Name:

22.01 Introduction to Ionizing Radiation Fall 2003 Professor Coderre Quiz #1 September 29, 2003

You have 50 minutes to complete this quiz. This quiz is closed book. Please show all work on the attached sheets.

Supplemental information is attached at the back.

This quiz consists of 4 questions worth a total of 100 points.

The point values for each question are indicated in parentheses next to the question number.

1. (15 points)

Identify the daughter products (by specifying A, Z, and the chemical element) of the following radionuclides, given their mode(s) of decay.

(A periodic table is attached at the back)

a) $_{61}^{147} Pm \ (\beta^{-})$

b) $_{92}^{238}U(\alpha)$

c) $^{22}_{11}Na~(\beta^+)$

d) $^{78}_{35}Br$ (β^+ , EC)

e) $^{99m}_{43}Tc$ (γ)

2. (25 points)

a) Calculate the energy released (Q value) by the following reaction:

$${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{4}_{2}He + {}^{7}_{3}Li + 0.48\,MeV\,\gamma$$
 (94%)

b) Calculate the kinetic energy of the alpha particle.

c) What is the recoil energy of the lithium ion?

d) In the other 6% of these reactions, no gamma ray is produced. What would be the energy of that alpha particle?

Assume that the ¹⁰B is at rest and that the kinetic energy of the neutron is negligible.

	mass difference (Δ)							
${}^{10}_{5}B$	12.052 MeV							
${}^{1}_{0}n$	8.0714 MeV							
${}_{2}^{4}He$	2.4248 MeV							
${}_{3}^{7}Li$	14.907 MeV							

3. (30 points)

The human body contains 0.2% potassium (K) by weight. The natural abundance of 40 K (i.e., fraction of total K that is 40 K) is 0.0118%. The decay scheme and half-life of 40 K are given below. Calculate the gamma activity (in Bq) in an adult human weighing 75 kg.

⁴⁰K t¹/₂ = 1.28 x 10⁹ years Decay scheme: $^{40}_{19}K$ β⁻(89%) EC (11%)

β⁻: 1.312 MeV (max)
γ: 1.461 MeV (11%); Ar X rays

4. (30 points)

A meteorite lands in your back yard. You immediately take it to an analytical lab for elemental analysis. From measurements on a single crystal in the center of the meteorite they tell you the following: "the number of ⁴⁰K atoms is *exactly equal* to the number of ⁴⁰Ar atoms".

How old is this meteorite?

State any assumptions you make in this calculation.

⁴⁰K $t^{1/2} = 1.28 \times 10^9$ years Decay scheme: ⁴⁰₁₉K $\beta^{-}(89\%)$ $\beta^{-}: 1.312$ MeV (max) EC (11%) $\gamma: 1.461$ MeV (11%); Ar X rays

1	IA 1 H	IIA	Periodic Table													0 2 He		
2	3 Li	4 Be	of the Elements										5 B	°c	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	ШB	IVB	٧B	ΥIB	VIIB		— VII —		IB	IB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 106	107 107	108 108	109 109	110 110								

*Lanthanide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
+ Actinide	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Series	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr