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Chapter 1

Maxwell’s Equations and
Electromagnetic Fields

1.1 Introduction

1.1.1 Maxwell’s Equations (1865)

The governing equations of electromagnetism

∇.E =
ρ

ε0
∇.B = 0

(Coulomb’s Law)

(1.1)

∇∧ E = −∂B
∂t

∇∧B = µ0j +
1

c2
∂E

∂t
(Faraday’s Law) (Ampere’s Law)

E electric field, describes the force felt by a (stationary) charge q: F = qE
B magnetic field, describes the force felt by a current

i.e. a moving charge (velocity v): F = qv ∧B
Thus the Lorentz Force (on charge q) is

F = q (E + v ∧B) (1.2)

ρ electric charge density (Coulombs/m3). Total charge Q =
∫
V ρd

3x
j electric current density (Coulombs/s/m2)

Current crossing area element dA is j . dA Coulomb/s = Amps.

1.1.2 Historical Note

Much scientific controversy in 2nd half of 19th century concerned question of whether E,
B were ‘real’ physical quantities of science or else mere mathematical conveniences for ex-
pressing the forces that charges exert on one another. English science (Faraday, Maxwell)
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ρ
Charge-density

Volume V

dA j

dA

Figure 1.1: Charge density is local charge per unit volume. Current density is current per
unit area.

emphasized the fields; German mostly the act-at-a-distance. Since ∼ 1900 this question has
been regarded as settled in favor of the fields. And modern physics, if anything, tends to
regard the field as more fundamental than the particle.

1.1.3 Auxiliary Fields and Electromagnetic Media

Electromagnetic texts often discuss two additional “auxiliary” fields D the “electric displace-
ment” and H the “magnetic intensity” which account for dielectric and magnetic properties
of materials. These fields are not fundamental and introduce unnecessary complication and
possible confusion for most of our topics. Therefore we will avoid them as much as possible.
For the vacuum, ε0E = D and B = µ0H.

1.1.4 Units

Historically there were two (or more!) different systems of units, one defining the quantity
of charge in terms of the force between two stationary charges (the “Electrostatic” units)
and one defining it in terms of forces between (chargeless) currents (the “Electromagnetic”
system). Electrostatic units are based on Coulomb’s law ∇.E = ρ/ε0 and electromagnetic
units on the (steady-state version of) Ampere’s law ∇ ∧ B = µ0j. The quantities 1/ε0
and µ0 are therefore fundamentally calibration factors that determine the size of the unit
charge. Choosing one or other of them to be 4π amounts to choosing electrostatic or elec-
tromagnetic units. However, with the unification of electromagnetism, and the subsequent
realization that the speed of light is a fundamental constant, it became clear that the units
of electromagnetism ought to be defined in terms of only one of these laws and the speed
of light. Therefore the “System Internationale” SI (or sometimes MKSA) units adopts the
electromagnetic definition because it can be measured most easily, but with a different µ0,
as follows. “One Ampere is that current which, when flowing in two infinitesimal parallel
wires 1m apart produces a force of 2 × 10−7 Newtons per meter of their length.” An Amp
is one Coulomb per second. So this defines the unit of charge. We will show later that this
definition amounts to defining

µ0 = 4π × 10−7 (Henry/meter) (1.3)

and that because the ratio of electromagnetic to electrostatic units is c2

ε0 =
1

c2µ0

= 8.85× 10−12 (Farad/meter) (1.4)
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µ0 is called the “permeability of free space”. ε0 is called the “permittivity of free space”.
[See J.D. Jackson 3rd Ed, Appendix for a detailed discussion.]

1.2 Vector Calculus and Notation

Electromagnetic quantities include vector fields E,B etc. and so EM draws heavily on vector
calculus. ∇ is shorthand for a vector operator (gradient)

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
=
∂φ

∂xi

(suffix notation) (1.5)

giving a vector gradient from a scalar field φ. ∇ can also operate on vector fields by scalar
(.) or vector (∧) multiplication.

1.2.1 Divergence

∇.E =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂xz

=
∂Ei

∂xi

(1.6)

1.2.2 Curl

∇∧ E =

(
∂Ez

∂y
− ∂Ey

∂z
,
∂Ex

∂z
− ∂Ez

∂x
,
∂Ey

∂x
− ∂Ex

∂y

)
= εijk

∂Ek

∂xj

(1.7)

1.2.3 Volume Integration ∫
V

d3x (1.8)

d3x is shorthand for dxdydz = dV , the volume element.
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dA

dA

dl

Surface Element Line Element

Figure 1.2: Elements for surface and line integrals.

1.2.4 Surface Integration ∫
S
v.dA . (1.9)

The surface element dA or often dS is a vector normal to the element.
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1.2.5 Line (Contour) Integration∫
C

v.dl . (1.10)

Line element dl.

1.2.6 The Meaning of divergence: ∇.

dx

dz
dy

Figure 1.3: Cartesian volume element.

