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Abstract:

A moored profiler record from the western tropical North Atlantic provides the
first continuous time series of temperature, salinity and velocity profiles in a ther-
mohaline staircase. Variations in the intensity of layering and the evolution of layer
properties are well documented during the 4.3 month record. Such staircases are
the result of strong salt fingering at the interfaces between the mixed layers, and
these data provide unique insights into the dynamics of salt fingers. In particular, a
striking linear correlation between the temperature and salinity of the layers may
be interpreted as resulting from vertical salt finger flux divergences. Data from
this record allow new interpretations of previous work on this topic by McDougall
(1991).
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Chapter 1

Introduction

Salt fingers are more than an elegant curiosity of fluid physics in oceanography.
There is mounting evidence that the difference between vertical transport of heat
and of salt which results from salt fingering plays an significant role in oceanic mix-
ing. Salt fingers impact a range of scales from frontal intrusions to regional water
mass conversion through diabatic flux and in this capacity may even influence the
thermohaline circulation (Zhang and Schmitt, 2000).

In a recent study, the Salt Finger Tracer Release Experiment (SFTRE) sought to
measure the fluxes due to salt fingering through the extensive thermohaline stair-
case observed in the Western Tropical Atlantic (Schmitt et al, 2005). A combination
of techniques was employed, including direct microstructure measurements from
the High Resolution Profiler (HRP) and a tracer release of Sulfur Hexaflouride
(SF6), to allow comparison of independent estimates of the vertical eddy diffu-
sivity of salt.

Spatial surveys during the Caribbean Sheets and Layers Transects (C-SALT,
1985) mapped the layers of the thermohaline staircase which occupy the thermo-
cline of the water column east of Barbados. In this region Subtropical Underwater
and Upper Antarctic Intermediate Water converge, one on top of the other (Schmitt
et al., 1987;'). The superposition of these water-masses creates one of the strongest
density compensated stratifications of temperature and salinity in the ocean: the
salinity decreases by more than two practical salinity units ( 37.3 to - 35) between
100 and 700 meters depth. Furthermore, there is evidence that physical processes
in the region result in a large diabatic salt flux between these two water masses as
they transit to the Florida Straight (Schmitz et al., 1993).

The C-SALT observations not only provide motivation to quantify the total flux
of salt, but also to examine the flux convergence which maintains the linear rela-
tionship of temperature and salinity in the layers observed by Schmitt et al. (1987).
They show that the potential temperature and salinity in a layer are linearly re-
lated over the 400 km2 of the C-SALT survey by selecting temperature and salinity
values from the layers observed in each of the many profiles of the survey. When
plotted on a potential temperature salinity diagram (Figure 1-1), the linear rela-
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tionship in each layer is strikingly similar to the layer evolution observed in labo-
ratory salt finger experiments (Lambert and Demenkow, 1972). Experiments and
observations suggest that the centimeter-scale physics of the salt fingers are likely
to be the dominate source of flux convergence which controls the relationship of
temperature and salinity in the layers throughout the region. McDougall (1991)
sought to explain this relationship in the context of a one dimensional flux ratio
balance. Using the new observations of SFTRE we modify McDougall's solution
to find a consistent estimate of the salt finger flux ratio.

An important aspect of the experimental design of SFTRE was quantifying the
variability of the layers during the experiment so that the estimate of vertical eddy
diffusivity for salt, Ks, from the HRP dives during first and second cruise could
be compared with the time-averaged Ks deduced from the tracer data during the
intervening 9 months. To this end, a new instrument, the WHOI Moored Profiler
was deployed in February of 2001 from the RV Oceanus to record a time series of
temperature, salinity and velocity profiles in the study region. The instrument was
expected to operate for nine months until November when it was recovered. Nor-
mally capable of making over one million linear meters of profile observations, the
instrument stopped due to a programming error after only 4.3 months. Nonethe-
less, the data collected provide a unique record of the thermohaline staircase struc-
ture and the evolution of layer properties.

Our analysis of this previously unattainable time series applies the conceptual
model developed by McDougall to find a consistent estimate of the flux ratio. We
begin by reviewing the results of salt finger observations, theory and laboratory
work which bear upon our study of salt finger behavior (Chapter two). Next, we
describe the Moored Profiler data and determine the linear relationship of temper-
ature and salinity within each layer. The slope of this linear relationship is used
to write a quantitative statement of the ratio of heat flux convergence to salt flux
convergence in each layer (Chapter three). In chapter four, following McDougall
(1991), we examine the terms of the buoyancy flux ratio as a continuous function
of depth and derive two models relating the observations in the previous chapter
to the flux ratio predicted in Chapter two. Using our new observations, we discuss
the two models of vertical salt flux structure in an attempt to find a description
consistent with salt finger theory and McDougall's equation for buoyancy flux ra-
tio.

16
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Published: Deep-Sea Research, Schmitt et al., 1987.
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Chapter 2

Salt Fingers

Oceanic salt fingers are centimeter-scale plumes of rising and falling water which
in cross section have the appearance of vertically interlocking fingers. The motion
of the plumes is a special case of convective mechanical instability driven by the
differentia l diffusion of heat and salt. The narrow aspect ratio of the plumes allows
fast lateral diffusion of heat between plumes, effectively short circuiting the advec-
tive vertical flux of heat, but not salt, by the motion of the fingers. The molecular
diffusivity of heat is greater then that of salt, KT > KS. The differential molecular
diffusivity at small scales in growing salt fingers causes a reversal of the inequality
for the large scale vertical eddy diffusivity where, Ks > KT.

2.1 Observations of Salt Fingers

Salt fingers occur in the ocean in many places where a stable stratification of warm
salty water overlies cold fresh water. The extent to which these gradients com-
pensate is measured by the density ratio, R, = (ox0) ( iS,) - ', with = and

p. The condition for linear unstable salt finger modes is 1 < Rp < 1T 100,
where the ratio of the molecular diffusivities is the Lewis number. Direct observa-
tions of salt fingers are consistent with the fastest growing mode of linear theory
(Schmitt 2003). Images of oceanic salt fingers captured using an optical shadow-
graph (Williams, 1974) support the towed microstructure data which has a domi-
nant horizontal wavelength of 5-6 centimeters in agreement with theory (Magnell,
1973; Marmorino et al., 1987). In ocean observations and analogous laboratory ex-
periments salt fingers are not ubiquitous in the water column but occur in thin
interfaces. These interfaces are O[1 m] thick regions of high vertical gradient,
separated by broad homogenous layers 10-20 meters thick. A sequence of such
horizontal layers separated by steps of temperature and salinity at the salt finger
interfaces create the characteristic thermohaline staircase often observed in CTD
profiles. While the linear salt finger theory allows growing modes at high density
ratio, staircase layers and distinctive microstructure are only observed at density
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Figure 2-1: The temperature-salinity envelope of the Florida Strait waters. Pub-
lished: Bulletin of Marine Science, Schmitz et al., 1993

ratios less than two where the salt finger growth rates can compete with mechani-
cal turbulence supported by the ocean's shear and strain.

2.2 Water Mass Conversion

The subtropical central waters all have the necessary sense of stratification, warm
salty water over cold fresh water, required to support salt fingers, but the most dis-
tinctive salt finger structures occur in regions of low density ratio Rp < 1.7. There
are many examples of small intrusions with low density ratio near strong fronts
and eddies, but the signature, salt finger staircases occur where shear rotates large
scale lateral gradients of temperature and salinity into the vertical. Arguably, the
most important water mass conversion in which salt fingering have been impli-
cated occurs in the western tropical North Atlantic where salinity maximum, Sub-
tropical Under Water, flows west as part of the North Atlantic gyre, while beneath
it, Antarctic Intermediate Water which crossed the equator, flows north. This su-
perposition creates a region several hundred meters thick and thousands of square
kilometers in area which is highly favorable to salt fingers. The absolute gradients
of temperature and salinity are large and the density ratio is low resulting in large
fluxes of salt between these water masses before they reach the Florida Current
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on their way north to close the Atlantic mass balance across 24° North. Schmitz,
Luyten, and Schmitt (1993) analyze the water masses of the Florida Current defin-
ing the potential temperature-salinity (0-S) envelope of the waters in this narrow
strait (Figure 2-1). Near the bottom, the coldest waters of the strait are 7-12° C.
The envelope of temperature and salinity for this water is narrow. Its salinity is
intermediate in the same temperature range between the dense, saline water of
the Eastern North Atlantic on 24 °N (Figure 2-2), and the light, fresh water of the
South Atlantic on 53°W (Figure 2-3). Further evidence from the oxygen content
of this water suggests that it is in fact the South Atlantic water which has become
saltier to create the observed 0-S envelope of the Florida Current. This interpre-
tation requires a strong diabatic mixing process to increase the salinity but not the
temperature of the South Atlantic water.

