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Abstract - During the past three decades, the success of the 

Toyota Production System has spurred research in the area of 
manufacturing systems engineering. Two research fields, 
productivity and quality, have been extensively studied and 
reported separately both in the manufacturing systems 
research literature and the practitioner, but there is a lack of 
research in the intersection of these areas. In addition to that, 
most studies on the relationship among manufacturing system 
design, quality and productivity are based on anecdotal 
evidence or qualitative reasoning that lack sound scientific 
quantitative foundations. This study tries to establish a 
scientific foundation to investigate how production system 
design and operation influence productivity and product 
quality by developing conceptual and computational models 
and performing experiments. By doing so, this study will show 
an  important part of the way to produce high quality products 
with minimum cost. 
 

Index Terms— Quality, Quantity, Transfer Line  
 

I. INTRODUCTION 
DURING the past three decades, the success of the Toyota 

Production System has spurred research in the area of 
manufacturing systems design. Numerous research papers 
have tried to explain the relationship between production 
system design and productivity, so that they can show  ways 
to design factories to produce more products on time with 
less resources (people, material, space and others). On the 
other hand, topics in quality research have captured the 
attention of practitioners and researchers since the early 
1980s. The recent popularity of Statistical Quality Control 
(SQC), Total Quality Management (TQM), and Six Sigma 
have emphasized the importance of quality.  

 
These two fields, Productivity and Quality, have been 

extensively studied and reported separately both in the 
manufacturing systems research literature and the 
practitioner literature, but there is a lack of research in the 
intersection of these areas. The need for such work was 
recently described by authors from the GM Corporation 
based on their experience in  industry [Inman at el., 2003]. 
In fact, all manufacturers must satisfy these two targets 
(high quality and low cost) at the same time to maintain their 
competitiveness in the recent tough market conditions. 

 
 

 
Often high productivity and high quality are viewed as in 

conflict. Toyota Production System advocates admonish 
factory designers to combine inspections with operations. In 
the Toyota Production System, the machines are designed to 
detect abnormalities and to stop automatically whenever 
they occur. Also, operators are equipped with means of 
stopping the production flow whenever they note anything 
suspicious (they call this practice Jidoka). They argue that 
mechanical and human Jidoka prevents the waste that would 
result from producing a series of defective items. Therefore 
Jidoka is the means to improve quality and increase 
productivity at the same time [Shingo, 1989], [Toyota 
Motors Corporation, 1996]. But this statement is arguable: 
quality failures are often those in which the quality of each 
part is independent of the others. This is the case when the 
defect takes place due to common (or chance or random) 
causes of variations [Ledolter and Burrill, 1999]. In this case, 
there is no reason to stop a machine that has made a bad part 
because we have no reason to believe that stopping it will 
reduce the number of bad parts in the future. In this case, 
therefore, stopping the operation does not influence the 
quality but it reduces the productivity. On the other hand, 
when quality failures are those in which once a bad part is 
produced, all subsequent parts will be bad until the machine 
is repaired (due to special or assignable or systematic cause 
of variations) [Ledolter and Burrill, 1999], catching bad 
parts and stopping the machine as soon as possible is the 
best way to maintain high quality and improve productivity. 
 

Non-stock production is another popular buzzword in 
manufacturing systems engineering. Some lean 
manufacturing professionals advocate reducing inventory 
on the factory floor since the reduction of work-in-process 
(WIP) reveals the problems in the production lines [Black, 
1991]. Thus, it can help improve production quality. It is 
true in some sense: less inventory reduces the time between 
making a defect and identifying the defect. But it is also true 
that productivity would diminish significantly without the 
stocks [Burman at el., 1998]. Since there is tradeoff, there 
must be optimal stock levels that are specific to each 
manufacturing environment. In fact, Toyota recently 
changed their view on inventory and are trying to re-adjust 
their inventory levels [Fujimoto, 1999]. 
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What is missing in the discussions of factory design, 
quality, and productivity is a quantitative model to show 
how they are inter-related. Most of the arguments about this 
are based on anecdotal evidence or qualitative reasoning 
that lack a sound scientific quantitative foundation. The 
research described here tries to establish scientific 
foundation to investigate how production system design and 
operation influence productivity and product quality by 
developing conceptual and computational models and 
performing experiments. By doing so this study will show 
an important part of the way to produce high quality 
products with minimum cost. 