Consider a volume element. Evaluate the total flux of a vector field v out across the
element’s surface. It is the sum v.dA over the six faces of the cuboid

[vx (x+ dx)− vx (x)] dydz+

[vy (y + dy)− vy (y)] dzdx+

[vz (z + dz)− vz (z)] dxdy = (1.11)

dxdydz

[
dvx

dx
+
dvy

dy
+
dvz

dz

]
= d3x∇.v = dV∇.v

So for this elemental volume: ∫
dS

v.dA =
∫

dV
∇.v d3x (1.12)

Figure 1.4: Adjacent faces cancel out in the sum of divergence from many elements.
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But any arbitrary finite volume can be considered to be the sum of many small cuboidal
elements. Adjacent internal face contribution cancel out hence only the external surface
contributions remain, so ∫

S
v.dA =

∫
V
∇.v d3x (1.13)

for any volume V with surface S, and arbitrary vector field v. This is Gauss’s Theorem.

1.2.7 The Meaning of Curl: ∇∧

dl

dA

dC

ẑ
v(x)

dy

dx

Figure 1.5: Rectangular surface element with axes chosen such that the normal is in the
z-direction.

Consider an arbitrary rectangular surface element Choose axes such that normal is in
z-direction and edges along x and y. Arbitrary vector field v(x). Evaluate the contour
integral of v, clockwise around dC, round boundary of element.∮

dC
v.dl = v(x).dx + v(x+ dx, y).dy + v(x, y + dy).(−dx) + v(x).(−dy)

=

(
dvy

dx
− dvx

dy

)
dxdy = (∇∧ v)zdA = (∇∧ v).dA . (1.14)

So integral v.dl around element is equal to the curl scalar-product area element. Apply
to arbitrary surface; divide surface up into many elements dA. All internal edge integrals
cancel. Hence ∮

C
v.dl =

∫
S

(∇∧ v) .dA (1.15)

This is Stokes’ Theorem.

1.3 Electrostatics and Gauss’ Theorem

Gauss’s theorem is the key to understanding electrostatics in terms of Coulomb’s Law ∇.E =
ρ/ε0.

9



S

C

Figure 1.6: Arbitrary surface may be divided into the sum of many rectangular elements.
Adjacent edge integral contributions cancel.

1.3.1 Point Charge q

Apply Gauss’s Theorem to a sphere surrounding q

S=4   rπ 2

V=4   r  /33π

rq

E

dS

Figure 1.7: Spherical volume, V over which we perform an integral of Coulomb’s law to
deduce E.

∫
S
E.dA =

∫
V
∇.E d3x =

∫
V

ρ

ε0
d3x =

q

ε0
. (1.16)

But by spherical symmetry E must be in radial direction and Er has magnitude constant
over the sphere. Hence

∫
S E.dA =

∫
S ErdA = Er

∫
S dA = Er4πr

2. Thus

Er4πr
2 =

q

ε0
or (1.17)

Er =
q

4πε0r2
i.e. E =

q

4πε0

r

r3
. (1.18)

Consequently, force on a second charge at distance r is

F =
q1q2

4πε0r2
(1.19)

Inverse-square-law of electrostatic force.
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1.3.2 Spherically Symmetric Charge ρ(r)

Notice that point-charge derivation depended only on symmetry. So for a distributed charge-
density that is symmetric argument works just the same i.e.

E = r̂Er Er =
q

4πε0r2
(1.20)

where now q =
∫

V
ρ d3x =

∫ r

0
ρ(r)4πr2dr. (1.21)

Electric field due to a spherically symmetric charge density is equal to that of a point charge
of magnitude equal to the total charge within the radius, placed at the spherical center.

1.3.3 Arbitrary Charge Distribution

If there is no specific symmetry Gauss’s Theorem still applies:

V

S

dS

Figure 1.8: Arbitrary volume for Gauss’s Theorem.

∫
S
E.dA =

∫
V
∇.E d3x =

∫
V

ρ

ε0
d3x =

q

ε0
(1.22)

q is the total charge (integral of charge density) over the volume.
∫
S E.dA is the total flux

of electric field across the surface S.

1.3.4 Intuitive Picture

Each (+ve) charge is the origination point of an electric-field-line. [Each −ve charge is
termination ditto]. The total charge in volume V determines the number of field-lines that
start in V . Field lines only start/end on charges (Coulomb’s Law) so all must escape from
the volume, crossing surface S (somewhere). [Field lines that start and end in V contribute
neither to

∫
E.dA nor to q, because of cancellation].

∫
S E.dA can be thought of as counting

the “number of field lines” crossing the surface. [Of course it is an arbitrary choice how
big we consider the charge is that gives rise to one field-line.] Intuitive view of electric field
“intensity”: Strength of E is proportional to the number of field-lines per unit area. All these
intuitive views are conceptually helpful but are not formally necessary. Electromagnetism is
considered completely described by Maxwell’s equations without need for these pictures.
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Figure 1.9: Intuitive picture of charges and field-lines.

E

Wide-spaced

Weak
Strong

Close-spaced

Field-Lines and Field Intensity.

Figure 1.10: Spacing of field-lines is inversely proportional to field-strength.

1.3.5 Electric Potential (for static problems ∂
∂t → 0)

In the static situation there is no induction and Faraday’s law becomes ∇ ∧ E = 0. By the
way, this equation could also be derived from the inverse-square-law by noting that

∇∧ r

r3
= 0 (1.23)

so by the linearity of the ∇∧ operator the sum (integral) of all Electric field contributions
from any charge distribution is curl-free “irrotational”:

∇∧
∫ ρ(r′)

4πε0

r− r′

|r− r′|3
d3r′ = 0 (1.24)

[This shows that the spherical symmetry argument only works in the absence of induction
Ḃ would define a preferred direction; asymmetric!] For any vector field E, ∇ ∧ E = 0 is a
necessary and sufficient condition that E can be written as the gradient of a scalar E = −∇φ.