2.3 Salt Finger Flux Ratio

The buoyancy frequency (Equation 2.1) of the ocean is generally positive such that
turbulent vertical mixing processes are a sink in the turbulent kinetic energy bud-
get, raising the available potential energy of the ocean. Salt fingers are different.
The vertical density gradient may be separated, using a linear equation of state,
into the thermal and haline contribution (Equation 2.3). We are concerned with
a mean state where the contributions oppose one another. Where both gradients
are positive (upward vertical) the difference of their contribution to buoyancy is
less than the absolute value of either component. In this context it is clear how
the density ratio measures the extent to which the gradients of temperature and
salinity compensate. As the density ratio approaches one, the magnitude of the
buoyancy frequency (proportional to [Rp - 1]) approaches zero. Salt fingers occur
at low density ratio (near one) where the water column is sufficiently top heavy
with salt for the efficient release of this potential energy.

Ar2 9 ap (2.1)2_ () (2.1)Po z

= po(To, So) [1 -x(T - To ) + (S - So)] (2.2)

.[ 2 _ (T To) 0S - S)1 (23)p;2" +' ozI (2.3)

n 2 = g [Ro - ] ( S)) (2.4)
az

The buoyancy flux due to turbulent mixing is typically parameterized using an
eddy diffusivity, Kb acting on the mean vertical density gradient (Equation 2.6).
The assumption of equal mixing of heat and salt due to turbulence results in a
down gradient density flux regardless of the density ratio. However, a sufficiently
different vertical eddy diffusivity of heat and salt could release potential energy
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Figure 2-2: The temperature and salinity of the waters of the eastern Atlantic on
240 N. Published Bulletin of Marine Science, Schmitz et al., 1993
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Figure 2-3: The temperature and salinity of water on the line 53°W. The salinity
of the water in the Florida Straight below the 12° C isotherm has increased in the
transit from 53°W, steepening the 0-S curve. These changes are consistent with
vertical mixing due to salt fingers. Published Bulletin of Marine Science, Schmitz
et al., 1993
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in the unstable, haline component of the stratification (Equation 2.8). The differ-
ence between the molecular diffusivity of heat and of salt allow for just such an
instability to occur: salt fingering. Analogous in form to the density ratio, the
heat/salt buoyancy flux ratio, y (Equation 2.5) described in Stem (1975), measures
the efficiency of the short circuit mechanism by which salt fingers make use of the
available potential energy in the haline stratification. This potential energy is a
source in the turbulent kinetic energy equation if and only if (y < 1) such that the
buoyancy flux changes direction because (s > Rp).

x < w'T' >
-v - (2.5)

f < w'S' >
5 b = -Kb [K 2 ] / (2.6)

az azftb [-ocK(-r T) + OKs a J (S (2 7)

Yb = [1--y (3KS a(S so) (2.8)

KT a(T-To )
/ = a (2.9)

Ks a(S-So)

KT
KTRP (2.10)
Ks

The condition, y < 1, implies that the double-diffusive buoyancy flux of salt
is larger than that of heat. The flux of density is therefore up-gradient which acts
to enhance density gradients via a negative buoyancy diffusivity. Given this nec-
essary condition for salt finger growth, salt fingers cause a buoyancy flux conver-
gence on perturbations to the stratification. This maintains the steps of the staircase
against the smoothing effects of turbulent mixing (Schmitt, 2003). The variation of

eddy diffusivity, and therefore the flux ratio with density ratio has recently been
implicated as the driving mechanism in the formation of staircase layers. Analytic
models provide a mechanistic explanation of the behavior observed in numerical
simulations where flux convergence on density ratio perturbations leads to step
formation from a uniform stratification (Radko, 2003).

The salt finger literature addressing the dependence of the buoyancy flux ra-
tio on the density ratio is extensive. Stem (1975) derived the fastest growing lin-
ear normal mode for viscous salt fingers. At low density ratio (near one), y =

Rp- /72p- Rp which is the asymptotic limit of the full similarity solution derived

by Schmitt (1979). The relationship of the fastest growing mode to the flux ratio is
set by the competing effects of the Prandtl number and the Lewis number as the
aspect ratio of the fingers change. These are constants in the ocean (Prandtl num-
ber is - 7 while the Lewis number is - 100) so that the aspect ratio, and associated
flux ratio, of the fastest growing mode is determined by the density ratio. This re-
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lationship has been tested in the laboratory by numerous experiments (Figure 2-4).
St.Laurent and Schmitt (1999) recently published an estimate of flux ratio variabil-
ity with density ratio from measurements of ocean microstructure. The body of
evidence summarized in figure 2-4 suggests that the flux ratio does in fact vary
with density ratio. While the conglomeration of data scatters over a large range
of density ratio, independently three of the data sets shown suggest a correlation
of flux ratio and density ratio. I argue that the scatter between these experiments
might be accounted for by an unknown parameter which might be fixed in the ex-
periments of each researcher but not normalized between the separate estimates
shown in the figure. For simplicity we will retreat from the laboratory and exper-
imental estimates of the flux ratio and use the analytic form derived by Stem for

the fastest growing finger mode to model the flux ratio -y -= p -Ro. This

model estimates the flux ratio to be 0.6 for a density ratio of 1.6, which is roughly
consistent with the mean flux ratio of the experimental work. Note that this model,
though linear, is a valid finite amplitude similarity solution to the boussinesq equa-
tions in a region of uniform gradients (Schmitt, 1979)

2.4 Salt finger Flux Ratio measurements

In the laboratory, salt finger tank experiments make use of the simple boundary
conditions to measure the salt finger flux ratio. By studying salt fingers on an
interface between two thick layers in a tank, the measurement of the average flux
of heat and salt, < w'T' > and < w'S' >, becomes a straightforward measurement
of the temperature and salinity of the layers over time. Given a well insulated tank
which allows no flux of heat or salt through the walls, changes in temperature
and salinity must be due to the double diffusive flux across the interface. This not
only eliminates the need to measure a turbulent correlation but also leads to the
flux ratio being independent of the volume of the layer, y = ( )/(3 aS). The flux
ratio is the time rate of change of temperature divided by the time rate of change of
salinity (Figure 2-5). The actual heat content and mass of salt are not at issue such
that the volume of the layer divides out of the equation and does not enter the
expression for the flux ratio. The ratio can then be measured by taking the slope of
points in a temperature salinity time series from a layer (Lambert and Demenkow,
1972). The critical point in this analysis is that we have implicitly assumed the
flux across the interface is equal to the flux divergence within the layer due to the
no-flux boundary condition at the tank walls.

McDougall (1981) pointed out several problems with the assumptions of this
model due to the nonlinear equation of state (e.g. it relies on a Boussinesq con-
servation of volume). The leading-order correction in oceanic salt fingers is due
to interfacial migration. In the laboratory this phenomena is observed to always
cause an upward movement of the interface. The flux ratio of the upper layer
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will remain unaffected by this downward diapycnal velocity at the interface, but
the lower layer will experience a flux of heat and salt proportional to AT and AS
respectively. The observed temperature-salinity correlation in staircase layers of
the CSALT data resemble the temperature salinity diagrams of Lambert and De-
menkow's laboratory work. The similarity led McDougall (1991) to find a relation-
ship, based on his more careful consideration of the non-linear equation of state,
between the flux ratio and the correlation or layer slope in the CSALT temperature
salinity diagram. Using a time series of temperature and salinity in the thermoha-
line staircase layers East of Barbados from SFTRE, we seek a more nuanced anal-
ysis of the implications of the layer slope observed in the time series, similar to
that in CSALT. Applying our understanding of the salt finger flux ratio in conjunc-
tion with the new Moored Profiler data we will test McDougall's assumptions and
conclusions and propose a new model for the profile of the salt flux which better
accommodates our understanding of the small and large scale processes involved.

28



Chapter 3

Observations of Temperature and
Salinity from a Moored Profiler

Salt finger fluxes are a mechanism for ocean mixing, but are difficult to measure
directly. Salt fingers act on the meso-scale and large-scale properties of the ocean,
and in this way we are able to indirectly observe their effects. We will assume here
that if salt finger fluxes are the leading order term in the evolution of the thermo-
cline and halocline, then they maintain a thermohaline staircase. Conversely, we
will assume that if a thermohaline staircase structure is observed, it necessarily
implies that salt fingering is the primary agent determining that structure in the
absence of competing physical processes. Therefore, the striking layers of temper-
ature and salinity in the SFTRE Moored Profiler data present an opportunity to
study the impact of salt fingers as an isolated process.