 

II. RESEARCH OBJECTIVE 
The objective of this research is to gain in-depth 

understanding to investigate how manufacturing system 
design and operations simultaneously influence quality and 
productivity. This will be done by developing conceptual 
and quantitative models and extensive experiments with the 
models. We will develop concepts and tools to design 
factories to produce high quality products and satisfy 
quantity and delivery requirements at minimum costs. 

 

III. RESEARCH METHOD AND RELATED WORK 

A.  Quality Models 
There are two extreme kinds of quality failures based on 

the characteristics of variations that cause the failures. In the 
quality literature, these variations are called common (or 
chance or random) cause variations and assignable (or 
special or unusual) cause variations [Montgomery, 1991]. 
The former are those in which the quality of each part is 
independent of the others. Such failures occur often when an 
operation is sensitive to environmental perturbations like 
temperature and humidity change or the operation uses a 
new technology that is difficult to control. This is inherent in 
the design of the process and cannot be removed. Such 
failures can be represented by independent Bernoulli 
random variables, in which a binary random variable 
indicating whether or not the part is good is chosen each 
time a part is operated on. A good part is produced with 
probability p, and a bad part is produced with probability 1 - 
p. The occurrence of a bad part implies nothing about the 
quality of future parts, so no permanent changes can have 
occurred in the machine. For the sake of clarity, we call this 
as a Bernoulli-type quality failure. Most of quantitative 
literature on inspection allocation assume this kind of 
quality failures [Raz, 1986], [Lee and Unnikrishnan, 1998]. 
In this case, if bad parts are destined to be scrapped, it is 
useful to catch bad parts as soon as possible because the 
longer before they are scrapped, the more they consume the 
capacity of downstream machines. However, there is no 
reason to stop a machine that has produced a bad part due to 
this kind of failure.  

Figure 1 shows the types of quality failures and types of 
variations. The quality failures due to assignable cause 
variations are those in which a quality failure only happens 
after a change occurs in the machine. In that case, it is highly 
likely that once a bad part is produced, many or all 
subsequent parts will be bad until the machine is repaired. 
Here, there is much more incentive to catch defective parts 
and stop the machine soon. In addition to minimizing the 
waste of downstream capacity, this strategy minimizes the 
further production of defective parts. For this kind of quality 
failure, there is no inherent measure of yield because the 
fractions of parts that are good and bad depend on how soon 
bad parts are detected and how quickly the machine is 
stopped for repair. In this, we will call this a Markovian-type 
quality failure. Most quantitative studies in Statistical 
Quality Control are dedicated to finding efficient inspection 
policies (sampling interval, sample size, and others) to 
detect this type of quality failure. [Woodall and 
Montgomery, 1999]. In reality, failures are mixtures of 
Bernoulli-type quality failure and Markovian-type quality 
failure. It can be argue that the quality strategy of the Toyota 
Production System [Monden, 1998], in which machines are 
stopped as soon as a bad part is detected is implicitly based 
on the assumption of the Markovian-type quality failure.  
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Figure 1: Types of Quality Failures 

B. System Yield 
System yield is defined here as the fraction of input to a 

system that is transformed into output of acceptable quality. 
This is an important metric because customers appreciate 
the quality of products only after all the manufacturing 
processes are done and the products are shipped. The system 
yield is a complex function of how the factory is designed 
and operated, as well as of the characteristics of the 
machines. Some of influencing factors include individual 
operation yields, inspection strategies, operation policies, 
buffer sizes, and other factors. Comprehensive approaches 
are needed to manage system yield effectively. This 
research aims to develop mathematical models to show how 
the system yield is influenced by these factors. 

 

C. Response to Failures 
The response to the event of a part failing inspection 

consists of two kinds of actions: one dealing with the part 
and the other dealing with the machine that produced the 



 
 

failing feature. 
 

The possible actions on the parts include 

 
 Immediate scrap 
 Rework 

 Immediate 
 Deferred: The part is marked for rework later 

 
A part should be scrapped if the rework cost would be 

substantial compared to the value of the part. It should be 
reworked otherwise. Reworking should take place 
immediately unless there is insufficient space on the factory 
floor for a rework station or for a queue of parts waiting to 
be reworked. This is precisely the case in an automobile 
assembly plant. 

 
The possible actions on the machines include 
 No action 
 Immediate stop and repair 
 
No action is appropriate if the failure is Bernoulli rather 

than Markovian. Since the defective part does not imply any 
greater likelihood of future bad parts from that machine, 
there is no reason to repair the machine. If the failure is 
Markovian, then the machine should be stopped and 
repaired immediately. Otherwise, it will continue to produce 
parts that will have to be scrapped or reworked. 