Necessary

(∇∧∇φ)z =
∂

∂x

∂φ

∂y
− ∂

∂y

∂φ

∂x
= 0 (et sim x, y) . (1.25)
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r’ 1

2

Er-r’ρ
r

E1

2

Figure 1.11: Each element contributes an irrotational component to E. Therefore the total
E is irrotational.

Curl of a gradient is zero.

Sufficient (prove by construction)

Path 1

Path 2

O

C

C
Closed Contour  C
follows path 2 and -1.

x

Figure 1.12: Two different paths from 0 to x construct a closed contour when one is reversed.

Apply Stokes’ theorem to a closed contour consisting of any 2 paths between points 0
and x. ∮

C
E.dl =

∫ x

0
E.dl︸ ︷︷ ︸

Path 2

−
∫ x

0
E.dl︸ ︷︷ ︸

Path 1

=
∫

S
∇∧ E.dS = 0︸︷︷︸

by hypothesis.

(1.26)

So ∇ ∧ E = 0 ⇒
∫ x
o E.dl is independent of chosen path, i.e. it defines a unique1 quantity.

Call it −φ(x). Consider ∇φ defined as the limit of δφ between adjacent points.

−∇φ = ∇
(∫ x

E.dl
)

= E . (1.27)

1The potential can always be altered by adding a constant, without changing E. This freedom can be
considered equivalent to choosing the origin at which φ = 0.
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Many electrostatic problems are most easily solved in terms of the electric potential φ because
it is a scalar (so easier). Governing equation:

∇.E = −∇.∇φ = −∇2φ =
ρ

ε0
(1.28)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂x2
is the “Laplacian” operator (1.29)

∇2φ =
−ρ
ε0

“Poisson’s Equation”. (1.30)

1.3.6 Potential of a Point Charge [General Potential Solution]

One can show by direct differentiation that

∇1

r
= − r

r3
. (1.31)

So by our previous expression E = q
4πε0

r
r3 we can identify

φ =
q

4πε0

1

r
(1.32)

as the potential of a charge q (at the origin x = 0).

1.3.7 Green Function for the Laplacian

For a linear differential operator, L, mathematicians define something called “Green’s func-
tion” symbolically by the equation

LG(x,x′) = δ(x− x′) . (1.33)

If we can solve this equation in general, then solutions to

Lφ = ρ(x) (1.34)

can be constructed for arbitrary ρ as

φ(x) =
∫
G(x,x′)ρ(x′) d3x′ (1.35)

because of the (defining) property of the δ-function∫
f(x′)δ(x− x′) d3x′ = f(x) . (1.36)

When L is the Laplacian, ∇2, the Green function is

G(x,x′) =
−1

4π|x− x′|
. (1.37)
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This fact may be derived directly from the solution for the potential for a point charge.
Indeed, a point charge is exactly the delta-function situation whose solution is the Green
function. In other words, the charge density for a point charge of magnitude q at position
x′ is

ρ(x) = qδ(x− x′) ; (1.38)

so the point-charge potential, namely,

φ =
q

4πε0

1

|x− x′|
, (1.39)

is the solution of the equation:

∇2φ = − q

ε0
δ(x− x′) . (1.40)

Consequently, solution of Poisson’s equation can be written as the integral of the Green
function:

φ(x) =
∫ (

−ρ (x′)

ε0

)(
−1

4π|x− x′|

)
d3x′ =

∫ ρ (x′)

4πε0

d3x′

|x− x′|
. (1.41)

Informally, the smooth charge distribution ρ can be approximated as the sum (→
∫
) of many

point charges ρ(x′) d3x′, and the potential is the sum of their contributions.

1.3.8 Boundary Conditions

Strictly speaking, our solution of Poisson’s equation is not unique. We can always add to
φ a solution of the homogeneous (Laplace) equation ∇2φ = 0. The solution only becomes
unique when boundary conditions are specified. The solution

φ(x) =
∫ ρ (x′)

4πε0

d3x′

|x− x′|
(1.42)

is correct when the boundary conditions are that

φ→ 0 as |x| → ∞ : (1.43)

no applied external field.
In practice most interesting electrostatic calculations involve specific boundaries. A big

fraction of the work is solving Laplace’s equation with appropriate boundary conditions.
These are frequently the specification of φ on (conducting) surfaces. The charge density on
the conductors is rarely specified initially.

1.3.9 Parallel Plate Capacitor

Idealize as 1-dimensional by ignoring the edge effects. 1-d Laplace equation in the vacuum
gap (where ρ = 0) is

d2φ

dz2
= 0 (1.44)
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z

0
d E

+ + + + + + + +

- - - - - -- -

Parallel Plate Capacitor.

Figure 1.13: The parallel-plate capacitor.

Solution φ = a− Ez a,E const.
Hence electric field is E = Eẑ.
Notice how this arises purely from the translational invariance of φ

(
d
dx

= d
dy

= 0
)
.