The staircase structure of the thermocline in the ocean east of Barbados is an
ideal case study for testing salt finger theory. Understanding such a beautiful self
organizing physical phenomena is intrinsically valuable, but we may also extrap-
olate our findings to hypothesize about the local and global significance of the salt
flux through the staircase to the ocean circulation. Beyond the handful of regions
which exhibit a such a large thermohaline staircase, the central waters of the sub-
tropics have a low density ratio favorable to generating mixing by salt fingering.
While these vast regions are a more complicated mixing environment in which
fluxes due to double diffusion are only one of many processes involved, this study
makes a contribution to delineating the relative contribution of salt fingers to mix-
ing in the greater world ocean.

3.1 Data and Instrumentation

The WHOI Moored Profiler (Toole et al., 1999; Doherty et al., 1999) deployed near
the center of the SFTRE study region at 13°N 55°W (Figure 3-1) repeatedly profiled
the same location recording temperature, salinity, pressure and velocity. The in-
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SFTRE-1: January 15 - February 12, 2001
16-N
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Figure 3-1: Station positions from the first cruise of the Salt Finger Tracer Release
Experiment. The figure details the location of High Resolution Profiler, expendable
bathythermograph, and Moored Profiler stations. The Moored Profiler was located
at 13°N 55°W, while the SF6 tracer was injected to the South and West at 12045'

N 53° 45' W in a layer on the 1027.045 isopycnal. Figure contributed by Ellyn
Montgomery.
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strument made 775 such profiles of the water column between 100 and 700 meters
depth over 129 days.

Raw data from each profile is processed and binned to a two-decibar grid. One-
way profiles, which take about an hour to complete, were repeated approximately
every four hours. Sample intervals at each depth are asymmetric due to the al-
ternating direction of motion. The four hour time series interval is significantly
modified by the finite time required for the instrument to make a profile. The 582
decibar bin is the special depth at which the time series interval is equal to its
average and uniformly four hours to within a few seconds for all 775 profiles.

Temperature and salinity are measured using a Falmouth Scientific Inc. (FSI)
Excell Micro CTD. After processing, we expect the observations to have a preci-
sion better then 0.005 for both temperature and salinity. The velocity is measured
using an FSI 3D-Acoustic Current Meter designed for the Moored Profiler. We ex-
pect the processed velocity observations to be accurate within 5%. The observation
noise is somewhat higher than expected from instrument calibrations of the CTD
and ACM. The autonomous profiling capability comes at a cost associated with
subjecting the instrumentation to a rapidly varying temperature field and strong
vibrations. As with any measurement, we fight at the margin to recover as many
significant figures as possible. The benefits of the Moored Profiler, capturing a
unique time series of fine-scale profiles at this location using a single set of instru-
ments, far outweigh the cost of the noise level which has continued to decrease as
the instrument design improves.

3.2 Observations of the Staircase

The temperature and salinity data from the SFTRE Moored Profiler capture the
evolution of the staircase over four months. The steps, characteristic of double dif-
fusion, are evident in all of the acquired profiles, though their clarity does vary
over time.. A particularly sharp example, shown in figure 3-2, has 15 visible lay-
ers which range from 4 to 40 meters thick. The potential temperature difference
between layers is as large as 1°C. The salinity difference is remarkably well corre-
lated with the temperature difference, fixing the density ratio near 1.6 throughout
the staircase. Internally, the layers are well mixed, presumably by the buoyancy
fluxes across the interfaces at top and bottom of each layer. Temperature-salinity
inversions are relatively rare within the layers during the time series.

The motion of the internal wave field makes it inconvenient to work with the
time variability of the layers using the pressure gridded data. The temperature
and salinity of the layers change much less between profiles than does their depth.
By making a scatter plot (Figure 3-3 a) of the potential temperature vs time the
continuity of the layers over the four month time series becomes apparent. Con-
formal mapping of pressure-binned-data on to temperature coordinates stretches
sharp gradients in a profile while collapsing each homogeneous layer to a single
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Figure 3-2: A single profile from the mooring showing the thermocline and the
staircase in potential temperature, salinity and potential density anomaly. Layers
which are identifiable in this profile have been numbered for comparison with
other figures throughout this chapter.
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point in temperature. The discrete uniform vertical spacing of the observations is
fundamental to this approach. The visually dense clusters of data points manifest
the thick layers which occupy several two-decibar bins in each profile. The visually
sparse regions between layers are the thin, sharp gradients where salt fingering oc-
curs. The amount of scatter in the interfaces is a representation of their thickness,
or equivalently the magnitude of the vertical gradient. This temporal variability
of the interfaces is quantified by the layer index (Figure 3-3 b) which measures the
percentage of two-decibar observations between fixed depths with a gradient less
than (1 °C/'1 00m). As expected from this definition, the index is strongly correlated
with the clarity of the layers in the scatter plot. In spite of the considerable vari-
ability of the layer index and several abrupt changes in layer temperature of order
1°C during the time series, many of layers are continuous over the four months of
the time series. The spatial continuity of layers, even near sharp fronts, was one of
the most surprising results of the potential temperature-salinity diagram from the
C-SALT survey, and is confirmed by the time series from SFTRE.

3.3 The Potential Temperature-Salinity Diagram

The slope of a line connecting two observations on the 0-S diagram is the ratio
of the gradient of temperature to the gradient of salinity between the two obser-
vations in space or time. Lambert and Demenkow (1972) used this property to
determine the ratio of the rate of change of temperature and salinity in their lab-
oratory experiments. The ®-S diagram of ocean profiles has also been used by
Schmitt (1981) to show that the central waters of the ocean are, to a good approx-
imation, regions of constant density ratio and different from a linear mixing line.
The density ratio is the scaled slope between two 0-S observations in a profile,
equivalent to the ratio of the vertical buoyancy gradients as defined in Chapter
two.

The potential temperature-salinity diagram has the same effect of stretching
gradients noted in the temperature scatter plot such that the layers of the salt finger
staircase appear as dense clusters. The clusters found in the Moored Profiler data
are linear, just like those in the O-S diagram from CSALT (Figure 1-1). Using the
218,304 observations of temperature and salinity from the Moored Profiler we can
construct a discrete joint probability density function which highlights the clusters
of data in the layers due to the large number of observations relative to the thin,
sparse interfaces. Binning the data in O-S space to create a bivariate histogram of
the observations (Figure 3-4), the high density of observations in the layers stand
out clearly against the background clutter of observations which occur in the in-
terfaces. The observations demonstrate that the ratio of the rate of the change of
temperature to the rate of change of salinity in each layer is constant, throughout
the range of temperature and salinity in each layer during the time series. We will
define a layer statistically as a small region surrounding a linear fit (Figure 3-5) to
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Figure 3-3: a) Scatter plot of the potential temperature in time during the 129 day
Moored Profiler record. The y-axis has been limited to show only the lower ther-
mocline and the staircase layers. b) Layer index is calculated by Li = P AT I<

0.01 }. The raw layer index time series (blue) is shown with a low pass filter super-
posed (red). These figures are a time series of the layered structure of the staircase.
Notice the relationship between the clarity of the layers in the scatter plot and the
value of layer index.
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Figure 3-4: The E-S curve in the upper left is a scatter plot of all 218,304 observa-
tions. The distribution or density of these points in E-S space is binned to create
the color scaled 2-dimensional histogram. The units of the color scale are given
as observations per unit area of O-S space. Each observation is a sample of two
meters of water column so that of the total 436,608 meters of water sampled during
the time series, the color represents the volume of water observed at a particular
temperature and salinity.
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the layer-clusters of the O-S diagram. The orientation of these clusters or the layer
slope, scaled by oca I, is referred to as RL.

3.4 Determining RL

Finding a linear relationship in data with pervasive background clutter is a difficult
problem in statistics. I chose to use a simple working definition of a layer which
incorporates information about both the temperature and the salinity in estimating
the slope. Using the binned data of the histogram in figure 3-4, for each bin in
salinity we find the temperature bin with the maximum number of data points
(for each bin in salinity x(i), find the temperature bin y(j) in each layer which
maximizes the probability density of the observations. For z pdf{x, y}, find y (j)
such that z{x, yi} max[z{y (j)} x/i ). On each layer this yields a series of points to
which I fit a line in a simple least squares sense. The process removes the clutter
from the interfaces. Observations which lie within a small range of temperature
from the linear fit are defined to be in a layer. Based on this working definition of a
layer we can identify 14 layers in the Moored Profiler data. The analysis provides
two types of information about each layer. First we identify RL and an associated
error based on the statistics of the linear fit (Table 3.1), and second, a time series of
temperature and salinity in each layer.

Table 3.1: Scaled layer temperature-salinity slope, RL, estimated
to the temperature-salinity probability density maxima.