 

D. Characterization of Machine Status  
There are many possible ways to characterize the states of 

a machine based on the quality model discussed earlier. 
Figure 2 shows the proposed state transitions of a machine. 
In the model, the machine has three states. 

 
 State 1: The machine is operating and producing good 

parts with probability of Y1. Y1 is typically close to 1. All 
the quality failures in this state are due to common cause 
variations.  

 State –1: The machine is operating and producing good 
parts with probability of Y-1. Y-1 is much less than 1. It 
may be 0. But the operator does not know that the 
machine is producing bad parts. All the quality failures 
in this state are due to assignable cause variations. 

 State 0: The machine is not operating. 

The machine also has two different failures (i.e. transition 
to failure states from state 1) 

 
 Conventional failure: transition from state 1 to state 0. 

The machine stops producing parts due to failures like 
motor burnout. 

 Quality failure: transition from state 1 to state –1. The 
machine stops producing good parts due to a failure like 

a severe tool wear. 
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Figure 2: States of a Machine 

 
When a machine is in state 1, it can fail due to a 

non-quality related event like a motor burning out and go to 
state 0 with transition probability rate p. After that an 
operator fixes it, so the machine goes back to state 1. 
Sometimes, due to an assignable cause, the machine begins 
to produce bad parts, so there is a transition from state 1 to 
state –1 with a probability rate of g. The machine can be 
stopped to be fixed by the operator when the operator knows 
that machine is producing bad parts. The transition from 
state –1 to state 0 occurs at probability rate f. Here for 
simplicity, we assume that whenever a machine is repaired, 
it goes back to state 1.  

 

E. Quality Improvement Policies 
System yield is a complex function of various factors 

such as inspection, individual operation yields, buffer size, 
and other operation policies. There are many ways to 
improve the system yield. Inspection policy is the one that 
has received the most attention in the literature. Research on 
inspection policy can be divided into optimizing inspection 
parameters at a single station and the inspection station 
allocation problem. The former issue has been investigated 
extensively in the Statistical Quality Control (SQC) 
literature [Wooddall and Montgomery, 1999]. Here, optimal 
SQC parameters such as sampling size and frequency are 
sought for an optimal balance between the inspection cost 
and the cost of quality. The other research looks for the 
optimal way to distribute inspection stations along 
production lines [Raz, T., 1986]. 

 
Improving individual operation yield is another important 

way to increase the system yield. Studies in this field try to 
stabilize the process either by finding root causes of 
variation and eliminate them or making the process 
insensitive to the external noise. The former topic has 
numerous qualitative researches in the field of Total Quality 
Management (TQM) [Besterfield et al., 2003] and Six 
Sigma [Pande and Holpp, 2002]. Quantitative research is 
more oriented toward the latter topic. Robust engineering 



 
 

[Phadke, 1989] is an area that has gained substantial 
attention. 

 
Inventory level reduction has been argued as one of the 

effective means to improve the system yield. Lots of lean 
manufacturing specialists have asserted that less inventory 
on the factory floor reveals the problems in the 
manufacturing lines more quickly and helps quality 
improvement activities [Alles et al., 2000], [Monden, 1998]. 

 
There also have been investigations to explain the 

relationship between plant layout design and quality [Cheng 
et al., 2000]. They argue that U-shaped lines are more 
advantageous than straight lines to produce higher quality 
products since there are more points of contact between 
operators. Also there is less material movement, and there 
are other reasons. 

 
Although there are many possible ways to improve 

system yield, sticking to only one method will give marginal 
gains. The effectiveness of each method is greatly 
dependent on the details of a factory. Thus, there is need to 
show which method or which combination of methods is 
most effective in each case. The quantitative tools that will 
be developed from this research can help fulfill this need. 

 

F. Evaluation of Manufacturing Systems 
There are two different sets of tools for evaluating the 

performance of manufacturing systems. One is discrete 
event simulation and the other is analytic modeling. 
Simulation models have the potential for dealing with a 
larger class of systems than analytical methods but they are 
substantially slower since they need to generate large 
number of events to estimate performance measures of 
manufacturing system correctly [Law et al., 1999]. Most 
research in optimal buffer allocation has used simulation as 
an evaluation tool. Due to the low computation speed, only 
small fraction of the entire design space is searchable. Also, 
discrete-event simulations use random number generation to 
create events, so they give slightly different outputs for the 
same input. Therefore, it is difficult to determine the best 
directions for improvement since it is difficult to check 
whether the improvement in the performance is from the 
favorable random number streams or from the better input 
data. Figure 3 shows that a discrete-event simulation gives 
different throughput estimates for the same input each time 
it runs. It happens because the discrete-event simulation 
uses different random number streams to generate events. 
And from these events, it estimates the performance of a 
manufacturing system. 