Choose z = 0 as one plate of capacitor. Other at z = d.
Choose φ(z = 0) = 0: reference potential, making a = 0.
Potential of other plate: V = φ(d) = −Ed.
The question: how much charge per unit area is there on the plates when the field is E?
Answer by considering a flat elemental volume, with area A surrounding the +ve plate.

+

-

A

Figure 1.14: Elemental volume for calculating charge/field relationship.

Apply Gauss’s law ∫
S
E.dS =

∫
A
O + (−E)ds = −EA

=
∫

V

ρ

ε0
d3x =

Q

ε0
=

1

ε0
σ A (1.45)

Hence

σ = −ε0E. = ε0
V

d
(1.46)

Therefore if the total area is A, the total charge Q, and the voltage V between plates are
related by

Q =
(
ε0A

d

)
V (1.47)

And the coefficient ε0A
d

is called capacitance, C. Notice our approach:

• Solve Laplace’s equation by choosing coordinates consistent with problem symmetry.

• Obtain charge using Gauss’s law to an appropriate trial volume.
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1.3.10 Charge on an arbitrary conductor

Consider a conductor, electrostatically charged. Current is zero.

E=0

E

ρ

"Pill-Box"

=0+

+
+ +

+
+

+
+

+ +
+

+

+

+++
Arbitrary Volume.

Figure 1.15: Arbitrary-shaped conductor possesses only surface charges related to the local
normal field.

So E is zero, anywhere inside because of conductivity.
Choose any volume internally: E = 0 ⇒ ∇.E = 0 ⇒ ρ = 0. There is no internal charge.
It all resides on surface. At the surface there is an E just outside. E is perpendicular to
surface ds because surface is an equipotential (& E = −∇φ). Hence applying Gauss’s law
to a pill box ∫

V
∇.E d3x =

∫
S
E.dS = Eds

=
∫ ρ

ε0
d3x =

∫ σ

ε0
ds =

σ

ε0
ds (1.48)

where σ = surface charge density Hence σ = ε0E. Of course, in this general case E (=
Enormal) is not uniform on the surface but varies from place to place. Again procedure would
be: solve φ externally from ∇2φ = 0; then deduce σ; rather than the other way around.

1.3.11 Visualizing Electric Potential and Field

E = −∇φ (1.49)

Consider a (2-D) contour plot of φ. The value of φ can be thought of as the potential
energy of a charge of 1 Coulomb. Thus there is a perfect analogy to gravitational potential
energy and height contours. The force at any point on the hill is downward (on a +ve
charge), which is perpendicular to the contours of constant φ. The strength of the force (E)
is proportional to the steepness of the hill: i.e. how close together the contours are (of φ).
When plotting field-lines, i.e. lines following the electric field direction, we generally also
consider the electric field intensity to be the number of field-lines per unit area. So also
the closeness of field-lines indicates field strength. In charge-free regions ∇.E = 0 implies
field-lines have no beginning or end. However if ρ 6= 0 then electric field lines do possibly
have ends (on the charges). The potential contours never have ends.
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Figure 1.16: Contours of potential and corresponding field-lines (marked with arrows). Only
the field-lines emanating from the larger elliptical conductor are drawn.

1.3.12 Complex Potential Representation 2-D

In charge-free region, ∇.E = 0 ⇒ ∇2φ = 0. This causes there to be an intimate relationship
between field-lines and φ-contours. In 2 dimensions this relationship allows complex analysis
to be used to do powerful analysis of potential problems. Consider a complex function
f(z) = φ(z) + iψ(z) where z = x + iy is the complex argument with real and imaginary
parts x & y; and f has real and imaginary parts φ & ψ. f is “analytic” if there exists
a well defined complex derivative df

dz
(which is also analytic), defined in the usual way as

limz′→z

(
f(z′)−f(z)

z′−z

)
. In order for this limit to be the same no matter what direction (x, y) it

is taken in, f must satisfy the “Cauchy-Riemann relations”

∂φ

∂x
=
∂ψ

∂y
;

∂φ

∂y
= −∂ψ

∂x
(1.50)

Which, by substitution imply ∇2φ = 0, ∇2ψ = 0, and also

∇φ.∇ψ = 0 (1.51)

regarding x, y as 2-d coordinates. This shows that

1. The real part of an analytic function solves ∇2φ = 0.

2. The contours of the corresponding imaginary part, ψ, then coincide with the electric
field-lines.

Finding complex representations of potential problems is one of the most powerful analytic
solution techniques. However, for practical calculations, numerical solution techniques are
now predominant.
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1.4 Electric Current in Distributed Media

Ohms law, V = IR, relates voltage current and resistance for a circuit or discrete element.
However we often care not just about the total current but about the current density in
finite-sized conductors (e.g. electromagnets). This requires a local Ohm’s law which is

E = ηj (1.52)

where η is the medium’s electric resistivity. Often the conductivity σ = 1/η is used. j = σE,
(but I’ll try to avoid confusion with surface charge density σ). Such a linear relationship
applies in most metals.

1.4.1 Steady State Conduction

Conservation of charge can be written

∇.j = −∂ρ
∂t

(1.53)

so, in steady state, ∇.j = 0, i.e.

∇.
(

1

η
E

)
= (E.∇)

1

η
+

1

η
∇.E = 0 (1.54)

If conductivity is uniform (∇ 1
η

= 0) or invariant along E, we therefore have∇.E = 0 ⇒ ρ = 0.
“Uniform conductivity conductors acquire zero volume charge density in steady state”.