Mean Depth (m)
286
293
311
338
366
400
428
451
474
494
525
542
561
593

RL
0.644
0.825
0.870
0.886
0.891
0.877
0.820
0.849
0.836
0.826
0.782
0.771
0.795
0.921

using a linear fit

Error(1 std)
0.060
0.009
0.006
0.004
0.005
0.004
0.011
0.005
0.020
0.007
0.009
0.026
0.013
0.025

Using this definition, the layer property time series are discontinuous although
the central layers are apparent in almost all profiles. An example of the resulting
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time series in pressure and temperature appears in figure 3-6. We are interested in
the time average properties of the layers and the time average profile so that we
may study the structure of the staircase in relation to RL. However, the statistics of
layer depth shown in the pressure time series are highly skewed (the third moment
is large) such that the mean and variance are a poor description. The time average
layer depth provides a basis for comparing the vertical structure of layer properties
but should be taken as indicative of the mean distance between layer centers, not
the physical location of the layers.

The temperature and salinity difference between adjacent layers can also be
calculated in any profile for which both layers can be identified by their O-S rela-
tionship. Before we can use the measurements to calculate the mean density ratio
between layers we must clearly define what is meant by the time-mean density ratio.
The expected value of a quotient of two dependent random variables is not the
same of the ratio of their expected values. The pit-falls which await are evident in
the ratio of independent normal random variables. The variance of such a ratio is
not finite. The mean (Equation 3.2) and variance (Equation 3.3) of a quotient can
be written as a Taylor expansion about the ratio of the mean values in terms of
the variance and covariance of the numerator and denominator (Mood, Alexan-
der and McFarlane, 1974). The mean value, Ft of the buoyancy scaled potential
temperature difference and buoyancy scaled salinity difference are, oey = [cAO]
and rts, = [bAS] where we have used O' and S' as a short hand for the buoy-
ancy scaled gradients. and 3 are calculated at the mean salinity, temperature
and pressure of the two layers at each time point. The variance and covariance of
these variables are respectively:

var [0'] = S [(cxA( - o, ) 2]

var[S'] = £ [(3AS- s,) 2]
cov [', S'] = [(a)o - ce,)( 3AS - rLs,)]

Using these terms we may write an approximate expression for the time mean
and variance of the density ratio for each of the thirteen interfaces in the Moored
Profiler data. The result is significantly different from other less rigorous ap-
proaches that were tested.

0AE)
7~ =cA (3.1)f3AS

[] , I2 cov [ SO' + . t var [S'] (3.2)

var[7·1 (i(te')2 var [0'] var [S'] 2cov [', S'] (3.3)
s/ Lo, ,S [oo' lS'

The results of the observational analysis are summarized in figure 3-7. To com-
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pare the profile of time average quantities observed on the interfaces, such as den-
sity ratio, Rp, with those observed in the layers, such as layer slope, 7ZL, we must
find a consistent basis for their depth. The time average location of the interface
between two layers is estimated by the mean of the layers time average depth.
Simply put, the density ratio is plotted in-between each pair of layer slope esti-
mates. The alternative, calculating the time average depth of the interface between
two layers, is biased by the missing data points in the time series such that the
time average interface depth does not occur in-between the time average depth
of the layers. Because of this contradiction the layer slope data are plotted at the
time average depth of a layer as described above while the density ratio on the
interfaces is plotted in-between each pair of layers. The error bars show the vari-
ance of the time-mean density ratio derived from equation 3.3 and the estimated
error of the linear fit for RL. Though error bars are shown, no attempt has been
made to propagate the errors through the calculations from the observations to
results. Nonetheless, I am confident that the observed systematic variation of RL
with depth, and the associated inverse relationship of Rp and RL are significant.

It is tempting to conclude, as in the laboratory experiments of Lambert and
Demenkow (1972), that the observed layer slope must be a direct estimate of the
buoyancy flux ratio, y. The estimated flux ratio as a function of density ratio using
Stern's formula is plotted on the same lower axis of figure 3-7. While the variation
of y with depth is correlated with the observed R1 L, both the magnitude of the flux
ratio and the magnitude of its variation with depth are smaller than that of the
layer slope. Further consideration must be given to the interpretation of these data
and how they are related.

Before continuing with that analysis a few last comments about the observa-
tions and the analysis thus far are required. Layers 1, 7, 13 and 14 have been re-
moved in figure 3-7 because they do not fit the trends in the central layers shown.
These layers were also removed from the difference time series for the estimate
of density ratio shown. The top and bottom of the staircase might be expected to
behave differently due to the intermittent layer dynamics. The anomalously low
RL - 0.82 of layer # 7 seems similar in that the layer is not as clearly defined as
its neighbors above and below. It appears to be both thinner and more intermit-
tent. Layer # 7 does have an inversely high density ratio when included in the
estimates but I feel the explanation is likely to lie in the layer definition used in the
temperature-salinity correlation rather than an exception to the staircase physics.

There is a tremendous amount of information contained in the potential tem-
perature salinity scatter plot. It contains 218,304 observations. In the 775 profiles
through the layers, the estimated number of observations in each layer is some-
where between 1000 and 6,000, depending on the average layer thickness. The
linear fits used to define a layer throw out most of this information to remove
the clutter in favor of fitting a line to between 20 and 100 points defined by the
maxima of the binned histogram. The resulting slopes are sensitive to the size of
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layer slope, RL, the mean density ratio, Rp, and the estimated flux ratio, y using
Stern's model.
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the bin used to make the histogram. In identifying 14 layers we determined only
28 values from the entire data set. Future work should involve a more rigorous
statistical statement of what defines a layer. Cluster based algorithms (Dasgupta
and Raftery, 1998) which are used to find mine fields among background clutter
in aerial photographs (Byers and Raftery, 1996) seem like a promising approach to
move forward here. Using such techniques would make better use of the available
observations in a manner more natural to the data set and would allow a proper es-
timate of confidence intervals for the results. The statistical techniques could also
be applied to a raw form of the data which has ten times the vertical resolution
of the two decibar data used here and would achieve ten times the resolution in
layer height. This would allow us to examine the dynamics of layer and interface
thickness.

The results presented here are an attempt to quantify a visually observable fea-
ture of the temperature salinity diagram shown in figure 3-4. The analysis used is
the most straight forward route to estimate physical parameters (layer slope and
interface density ratio). The significance of the results is self evident in the graph-

ical representation of the data. As long as the interpretation of these results does
not over step the limitations set by our assumptions in these calculations our meth-
ods are consistent with our analysis. Here we only seek to test whether theory is
consistent with the general trends of the observations.

3.5 Extension of Lambert and Demenkow to Oceanic
Layers

Recall that in a two layer tank experiment the ratio of the change of temperature to
the change of salinity, or the slope of the temperature-salinity diagram, is equal to

the flux ratio. Recognizing that two of the assumptions on which this conclusion
is based do not hold in the ocean, we consider how to properly extend this con-
ceptual model of RL to the ocean. In a tank there is no flux through the boundaries
(the sides, top and bottom of the tank) such that the flux across the interface is
equal to the flux divergence in a layer. The boundary conditions are more complex
in the ocean. Second, in the laboratory the entrainment velocity can be neglected

in one layer (experimentally the upper one) since fluid leaving the layer does not
change its temperature or salinity. In the ocean staircase this assumption is not
valid because each layer is bounded by salt fingers at top and bottom. Thus, the
conservation of temperature and salinity takes on a more complicated form in the
ocean. If the horizontal velocity in the it layer is ui, while the vertical entrainment
velocity is wi at the top or bottom of a layer, then the conservation of volume for a
fluid column of constant area whose height changes with the layer may be written
_at V (hiui) = w - w*. With this statement of conservation of layer thickness,
hi, assuming a linear equation of state we may now write a consistent statement of

42



Layer i+ 1

Layer i

TS ii IJ 

=Si - S

ES
F+

1_ =1 i

Layer i-i FS R a1 "-

Tjls, '> a

Figure 3-8: Diagram of the terms in equations 3.8 and 3.9.

the conservation of heat, (hiTi) and salt, (hiSi) integrated over the height of a layer
as follows. A diagram of the terms is included in figure 3-8.

O(hjT) i) + V u(hTi) = Ti+lw - Tjw + T _- Tat 

V- u(hiSt) S+lw+ - Si-lW* + T-s _ :
at

(3.4)

(3.5)

In deriving these equations, we have made use of the observation that the in-
terfacial velocity is always upward in laboratory experiments and the entrainment
velocity, w*, will therefore always be negative. Though strongly supported by the
laboratory data, the negative entrainment velocity is an assumption which we will
further idealize to close the conservation equations. Rearranging terms using the
total derivative, DI) = 8 + ui · V(*) the left hand side of equations 3.4 and 3.5
may be rewritten as follows to express conservation of depth-averaged tempera-
ture and salinity in a layer.
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D(Ti) T h [ohl ] +3+*f

hiD(Si)D(TS) [h + 1[ A (V uh - iTlw* + + J - ST (3.6)
D( i) t S Si -+V( uhj) = Si+jw+-Si_jw_ + r - Fs (3.7)

The term H in equations 3.6 and 3.7 is the left hand side of the thickness conser-
vation equation which we started with. By making a substitution for 'H = w - w*
the conservation of layer temperature and salinity may be written neatly (dropping
the i subscript) in terms of the difference of temperature and salinity between lay-
ers. This derivation is analogous to that for the conservation of potential vorticity
in the layers of the wind driven thermocline Joseph Pedlosky, personal communi-
cation).