 
Analytic methods have different characteristics. They are 

substantially faster at evaluating designs and the same input 
always gives exactly the same output. Therefore it is 
convenient to search larger design space and easy to find 

reliable directions for design improvement [Gershwin and 
Schor, 2000]. But analytic models are difficult to develop, 
and they often require some approximation. There have 
been substantial volumes of research in analytic modeling of 
manufacturing systems [Dallery and Gershwin, 1992]. 

 
 

0.7

0.705

0.71

0.715

0.72

0 5 10 15 20

Number of Try

Pr
od

uc
tio

n 
R

at
e

 

Figure 3: Variation in Production Rate Estimates  
from a Discrete-Event Simulation 

 

IV. RESEARCH PROGRESS UP TO DATE 

A. Continuous Model Flow Line 
A flow (or transfer) line is a manufacturing system with a 

very special structure. It is a linear network of service 
stations or machines ( ) separated by buffer 
storages ( ). Material flows from outside the 
system to M , then to , then to M , and so forth until it 
reaches after which it leaves. Figure 4 depicts a flow line. 
The rectangles represent machines and the circles represent 
buffers. 

kMMM ,...,, 21

1

1B 2

21 ,...,, −kBBB

1

kM

 
M1 B1 M2 B2 M3 B3 M4 B4 M5

 
Figure 4: Five-Machine Flow Line 

 
2-machine-1-buffer (2M1B) models should be studied 

first. Then a technique that divides long transfer line into 
multiple 2-machine-1-buffer models could be developed. 
Among the various modeling techniques for the 2M1B case, 
including deterministic, exponential, and continuous models, 
the continuous-material line modeling is used for this 
research because it can handle deterministic but different 
operation times at each operation. This is an extension of the 
continuous-material serial line modeling technique 
developed by Gershwin [Gershwin, 1994] by adding 
another machine failure state. Figure 5 shows the 2M1B 
continuous model where machines, buffer and discrete parts 
are treated as through valves, bathtub, and continuous fluid 
respectively. 

 
We assume that an inexhaustible supply of workpieces is 

available upstream of the first machine in the line, and 
unlimited storage area is present downstream of the last 



 
 

machine. Thus, the first machine is never starved, and the 
last machine is never blocked. Also, failures are assumed to 
be operation dependent (ODF). 

M1 B1 M2

valve

valve

 
Figure 5: Two-Machine-One-Buffer Continuous Model 

 

B. Infinite Buffer/ Zero Buffer Case 
An infinite buffer case is a special 2M1B case in which 

the size of the Buffer (B1) is infinite. This is an extreme case 
where the first machine (M1) never suffers from blockage. 
Therefore it gives an upper limit of the production rate of the 
2M1B model. A zero buffer case is the case in which there is 
no buffer between two machines. This is the other extreme 
case where blockage and starvation take place most 
frequently. Thus, it gives a lower limit of production rate of 
the 2M1B model. Figure 6 shows a typical shape of 
production rate (total or effective) curve as a function of 
buffer size. It increases as buffer size increases except 
special cases shown in section F.  Mathematical expressions 
of total production rate, which is output rate of good and 
bad parts, and effective production rate, which is output rate 
of good parts, are derived for each case. Equation (1) and (2) 
are production rate and effective production rate of the 
infinite buffer case respectively.  
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Figure 6: Infinite Buffer and Zero Buffer Case 

 
1 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2

(1 / ) (1 / )[ ,
1 ( ) / / 1 ( ) / /T

g f g fPR Min ]
p g r g f p g r g f
µ µ+ +

=
+ + + + + +

     (1)  

(1)  1 2

1 1 2 2( )( )E T

f fPR
f g f g

=
+ +

PR                      (2)             ( 1 g+−      )1,0,,()0,1,,()1,1,,()

)1,1,,()1,1,,()()1,1,,(

12221

2
12

yxfryxfryxfgpp
y
yxf

x
y

x
yxf

t
yxf

++++
∂

∂
+

∂
∂

−=
∂

∂ µµµ

(5) 

  (1 The accuracy of these equations has been tested by 
comparison with simulation result. A discrete event 
simulation was built in C++ for comparison purposes. Table 
1 shows that the derived equations give good result. 