1.4.2 Conductor Boundary Conditions (Steady Currents)

Contacts
Current

j
contoursφ−

normal
n

E∝j

Conductor
(Finite resistivity)

+

+ + + +

+

+

++

+

+ +

+

+

-

Surface Charges

φ=0

V

+

Figure 1.17: A distributed conductor of finite conductivity, carrying current.

If currents are flowing so that E 6= 0 in the conductor then conductors are not equipoten-
tial surfaces for solutions of Laplace’s equation outside. Surface charges (only) are present
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on the conductor (uniform η). No current flows through the conductor surface (except at
contacts) so

j.n = 0 ⇒ E.n = 0 (1.55)

inside conductor, while outside we have

E.n = ε0σ (1.56)

surface charge density. Normal components

E n E t

E t

∇∧ E =0

Vacuum
Outside

Metal
Inside

n

Normal Tangential

E.n =0

Total

E

E

Figure 1.18: Boundary conditions across a conductor/vacuum (or insulator) interface.

En|inside = 0 [En]outside
inside = σ/ε0 (1.57)

Tangential components
[Et]

outside
inside = 0 (1.58)

In particular, for solving ∇2φ = 0 inside uniform η conductor, at conductor boundary:

∇φ.n = 0 (Neumann B.C.) (1.59)

unlike the usual electrostatic B.C. φ = given. At electrical contacts φ given might be appro-
priate. A general approach to solving a distributed steady-current problem with uniform-η
media:

1. Solve Laplace’s equation ∇2φ = 0 inside conductors using Dirichlet (φ-given) or pos-
sibly inhomogeneous Neumann (∇φ|n = given) BC’s at contacts and ∇φ.n = 0 at
insulating boundaries.

2. Solve Laplace’s equation ∇2φ = 0 outside conductors using φ = given (Dirichlet) B.C.
with the φ taken from the internal solution.

1.5 Magnetic Potential

Magnetic field has zero divergence ∇.B = 0. For any vector field2 B, ∇.B = 0 is a necessary
and sufficient condition that B can be written as the curl of a vector potential B = ∇∧A.

2satisfying |B| → 0 as |x| →= ∞ fast enough
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1.5.1 ∇.B = 0 Necessary

∇. (∇∧A) =
∂

∂x

(
∂Az

∂y

(z)

− ∂Ay

∂z

(y)
)

(1.60)

+
∂

∂y

(
∂Ax

∂z

(x)

− ∂Az

∂x

(z)
)

(1.61)

+
∂

∂z

(
∂Ay

∂x

(y)

− ∂Ax

∂y

(x)
)

= 0 (1.62)

So only divergenceless fields can be represented.

1.5.2 ∇.B = 0 Sufficient (outline proof by construction)

Consider the quantity

K(x) =
∫ B (x′)

4π|x− x′|
d3x′ , (1.63)

a vector constructed from the integral of each Cartesian component of B. Applying our
knowledge of the Green function solution of Poisson’s equation, we know:

∇2K = −B . (1.64)

Vector operator theorem (for any v):

∇∧ (∇∧ v) = ∇ (∇.v)−∇2v . (1.65)

Hence
B = −∇2K = ∇∧ (∇∧K)−∇ (∇.K) (1.66)

We have proved Helmholtz’s theorem that any vector field can be represented as the sum of
grad + curl.] When ∇.B = 0 and |B| → 0 (fast enough) as |x| → ∞, one can show that
∇.K = 0 and so we have constructed the required vector potential

A = ∇∧K = ∇∧
∫ B (x′)

4π

d3x′

|x− x′|
. (1.67)

Notice that we have constructed A such that ∇.A = 0. However A is undetermined from
B because we can add to it the gradient of an arbitrary scalar without changing B, since
∇ ∧ ∇χ = 0. So in effect we can make ∇.A equal any desired quantity ψ(x) by adding to
A ∇χ such that ∇2χ = ψ. Choosing ∇.A is known as choosing a “Gauge” ∇.A = 0 is the
“Coulomb Gauge”.

1.5.3 General Vector Potential Solution (Magnetostatic)

Static Ampere’s law ∇∧B = µ0j. Now

µ0j = ∇∧ (∇∧A)

= ∇ (∇.A)−∇2A = −∇2A (Coulomb Gauge). (1.68)
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Hence Cartesian components of A are solutions of Poisson equation

∇2Ai = −µ0ji (1.69)

Using our general solution of Poisson’s equation (see eq 1.37):

A(x) =
µ0

4π

∫ j (x′)

|x− x′|
d3x′ (1.70)

Resulting B:

B = ∇∧A =
µ0

4π

∫
∇∧ j (x′)

|x− x′|
d3x′

=
µ0

4π

∫
−j(x′) ∧∇ 1

|x− x′|
d3x′ =

µ0

4π

∫ j (x′) ∧ (x− x′)

|x− x′|3
d3x′ (1.71)

This is the distributed-current version of the law of Biot and Savart (dating from ∼ 1820).
For a wire carrying current I the integral over volume j is replaced by the integral I dl i.e.