DT
h + T (3.8)h Dt w+AT+ + T (3.8)

DSh w AS ± + ±4-f - (3.9)Dt +

Our goal is to explicitly take the ratio of these equations to derive an expression
for the flux divergence ratio independent of the layer thickness h in analogy to
Lambert and Demenkow (1972) using the layer slope, RL. We will quantitatively
neglect any lateral flux convergence but comment on its impact in the next section.

3.6 Conservation of OS + icT:
Graphical Solutions

A graphical solution to these equations which can be plotted on the 0-S diagram
is intuitive to the way in which the terms act on the temperature and salinity of
a layer. Equation 3.8 is multiplied by ocv/-1, and equation 3.9 is multiplied by I.
Adding the results and regrouping terms we have:

a
f_______ b C

D(PS + iaT) h D= w+ (3AS + ixAT+)+ ((S+ - OS) + i( T - T) (3.10)

The solution requires both the real and imaginary parts of a, b and c sum to
zero such that when plotted in (3S, iaT) space, the solution is a triangle (Figure
3-9). The slope of the segment corresponding to the term labeled a is the time
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Figure 3-9: Graphical solution to the complex flux divergence equation.

rate of change of the vector ((3S, cT). We have observed the slope of this vector,
RL to be constant for each layer over the duration of the moored profiler layer
time series. The length of the vector is scaled by the layer thickness. The slope
of vector b is equal to the density ratio, Rp. The length of this vector is scaled by
the vertical entrainment velocity w*. The third vector, labeled c, is the salt finger
flux divergence of heat and salt across the layer. The implication is that in the
thermohaline staircase, the sum of b and c has a slope equal to RL on a range of
time scales from days to months. We now see that the variation of this slope over
the height of the staircase is related to the density ratio, which appears directly in
term b, but is also implicated in term c from our previous knowledge of salt finger
fluxes. In particular, we hypothesize that the inverse correlation of RL (decreasing)
with R. (increasing) at the top and bottom of the staircase suggests that changes
in the flux ratio with density ratio from one interface to the next are the cause of
the flux divergence implied by the variation in layer slope.

This system can be adapted to include isopycnal flux convergences as well. It
is interesting to hypothesize about the slope that an isopycnal flux convergence
might have in O-S space. The graphical solution with this addition would be a
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quadrilateral. In further discussing the implications of our observations we will
assume that the vertical flux convergence terms are an order of magnitude larger
than lateral terms, which will be neglected. Based on this physical understanding
of the terms involved, we will derive an expression for the scalar slope of the flux
divergence ratio as in McDougall (1991).

3.7 A Scalar Equation for the Vertical Flux Divergence
Ratio

In the previous section we assumed that the layer slope, defined as RL = Ot s
observed by the mooring, is in fact equivalent to RL = (T D)/ (f3DS) in term a
(Equation 3.10). For this assumption to hold the ratio of both the local tempo-
ral and spatial gradients must be constant and equal to the layer slope. This is
physically demanded by the observations such that in an arbitrary flow field at
an arbitrary mooring location (13°N 55°W) the layer slope RL is constant in time
for each layer. The spatial survey of the C-SALT experiment described by Schmitt
et al. (1987) suggests a uniform layer slope, without vertical variation. While we
have observed vertical variations, the C-SALT findings support our statement that
a fixed linear relationship of temperature and salinity exists over a broad region
of continuous staircase layers. We therefore assert that the layer slope observed
by the Moored Profiler (the local time rate of change), is necessarily equal to the
ratio of the total derivative of temperature and salinity. Our only assumption is
that the mooring location is not unique but rather a representative observation of
the constant linear relationship of temperature and salinity for each of the staircase
layers. Applying this equivalence to equations 3.8 and 3.9, we write a scalar ex-
pression for the flux divergence ratio in terms of the RL and 1p. These expressions
are analogous to the phase of the terms in equation 3.10.

DT DS
L =( (Cx D)/(3 D (3.11)Dt Dt

0ch = RLh DS (3.12)Dt Dt
c(w*AT+ + FT -_ S-T) = 37(W*+AS+ + -+s _ , ) (3.13)

w+(cAT+ - 3ZRLAS+) = f3RL(FS -J s) - o(f T - FT) (3.14)
(w*+3AS +) [ - L] = 3(T+s - ) [RL- ] (3.15)

wiAS+
R'R-L( I: '; ) 1 (S - RIJJS = (3.16)

'J -+.S _.S)0 - L ]

CD ( TT _ .ET) (3.17)
(TS - -S )

46



Equation 3.16, derived in McDougall (1991), allows one of the unknowns, h,
in the unique vector solution for the triangle (Equation 3.10) to be divided out in
favor of a ratio of the other two unknowns. The geometric interpretation is that
the equation for the flux divergence ratio is analogous to the solution for a similar
triangle of fixed proportions but unknown scale. All three angles of a triangle's
vertices are determined if one angle and the ratio of the length of two sides are
known. The flux divergence ratio, is the complex phase of term C. w can be
expressed by the phase of the other two triangle legs, (RL and Rp) and an un-
known ratio of the length of two sides, (w AS+)/(F+s - Fs). This ratio compares
the rate of: water mass conversion due to diapycnal advection to that due to salt
finger flux convergence. The resulting system of equations is not closed when in-
tegrated over the height of the staircase because there are more unknowns than
equations. Following McDougall (1991) we continue exploring the constraints that
the observations of temperature and salinity in the staircase layers place on the
fluxes by relating the buoyancy flux divergence ratio, derived here, to the gradient
of the buoyancy flux ratio. The results show that the Stem model for small scale
salt finger flux ratio as a function of density ratio is only compatible with the flux
divergence ratio of the staircase under very restricted conditions.
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Chapter 4

McDougall's Equation for Buoyancy
Flux Ratio

Before we begin our analysis, the conclusions of McDougall (1991) should be sum-
marized and the new features of our approach delineated. The CSALT data de-
scribed a fixed layer slope R1 which appeared to be constant over the vertical
extent of the staircase. McDougall's analysis did "not attempt [ed] to answer the
question of why the scaled lateral heat-to-salt ratio is observed to be constant at
0.85. Rather, this constant ratio has been taken as given and the simplest combi-
nation of physical processes has been sought to be consistent with it" (McDougall,
1991). In this respect, our analysis is similar to McDougall's. We explore several
possible flux balances which satisfy the given observations, however, a mechanis-
tic explanation of the layer slope, the "why," remains out of reach.

McDougall included the same physics for the conservation of depth-averaged
temperature and salinity which we have described in the previous chapter. His
analysis tested increasingly complex equations for the flux divergence ratio, even-
tually including the sign and order of magnitude of the lateral flux convergence.
McDougall states,

"It was a surprise to find that the constant value of the lateral heat-
to-salt ratio, KL, together with the requirement of only small vertical
variations of the flux ratio, implied rather tight constraints on both the
flux ratio and the entrainment coefficient rather than simply providing
a constraint on some combination of these parameters."

McDougall shows that y = L is the only satisfactory solution but not for the
same reasons suggested by the laboratory tank experiments where this is true.
By imposing a salt flux maximum at the center of the staircase and attempting to
account for the non-linear equation of state, McDougall does indeed place strong
constraints on the form of the solution for flux ratio as we shall see. To explain the
discrepancy between his model's prediction for the flux ratio and estimates from
previous work, McDougall invokes turbulent mixing as a way to boost the salt
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finger flux ratio back toward one, while still holding it constant with depth.
We set out to test the effects of the variation of lZL observed in the staircase

by the Moored Profiler. We hypothesized that the inverse correlation of RL and
Ro might loosen the constraints of McDougall's analysis so that the small scale
salt finger physics could be reconciled with the staircase flux divergence without
invoking turbulent mixing to raise the flux ratio.

Finally, McDougall summarizes the effect of the entrainment which we sought
to describe in the previous chapter.

"The buoyancy flux ratio of the combination of salt-fingering and
entrainment is little different to that of salt-fingering alone. But this
small amount of entrainment has a large influence on the evolution of
the layer properties because the vertical advection of fluid through the
interfaces inherently acts as a flux divergence for scalars rather than as
a flux, and so is much more effective at water-mass conversion than its
small effect on the flux ratio would imply. ... It is also very common to
confuse fluxes and flux divergences in our thinking. Observed changes
in fluid properties in the ocean are always due to flux divergences."