 
Case # PR(Analytic) PR(Sim) %Difference

1 0.9016 0.9018
2 0.8925 0.9018
3 0.9016 0.9018
4 0.8729 0.8750
5 0.8925 0.9018  

-0.02%
-1.04%
-0.02%
-0.24%
-1.04%

0.00%
0.00%
0.00%
-0.01%
-0.01%

Table 1: Infinite Buffer Case 
Production rate and effective production rate of the zero 
buffer case are shown in Equation (3) and (4) respectively. 
Table 2 confirms that these equations are valid. 
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Case # PR(Analytic) PR(Sim) %Difference

1 0.8802 0.8802
2 0.8211 0.8211
3 0.8860 0.8860
4 0.7748 0.7748
5 0.8207 0.8207  

Table 2: Zero Buffer Case 

C. Finite Buffer Case 
1) State Definition 

State of 2M1B case is initially defined as 
),,,( 21 ααyx where each character represents 

 
 x: total amount of material at B1 
 y: amount of defective material at B1 
 1α : state of machine 1. 
 

2α : state of machine 2. 
 
2) Internal State Transition Equations and Boundary 
Conditions 

When the buffer B1 is neither empty nor full, its level can 
rise or fall depending on the states of adjacent machines. 
Since it can change only a small amount during a short time 
interval, it is natural to use differential equations to describe 
its behavior. From the state definitions and modeling 
assumptions, 9 internal transition equations for the 
probability density function ),,,( 21 ααyxf are derived as 
follows: 
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These transition equations are linear partial differential 
equations in t,x,y with coefficients that are nonlinear 
functions of x and y. Therefore this system is unlikely to be 
solved. But starvation and blockage of the machines occur 
independently of y. And if we know the starvation and 
blockage probabilities we can estimate total production rate 
and effective production rate of 2M1B. Therefore the state 
of 2M1B can be simplified as ),,( 21 ααx . After deriving all 
the equations again with the new state definition and setting 

dx
df

x
f

t
f →∂

∂=∂
∂ ,0  for the steady state condition, we 

have following equations: 
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It is natural to assume an exponential form for the solution 
to the steady state density functions, since equations (14) to 
(22) are coupled ordinary linear differential equations. A 
solution of a form  is 
assumed. This form satisfies the transition equations if all of 
the following equations are met. 

)()(),,( 221121 αααα λ GGexf x=

 

0)1()0()0()1(
)}1()1()(){(

211212

21221112

=++
+++−−

GGrGGr
GGgpgpλµµ

  (23) 
 

0)0()0()1()1(
)1()1()0()1()}({

211212

212212111

=+−+
++++−

GGrGGf
GGpGGrgpλµ

   (24) 
 

0)1()0()1()1(
)1()1()}(){(

211212

2121112

=−++
−++−−

GGrGGg
GGfgpλµµ

     (25) 
 

0)1()1()0()0(
)1()1()1()0()}({

211212

211212212

=−++
+++−

GGfGGr
GGpGGgprλµ

   (26) 
 

0)0()1()1()0(
)0()0()()1()0()0()1(

211212

2121212211

=−+−+
+−+

GGfGGf
GGrrGGpGGp

  (27) 
 

0)1()1()1()0(
)1()1()1()0()}({

211212

21121212

=−−++
−+−+−

GGfGGg
GGpGGfrλµ

   (28) 
 

0)0()1()1()1(
)1()1()}(){(

212211

2112212

=−++
−++−−

GGrGGg
GGfgpλµµ

   (29) 
 

0)1()1()1()1(
)0()1()0()1()}({

212212

21121121

=−−+−+
+−++−

GGfGGp
GGgGGfrλµ

    (30) 
 

0)1()1()1()1(
)1()1()}(){(

212211

212112

=−+−+
−−+−−

GGgGGg
GGffλµµ

     (31) 



 
 

 
These are 9 equations with 7 unknowns 

( )1(),0(),1(),1(),0(),1(, 222111 −− GandGGGGGλ ). Thus, there 
are 7 independent equations and 2 dependent ones. But it is 
not easy to tell this from these equations. 