B =
µ0

4π

∫
− (x− x′)

|x− x′|3
∧ j d3x =

µ0

4π

∫
− (x− x′)

|x− x′|3
∧ Idl . (1.72)

The Biot-Savart law gives us a direct means to calculate B by integrating over j(x′), numeri-
cally if necessary. However this integration brute-force method is excessively computationally
intensive and if symmetries are present in the problem we can use them to simplify.

1.5.4 Cartesian Translational Symmetry (2-d x, y)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

x

yr

I
θ

C
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I

(a) (b)

Figure 1.19: (a) The coordinates with respect to an infinite straight filament carrying current
I, and (b) the contour and surface for use with Ampere’s law.

If we consider a situation where ∂/∂z = 0, corresponding to infinite straight parallel cur-
rents in z-direction j = j(x, y)ẑ. Our general vector potential solution shows us immediately
that A = Aẑ, Ax = Ay = 0. (Assuming A,B → 0 at ∞, i.e. no ‘external’ sources.) That
fact tells us that Bz = (∇∧A)z = 0. We can consider the elementary building block of this
problem to be the single infinitesimal filament. Formally j = Iδ(x)δ(y). We could calculate
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B(x) by integrating over this filament. Far easier to use Ampere’s Law directly∫
S

(∇∧B) .ds =
∫

C
B.dl =

∫
S
µ0j.ds = µ0I (1.73)

By symmetry
∮
C B.dl = 2πrBθ

So

Bθ =
µ0I

2πr
. (1.74)

Also Br = 0 by applying Gauss’s Theorem to a volume (of unit length in z-dir)

0 =
∫

V
∇.B d3x =

∫
S
B.dS = 2πrBr (1.75)

by symmetry.
Thus Maxwell’s equations immediately show us what the 2-d Green function solving ∇∧B =
µ0I ẑδ(x− x′) is

B = θ̂
µ0I

2π

1√
(x− x′)2 + (y − y′)2

(1.76)

Any general j(x, y) can be handled by 2-d integration using this function.

1.5.5 Cylindrical Symmetry (Circular Loops with common axis)

If there exist cylindrical coordinates (r, θ, z) such that ∂/∂θ = 0, j = jθ̂. Then by symmetry
A = Aθθ̂, Bθ = 0. This situation turns out to be soluble analytically but only in terms of
the special functions known as Elliptic Integrals. If

θ

Filament

Field-point
x

a

r
z

Figure 1.20: Cylindrical Coordinates near a circular current-carrying filament.

jθ = Iδ (r − a) δ (z) (1.77)

then

Aθ(r, z) =
µ0

4π
2

√
a

r

[
(2− k2)K(k)− 2E(k)

k

]
(1.78)

23



where

k2 ≡ 4ra

(r + a)2 + z2
(1.79)

and K,E are the complete elliptical integrals of the first and second kind. This general form
is so cumbersome that it does not make general analytic calculations tractable but it makes
numerical evaluation easier by using canned routines for K(k) & E(k). On axis (r = 0) the
field is much simpler

B = Bẑ =
µ0I

4π

2πa2

(z2 + a2)
3
2

ẑ . (1.80)

1.5.6 General Property of Symmetry Situations: Flux Function

When there is a symmetry direction, the component of B perpendicular to that direction can
be expressed in terms of a “flux function”. The magnetic flux between two positions is defined
as the B-field flux crossing a surface spanning the gap (per unit length if translational).
Since ∇.B = 0 it does not matter how the surface gets from the ref-point to P (provided it

Symmetry Direction

O

P S
C

unit le
ngth

Reference-point

Arbitrary Path

Figure 1.21: Path from a reference point to a field point defines a surface to which Stokes’
theorem is applied, in a situation of translational symmetry.

stays symmetric). So the function

ψ ≡
∫
S

B.dS (1.81)

is well defined. For translational (ẑ) symmetry, a consequence is

B⊥ = −ẑ ∧∇ψ (1.82)

This arises because

ψ =
∫

S
B.dS =

∫
∇∧A.dS = Az(P )− Az(0) (1.83)

So really ψ is identical to the z-component of the vector potential and

B = ∇∧A = Bzẑ +∇∧ (Azẑ) = Bzẑ + B⊥

B⊥ = Az∇∧ ẑ + (∇Az) ∧ ẑ (1.84)

= −ẑ ∧∇Az = −ẑ ∧∇ψ
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B⊥ is the part of the field perpendicular to ẑ. There could also be Bz.
For cylindrical symmetry some more variations arise from curvilinear coordinate system.

There are even other symmetries, for example helical!

1.6 Electromagnetism and Magnets

1.6.1 Simple Solenoid
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Figure 1.22: Idealized long solenoid magnet coil.