4.1 The Flux Ratio Equation

Our observations of layer temperature-salinity slope and interface density ratio do
not yield a unique solution for the flux divergence ratio. However, the observed
density ratio profile is sufficient to evaluate the profile of the flux ratio in the stair-
case if we apply Stem's (1975) model. We proceed by relating the terms which
describe the variation of flux ratio with height to the flux divergence ratio. The
form of the solution places strong constraints on the shape of the heat and salt
fluxes so that an answer, consistent with both our previous models for the flux ra-
tio and our new observations of the layer slope, determines a particular balance of
terms. This solution relies on Stem's linear model to provide a boundary condi-
tion. We expect this linear model of the salt finger flux ratio to be relevant based
on previous laboratory, theoretical and numerical work (St.Laurent and Schmitt,
1999; Schmitt, 1979; Radko, 2003). The comparison of the two models is an effort
to show that our understanding of two separate physical scales are consistent and
should not be misconstrued as a general solution for staircase dynamics.

On evaluating Stern's model of flux ratio from our observations of the time-
mean density ratio across layers, we find that the flux ratio changes slightly with
depth (Figure 3-7). From inspection of the terms in the flux ratio (Equation 4.1) we
see that this may happen in one of three ways: the heat flux may have a divergence;
the salt flux may have a divergence; or finally the ratio of the thermal expansion
and haline contraction coefficients may be divergent. This may be written formally
by expanding the terms of the derivative of the flux ratio with height.
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a(z)(z)
¥i(z) ) (4.1)

b(z)fS(z)

Y _ T FS (oc/13)

The derivatives have been written as subscripts to be compact. It is implicit
in this conception that the derivatives exist and are well defined in a continuous
sense. Equation 4.2 has units [m - ] or one over the scale height. The flux ratio scale
height is equal to the sum of the scale height of the salt flux, the heat flux and the
term due to the nonlinear equation of state, respectively.

1 1 1 1
l- =_ l - l+ l (4.3)

HY HT Hs H/p

The only one of these terms which can be assessed directly from the data is
HEx/. This scale height describes the effect of the mean temperature and salinity
on the equation of state. From the mean profile of temperature and salinity at the
Moored Profiler site, we can expect 3 x 103 > H,/p > 5 x 102 ().

Further rearranging terms in equation 4.2 we can eliminate the unknown heat
flux term in favor of the flux divergence ratio, A, for which we have previously
derived an expression (Equation 4.5, McDougall, 1991).

at (4.4)

z s (/3)] s (4.5)

We now have a first order, linear, ordinary differential equation for the flux ratio
with an in-homogeneous term expressed by the flux divergence ratio and the salt
flux scale height. A solution to such an equation is guaranteed to exist for arbitrary
functional forms of the parameters, which is certainly encouraging. However, the
homogeneous term will generally be of an exponential form, y(z) - exp [z/HY(Z)].
This analysis begins to expose the fundamental conflict between our model of the
flux ratio, being exponential, and our observations of density ratio, from which we
predict a nearly constant flux ratio. This can only be satisfied by lim [H - oo].
Without actually solving the ODE we can examine solutions to the equation 4.5 in
terms of the scale heights to better understand the terms and their implications.
Applying the condition that the flux ratio be constant, y = y we have:
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lrn 1 1 1 1lim d - H =0 (4.6)
Hy H~Y Hs H/7 Hsyc

Hs
c= Y --Yc (4.7)

In the strict limit that that the solution to the differential equation 4.5 has no
variation of flux ratio with height (as in McDougall, 1991), equation 4.7 must be
satisfied for every [z]. Fitting McDougall's model to the data has placed strong con-
straints on the terms in the solution. With this expression for the flux divergence
ratio we can now apply the model of flux divergence ratio which we derived in
the previous chapter, = RL - (f fS ) [R - R7L]. Written in a continuous form,
the salt flux divergence in the denominator may be replaced by Hs, making the
substitution 1/fT s = (1/Ss)(/S/Tz s) = Hs(1 /FS). The physical model of w from
the previous chapter is now written in terms of McDougall's flux ratio ODE.

D = RL -Hs( 5 z)[Zp - RL] (4.8)

Hs= Yc -YC- (4.9)

1Z -c = Hs( S f)[pR -- ] Yc-s (4.10)

As previously stated w* is assumed to be negative definite based on laboratory
observations. To allow further progress we will take the ratio of w* to FS as an
unknown constant in the vertical. The ratio is an expression for the length of the
legs of the flux divergence triangle in the previous chapter. The meaning of the
term will be discussed further as we explore the relationship of the layer slope and
the flux ratio. McDougall also assumed that the ratio was constant over the height
of the staircase, based on the results of his laboratory work on the effects of the
nonlinear equation of state. In analogy to McDougall we leave this unknown ratio
as a free parameter as we seek the most consistent solution for the flux ratio.

Substituting equation 4.8 into equation 4.9 we arrive at the relationship be-
tween the layer slope ?ZL, observed in the 0-S diagram and the constant approxi-
mation of the flux ratio. We will examine this equation in three interesting limits of

O

the scale height ratio, Hs 1 These correspond to three different simple

balances which are possible in equation 4.3 when y is constant such that the left
hand side of the equation is zero.
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4.1.1 S = 0

If the equation of state were linear, there would be no change in (cy/13) implying
H,~/ = ox, or the first of the three limits where the scale height ratio is equal to
0. For small entrainment velocities, this solution is similar to those of the tank
experiments where y = RZ, however the value predicted, ( 0.85) is one third
larger than that generally observed in lab, (y ~ 0.6). By setting the difference, RL-
y, equal to the vertical entrainment term, we can estimate the order of magnitude
to see if it is physically reasonable.

t.25

RL Yc- w*Sz
R _ = Hs( --_ ) (4.11)
R -L r]s

.75

We can simplify the form of this equation by assuming a constant eddy diffu-
sivity for salt such that Ts = -KsSZ. Our assumptions lead to Hs(s) -.3. This
is consistent with our physical intuition that the entrainment velocity should be
negative, and the eddy diffusivity of salt, Ks should be positive. Rather than using
the nonlinear equation of state and empirical expressions as in McDougall (1991),
w*/Ks is a somewhat simpler physical interpretation of the entrainment velocity
and its importance relative to salt fingering. Under the assumptions in equation
4.11, the scale height Hs must then be positive definite (fluxes are largest at the top
of the staircase). Using the Schmitt et al. (2005) estimate of Ks = 0.9 x 1 0-4 (m2s-1 )
in SFTRE and an entrainment velocity of a meter per year we predict a salt flux
scale height of roughly 100 (m). Since both the flux ratio and the nonlinear terms
have been taken as constant, equation 4.3 implies that Hs = HT. The heat and
salt flux have the same functional form and their ratio is constant equal to ST =

Ts (y ). Recalling the triangle which the conservation equations satisfy in the pre-
vious chapter, the slope of term c (Equation 3.10), equal to the flux divergence ratio,
must now have a slope of -y 0.6 under this set of assumptions.

However, due to the 8°C change in potential temperature between the top and
bottom of the staircase the nonlinear term does change significantly. We have es-
timated H,,/p 1000 (m). The limit we have explored here therefore only applies
where Hs H,/p 1000 (m), a prediction that the heat and salt flux would have
to be strongly convergent.

4.1.2 S =- 1

This second case implies H,/ = Hs. In this limit we find

RL = Hs( fS )[R - ZLI (4.12)Ts P~~~~~~~~~(.2
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The layer slope is now independent of the flux ratio which has cancelled out of
the equation. The order of magnitude estimates used in the previous case (for w*
and Ks) can be applied here as well. The result is a scale height roughly three
times larger than in the previous case. This limit, H,/ = Hs, also places strong
constraints on the heat flux in equation 4.3. Since the flux ratio is constant, the heat
flux must now also be constant and the flux divergence ratio, o = 0. Applying this
limit to the conservation equations satisfied in chapter three, the flux divergence
of salt is finite, but the ratio plotted in the temperature salinity diagram must have
zero slope.

4.1.3 Hs = +oo

Finally, for very large values of the scale height ratio, (we understand this case by
holding H,/p finite, and let Hs = oo), the only solution possible requires that the
left hand side and right hand side of the equation 4.10 balance separately such that
when,

Hs = oo

RL - Yc =Hs [ -Ts [P L ¥ H/] =(4.13)

Equation 4.13 requires both terms, t and t equal zero independently. The sign
and magnitude of terms in I are consistent with what we have already found under
other conditions. That result is not physically problematic. However the require-
ment for t is not physical. The condition for t = 0 sets the flux ratio equal to the
layer slope as in McDougall, while salt finger theory and laboratory experiments
suggest they are different by 0.25. Just as McDougall found, no consideration
of other physical terms and processes (lateral flux convergence) will remedy this
confounding property of the ODE. The general scale height equation (4.3) given
this limit for constant flux ratio and constant salt flux, requires that Ho/ = HT. In
this case the flux divergence leg of the conservation triangle must be vertical, with
zero salt flux divergence. This condition is a consequence of any hypothetical salt
flux maximum in the staircase (assuming the flux must be differentiable).