 
If we divide equations (23) – (31) by G and 

define new parameters 
)0()0( 21 G

 
iiiiiiiiiiiii ZfrYpGGfrGGp +−=−+−=Γ )0(/)1()0(/)1(    (32) 

)1(/)0( iiiiii GGrgp +−−=Ψ                 (33) 

)1(/)1( −+−=Θ iiiii GGgf                     (34) 
 

then equations (23) – (31) can be rewritten as 

021 =Γ+Γ                                 (35) 
             −                               (36) 212 Ψ+Γ=λµ

121 Ψ+Γ=λµ                                (37) 

                         ( 2121 ) Ψ+Ψ=− λµµ                           (38) 
2121 )( Θ+Θ=− λµµ                            (39) 

121 Θ+Γ=λµ                               (40) 
212 Θ+Γ=− λµ                              (41) 

1221 )( Θ+Ψ=− λµµ                            (42) 
2121 )( Θ+Ψ=− λµµ                            (43) 

After many mathematical manipulations the equations 
(35) – (43) become 
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where 

1 1 1 1 1 2 2 2 2 2( )p Y r f Z p Y r f Z M− + = − − + =

 
1 1 1 2 2 2

1 1 1 1(1 ) (1 ) N
Y Z Y Zµ µ

+ = + =
+ +  

 
Now all the equations and unknowns are simplified into 2 

unknowns and 2 equations. By solving the equations (44) 
and (45) we can calculate the probability density functions. 
These equations are plotted in Figure 7. Equation (44) is 
represented as red lines and equation (45) is shown as blue 
lines. Intersections of the red lines and the blue lines are the 
solutions of the equations. Analytical solutions to these 
equations have been sought but were not found since these 
are high order equations where there no general solution 
exists. 

 

 

Figure 7: Plot of Equation (44) and (45) 
 
A numerical solution approach is used to find roots of the 

equations. A special algorithm to find the solutions has been 
developed based on the characterizations of the curves. The 
number of roots depends on machine parameters. But it is 
found that there are only 3 roots when 21 µµ =  regardless of 
other parameters. Therefore, a general expression of the 
probability density function is 

 
1 2 1 1 1 2 2 2 1 2 3 3 1 2( , , ) ( , , ) ( , , ) ( , , )f x c f x c f x c f xα α α α α α α= + + α

2 )

(46) 
where 

1 1 2 2 1 2 3 1( , , ), ( , , ), ( , ,f x f x f xα α α α α α  are the roots of 
the equations (44) and (45). 

Unknowns including c and probability masses at 
the boundary can be calculated by solving boundary 
equations. For the 

321 ,, cc

21 µµ = case, 22 boundary equations are 
derived: 

 
1 1 2 2(0,1,0) (0,0,0) (0,1,1) (0,1, 1)b bf r P p P f Pµ = + + −            (47) 

 1 2 2(0, 1,0) (0, 1,1) (0, 1, 1)b bf p P f Pµ − = − + − −

−

                (48) 
      (49) 2 2 1 1( ,0,1) ( ,0,0) ( ,1,1) ( , 1,1)b bf N r P N p P N f P Nµ = + +

 2 1 2 1( ,0, 1) ( ,1, 1) ( ,0,1) ( , 1, 1)b bf N p P N g P N f P Nµ − = − + + − − (50) 

1 1 2 2 1( ) (0,1,1) (0,0,1) 0b bp g p g P r P− + + + + =            (51) 
 P                            (52) (0,1,0) 0=
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          (54) 
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1 1 2 2(0,1,1) ( ) (0, 1,1) 0b bg P f p g P− + + − =                  (57) 

(0, 1,0) 0P − =                              (58) 

1 2 1 2(0,1, 1) (0, 1,1) ( ) (0, 1, 1) 0b bg P g P f f P− + − − + − − =           (59) 

1 1 2 2 2( ) ( ,1,1) ( ,1,0) 0b bp g p g P N r P N− + + + + =               (60) 
2 2 1 2 1( ,1,1) ( ,1,0) ( ,1,0) ( ,1, 1) ( ,0,0) 0p P N r P N f N f P N r P Nµ− + + − + =

       (61) 
2 1 1 2( ,1,1) ( ) ( ,1, 1) 0b bg P N p g f P N− + + − =                  (62)   

1 2( ) ( ,0,0)r r P N 0− + =                        (63) 



 
 

1 1 2 2 2( ,1,1) ( ) ( , 1,1) ( , 1,0) 0b bg P N f g p P N r P N− + + − + − =      (64) 
2 1 2 2( , 1,0) ( , 1,0) ( , 1, 1) ( , 1,1) 0r P N f N f P N p P Nµ− − + − + − − + − =    

(65) 
1 2 1 2( ,1, 1) ( , 1,1) ( ) ( , 1, 1) 0b bg P N g P N f f P N− + − − + − − =         (66) 

 
In addition to these, all the probability density functions 

and probability masses must satisfy the normalization 
equation. 