A ‘Long’ solenoid has a translational symmetry so B is independent of z, as well as of θ.
(Except near ends). So

0 = ∇.B =
1

r

∂

∂r
rBr +

∂

r∂θ︸︷︷︸
=0

Bθ +
∂

∂z︸︷︷︸
=0

Bz (1.85)

So
rBr = const. and hence Br = 0 . (1.86)

Also

∇∧B =

(
1

r

∂

∂r
rBθ

)
ẑ +

(
− ∂

∂r
Bz

)
θ̂ = µ0j (steady) (1.87)

Inside the bore of the magnet, j = 0 so

rBθ = const. and hence Bθ = 0 . (1.88)

(actually if jz = 0 everywhere then Bθ = 0 everywhere, as may be seen immediately from
the Biot-Savart law). Also

∂Bz

∂r
= 0 and hence Bz = const . (1.89)

Use the surface and bounding curve shown and write∫
S
µ0j.dS =

∫
S
∇∧B.ds =

∮
C

B.dl (1.90)

So µ0× current per unit length (denoted Jθ) gives

µ0Jθ = Bz inside −Bz outside (1.91)
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But (by same approach) if B = 0 at infinity Bz outside = 0. So, inside

Bz = µ0Jθ (1.92)

Profile of field in coil: is determined by the current density in the coil:

B

j

z

θ

r
a b0

Figure 1.23: The field profile within the conductor region of the coil depends on the current-
density profile.

dBz

dr
= −µ0jθ (1.93)

Bzb −Bza = −
∫ b

a
µ0jθdr = −µ0Jθ . (1.94)

(as before). Notice that all this is independent of coil thickness (b − a). Coils are usually
multi-turn so

Bz = µ0nI (1.95)

where n is turns per unit length, I is current in each turn.

Jθ = nI . (1.96)

1.6.2 Solenoid of Arbitrary Cross-Section

∂

∂z
= 0 (1.97)

Consider Biot-Savart Law, expressed as vector potential:

A(r) =
µ0

4π

∫ j (r′)

|r− r′|
d3r′ . (1.98)

If currents all flow in azimuthal direction, i.e. jz = 0, then Az = 0.

⇒ Bx = By = 0 (everywhere.) (1.99)

Then integral form of Ampere’s law is still

Bz(inside) = µ0Jp (1.100)

where Jp is total current in azimuthal direction per unit length.
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j

B

Figure 1.24: Solenoid of arbitrary cross-section.

1.6.3 Coil Types

(a) Wire (Filament):

Wire Windings 

Supporting Former

Figure 1.25: Section through a wire-wound magnet coil.

Multiple layers wound on a former. Usually only for low-field low-current work.

(b) Tape wound:

Each coil consists of a spiral-wound tape, nt turns. Many coils stacked to form a solenoid.
Say nc coils per unit length n = nt.nc.

(c) Pancake:

Similar to tape but using square or rectangular conductor. (Fewer turns/coil).

(d) Plate Coils:

Each turn is made of plate. Whole is a single helix (topologically). Plates may be spaced
by air or solid insulator gap. n = nc.
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Single Tape-Wound Coil Stacked Assembly of Coils.

B

Figure 1.26: Tape-wound coils are stacked to produce a solenoid.

turns/unit-lengthnc

Figure 1.27: A picture-frame type plate coil and the configuration of a solenoid.

There are many other configurations of electromagnet, designed for a tremendous variety
of applications. Most require numerical computation to determine the field and its spatial
variation.

1.6.4 Magnetic Dipole

x’

x

O

Figure 1.28: Currents localized to a small region close to the origin, with the field point far
away.

The magnetic field from a “localized” current distribution. Suppose we want the field at
a point x which is far from the currents, in the sense that for all points x′ where j(x′) is
non-negligible, |x′| << |x|, (relative to an origin near the currents). The general formula for
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A:

A(x) =
µ0

4π

∫ j (x′)

|x− x′|
d3x′ (1.101)

can be approximated by writing

1

|x− x′|
=

1

(x2 − 2x.x′ + x′2)1/2
≈ 1

|x|

(
1 +

x.x′

|x|2
+ ...

)
(1.102)

so

A ' µ0

4π

1

|x|

[∫
j (x′) d3x′ +

1

|x|2
∫

x.x′j (x′) d3x′
]

. (1.103)

Now we convert these integrals into more convenient expressions using ∇.j = 0. Actually the
first one is zero. This follows immediately from the identity

∇. (jx) = x (∇.j) + (j.∇)x = j (1.104)

(which uses ∇x = I i.e. ∂xi/∂xj = δij, and ∇.j = 0). So∫
j d3x′ =

∫
∇′. (jx′) d3x′ =

∫
S
x′j.dS = 0 , (1.105)

for any surface S that encloses all currents so that j = 0 on S. The second term is simplified
using the same identity but being careful to distinguish between x and x′, and using notation
∇′ to denote the gradient operator that operates on x′, j(x′), not on x.∫

(x.x′) j (x′) d3x′ =
∫

(x.x′)∇′. (jx′) d3x′

=
∫
∇′. (jx′ (x.x′))− x′j.∇′ (x′.x) d3x′

= −
∫

x′j. (∇x′) .x d3x′

= −
∫

x′j.I.x d3x′ = −
∫

x′ (j.x) d3x′ (1.106)

But
x ∧ (x′ ∧ j) = (j.x)x′ − (x.x′) j . (1.107)

So ∫
x ∧ (x′ ∧ j) d3x′ = −2

∫
x.x′j d3x′ , (1.108)

by the integral relation just proved. [This identity is true for any x]. Therefore our approx-
imation for A is

A (x) = −µ0

4π

x

|x|3
∧
(

1

2

∫
x′ ∧ j (x′) d3x′

)
(1.109)

or

A =
µ0

4π

m ∧ x

|x|3
, (1.110)

where the Magnetic Dipole Moment of the localized curent distribution is

m ≡ 1

2

∫
x′ ∧ j d3x′ . (1.111)
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We have derived this expression for an arbitrary j distribution; but if the localized current
is a loop current filament,