4.2 A Tale of Two Flux Models

Based on physical intuition, McDougall (1991) suggested that the center of the
staircase must be a maximum of the downward salt finger flux, which decreases
to zero at the top and bottom of the staircase. Using his Gaussian salt flux profile
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model we derive Hs,

exp[ -(z-o) 2 (4.14)
H2(0)

s 2[z- zol (415)
H (0)

H2(0)
Hs = s (4.16)

2[z - zol

The salt flux scale height, Hs changes sign at the center of the staircase, z = zo,
from positive infinity to negative infinity, with a scale set by the H2 (0) 1002.
The physically intuitive salt finger flux profile leads to a physically ill-behaved
solution. Returning to the scale height equation for constant flux ratio 4.10, in this
parameterization of the salt flux profile the staircase must satisfy all three limits

we have explored for the scale height ratio, Hs 1. McDougall found

the only solution possible for constant flux ratio under these conditions requires
the flux ratio is equal to the layer slope. As our intuition suggested, allowing for
the small variation with height which we observe in RL and in the estimated flux
ratio would act in the correct sense to push the solution toward the magnitude
of Sterns model for flux ratio, but it does not repair the inconsistency caused by
the gaussian salt flux profile. If the correct model for flux ratio were steeper than
Stem near KZP = 1.6, allowing a stronger variation of flux ratio with density ratio,
a salt flux maximum might have a tenable physical interpretation. This possibility
should be investigated further.

The difficulty lies not in the physics of the layer slopes, but in the shape of the
salt flux profile. Lateral flux convergence will not fix this. Only by invoking ver-
tical turbulent mixing could McDougall explain the elevated flux ratio predicted
by his model. Given this inconsistent solution, we propose an alternative salt flux
profile model. The mean salinity profile is nearly exponential (increasing upward)
throughout the staircase. Assumption of a constant eddy diffusivity for salt leads
to a simple, constant salt flux scale height. The exponential scale height of the
salinity profile sets the salt flux scale height.
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S = exp[z/Hj (4.17)

SZ = -exp[z/Hi (4.18)
H,

1
S =-K-- exp[z/H] (4.19)

Ht
1

sF7 S -K 2 exp[z/H,] (4.20)
(HR) 2

T H-1 (4.21)
-5s H
H, =Hs (4.22)

The observed salt flux scale height using this method is very nearly equal to
that measured for the nonlinear term by a similar exponential fit to the variation
of (cl/r). This suggests that the salt finger staircase is nearly in the balance de-
scribed by the second limit (Subsection 4.1.2) for the solution of equation 4.10. The
magnitude of the flux ratio is independent of the layer slope since y cancels out
of equation 4.12. As discussed previously the condition for constant flux ratio sets
the flux divergence ratio to zero, requiring that the heat flux be constant.

4.3 Solutions to the Differential Equation

We may formally solve the differential equation describing the flux ratio using
both models of the salt flux which we have described and examine the solutions in
graphical form. Figure 4-1 is similar to that in McDougall (1991) showing flux ratio
(the X-axis) as a function of height (the Y-axis) about z0o, the center of the staircase.
Solutions are plotted using a constant value of the density ratio and layer slope
(blue lines), as well as quadratic fits to the Kp and R1L observations (red dashed
lines). There seems to be little qualitative difference between these solutions. Each
axis shows solutions for a different constant value of the entrainment velocity on
the eddy diffusivity for salt, w. Within each axis a family of solutions to the ODE
are plotted with five different values of the boundary condition which must be
specified for a unique solution. In McDougall's model the magnitude of the solu-
tion at the boundary directly determines its slope at the boundary. The solution
which is nearly constant, occurs in the graph for which the coefficient w satisfies
equation 4.13 such that = 0. The unique solution of this family for constant flux
ratio is set by y = L, such that t - 0, as expected from the scale height analy-
sis. The arbitrary boundary condition does not provide the means to let the model
flux ratio conform to the value predicted by Stem because the shape of the solu-
tion is expressly dependent on the magnitude of the flux ratio. Only in the 2nd
limit where the salt flux scale height and the nonlinear scale height cancel, is the
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Figure 4-1: Solutions to the differential equation for flux ratio (the x-axis), vs height
(the y-axis), using McDougall's gaussian salt flux profile. Each graph represents a
different set of solutions for different proportions of the flux divergence triangle
set by w/ks. Each assumption about the relative magnitude of the divergence due
to vertical advection vs the salt finger flux divergence yields a particular differen-
tial equation. The family of solutions for various boundary condition YI(z=-oo) is
plotted in each graph. The solid blue curves are McDougall's solution from 1991.
The red dashed curves include a quadratic fit to the observed variation of Rp and
RL in the SFTRE data. The character of the solutions is dominated by the salt flux
model. Including the observed variation with height of the flux divergence terms
makes little difference in the solutions for the flux ratio.
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magnitude of the solution independent of its gradient.

The exponential model for the salt flux which we proposed, based on the shape
of the salinity profile, allows the magnitude of the solution to be arbitrary as in the
second limit (Subsection 4.1.2). From the observations we find that the / 3 profile
and the salinity profile have nearly the same scale height. The difference in scale
heights is estimated to be, Hs - H/p 102, roughly ten times smaller than the
magnitude of either term individually. Due to the very small difference between
these terms the shape of the flux ratio profile is nearly independent of the magni-
tude set at the boundary (Figure 4-2). The family of curves in each graph are all
possible solutions. The ODE alone can not discriminate between them. The differ-
ent axes are solutions using different estimates of the entrainment velocity, similar
to the solutions in the previous figure. The solution which is most nearly constant
occurs when the entrainment velocity is such that the heat flux through the stair-
case is constant. The red dashed lines are the full solution using the scale height
estimated from observations. The black line is the limit in which the scale heights
are equal but 7Zp and RL are set by the observations, while the blue curves are in-
tegrated with Hs - H~/r = 0 and Rp and R.L constant and equal to 1.6 and 0.85,
respectively. This solution is physically different from McDougall's. The magni-
tude of the flux ratio is not determined by the ODE because the homogenous term
of the solution is small. The exponential salt flux allows us to match the magnitude
estimated by Stern's formula. The quadratic fit to the variation of layer slope and
density ratio cause the solution for the flux ratio to be cubic. The ODE predicts y
should have a maximum and minimum or an inflection point. This does not fit
the character of our flux ratio estimates from Stem's density ratio model. Still, if
the mechanism by which the equation has allowed us to set the magnitude of the
flux ratio (if not its structure) is physical, it suggests there must be a link between
the salt flux scale height and the non-linear equation of state such that these terms
balance as the system evolves.

The solutions which we have compared graphically can be derived from the
general solution to first order linear ordinary differential equations. Consider the
form of the solution for Y using the integrating factor method for arbitrary func-
tions, f and g:

dtY(t) + f(t)Y(t) = g(t) (4.23)

let L(t) exp[ f(t')dt'] (4.24)

dt( (t)Y) = (t) g (t) (4.25)

Y(t) = t (t')g(t')dt' + C (4.26)
bt(t)

The solutions calculated by McDougall using the Gaussian salt flux, (f - z) have
the general form y - erf(z) + C exp(z2 ). The arbitrary constant C, specified by the
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Figure 4-2:: Similar to the previous figure, these are the solutions to the differential
equation for the flux ratio vs height using the exponential model of the salt flux.
The red dashed curve is the full solution using the same quadratic estimate of Rp
and RZL. The other two curves (blue and black) are solutions in the limit that the
salt flux scale height is equal to the nonlinear scale height. In the blue curves the
variation of Zp and RL has been neglected similar to McDougall's solution.
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boundary condition, is free to set the value of y at only one location, while deter-
mining the shape of the solution for all z. Analogous to the scale height discussion,
only when g(t) is constant can there be a constant solution to the differential equa-
tion. In the limit that f(t) = 0 for all t, or in the flux ratio problem, when the scale
heights (Hs, H/p) are equal, the solution becomes the integral of one over the heat
flux scale height. The solution is constant when the heat flux scale height is infi-
nite or the heat flux is constant. The solutions plotted in figure 4-2 are degenerate
solutions to the differential equation for flux ratio. The ODE is reduced to, y, = 0
when the solution is constant with height.

4.4 Discussion

The temperature salinity time-series from the SFTRE Moored Profiler provides a
new basis to study the implications of the empirically time-invariant slope RL

(potential temperature-salinity space), of the staircase layer water properties. The
analysis of the C-SALT data by McDougall (1991) provides a context for our study.
McDougall concluded that the constant density ratio and constant ZRL observed
in C-SALT requires a constant flux ratio in the staircase that is rather higher than
normally assumed. Our new observations of the variability of these parameters
over the height of the staircase lead us to incorporate certain aspects of salt finger
physics into the analysis.

