupling, a setup
consisting of a tube actuator with an optical sensor measuring
the angleθpy of the actuator’s free end was used. The tube is of
type PZT-5A with length44.4mm, outer diameter6.35mm,
and wall thickness0.5mm. The density is7500 kg/m3,
d31 = −1.73 × 10−10m/V , sE

11 = 15.9 × 10−12m2/N ,
and maximum input voltage of± 200V . The eccentricity

Fig. 9. Sensor output due to coupling between actuator longitudinal and
lateral motions for different values ofVz .

is assumed to beδx = 49.5µm and δy = 5µm. The
resulting model has sensitivity of1.38−7 rad/V between
θpy and Vz. Quasisteady effect of coupling was measured
by applying a low-frequency (10Hz) triangular wave as
Vz and measuringθpy with the optical sensor. The results
are shown in Fig. 9, for 3 different voltage amplitudes,
namely ± 80, ± 100 and ± 200V . The resulting sensor
output corresponds approximately to7.6, 10.7, and 18.1nm
peak-to-peak. Based on the sensitivity of the model and
the cantilever’s nominal length, the changes in sensor
output predicted by the model are5.5, 6.9, and 13.8nm
for ± 80, ± 100 and ± 200V . The model gives a good
agreement with experiments, considering the fact the actual
eccentricity of the tube was not measured for use in the model.

The dynamic effects of coupling can be seen in Fig. 10
which shows an experimental time response of the actuator’s
angle due to a40V step in Vz. The response is initially
dominated by the fast modes that are observable at the output
which are in thekHz range. The response eventually becomes
dominated by the actuator first bending dynamics at400Hz
as the faster dynamics die out. As discussed previously, this
response to the vertical voltage commandVz is an out of
bandwidth disturbance to the main lateral response. Accord-
ingly, bending modes become observable for certain output
measurements. Therefore, to avoid exciting the first bending
mode, a large reduction in the bandwidth of vertical motion
would be required to preserve performance in open loop
actuator control and stability and performance in closed loop
control.

IV. SUMMARY AND CONCLUSION

The paper presented a new model for a piezoelectric tube
actuator commonly used in many high-precision instruments.
The model captures the coupling between motion in all three
axes such as bending motion due to a supposedly pure exten-
sion of the actuator. A discussion on the origin of hysteresis
is presented and experimental data is provided as a physical
reasoning of how a hysteresis model is included in the overall
dynamic model. This also allows modeling nonlinear sensitiv-
ity in the voltage to displacement response. Moreover, a model
for creep phenomenon is included to capture the observed slow
response due to a sudden change in input voltage. Experiential
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Fig. 10. Sensor output for a 40V step inVz .

data on creep is also used to support the model. Results
show that due to coupling a voltage corresponding to vertical
displacementVz will produce lateral displacement that acts
as a disturbance to the main lateral response. The resonance
frequency for the lateral dynamics is inherently lower than
that of the longitudinal dynamics. Therefore,Vz is expected
to contain frequencies that may excite the lateral resonances.
Accordingly, this out of bandwidth disturbance will not be
well compensated for either in open or closed loop control of
the actuator. Consequently, to avoid exciting the first bending
mode, a large reduction in the bandwidth of vertical motion
would be required. The models presented within can be used
for linear and nonlinear analysis and controller design for the
actuator.
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