D. Performance Measures 
After finding all probability density functions and 

probability masses, we can calculate the average inventory 
in the buffer from 
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The total production rate and effective production rate are 
calculated from equations (68) and (69) respectively: 
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2 1 2 1 2 1 1

1,1 1,0,1 0

[ { ( , , ) ( , , )} (0, , )]
N

TPR f x dx P N P
α α

µ α α α α µ α α
=− =−

= + +∑ ∑ ∫                  

(68) 

1
2 1 1 1 1

1,0,1 0

[ { ( , ,1) ( , ,1)} (0, ,1)
N

EPR f x dx P N P
α

µ α α µ α
=−

= + +∑ ∫ ](69) 

 
The validity of the 2M1B continuous model when 21 µµ =  

has been checked through comparison with simulation. As 
Table 3 demonstrates, the results from the analytic model 
show good agreement with results from simulation. 
 

Case # PR(Anal) PR(Sim) Error Inv(Anal) Inv(Sim) Error 

1 0.806  0.808  -0.25% 2.500  2.619 -4.53%

2 0.855  0.858  -0.37% 25.000  24.883 0.47%

3 0.936  0.938  -0.23% 4.709  4.989 -5.60%

4 0.944  0.946  -0.22% 12.654  12.757 -0.81%

5 0.909  0.911  -0.19% 2.781  2.832 -1.81%

6 0.922  0.924  -0.24% 9.213  9.318 -1.13%

7 0.909  0.910  -0.07% 2.220  2.321 -4.39%

8 0.925  0.926  -0.18% 7.242  7.080 2.30%

9 0.840 0.843 -0.38% 20.020 20.149 -0.64%

10 0.763  0.767 -0.49% 4.983  5.110 -2.48%
Table 3: Simulation and Analytic Result Comparison 

 

E. Quality Information Feedback 
Factory designers and managers know that it is ideal to 

have inspection at every operation. However, it is also 
costly to inspect after each operation. As a result, factories 
are often designed so that multiple inspections are 
performed at a small number of stations. In this case, 
inspection at downstream operation can give feedback to 
upstream machines. (We call this quality information 
feedback). In this case, the yield of a line is a function of the 

sizes of buffers.  This is because when buffers get larger, 
more material accumulates between an operation and the 
inspection of that operation. All such material will be 
defective if the Markovian type quality failure takes place. 
In other words, if buffers are larger, there tends to be more 
material in the buffers and consequently more material is 
defective. Therefore it takes longer time to have inspections 
after finishing operations. We can capture this phenomenon 
by modifying f. 
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Figure 8: States of One Machine 

 
In Figure 8, we show that there are three ways to have 
transition from state –1 to state 0. 

 The machine fails by itself from conventional failure: ip  
 The machine is stopped by its own inspection: h  S

i

 The machine is stopped by inspections at downstream 
machines: F

ih  
 
Here, the machine can be stopped by inspections only 

when it does not fail by itself from conventional failures. 
Also, the machine can be stopped by inspection at 
downstream machine only if its own inspection does not 
identify the defect. Therefore 
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In the 2M1B model, 1p is a characteristic of Machine 1 

(M1).  is a function of inspection parameters such as 
sampling interval and sample size. 1  is the mean time 
between making defects at M1 and identifying them at 
Machine 2 (M2) which is dependent on amount of inventory 
at Buffer (B1). Once M1 begins to produce bad parts, all 
subsequent parts are bad until the inspection at M 2 stops  
M1. When M2 stops M1, all parts in B1 and some of parts 
that M2 has processed are defective. Since 1 is the mean 
time to identify defects at M2, 1  is a sum of the average 
time that material stays in B1 and 1 . The average time 
that material stays in B1 can be estimated from the 
production rate of 2M1B and the average inventory. Since 
the average inventory is a function of f and f is also 
dependent on the average inventory, an iterative method is 
used to get these values. 
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F. Insights from the Numerical Experimentation 
1) Influence of Quality Feedback 