Following McDougall's treatment we construct a ratio of terms from the passive
tracer evolution equations for heat and salt which describe the observed relation-
ship of temperature and salinity. This places a strong but non-unique constraint
on the vertical flux divergence of heat and salt in these equations. Ignoring lateral
flux convergence, we arrive at the three-term solution presented in chapter three.
Physically these equations state that both temporal gradients and horizontal spa-
tial gradients of water mass properties in a layer must occur in a fixed ratio given
the observed relationships. With the assumption that vertical processes dominate
the flux convergence, thereby setting RL, the decomposition of the conservation
equations leaves two terms. These consist of an advective transport of water by
the mean vertical velocity between the layers (which inherently acts as a flux di-
vergence for layer properties), and a direct flux divergence term. Here, flux refers
to the turbulent correlation of the residual vertical velocity with temperature and
salinity in the salt fingers. The flux divergence represents the difference between
the salt finger fluxes at the top and at the bottom of a layer. The vector sum of these
components in temperature-salinity space is the time rate of change of layer water
mass properties.

Given this physical interpretation of the large scale processes we apply Stem's
salt finger theory governing the small scale fluxes, seeking a single consistent so-
lution. The new estimates of mean density ratio in the staircase suggest that the
vertical flux due to salt fingers (ignoring possible lateral flux divergence terms)
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is the dominant process in the staircase. This is the basis of our assumptions in
the previous paragraph. To evaluate the contribution of the turbulent flux due to
the small-scale salt fingers to the large-scale staircase we refer to analytic salt fin-
ger theory From the variety of evidence suggesting that the flux ratio depends
strongly on the density ratio, we have chosen to apply Stem's (1975) model which
is the simplest model to capture the relevant aspect of the physics which we wish
to test. The analysis places limits on our conclusions. We can show that given
our observations of temperature and salinity, Stern's salt finger flux ratio model
of density ratio dependence is consistent (or not) with the constraints on the flux
ratio implicit in the conservation equations.

These two models, one for the large scale flux divergence of the staircase and
the other for small scale fluxes of the salt fingers are related by an ordinary differ-
ential equation which describes the variation of flux ratio with height. Following
McDougall's work we adjust the parameters of the model using an assumption
about the salt flux profile to find a solution which is consistent with the salt fin-
ger staircase physics we have incorporated. In examining the Gaussian salt flux
profile proposed by McDougall we conclude as he did that the solution cannot sat-
isfy both the magnitude and vertical variation of flux ratio which are described by
salt finger theory. McDougall's solution required the flux ratio to be greater than
that predicted by Stem by one third ( 0.8 rather then 0.6). The solution to the or-
dinary differential equation is composed of Error Functions and Gaussians, while
our physically motivated analytic theory for salt fingers suggest only a modest flux
ratio variation even under our new observations of density ratio (Figure 3.7). The
solution that McDougall found to rectify this discrepancy requires three different
physical balances between the terms over the height of the staircase (Sections 4.1.1-
4.1.3). The Gaussian flux profile requires that the salt flux approach zero at top and
bottom while also becoming non-divergent at the center of the staircase. Although
a constant flux ratio solution does exist there is nothing to suggest the physics of
salt fingers should change from one layer to the next to realize the required flux
balances. However, many of these issues would be resolved if the flux ratio had
a much stronger dependence on density ratio. If the sensitivity of the flux ratio-
density ratio relationship were under estimated in Stern's theory, such that the flux
ratio did indeed have a maximum near y - RL - 0.8, McDougall's salt flux profile
might be consistent.

Following the same approach as McDougall we hypothesize an alternative salt
flux profile that rectifies the major discrepancy, the magnitude of the flux ratio,
between Stem's model and McDougall's solution. The nearly exponential salinity
profile provides the motivation to test a diffusive or exponential salt flux profile
in place of McDougall's Gaussian. The resulting change in the nature of the solu-
tion to the ODE permits nearly constant solutions for flux ratio with an arbitrary
magnitude due to the cancelation of H,/p and Hs. Physically the solution com-
pensates the exponential variation of the salt flux with an inverse variation of the
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Figure 4-3: Data from the HRP measurements of the salt finger staircase in SFTRE.
Note the relatively constant maximum value of the dissipation of thermal variance
in each interface. Published by Schmitt etal in Science 2005.

thermal expansion coefficient to maintain a constant flux ratio. This allows the
magnitude of the flux ratio to be set by the integration constant satisfying Stern's
model. Thus, solutions with a flux ratio near 0.6 and a modest variation in the
vertical can be obtained. The physical balance of this consistent solution is of in-
terest because it suggests that the vertical heat flux is nearly constant throughout
the staircase. Both the physical dynamics which might explain such a balance and
a diagnosis of the predicted heat flux should be investigated further. The HRP data
from SFTRE present an opportunity to do so, examining the dissipation of thermal
variance in the salt finger interfaces. From this we may estimate the heat flux un-
der the assumption of a dissipation production balance. We note that the values of
dissipation maximum which occurs in salt finger interfaces (Figure 4-3) are nearly
constant throughout the staircase.

While the exponential salt flux model resolves our concerns about the magni-
tude of the flux ratio, a further complication lies in the shape of the solution when
the model includes a variable density ratio and layer slope. Using the parame-
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terizations we tested, the solution now has a maximum and minimum flux ratio
within the staircase while the observed density ratio profile suggests (via Stems
model) that there is only one flux ratio maximum. Solving the ODE, the integra-
tion of the second order polynomial parameterization of the density ratio yields a
third order solution, thus giving an incongruous trend in flux ratio at the bottom
of the staircase. In spite of this discrepancy we find the magnitude of the flux ratio
determined by the water mass layer slopes is consistent with salt fingering.

In further advancing our understanding of the staircase fluxes, the Stem model
could be modified to account for the stronger dependence on density ratio sug-
gested by the observational work of St.Laurent and Schmitt, (1999). This might per-
mit solutions which reconcile the differences between the large-scale water mass
conversion model and the small scale salt finger flux model. It may also prove
useful to incorporate a density ratio dependent salt flux, such as that proposed
by Schmittl (1981), to develop a salt flux convergence profile that responds to the
variations in Rhe.

Finally, another approach for further investigation might lie in rephrasing the
question to better handle the mathematical difficulties we have outlined. Through
an algebraic manipulation of terms in McDougalls differential equation we can
apply Sterns model to solve for the salt flux rather than the flux ratio. Since the salt
flux profile would then be arbitrary this changes the number of degrees of freedom
of the solution permitting a result for any observed layer slope, density ratio and
flux ratio dependence. The vertical advection term would then remain unknown.
While this approach would resolve many of the issues we examined concerning the
scale height of the salt flux, it is not a solution to McDougall's question, finding a
consistent salt flux.

4.5 Conclusion

The SFTRE Moored Profiler time series from the western tropical North Atlantic
provides the first continuous time series of temperature, salinity and velocity in
a thermohaline staircase. The evolution of layer properties are well documented
during the 4.3 month record. Such staircases are associated with strong salt finger-
ing at the interfaces between the mixed layers. These data provide unique insights
into the dynamics of the salt finger flux convergence which sets the layer prop-
erties. The striking linear correlation between the temperature and salinity of the
layers observed in C-SALT is refined by these observations. Instead of the constant
RL and R, observed in C-SALT, an inverse relation between the two is observed in
vertical profiles. This inverse relationship is suggestive of a physical link between
the two.

Revisiting the work of McDougall (1991), we set out to test the implications of
the observed vertical variation of the layer slope, noting that the assumption of
constant layer slope, constant flux ratio and gaussian salt flux profile may have
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been too restrictive. In reconstructing McDougall's work using our new observa-
tions, the analysis has shown that the result is sensitive to our assumptions due
to the form of the ordinary differential equation. McDougall's Gaussian salt flux
profile prescribes the flux ratio equal to the layer slope, which is larger than that
observed in the laboratory. This condition is not necessitated by the observations
but rather by the assumption of the salt flux profile. We have demonstrated that
physically motivated solutions do exist in which the ODE is silent about the mag-
nitude of the flux ratio, only setting its vertical structure by the observed variation
of layer slope and density ratio. The new model permits a solution for flux ratio
which is found to be consistent with the magnitude predicted by Stem's formula
and laboratory observations though details of the vertical variation do not fully
agree. The physical consequences of the mathematics of our analysis should be
investigated further. In particular, the heat flux, which is predicted to be nearly
constant through the staircase in our model might be tested with data from the
HRP. The consistent solution is contingent upon the cancelation of variation in the
salt flux with variation in the thermal expansion coefficient to yield the estimated
magnitude of the buoyancy flux ratio. Considerable thought should be given to
the mechanism by which this balance is maintained.
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