I

dl
dS

O

x’

Figure 1.29: Current-carrying loop integration to give dipole moment.

m =
1

2

∫
x′ ∧ j d3x′ =

1

2

∫
x ∧ Idl . (1.112)

If the loop is planar,
1

2
x ∧ dl = ds , (1.113)

where ds is the element of surface. So m is (current × area) for a planar filament. The
magnetic field is obtained from B = ∇∧A

B =
µ0

4π

[
3

x

|x|

(
x

|x|
.m

)
−m

]
1

|x|3
(1.114)

1.6.5 Revisionist History of Electromagnetic Induction

Michael Faraday first showed the effect of induction: a transient current can be induced in
one circuit by changes in another. This was ∼ 1830. [Faraday knew no mathematics beyond
the idea of proportionality EMF ∝ rate of change of B-flux]. Suppose history had been
different and we knew only the Lorentz force law:

F = q (E + v ∧B) (1.115)

we could have “proved” the necessity of induction by “pure thought”.
Assume Galilean Invariance: physical laws must be invariant under changes to moving

coordinate systems x′ = x − vt, t′ = t. [Universally assumed in Faraday’s time. Einstein
doesn’t come till 1905!] Consider a rigid (wire) circuit moved past a magnet: Each electron
in the circuit (revisionist!) feels a Lorentz force

F = q (v ∧B) (1.116)

as it is dragged through the magnetic field. The electric field in the rest frame of the magnet
is zero. And the total electromotive force (integrated force per unit charge) round the entire
circuit is

1

q

∮
C

F.dl =
∮

C
v ∧B.dl (1.117)
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Magnet

Coil

v

Figure 1.30: A rigid coil moving past a steady magnet.

vdt

dl
S ¢

Circuit at time t, t’=t+dt

dS

Ribbon

Figure 1.31: Surface elements in the application of Gauss’s law to succeeding instants of
time.

This is generally a non-zero quantity. In fact, this quantity can be transformed on the basis
of purely geometrical considerations. Let’s calculate the rate of change of total magnetic
flux due to circuit motion, in a static B-field. Apply Gauss’ law to volume

0 =
∫

V
∇.B d3x =

∫
Stotal

B.dS =
∫

S′
−
∫

S
−
∫

ribbon
B.ds

=
∫

S′
B.dS−

∫
S
B.dS−

∫
B. (vdt ∧ dl)

= dΦ− dt
∮

C
(B ∧ v) .dl (1.118)

[where dΦ is change in flux]. So

dΦ

dt
= −

∮
C

(v ∧B) .dl . (1.119)

(pure geometry when ∂B/∂t = 0).
This equation can alternatively be obtained algebraically by writing

dΦ

dt
=
∫ dB

dt
.dS =

∫
(v.∇)B.dS (1.120)
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and using

∇∧ (B ∧ v) = (v.∇)B + (∇.v)B− (B.∇)v − (∇.B)v = (v.∇)B . (1.121)

So
dΦ

dt
=
∫
∇∧ (B ∧ v) .dS =

∮
C

(B ∧ v) .dS (1.122)

Anyway EMF is
1

q

∮
C

F.dl =
∮

C
(v ∧B) .dS = −dΦ

dt
(1.123)

Now we consider the whole situation when the frame of reference is changed to one in
which the circuit is stationary and the magnet is moving. By Galilean invariance the total
EMF is the same, and

1

q

∮
F.dl = −dΦ

dt
(1.124)

But now v = 0, and instead B is changing so

dΦ

dt
=
∫ ∂B

∂t
.dS . (1.125)

In this case also the Lorentz force on the charges is

F = q (E + v ∧B) = qE (since v = 0) (1.126)

There has to be an electric field in this frame of reference. And also

1

q

∮
F.dl =

∮
E.dl = −dΦ

dt
= −

∫ ∂B

∂t
.dS (1.127)

Apply Stokes’ theorem to the E.dl integral:∫
S

[
∇∧ E +

∂B

∂t

]
.dS = 0 . (1.128)

But this integral has to be zero for all S (and C) which can be true only if its integrand is
everywhere zero:

∇∧ E = −∂B
∂t

(1.129)

“Faraday’s” Law (expressed in differential form) (which Faraday understood intuitively but
could not have formulated in math)

1.6.6 Inductance

Suppose we have a set of circuits with currents Ii(i = 1...N). These are inductively coupled
if the current in one gives rise to flux linking the others. Because Ampere’s law is linear
(B ∝ j), the flux linking circuit j from current Ii is proportional to Ii. Consequently, the
total flux linking circuit j can be written

Φj =
∑

i

MjiIi (1.130)
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(Summation over Ii) different currents. M is a matrix. The element Mij is an inductance
between currents i and j.. Its units are

flux

current
↔ Wb

A
↔ Henrys . (1.131)

The electromotive force or voltage Vj induced in the j’th circuit is then:

Vj =
d

dt
φj =

∑
i

Mjiİi . (1.132)

For the simplest case N = 1 circuit. Mii → L the self inductance

V = Lİ . (1.133)

It can be shown from Maxwell’s equations that Mij is symmetric.
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