Having quality feedback means having more inspection. 
Therefore, machines tend to stop more frequently with 
quality feedback. As a result, the production rate of the line 
decreases but the effective production rate increases since 
added inspections prevent making defective parts. This 
phenomenon is shown in Figure 9. This can be interpreted as 
suggesting that stopping the line immediately when 
defective parts are found is a good way to improve quality 
and productivity at the same time if the quality failure is 
Markovian type. Note that in this case, both total production 
rate and effective production rate increase with buffer size, 
with or without quality feedback. 
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Figure 9: Production Rates with/without Quality Feedback 
 
As explained in previous section, system yield is a 

function of buffer sizes if there is quality feedback. Figure 
10 shows system yield decreasing as buffer size increases 
when there is quality feedback. This happens because when 
the buffer gets larger, more material accumulates between 
an operation and the inspection of that operation. All such 
material will be defective when the first machine is at state 
-1 but the inspection at the first machine does not find it. If 
there is no quality feedback, then system yield is 
independent of the buffer sizes. From this we are able to 
demonstrate that “smaller stock improves quality” which is 
widely believed, under the condition that quality failures are 
Markovian and quality feedback exists. 

 
Typically, increasing the buffer size leads to higher 

effective production rate. This is shown in Figure 9. But 
under certain conditions, the effective production rate can 
actually decrease as buffer size increases. This can happen 
when 

 The first machine produces bad parts frequently. 
 The inspection at the first machine is poor or 

non-existent and inspection at the second machine is 
reliable. 

 There is a quality feedback. 
 The isolated production rate of the first machine is 

higher than that of the second machine. 
 
Figure 10 shows a case in which a buffer size increase leads 
lower effective production rate due to rapid reduction of 
system yield. 
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Figure 10: System Yield and Effective Production Rate 

 
2) How to Improve Quality 

There are two major ways to improve quality. One is to 
increase the yield of individual operations and the other is to 
perform rigorous inspection. Having extensive preventive 
maintenance on manufacturing equipment and using robust 
engineering techniques to stabilize operations have been 
suggested as tools to increase yield of individual operations. 
Both approaches increase the mean time to defect (MTTD) 
(i.e. decrease g of an operation). On the other hand, the 
inspection policy aims to detect bad parts as soon as possible 
and prevent their flow toward downstream operations. More 
rigorous inspection decreases the mean time to identify 
(MTTI) (i.e. increase f of an operation). It is natural to 
believe that using only on one kind of method to achieve a 
target quality level would not give the most cost efficient 
quality assurance policy. Figure 11 indicates that impact of 
individual operation stabilization on quality improvement 
decreases as the operation becomes more stable. It also 
shows that effect of improving inspection (MTTI) on quality 
decreases. Therefore, it is optimal to use a combination of 
both methods to reach to a target quality level.  
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Figure 11: System Yield and Effective Production Rate 

 
3) How to Increase Effective Production Rate 

It is known that improving the stand-alone throughput of 
each operation and increasing buffer space are typical ways 
to increase production rate of manufacturing systems. If 
operations are apt to have quality failures, there may be 
other ways to increase the effective production rate of 
manufacturing systems: increasing the yield of each 
operation and conducting more extensive inspections. 
Stabilizing operations, thus improving the yield of 
individual operations, will increase effective throughput of a 
manufacturing system regardless of the type of quality 
failure. On the other hand, reducing the mean time to 
identify (MTTI) will increase effective production rate only 
if the quality failure is Markovian but it will decrease 
effective production rate if the quality failure is Bernoulli. In 



 
 

some situations, increasing inspection reliability is more 
effective than increasing buffer size to boost effective 
production rate. Figure 12 shows this. Also, in some other 
situations, increasing machine stability is more effective 
than increasing buffer size to enhance effective production 
rate. Figure 13 shows this phenomenon. 
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Figure 12: Mean Time to Identify and Effective Production Rate 
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Figure 13: Quality Failure Frequency and Effective Production Rate 
 

V. FUTURE RESEARCH  
The development of the 2 Machine 1 Buffer (2M1B) 

model is still under the progress. Solving boundary 
conditions with different machine speeds is expected to be 
done soon. This case is challenging since number of the 
roots of the internal transition equations depends on input 
parameters. As a result, more boundary conditions are to be 
met. After finishing the 2M1B model construction, 
decomposition techniques for longer line analysis with and 
without quality feedback will be developed. Rigorous 
validation process will follow. Extensive numerical 
experiments will be conducted to observe the behavior of 
flow lines with quality problems. Based on the 
characterization of the system behavior, recommendations 
for designing manufacturing systems to produce high 
quality products with minimum cost will be proposed.  
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